TW201617436A - Core-shell structured fluorescent material and light source device thereof - Google Patents

Core-shell structured fluorescent material and light source device thereof Download PDF

Info

Publication number
TW201617436A
TW201617436A TW103139095A TW103139095A TW201617436A TW 201617436 A TW201617436 A TW 201617436A TW 103139095 A TW103139095 A TW 103139095A TW 103139095 A TW103139095 A TW 103139095A TW 201617436 A TW201617436 A TW 201617436A
Authority
TW
Taiwan
Prior art keywords
fluorescent material
light
core
strontium
calcium
Prior art date
Application number
TW103139095A
Other languages
Chinese (zh)
Other versions
TWI582216B (en
Inventor
jia-hong Zeng
Yi-Zhen Qiu
song-you Cai
xian-zong Cai
Original Assignee
China Glaze Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Glaze Co Ltd filed Critical China Glaze Co Ltd
Priority to TW103139095A priority Critical patent/TWI582216B/en
Publication of TW201617436A publication Critical patent/TW201617436A/en
Application granted granted Critical
Publication of TWI582216B publication Critical patent/TWI582216B/en

Links

Abstract

The present invention provides a core-shell structured fluorescent material and a light source device thereof, in which the core-shell structured fluorescent material is excited by light having a wavelength ranging from 370 nm to 500 nm to emit a light spectrum whose peak ranging from 520 nm to 800 nm. The core-shell structured fluorescent material of the present invention comprises a core and a shell layer, in which the core can be a yellow light-, a green light- or a red light-fluorescent powder, and the shell layer comprises a fluoride fluorescent powder containing manganese. The light source device mainly comprises the core-shell structured fluorescent material, an exciting light source, an electrical connection wire and a package, in which a power source is inputted to the electrical connection wire to supply the exciting light source, and the core-shell structured fluorescent material is coated on the package for receiving the light from the exciting light source to produce high-quality emitted light, which can be used as a light source for illumination or display.

Description

殼核結構螢光材料及其光源裝置 Core-shell structure fluorescent material and light source device thereof

本發明係有關於一種殼核結構螢光材料及其光源裝置,尤其是殼核結構螢光材料包含具有黃光、綠光、或紅光螢光粉的核心以及具有含錳氟化物螢光粉的殼層,而含錳氟化物螢光粉包含四價錳離子並具有化學式AxMF6-yZy:Mn4+,此殼核結構螢光材料可接收紫外及藍光之激發光,而放射複合型光譜以達成高演色性白光之需求。 The invention relates to a core-shell structure fluorescent material and a light source device thereof, in particular, a core-shell structure fluorescent material comprising a core having yellow, green or red phosphor powder and having a manganese-containing fluoride phosphor powder The shell layer, and the manganese-containing fluoride phosphor contains tetravalent manganese ions and has the chemical formula A x MF 6-y Z y : Mn 4+ , and the core-shell structured fluorescent material can receive excitation light of ultraviolet and blue light, and Radiation composite spectroscopy to achieve high color rendering white light.

近年來,具有「節能」與「環保」雙重特性的白光發光二極體(LED),隨著其發光效率的不斷提昇,一般認為是取代熱熾燈與螢光燈的革命性光源。螢光材料為製作單晶片白光LED不可或缺的光轉換材料,攸關發光效率、安定性、演色性、色溫、使用壽命等特性,因此是單晶片白光LED系統中最重要的關鍵材料。 In recent years, white light-emitting diodes (LEDs), which have the dual characteristics of "energy saving" and "environmental protection", are generally considered to be revolutionary light sources for replacing heat lamps and fluorescent lamps as their luminous efficiency continues to increase. Fluorescent materials are indispensable optical conversion materials for single-wafer white LEDs. They are the most important key materials in single-chip white LED systems due to their luminous efficiency, stability, color rendering, color temperature and lifetime.

一般來說,白光裝置需要具有高演色性以呈現物體真實色彩,然而在習知技術中,利用440~460nm藍光激發550nm Lu3Al5O12:Ce+3綠粉或560nm Y3Al5O12:Ce+3黃粉,所產生的白光演色性是介於70~75,使得藍光晶片無法搭配單一螢光粉而滿足目前光源之需求。 In general, white light devices need to have high color rendering to present the true color of the object. However, in the prior art, 550 nm Lu 3 Al 5 O 12 :Ce +3 green powder or 560 nm Y 3 Al 5 O is excited by 440-460 nm blue light. 12 : Ce +3 yellow powder, the resulting white light color rendering is between 70 and 75, making the blue light wafer can not match the single fluorescent powder to meet the needs of the current light source.

因此,需要一種具有複合型光譜的新穎殼核結構螢光材料以及使用這種螢光材料的光源裝置,利用核殼結構螢光粉具有複合型光譜的特性,即能以單一螢光粉封裝有效提升白光之演色性,其中殼核結構螢光材料包括具有黃光、綠光、或紅光螢光粉的核心以及具有含錳氟化物螢光粉的殼層,可吸收370nm至500nm之波長的光激發而轉換成520nm至800nm之間的發射光,且利用殼核結構螢光材料以製作光源裝置,提供具有高品質的光源,藉以解決上述習用技術的問題。 Therefore, there is a need for a novel core-shell structured fluorescent material having a composite spectrum and a light source device using the same, which utilizes a core-structure fluorescent powder having a composite spectrum characteristic, that is, can be effectively packaged in a single phosphor powder. Enhancing the color rendering of white light, wherein the core-shell structure fluorescent material comprises a core having yellow, green or red phosphor powder and a shell layer containing fluorinated powder containing manganese fluoride, which can absorb wavelengths of 370 nm to 500 nm. The light is excited to be converted into emission light between 520 nm and 800 nm, and the core-structure fluorescent material is used to fabricate a light source device, thereby providing a light source having high quality, thereby solving the problems of the above-mentioned conventional techniques.

本發明之主要目的在於提供一種殼核結構螢光材料,係包括核心及殼層,且核心具有黃光、綠光、或紅光螢光粉,而殼層具有含錳氟化物螢光粉,尤其是含錳氟化物螢光粉包含第一元素、第二元素、氟元素、鹵素元素以及四價錳離子,且具有化學式AxMF6-yZy:Mn4+,其中A為第一元素並包含鋰、鈉、鉀、銣、銫、鎂、鈣、鍶、鋇以及鋅的至少其中之一,M為第二元素並包含矽、鍺、錫、鈦、鋯、鋁、鎵、銦、鈧、釔、鑭、鈮、鉭、鉍以及釓的至少其中之一,F為氟,Z為鹵素元素並包含氯、溴以及碘的至少其中之一,且0<x≦2,0≦y≦6。 The main object of the present invention is to provide a core-shell structure fluorescent material, which comprises a core and a shell layer, and the core has yellow, green or red fluorescent powder, and the shell layer has manganese fluoride fluorescent powder. In particular, the manganese-containing fluoride phosphor contains a first element, a second element, a fluorine element, a halogen element, and a tetravalent manganese ion, and has a chemical formula of A x MF 6-y Z y :Mn 4+ , wherein A is the first The element further comprises at least one of lithium, sodium, potassium, rubidium, strontium, magnesium, calcium, strontium, barium, and zinc, and M is a second element and includes bismuth, antimony, tin, titanium, zirconium, aluminum, gallium, and indium. At least one of 钪, 钇, 钇, 镧, 铌, 钽, 铋, and 釓, F is fluorine, Z is a halogen element and contains at least one of chlorine, bromine, and iodine, and 0<x≦2,0≦ Y≦6.

殼層的含錳氟化物螢光粉可經370nm至500nm之波長的光激發後,放射出波峰介於520nm至800nm之間的光線,可搭配適當的螢光材料而應用於照明或液晶顯示器,藉以提供具適當光譜的光源,比如白光光源。 The shell-containing manganese-containing fluoride phosphor can be excited by light of a wavelength of 370 nm to 500 nm, and emits light having a peak between 520 nm and 800 nm, and can be applied to an illumination or liquid crystal display with an appropriate fluorescent material. Thereby providing a light source with a suitable spectrum, such as a white light source.

此外,核心是含三價鈰的金屬氧化物及含二價銪的化合物,其中含三價鈰的金屬氧化物的化學式為(Y,Gd,Tb,La,Sm,Pr,Lu)3(Sc,Al,Ga)5O12:Ce+3,主要包含釔、釓、鋱、鑭、釤、鐠、鑥、鈧、鋁、鎵。含二價銪化合物的化學式為鍶鈣矽氮氧化物((Sr,Ca)Si2O2N2:Eu+2)、Alpha-矽鋁氧氮化合物(Alpha-SiAlON:Eu+2)、Beta-矽鋁氧氮化合物(Beta-SiAlON:Eu+2)、鋇鍶鈣矽酸鹽化合物((Ba,Sr,Ca)2SiO4:Eu2+)、鈣鍶鋇矽氮化物((Ca,Sr,Ba)2Si5N8:Eu+2)、鈣鍶鋁矽氮化物((Ca,Sr)AlSiN3:Eu+2),尤其是,核心的粒徑大小為0.01um-200um。 Further, the core is a metal oxide containing trivalent europium and a compound containing divalent europium, and the chemical formula of the metal oxide containing trivalent europium is (Y, Gd, Tb, La, Sm, Pr, Lu) 3 (Sc , Al, Ga) 5 O 12 :Ce +3 , mainly comprising ruthenium, osmium, iridium, osmium, iridium, osmium, iridium, osmium, aluminum, gallium. The chemical formula of the divalent europium compound is strontium calcium strontium oxide ((Sr, Ca)Si 2 O 2 N 2 :Eu +2 ), Alpha-矽 aluminum oxynitride (Alpha-SiAlON:Eu +2 ), Beta - bismuth oxynitride (Beta-SiAlON: Eu + 2 ), strontium calcium citrate compound ((Ba , Sr, Ca) 2 SiO 4 : Eu 2+ ), calcium strontium nitride ((Ca, Sr, Ba) 2 Si 5 N 8 :Eu +2 ), calcium barium aluminum strontium nitride ((Ca,Sr)AlSiN 3 :Eu +2 ), in particular, the core particle size is from 0.01 um to 200 um.

此外,本發明的殼核結構螢光材料可進一步包括黃光螢光材料、綠光螢光材料、紅光螢光材料的至少其中之一,並混合均勻,且黃光螢光材料、綠光螢光材料、紅光螢光材料能接收該激發光而分別放射黃光、綠光、紅光。具體而言,黃光螢光材料包括含三價鈰的釔鋁氧化物(Y3Al5O12:Ce+3)、含二價銪的Alpha-矽鋁氧氮化合物(Alpha-SiAlON:Eu+2)以及鋇鍶鈣矽酸鹽化合物(Ba,Sr,Ca)2SiO4:Eu+2),綠光螢光材料包括含三價鈰的鑥鋁氧化物(Lu3Al5O12:Ce+3)、含二價銪的Beta-矽鋁氧氮化合物(Beta-SiAlON:Eu+2)以及鍶鈣矽氮氧化物((Sr,Ca)Si2O2N2:Eu+2),而紅光螢光材料包括含二價銪的鋇鍶鈣矽氮化合物((Ba,Sr,Ca)2Si5N8:Eu+2)、鈣鍶鋁矽氮化合物 ((Ca,Sr)AlSiN3:Eu+2)。 In addition, the core-shell structure fluorescent material of the present invention may further comprise at least one of a yellow fluorescent material, a green fluorescent material, and a red fluorescent material, and is uniformly mixed, and the yellow fluorescent material, the green fluorescent material, The red fluorescent material can receive the excitation light and emit yellow, green, and red light, respectively. Specifically, the yellow fluorescent material includes trivalent europium-containing yttrium aluminum oxide (Y 3 Al 5 O 12 :Ce +3 ), and divalent europium-containing Alpha-yttrium aluminum oxynitride (Alpha-SiAlON:Eu +2) And strontium calcium citrate compound (Ba , Sr, Ca) 2 SiO 4 :Eu +2 ), the green fluorescent material includes yttrium aluminum oxide containing trivalent europium (Lu 3 Al 5 O 12 :Ce + 3 ) Beta-tellurium oxynitride (Beta-SiAlON:Eu +2 ) containing divalent europium and strontium calcium strontium oxide ((Sr,Ca)Si 2 O 2 N 2 :Eu +2 ) The red fluorescent material includes a barium-strontium-strontium-containing nitrogen compound containing divalent europium ((Ba, Sr, Ca) 2 Si 5 N 8 :Eu +2 ), and a calcium barium aluminum barium nitrogen compound ((Ca,Sr)AlSiN 3 ) :Eu +2 ).

本發明之另一目的在於提供一種光源裝置,包括殼核結構螢光材料、激發光源、電氣連接線及封裝體,且電氣連接線輸入電源以供應激發光源,進而產生發射光,而殼核結構螢光材料是塗佈於封裝體上,用以接收激發光源的原始發射光而產生高品質的放射光。尤其是,本發明的光源裝置可再包含黃光螢光材料、綠光螢光材料、紅光螢光材料的至少其中之一,其中黃光螢光材料、綠光螢光材料、紅光螢光材料能接收該激發光而分別放射黃光、綠光、紅光。此外,黃光螢光材料、綠光螢光材料、紅光螢光材料是與殼核結構螢光材料混合均勻而塗佈於封裝體,因此,可調配出具特定光譜的光源,可提供照明或顯示領域中所需的高品質光源。 Another object of the present invention is to provide a light source device comprising a core-shell structure fluorescent material, an excitation light source, an electrical connection line, and a package, and the electrical connection line inputs a power source to supply an excitation light source, thereby generating emission light, and the core structure The phosphor material is coated on the package to receive the original emitted light of the excitation source to produce high quality radiation. In particular, the light source device of the present invention may further comprise at least one of a yellow fluorescent material, a green fluorescent material, and a red fluorescent material, wherein the yellow fluorescent material, the green fluorescent material, and the red fluorescent material can receive The excitation light emits yellow light, green light, and red light, respectively. In addition, the yellow fluorescent material, the green fluorescent material, and the red fluorescent material are uniformly mixed with the core-shell fluorescent material and coated in the package, so that a specific spectrum of light source can be provided to provide illumination or display fields. High quality light source required.

1‧‧‧殼核結構螢光材 1‧‧‧Shell core structure fluorescent material

2‧‧‧光源裝置 2‧‧‧Light source device

10‧‧‧核心 10‧‧‧ core

20‧‧‧殼層 20‧‧‧ shell

22‧‧‧黃光螢光材料 22‧‧‧Yellow fluorescent material

24‧‧‧綠光螢光材料 24‧‧‧Green fluorescent material

26‧‧‧紅光螢光材料 26‧‧‧Red light fluorescent material

30‧‧‧激發光源 30‧‧‧Excitation source

A‧‧‧局部放大區 A‧‧‧Local enlargement area

B‧‧‧封裝體 B‧‧‧Package

CN‧‧‧電氣連接線 CN‧‧‧Electrical cable

L1‧‧‧激發光 L1‧‧‧Excited light

L2‧‧‧發射光 L2‧‧‧ emitted light

L3‧‧‧發射光光源 L3‧‧‧ emitting light source

PLE‧‧‧激發光譜 PLE‧‧‧excitation spectroscopy

PL‧‧‧放射光譜 PL‧‧‧radiation spectrum

第一圖為依據本發明實施例殼核結構螢光材料的示意圖。 The first figure is a schematic view of a phosphorescent material of a core-shell structure according to an embodiment of the invention.

第二圖為依據本發明實施例殼核結構螢光材料混合黃光螢光材料、綠光螢光材料、紅光螢光材料後的示意圖。 The second figure is a schematic diagram of a phosphorescent material mixed with a yellow fluorescent material, a green fluorescent material, and a red fluorescent material according to an embodiment of the present invention.

第三圖為依據本發明另一實施例使用殼核結構螢光材料的光源裝置的示意圖。 The third figure is a schematic view of a light source device using a core-shell structured fluorescent material in accordance with another embodiment of the present invention.

第四圖為實例1的Lu3Al5O12:Ce+3/K2SiF6:Mn+4核殼結構螢光粉元素分析。 The fourth figure is the elemental analysis of Lu 3 Al 5 O 12 :Ce +3 /K 2 SiF 6 :Mn +4 core-shell structured phosphor powder of Example 1.

第五圖為實例1的Lu3Al5O12:Ce+3/K2SiF6:Mn+4核殼螢光粉之激發及放射光譜圖。 The fifth figure is an excitation and emission spectrum of the Lu 3 Al 5 O 12 :Ce +3 /K 2 SiF 6 :Mn +4 core-shell phosphor of Example 1.

第六圖為不同濃度之K2SiF6:Mn+4前驅物合成之Lu3Al5O12:Ce+3/K2SiF6:Mn+4核殼結構螢光粉螢光的放射光譜圖。 The sixth figure shows the emission spectrum of Lu 3 Al 5 O 12 :Ce +3 /K 2 SiF 6 :Mn +4 core-shell structured phosphor powder synthesized by different concentrations of K 2 SiF 6 :Mn +4 precursor. .

第七圖為實例2的Beta-SiAlON/K2SiF6:Mn+4核殼螢光粉之激發及放射光譜圖。 The seventh figure is the excitation and emission spectrum of the Beta-SiAlON/K 2 SiF 6 :Mn +4 core-shell phosphor of Example 2.

第八圖為不同濃度之K2SiF6:Mn+4前驅物所合成之Beta-SiAlON/K2SiF6:Mn+4核殼結構螢光粉螢光放射光譜圖。 The eighth figure shows the fluorescence emission spectrum of Beta-SiAlON/K 2 SiF 6 :Mn +4 core-shell structured fluorescent powder synthesized by different concentrations of K 2 SiF 6 :Mn +4 precursor.

第九圖為實例3的Y3Al5O12:Ce+3/K2SiF6:Mn+4核殼螢光粉之激發及放射 光譜圖。 The ninth graph is an excitation and emission spectrum of the Y 3 Al 5 O 12 :Ce +3 /K 2 SiF 6 :Mn +4 core-shell phosphor of Example 3.

第十圖為實例4的(Ba,Sr,Ca)2SiO4:Eu+2/K2SiF6:Mn+4核殼螢光粉激發及放射光譜圖。 The tenth graph is the excitation and radiation spectrum of the (Ba, Sr, Ca) 2 SiO 4 :Eu +2 /K 2 SiF 6 :Mn +4 core-shell phosphor of Example 4.

第十一圖為實例5的(Sr,Ca)Si2O2N2:Eu+2/K2SiF6:Mn+4核殼螢光粉激發及放射光譜圖。 Figure 11 is an excitation and emission spectrum of the (Sr,Ca)Si 2 O 2 N 2 :Eu +2 /K 2 SiF 6 :Mn +4 core-shell phosphor of Example 5.

第十二圖為實例6的(Ca,Sr,Ba)2Si5N8:Eu+2/K2SiF6:Mn+4核殼螢光粉激發及放射光譜圖。 Figure 12 is an excitation and emission spectrum of the (Ca,Sr,Ba) 2 Si 5 N 8 :Eu +2 /K 2 SiF 6 :Mn +4 core-shell fluorescing powder of Example 6.

第十三圖為實例7的(Ca,Sr)AlSiN3:Eu+2/K2SiF6:Mn+4核殼螢光粉激發及放射光譜圖。 The thirteenth image is an excitation and emission spectrum of the (Ca,Sr)AlSiN 3 :Eu +2 /K 2 SiF 6 :Mn +4 core-shell phosphor of Example 7.

以下配合圖示及元件符號對本發明之實施方式做更詳細的說明,俾使熟習該項技藝者在研讀本說明書後能據以實施。 The embodiments of the present invention will be described in more detail below with reference to the drawings and the reference numerals, which can be implemented by those skilled in the art after having studied this specification.

請參閱第一圖,本發明實施例殼核結構螢光材料的示意圖。如第一圖所示,本發明的殼核結構螢光材料1主要是形成顆粒狀或粉體狀的螢光體,包括核心10及殼層20,其中核心10具有0.01um-200um的粒徑大小,並包含黃光、綠光或紅光螢光粉,而殼層20是披覆於核心10,具有含錳氟化物螢光粉。 Please refer to the first figure, a schematic diagram of a shell-core structure fluorescent material according to an embodiment of the invention. As shown in the first figure, the core-shell structured fluorescent material 1 of the present invention is mainly formed into a particulate or powdery phosphor, comprising a core 10 and a shell layer 20, wherein the core 10 has a particle size of 0.01 um to 200 um. It is sized and contains yellow, green or red fluorescent powder, while the shell 20 is coated on the core 10 and has a manganese-containing fluoride phosphor.

整體而言,本發明的殼核結構螢光材料1可經370nm至500nm之波長的激發光L1激發後,放射出波峰介於520nm至800nm之間的發射光L2,很適合當作照明或顯示裝置所需的光源。 In general, the core-shell structured fluorescent material 1 of the present invention can emit light L2 having a peak between 520 nm and 800 nm after being excited by the excitation light L1 of a wavelength of 370 nm to 500 nm, which is suitable for illumination or display. The light source required for the device.

此外,核心10的黃光、綠光或紅光螢光粉可包含三價鈰的金屬氧化物與含二價銪的化合物。其中含三價鈰的金屬氧化物的化學式為(Y,Gd,Tb,La,Sm,Pr,Lu)3(Sc,Al,Ga)5O12:Ce+3,主要包含釔、釓、鋱、鑭、釤、鐠、鑥、鈧、鋁、鎵。含二價銪化合物的化學式為鍶鈣矽氮氧化物((Sr,Ca)Si2O2N2:Eu+2)、Alpha-矽鋁氧氮化合物(Alpha-SiAlON:Eu+2)、Beta-矽鋁氧氮化合物(Beta-SiAlON:Eu+2)、鋇鍶鈣矽酸鹽化合物((Ba,Sr,Ca)2SiO4:Eu2+)、鈣鍶鋇矽氮化物((Ca,Sr,Ba)2Si5N8:Eu+2)、或鈣鍶鋁矽氮化物 ((Ca,Sr)AlSiN3:Eu+2)。 Further, the yellow, green or red phosphor of the core 10 may comprise a metal oxide of a trivalent europium and a compound containing a divalent europium. The metal oxide containing trivalent europium has the chemical formula (Y, Gd, Tb, La, Sm, Pr, Lu) 3 (Sc, Al, Ga) 5 O 12 : Ce +3 , mainly containing lanthanum, cerium, lanthanum , 镧, 钐, 鐠, 鑥, 钪, aluminum, gallium. The chemical formula of the divalent europium compound is strontium calcium strontium oxide ((Sr, Ca)Si 2 O 2 N 2 :Eu +2 ), Alpha-矽 aluminum oxynitride (Alpha-SiAlON:Eu +2 ), Beta - bismuth oxynitride (Beta-SiAlON: Eu + 2 ), strontium calcium citrate compound ((Ba , Sr, Ca) 2 SiO 4 : Eu 2+ ), calcium strontium nitride ((Ca, Sr, Ba) 2 Si 5 N 8 :Eu +2 ), or calcium barium aluminum strontium nitride ((Ca,Sr)AlSiN 3 :Eu +2 ).

殼層20的含錳氟化物螢光粉主要是包含第一元素A、第二元素M、氟元素F、鹵素元素Z以及四價錳離子,且具有化學式AxMF6-yZy:Mn4+,其中第一元素A包含鋰、鈉、鉀、銣、銫、鎂、鈣、鍶、鋇以及鋅的至少其中之一,第二元素M包含矽、鍺、錫、鈦、鋯、鋁、鎵、銦、鈧、釔、鑭、鈮、鉭、鉍以及釓的至少其中之一,鹵素元素Z包含氯、溴以及碘的至少其中之一,且0<x≦2,0≦y≦6。 The manganese-containing fluoride phosphor of the shell layer 20 mainly contains the first element A, the second element M, the fluorine element F, the halogen element Z, and the tetravalent manganese ion, and has the chemical formula A x MF 6-y Z y : Mn 4+ , wherein the first element A comprises at least one of lithium, sodium, potassium, rubidium, strontium, magnesium, calcium, strontium, barium, and zinc, and the second element M comprises bismuth, antimony, tin, titanium, zirconium, aluminum At least one of gallium, indium, antimony, bismuth, antimony, bismuth, antimony, bismuth and antimony, the halogen element Z comprises at least one of chlorine, bromine and iodine, and 0<x≦2,0≦y≦ 6.

為進一步調整發射光L2以混光形成具有特定光譜的色光,比如白光,可參考第二圖,本發明實施例殼核結構螢光材料混合黃光螢光材料、綠光螢光材料、紅光螢光材料後的示意圖,其中本發明可進一步包括黃光螢光材料22、綠光螢光材料24、紅光螢光材料26的至少其中之一,其中黃光螢光材料22、綠光螢光材料24及紅光螢光材料26可接收該發光L1並分別放射黃光、綠光及紅光。 In order to further adjust the emitted light L2 to form a colored light having a specific spectrum, such as white light, reference may be made to the second figure. In the embodiment of the present invention, the core-structure fluorescent material is mixed with a yellow fluorescent material, a green fluorescent material, and a red fluorescent device. The rear view of the material, wherein the present invention may further comprise at least one of a yellow fluorescent material 22, a green fluorescent material 24, and a red fluorescent material 26, wherein the yellow fluorescent material 22, the green fluorescent material 24, and the red light The phosphor material 26 can receive the light emission L1 and emit yellow light, green light, and red light, respectively.

更加具體而言,上述的黃光螢光材料22可包括含三價鈰的釔鋁氧化物、含二價銪的Alpha-矽鋁氧氮化合物以及鋇鍶鈣矽酸鹽化合物,且三價鈰的釔鋁氧化物的化學式為Y3Al5O12:Ce+3,含二價銪的Alpha-矽鋁氧氮化合物化學式為Alpha-SiAlON:Eu+2、鋇鍶鈣矽酸鹽化合物的化學式為(Ba,Sr,Ca)2SiO4:Eu+2。綠光螢光材料24包括含三價鈰的鑥鋁氧化物、含二價銪Beta-矽鋁氧氮化合物以及鍶鈣矽氮氧化物,且含三價鈰的鑥鋁氧化物的化學式為Lu3Al5O12:Ce+3,而含二價銪的Beta-矽鋁氧氮化合物的化學式為Beta-SiAlON:Eu+2、鍶鈣矽氮氧化物的化學式為((Sr,Ca)Si2O2N2:Eu+2)。此外,紅光螢光材料26包括含二價銪的鋇鍶鈣矽氮化合物、鈣鍶鋁矽氮化合物,且二價銪的鋇鍶鈣矽氮化合物化學式為(Ba,Sr,Ca)2Si5N8:Eu+2,鈣鍶鋁矽氮化合物化學式為(Ca,Sr)AlSiN3:Eu+2° More specifically, the yellow fluorescent material 22 may include a trivalent europium-containing lanthanum aluminum oxide, a divalent europium-containing Alpha-lanthanum aluminide compound, and a barium calcium telluride compound, and a trivalent europium compound. The chemical formula of aluminum oxide is Y 3 Al 5 O 12 :Ce +3 , and the chemical formula of Alpha-SiAlON:Eu +2 and strontium calcium citrate compound containing divalent europium is ( Ba, Sr, Ca) 2 SiO 4 :Eu +2 . The green fluorescent material 24 includes a trivalent europium-containing lanthanum aluminum oxide, a divalent europium Beta-yttrium aluminum oxynitride compound, and a lanthanum calcium lanthanum oxide, and the chemical formula of the lanthanum aluminum oxide containing trivalent europium is Lu. 3 Al 5 O 12 :Ce +3 , and the chemical formula of Beta-yttrium aluminum oxynitride containing divalent europium is Beta-SiAlON:Eu +2 , and the chemical formula of lanthanum strontium oxynitride is ((Sr,Ca)Si 2 O 2 N 2 :Eu +2 ). In addition, the red phosphor material 26 includes a barium-strontium-strontium-nitrogen compound containing divalent europium, a calcium-strontium-aluminum-niobium compound, and the chemical formula of the barium-strontium-niobium compound of the divalent europium is (Ba, Sr, Ca) 2 Si. 5 N 8 :Eu +2 , the chemical formula of calcium strontium aluminum bismuth compound is (Ca,Sr)AlSiN 3 :Eu +2 °

進一步參考第三圖,顯示依據本發明另一實施例使用殼核結構螢光材料的光源裝置的示意圖,其中光源裝置2係包含殼核結構螢光材料1、激發光源30、電氣連接線CN及封裝體B,其中電氣連接線CN輸入電源以供應激發光源30,進而產生發射光L1,而殼核結構螢光材料1是塗佈於封裝體B上,用以接收激發光源的原始發射光L1而產生高品質的發射 光源L3,比如白光。封裝體B包覆激發光源30及電氣連接線CN,以提供隔絕保護作用,通常可利用高透光率且電氣絕緣的樹脂或玻璃構成。 With further reference to the third figure, a schematic diagram of a light source device using a core-shell structure fluorescent material according to another embodiment of the present invention is shown, wherein the light source device 2 includes a core-shell structure fluorescent material 1, an excitation light source 30, an electrical connection line CN, and The package body B, wherein the electrical connection line CN inputs a power source to supply the excitation light source 30, thereby generating the emission light L1, and the core-core structure fluorescent material 1 is coated on the package body B for receiving the original emission light L1 of the excitation light source. Produce high quality emissions Light source L3, such as white light. The package B encloses the excitation light source 30 and the electrical connection line CN to provide insulation protection, and is generally constructed of a resin or glass that is highly transparent and electrically insulating.

殼核結構螢光材料1的技術特徵如第一圖及第二圖的實施例所提,因此不再贅述。 The technical features of the core-shell structure fluorescent material 1 are as described in the first and second embodiments, and therefore will not be described again.

為進一步調整發射光源L3的光譜,比如混光成白光,本發明的光源裝置2可進一步包含黃光螢光材料22、綠光螢光材料24、紅光螢光材料26的至少其中之一,其中黃光螢光材料22、綠光螢光材料24及紅光螢光材料26的技術特徵已如第一圖及第二圖的實施例所提,不再贅述。 The light source device 2 of the present invention may further comprise at least one of a yellow fluorescent material 22, a green fluorescent material 24, and a red fluorescent material 26, wherein the yellow light The technical features of the optical material 22, the green fluorescent material 24, and the red fluorescent material 26 have been proposed in the first and second embodiments, and will not be described again.

因此,本發明所產生的發射光源L3可當作照明或顯示裝置所需的光源。 Therefore, the emission source L3 produced by the present invention can be used as a light source required for an illumination or display device.

此外,上述的激發光源30可包含發光二極體(light emitting diode、LED)、雷射二極體(laser diode、LD)、有機發光二極體(organic light emitting diode、OLED)、冷陰極燈管(cold cathode fluorescent lamp、CCFL)或外部電極螢光燈管(external electrode fluorescent lamp、EEFL)。 In addition, the excitation light source 30 may include a light emitting diode (LED), a laser diode (LD), an organic light emitting diode (OLED), and a cold cathode lamp. Cold cathode fluorescent lamp (CCFL) or external electrode fluorescent lamp (EEFL).

為進一步清楚說明本發明所展現的特點,尤其是不同成分的核心10及殼層20所組成的殼核結構螢光材料1,對於波長370nm至500nm的激發光L1之整體螢光作用及功效,下文將利用特定的實例1~10,以詳細說明不同具體實施手段及技術內容。然而,要注意的是,所列舉的實例都只是方便說明而已,並非用以限定本發明的範圍。 In order to further clarify the characteristics exhibited by the present invention, in particular, the core-shell structured fluorescent material 1 composed of the core 10 and the shell 20 of different compositions, for the overall fluorescence effect and efficacy of the excitation light L1 having a wavelength of 370 nm to 500 nm, Specific examples 1 through 10 will be utilized below to illustrate different specific implementation means and technical contents. However, it is to be noted that the examples are merely illustrative and are not intended to limit the scope of the invention.

首先,實例1所使用的殼核結構螢光材料1主要是包含Lu3Al5O12:Ce+3的核心10以及包含K2SiF6:Mn+4的殼體20,其合成方式是以特定化學劑量比例取出100mL~1L HF溶液,接著加入5~10g SiO2粉末與5~10g Lu3Al5O12:Ce+3螢光粉,再加入20~50g K2MnO4粉末,直到溶液從透明變成深紫色後,利用10~60mL H2O2滴定至出現橘黃色粉末為止。其後進行各項必要分析及測試,包括附件一的SEM圖、第四圖的元素分析,以及第五圖的激發光譜PLE及放射光譜PL。如附件一所示,殼核結構螢光材料1為顆粒為15-30um之不規則粉末,第四圖顯示具有Lu、Al、O、Ce、K、Si、F、Mn元素,而第五圖顯示為Lu3Al5O12:Ce+3/K2SiF6:Mn+4核殼結構螢光粉螢光的螢光激發放射光譜,其中激發光譜是由介於300到535nm之間波段的雙峰 所構成,適合目前普遍使用之440~460nm藍光激發光L1,而由Lu3Al5O12:Ce+3及K2SiF6:Mn+4所產生的發射光L2,其中的紅光部分光譜為殼層20的K2SiF6:Mn+4所貢獻,其放射波段位在600-700nm,且最高峰值位在630nm,為線性紅光,因此是一具有高飽和紅光之螢光材料,而光譜中綠光的部分為核心10的Lu3Al5O12:Ce+3所貢獻,其放光位在480-750nm,是最高位置在550nm之綠光材料。 First, the core-shell structure fluorescent material 1 used in Example 1 is mainly a core 10 containing Lu 3 Al 5 O 12 :Ce +3 and a shell 20 containing K 2 SiF 6 :Mn +4 , which is synthesized in such a manner Take 100mL~1L HF solution at a specific chemical dose ratio, then add 5~10g SiO 2 powder and 5~10g Lu 3 Al 5 O 12 :Ce +3 phosphor powder, then add 20~50g K 2 MnO 4 powder until the solution After changing from transparent to dark purple, it was titrated with 10 to 60 mL of H 2 O 2 until an orange-yellow powder appeared. Thereafter, various necessary analyses and tests are performed, including the SEM image of Annex I, the elemental analysis of the fourth figure, and the excitation spectrum PLE and the emission spectrum PL of the fifth figure. As shown in Annex 1, the core-shell structure fluorescent material 1 is an irregular powder with particles of 15-30um, and the fourth figure shows elements of Lu, Al, O, Ce, K, Si, F, Mn, and the fifth figure. Fluorescence excitation emission spectrum of Lu 3 Al 5 O 12 :Ce +3 /K 2 SiF 6 :Mn +4 core-shell structured fluorescent powder fluorescence, wherein the excitation spectrum is a double band between 300 and 535 nm The peak is composed of 440~460nm blue excitation light L1 which is commonly used at present, and the emitted light L2 generated by Lu 3 Al 5 O 12 :Ce +3 and K 2 SiF 6 :Mn +4 , the red portion thereof The spectrum is contributed by K 2 SiF 6 :Mn +4 of the shell layer 20, and its emission band is at 600-700 nm, and the highest peak position is at 630 nm, which is linear red light, so it is a fluorescent material with high saturation red light. The part of the green light in the spectrum is contributed by Lu 3 Al 5 O 12 :Ce +3 of the core 10, and its light-emitting position is 480-750 nm, which is the green light material with the highest position at 550 nm.

此外,第六圖為製備不同濃度的K2SiF6:Mn+4前驅物0.2M、0.4M、0.8M放射光譜圖,結果顯示可利用不同濃度的前驅物調整所需之發光光譜,達成藍光LED搭配單一螢光材料之高演色性需求。 In addition, the sixth figure shows the emission spectra of 0.2M, 0.4M, and 0.8M precursors of different concentrations of K 2 SiF 6 :Mn +4 precursors. The results show that the required luminescence spectra can be adjusted with different concentrations of precursors to achieve blue light. LEDs with high color rendering requirements for single fluorescent materials.

在實例2中,核心10為Beta-SiAlON:Eu+2,而殼體為K2SiF6:Mn+4。其合成方式是以化學劑量比例取出100mL~1L HF溶液,接著加入5~10g SiO2粉末與5~10g Beta-SiAlON:Eu+2螢光粉,再加入20~50g K2MnO4粉末,直到溶液從透明變成深紫色後,再以10~60mL H2O2滴定至出現橘黃色粉末為止。其後,進行各項必要分析及測試。第七圖為Beta-SiAlON/K2SiF6:Mn+4核殼結構螢光粉的螢光激發及放射光譜,而激發光譜是由雙峰所構成,其波段介於300到535nm之間,也同樣適合目前普遍使用之440~460nm藍光激發,放射光譜由Beta-SiAlON:Eu+2及K2SiF6:Mn+4之放射光所組成,紅光部分光譜為殼層20的K2SiF6:Mn+4所貢獻,其放射波段位在600-700nm,最高峰值位在630nm為線性紅光,是一具有高飽和紅光之螢光材料,而光譜中綠光的部分為核心10的Beta-SiAlON:Eu+2放射光譜所貢獻,其為放光位在480-750nm,最高位置在540nm之綠光材料。 In Example 2, the core 10 is Beta-SiAlON:Eu +2 and the shell is K 2 SiF 6 :Mn +4 . The synthesis method is to take 100mL~1L HF solution at a stoichiometric ratio, then add 5~10g SiO 2 powder and 5~10g Beta-SiAlON:Eu +2 phosphor powder, then add 20~50g K 2 MnO 4 powder until After the solution turned from transparent to dark purple, it was titrated with 10 to 60 mL of H 2 O 2 until an orange-yellow powder appeared. Thereafter, perform the necessary analysis and testing. The picture shows a seventh Beta-SiAlON / K 2 SiF 6 : Mn +4 core-shell structure of the phosphor excitation and fluorescence emission spectrum, and excitation spectrum is composed of a doublet, which is interposed between the band of 535 nm to 300, It is also suitable for the 440~460nm blue excitation currently used. The emission spectrum is composed of Beta-SiAlON:Eu +2 and K 2 SiF 6 :Mn +4 . The red part spectrum is the K 2 SiF of the shell 20. 6 : Mn +4 contribution, its emission band is at 600-700nm, the highest peak position is linear red light at 630nm, it is a fluorescent material with high saturation red light, and the part of green light in the spectrum is core 10 Beta-SiAlON: contributed by the emission spectrum of Eu + 2 , which is a green light material with a light-emitting position of 480-750 nm and a highest position of 540 nm.

此外,第八圖為製備不同濃度的K2SiF6:Mn+4前驅物0.2M、0.4M、0.6M、0.8M、1.0M、1.2M放射光譜圖,結果顯示可利用不同濃度的前驅物調整所需之發光光譜,達成藍光LED搭配單一螢光材料之高演色性需求。 In addition, the eighth figure shows the emission spectra of different concentrations of K 2 SiF 6 :Mn +4 precursors 0.2M, 0.4M, 0.6M, 0.8M, 1.0M, 1.2M. The results show that different concentrations of precursors can be used. Adjust the required luminescence spectrum to achieve the high color rendering requirements of blue LEDs with a single fluorescent material.

實例3是由Y3Al5O12:Ce+3/K2SiF6:Mn+4組合的殼核結構螢光材料1,其合成是以化學劑量比例取100mL~1L HF溶液,接著加入5~10g SiO2粉末與5~10g Y3Al5O12:Ce+3螢光粉,再加入20~50g K2MnO4粉末,直到溶液從透明變成深紫色後,再以10~60mL H2O2滴定至出現橘黃色粉末為止。其後 進行各項必要分析及測試。第九圖為Y3Al5O12:Ce+3/K2SiF6:Mn+4殼核結構螢光材料的激發及發射光光譜,其中激發光譜由雙峰所構成,波段介於300到535nm之間,適合目前普遍使用之440~460nm藍光激發,而發射光譜是由Y3Al5O12:Ce+3及K2SiF6:Mn+4之放射光所組成,紅光部分光譜為殼層20的K2SiF6:Mn+4所貢獻,其放射波段位在600-700nm,最高峰值位在630nm為線性紅光,是一具有高飽和紅光之螢光材料,而光譜中綠光的部分為核心10的Y3Al5O12:Ce+3放射光譜所貢獻,其為放光位在480-750nm,最高位置在560nm之黃光材料。 Example 3 is a core-shell structured fluorescent material 1 composed of Y 3 Al 5 O 12 :Ce +3 /K 2 SiF 6 :Mn +4 , which is synthesized in a stoichiometric ratio of 100 mL to 1 L of HF solution, followed by 5 ~10g SiO 2 powder and 5~10g Y 3 Al 5 O 12 :Ce +3 phosphor powder, then add 20~50g K 2 MnO 4 powder until the solution changes from transparent to dark purple, then 10~60mL H 2 O 2 is titrated until an orange powder appears. Subsequent analysis and testing are performed. The ninth picture shows the excitation and emission spectra of the Y 3 Al 5 O 12 :Ce +3 /K 2 SiF 6 :Mn +4 core-shell structured fluorescent material, in which the excitation spectrum is composed of double peaks and the band is between 300 and Between 535nm, it is suitable for the 440~460nm blue light excitation currently used, and the emission spectrum is composed of the radiation of Y 3 Al 5 O 12 :Ce +3 and K 2 SiF 6 :Mn +4 . The shell layer 20 is contributed by K 2 SiF 6 : Mn +4 , and its emission band is located at 600-700 nm, and the highest peak position is linear red light at 630 nm. It is a fluorescent material with high saturation red light, and the spectrum is green. The portion of the light is contributed by the Y 3 Al 5 O 12 :Ce +3 emission spectrum of the core 10, which is a yellow light material having a light-emitting position at 480-750 nm and a highest position at 560 nm.

實例4的核心10/殼體20組合為(Ba,Sr,Ca)2SiO4:Eu+2/K2SiF6:Mn+4,其合成是以化學劑量比例取100mL~1L HF溶液,接著加入5~10g SiO2粉末與5~10g(Ba,Sr,Ca)2SiO4:Eu+2螢光粉,再加入20~50g K2MnO4粉末,至溶液從透明變成深紫色,之後以10~60mL H2O2滴定而出現橘黃色粉末。第十圖為(Ba,Sr,Ca)2SiO4:Eu+2/K2SiF6:Mn+4殼核結構螢光材料的激發及放射光譜,其激發光譜由雙峰所構成,波段介於300到535nm之間,適合目前普遍使用之440~460nm藍光激發,放射光譜由(Ba,Sr,Ca)2SiO4:Eu+2及K2SiF6:Mn+4之放射光所組成,紅光部分光譜為殼層20的K2SiF6:Mn+4所貢獻,其放射波段位在600-700nm,最高峰值位在630nm為線性紅光,是一具有高飽和紅光之螢光材料,而光譜中綠光的部分為核心10的(Ba,Sr,Ca)2SiO4:Eu+2放射光譜所貢獻,其為放光位在480-750nm,最高位置在570nm之黃光材料。 The core 10/shell 20 of Example 4 is combined into (Ba, Sr, Ca) 2 SiO 4 :Eu +2 /K 2 SiF 6 :Mn +4 , and the synthesis thereof is taken in a stoichiometric ratio of 100 mL to 1 L of HF solution, followed by Add 5~10g SiO 2 powder and 5~10g (Ba,Sr,Ca) 2 SiO 4 :Eu +2 phosphor powder, then add 20~50g K 2 MnO 4 powder until the solution turns from transparent to deep purple, then 10~60mL H 2 O 2 was titrated and an orange powder appeared. The tenth picture shows the excitation and emission spectra of (Ba,Sr,Ca) 2 SiO 4 :Eu +2 /K 2 SiF 6 :Mn +4 core-shell structured fluorescent material. The excitation spectrum is composed of double peaks. Between 300 and 535 nm, it is suitable for the 440-460 nm blue light excitation currently used. The emission spectrum is composed of (Ba, Sr, Ca) 2 SiO 4 :Eu +2 and K 2 SiF 6 :Mn +4 . The red light partial spectrum is contributed by K 2 SiF 6 :Mn +4 of the shell layer 20, and its emission band is at 600-700 nm, and the highest peak position is linear red light at 630 nm, which is a fluorescent material with high saturation red light. The portion of the green light in the spectrum is contributed by the (Ba, Sr, Ca) 2 SiO 4 :Eu +2 emission spectrum of the core 10, which is a yellow light material having a light-emitting position at 480-750 nm and a highest position at 570 nm.

實例5為(Sr,Ca)Si2O2N2:Eu+2/K2SiF6:Mn+4的核心10/殼體20組合,是以化學劑量比例取100mL~1L HF溶液,接著加入5~10g SiO2粉末與5~10g(Sr,Ca)Si2O2N2:Eu+2螢光粉,再加入20~50g K2MnO4粉末,使溶液從透明變成深紫色,之後以10~60mL H2O2滴定出現橘黃色粉末。第十一圖為(Sr,Ca)Si2O2N2:Eu+2/K2SiF6:Mn+4核殼結構螢光材料的激發及放射光譜,其激發光譜由雙峰所構成,波段介於300到535nm之間,適合目前普遍使用之440~460nm藍光激發,放射光譜由(Sr,Ca)Si2O2N2:Eu+2及K2SiF6:Mn+4之放射光所組成,紅光部分光譜為殼層20的K2SiF6:Mn+4所貢獻,其放射波段位在600-700nm,最高峰值位在630nm為線性紅光,是一具有高飽和紅光之螢光 材料,而光譜中綠光的部分為核心10的(Sr,Ca)Si2O2N2:Eu+2放射光譜所貢獻,其為放光位在480-750nm,最高位置在545nm之黃光材料。 Example 5 is a core 10/shell 20 combination of (Sr,Ca)Si 2 O 2 N 2 :Eu +2 /K 2 SiF 6 :Mn +4 , taking a 100 mL~1 L HF solution at a stoichiometric ratio, followed by 5~10g SiO 2 powder and 5~10g (Sr,Ca)Si 2 O 2 N 2 :Eu +2 phosphor powder, then add 20~50g K 2 MnO 4 powder to make the solution change from transparent to deep purple, then An orange powder appeared in the titration of 10~60mL H 2 O 2 . The eleventh image shows the excitation and emission spectra of (Sr,Ca)Si 2 O 2 N 2 :Eu +2 /K 2 SiF 6 :Mn +4 core-shell structured fluorescent material, and the excitation spectrum is composed of double peaks. The wavelength range is between 300 and 535 nm, which is suitable for the 440-460 nm blue light excitation currently used. The emission spectrum is emitted by (Sr, Ca)Si 2 O 2 N 2 :Eu +2 and K 2 SiF 6 :Mn +4 . The red light partial spectrum is contributed by K 2 SiF 6 :Mn +4 of the shell layer 20, and the emission band is at 600-700 nm, and the highest peak position is linear red light at 630 nm, which is a high saturation red light. Fluorescent material, and the part of the green light in the spectrum is contributed by the (Sr,Ca)Si 2 O 2 N 2 :Eu +2 emission spectrum of the core 10, which is the luminescence position at 480-750 nm and the highest position at 545 nm. Yellow light material.

實例6的核心10/殼體20組合為(Ca,Sr,Ba)2Si5N8:Eu+2/K2SiF6:Mn4+,是以化學劑量比例取100mL~1L HF溶液,接著加入5~10g SiO2粉末與5~10g(Ca,Sr,Ba)2Si5N8:Eu+2核結構螢光粉,再加入20~50g K2MnO4粉末,溶液從透明變成深紫色,之後以10~60mL H2O2滴定出現橘黃色粉末。其後,進行各項必要分析及測試:第十二圖為(Ca,Sr,Ba)2Si5N8:Eu+2/K2SiF6:Mn4+殼核結構螢光材料激發及放射光譜,其中激發光譜由雙峰所構成,波段介於300到535nm之間,適合目前普遍使用之440~460nm藍光激發,放射光譜由(Ca,Sr,Ba)2Si5N8:Eu+2及K2SiF6:Mn+4之放射光所組成,其放射光譜位在500-750nm,最高位置在630nm。 The core 10/shell 20 of Example 6 is combined into (Ca,Sr,Ba) 2 Si 5 N 8 :Eu +2 /K 2 SiF 6 :Mn 4+ , and a 100 mL to 1 L HF solution is taken in a stoichiometric ratio, followed by Add 5~10g SiO 2 powder and 5~10g (Ca,Sr,Ba) 2 Si 5 N 8 :Eu +2 core structure phosphor powder, then add 20~50g K 2 MnO 4 powder, the solution changes from transparent to deep purple Then, an orange powder appeared by titration with 10 to 60 mL of H 2 O 2 . Thereafter, various necessary analyses and tests were carried out: the twelfth picture shows (Ca, Sr, Ba) 2 Si 5 N 8 :Eu +2 /K 2 SiF 6 :Mn 4+ core-structure fluorescent material excitation and emission The spectrum, in which the excitation spectrum is composed of double peaks, the wavelength range is between 300 and 535 nm, suitable for the currently widely used 440-460 nm blue light excitation, and the emission spectrum is (Ca, Sr, Ba) 2 Si 5 N 8 :Eu +2 And K 2 SiF 6 : Mn +4 composed of radiation, the emission spectrum is located at 500-750nm, the highest position is 630nm.

實例7的核心10/殼體20組合為(Ca,Sr)AlSiN3:Eu+2/K2SiF6:Mn+4,是以化學劑量比例取100mL~1L HF溶液,接著加入5~10g SiO2粉末與5~10g(Ca,Sr)AlSiN3:Eu+2核結構螢光粉,再加入20~50g K2MnO4粉末,溶液從透明變成深紫色,之後以10~60mL H2O2滴定出現橘黃色粉末。第十三圖為(Ca,Sr)AlSiN3:Eu+2/K2SiF6:Mn+4殼核結構螢光材料的激發及放射光譜,其激發光譜由雙峰所構成,波段介於300到535nm之間,適合目前普遍使用之440~460nm藍光激發,放射光譜由(Ca,Sr)AlSiN3:Eu+2及K2SiF6:Mn+4之放射光所組成,其放射光譜位在500-750nm,最高位置在630nm。 The core 10/shell 20 of Example 7 is combined into (Ca,Sr)AlSiN 3 :Eu +2 /K 2 SiF 6 :Mn +4 , which is a stoichiometric ratio of 100 mL to 1 L of HF solution, followed by 5 to 10 g of SiO. 2 powder and 5~10g (Ca,Sr)AlSiN 3 :Eu +2 core structure phosphor powder, then add 20~50g K 2 MnO 4 powder, the solution changes from transparent to deep purple, then 10~60mL H 2 O 2 An orange powder appeared in the titration. The thirteenth picture shows the excitation and emission spectra of (Ca,Sr)AlSiN 3 :Eu +2 /K 2 SiF 6 :Mn +4 core-shell structured fluorescent materials. The excitation spectrum consists of double peaks with a band of 300. Between 535nm, it is suitable for the 440~460nm blue excitation currently used. The emission spectrum is composed of (Ca, Sr)AlSiN 3 :Eu +2 and K 2 SiF 6 :Mn +4 . The emission spectrum is at 500-750nm, the highest position is 630nm.

實例8為(Lu3Al5O12:Ce+3/K2SiF6:Mn4+)組合的封裝結果。 Example 8 is the encapsulation result for the combination of (Lu 3 Al 5 O 12 :Ce +3 /K 2 SiF 6 :Mn 4+ ).

以下的表1為螢光材料封裝測試結果,其中的比較例1~5是以460nm藍光晶片分別搭配Lu3Al5O12:Ce+3、Y3Al5O12:Ce+3、(Sr,Ca)Si2O2N2:Eu+2、(Ba,Sr,Ca)2SiO4:Eu+2及Beta-SiAlON:Eu+2而進行單一螢光粉封裝,而實例8是利用實例1中提到之核殼結構螢光材料Lu3Al5O12:Ce+3/K2SiF6:Mn+4,搭配460nm藍光晶片以進行封裝。 Table 1 below shows the results of the fluorescent material packaging test. Comparative Examples 1 to 5 are 460 nm blue wafers with Lu 3 Al 5 O 12 :Ce +3 , Y 3 Al 5 O 12 :Ce +3 , (Sr , Ca)Si 2 O 2 N 2 :Eu +2 , (Ba,Sr,Ca) 2 SiO 4 :Eu +2 and Beta-SiAlON:Eu +2 for single phosphor powder encapsulation, and Example 8 is an example of utilization The core-shell structured fluorescent material Lu 3 Al 5 O 12 :Ce +3 /K 2 SiF 6 :Mn +4 mentioned in 1 is packaged with a 460 nm blue light wafer.

結果顯示,比較例1~5封裝體所得到的演色性(color rendering index,CRI)是在60-75之間,而利用Lu3Al5O12:Ce+3/K2SiF6:Mn4+的核殼結構螢光材料的單一螢光粉之封裝體其演色性(CRI)可提升至80。 The results showed that the color rendering index (CRI) obtained in the comparative examples 1 to 5 package was between 60 and 75, and Lu 3 Al 5 O 12 :Ce +3 /K 2 SiF 6 :Mn 4 was used. + The single-fluorescent powder package of the core-shell structured phosphor material has a color rendering (CRI) of up to 80.

此外,實例9是(Ca,Sr,Ba)2Si5N8:Eu+2/K2SiF6:Mn+4的核殼結構螢光材料的封裝結果,如表2所示。 Further, Example 9 is a result of encapsulation of a core-shell structured fluorescent material of (Ca,Sr,Ba) 2 Si 5 N 8 :Eu +2 /K 2 SiF 6 :Mn +4 , as shown in Table 2.

在表2的螢光材料封裝測試結果中,比較例6是以460nm藍光晶片搭配Lu3Al5O12:Ce+3螢光粉與(Ca,Sr,Ba)2Si5N8:Eu+2螢光粉而進行封裝,實例9是利用實例6中提到之(Ca,Sr,Ba)2Si5N8:Eu+2/K2SiF6:Mn+4的核殼結構螢光材料,搭配Lu3Al5O12:Ce+3螢光粉與460nm藍光晶片而進行封裝。結果顯示,比較例6之封裝體的演色性為84,而利用(Ca,Sr,Ba)2Si5N8:Eu+2/K2SiF6:Mn+4之核殼結構螢光材料與Lu3Al5O12:Ce+3螢光粉之封裝體的演色性為87,因此,(Ca,Sr,Ba)2Si5N8:Eu+2/K2SiF6:Mn+4之核殼結構螢光材料可使演色性顯著提升。 In the fluorescent material packaging test results of Table 2, Comparative Example 6 is a 460 nm blue light wafer with Lu 3 Al 5 O 12 :Ce +3 phosphor powder and (Ca,Sr,Ba) 2 Si 5 N 8 :Eu + 2 fluorescent powder for encapsulation, Example 9 is a core-shell structured fluorescent material using (Ca, Sr, Ba) 2 Si 5 N 8 :Eu +2 /K 2 SiF 6 :Mn +4 mentioned in Example 6. It is packaged with Lu 3 Al 5 O 12 :Ce +3 phosphor and 460 nm blue wafer. The results show that the color rendering of the package of Comparative Example 6 is 84, and the core-shell structured fluorescent material using (Ca, Sr, Ba) 2 Si 5 N 8 :Eu +2 /K 2 SiF 6 :Mn +4 The color rendering property of the package of Lu 3 Al 5 O 12 :Ce +3 phosphor powder is 87, therefore, (Ca,Sr,Ba) 2 Si 5 N 8 :Eu +2 /K 2 SiF 6 :Mn +4 The core-shell structured fluorescent material can significantly improve color rendering.

最後,實例10是核殼結構螢光材料(Ca,Sr)AlSiN3:Eu+2/K2SiF6:Mn+4的封裝結果,如表3所示。 Finally, Example 10 is the encapsulation result of the core-shell structured fluorescent material (Ca,Sr)AlSiN 3 :Eu +2 /K 2 SiF 6 :Mn +4 , as shown in Table 3.

表3 table 3

較 例 7是以460nm藍光晶片搭配Lu3Al5O12:Ce+3螢光粉與(Ca,Sr)AlSiN3:Eu+2螢光粉而進行封裝,實例10是利用實例7中提到之(Ca,Sr)AlSiN3:Eu+2/K2SiF6:Mn+4的核殼結構螢光材料,搭配Lu3Al5O12:Ce+3螢光粉與460nm藍光晶片而進行封裝。結果顯示,比較例7封裝體的演色性為85,利用(Ca,Sr)AlSiN3:Eu+2/K2SiF6:Mn+4核殼結構螢光材料與Lu3Al5O12:Ce+3螢光粉之封裝體的演色性為88。因此,(Ca,Sr)AlSiN3:Eu+2/K2SiF6:Mn+4核殼結構螢光材料可顯著提升演色性。 Comparative Example 7 was packaged with a 460 nm blue wafer with Lu 3 Al 5 O 12 :Ce +3 phosphor powder and (Ca,Sr)AlSiN 3 :Eu +2 phosphor powder. Example 10 is referred to in Example 7 A core-shell structured fluorescent material of (Ca,Sr)AlSiN 3 :Eu +2 /K 2 SiF 6 :Mn +4 , packaged with Lu 3 Al 5 O 12 :Ce +3 phosphor and 460 nm blue wafer . The results show that the color rendering property of the package of Comparative Example 7 is 85, using (Ca, Sr)AlSiN 3 :Eu +2 /K 2 SiF 6 :Mn +4 core-shell structured fluorescent material and Lu 3 Al 5 O 12 :Ce The color rendering of the +3 phosphor powder package is 88. Therefore, the (Ca,Sr)AlSiN 3 :Eu +2 /K 2 SiF 6 :Mn +4 core-shell structured fluorescent material can significantly improve color rendering.

綜上所述,本發明的主要特點在於利用包含核心及殼層的殼核結構螢光材料以達到調整螢光作用及功效的目的,尤其是核心具有黃光、綠光、或紅光螢光粉,而殼層是具有含錳氟化物螢光粉。還可進一步包括黃光螢光材料、綠光螢光材料、紅光螢光材料的至少其中之一,其中黃光、綠光及紅光螢光材料可接收該發光並分別放射黃光、綠光及紅光,進而調整發射光,藉以混光成具有特定光譜的高品質色光,比如白光。此外,本發明的另一特點在於利用殼核結構螢光材料以製作可產生高演色性光源的光源裝置,可提供照明或顯示領域中所需的原始光源。 In summary, the main feature of the present invention is to use a core-shell and a shell-shell fluorescent material to achieve the purpose of adjusting the fluorescence and efficacy, especially the core has yellow, green, or red fluorescent Powder, while the shell layer has fluorinated powder containing manganese fluoride. The method further includes at least one of a yellow fluorescent material, a green fluorescent material, and a red fluorescent material, wherein the yellow, green, and red fluorescent materials can receive the light and emit yellow, green, and Red light, which in turn adjusts the emitted light, to be mixed into a high-quality color light with a specific spectrum, such as white light. In addition, another feature of the present invention is the use of a core-shell structured phosphor material to create a light source device that produces a high color rendering light source that provides the original source of light required in the field of illumination or display.

由於本發明的技術內並未見於已公開的刊物、期刊、雜誌、媒體、展覽場,因而具有新穎性,且能突破目前的技術瓶頸而具體實施,確實具有進步性。此外,本發明能解決習用技術的問題,改善整體使用效率,而能達到具產業利用性的價值。 Since the technology of the present invention is not found in published publications, periodicals, magazines, media, exhibition venues, and thus is novel, and can be implemented by breaking through the current technical bottlenecks, it is indeed progressive. In addition, the present invention can solve the problems of the conventional technology, improve the overall use efficiency, and can achieve the value of industrial utilization.

以上所述者僅為用以解釋本發明之較佳實施例,並非企圖據以對本發明做任何形式上之限制,是以,凡有在相同之發明精神下所作有關本發明之任何修飾或變更,皆仍應包括在本發明意圖保護之範疇。 The above is only a preferred embodiment for explaining the present invention, and is not intended to limit the present invention in any way, and any modifications or alterations to the present invention made in the spirit of the same invention. All should still be included in the scope of the intention of the present invention.

1‧‧‧殼核結構螢光材料 1‧‧‧Shelf core structure fluorescent material

10‧‧‧核心 10‧‧‧ core

20‧‧‧殼層 20‧‧‧ shell

L1‧‧‧激發光 L1‧‧‧Excited light

L2‧‧‧發射光 L2‧‧‧ emitted light

Claims (9)

一種殼核結構螢光材料,用以經370nm至500nm之波長的光激發後,放射出波峰介於520nm至800nm之間的發射光,係包括:一核心,具有黃光、綠光或紅光螢光粉;以及一殼層,係披覆於該核心,具有含錳氟化物螢光粉,該含錳氟化物螢光粉包含第一元素、第二元素、氟元素、鹵素元素以及四價錳離子,且具有化學式AxMF6-yZy:Mn4+,其中A為第一元素並包含鋰、鈉、鉀、銣、銫、鎂、鈣、鍶、鋇以及鋅的至少其中之一,M為第二元素並包含矽、鍺、錫、鈦、鋯、鋁、鎵、銦、鈧、釔、鑭、鈮、鉭、鉍以及釓的至少其中之一,F為氟,Z為鹵素元素並包含氯、溴以及碘的至少其中之一,且0<x≦2,0≦y≦6。 A core-shell structured fluorescent material for emitting light having a peak between 520 nm and 800 nm after excitation by light of a wavelength of 370 nm to 500 nm, comprising: a core having yellow, green or red light a phosphor powder; and a shell layer coated on the core, having a manganese-containing fluoride phosphor powder comprising a first element, a second element, a fluorine element, a halogen element, and a tetravalent Manganese ion, and having the chemical formula A x MF 6-y Z y :Mn 4+ , wherein A is the first element and contains at least one of lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, and zinc First, M is a second element and comprises at least one of lanthanum, cerium, tin, titanium, zirconium, aluminum, gallium, indium, lanthanum, cerium, lanthanum, cerium, lanthanum, cerium, and lanthanum, F is fluorine, and Z is The halogen element further contains at least one of chlorine, bromine and iodine, and 0 < x ≦ 2, 0 ≦ y ≦ 6. 依據申請專利範圍第1項之殼核結構螢光材料,其中該核心具有0.01um-200um的粒徑大小。 The core-shell structured fluorescent material according to claim 1, wherein the core has a particle size of 0.01 um to 200 um. 依據申請專利範圍第1項之殼核結構螢光材料,其中該核心的螢光粉包括含三價鈰的金屬氧化物,而該含三價鈰的金屬氧化物的化學式為(Y,Gd,Tb,La,Sm,Pr,Lu)3(Sc,Al,Ga)5O12:Ce+3,主要包含釔、釓、鋱、鑭、釤、鐠、鑥、鈧、鋁、鎵,含二價銪的鍶鈣矽氮氧化物((Sr,Ca)Si2O2N2:Eu+2)、Alpha-矽鋁氧氮化合物(Alpha-SiAlON:Eu+2)、Beta-矽鋁氧氮化合物(Beta-SiAlON:Eu+2)、鋇鍶鈣矽酸鹽化合物((Ba,Sr,Ca)2SiO4:Eu+2)、鋇鍶鈣矽氮化合物((Ba,Sr,Ca)2Si5N8:Eu+2)、鈣鍶鋁矽氮化合物((Ca,Sr)AlSiN3:Eu+2)。 The core-shell structured fluorescent material according to claim 1, wherein the core phosphor comprises a metal oxide containing trivalent europium, and the chemical formula of the trivalent europium-containing metal oxide is (Y, Gd, Tb, La, Sm, Pr, Lu) 3 (Sc, Al, Ga) 5 O 12 :Ce +3 , mainly containing yttrium, lanthanum, cerium, lanthanum, cerium, lanthanum, cerium, lanthanum, aluminum, gallium, including Barium strontium strontium oxynitride ((Sr,Ca)Si 2 O 2 N 2 :Eu +2 ), Alpha-矽Al oxynitride (Alpha-SiAlON:Eu +2 ), Beta-Aluminum oxynitride Compound (Beta-SiAlON:Eu +2 ), strontium calcium citrate compound ((Ba,Sr,Ca) 2 SiO 4 :Eu +2 ), strontium calcium strontium nitrogen compound ((Ba,Sr,Ca) 2 Si 5 N 8 :Eu +2 ), calcium barium aluminum strontium nitrogen compound ((Ca, Sr)AlSiN 3 :Eu +2 ). 依據申請專利範圍第1項之殼核結構螢光材料,進一步包括黃光螢光材料、綠光螢光材料、紅光螢光材料的至少其中之一,其中該黃光螢光材料的黃光、該綠光螢光材料的綠光、該紅光螢光材料的紅光係用以調合該發射光而具有特定光譜的色光,且該色光包含白光。 The shell-nuclear structure fluorescent material according to the first aspect of the patent application, further comprising at least one of a yellow fluorescent material, a green fluorescent material, and a red fluorescent material, wherein the yellow light of the yellow fluorescent material, the green light The green light of the fluorescent material and the red light of the red fluorescent material are used to blend the emitted light to have a specific spectrum of colored light, and the colored light contains white light. 依據申請專利範圍第4項之殼核結構螢光材料,其中該黃光螢光材料包括含三價鈰的釔鋁氧化物、含二價銪的Alpha-矽鋁氧氮化合物以及鋇鍶鈣矽酸鹽化合物,且該三價鈰的釔鋁氧化物的化學式為Y3Al5O12:Ce+3,含二價銪的Alpha-矽鋁氧氮化合物的化學式為Alpha-SiAlON:Eu+2、鋇鍶鈣矽酸鹽化合物的化學式為((Ba,Sr,Ca)2SiO4:Eu+2),該綠光螢光材料包括含三價鈰的鑥鋁氧化物、含二價銪的Beta-矽鋁氧氮化合物以及鍶鈣矽氮氧化物,且該含三價鈰的鑥鋁氧化物的化學式為Lu3Al5O12:Ce+3,該含二價銪的Beta-矽鋁氧氮化合物的化學式為Beta-SiAlON:Eu+2、鍶鈣矽氮氧化物的化學式為(Sr,Ca)Si2O2N2:Eu+2,而該紅光螢光材料包括含二價銪的鋇鍶鈣矽氮化合物、鈣鍶鋁矽氮化合物,且該二價銪的鋇鍶鈣矽氮化合物化學式為(Ba,Sr,Ca)2Si5N8:Eu+2、鈣鍶鋁矽氮化合物化學式為(Ca,Sr)AlSiN3:Eu+2The core-shell structured fluorescent material according to claim 4, wherein the yellow fluorescent material comprises trivalent europium-containing lanthanum aluminum oxide, divalent europium-containing Alpha-rhenium oxynitride, and barium calcium strontium silicate a compound, and the trivalent europium yttrium aluminum oxide has a chemical formula of Y 3 Al 5 O 12 :Ce +3 , and the chemical formula of the divalent europium-containing Alpha-tellurium oxynitride is Alpha-SiAlON:Eu +2 , 钡The chemical formula of the strontium calcium citrate compound is ((Ba, Sr, Ca) 2 SiO 4 :Eu +2 ), and the green fluorescent material includes yttrium aluminum oxide containing trivalent cerium and Beta-containing cerium chemical formula silicon aluminum oxynitride, silicon oxynitride, and calcium, strontium and the trivalent cerium oxide is aluminum Lu Lu 3 Al 5 O 12: Ce +3, Beta- silicon aluminum oxynitride containing divalent europium The chemical formula of the compound is Beta-SiAlON: Eu +2 , the chemical formula of strontium calcium strontium oxide is (Sr, Ca)Si 2 O 2 N 2 :Eu +2 , and the red fluorescent material includes divalent europium. a calcium strontium nitrogen compound, a calcium strontium aluminum strontium nitrogen compound, and the bismuth calcium strontium nitrogen compound of the divalent cerium is (Ba, Sr, Ca) 2 Si 5 N 8 :Eu +2 , calcium lanthanum aluminum lanthanum nitrogen Chemical Composition formula (Ca, Sr) AlSiN 3: Eu +2. 一種光源裝置,包括:一激發光源,用以發射具370nm至500nm之波長的激發光;一如申請專利範圍第1項所述之核殼結構螢光材料,用以接收來自該激發光源的激發光,並放射具特性光譜的發射光;一電氣連接線,用以連接該激發光源及一外部電源,將該外部電源的電力 輸入該激發光源以產生該激發光;以及一封裝體,用以包覆該激發光源及該電氣連接線,以提供隔絕保護作用,且該核殼結構螢光材料是塗佈於該封裝體,用接收該激發光而發射出特性光譜之放射波峰介於520nm至800nm之間的發射光。 A light source device comprising: an excitation light source for emitting excitation light having a wavelength of 370 nm to 500 nm; and a core-shell structured fluorescent material according to claim 1 for receiving excitation from the excitation light source Light, and emits light having a characteristic spectrum; an electrical connection line for connecting the excitation light source and an external power source to power the external power source Inputting the excitation light source to generate the excitation light; and a package for coating the excitation light source and the electrical connection line to provide isolation protection, and the core-shell structure fluorescent material is coated on the package body, The emitted light having a radiation peak of a characteristic spectrum of between 520 nm and 800 nm is emitted by receiving the excitation light. 依據申請專利範圍第6項之光源裝置,其中該激發光源包含發光二極體(light emitting diode、LED)、雷射二極體(laser diode、LD)、有機發光二極體(organic light emitting diode、OLED)、冷陰極燈管(cold cathode fluorescent lamp、CCFL)或外部電極螢光燈管(external electrode fluorescent lamp、EEFL)。 The light source device according to claim 6 , wherein the excitation light source comprises a light emitting diode (LED), a laser diode (LD), an organic light emitting diode (organic light emitting diode) , OLED), cold cathode fluorescent lamp (CCFL) or external electrode fluorescent lamp (EEFL). 依據申請專利範圍第6項之光源裝置,進一步包括黃光螢光材料、綠光螢光材料、紅光螢光材料的至少其中之一,係與該核殼結構螢光材料混合而塗佈至該封裝體,其中該黃光螢光材料的黃光、該綠光螢光材料的綠光、該紅光螢光材料的紅光係用以調合該發射光而具有特定光譜的色光,且該色光包含白光。 The light source device according to claim 6 , further comprising at least one of a yellow fluorescent material, a green fluorescent material, and a red fluorescent material, which is mixed with the core-shell fluorescent material and coated to the package a body, wherein the yellow light of the yellow fluorescent material, the green light of the green fluorescent material, and the red light of the red fluorescent material are used to blend the emitted light to have a specific spectrum of colored light, and the colored light comprises white light. 依據申請專利範圍第8項之光源裝置,其中該黃光螢光材料包括含三價鈰的釔鋁氧化物、含二價銪的Alpha-矽鋁氧氮化合物以及鋇鍶鈣矽酸鹽化合物,且該三價鈰的釔鋁氧化物的化學式為Y3Al5O12:Ce+3,含二價銪的Alpha-矽鋁氧氮化合物的化學式為Alpha-SiAlON:Eu+2、鋇鍶鈣矽酸鹽化合物的化學式為((Ba,Sr,Ca)2SiO4:Eu+2),該綠光螢光材料包括含三價鈰的鑥鋁氧化物、Beta-矽鋁氮氧化物以及含二價銪的鋇鍶鈣矽氮氧化物,且該含三價鈰的鑥 鋁氧化物的化學式為Lu3Al5O12:Ce+3,該Beta-矽鋁氮氧化物的化學式為Beta-SiAlON,而該含二價銪的鋇鍶鈣矽氮氧化物的化學式為(Ba,Sr,Ca)Si2O2N2:Eu+2,該紅光螢光材料包括含二價銪的鋇鍶鈣矽氮化合物、鈣鍶鋁矽氮化合物,且該二價銪的鋇鍶鈣矽氮化合物化學式為(Ba,Sr,Ca)2Si5N8:Eu+2,該鈣鍶鋁矽氮化合物化學式為(Ca,Sr)AlSiN3:Eu+2The light source device of claim 8, wherein the yellow fluorescent material comprises trivalent europium-containing lanthanum aluminum oxide, divalent europium-containing Alpha-lanthanum oxynitride compound, and barium calcium citrate compound, and The chemical formula of trivalent europium yttrium aluminum oxide is Y 3 Al 5 O 12 :Ce +3 , and the chemical formula of the Alpha-tellurium oxynitride containing divalent europium is Alpha-SiAlON:Eu +2 , strontium calcium citrate The chemical formula of the salt compound is ((Ba,Sr,Ca) 2 SiO 4 :Eu +2 ), and the green fluorescent material includes yttrium aluminum oxide containing trivalent cerium, Beta-cerium aluminum oxynitride and divalent chemical formula europium strontium barium calcium silicon oxynitride, and the trivalent cerium oxide is aluminum Lu Lu 3 Al 5 O 12: Ce +3, chemical formula Beta- silicon aluminum oxynitride of Beta-SiAlON, The chemical formula of the divalent europium-containing barium calcium strontium oxide is (Ba , Sr , Ca)Si 2 O 2 N 2 :Eu +2 , and the red fluorescent material comprises barium calcium containing divalent europium. a nitrogen compound, a calcium strontium aluminum strontium nitrogen compound, and the bismuth calcium strontium nitrogen compound of the divalent cerium is (Ba, Sr, Ca) 2 Si 5 N 8 :Eu +2 , the calcium lanthanum lanthanide compound The formula is (Ca,Sr)AlSiN 3 :Eu +2 .
TW103139095A 2014-11-11 2014-11-11 Shell core structure fluorescent material and its light source device TWI582216B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103139095A TWI582216B (en) 2014-11-11 2014-11-11 Shell core structure fluorescent material and its light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103139095A TWI582216B (en) 2014-11-11 2014-11-11 Shell core structure fluorescent material and its light source device

Publications (2)

Publication Number Publication Date
TW201617436A true TW201617436A (en) 2016-05-16
TWI582216B TWI582216B (en) 2017-05-11

Family

ID=56508870

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103139095A TWI582216B (en) 2014-11-11 2014-11-11 Shell core structure fluorescent material and its light source device

Country Status (1)

Country Link
TW (1) TWI582216B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8057706B1 (en) * 2010-07-27 2011-11-15 General Electric Company Moisture-resistant phosphor and associated method
RU2613963C2 (en) * 2012-02-16 2017-03-22 Конинклейке Филипс Н.В. Red narrowband light emitting coated fluorosilicates for semiconductor light emitting devices
DE102013108560A1 (en) * 2012-08-10 2014-02-13 Samsung Electronics Co., Ltd. lighting device
TWM497853U (en) * 2014-11-11 2015-03-21 China Glaze Co Ltd Light source device with shell-core structure fluorescent material

Also Published As

Publication number Publication date
TWI582216B (en) 2017-05-11

Similar Documents

Publication Publication Date Title
CN110234926B (en) Narrow band red phosphors for LED lamps
JP5840540B2 (en) White lighting equipment
JP5375906B2 (en) Fluoride phosphor and light emitting device using the same
KR101971752B1 (en) Phosphor materials and related devices
JP6732796B2 (en) Phosphor and phosphor conversion LED
JP2016540070A (en) Blue-green phosphor, light emitting device package including the same, and lighting device
US9758721B2 (en) Core-shell fluorescent material and a light source device including the same
TW201321474A (en) Fluorescent material and light-emitting device using the same
US20140233209A1 (en) Light emitting device
KR102503519B1 (en) Oxyfluoride phosphor compositions and lighting apparatus thereof
TWI515922B (en) Fluorescent material and light-emitting device using the same
JP2019533629A (en) Mn4 + activated luminescent material as conversion phosphor for LED solid state light source
TWI582216B (en) Shell core structure fluorescent material and its light source device
TWM497853U (en) Light source device with shell-core structure fluorescent material
US20090026918A1 (en) Novel phosphor and fabrication of the same
JP6640753B2 (en) Phosphor composition and lighting fixture comprising the same
KR20130130162A (en) Silicon oxynitride phosphor and light device having the same
KR102662497B1 (en) Phosphor compositions and lighting devices thereof
TWI592466B (en) Manganese linear red fluorescent material and its light source device
Thi et al. Application of (Ca1-xSrx) LaGa3S6O: Eu2+ phosphor in white light-emitting diode fabrication
TWI516572B (en) Phosphors, and light emitting device employing the same
TW201716545A (en) Phosphor compositions and lighting apparatus thereof
TWM493550U (en) Light source device containing manganese linear red fluorescent material

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees