TW201619585A - Thermal detection circuits - Google Patents
Thermal detection circuits Download PDFInfo
- Publication number
- TW201619585A TW201619585A TW103140837A TW103140837A TW201619585A TW 201619585 A TW201619585 A TW 201619585A TW 103140837 A TW103140837 A TW 103140837A TW 103140837 A TW103140837 A TW 103140837A TW 201619585 A TW201619585 A TW 201619585A
- Authority
- TW
- Taiwan
- Prior art keywords
- transistor
- voltage
- temperature coefficient
- temperature
- circuit
- Prior art date
Links
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
Description
本揭露是有關於一種溫度偵測電路。 The disclosure relates to a temperature detecting circuit.
半導體元件被用於各種系統,例如一個光學系統和驅動系統,這些半導體元件的特性的變化取決於溫度。因此,為了正確測量溫度來控制半導體元件的特性的變化,通常安裝溫度偵測器。雖然這些溫度偵測器需要具有高偵測效率,這些溫度偵測器也被要求是小型且廉價的。例如有一種溫度偵測電路的架構是使用一個恆定電流流過一PN二極體,並且通過利用PN二極體順向偏壓是隨溫度的上升而增加(即正溫度係數)的特性來測定溫度。 Semiconductor components are used in various systems, such as an optical system and a drive system, the characteristics of which vary depending on the temperature. Therefore, in order to accurately measure the temperature to control the change in the characteristics of the semiconductor element, a temperature detector is usually mounted. Although these temperature detectors require high detection efficiency, these temperature detectors are also required to be small and inexpensive. For example, a temperature detecting circuit is constructed using a constant current flowing through a PN diode and is determined by utilizing the characteristic that the forward bias of the PN diode increases with temperature (ie, positive temperature coefficient). temperature.
一般而言,溫度係數指的是電壓與電流電路所輸出的電壓與電流隨外在操作溫度的變化的程度,可為正溫度係數或負溫度係數。正溫度係數指的是其輸出的電壓與電流隨外在操作溫度的升高而增加,而負溫度係數指的是其輸出的電壓與電流隨外在操作溫度的升高而減少。 In general, the temperature coefficient refers to the degree to which the voltage and current output by the voltage and current circuit vary with the external operating temperature, and may be a positive temperature coefficient or a negative temperature coefficient. The positive temperature coefficient means that the voltage and current of the output increase with the increase of the external operating temperature, and the negative temperature coefficient means that the voltage and current of the output decrease with the increase of the external operating temperature.
另一種溫度偵測電路的架構是利用金屬氧化半導體 (Metal Oxide Semiconductor,MOS)電晶體的閾值電壓Vth和汲極電流Ids是與溫度相關的參數。此技術使用一電位控制電路提供一控制電壓到MOS電晶體的閘級(gate),使得電晶體閘級電壓保持恆定平而與溫度無關,並以通過利用汲極電流Ids的溫度特性來測量溫度。 Another temperature sensing circuit architecture uses metal oxide semiconductors (Metal Oxide Semiconductor, MOS) The threshold voltage Vth and the drain current Ids of the transistor are temperature dependent parameters. This technique uses a potential control circuit to provide a control voltage to the gate of the MOS transistor such that the gate voltage of the transistor remains constant and independent of temperature, and the temperature is measured by utilizing the temperature characteristics of the drain current Ids. .
本揭露實施例可提供關於一種溫度偵測電路,特別是關於適用於半導體積體電路之一種溫度偵測電路。 The disclosed embodiments can provide a temperature detecting circuit, and more particularly, a temperature detecting circuit suitable for a semiconductor integrated circuit.
所揭露的一實施例是關於一種溫度偵測電路,包含一正溫度係數參考電壓電路、一負溫度係數參考電壓電路以及一比較器。其中,該正溫度係數參考電壓電路係利用電晶體的閘級(gate)與源極(source)之間的電位(Vgs)差的正溫度係數來產生一個正溫度係數的電壓,而該負溫度係數參考電壓電路係利用BJT的負溫度特性來產生一個負溫度係數的電壓。進而使正溫度係數的電壓與負溫度係數的電壓經由比較器來產生一個較不隨電源電壓變化之溫度偵測電壓。 One disclosed embodiment relates to a temperature detecting circuit including a positive temperature coefficient reference voltage circuit, a negative temperature coefficient reference voltage circuit, and a comparator. Wherein, the positive temperature coefficient reference voltage circuit generates a positive temperature coefficient voltage by using a positive temperature coefficient of a potential (Vgs) difference between a gate and a source of the transistor, and the negative temperature The coefficient reference voltage circuit uses the negative temperature characteristic of the BJT to generate a voltage with a negative temperature coefficient. Further, the voltage of the positive temperature coefficient and the voltage of the negative temperature coefficient are passed through the comparator to generate a temperature detection voltage that is less variable with the power supply voltage.
為讓本揭露的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the present invention will be more apparent from the following description.
100‧‧‧溫度偵測電路設計架構 100‧‧‧ Temperature detection circuit design architecture
101‧‧‧正溫度係數參考電壓電路 101‧‧‧ positive temperature coefficient reference voltage circuit
102‧‧‧負溫度係數參考電壓電路 102‧‧‧Negative temperature coefficient reference voltage circuit
103‧‧‧比較器 103‧‧‧ comparator
201‧‧‧電流鏡 201‧‧‧current mirror
202‧‧‧電流鏡 202‧‧‧current mirror
第一圖是與所揭露的一實施範例一致的一示意圖,說明本發明之溫度偵測電路設計架構。 The first figure is a schematic diagram consistent with an embodiment of the disclosure to illustrate the temperature sensing circuit design architecture of the present invention.
第二圖是與所揭露的一實施範例一致的一示意圖,說明本發明之溫度偵測電路。 The second figure is a schematic diagram consistent with an embodiment of the disclosure to illustrate the temperature sensing circuit of the present invention.
第三圖是與所揭露的一實施範例一致的一示意圖,說明根據第二圖的的電路所模擬計算而得的電壓V1與電壓V2,以及比較器輸出的電壓V3。 The third figure is a schematic diagram consistent with an embodiment of the disclosure, illustrating the voltage V1 and voltage V2 calculated by the circuit of the second figure, and the voltage V3 output by the comparator.
第四圖是與所揭露的一實施範例一致的一示意圖,說明根據第二圖的電路以各種電源電壓所模擬計算比較器的輸出電壓V3。 The fourth figure is a schematic diagram consistent with an embodiment of the disclosure, illustrating that the output voltage V3 of the comparator is calculated from various supply voltages in accordance with the circuit of the second figure.
本揭露提出一種溫度偵測電路的技術,可運用於半導體積體電路之中。 The present disclosure proposes a technique of a temperature detecting circuit that can be applied to a semiconductor integrated circuit.
第一圖是與所揭露的一實施範例一致的一示意圖,說明一溫度偵測電路設計架構。如第一圖所示,溫度偵測電路設計架構100包含一正溫度係數參考電壓電路101以輸出正溫度係數的電壓V1、一負溫度係數參考電壓電路102以輸出負溫度係數的電壓V2,以及一比較器103以接收電壓V1和電壓V2來產生溫度偵測電壓V3。上述正溫度係數指的是其輸出的電壓隨操作溫度的升高而增加,而負溫度係數指的是其輸出的電壓隨操作溫度的升高而減少。 The first figure is a schematic diagram consistent with an embodiment of the disclosure, illustrating a temperature detection circuit design architecture. As shown in the first figure, the temperature detecting circuit design architecture 100 includes a positive temperature coefficient reference voltage circuit 101 for outputting a positive temperature coefficient voltage V1, a negative temperature coefficient reference voltage circuit 102 to output a negative temperature coefficient voltage V2, and A comparator 103 generates a temperature detection voltage V3 by receiving the voltage V1 and the voltage V2. The above positive temperature coefficient means that the voltage of its output increases as the operating temperature increases, and the negative temperature coefficient means that the voltage of its output decreases as the operating temperature increases.
第二圖是與所揭露的一實施範例一致的一示意 圖,說明一溫度偵測電路。如第二圖所示,此溫度偵測電路包含一正溫度係數參考電壓電路101、一負溫度係數參考電壓電路102、以及一比較器103。其中,正溫度係數參考電壓電路101係由一PMOS電流鏡201來實現。電流鏡201由電晶體MN1、電晶體MN4、電晶體MN2、電晶體MN3、電晶體MN5、以及一電阻R1所構成。其中電晶體MN4、電晶體MN3與電晶體MN5源極分別連接至電流源,所流入之電流分別以I1、I2與I5表示;電晶體MN4、電晶體MN3與電晶體MN5閘極相連接,且連至電晶體MN5的源極,並且輸出正溫度係數的電壓V1;電晶體MN1源極與電晶體MN4汲極相連接;電晶體MN2源極與電晶體MN3汲極相連接;電晶體MN1與電晶體MN2閘極相連接,且連至電晶體MN3的源極;電晶體MN2與電晶體MN5的汲極接地,而電晶體MN1的汲極則是串聯電阻R1後再接地。 The second figure is a schematic diagram consistent with an embodiment of the disclosure, illustrating a temperature detecting circuit. As shown in the second figure, the temperature detecting circuit includes a positive temperature coefficient reference voltage circuit 101, a negative temperature coefficient reference voltage circuit 102, and a comparator 103. The positive temperature coefficient reference voltage circuit 101 is implemented by a PMOS current mirror 201. The current mirror 201 is composed of a transistor M N1 , a transistor M N4 , a transistor M N2 , a transistor M N3 , a transistor M N5 , and a resistor R 1 . The source of the transistor M N4 , the transistor M N3 and the transistor M N5 are respectively connected to the current source, and the current flowing in is represented by I 1 , I 2 and I 5 respectively ; the transistor M N4 , the transistor M N3 and the electricity The gate of the crystal M N5 is connected to the source of the transistor M N5 and outputs a voltage V1 of positive temperature coefficient; the source of the transistor M N1 is connected to the drain of the transistor M N4 ; the source of the transistor M N2 Connected to the gate of the transistor M N3 ; the transistor M N1 is connected to the gate of the transistor M N2 and is connected to the source of the transistor M N3 ; the gate of the transistor M N2 and the transistor M N5 are grounded, and The drain of the transistor M N1 is connected to the series resistor R 1 and then grounded.
負溫度係數參考電壓電路102係由一PMOS電流鏡202來實現。電流鏡202由雙極性電晶體(Bipolar Junction Transistor,BJT)Q3、Q4、以及電阻R2、R3所構成。其中,電晶體Q3射極串聯電阻R2、R3後連接至電流源,所流入之電流由I3表示,並且在電阻R2和R3的連接點輸出負溫度係數的電壓V2;電晶體Q3基極連接至電晶體Q4射極;電晶體Q3與電晶體Q4集極接地,且連至電晶體Q4的基極。 The negative temperature coefficient reference voltage circuit 102 is implemented by a PMOS current mirror 202. The current mirror 202 is composed of a Bipolar Junction Transistor (BJT) Q 3 , Q 4 , and resistors R 2 and R 3 . Wherein, the transistor Q 3 emitter series resistors R 2 , R 3 are connected to the current source, the current flowing in is represented by I 3 , and the voltage V2 of the negative temperature coefficient is output at the junction of the resistors R 2 and R 3 ; The base of the crystal Q 3 is connected to the emitter of the transistor Q 4 ; the transistor Q 3 and the collector of the transistor Q 4 are grounded and connected to the base of the transistor Q 4 .
比較器103的正端輸入是正溫度係數參考電壓電 路101輸出的電壓V1,而其負端輸入是負溫度係數參考電壓電路102輸出的電壓V2。電壓V1與電壓V2經由輸入到比較器103來產生溫度偵測電壓V3。比較器103還可具有遲滯(Hysteresis)的特性,例如設定輸入端的遲滯電壓為±100mV,即電壓V1大於電壓V2超過100mV時,電壓V3為高電位(例如5V),而電壓V2大於電壓V1超過100mV時,電壓V3為低電位(例如0V)。 The positive terminal input of comparator 103 is a positive temperature coefficient reference voltage The path 101 outputs a voltage V1, and its negative terminal input is a voltage V2 output from the negative temperature coefficient reference voltage circuit 102. The voltage V1 and the voltage V2 are input to the comparator 103 to generate the temperature detecting voltage V3. The comparator 103 can also have hysteresis characteristics, such as setting the hysteresis voltage at the input terminal to ±100 mV, that is, when the voltage V1 is greater than the voltage V2 exceeding 100 mV, the voltage V3 is at a high potential (for example, 5 V), and the voltage V2 is greater than the voltage V1. At 100 mV, the voltage V3 is low (for example, 0 V).
第二圖的實施範例中正溫度係數參考電壓電路101與負溫度係數參考電壓電路102所輸出的電壓V1與電壓V2,可以下列式子加以說明。 In the embodiment of the second figure, the voltage V1 and the voltage V2 output by the positive temperature coefficient reference voltage circuit 101 and the negative temperature coefficient reference voltage circuit 102 can be described by the following equations.
當,則V2為負溫度係數電壓。 when , then V2 is the negative temperature coefficient voltage.
由上列之式子可以得知,電壓V1與I5有關,而I5為I1的倍數而與電阻R1有關,因此變動電阻R1可以改變電壓V1隨溫度的變動率。電壓V2與電阻R2有關,變動電阻R2可以改變電壓V2隨溫度的變動率。 It can be known from the above equation, the voltage V1 and the related I 5, and I 5 I 1 being a multiple of about 1 and a resistor R, and therefore variation in the resistance R 1 may change with temperature variation rate of the voltage V1. The voltage V2 is related to the resistance R 2 , and the fluctuation resistance R 2 can change the rate of change of the voltage V2 with temperature.
第三圖是與所揭露的一實施範例一致的一示意圖,說明根據第二圖的的電路所模擬計算而得的電壓V1與電壓V2,以及比較器103輸出的電壓V3。其中,X軸為溫度值,係由-40℃到200℃,而Y軸為電壓值(上圖是電壓V1與電壓V2的電壓值,下圖是電壓V3的電壓值)。如第三圖所示,電壓V1的電壓值隨溫度上升而增加,電壓V2的電壓值隨溫度上升而下降。此溫度偵測電路設定當室溫時電壓V2大於電壓V1。隨著溫度由低溫,例如是-40℃往上升,電壓V1繼續上升,而電壓V2繼續下降。當溫度到達一預定溫度,例如是150℃,此時電壓V1大於電壓V2超過比較器的遲滯電壓100mV時,比較器的輸出電壓V3為5V(高電位)。另一種情況是溫度由高溫(例如 200℃)往低溫下降,此時電壓V1繼續下降,而電壓V2繼續上升。當溫度到達一預定溫度,例如是105℃,此時電壓V2大於電壓V1超過比較器的遲滯電壓100mV時,比較器的輸出電壓V3為0V(低電位)。 The third figure is a schematic diagram consistent with an embodiment of the disclosure, illustrating the voltage V1 and voltage V2 calculated by the circuit of the second figure, and the voltage V3 output by the comparator 103. The X-axis is a temperature value, which is from -40 ° C to 200 ° C, and the Y-axis is a voltage value (the upper graph is the voltage value of the voltage V1 and the voltage V2, and the lower graph is the voltage value of the voltage V3). As shown in the third figure, the voltage value of the voltage V1 increases as the temperature rises, and the voltage value of the voltage V2 decreases as the temperature rises. The temperature detecting circuit sets the voltage V2 to be greater than the voltage V1 when the temperature is high. As the temperature rises from a low temperature, for example, -40 ° C, the voltage V1 continues to rise, and the voltage V2 continues to drop. When the temperature reaches a predetermined temperature, for example, 150 ° C, when the voltage V1 is greater than the voltage V2 exceeding the hysteresis voltage of the comparator by 100 mV, the output voltage V3 of the comparator is 5 V (high potential). Another situation is that the temperature is high (for example 200 ° C) drops to a low temperature, at which time the voltage V1 continues to drop, and the voltage V2 continues to rise. When the temperature reaches a predetermined temperature, for example, 105 ° C, when the voltage V2 is greater than the voltage V1 exceeding the hysteresis voltage of the comparator by 100 mV, the output voltage V3 of the comparator is 0 V (low potential).
第四圖是與所揭露的一實施範例一致的一示意圖,說明根據第二圖的電路以各種電源電壓所模擬計算比較器的輸出電壓V3。其中,X軸為溫度值,係由-40℃到200℃,而Y軸為電壓值。如第四圖所示,其中標示電源電壓由2V到6V每增加0.5V來模擬計算比較器的輸出電壓V3的電壓值變化。在第四圖中,針對各種電源電壓,模擬計算的結果如下:隨著溫度由-40℃往上升,當溫度到達150℃,比較器的輸出電壓V3由低電位變為高電位。再者溫度由200℃往下降,當溫度到達105℃,比較器的輸出電壓由高電位變為低電位。由第四圖的模擬計算比較器的輸出電壓V3的結果可以得知:正溫度係數的電壓V1與負溫度係數的電壓V2經由比較器可以產生一個較不隨電源電壓變化之溫度偵測電壓。 The fourth figure is a schematic diagram consistent with an embodiment of the disclosure, illustrating that the output voltage V3 of the comparator is calculated from various supply voltages in accordance with the circuit of the second figure. Among them, the X axis is the temperature value, which is from -40 ° C to 200 ° C, and the Y axis is the voltage value. As shown in the fourth figure, the voltage value of the output voltage V3 of the comparator is simulated by the power supply voltage from 2V to 6V for each 0.5V increase. In the fourth figure, for various power supply voltages, the results of the simulation calculation are as follows: As the temperature rises from -40 ° C, when the temperature reaches 150 ° C, the output voltage V3 of the comparator changes from a low potential to a high potential. Furthermore, the temperature drops from 200 ° C. When the temperature reaches 105 ° C, the output voltage of the comparator changes from a high potential to a low potential. As a result of calculating the output voltage V3 of the comparator from the simulation of the fourth figure, it can be known that the voltage V1 of the positive temperature coefficient and the voltage V2 of the negative temperature coefficient can generate a temperature detection voltage that does not vary with the power supply voltage via the comparator.
綜上所述,本揭露提出一種溫度偵測電路係利用電晶體的閘級與源極之間的電位差的正溫度係數來產生一個正溫度係數的電壓、並且利用BJT的負溫度特性來產生一個負溫度係數的電壓,以及經由調整溫度偵測電路的一些電阻值來改變上述兩個電壓的溫度變化率,利用一比較器比較上述兩個 電壓,來產生一個較不隨電源電壓變化之可設定溫度的偵測電壓。 In summary, the present disclosure proposes a temperature detecting circuit that uses a positive temperature coefficient of a potential difference between a gate and a source of a transistor to generate a positive temperature coefficient voltage, and uses a negative temperature characteristic of the BJT to generate a a voltage of a negative temperature coefficient, and changing a temperature change rate of the two voltages by adjusting some resistance values of the temperature detecting circuit, and comparing the two by using a comparator The voltage is used to generate a detectable voltage that is less than the settable temperature that varies with the supply voltage.
以上所述者僅為依據本揭露的實施範例,當不能依此限定本揭露實施之範圍。即大凡發明申請專利範圍所作之均等變化與修飾,皆應仍屬本揭露專利涵蓋之範圍。 The above is only the embodiment according to the disclosure, and the scope of the disclosure is not limited thereto. That is, the equivalent changes and modifications made by the scope of the patent application should remain within the scope of the disclosure.
100‧‧‧溫度偵測電路設計架構 100‧‧‧ Temperature detection circuit design architecture
101‧‧‧正溫度係數參考電壓電路 101‧‧‧ positive temperature coefficient reference voltage circuit
102‧‧‧負溫度係數參考電壓電路 102‧‧‧Negative temperature coefficient reference voltage circuit
103‧‧‧比較器 103‧‧‧ comparator
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103140837A TWI567372B (en) | 2014-11-25 | 2014-11-25 | Thermal detection circuits |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103140837A TWI567372B (en) | 2014-11-25 | 2014-11-25 | Thermal detection circuits |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201619585A true TW201619585A (en) | 2016-06-01 |
TWI567372B TWI567372B (en) | 2017-01-21 |
Family
ID=56754964
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103140837A TWI567372B (en) | 2014-11-25 | 2014-11-25 | Thermal detection circuits |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI567372B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107328485A (en) * | 2017-07-06 | 2017-11-07 | 厦门安斯通微电子技术有限公司 | A kind of optional TEMP chip of single-chip integration Positive and Negative Coefficient Temperature |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009217809A (en) * | 2008-02-12 | 2009-09-24 | Seiko Epson Corp | Reference voltage generating circuit, integrated circuit device and signal processing apparatus |
TWI460409B (en) * | 2011-03-31 | 2014-11-11 | Global Unichip Corp | Temperature measurement circuit and temperature measurement method |
-
2014
- 2014-11-25 TW TW103140837A patent/TWI567372B/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107328485A (en) * | 2017-07-06 | 2017-11-07 | 厦门安斯通微电子技术有限公司 | A kind of optional TEMP chip of single-chip integration Positive and Negative Coefficient Temperature |
Also Published As
Publication number | Publication date |
---|---|
TWI567372B (en) | 2017-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108007594B (en) | Temperature detection circuit and method | |
US8451571B2 (en) | Overheat protection circuit and power supply integrated circuit | |
US9819173B2 (en) | Overheat protection circuit and voltage regulator | |
CN104967095B (en) | Thermal-shutdown circuit | |
TWI521326B (en) | Bandgap reference generating circuit | |
TW201303544A (en) | Voltage regulator | |
US20180006018A1 (en) | Power converter and semiconductor device | |
TWI651609B (en) | Low voltage locking circuit and device thereof integrated with reference voltage generating circuit | |
CN105846397A (en) | High-precision overtemperature protecting circuit | |
CN105606240A (en) | Temperature detection circuit and semiconductor device | |
TWI567372B (en) | Thermal detection circuits | |
US9454174B2 (en) | Power supply voltage monitoring circuit, and electronic circuit including the power supply voltage monitoring circuit | |
TWI686030B (en) | Overheat detection circuit and power supply device | |
JP5767855B2 (en) | Regulator circuit | |
JP6542103B2 (en) | Overheat detection circuit, overheat protection circuit, and semiconductor device | |
JP6205238B2 (en) | Reference voltage generator | |
US9983067B2 (en) | Overheat detection circuit and semiconductor device | |
JP2012088230A (en) | Voltage detection circuit | |
US9939335B2 (en) | Over-temperature detector with test mode | |
CN114200190B (en) | Voltage difference detection circuit | |
JP5759787B2 (en) | Temperature detection circuit | |
JP2006047039A (en) | Temperature detection circuit, and power semiconductor device provided with temperature detection circuit | |
JP7126931B2 (en) | Overheat protection circuit and semiconductor device | |
JP2008085541A (en) | Voltage level detection circuit and power-on resetting circuit using same | |
JP2016194462A (en) | Sensor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |