TW201618417A - Switch capacitor charge equalization circuit for series-connected battery cells - Google Patents

Switch capacitor charge equalization circuit for series-connected battery cells Download PDF

Info

Publication number
TW201618417A
TW201618417A TW103138779A TW103138779A TW201618417A TW 201618417 A TW201618417 A TW 201618417A TW 103138779 A TW103138779 A TW 103138779A TW 103138779 A TW103138779 A TW 103138779A TW 201618417 A TW201618417 A TW 201618417A
Authority
TW
Taiwan
Prior art keywords
coupled
switch
battery
capacitor
circuit
Prior art date
Application number
TW103138779A
Other languages
Chinese (zh)
Other versions
TWI558063B (en
Inventor
謝耀慶
蔡政修
邱于峻
Original Assignee
國立臺灣科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立臺灣科技大學 filed Critical 國立臺灣科技大學
Priority to TW103138779A priority Critical patent/TWI558063B/en
Publication of TW201618417A publication Critical patent/TW201618417A/en
Application granted granted Critical
Publication of TWI558063B publication Critical patent/TWI558063B/en

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

The present invention relates to a switch capacitor charge equalization circuit for series-connected battery cells. In conventional circuit, when the capacitor is charging or discharging, the capacitor is shunted across only one battery cell. Thus, the balance current becomes smaller as the voltage differences between each battery, as such, the balance time is prolonged. In the present invention, the capacitor is shunted across at least two battery cells when the capacitor is charged, and the capacitor is shunted across a battery cell when the capacitor is discharged. Thus, the balance current is increased, and the balance time is effectively reduced.

Description

電容切換式電池電量平衡電路 Capacitor switching battery cell balancing circuit

本發明係關於一種串聯電池的技術,更進一步來說,本發明係關於一種電容切換式電量平衡電路。 The present invention relates to a technique of a series battery, and more particularly to a capacitance switching type cell balancing circuit.

電芯失衡指每個電池的容量變得不同。這通常是由電池的物理和電學特性容差造成。具體來說,多節串聯電池中的電芯失衡是由容量劣化率的微小不匹配和大批量生產中,等效並聯連接到電池的內部電阻或自放電電阻,以及周邊電路配置引起。雖然隨著電池製造技術的提高,容量劣化率和內部電阻得到很好的控制,但隨著時間的推移,微小不匹配效應將逐漸增加並影響電池的性能。 The cell imbalance means that the capacity of each battery becomes different. This is usually caused by the physical and electrical characteristics of the battery. Specifically, cell imbalance in multi-cell series cells is caused by a slight mismatch in capacity degradation rate and in mass production, equivalent parallel connection to the internal resistance or self-discharge resistance of the battery, and peripheral circuit configuration. Although the capacity deterioration rate and internal resistance are well controlled as the battery manufacturing technology is improved, the micro-mismatch effect will gradually increase and affect the performance of the battery over time.

由於充電過程完成後,最低容量的電池無法完全充電,直到總電池電壓等於充電器的輸出電壓,或在一個或多個電池進到過度充電狀態的情況下,保護積體電路可關斷保護開關。另外,在放電狀態下,電池組的 執行時間受最低容量電池限制,亦即該電池在電芯失衡狀態下無法被充分利用。為防止發生電芯失衡,需要一個電路,即「電芯平衡電路」。 Since the minimum capacity battery cannot be fully charged after the charging process is completed, until the total battery voltage is equal to the charger's output voltage, or when one or more batteries are in an overcharged state, the protection integrated circuit can turn off the protection switch. . In addition, in the discharged state, the battery pack The execution time is limited by the battery of the lowest capacity, that is, the battery cannot be fully utilized in the state of battery imbalance. In order to prevent cell imbalance, a circuit, the "cell balancing circuit", is required.

電芯平衡電路的基本概念是使每個電池的能量相等。可根據的電池類型與功耗,將電芯平衡劃分成兩種類型:被動電芯平衡和主動電芯平衡。被動電芯平衡的方法是消耗電池能量,使所有電池的電壓相等,如參考文件[1];主動電芯平衡的方法則是使用低功耗電容或電感重新分配電池間能量。 The basic concept of a cell balancing circuit is to equalize the energy of each cell. The cell balance can be divided into two types depending on the type of battery and power consumption: passive cell balancing and active cell balancing. Passive cell balancing is the method of consuming battery energy to equalize the voltage of all cells, as described in the reference [1]; active cell balancing is the use of low-power capacitors or inductors to redistribute energy between cells.

台灣專利公告TWI415365號揭露一種使用開關的切換與超電容來達成鄰近兩顆電池電量的傳遞,以達成電池串平衡的效果。台灣專利公告TWM441267號揭露一種使用返馳式轉換器來將電量高的電池放電給整個電池串,來達成電池平衡,此電路還提供模組與模組間的平衡路徑。台灣專利公告TWM382598號係使用八顆開關來選擇對電量較低的電池做充電,以達成電量平衡。參考文件[2]使用開關與二極體製造旁路,使較低電壓的電池停止放電,或使較高電壓的電池停止充電,來達成電池平衡。 Taiwan Patent Publication TWI415365 discloses a switching and supercapacitance of a switch to achieve the transfer of power between two adjacent batteries to achieve battery string balance. Taiwan Patent Publication TWM441267 discloses a balanced path between a module and a module by using a flyback converter to discharge a high battery to the entire battery string to achieve battery balance. Taiwan Patent Notice TWM382598 uses eight switches to charge a battery with a lower charge to achieve a balance. Reference [2] uses a switch and a diode to create a bypass to stop the discharge of a lower voltage battery or to stop charging a higher voltage battery to achieve battery balance.

由於平衡電路上會受元件特性所影響,不僅會有元件上的電阻與電容特性,還會有線上的雜散電感與電容等特性。第1圖繪示為傳統的電容切換式電量平衡電路的電路圖。請參考第1圖,此傳統的電容切換式電量平衡電路包括四個單電池B1、B2、B3、B4、八個開 關Sa1、Sa2、Sa3、Sa4、Sb1、Sb2、Sb3、Sb4以及三個電容C1、C2、C3。電路上看似需要非常複雜的控制方式,但實際只需簡單的PWM訊號就可完成平衡所需的控制功能。第2圖繪示為傳統的電容切換式電量平衡電路的電壓電流的理想波形圖。為了方便說明以簡化電路來說明-以串聯兩個鋰離子電池為例,並假設電池電壓B1大於B2來閘述平衡電路的操作模式。第3圖繪示為傳統的電容切換式電量平衡電路的簡化電路圖。第4圖繪示為傳統的電容切換式電量平衡電路的操作模式圖。第5圖繪示為傳統的電容切換式電量平衡電路的操作模式圖。以下,藉由第3圖到第5圖說明先前技術的電容切換式電路的操作。 Since the balance circuit is affected by the characteristics of the components, not only the resistance and capacitance characteristics of the components but also the characteristics of stray inductance and capacitance on the wires. FIG. 1 is a circuit diagram of a conventional capacitance-switched cell balancing circuit. Referring to FIG. 1 , the conventional capacitor-switched cell balancing circuit includes four single cells B 1 , B 2 , B 3 , B 4 , eight switches S a1 , S a2 , S a3 , S a4 , S b1 , S b2 , S b3 , S b4 and three capacitors C 1 , C 2 , C 3 . The circuit seems to require a very complicated control method, but in reality, a simple PWM signal can be used to complete the control functions required for balancing. Figure 2 is a diagram showing the ideal waveform of the voltage and current of a conventional capacitance-switched cell balancing circuit. For convenience of explanation, a simplified circuit is illustrated - taking two lithium ion batteries in series as an example, and assuming that the battery voltage B 1 is greater than B 2 to dictate the operation mode of the balancing circuit. Figure 3 is a simplified circuit diagram of a conventional capacitively switched cell balancing circuit. FIG. 4 is a schematic diagram showing the operation mode of a conventional capacitance switching type power balance circuit. FIG. 5 is a schematic diagram showing the operation mode of a conventional capacitance switching type power balance circuit. Hereinafter, the operation of the prior art capacitance switching type circuit will be described with reference to FIGS. 3 to 5.

模式1(t0~t1): Mode 1 (t 0 ~ t 1 ):

在時間t0時,開關Sa1與Sa2導通,電流導通路徑如第4圖所表示。此模式下B1電池開始在釋放能量至電容C1對其進行充電;而當開關截止時,此模式終止,進入怠滯模式。 At time t 0 , the switches S a1 and Sa 2 are turned on, and the current conducting path is as shown in FIG. 4 . In this mode, the B 1 battery begins to discharge energy to the capacitor C 1 to charge it; when the switch is turned off, this mode is terminated and enters the hysteresis mode.

模式2(t2~t3): Mode 2 (t 2 ~ t 3 ):

在時間t2時,開關Sb1與Sb2導通,電流導通路徑如第5圖所表示。此模式下則由電容C1開始釋放能量至電池B2,對其進行充電。而當開關截止時此模式終止,進入怠滯模式,並等待重回模式1。 At time t 2 , switches S b1 and S b2 are turned on, and the current conducting path is as shown in FIG. In this mode by the capacitor C 1 begins to release the energy to the battery B 2, to charge it. When the switch is turned off, this mode is terminated, enters the hysteresis mode, and waits for the return mode 1.

而電池電壓的差距,透過電池、電容間的傳遞,將電壓較高的電池能量傳遞至電壓低的電池,而慢慢拉近電壓間的差距如第6圖所示。第6圖繪示為傳統 的電容切換式電量平衡電路的平衡結果圖。由此看到平衡需要很長的時間,並且平衡後電壓的差距依舊很大。本發明的主要重點就是改善平衡時間與平衡後電壓差距。 The difference in battery voltage, through the transmission between the battery and the capacitor, transfers the energy of the higher voltage battery to the battery with a lower voltage, and slowly narrows the gap between the voltages as shown in Fig. 6. Figure 6 shows the tradition The balance result of the capacitance-switched cell balancing circuit. It is thus seen that the balance takes a long time, and the voltage gap after the balance is still large. The main focus of the invention is to improve the balance time and the voltage difference after the balance.

[1] C. Pascual, and P. T. Krein, “Switched Capacitor System for Automatic Series Battery Equalization,” 12 th Applied Power Electronics Conference and Exposition, APEC’97, pp. 848-854, 1997. [1] C. Pascual, and PT Krein, "Switched Capacitor System for Automatic Series Battery Equalization," 12 th Applied Power Electronics Conference and Exposition, APEC'97, pp. 848-854, 1997.

[2] H. Shibata, S. Taniguchi, K. Adachi, K. Yamasaki, G. Ariyoshi, K. Kawata, K. Nishijima and K. Harada, “Management of Serially-Connected Battery System Using Multiple Switches,” IEEE International Conference on Power Electronics and Drive Systems, Vol. 2, pp. 508-511, Oct. 2001. [2] H. Shibata, S. Taniguchi, K. Adachi, K. Yamasaki, G. Ariyoshi, K. Kawata, K. Nishijima and K. Harada, “Management of Serially-Connected Battery System Using Multiple Switches,” IEEE International Conference on Power Electronics and Drive Systems, Vol. 2, pp. 508-511, Oct. 2001.

本發明的一目的在於提供一種電容切換式電量平衡電路及使用其之電池組,用以平衡每一子電池的電量,並減低平衡電池電量的時間,以及延長電池組之使用壽命。 It is an object of the present invention to provide a capacitance switching type battery balancing circuit and a battery pack using the same, which balances the power of each sub-battery, reduces the time for balancing the battery power, and prolongs the service life of the battery pack.

有鑒於此,本發明提供一種電容切換式電池電量平衡電路,適用於第一單電池(Cell)以及一第二單電池,其中,第二單電池的第一端耦接第一個單電池的第二端,此電容切換式電池電量平衡電路包括一電容器、一上支開關電路、一下支開關電路以及一控制電路。 電容器包括一第一端以及一第二端,用以儲存能量。上支開關電路包括至少兩個第一端以及一第二端,其中,上支開關元件的第二端耦接該電容器的第一端,上支開關元件的第一個第一端耦接第一個單電池的第一端,上支開關元件的第二個第一端耦接第二個單電池的第一端。下支開關電路包括至少兩個第一端以及一第二端,其中,下支開關元件的第二端耦接電容器的第二端,下支開關元件的第一個第一端耦接第一個單電池的第二端,下支開關元件的第二個第一端耦接第二個單電池的第二端。控制電路用以控制上支開關電路以及下支開關電路。 In view of the above, the present invention provides a capacitance switching battery cell balancing circuit, which is applicable to a first battery cell (Cell) and a second battery cell, wherein the first end of the second battery cell is coupled to the first battery cell. At the second end, the capacitor-switched battery cell balancing circuit includes a capacitor, an upper switch circuit, a lower switch circuit, and a control circuit. The capacitor includes a first end and a second end for storing energy. The upper switch circuit includes at least two first ends and a second end, wherein the second end of the upper branch switch element is coupled to the first end of the capacitor, and the first end of the upper branch switch element is coupled to the first end The first end of the single cell, the second first end of the upper switching element is coupled to the first end of the second cell. The lower switch circuit includes at least two first ends and a second end, wherein the second end of the lower branch switch element is coupled to the second end of the capacitor, and the first first end of the lower branch switch element is coupled to the first end The second end of the single cell is coupled to the second end of the second cell. The control circuit is used to control the upper switch circuit and the lower switch circuit.

當進行第K個單電池的電量平衡時,在一第一預設時間,控制電路控制上支開關的第一個第一端與上支開關的第二端導通,且控制電路控制下支開關的第二個第一端與下支開關的第二端導通,使第一單電池(Cell)以及第二單電池串聯對電容器進行充電。在一第二預設時間,控制電路控制上支開關的第K個第一端與上支開關的第二端導通,且控制電路控制下支開關的第K個第一端與下支開關的第二端導通,使電容器對第K個單電池進行放電,其中,0<K<=2。 When the battery balance of the Kth battery is performed, the control circuit controls the first first end of the upper switch to be electrically connected to the second end of the upper switch at a first preset time, and the control circuit controls the lower switch The second first end is electrically connected to the second end of the lower switch, so that the first single cell (Cell) and the second single cell are connected in series to charge the capacitor. At a second predetermined time, the control circuit controls the Kth first end of the upper switch to be electrically connected to the second end of the upper switch, and the control circuit controls the Kth first end and the lower switch of the lower switch The second end is turned on to cause the capacitor to discharge the Kth cell, wherein 0<K<=2.

本發明另外提供一種電容切換式電池電量平衡電路,適用於N組串接的電池組(Group of Cells),其中,每一組串接的電池組包含至少兩個單電池(Cell),其中,第I+1個電池組的第一端耦接第I個電池組的第二端,此電容切換式電池電量平衡電路包括一電 容器、一上支開關電路、一下支開關電路以及一控制電路。電容器包括一第一端以及一第二端,用以儲存能量。上支開關電路包括N個第一端以及一第二端,其中,上支開關元件的第二端耦接電容器的第一端,上支開關元件的第J個第一端耦接第J個電池組的第一端。下支開關電路包括N個第一端以及一第二端,其中,下支開關元件的第二端耦接電容器的第二端,下支開關元件的第J個第一端耦接第J個電池組的第二端。控制電路用以控制上支開關電路以及下支開關電路。 The present invention further provides a capacitor-switched battery cell balancing circuit, which is applicable to a group of N-series battery packs, wherein each of the series-connected battery packs includes at least two cells (Cell), wherein The first end of the first +1 battery pack is coupled to the second end of the first battery pack, and the capacitor-switched battery balance circuit includes an electric a container, an upper switch circuit, a lower switch circuit, and a control circuit. The capacitor includes a first end and a second end for storing energy. The upper switching circuit includes N first ends and a second end, wherein the second end of the upper switching element is coupled to the first end of the capacitor, and the J first end of the upper switching element is coupled to the Jth The first end of the battery pack. The lower switch circuit includes N first ends and a second end, wherein the second end of the lower branch switching element is coupled to the second end of the capacitor, and the J first end of the lower branch switching element is coupled to the Jth The second end of the battery pack. The control circuit is used to control the upper switch circuit and the lower switch circuit.

當進行第K個電池組的電量平衡時:在一第一預設時間,控制電路控制上支開關的第一個第一端與上支開關的第二端導通,且控制電路控制下支開關的第N個第一端與下支開關的第二端導通,使N個電池組對電容器進行充電。在一第二預設時間,控制電路控制上支開關的第K個第一端與上支開關的第二端導通,且控制電路控制下支開關的第K個第一端與下支開關的第二端導通,使電容器對第K個電池組進行放電,其中,N、I、J、K為自然數,且0<I、J、K<=N。 When performing the balance of the Kth battery pack: at a first preset time, the control circuit controls the first first end of the upper switch to be turned on with the second end of the upper switch, and the control circuit controls the lower switch The Nth first end is electrically connected to the second end of the lower switch, so that the N battery packs charge the capacitor. At a second predetermined time, the control circuit controls the Kth first end of the upper switch to be electrically connected to the second end of the upper switch, and the control circuit controls the Kth first end and the lower switch of the lower switch The second end is turned on to cause the capacitor to discharge the Kth battery pack, wherein N, I, J, and K are natural numbers, and 0<I, J, K<=N.

本發明另外提供一種電容切換式電池電量平衡電路,適用於N個串接的單電池(Cell),其中,第I+1個單電池的第一端耦接第I個單電池的第二端,此電容切換式電池電量平衡電路包括一電容器、一上支開關電路、一下支開關電路以及一控制電路。電容器包括一第一端以及一第二端,用以儲存能量。上支開關電路包括N 個第一端以及一第二端,其中,上支開關元件的第二端耦接電容器的第一端,上支開關元件的第J個第一端耦接該第J個單電池的第一端。下支開關電路包括N個第一端以及一第二端,其中,下支開關元件的第二端耦接電容器的第二端,下支開關元件的第J個第一端耦接第J個單電池的第二端。控制電路用以控制上支開關電路以及下支開關電路。 The present invention further provides a capacitor-switched battery cell balancing circuit, which is applicable to N series connected cells (Cells), wherein the first end of the first +1 cells is coupled to the second end of the first cell The capacitance switching battery balancing circuit includes a capacitor, an upper switching circuit, a lower switching circuit, and a control circuit. The capacitor includes a first end and a second end for storing energy. The upper switch circuit includes N a first end and a second end, wherein the second end of the upper switching element is coupled to the first end of the capacitor, and the Jth first end of the upper switching element is coupled to the first of the Jth battery end. The lower switch circuit includes N first ends and a second end, wherein the second end of the lower branch switching element is coupled to the second end of the capacitor, and the J first end of the lower branch switching element is coupled to the Jth The second end of the battery. The control circuit is used to control the upper switch circuit and the lower switch circuit.

當進行第K個單電池的電量平衡時,在一第一預設時間,控制電路控制上支開關的第一個第一端與上支開關的第二端導通,且控制電路控制下支開關的第N個第一端與該下支開關的第二端導通,使N個單電池對電容器進行充電。在一第二預設時間,控制電路控制上支開關的第K個第一端與上支開關的第二端導通,且控制電路控制下支開關的第K個第一端與下支開關的第二端導通,使電容器對第K個單電池進行放電,其中,N、I、J、K為自然數,且0<I、J、K<=N。 When the battery balance of the Kth battery is performed, the control circuit controls the first first end of the upper switch to be electrically connected to the second end of the upper switch at a first preset time, and the control circuit controls the lower switch The Nth first end is electrically connected to the second end of the lower switch, so that the N single cells charge the capacitor. At a second predetermined time, the control circuit controls the Kth first end of the upper switch to be electrically connected to the second end of the upper switch, and the control circuit controls the Kth first end and the lower switch of the lower switch The second end is turned on to cause the capacitor to discharge the Kth cell, wherein N, I, J, and K are natural numbers, and 0<I, J, K<=N.

本發明之精神在於提出一種電容切換式電量平衡電路,主要是改善傳統電路的平衡時間與電池間的電壓差距。為了改善線路與元件特性影響,將改變原先由一顆電池來對電容儲能變成運用兩顆至多顆單電池(Cell)來對電池儲能,再由電容將能量轉移至電壓較低的單電池(Cell),雖然在開關上依舊有壓降,但因是由兩顆電池的加總電壓對單電池之電壓做能量轉移,因此其開關上的壓降對於電池間的差距就不會如此嚴重。雖然在電 路上元件變多且控制機制也顯得較為複雜;但相對地,在平衡效果卻有相當大的改善,且轉換效率也大幅提昇。 The spirit of the present invention is to provide a capacitance switching type power balance circuit, which mainly improves the balance time between the conventional circuit and the voltage difference between the batteries. In order to improve the influence of line and component characteristics, it will change the energy storage of the capacitor from one battery to two to many cells (Cell) to store energy, and then transfer the energy to the lower voltage cell by capacitor. (Cell), although there is still a voltage drop on the switch, because the voltage of the two batteries is used to transfer the voltage of the battery, the voltage drop on the switch is not so serious for the gap between the batteries. . Although in power There are many components on the road and the control mechanism is also more complicated; but relatively, the balance effect is quite improved, and the conversion efficiency is also greatly improved.

為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下。 The above and other objects, features and advantages of the present invention will become more <RTIgt;

Sa1、Sa2、Sa3、Sa4、Sb1、Sb2、Sb3、Sb4‧‧‧開關 S a1 , S a2 , S a3 , S a4 , S b1 , S b2 , S b3 , S b4 ‧‧ ‧ switch

C1、C2、C3‧‧‧電容器 C 1 , C 2 , C 3 ‧ ‧ capacitors

B1、B2、B3、B4‧‧‧單電池 B 1 , B 2 , B 3 , B 4 ‧ ‧ single cells

B71、B72、B73、B74‧‧‧四個串聯的單電池(Cell) B 71 , B 72 , B 73 , B 74 ‧‧‧ four series cells (Cell)

C71、C72、C73‧‧‧電容器 C 71 , C 72 , C 73 ‧ ‧ capacitors

S71a、S71b、S71c、S71d、S72a、S72b、S72c、S72d、S73a、S73b、S73c、S73d‧‧‧電晶體開關 S 71a , S 71b , S 71c , S 71d , S 72a , S 72b , S 72c , S 72d , S 73a , S 73b , S 73c , S 73d ‧‧‧ transistor switch

701‧‧‧控制電路 701‧‧‧Control circuit

VGS1a‧‧‧控制電路701輸出給電晶體開關S71a的閘極電壓 V GS1a ‧‧‧ control circuit 701 outputs the gate voltage to transistor switch S 71a

VGS1b‧‧‧控制電路701輸出給電晶體開關S71b的閘極電壓 V GS1b ‧‧‧ control circuit 701 outputs the gate voltage to transistor switch S 71b

VGS1c‧‧‧控制電路701輸出給電晶體開關S71c的閘極電壓 V GS1c ‧‧‧ control circuit 701 outputs the gate voltage to transistor switch S 71c

VGS1d‧‧‧控制電路701輸出給電晶體開關S71d的閘極電壓 V GS1d ‧‧‧ control circuit 701 outputs the gate voltage to transistor switch S 71d

iC1‧‧‧流到電容器C71的電流 i C1 ‧‧‧current flowing to capacitor C 71

VC1‧‧‧電容器C71的電壓 V C1 ‧‧‧Voltage of capacitor C 71

t0~t5‧‧‧時間標號 t 0 ~t 5 ‧‧‧ time label

B141、B142、B143‧‧‧電池 B 141 , B 142 , B 143 ‧‧‧Battery

C141‧‧‧電容器 C 141 ‧‧‧ capacitor

SW141‧‧‧上支開關電路 SW141‧‧‧Upper switch circuit

SW142‧‧‧下支開關電路 SW142‧‧‧ lower switch circuit

N1、N2、N3、N4‧‧‧節點 N1, N2, N3, N4‧‧‧ nodes

S151、S152、S153、S154、S155、S156‧‧‧電晶體開關 S151, S152, S153, S154, S155, S156‧‧‧ transistor switch

第1圖繪示為傳統的電容切換式電量平衡電路的電路圖。 FIG. 1 is a circuit diagram of a conventional capacitance-switched cell balancing circuit.

第2圖繪示為傳統的電容切換式電量平衡電路的電壓電流的理想波形圖。 Figure 2 is a diagram showing the ideal waveform of the voltage and current of a conventional capacitance-switched cell balancing circuit.

第3圖繪示為傳統的電容切換式電量平衡電路的簡化電路圖。 Figure 3 is a simplified circuit diagram of a conventional capacitively switched cell balancing circuit.

第4圖繪示為傳統的電容切換式電量平衡電路的操作模式圖。 FIG. 4 is a schematic diagram showing the operation mode of a conventional capacitance switching type power balance circuit.

第5圖繪示為傳統的電容切換式電量平衡電路的操作模式圖。 FIG. 5 is a schematic diagram showing the operation mode of a conventional capacitance switching type power balance circuit.

第6圖繪示為傳統的電容切換式電量平衡電路的平衡結果圖。 Figure 6 is a diagram showing the balance result of the conventional capacitance-switched cell balancing circuit.

第7圖繪示為本發明較佳實施例所述之電容切換式電量平衡電路的電路架構圖。 FIG. 7 is a circuit diagram of a capacitor switching power balance circuit according to a preferred embodiment of the present invention.

第8圖繪示為本發明較佳實施例所述之電容切換式電量平衡電路的電壓電流的波形圖。 FIG. 8 is a waveform diagram showing voltage and current of a capacitance switching type power balance circuit according to a preferred embodiment of the present invention.

第9圖繪示為本發明較佳實施例所述之 電容切換式電量平衡電路的簡化電路圖。 Figure 9 is a diagram of a preferred embodiment of the present invention A simplified circuit diagram of a capacitively switched cell balancing circuit.

第10圖繪示為本發明較佳實施例所述之電容切換式電量平衡電路操作於模式1的示意圖。 FIG. 10 is a schematic diagram showing the operation of the capacitance switching type cell balancing circuit according to the preferred embodiment of the present invention.

第11圖繪示為本發明較佳實施例所述之電容切換式電量平衡電路操作於模式2的示意圖。 FIG. 11 is a schematic diagram showing the operation of the capacitance switching type cell balancing circuit according to the preferred embodiment of the present invention.

第12圖繪示為本發明較佳實施例所述之電容切換式電量平衡電路操作於模式3的示意圖。 FIG. 12 is a schematic diagram showing the operation of the capacitance switching power balance circuit according to the preferred embodiment of the present invention.

第13圖繪示為本發明較佳實施例所述之電容切換式電量平衡電路的平衡結果圖。 FIG. 13 is a diagram showing the balance result of the capacitance switching type power balance circuit according to the preferred embodiment of the present invention.

第14圖繪示為本發明較佳實施例所述之電容切換式電量平衡電路的電路架構圖。 FIG. 14 is a circuit diagram of a capacitor switching power balance circuit according to a preferred embodiment of the present invention.

第15圖繪示為本發明較佳實施例所述之電容切換式電量平衡電路的詳細電路圖。 FIG. 15 is a detailed circuit diagram of a capacitance switching type power balance circuit according to a preferred embodiment of the present invention.

在說明書及後續的申請專利範圍當中使用了某些詞彙來指稱特定的元件。所屬領域中具有通常知識者應可理解,硬體製造商可能會用不同的名詞來稱呼同一個元件。本說明書及後續的申請專利範圍並不以名稱的差異來作為區分元件的方式,而是以元件在功能上的差異來作為區分的準則。在通篇說明書及後續的請求項當中所提及的「包含」係為一開放式的用語,故應解釋成「包含但不限定於」。此外,「耦接」一詞在此係包含任何直接及間接的電氣連接手段。因此,若文中描述一第一裝置耦 接於一第二裝置,則代表該第一裝置可直接電氣連接於該第二裝置,或透過其他裝置或連接手段間接地電氣連接至該第二裝置。 Certain terms are used throughout the description and following claims to refer to particular elements. Those of ordinary skill in the art should understand that a hardware manufacturer may refer to the same component by a different noun. The scope of this specification and the subsequent patent application do not use the difference of the names as the means for distinguishing the elements, but the difference in function of the elements as the criterion for distinguishing. The term "including" as used throughout the specification and subsequent claims is an open term and should be interpreted as "including but not limited to". In addition, the term "coupled" is used herein to include any direct and indirect electrical connection. Therefore, if a first device coupling is described Connecting to a second device means that the first device can be directly electrically connected to the second device or indirectly electrically connected to the second device through other devices or connection means.

第7圖繪示為本發明較佳實施例所述之電容切換式電量平衡電路的電路架構圖。請參考第7圖,此電容切換電路包括四個串聯的單電池(Cell)B71、B72、B73、B74、三個電容器C71、C72、C73、十二個電晶體開關S71a、S71b、S71c、S71d、S72a、S72b、S72c、S72d、S73a、S73b、S73c、S73d以及一控制電路701。控制電路的十二個控制接腳分別耦接十二個電晶體開關S71a、S71b、S71c、S71d、S72a、S72b、S72c、S72d、S73a、S73b、S73c、S73d的閘極,以控制上述十二個電晶體開關S71a、S71b、S71c、S71d、S72a、S72b、S72c、S72d、S73a、S73b、S73c、S73d的導通狀態。 FIG. 7 is a circuit diagram of a capacitor switching power balance circuit according to a preferred embodiment of the present invention. Referring to FIG. 7, the capacitor switching circuit includes four cells (Cell) B 71 , B 72 , B 73 , B 74 , three capacitors C 71 , C 72 , C 73 , and twelve transistor switches connected in series. S 71a , S 71b , S 71c , S 71d , S 72a , S 72b , S 72c , S 72d , S 73a , S 73b , S 73c , S 73d and a control circuit 701 . The twelve control pins of the control circuit are respectively coupled to twelve transistor switches S 71a , S 71b , S 71c , S 71d , S 72a , S 72b , S 72c , S 72d , S 73a , S 73b , S 73c The gate of S 73d to control the above twelve transistor switches S 71a , S 71b , S 71c , S 71d , S 72a , S 72b , S 72c , S 72d , S 73a , S 73b , S 73c , S The conduction state of 73d .

第8圖繪示為本發明較佳實施例所述之電容切換式電量平衡電路的電壓電流的波形圖。如第7圖以及第8圖所示,其中,標號VGS1a表示控制電路701輸出給電晶體開關S71a的閘極電壓;標號VGS1b表示控制電路701輸出給電晶體開關S71b的閘極電壓;標號VGS1c表示控制電路701輸出給電晶體開關S71c的閘極電壓;標號VGS1d表示控制電路701輸出給電晶體開關S71d的閘極電壓;標號iC1表示流到電容器C71的電流,標號VC1表示電容器C71的電壓。為了方便說明以簡化電路來說明,下述實施例以串聯兩個鋰離子電池為例,並假設電池電壓B71大於B72來閘述平衡電路的操作模式。第9圖繪示為本發 明較佳實施例所述之電容切換式電量平衡電路的簡化電路圖。如第9圖所示,而其控制訊號與電容上電壓及電流波形如圖8所示。為了方便說明本發明實施例的電容切換式電量平衡電路的運作,在第8圖中,還標示了時間標號t0~t5。以下,依照控制電路701對電路的操作模式進行說明。 FIG. 8 is a waveform diagram showing voltage and current of a capacitance switching type power balance circuit according to a preferred embodiment of the present invention. As shown in Fig. 7 and Fig. 8, wherein reference numeral V GS1a denotes a gate voltage which the control circuit 701 outputs to the transistor switch S 71a ; and reference numeral V GS1b denotes a gate voltage which the control circuit 701 outputs to the transistor switch S 71b ; V GS1c represents the gate voltage outputted to the transistor switch S 71c by the control circuit 701; reference numeral V GS1d represents the gate voltage outputted to the transistor switch S 71d by the control circuit 701; reference numeral i C1 represents the current flowing to the capacitor C 71 , reference numeral V C1 Indicates the voltage of capacitor C 71 . For convenience of explanation, the following embodiment is exemplified by connecting two lithium ion batteries in series, and assuming that the battery voltage B 71 is greater than B 72 to dictate the operation mode of the balancing circuit. FIG. 9 is a simplified circuit diagram of a capacitance switching type power balance circuit according to a preferred embodiment of the present invention. As shown in Figure 9, the voltage and current waveforms on the control signal and capacitor are shown in Figure 8. In order to facilitate the description of the operation of the capacitance switching type cell balancing circuit of the embodiment of the present invention, in FIG. 8, the time labels t 0 to t 5 are also indicated. Hereinafter, the operation mode of the circuit will be described in accordance with the control circuit 701.

模式1(t0~t1): Mode 1 (t 0 ~ t 1 ):

在時間t0時,電晶體開關S71a與S71d導通,如第10圖所示,第10圖繪示為本發明較佳實施例所述之電容切換式電量平衡電路操作於模式1的示意圖。其中,第10圖內的實線表示電流導通路徑,虛線表示無電流通過。此模式下電池B71與電池B72同時開始釋放能量至電容C71。而當電晶體開關S71a與S71d截止時,此模式結束,進入怠滯模式(t1~t2)。 At time t 0 , the transistor switches S 71a and S 71d are turned on. As shown in FIG. 10, FIG. 10 is a schematic diagram showing the operation of the capacitance switching type cell balancing circuit according to the preferred embodiment of the present invention. . The solid line in FIG. 10 indicates a current conduction path, and the broken line indicates that no current is passed. In this mode, battery B 71 and battery B 72 simultaneously begin to release energy to capacitor C 71 . When the transistor switches S 71a and S 71d are turned off, this mode ends and enters the hysteresis mode (t 1 ~ t 2 ).

模式2(t2~t3): Mode 2 (t 2 ~ t 3 ):

在時間t2時,電晶體開關S71a與S71c導通,如第11圖所示,第11圖繪示為本發明較佳實施例所述之電容切換式電量平衡電路操作於模式2的示意圖。其中,第11圖內的實線表示電流導通路徑,虛線表示無電流通過。此模式下則由電容C71開始在釋放能量至電池B71,並對其進行充電。當電晶體開關S71a與S71c截止時,此模式結束,同樣進入怠滯(t3~t4)。此模式的目的是要將電量由電池B71及B72,經由轉移到電容C71作為中繼,再轉送到電池B71。因此,如同前述在此節中假設電池電壓 B71大於B72的情形下,控制電路701將不會作動此模式;只有在電池電壓B72大於B71的條件下,控制電路701才會啟動此模式。 At time t 2 , the transistor switches S 71 a and S 71 c are turned on. As shown in FIG. 11 , FIG. 11 is a schematic diagram showing the operation of the capacitance switching type cell balancing circuit according to the preferred embodiment of the present invention. . Here, the solid line in Fig. 11 indicates a current conduction path, and the broken line indicates that no current is passed. In this mode, energy is released from capacitor C 71 to battery B 71 and charged. When the transistor switches S 71a and S 71c are turned off, this mode ends, and the hysteresis (t 3 ~ t 4 ) also enters. The purpose of this mode is to transfer power from battery B 71 and B 72 to relay C 71 as a relay and then to battery B 71 . Therefore, as in the foregoing case where the battery voltage B 71 is assumed to be greater than B 72 , the control circuit 701 will not activate this mode; only if the battery voltage B 72 is greater than B 71 , the control circuit 701 will activate this. mode.

模式3(t4~t5): Mode 3 (t 4 ~ t 5 ):

在時間t4時,電晶體開關S71b與S71d導通,如第12圖所示,第12圖繪示為本發明較佳實施例所述之電容切換式電量平衡電路操作於模式3的示意圖。第12圖內的實線表示電流導通路徑,虛線表示無電流通過。此模式下由電容C71開始釋放能量至電池B72。而當電晶體開關S71b與S71d截止時,此模式終止,經過怠滯後,再重回模式1。類似上一個模式所討論的,此模式也僅在電池電壓B71大於B72的情形下,控制電路701才會作動此模式。 At time t 4 , the transistor switches S 71b and S 71d are turned on. As shown in FIG. 12 , FIG. 12 is a schematic diagram showing the operation of the capacitance switching type cell balancing circuit according to the preferred embodiment of the present invention. . The solid line in Fig. 12 indicates the current conduction path, and the broken line indicates the passage of no current. In this mode, energy is released from capacitor C 71 to battery B 72 . When the transistor switches S 71b and S 71d are turned off, this mode is terminated, and after the hysteresis, the mode 1 is returned. As discussed in the previous mode, this mode also operates the control circuit 701 only if the battery voltage B 71 is greater than B 72 .

本發明的上述實施例之平衡電路,雖然理論上是區分為3種模式,但實際上,在較佳實施例中,模式2與模式3,在一次充放電期間,係擇一動作。其選擇方式則由兩電池電壓的高低來作選擇,當電池電壓如果B71大於B72則只選擇啟動模式3,反之則啟動模式2。這樣選擇的目的在於避免能量在電池之間來回傳遞,徒耗能量;相反地,只將能量有方向選擇性地送到目的電池上。如此一來,電路的效率將能大幅提昇平衡結果,如圖13所示。第13圖繪示為本發明較佳實施例所述之電容切換式電量平衡電路的平衡結果圖。請參考第13圖以及第6圖,所屬技術領域具有通常知識者可以看出,本發明實施 例的電力平衡時間上,相對於先前技術,可以極為快速的達到每一個單電池的電池電量平衡。 The balance circuit of the above-described embodiment of the present invention is theoretically divided into three modes. Actually, in the preferred embodiment, mode 2 and mode 3 are selected during one charge and discharge. Selection method by which the high and low battery voltage to make the selection, when the battery voltage is greater than B 72 B 71 if only the boot mode 3, mode 2 is started and vice versa. The purpose of this selection is to avoid energy transfer between the cells, which consumes energy; conversely, only the energy is selectively directed to the destination battery. As a result, the efficiency of the circuit will greatly improve the balance results, as shown in Figure 13. FIG. 13 is a diagram showing the balance result of the capacitance switching type power balance circuit according to the preferred embodiment of the present invention. Referring to FIG. 13 and FIG. 6 , it can be seen by those skilled in the art that the power balance time of the embodiment of the present invention can achieve the battery balance of each battery cell extremely quickly compared to the prior art.

另外,上述電晶體開關S73a、S71c與、S73c與S73d的工作原理與上述電晶體開關S73a、S71c與、S73c與S73d在模式1~模式3的工作原理類似,差異在於,上述電晶體開關S73a、S71c與、S73c與S73d負責平衡串聯的第一組電池(B71、B72)以及第二組電池(B71、B72)的電量平衡。由於操作類似,故在此不予贅述。 In addition, the operating principles of the above-described transistor switches S 73a , S 71c and S 73c and S 73d are similar to those of the above-described transistor switches S 73a , S 71c and S 73c and S 73d in mode 1 to mode 3, and the difference is similar. It is to be noted that the above-described transistor switches S 73a , S 71c and S 73c and S 73d are responsible for balancing the charge balance of the first battery (B 71 , B 72 ) and the second battery ( B 71 , B 72 ) connected in series. Since the operation is similar, it will not be described here.

上述實施例中,申請人提出了本發明的最佳實施模式是以兩個電池進行能量平衡,然而,所屬技術領域具有通常知識者應當知道,參考本發明,亦可以採用三個或多個電池進行平衡。第14圖繪示為本發明較佳實施例所述之電容切換式電量平衡電路的電路架構圖。請參考第14圖,在第14圖中,共有三個電池B141、B142、B143串接,電容器C141的兩端分別耦接上支開關電路SW141以及下支開關電路SW142。為了方便說明,第14圖標示了四個節點,分別是節點N1、節點N2、節點N3以及節點N4。以下,依照電路的操作模式進行說明。 In the above embodiments, the applicant has proposed that the best mode of implementation of the present invention is to perform energy balance with two batteries. However, those skilled in the art should know that three or more batteries may be employed with reference to the present invention. Balance. FIG. 14 is a circuit diagram of a capacitor switching power balance circuit according to a preferred embodiment of the present invention. Referring to FIG. 14, in FIG. 14, a total of three batteries B 141 , B 142 , and B 143 are connected in series. The two ends of the capacitor C 141 are respectively coupled to the upper switch circuit SW141 and the lower switch circuit SW142. For convenience of explanation, the 14th icon shows four nodes, which are node N1, node N2, node N3, and node N4. Hereinafter, the description will be made in accordance with the operation mode of the circuit.

模式1: Mode 1:

上支開關電路SW141將節點N1與電容器C141的第一端導通,且下支開關電路SW142將節點N4與電容器C141的第二端導通。此模式下電池B141、電池B142與電池B143同時開始釋放能量至電容器C141The upper switch circuit SW141 turns on the node N1 and the first end of the capacitor C141, and the lower switch circuit SW142 turns on the node N4 and the second end of the capacitor C141. In this mode, battery B 141 , battery B 142, and battery B 143 simultaneously begin to release energy to capacitor C 141 .

模式2: Mode 2:

上支開關電路SW141將節點N1與電容器C141的第一端導通,且下支開關電路SW142將節點N2與電容器C141的第二端導通。此模式下則由電容C141開始在釋放能量至電池B141,並對其進行充電。此模式的目的是要將電池B141、電池B142與電池B143的電量,經由轉移到電容C141作為中繼,再轉送到電池B141。只有在電池B141的電壓小於電池B142的電壓或電池B143的電壓之條件下,才會啟動此模式。 The upper branch switch circuit SW141 turns on the node N1 and the first end of the capacitor C141, and the lower branch switch circuit SW142 turns on the node N2 and the second end of the capacitor C141. In this mode, the capacitor C 141 starts to release energy to the battery B 141 and charges it. The purpose of this mode is to transfer the amount of power of the battery B 141 , the battery B 142, and the battery B 143 to the battery B 141 via transfer to the capacitor C 141 as a relay. This mode is only activated if the voltage of battery B 141 is less than the voltage of battery B 142 or the voltage of battery B 143 .

模式3: Mode 3:

上支開關電路SW141將節點N2與電容器C141的第一端導通,且下支開關電路SW142將節點N3與電容器C141的第二端導通。此模式下則由電容C141開始在釋放能量至電池B142,並對其進行充電。此模式的目的是要將電池B141、電池B142與電池B143的電量,經由轉移到電容C141作為中繼,再轉送到電池B142。只有在電池B142的電壓的小於電池B141的電壓或電池B143的電壓之條件下,才會啟動此模式。 The upper switch circuit SW141 turns on the node N2 and the first end of the capacitor C141, and the lower switch circuit SW142 turns on the node N3 and the second end of the capacitor C141. In this mode, energy is released from capacitor C 141 to battery B 142 and charged. The purpose of this mode is to use batteries B 141, B 142 and the battery power of the battery B 143, via the capacitor C 141 proceeds to act as a relay, then transferred to the battery B 142. This mode is activated only if the voltage of the battery B 142 is less than the voltage of the battery B 141 or the voltage of the battery B 143 .

模式4: Mode 4:

上支開關電路SW141將節點N3與電容器C141的第一端導通,且下支開關電路SW142將節點N4與電容器C141的第二端導通。此模式下則由電容C141開始在釋放能量至電池B143,並對其進行充電。此模式的目的是要將電池B141、電池B142與電池B143的電量,經由轉移到電容C141作為中繼,再轉送到電池B141。只有在電池 B143的電壓的小於電池B141的電壓或電池B142的電壓之條件下,才會啟動此模式。 The upper switch circuit SW141 turns on the node N3 and the first end of the capacitor C141, and the lower switch circuit SW142 turns on the node N4 and the second end of the capacitor C141. In this mode, energy is released from capacitor C 141 to battery B 143 and charged. The purpose of this mode is to transfer the amount of power of the battery B 141 , the battery B 142, and the battery B 143 to the battery B 141 via transfer to the capacitor C 141 as a relay. This mode is activated only if the voltage of the battery B 143 is less than the voltage of the battery B 141 or the voltage of the battery B 142 .

同樣的道理,本發明的上述實施例之的平衡電路,雖然理論上是區分為4種模式,但實際上,在較佳實施例中,模式2、模式3與模式4,在一次充放電期間,係擇一動作。 By the same token, the balancing circuit of the above embodiment of the present invention is theoretically divided into four modes, but in practice, in the preferred embodiment, mode 2, mode 3 and mode 4 are during one charge and discharge. , choose an action.

第15圖繪示為本發明較佳實施例所述之電容切換式電量平衡電路的詳細電路圖。請參考第14圖以及第15圖,在此實施例中,上支開關電路SW141係以電晶體開關S151、S152以及S153實施,且下支開關電路SW142係以電晶體開關S154、S155以及S156實施。此電路之操作與第14圖的操作相同,故不予贅述。 FIG. 15 is a detailed circuit diagram of a capacitance switching type power balance circuit according to a preferred embodiment of the present invention. Referring to FIG. 14 and FIG. 15, in this embodiment, the upper switch circuit SW141 is implemented by the transistor switches S151, S152, and S153, and the lower switch circuit SW142 is implemented by the transistor switches S154, S155, and S156. . The operation of this circuit is the same as that of Fig. 14, and therefore will not be described again.

由上述實施例可以看出,雖然上面實施例是以三個電池同時對一個電容進行充電來實施,然所屬技術領域具有通常知識者應當知道,本發明依照上述規則,可以推廣至多個電池同時對一個電容進行充電。然而,一般來說,超過三個電池對電容充電,對個別的單電池放電,會導致電流過大,因此,本發明較佳的實施方式,以目前的鋰電池的技術來說,是兩個電池或三個電池為主。然而,隨著電池技術的進步,本發明並不排除可以用三個以上的電池對電容進行充電。故本發明不以此為限。 As can be seen from the above embodiment, although the above embodiment is implemented by charging three capacitors simultaneously for one capacitor, those skilled in the art should know that the present invention can be extended to a plurality of batteries simultaneously according to the above rules. A capacitor is charged. However, in general, more than three batteries charge the capacitors, and discharging the individual cells causes excessive current. Therefore, in the preferred embodiment of the present invention, two batteries are used in the current lithium battery technology. Or three batteries. However, with advances in battery technology, the present invention does not exclude that more than three batteries can be used to charge the capacitor. Therefore, the invention is not limited thereto.

綜上所述,本發明之精神在於提出一種電容切換式電量平衡電路,主要是改善傳統電路的平衡時間與電池間的電壓差距。為了改善線路與原件特性影響, 將改變原先由一顆電池來對電容儲能變成運用兩顆至多顆單電池(Cell)來對電池儲能,再由電容將能量轉移至電壓較低的單電池(Cell),雖然在開關上依舊有壓降,但因是由兩顆電池的加總電壓對單電池之電壓做能量轉移,因此其開關上的壓降對於電池間的差距就不會如此嚴重。雖然在電路上元件變多且控制機制也顯得較為複雜;但相對地,在平衡效果卻有相當大的改善,且轉換效率也大幅提昇。 In summary, the spirit of the present invention is to provide a capacitance switching type power balance circuit, which mainly improves the balance time between the conventional circuit and the voltage difference between the batteries. In order to improve the influence of the line and the original characteristics, Will change the original storage battery from a battery to use two or more cells (Cell) to store energy, and then transfer the energy to a lower voltage cell (Cell), although on the switch There is still a voltage drop, but because the sum of the two batteries makes energy transfer to the voltage of the single cell, the voltage drop across the switch is not so severe for the gap between the cells. Although there are many components on the circuit and the control mechanism is more complicated; but relatively, the balance effect is considerably improved, and the conversion efficiency is also greatly improved.

在較佳實施例之詳細說明中所提出之具體實施例僅用以方便說明本發明之技術內容,而非將本發明狹義地限制於上述實施例,在不超出本發明之精神及以下申請專利範圍之情況,所做之種種變化實施,皆屬於本發明之範圍。因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 The specific embodiments of the present invention are intended to be illustrative only and not to limit the invention to the above embodiments, without departing from the spirit of the invention and the following claims. The scope of the invention and the various changes made are within the scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

C71、C72、C73‧‧‧電容器 C 71 , C 72 , C 73 ‧ ‧ capacitors

S71a、S71b、S71c、S71d、S72a、S72b、S72c、S72d、S73a、S73b、S73c、S73d‧‧‧電晶體開關 S 71a , S 71b , S 71c , S 71d , S 72a , S 72b , S 72c , S 72d , S 73a , S 73b , S 73c , S 73d ‧‧‧ transistor switch

701‧‧‧控制電路 701‧‧‧Control circuit

Claims (6)

一種電容切換式電池電量平衡電路,適用於第一單電池(Cell)以及一第二單電池,其中,第二單電池的第一端耦接第一個單電池的第二端,該電容切換式電池電量平衡電路包括:一電容器,包括一第一端以及一第二端,用以儲存能量;一上支開關電路,包括至少兩個第一端以及一第二端,其中,該上支開關元件的第二端耦接該電容器的第一端,該上支開關元件的第一個第一端耦接該第一個單電池的第一端,該上支開關元件的第二個第一端耦接該第二個單電池的第一端;一下支開關電路,包括至少兩個第一端以及一第二端,其中,該下支開關元件的第二端耦接該電容器的第二端,該下支開關元件的第一個第一端耦接該第一個單電池的第二端,該下支開關元件的第二個第一端耦接該第二個單電池的第二端;一控制電路,用以控制該上支開關電路以及該下支開關電路,其中,當進行第K個單電池的電量平衡時:在一第一預設時間,該控制電路控制該上支開關的第一個第一端與該上支開關的第二端導通,且該控制電路控制該下支開關的第二個第一端與該下支開關的第二端導通,使該第一單電池(Cell)以及該第二單電池串聯對該 電容器進行充電,在一第二預設時間,該控制電路控制該上支開關的第K個第一端與該上支開關的第二端導通,且該控制電路控制該下支開關的第K個第一端與該下支開關的第二端導通,使該電容器對該第K個單電池進行放電,其中,K<=2。 A capacitor-switched battery cell balancing circuit is applicable to a first cell (Cell) and a second cell, wherein a first end of the second cell is coupled to a second end of the first cell, and the capacitor is switched. The battery cell balancing circuit includes: a capacitor including a first end and a second end for storing energy; and an upper switch circuit comprising at least two first ends and a second end, wherein the upper branch The second end of the switching element is coupled to the first end of the capacitor, the first end of the upper switching element is coupled to the first end of the first battery, and the second end of the upper switching element One end is coupled to the first end of the second unit cell; the lower branch switch circuit includes at least two first ends and a second end, wherein the second end of the lower branch switching element is coupled to the capacitor a second end, the first end of the lower switching element is coupled to the second end of the first battery, and the second first end of the lower switching element is coupled to the second battery a second circuit; a control circuit for controlling the upper switch circuit and the lower a switching circuit, wherein when the power balance of the Kth battery cell is performed: the control circuit controls the first first end of the upper switch to be electrically connected to the second end of the upper switch at a first preset time And the control circuit controls the second first end of the lower switch to be electrically connected to the second end of the lower switch, so that the first single cell (Cell) and the second single cell are connected in series The capacitor is charged, and the control circuit controls the Kth first end of the upper switch to be electrically connected to the second end of the upper switch at a second predetermined time, and the control circuit controls the Kth of the lower switch The first end is electrically connected to the second end of the lower switch, so that the capacitor discharges the Kth cell, wherein K<=2. 如申請專利範圍第1項所記載之電容切換式電池電量平衡電路,其中,該上支開關電路包括:一第一電晶體,包括一閘極、一第一源汲極以及第二源汲極,其中,該第一電晶體的閘極耦接該控制電路,該第一電晶體的第一源汲極耦接該上支開關電路的第一個第一端,該第一電晶體的第二源汲極耦接該上支開關電路的第二端;以及一第二電晶體,包括一閘極、一第一源汲極以及第二源汲極,其中,該第二電晶體的閘極耦接該控制電路,該第二電晶體的第一源汲極耦接該上支開關電路的第二個第一端,該第二電晶體的第二源汲極耦接該上支開關電路的第二端,其中,該下支開關電路包括:一第三電晶體,包括一閘極、一第一源汲極以及第二源汲極,其中,該第三電晶體的閘極耦接該控制電路,該第三電晶體的第一源汲極耦接該下支開關電路的第一個第一端,該第三電晶體的第二源汲極耦接該下支開關電路 的第二端;以及一第四電晶體,包括一閘極、一第一源汲極以及第二源汲極,其中,該第四電晶體的閘極耦接該控制電路,該第四電晶體的第一源汲極耦接該下支開關電路的第二個第一端,該第四電晶體的第二源汲極耦接該下支開關電路的第二端。 The capacitor switching battery cell balancing circuit of claim 1, wherein the upper switching circuit comprises: a first transistor comprising a gate, a first source drain and a second source drain The first transistor of the first transistor is coupled to the first first end of the upper transistor, and the first transistor is coupled to the control circuit. a second source drain is coupled to the second end of the upper branch switch circuit; and a second transistor includes a gate, a first source drain, and a second source drain, wherein the gate of the second transistor The first source of the second transistor is coupled to the second first end of the upper switch circuit, and the second source of the second transistor is coupled to the upper switch a second end of the circuit, wherein the lower switch circuit comprises: a third transistor comprising a gate, a first source drain and a second source drain, wherein the third transistor has a gate coupling Connected to the control circuit, the first source drain of the third transistor is coupled to the first first of the lower switch circuit The second source drain of the third transistor is coupled to the lower switch circuit And a fourth transistor, comprising a gate, a first source drain, and a second source drain, wherein the gate of the fourth transistor is coupled to the control circuit, the fourth The first source drain of the crystal is coupled to the second first end of the lower switch circuit, and the second source drain of the fourth transistor is coupled to the second end of the lower switch circuit. 一種電容切換式電池電量平衡電路,適用於N組串接的電池組(Group of Cells),其中,每一組串接的電池組包含至少兩個單電池(Cell),其中,第I+1個電池組的第一端耦接第I個電池組的第二端,該電容切換式電池電量平衡電路包括:一電容器,包括一第一端以及一第二端,用以儲存能量;一上支開關電路,包括N個第一端以及一第二端,其中,該上支開關元件的第二端耦接該電容器的第一端,該上支開關元件的第J個第一端耦接該第J個電池組的第一端;一下支開關電路,包括N個第一端以及一第二端,其中,該下支開關元件的第二端耦接該電容器的第二端,該下支開關元件的第J個第一端耦接該第J個電池組的第二端;一控制電路,用以控制該上支開關電路以及該下支開關電路, 其中,當進行第K個電池組的電量平衡時:在一第一預設時間,該控制電路控制該上支開關的第一個第一端與該上支開關的第二端導通,且該控制電路控制該下支開關的第N個第一端與該下支開關的第二端導通,使N個電池組對該電容器進行充電,在一第二預設時間,該控制電路控制該上支開關的第K個第一端與該上支開關的第二端導通,且該控制電路控制該下支開關的第K個第一端與該下支開關的第二端導通,使該電容器對該第K個電池組進行放電,其中,N、I、J、K為自然數,且0<I、J、K<=N。 A capacitor-switched battery cell balancing circuit is applicable to N groups of series of cells, wherein each group of serially connected battery cells includes at least two cells (Cell), wherein The first end of the battery pack is coupled to the second end of the first battery pack. The capacitor-switched battery balance circuit includes: a capacitor including a first end and a second end for storing energy; The switching circuit includes a first end and a second end, wherein the second end of the upper switching element is coupled to the first end of the capacitor, and the Jth first end of the upper switching element is coupled a first end of the Jth battery pack; a lower branch switch circuit comprising N first ends and a second end, wherein the second end of the lower branch switch element is coupled to the second end of the capacitor, the lower end The Jth first end of the switching element is coupled to the second end of the Jth battery; a control circuit is configured to control the upper switch circuit and the lower switch circuit, Wherein, when the power balance of the Kth battery pack is performed: at a first preset time, the control circuit controls the first first end of the upper switch to be electrically connected to the second end of the upper switch, and the The control circuit controls the Nth first end of the lower switch to be electrically connected to the second end of the lower switch, so that the N battery packs charge the capacitor, and the control circuit controls the upper limit for a second preset time The Kth first end of the branch switch is electrically connected to the second end of the upper branch switch, and the control circuit controls the Kth first end of the lower switch to be electrically connected to the second end of the lower switch, so that the capacitor The Kth battery pack is discharged, wherein N, I, J, and K are natural numbers, and 0 < I, J, K <= N. 如申請專利範圍第3項所記載之電容切換式電池電量平衡電路,其中,每一組電池組包括一第一單電池(Cell)以及一第二單電池,其中,第二單電池的第一端耦接第一個單電池的第二端,且每一組電池組更耦接一小組電池電量平衡電路,此小組電池電量平衡電路包括:一小組電容器,包括一第一端以及一第二端,用以儲存能量;一小組上支開關電路,包括至少兩個第一端以及一第二端,其中,該上支開關元件的第二端耦接該小組電容器的第一端,該上支開關元件的第一個第一端耦接該第一個單電池的第一端,該上支開關元件的第二個第一端耦接該第二個單電池的第一端;一小組下支開關電路,包括至少兩個第一端以及一第 二端,其中,該下支開關元件的第二端耦接該小組電容器的第二端,該下支開關元件的第一個第一端耦接該第一個單電池的第二端,該下支開關元件的第二個第一端耦接該第二個單電池的第二端;其中,在一第三預設時間,該控制電路控制該上支開關的第一個第一端與該上支開關的第二端導通,且該控制電路控制該下支開關的第二個第一端與該下支開關的第二端導通,使該第一單電池(Cell)以及該第二單電池串聯對該小組電容器進行充電,在一第四預設時間,該控制電路控制該上支開關的第K個第一端與該上支開關的第二端導通,且該控制電路控制該下支開關的第K個第一端與該下支開關的第二端導通,使該小組電容器對該第K個單電池進行放電,其中,0<K<=2。 The capacitor-switched battery cell balancing circuit of claim 3, wherein each group of battery cells comprises a first cell (Cell) and a second cell, wherein the second cell is first The end is coupled to the second end of the first battery, and each battery pack is further coupled to a group of battery balancing circuits. The battery balancing circuit includes: a group of capacitors including a first end and a second The first end of the switching circuit includes at least two first ends and a second end, wherein the second end of the upper switching element is coupled to the first end of the group of capacitors a first first end of the switching element is coupled to the first end of the first battery, and a second first end of the upper switching element is coupled to the first end of the second battery; a lower switch circuit comprising at least two first ends and a first a second end, wherein the second end of the lower switching element is coupled to the second end of the group capacitor, and the first first end of the lower switching element is coupled to the second end of the first battery The second first end of the lower switching element is coupled to the second end of the second battery; wherein, in a third predetermined time, the control circuit controls the first first end of the upper switch The second end of the upper switch is turned on, and the control circuit controls the second first end of the lower switch to be electrically connected to the second end of the lower switch, so that the first battery cell (Cell) and the second The single battery is connected in series to charge the group capacitor. In a fourth preset time, the control circuit controls the Kth first end of the upper switch to be electrically connected to the second end of the upper switch, and the control circuit controls the The Kth first end of the lower switch is electrically connected to the second end of the lower switch, so that the group capacitor discharges the Kth cell, wherein 0<K<=2. 如申請專利範圍第4項所記載之電容切換式電池電量平衡電路,其中,該小組上支開關電路包括:一第一電晶體,包括一閘極、一第一源汲極以及第二源汲極,其中,該第一電晶體的閘極耦接該控制電路,該第一電晶體的第一源汲極耦接該小組上支開關電路的第一個第一端,該第一電晶體的第二源汲極耦接該小組上支開關電路的第二端;以及一第二電晶體,包括一閘極、一第一源汲極以及第二 源汲極,其中,該第二電晶體的閘極耦接該控制電路,該第二電晶體的第一源汲極耦接該小組上支開關電路的第二個第一端,該第二電晶體的第二源汲極耦接該小組上支開關電路的第二端,其中,該小組下支開關電路包括:一第三電晶體,包括一閘極、一第一源汲極以及第二源汲極,其中,該第三電晶體的閘極耦接該控制電路,該第三電晶體的第一源汲極耦接該小組下支開關電路的第一個第一端,該第三電晶體的第二源汲極耦接該小組下支開關電路的第二端;以及一第四電晶體,包括一閘極、一第一源汲極以及第二源汲極,其中,該第四電晶體的閘極耦接該控制電路,該第四電晶體的第一源汲極耦接該小組下支開關電路的第二個第一端,該第四電晶體的第二源汲極耦接該小組下支開關電路的第二端。 The capacitor switching battery cell balancing circuit of claim 4, wherein the group upper switching circuit comprises: a first transistor comprising a gate, a first source drain, and a second source a first electrode of the first transistor is coupled to the first first end of the group of upper switching circuits, the first transistor a second source drain is coupled to the second end of the group of upper switch circuits; and a second transistor includes a gate, a first source drain, and a second a source drain, wherein a gate of the second transistor is coupled to the control circuit, and a first source drain of the second transistor is coupled to a second first end of the group of upper switch circuits, the second The second source drain of the transistor is coupled to the second end of the group of upper switch circuits, wherein the group of lower switch circuits includes: a third transistor including a gate, a first source drain, and a a second source drain, wherein a gate of the third transistor is coupled to the control circuit, and a first source drain of the third transistor is coupled to a first first end of the group of lower switch circuits a second source drain of the three transistors is coupled to the second end of the group of lower switch circuits; and a fourth transistor includes a gate, a first source drain, and a second source drain, wherein a gate of the fourth transistor is coupled to the control circuit, a first source drain of the fourth transistor is coupled to a second first end of the group of lower switch circuits, and a second source of the fourth transistor The pole is coupled to the second end of the sub-switch circuit of the group. 一種電容切換式電池電量平衡電路,適用於N個串接的單電池(Cell),其中,第I+1個單電池的第一端耦接第I個單電池的第二端,該電容切換式電池電量平衡電路包括:一電容器,包括一第一端以及一第二端,用以儲存能量;一上支開關電路,包括N個第一端以及一第二端,其中,該上支開關元件的第二端耦接該電容器的第一端,該 上支開關元件的第J個第一端耦接該第J個單電池的第一端;一下支開關電路,包括N個第一端以及一第二端,其中,該下支開關元件的第二端耦接該電容器的第二端,該下支開關元件的第J個第一端耦接該第J個單電池的第二端;一控制電路,用以控制該上支開關電路以及該下支開關電路,其中,當進行第K個單電池的電量平衡時:在一第一預設時間,該控制電路控制該上支開關的第一個第一端與該上支開關的第二端導通,且該控制電路控制該下支開關的第N個第一端與該下支開關的第二端導通,使N個單電池對該電容器進行充電,在一第二預設時間,該控制電路控制該上支開關的第K個第一端與該上支開關的第二端導通,且該控制電路控制該下支開關的第K個第一端與該下支開關的第二端導通,使該電容器對該第K個單電池進行放電,其中,N、I、J、K為自然數,且0<I、J、K<=N。 A capacitor-switched battery cell balancing circuit is applicable to N serially connected cells (Cells), wherein a first end of the first +1 cells is coupled to a second end of the first cell, and the capacitor is switched. The battery balancing circuit includes: a capacitor including a first end and a second end for storing energy; and an upper switching circuit comprising N first ends and a second end, wherein the upper switch The second end of the component is coupled to the first end of the capacitor, The Jth first end of the upper switching element is coupled to the first end of the Jth battery; the lower switching circuit includes N first ends and a second end, wherein the lower switching element The second end is coupled to the second end of the capacitor, the Jth first end of the lower switching element is coupled to the second end of the Jth battery; a control circuit is configured to control the upper switch circuit and the a lower switch circuit, wherein when the power balance of the Kth battery cell is performed: the control circuit controls the first first end of the upper switch and the second switch of the upper switch at a first preset time The terminal is turned on, and the control circuit controls the Nth first end of the lower switch to be electrically connected to the second end of the lower switch, so that the N single cells charge the capacitor, for a second preset time, The control circuit controls the Kth first end of the upper switch to be electrically connected to the second end of the upper switch, and the control circuit controls the Kth first end of the lower switch and the second end of the lower switch Turning on, causing the capacitor to discharge the Kth cell, wherein N, I, J, and K are natural And 0 <I, J, K <= N.
TW103138779A 2014-11-07 2014-11-07 Switch capacitor charge equalization circuit for series-connected battery cells TWI558063B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103138779A TWI558063B (en) 2014-11-07 2014-11-07 Switch capacitor charge equalization circuit for series-connected battery cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103138779A TWI558063B (en) 2014-11-07 2014-11-07 Switch capacitor charge equalization circuit for series-connected battery cells

Publications (2)

Publication Number Publication Date
TW201618417A true TW201618417A (en) 2016-05-16
TWI558063B TWI558063B (en) 2016-11-11

Family

ID=56509096

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103138779A TWI558063B (en) 2014-11-07 2014-11-07 Switch capacitor charge equalization circuit for series-connected battery cells

Country Status (1)

Country Link
TW (1) TWI558063B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI433425B (en) * 2011-07-12 2014-04-01 Ultracap Technologies Corp Battery charge and discharge balance of the circuit
JP2013046433A (en) * 2011-08-22 2013-03-04 Seiko Instruments Inc Cell balance device and battery system
TWI452797B (en) * 2012-03-13 2014-09-11 Univ Nat Formosa Equivalent status detecting and charging device for secondary battery package
TWM441267U (en) * 2012-03-16 2012-11-11 Univ Southern Taiwan Modular bidirectional flyback cell balancing circuit

Also Published As

Publication number Publication date
TWI558063B (en) 2016-11-11

Similar Documents

Publication Publication Date Title
KR101922370B1 (en) System and method for cell balancing and charging
Qi et al. Review of battery cell balancing techniques
US9166416B2 (en) Method for balancing cells in batteries
US9013148B2 (en) Lithium-ion battery pack and method of charge/discharge equalizing
EP2363935B1 (en) Balancing circuit for charge storage elements
TWI433425B (en) Battery charge and discharge balance of the circuit
US10862318B2 (en) Bilevel equalizer for battery cell charge management
US20080116850A1 (en) Bridge battery voltage equalizer
WO2010034210A1 (en) Battery equalizer
TW201705643A (en) Battery balancing apparatus and battery balancing method thereof
JP7015569B2 (en) Improved circuit for bidirectional lossless equilibrium of series battery pack based on inductive energy storage
CN214176930U (en) Multi-power supply switching circuit
Sani et al. Switched-capacitor charge equalization circuit for series-connected batteries
TWI558063B (en) Switch capacitor charge equalization circuit for series-connected battery cells
Marcin et al. Overview of active balancing methods and simulation of capacitor based active cell balancing for battery pack in EV
TWM414756U (en) Active balancing circuit for battery set having a plurality of battery units
Lee et al. Coupled inductor design methodology to improve energy transfer efficiency in active cell balancing circuit using multi-winding coupled inductor
KR102125670B1 (en) Balancing apparatus and the method using parallel connection of energy storage units
JP3892752B2 (en) Electric double layer capacitor charger
Prasad et al. Development of charge equalization circuit
CN114243858B (en) Battery module circuit capable of being fully charged and discharged and method thereof
CN209767185U (en) Balancing circuit
WO2023156754A1 (en) Cell balancing
GB2615610A (en) Cell balancing
Yildirim et al. Comparison of cascaded modular converter and central Multi-Port converter for modularization of battery packs

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees