TW201617030A - 以血液為主之樣本的質譜進行前列腺癌之侵襲性或無痛性的預測試驗 - Google Patents

以血液為主之樣本的質譜進行前列腺癌之侵襲性或無痛性的預測試驗 Download PDF

Info

Publication number
TW201617030A
TW201617030A TW104132630A TW104132630A TW201617030A TW 201617030 A TW201617030 A TW 201617030A TW 104132630 A TW104132630 A TW 104132630A TW 104132630 A TW104132630 A TW 104132630A TW 201617030 A TW201617030 A TW 201617030A
Authority
TW
Taiwan
Prior art keywords
prostate cancer
classifier
sample
patients
blood
Prior art date
Application number
TW104132630A
Other languages
English (en)
Inventor
喬安娜 羅德
海瑞奇 羅德
卡洛斯 奧利維拉
Original Assignee
拜歐迪希克斯公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 拜歐迪希克斯公司 filed Critical 拜歐迪希克斯公司
Publication of TW201617030A publication Critical patent/TW201617030A/zh

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57434Specifically defined cancers of prostate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6848Methods of protein analysis involving mass spectrometry
    • G01N33/6851Methods of protein analysis involving laser desorption ionisation mass spectrometry
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • G16B40/10Signal processing, e.g. from mass spectrometry [MS] or from PCR
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • G16B40/20Supervised data analysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/56Staging of a disease; Further complications associated with the disease
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0027Methods for using particle spectrometers
    • H01J49/0036Step by step routines describing the handling of the data generated during a measurement

Abstract

本發明係關於充當分類器之程式化電腦對自以血液為主之患者樣本獲得的質譜資料進行操作以預測前列腺癌之無痛性或侵襲性。描述產生該分類器及使用該分類器對來自前列腺癌患者的以血液為主之樣本進行試驗的方法。

Description

以血液為主之樣本的質譜進行前列腺癌之侵襲性或無痛性的預測試驗 相關申請案
本申請案主張2014年10月2日申請之美國臨時申請案第62/058,792號的優先權權利,該臨時申請案之內容以引用的方式併入本文中。
本申請案係關於H.Röder等人的2014年9月15日申請之美國申請案第14/486,442號、轉讓給本發明之受讓人的美國專利申請公開案第2015/0102216號。'442申請案之內容以引用的方式併入本文中。'442申請案未被容許描繪先前技術。
前列腺癌為形成於前列腺(男性生殖系統中之腺體)之組織中的癌。前列腺癌通常出現在大齡男性中。每年在美國進行一個百萬以上的前列腺活檢,導致超過200,000例前列腺癌診斷。管理對此等患者之護理具有挑戰性,此係因為腫瘤可在相當無痛性至高度侵襲性之範圍內變化。
當前實務為根據基於血清前列腺特定抗原(PSA)量測結果(TNM分期及格里森分數(Gleason score))的風險將患者分層。高基線PSA(PSA>20ng/ml)被視為侵襲性疾病之增加的風險的信號且指示立即治 療性干預。T3a或更糟(包括轉移性疾病)的TNM分級使患者處於高風險類別中,而T1至T2a之分級係將患者分類為低或極低風險所需的。
為了對格里森分數進行評估,使用空心針自前列腺之不同區域取得一組活檢體。當經由顯微鏡查看時,根據細胞及腺體之分佈/形狀/缺少,活檢體可展現五個不同圖案(自1至5編號)。病理學家決定何為主要圖案(主要格里森分數)及下一最頻繁圖案(次要格里森分數)。接著對主要分數及次要分數計算總數且獲得總格里森分數(TGS),範圍介於2至10。隨著TGS升高,預後惡化。格里森分數為8或高於8的患者被分類為高風險且通常預約進行立即處理,諸如根除性前列腺切除術、放射療法及/或全身男性荷爾蒙療法。格里森分數為7的患者被放入中等風險類別中,而格里森分數為6或低於6的患者被分類為低或極低風險。
經診斷具有極低、低及中等前列腺癌之患者被分到觀察性等待,主動式監督協定。對於此等患者,監視血清PSA之位準,且可能要求每隔1至4年進行重複活檢。然而,儘管低基線PSA及良好的活檢結果,被定義為低風險之某些患者卻體驗快速發展。此等患者(尤其在較年輕的年齡組中)將受益於早期干預。Bill-Axelson,A.等人,Radical prostatectomy versus watchful waiting in early prostate cancer.N Engl J Med 364,1708-17(2011)。實際上具有不良預後且需要進行主動處理的前列腺癌患者的經改良識別具有重大臨床重要性。
對可幫助此指示之各種生物標記物的研究在進行中。儘管對總PSA之量測仍為用於前列腺癌診斷的被最廣泛接受之試驗中之一者,但大量研究集中於發現疾病之病程之預後的額外流行生物標記物。若干替代類型之PSA量測(諸如無PSA之百分比(%fPSA)及PSA動力學)已被最充分地評估。觀察到的%fPSA似乎為處理主動式監督中之患者的時間之重要預測因子,而PSA速度及PSA倍增時間結果常常不一致。 Trock,B.J.Circulating biomarkers for discriminating indolent from aggressive disease in prostate cancer active surveillance.Curr Opin Urol 24,293-302(2014);Cary,K.C.及Cooperberg,M.R.Biomarkers in prostate cancer surveillance and screening:past,present,and future.Ther Adv Urol 5,318-29(2013)。基於使用[- 2]proPSA(截短的PSA同功異構物)之量測結果來計算前列腺健康指數(fPSA及總PSA)的另一試驗已展示出有前景的結果。參見前述的Trock論文。同上,若干研究評估尿液中之可能生物標記物(諸如前列腺癌抗體3(PCA3)及融合基因TMPRSS2-EGR),儘管結果係矛盾的。另外,存在若干新近的基於組織之試驗,該等試驗試驗基因表現特徵曲線,諸如Oncotype DX前列腺癌檢定(基因體健康),參見Klein,A.E.等人,A 17-gene Assay to Predict Prostate Cancer Aggressiveness in the Context of Gleason Grade Heterogeneity,Tumor Multifocality,and Biopsy Undersampling.Euro Urol 66,550-560(2014)及Prolaris assay(Myriad Genetics),參見Cooperberg,M.R.等人,Validation of a Cell-Cycle Progression Gene Panel to Improve Risk Stratification in a Contemporary Prostatectomy Cohort.J Clin Oncol 31,1428-1434(2013),其與疾病發展之風險相關聯(參見Sartori,D.A.及Chan,D.W.Biomarkers in prostate cancer:what's new?Curr Opin Oncol 26,259-64(2014),然而,該等試驗需要侵入性程序。
儘管關於許多生物標記物之結果有前景,但大部分結果在驗證之早期階段中且無一結果已展示出可靠地預測疾病之過程。因此,存在對可改良前列腺癌之風險鑑別以便幫助選擇用於觀察性等待之適當候選物及識別需要立即主動式處理之男性的非侵入性臨床試驗的未滿足需要。本發明之方法及系統滿足彼需要。
所關注的其他先前技術包括美國專利8,440,409及7,811,772以及 美國專利申請公開案2009/0208921。本發明之受讓人具有揭示用於使用質譜學資料之預測性試驗的分類器的若干專利,尤其包括美國專利7,736,905;8,718,996及7,906,342。
在第一態樣中,揭示一種用於預測先前經診斷患有前列腺癌之患者中的前列腺癌之侵襲性或無痛性的方法。該方法包括以下步驟:自該前列腺癌患者獲得以血液為主之樣本;利用質譜儀進行該以血液為主之樣本的質譜分析且藉此獲得包括藉由該質譜儀產生之光譜中之眾多m/z特徵下的強度值之質譜資料;及對該質譜資料執行預處理操作,諸如背景減除、正規化及對準。該方法繼續進行用實施分類器之程式化電腦對該樣本分類之步驟。
在較佳實施例中,該分類器係自作為具有正則化的經過濾微分類器之組合產生的一或多個主分類器定義。該分類器對在該等預處理操作已執行之後自該樣本獲得的光譜之強度值及來自質譜之構成集合的m/z特徵之儲存值之集合進行操作。
在此文件中,吾人使用術語「質譜之構成集合」意謂用於分類器之建構及應用中的質譜資料之特徵值之集合。最終分類器產生該以血液為主之樣本的高、早或等效(其表示患者處於前列腺癌之早發展的高風險下,指示前列腺癌之侵襲性)或低、晚或等效(其表示患者處於前列腺癌之早發展的低風險下,指示癌之無痛性)之類別標籤。
在該分類器係自作為具有正則化的經過濾微分類器之組合產生的一或多個主分類器定義的一個實施例中,該等微分類器對選自實例1附錄A、實例2附錄A或實例3附錄A中所闡述的特徵之清單的特徵執行K最近相鄰分類(k-NN)演算法。該微分類器可替代地執行另一受監督分類演算法,諸如決策樹、支援向量機器或其他。在一個實施例中,該等主分類器係藉由用極端丟棄對滿足預定義過濾準則之微分類 器進行邏輯回歸產生。
在另一態樣中,揭示一種用於前列腺癌侵襲性或無痛性預測的系統。該系統包括電腦系統,該電腦系統包括記憶體,該記憶體儲存經定義為複數個主分類器之多數議決的最終分類器、質譜特徵值之集合(其子集充當用於該等微分類器之參考集合)、分類演算法(例如,k-NN)及定義自具有正則化之微分類器產生的一或多個主分類器的邏輯回歸加權係數之集合。該電腦系統包括用於對自患有前列腺癌之人的以血液為主之樣本之質譜獲得的質譜特徵值之集合執行該主分類器的程式碼。
在再一實例中,揭示一種用於對來自前列腺癌患者的以血液為主之樣本進行試驗以預測該前列腺癌之侵襲性或無痛性的實驗室試驗系統。該系統組合地包括:質譜儀,其進行該以血液為主之樣本的質譜,藉此獲得包括藉由該質譜儀產生之光譜中之眾多m/z特徵下的強度值之質譜資料;及程式化電腦,其包括用於對該質譜資料執行預處理操作及利用藉由作為具有正則化的經過濾微分類器之組合產生的一或多個主分類器定義之最終分類器對該樣本分類的程式碼。該最終分類器對來自該等預處理操作已執行之後的樣本的該光譜之該等強度值及來自質譜之構成集合的m/z特徵之儲存值之集合進行操作。該程式化電腦產生該以血液為主之樣本的高、早或等效(其表示患者處於前列腺癌之早發展的高風險下,指示前列腺癌之侵襲性)或低、晚或等效(其表示患者處於前列腺癌之早發展的低風險下,指示癌之無痛性)之類別標籤。
在又一態樣中,描述一種以用於預測前列腺癌侵襲性或無痛性之分類器操作的程式化電腦。該程式化電腦包括處理單元及儲存呈形成自前列腺癌患者的以血液為主之樣本獲得的質譜之構成集合的質譜特徵之集合的特徵值之集合的形式的最終分類器之記憶體,以及經定 義為自具有丟棄正則化(dropout regularization)之微分類器之組合建構的眾多主分類器之多數議決或平均機率截止之最終分類器。
在一個可能實施例中,該以血液為主之樣本之質譜係自MALDI-TOF質譜中的至少100,000個雷射點獲得,例如,使用H.Röder等人的專利申請案,2013年3月15日申請之美國第13/836,436號,中所描述之技術,該申請案之內容係以引用的方式併入本文中。
1100‧‧‧開發集
1102‧‧‧步驟/風險群組/群組標籤定義
1104‧‧‧「低」訓練/試驗群組/區塊
1106‧‧‧「高」群組/區塊
1108‧‧‧步驟
1110‧‧‧試驗集
1112‧‧‧訓練集
1120‧‧‧步驟1122特徵空間
1124‧‧‧質譜特徵1126步驟
1128‧‧‧步驟
1130‧‧‧步驟
1132‧‧‧步驟
1134‧‧‧步驟
1136‧‧‧步驟/迴路
1137‧‧‧步驟
1138‧‧‧區塊
1140‧‧‧步驟
1142‧‧‧迴路
1144‧‧‧步驟
1146‧‧‧步驟
1148‧‧‧步驟
2100‧‧‧樣本
2102‧‧‧MALDI-ToF樣本「板」
2106‧‧‧質譜儀
2108‧‧‧質譜
2110‧‧‧通用電腦
2112‧‧‧中央處理單元
2114‧‧‧記憶體
2120‧‧‧最終分類器
2122‧‧‧特徵表
2124‧‧‧表示KNN分類演算法之程式碼
2126‧‧‧程式碼
2128‧‧‧用於儲存分類結果之資料結構
2130‧‧‧程式碼
2132‧‧‧預處理常式
2136‧‧‧特徵校正功能碼
2138‧‧‧程式碼常式
2140‧‧‧模組
2150‧‧‧步驟
2152‧‧‧步驟
2154‧‧‧正規化及對準步驟
2156‧‧‧步驟
2158‧‧‧過程
2160‧‧‧步驟
圖1為展示在本文中被稱作具有丟棄之微分類器之組合(CMC/D)的分類器產生過程的流程圖,該分類器產生過程在實例1、2及3之分類器的產生中使用。
圖2A至圖2C為針對實例1之方法1的效能量度在主分類器(MC)間之分佈的圖表。
圖3A至圖3C為針對實例1之方法2的效能量度在MC間之分佈的圖表。
圖4A至圖4L為當翻轉標籤時針對實例1之方法2的效能量度在所獲得MC間之分佈的圖表。圖表之每一列對應於圖1之分類開發過程中的迴路1142之順序反覆。
圖5A至圖5C為根據以下各者標記的開發樣本集合之t分散式隨機相鄰嵌入(t-SNE)2D圖:用於實例之方法1中之開發樣本集合的群組標籤之初始指派(圖5A);用於實例之方法2之初始指派(圖5B);及標籤翻轉的3次反覆之後的最終分類標籤(實例1之方法3)(圖5C)。「1」(三角形)對應於「高」群組標籤指派且「0」(圓圈)對應於「低」群組標籤指派。
圖6為實例2中之較早離開研究而無發展事件之患者的研究時間之分佈的圖表。
圖7為使用藉由實例2之方法1中之最終分類器獲得的經修改多數 議決(MMV)分類標籤的針對發展時間(TTP)之卡普蘭-邁耶曲線的圖表。
圖8為用於實例2之方法1中所獲得之分類的針對TTP的卡普蘭-邁耶曲線的圖表,包括退出研究的患者之一半(46)。對於將用於試驗/訓練拆分中之患者,採用MMV標籤。對於退出研究之彼等患者,使用所有301個MC之普通多數議決。對數秩測試p值=0.42,對數秩HR=1.42,其中95% CI=[0.61-3.33]。
圖9為使用在實例2之方法2中所獲得之MMV分類標籤的針對TTP之卡普蘭-邁耶曲線的圖表。
圖10為實例2之方法2中所產生的個別301主分類器(MC)之Cox危險比之分佈的圖表。
圖11A至圖11C為實例2之方法2中的效能量度在MC間之分佈的圖表。
圖12為在標籤之每一反覆在圖1之分類器開發過程中翻轉(使用實例2之方法2作為起點)之後使用MMV分類標籤獲得之TTP的卡普蘭-邁耶曲線。針對每一反覆亦展示對數秩p值及對數秩危險比(與其95%信賴區間一起)。
圖13為根據以下各者標記的分類器開發資料集之t分散式隨機相鄰嵌入(t-SNE)二維圖:(左)用於訓練集中之群組標籤之初始指派及(右)用於實例2中所使用之分類器開發的三個方法中之每一者的最終分類標籤。
圖14為使用實例2之方法2中所獲得的分類標籤且包括「驗證集」同齡組之患者的TTP的卡普蘭-邁耶曲線的圖表。對於將用於試驗/訓練拆分中之患者,採用MMV標籤。對於「驗證集」患者,使用所有301個MC之普通多數議決。對數秩p值為0.025且對數秩危險比為2.95且具有[1.13,5.83]的95% CI。亦展示展示3年、4年及5年研究下的 每一經分類風險群組的無發展百分比的表。
圖15為實例2之方法2中的兩個分類群組之PSA基線位準(在研究開始時取得)之分佈的箱須圖。對於將用於試驗/訓練拆分中之患者,採用MMV標籤。對於「驗證集」患者,使用所有301個MC之普通多數議決。該圖表僅考慮119個患者(來自開發及「驗證」樣本集),該等患者之基線PSA位準可得到。
圖16為(使用實例2之方法2的)兩個分類群組之總格里森分數(TGS)值之分佈的圖表。對於將用於試驗/訓練拆分中之患者,採用MMV標籤。對於「驗證集」患者,使用所有301個MC之普通多數議決。在此圖表中僅考慮TGS可得到的133個患者(來自開發集及驗證集)。
圖17為展示用於實例3中之復發及無復發患者群組的光譜之正規化純量的箱須圖。
圖18為展示實例特徵定義(亦即,計算積分強度值以給出供分類之用的特徵值所在的m/z範圍)的眾多質譜之圖表。
圖19為展示藉由臨床群組復發及無不復發之間的部分離子電流正規化分析比較發現的正規化純量的箱須圖。
圖20A及圖20B為早及晚分類群組之復發時間(TTR)的卡普蘭-邁耶圖表,展示實例3中所產生之分類器的效能。圖20A展示僅將質譜資料用於分類的實例3之方法(1)之分類器效能,而圖20B展示使用除質譜資料外的非質譜資訊(包括患者之年齡、PSA及%fPSA)的實例3之方法(2)之分類器效能。
圖21為用於對前列腺癌患者的以血液為主之樣本進行試驗以預測癌之無痛性或侵襲性的測試過程及系統的說明。
介紹
下文描述程式化電腦,其實施用於根據自來自前列腺癌患者的以血液為主之樣本獲得的質譜學資料預測癌係侵襲性抑或無痛性的分類器。將在使用前列腺癌之以血液為主之樣本的三個不同集合的三個單獨實例中解釋用於此分類器之開發的方法。分類器開發過程(在本文中被稱作「CMC/D」(具有丟棄之微分類器之組合))併有2014年9月15日申請之美國申請案第14/486,442號中所揭示的技術,該申請案之內容係以引用的方式併入本文中。分類器開發過程之相關細節係結合圖1描述於此文件中。隨後結合圖21亦描述測試系統,其可在包括質譜儀及程式化電腦之實驗室試驗中心中實施。
實例1:根據俄勒岡資料集之分類器開發
在此實例中,吾人將描述分類器之產生以根據呈自前列腺癌患者獲得之以血液為主之樣本之形式的前列腺癌患者資料之集合及相關聯臨床資料預測前列腺癌侵襲性或無痛性。此實例將描述吾人用於產生質譜學資料之過程、對質譜執行之預處理步驟及吾人在根據資料之集合開發分類器中所使用之特定步驟。此資料集被稱作圖1之「開發集」1100。
包括於此資料集中之患者全部已經受前列腺活檢及其格里森分數之評估(根據表1分佈)。根據現有指南,患者中之18人經分類為低風險,28人經分類為中等風險且29人經分類為高風險。
可用樣本
血清樣本可自經診斷患有前列腺癌之79位患者得到。
質譜資料獲取
A. 樣本製備
將樣本在冰上解凍且在4℃下以1500g旋轉歷時5分鐘。將每一樣本與水1:10稀釋且接著與芥子酸1:1混合(50% ACN/0.1% TFA中25mg/ml)。將樣本一式三份地點樣。
B. 獲取質譜
使用吾人用於assignee Biodesix,Inc之可購得VeriStrat試驗中的獲取設定在MALDI-TOF質譜儀上收集標稱2,000點之光譜,參見美國專利7,736,905,光譜之細節並不特別重要。光譜不可自兩個樣本獲取。
C. 光譜預處理
資料集最初由對應於79位患者之237個光譜組成(每個患者3個複本)。4個患者之光譜不用於研究:
●患者28不具有任何可用的臨床資料
●患者30及31具有可用的臨床資料,但其光譜無法得到
●患者N--37-1具有可用的總格里森分數(TGS),但既非主要分數亦非次要分數
在用於研究中的全部75位患者中,經由以下主要/次要格里森分數組合分散:
D. 將光譜平均化以每個樣本產生一個光譜
對於每一患者的可獲得之3個重複光譜中之每一者,估計背景且接著減去背景。識別穿過SNR臨限值6的峰值。使用15個峰值之子集(表2)對準原始光譜(無背景減除)以進行重複光譜之間的質量除以電荷(m/z)標度中之微小差異的校正。將經對準光譜平均化,從而得到每 一患者之單一平均光譜。除對準之外,在平均化之前不對光譜執行其他預處理。
用於新分類器開發之特徵定義
使用平均光譜中之20個光譜之子集,使用與先前步驟中相同的參數減去背景。接著使用部分離子電流(PIC)正規化及表3中所示之正規化窗將該等光譜正規化。藉由覆疊光譜樣本平均值及評估譜帶自覆層之擴散而識別總共84個特徵,以界定左右邊界。在經識別後,將氧化態組合為單一特徵。特徵定義係在此文件結尾處的實例1附錄A中給出。
平均光譜的正規化
使用所有經預處理的平均光譜,判定跨患者光譜穩定的特徵之集合,其適合於改進的部分離子電流(PIC)正規化。此等特徵在表4中列出。
使用此最佳化PIC正規化,針對所有患者建構含有所有樣本之所有特徵值的新特徵表且在圖1的後續分類器開發步驟期間使用該新特徵表。
用於新分類器開發之CMC/D過程
圖1中示意性地展示出使用組合具有丟棄之微分類器(mC)(CMC/D)之方法的新分類器開發過程。在下文詳細地解釋此過程中之步驟。該方法及其各種優點將在2014年9月15日申請之美國專利申請案第14/486,442號中更詳細地解釋。參見H.Roder等發明人的美國專利申請公開案第2015/0102216號,其以引用的方式併入本文中。
將樣本劃分成開發集及驗證集
給定患者之較小數目(75),將所有患者用作用於分類器開發之開發集1100(圖1)且無單獨驗證集可得到。
步驟1102 定義初始群組
每一患者之僅可用臨床資料為主要、次要及總格里森分數。大體而言,總格里森分數(TGS)愈高,患者之預後愈差(儘管自主要及次要格里森分數之兩個不同組合獲得的相同TGS可被認為具有不同風險)。因為此分級系統中之高風險與低風險之間不存在定義明確的邊界且因為分數之評估有些主觀,所以吾人關於群組標籤考慮患者之兩個不同配置:
方法1. 根據表1中所描繪之預後風險來配置患者。使用「低」(18位患者)及「高」(29位患者)來建構二進位CMC/D分類器(將「陽性」結果視為「高」群組)。不考慮具有中等癌風險(標記為「中等」)之患者且稍後用所得CMC/D分類器評估該等患者。
方法2. 在此方法中,「低」訓練/試驗群組1104由具有低及中等預後風險之患者(包含總共46位患者)組成。「高」群組1106與方法1中相同,包含表1中的具有高預後風險之29位患者。因此,在此方法中,當創建CMC/D分類器時,將所有樣本用於試驗/訓練拆分中。
步驟1108 選擇訓練集及試驗集
一旦類別分組之初始定義已建立且群組標籤至開發集之成員的指派完成,即在步驟1108中將開發集1100分成試驗集及訓練集,在圖 1中展示為1110及1112。訓練集群組1112接著經受步驟1120、1126及1130中所示之CMC/D分類器開發過程,且藉由分類指派給試驗集群組1110之彼等樣本及比較所得標籤與初始標籤來評估步驟1130處所產生之主分類器。
步驟1120 創建微分類器
使用來自經識別的84個質譜特徵(1124)且在實例1附錄A中列出的單一特徵或特徵對來建構使用訓練集作為參考集的許多k最近相鄰(kNN)微分類器(mC)。基本上,如此實例中所解釋,將樣本一式三份地點樣在MALDI-TOF樣本板上,且每一點獲取2,000點光譜。將三個重複光譜對準且平均化以每個樣本產生一個平均光譜。將供分類之用的特徵定義為MALDI光譜中之質量/電荷(m/z)區域(展示為1124之插圖中的相異區域),且特徵值為此等區域之曲線下的積分面積(積分強度值)。對於84個特徵,此相當於考慮3,570個可能mC。用於此項目的用以遍歷mC空間之參數在表5中列出。
使用已知k-NN演算法及來自特徵空間1122的單一特徵或特徵對中之任一者來創建每一微分類器。
步驟1126 微分類器之過濾
將具有最佳效能特性之最終分類器作為目標,過濾此等mC。將每一mC應用於其訓練集,且根據所得分類計算效能量度。僅滿足此等效能量度之臨限值(如步驟1128中所示)的mC通過過濾以進一步用於過程中。對於此項目,過濾係基於分別整體地且每一參考類別(「高」及「低」)內的分類準確度。
步驟1130及1132 藉由組合使用具有丟棄之邏輯回歸的微分類器 (CMC/D)產生主分類器(MC)
一旦mC之過濾完成,即在步驟1130中產生主分類器(MC)。在此步驟中,使用使用訓練集標籤訓練之邏輯回歸在一個主分類器(MC)中組合mC,如1132處所指示。為幫助避免過度擬合,使用極端丟棄來正則化回歸。總共5個隨機選擇之mC被包括於每一邏輯回歸反覆中,且在6,000次丟棄反覆中平均化mC之權重。
儘管精神上類似於標準分類器組合方法(參見例如S.Tulyakov等人的分類器組合方法之綜述(Review of Classifier Combination Methods)(Studies in Computational Intelligence,2008,90卷,第361-386頁)),吾人具有特定問題(比執行個體(訓練集中之樣本)多的mC):某些「微分類器」藉由隨機機會可恰好人工完善,且因此將支配該等組合。為避免對於特定主導「微分類器」之此過度擬合,吾人藉由隨機選擇僅小部分的「微分類器」用於邏輯訓練步驟中之每一者來產生許多邏輯訓練步驟。此為問題根據如深學習理論中所使用的丟棄的正則化。在此狀況下,在吾人具有許多微分類器及使用極端丟棄之小訓練集的情況下,超過99%的經預過濾之微分類器在每一反覆中丟失。
可使用的用於執行微分類器之正則化組合的其他方法包括:
‧類似脊回歸的具有懲罰函數之邏輯回歸(基於Tikhonov正則化,Tikhonov、Andrey Nikolayevich(1943).「 」[On the stability of inverse problems].(Doklady Akademii Nauk SSSR 39(5):195-198))。
‧Lasso方法(Tibshirani,R.(1996).Regression shrinkage and selection via the lasso.J.Royal.Statist.Soc B.,第58卷,第1期,第1138s 267至288頁)。
‧藉由丟棄正則化的神經網路(Neural networks regularized by drop-out)(Nitish Shrivastava,「Improving Neural Networks with Dropout」,碩士畢業論文,多倫多大學之電腦科學研究生學院;可在線上自多倫多大學之電腦科學系(Computer Science department of the University of Toronto)獲得)。
‧一般規則化神經網路(Girosi F.等人,Neural computation(7),219(1995))。上文所引用之公開案係以引用的方式併入本文中。
更詳細地,在步驟1132中,每一微分類器之結果為兩個值中之一者,「低」或「高」。吾人可接著使用邏輯回歸以藉由定義經由標準邏輯回歸獲得「低」之機率來根據邏輯回歸組合微分類器之結果(參見例如http://en.wikipedia.org/wiki/Logistic_regression)
其中若應用於樣本之特徵值的微分類器mc傳回「低」,則I(mc(feature values))=1,且若微分類器傳回「高」,則I(mc(feature values))=0。權重w mc 為未知的,且需要分別使用訓練集中的低標記樣本之公式的左手側的1及高標記樣本的0自訓練集中之所有樣本的上式之回歸擬合來判定。由於吾人具有比樣本更多的微分類器及因此更多的權重,通常為數千微分類器及僅數十樣本,因此此擬合將總是導致幾乎完美的分類,且可容易由微分類器支配,該微分類器可能隨機機率地極好地適合特定問題。吾人不願意吾等最終試驗由單一特殊微分類器支配,該單一特殊微分類器僅對此特定集合執行良好且不能具有良好的推廣性。因此,吾人設計用以正則化此行為之方法:替代同時使所有微分類器之所有權重擬合訓練資料的一個總回歸,吾人僅將幾個微分類器用於回歸,但重複此過程許多次。舉例而言,吾人隨機選取微分類器中的三個,對其三個權重執行回歸,選取三個微分類 器之另一集合且判定其權重,且重複此過程許多次,從而產生許多隨機選取,亦即實現三個微分類器。定義CMC/D主分類器的最終權重因而為權重在所有此等實現內的平均值。實現之數目應足夠大,以使得在整個過程期間每一微分類器極可能被選取至少一次。此方法在精神上類似於「丟棄」正則化,其為用於深度學習群體中以將雜訊添加至神經網路訓練從而避免被困於目標函數之局部最小值中的方法。
步驟1134 評估主分類器效能
在步驟1134,接著藉由對試驗集1110執行分類及評估結果來評估在步驟1130創建之MC。評估分類器效能之方法描述於2014年9月15日申請之美國第14/486,442號中,且尤其包括危險比、總準確度、敏感性及特異性之分佈。
步驟1136 許多訓練/試驗集拆分上之迴路
在步驟1136,過程返回步驟1108,且執行開發集1100至訓練集及試驗集之新分離,且對訓練集及試驗集拆分之新隨機實現執行步驟1120、1126、1130及1132。使用多個訓練/試驗拆分避免選擇單一的特別有利或困難之訓練集用於分類器創建且避免來自對尤其容易或難以分類之試驗集之測試的效能評估中的偏向。
視用以定義初始群組之方法而定,吾人嘗試兩個不同方法以將樣本集分成訓練集及試驗集及重複分類器開發步驟。
方法1. 在此方法中,執行訓練/試驗集拆分301次。在每一實現中將每一群組的總共10個樣本隨機指派給訓練集,而在試驗集中使用剩餘樣本(「低」群組8個樣本且「高」群組19個樣本)。每一訓練/試驗拆分產生應用於分開的試驗集以評定效能的MC。
方法2. 在此方法中,隨機執行訓練/試驗拆分301次。在每一實現中將每一群組的總共15個樣本指派給訓練集,而在試驗集中使用剩餘樣本(「低」群組31個樣本且「高」群組19個樣本)。考慮試驗集之 分類輸出來評估每一MC之效能。
步驟1137 分析來自訓練/試驗集拆分之資料
在步驟1137,執行相對於所有訓練集及測試集拆分的MC效能。此可藉由獲得MC之效能特性及其分類結果(例如,如區塊1138中所指示)來進行。
步驟1140 重新定義訓練標籤
此等多個訓練/試驗拆分(步驟1120、1126及1130再反覆許多次)的一個其他優點在於,其允許關於「高」/「低」群組(特別對於持續地錯誤分類之彼等樣本)之初始指派的改進。對於來自參考群組之特定樣本在試驗集中之訓練/試驗拆分,可藉由MC之多數議決(或藉由下文所解釋的經修改多數議決MMV)獲得樣本之所得分類。若樣本相對於關於風險群組之初始猜測持續地錯誤分類,則樣本可自「高」群組移動至「低」群組中,或反之亦然,如迴路1142中所指示。針對開發集中之所有樣本進行此程序產生風險群組(1102)之新的改進版本,其為如迴路1142所指示的CMC/D分類器開發過程之第二反覆的起點。此改進過程可反覆,以使得風險群組以反覆方式在建構分類器之同時判定。
方法3. 吾人執行迴路1142之三次連續反覆:
反覆1:翻轉分類MMV標籤(來自方法2)失配初始分類群組指派(來9位患者自「高」群組及18位患者來自「低」群組)的患者之標籤且執行新CMC/D反覆。在標籤翻轉之後,37位患者被定義為屬於「低」群組且38位患者屬於「高」群組。301次試驗/訓練拆分自每一群組隨機選取15位患者且將該等患者指派給訓練集,同時將剩餘患者留在試驗集中。
反覆2:翻轉分類MMV標籤失配來自反覆1之分類的患者之標籤(來自「高」群組的3位患者及來自「低」群組的4位患者)且執行新 CMC/D反覆。在標籤翻轉之後,36位患者被定義為屬於「低」群組且39位患者屬於「高」群組。301次試驗/訓練拆分自每一群組隨機選取15位患者且將該等患者指派給訓練集,同時將剩餘患者留在試驗集中。
反覆3:翻轉分類MMV標籤失配來自反覆2之分類的患者之標籤(來自「高」群組的1位患者及來自「低」群組的2位患者)且執行新CMC/D反覆。在標籤翻轉之後,35為患者被定義為屬於「低」群組且40位患者屬於「高」群組。301次試驗/訓練拆分自每一群組隨機選取15位患者且將該等患者指派給訓練集,同時將剩餘患者留在試驗集中。
步驟1144 定義最終試驗/分類器
在步驟1144,自過程之先前反覆中所產生之主分類器(MC)中之一或多者定義最終分類器。存在用於定義最終分類器之若干可能性,包括藉由選擇具有典型效能之一個主分類器、藉由來自樣本至訓練集及試驗集之每一實現的所有主分類器之多數議決、藉由經修改多數議決或其他。在此實例中,最終分類器係藉由採用MC之多數議決自301個MC(訓練/試驗集拆分之301個不同實現)創建。
經修改多數議決(MMV)
在CMC/D過程內,每一訓練/試驗拆分實現經由具有丟棄正則化之邏輯回歸產生自微分類器(mC)之組合產生的一個主分類器(MC)。在第一例子中,此邏輯回歸之輸出並非二進位標籤,而為採用0與1之間的值的連續機率。將截止值(例如,0.5,但任何選項係可能的)應用於此等MC機率,吾人可將此等機率自連續變數轉換成二進位標籤。因此,每一MC產生給定樣本之分類標籤。然而,此步驟並非必不可少的,且吾人在此可選擇不應用截止值,而改為將資訊保持在連續機率變數中。
在已自MC獲得輸出(就經由使用截止值之二進位標籤而言或就機率而言)的情況下,需要跨MC組合(「裝袋」於學習理論語言中)此等輸出以產生用於特定樣本之單一二進位分類。實施CMC/D過程之方式意謂當在MC之訓練集中使用樣本以用於實現時,樣本幾乎始終正確地分類(就截止值實施之後的二進位標籤而言,或就接近於目標的一個類別之0及另一類別的1之機率而言)。因此,對所有MC使用簡單多數議決可產生用於MC中之一些的訓練集中之樣本的分類器效能之人工良好評估。為避免此情況,吾人可使用經修改多數議決(MMV)以獲得直接用於分類器之開發中的樣本之分類。此程序為僅當樣本不包括於MC之訓練集中時的MC輸出的多數議決。(對於從未在訓練MC時使用之樣本,多數議決及MMV係相同的。)可在藉由採用藉由樣本不包括於訓練集中的所有MC產生之分類的多數議決實施截止值之後使用此MMV。若實情為,吾人想要避免在此時使用截止值且與MC機率輸出合作,則可計算跨樣本不包括於訓練集中的MC的機率之平均值。採用後一方法,MMV產生可採用0與1之間的值之另一平均化連續變數,在特定類別中之平均機率。可經由在相對於MC平均化之後實施截止值將此變數轉換成二進位分類標籤。
機率之直接平均化提供某些優點。若吾人獲得每一樣本之平均機率,則有可能同時評定可藉由在平均機率上強加不同截止值產生的分類器之全族的效能。可藉由使用標準接收器操作特性(ROC)曲線方法(熟知方法)來進行此評定。針對平均機率上之截止值的特定選項,分類標籤係針對所有樣本產生,且此等標籤可與已知或最初定義的類別標籤進行比較以計算根據此截止值定義之分類器的敏感性及特異性。此可針對截止值之許多值及就敏感性對1-特異性而言標繪的結果(ROC曲線)進行。分類器族的總效能可表徵為曲線下面積(AUC)。就敏感性及特異性而言,ROC曲線可經測試且選擇最佳適合分類器所要 之目標效能的特定截止值。
實例1之結果
方法1(無標籤翻轉). 使用此方法之群組定義獲得的所得CMC/D分類器達成藉由以下度量描述、藉由比較分類標籤與僅當給定樣本在試驗集中時的經定義標籤(經修改多數議決MMV)獲得的效能。
此等度量中之每一者跨所創建的301個MC之分佈展示於圖2中。所有度量60%與70%之間居中,從而指示分類器之某一效能及利用較好MALDI光譜或併有更詳細臨床資料之新樣本集,可創建合理試驗的某一暗示。
關於指派給「中等」群組之患者,其中的10個(36%)被分類為屬於「高」群組且其中的18個(64%)屬於「低」群組。此展示中等風險患者被分類為低風險之傾向,其正面方法2中所選擇之參考集配置。
方法2(無標籤翻轉)。所獲得的所得CMC/D分類器達成藉由經由MMV獲得之以下度量描述之效能。
此等度量中之每一者跨所創建的301個MC之分佈展示於圖3中。平均效能類似於方法1之平均效能,儘管準確度及特異性分佈看上去較窄。此行為之一個假定可為較大訓練集(15個患者每一群組,而而非10個患者每一群組)。
方法3(具有標籤翻轉)。藉由以下平均度量(經由MMV獲得)來描述在標籤翻轉之每一反覆中創建的所得CMC/D分類器。
應注意,歸因於標籤翻轉,反覆0之後的度量不對應於相對於初 始群組定義之準確度。所有301個MC之此等度量之分佈展示於圖4中。
在標籤翻轉之3次反覆之後,吾人嘗試關聯最終分類標籤與僅可得到之臨床資料:格里森分數。表6概述最終標籤在不同的主要+次要格里森分數組合間的分佈,且表7展示基於TGS的最終標籤對初始猜測之頻率分佈。在3次反覆之後所獲得的個別MMV分類標籤展示於針對所有患者的實例1附錄C之表中。
藉由將費雪精確統計測試應用於表7之數字,吾人得到獲得此等結果或具有分類標籤與基於TGS之分類標籤之間的更強相關性之結果的9.6%機率,假定最終分類標籤「高」及「低」不與TGS風險群組相關。此p值足夠小以相信最終標籤可能有意義且在某種程度上仍相關於無痛性或侵襲性(低,高)標籤之TGS分佈及吾等初始猜測。
t-SNE可視化
t分散式隨機相鄰嵌入(t-SNE)為允許2D或3D映射中之高維資料之可視化的工具,從而擷取資料之局部結構之大部分,同時亦揭露全局結構(例如,群集在若干標度下之存在)。該方法將資料點之間的高維歐幾里得距離轉化成高斯相似性。在低維(2D或3D)空間中,相同過程將使用學生t分佈而非高斯分佈來應用以計算點對之間的相似性。接著,反覆地,該方法搜尋將在高維及低維空間中計算出的相似性之間的失配減至最少的原始資料集之低維表示。以此方式,建構2D或3D點,其允許給定資料集中之結構的可視化及識別且可能可引導研究。該方法係藉由L.J.P.van der Maaten及G.E.Hinton之論文Visualizing High-Dimensional Data Using t-SNE,Journal of Machine Learning Research 9(11月):2579-2605(2008)引入,該論文之內容係以引用的方式併入本文中。
在圖5A至圖5C中,針對3個不同情形展示經由t-SNE獲得的資料之2D映射:用於方法1及2之初始群組定義(無標籤翻轉),及在標籤翻轉之3次反覆之後的最終分類標籤(具有標籤翻轉之方法2)。每一點用識別其指派至的風險標籤之標識物來表示(「1」對應於「高」且「0」對應於「低」)。在圖5A至圖5C中,資料點係根據以下各者標記:用於方法1的基於TGS之初始群組指派(圖5A);用於方法2的初始指派(圖5B);在標籤翻轉之3次反覆之後的最終分類標籤(方法3)(圖5C)。「1」(三角形)對應於「高」且「0」(圓圈)對應於「低」。
實例1結論
藉由使用自來自75位患者(其格里森分數可得到)之血清樣本獲得的MALDI-TOF質譜,當使用取自301個主分類器的經修改多數議決時,有可能創建將「高」或「低」風險標籤指派給每一患者且藉由60%至70%的準確度、靈敏度及特異性來描述的CMC/D二進位分類器。嘗試在初始群組定義中不同的兩個不同方法,從而達成極類似效 能。對於兩個方法,301個主分類器之效能量度之分佈在先前提及之平均值下達到峰值,從而未展示不合理形狀。儘管準確度看來並不大,但僅可用的臨床變數(TGS)亦非風險評估之完美方法,且有可能包括允許評估結果的更多臨床資料之研究可展現較好效能。較好品質質譜(可自其提取更多特徵)將亦表示至任何新資料集之良好添加。
自方法2之輸出開始,吾人亦已嘗試反覆地翻轉初始分類群組指派以便基於準確度度量達成較好效能(>95%)。最終標籤看來在統計學上明顯與利用格里森分數評估之風險相關(處於10%信賴等級),從而值得進一步調查,其中額外臨床資料將有幫助。因此,吾人獲得資料之第二集合(亞利桑那資料集)且將產生分類器之過程應用於將在下文於實例2中描述的此新資料集。
應注意,在圖1之程序中,存在對內部驗證集(若可得到)驗證在步驟1144所定義之試驗的步驟1146,及對獨立樣本集驗證試驗的步驟1148。在實例1中所描述之工作中,吾人不具有內部驗證集,此係因為樣本大小小且步驟1146未執行。吾人可使用在下文於實例2中所描述之樣本作為驗證集來執行步驟1148,然而,該等樣本為血漿而非血清樣本,且分類器是否可跨樣本類型傳送係未知的。因此,實情為,吾人決定在實例2中重複圖1之分類器產生過程。
實例2:亞利桑那資料集
此實例涉及自來自經診斷患有前列腺癌之患者之血漿樣本獲得的MALDI-TOF質譜的分析。包含該資料集之所有患者已使其總格里森分數(TGS)評估為低於8。TGS之此範圍被視為與低發展風險相關聯,且因此此等患者並不進行立即治療,而改為進入觀察性等待。
此實例中所描述之工作的目標為開發能夠評估進入觀察性等待(TGS<8)之患者的前列腺癌之侵襲性或無痛性的分類器。在臨床研究期間,患者經受定期的醫師訪視(季度性地),抽取血液樣本且對其疾 病狀態進行評估。發展之跡象可基於PSA、嗜鉻粒蛋白A或鹼性磷酸酶的上升率。亦可基於患者之症狀的降級來偵測發展。在發展之情況下,患者遵循治療計劃且退出研究。可在癌症診斷時執行且可給出良好預後指示的分類器可為PSA位準或其他生物標記物之監視的有價值添加,以作為診斷後之患者之此群組的愈加改進治療導引的輔助。
儘管臨床資料並不包括患者之發展時間(TTP)之精確記錄,但吾人具有患者經受其醫師訪視及對其PSA位準進行評估時的日期之記錄。此允許吾人藉由將TTP視為上一記錄的患者訪視與進入研究之日期之間的時間差而對其進行粗略估計。
可用樣本
此分類器可行性評估中所使用之資料集係自研究硒(Se)用以在診斷之後延遲前列腺癌之發展的另一研究獲得。患者被隨機分入三個群組,該等群組接收安慰劑或兩個不同劑量之Se補充。結果為Se未展示保護作用,且因此吾人假定可使用資料集而不考慮給予每一患者之補充劑量。
自前列腺癌患者之血漿樣本獲取的總共441個質譜可用,對應於147位患者(每個患者3個複本)。10位患者(患者ID:WW000059、WW000062、WW000068、WW000070、WW000073、WW000074、WW000076、WW000079、WW001835及WW040568)之光譜未用於研究中,此係因為不存在該等患者之可用臨床/結果資料。
根據表8中所呈現之發展結果及TGS來分佈具有用於研究之有效資料的剩餘137位患者。
光譜獲取
樣本製備
將樣本在冰上解凍且在4℃下以1500g旋轉歷時5分鐘。將每一樣本與水1:10稀釋且接著與芥子酸1:1混合(50%ACN/0.1% TFA中25mg/ml)。將樣本一式三份地點樣。
獲取質譜
在MALDI-TOF質譜儀上收集標稱2,000點之光譜。
光譜預處理
將光譜平均化以每個樣本產生一個光譜
對於每一患者的可獲得之3個重複光譜中之每一者,估計背景且減去背景。識別穿過SNR臨限值6的峰值。使用15個峰值之子集(上文之表2)對準原始光譜(無背景減除)以進行重複光譜之間的m/z標度中之微小差異的校正。將經對準光譜平均化,從而得到每一患者之單一平均光譜。除對準之外,在平均化之前不對光譜執行其他預處理。
用於使用所有有效樣本之新分類器開發的特徵定義
使用與先前步驟中相同之參數對來自在研究期間發展或完成研究而無發展的患者之平均光譜進行背景減除。接著使用具有表3中所示之正規化窗的PIC將該等參數最初正規化。界定此等窗以避免m/z~4138-4205Da下的由已知污染引起之峰值,血紅蛋白峰值,用於美國專利7,736,905中所指出的申請人之VeriStrat試驗中之峰值,且在m/z=23000Da以上,所有事物具有不良再現性。藉由覆疊光譜樣本平均值及評估譜帶自覆層之擴散而識別總共104個特徵,以界定左右邊界。氧化態在見到時經組合為單一特徵。該等特徵定義在實例2附錄A中給出。關於質譜資料之部分離子電流正規化的另外細節係此項技術中已知,且出於簡潔起見因此省略,關於另外細節參見美國專利7,736,905。
平均光譜的正規化
使用此等規定特徵定義,針對所有137位患者建構用於非正規化光譜(僅進行背景減除)之特徵表。基於表9中所列出的特徵之範圍使用部分離子電流(PIC)將該等特徵值正規化。
使用此最佳化PIC正規化,新特徵表將針對所有患者建構且在分類器開發過程(圖1)中之下游使用。
分類器開發過程
基本上,圖1及上文所詳細描述的分類器開發過程被用於使用亞利桑那資料集產生新CMC/D分類器。
將樣本劃分成開發集及驗證集
在隨機化之後,患者可藉由撤銷同意而離開研究。另外,在研究期間定期監測血液中之Se含量,且若針對給定患者量測到高於1,000ng/ml的三個(未必連續)Se血液含量,則該患者退出研究。儘管退出研究而無發展,但此等患者給予吾人額外資訊,此係因為吾人知道該等患者在研究中無發展。用於患者之此子集之研究的時間之分佈展示於圖6中。吾人將樣本之此集合(來自離開研究而無發展之患者)分成兩個半份,將其中之一者添加至其他樣本(來自完成研究或在研究期間發展之患者)以形成開發集(1100,圖1),且使用第二半份作為部分「驗證集」(圖1之步驟1146)。應注意,此「驗證」集不含有在研究期間有發展之任何患者,因此,其在分類器驗證中具有有限效用。將離開研究而無發展之此等患者分成兩個子集係隨機地進行,但分層以保證兩個集合中的具有類似TGS及研究時間的幾乎經平衡數目之患者。
定義初始分類器參考集群組(步驟1102)
吾人嘗試開發評估患者之癌症之侵襲性或無痛性的分類器,且將推斷之發展結果資料用於分類器之效能評估。記住此情況,吾人嘗試幾個不同方法。對於每一方法,使用t-SNE獲得的2D映射空間之圖表與針對初始開發集指派及針對最終分類標籤展示的標籤一起展示於圖13中。
方法1. 吾人使用來自完成研究而無發展之患者(22位患者)的樣本及來自在研究期間發展之患者(23位患者)的樣本建構可區分5年內之癌症發展的「高」風險與「低」風險的最終(二進位)CMC/D分類器。在5年試驗期間無發展之患者被指派給「低」風險參考群組,且 在研究中發展之患者被指派給「高」風險。不考慮無發展地退出研究之患者且稍後用產生於此方法之CMC/D分類器評估該等患者。此配置將推測地給出就發展風險而言最清楚分離,此係因為吾人不考慮退出研究的患者(且吾人並不真的知道什麼將發生)。
方法2. 吾人藉由將藉由方法1中所開發之分類器指派的標籤視為風險群組之初始猜測而將退出研究而無發展的患者之一半包括在試驗/訓練拆分中。
方法3. 吾人嘗試反覆標籤翻轉過程(迴路1142),自方法2之群組定義開始,以便驗證此方法是否將導致就結果資料而言的經改良鑑別(亦即,針對高風險群組與低風險群組之間的發展時間的較好危險比)。
一旦微分類器之群組的初始定義已建立,開發集1100即被分裂成訓練集(1112)及試驗集(1110)。
創建及過濾微分類器(步驟1120及1126)
使用來自經識別的104個質譜特徵之單一特徵或特徵對建構使用訓練集作為參考集的許多k最近相鄰(kNN)微分類器(mC)。此對應於總共5,460個可能mC。用以遍歷此項目的mC空間之參數在表12中列出。
將具有最佳效能特性之最終分類器作為目標,過濾此等mC。將每一mC應用於其訓練集,且使用所得分類計算危險比(HR)。僅滿足HR方面之臨限值(表11)的mC通過過濾且在過程中進一步使用。
表11:所使用的mC過濾選項之概述
藉由使用具有丟棄之邏輯回歸組合微分類器(CMC/D)產生MC(步驟1130、1132)
一旦mC之過濾完成,即使用經訓練集標籤訓練之邏輯回歸將該等mC組合在一個主分類器(MC)中。為幫助避免過度擬合,使用極端丟棄來正則化回歸。總共5個隨機選擇之mC被包括於每一邏輯回歸反覆中,且在10,000次丟棄反覆中平均化mC之權重。
訓練/試驗拆分及主分類器效能之分析(步驟1136)
在迴路1136中使用多個訓練/試驗拆分避免選擇單一的特別有利或困難之訓練集用於分類器創建且避免來自對尤其容易或難以分類之試驗集之測試的效能評估中的偏向。因此,迴路1136在實例2中進行301次,從而產生301個不同主分類器(MC),每個迴路一個。最終分類器係藉由採用MC之多數議決在步驟1144自301個MC定義。針對以上每一方法,更詳細地描述此過程:
方法1. 在每一實現中將來自「高」群組的12個樣本及來自「低」群組的11個樣本全部隨機地指派給訓練集,同時在試驗集中使用剩餘樣本(群組中之每一者11個)。每一訓練/試驗拆分產生在步驟1134應用於試驗集的MC。在步驟1134,考慮藉由經修改多數議決(MMV)分類界定之風險群組來評估危險比。
方法2. 當過程返回至步驟1108,且來自離開研究而無發展之患者的樣本被請入至具有根據方法1之結果猜測的風險標籤之開發集中時,在每一實現中將來自「高」群組的21個樣本及來自「低」群組的20個樣本全部隨機地指派給訓練集1112,同時將來自「高」群組的30個樣本及「低」群組的20個樣本指定為試驗集1110之成員且在步驟1134用於測試。接著考慮MMV標籤來評估危險比。
方法3. 在步驟1140,此等多個訓練/試驗拆分的一個其他優點為其可允許在步驟1102對用於開發集的高及低群組標籤之初始指派進行改進。詳言之,對於訓練/試驗拆分,在來自開發集之特定樣本在試驗集中的情況下,獲得MMV標籤。若樣本相對於關於風險群組之初始猜測持續地錯誤分類,則樣本可自「高」群組移動至「低」群組中,或反之亦然。針對開發集中之所有樣本進行此程序產生群組標籤定義(1102)之新的可能改進版本,其為CMC/D過程之第二反覆的起點。此改進過程可反覆,以使得風險群組以反覆方式在建構分類器之同時判定。
在吾人對CMC/D分類器之開發中,吾人在初始反覆(反覆0)之後執行迴路1142之三個不同反覆:
反覆1:翻轉分類MMV標籤(來自方法2)失配初始猜測(9位患者來自「高」群組及11位患者來自「低」群組)的患者之標籤且執行新CMC/D反覆(步驟1102、1108、1120、1126、1130、1134、1136)。在此標籤翻轉之後,53位患者被分類為屬於「高」群組且38位患者屬於「低」群組。301次試驗/訓練拆分隨機地將來自「高」群組的18位患者及來自「低」群組的19位患者加入訓練集,同時將剩餘患者留在試驗集中。
反覆2:翻轉MMV標籤不匹配初始猜測的來自「高」群組的6位患者及來自「低」群組的1位患者之標籤且執行新CMC/D反覆。在標籤翻轉之後,48位患者被分類為屬於「高」群組且43位患者屬於「低」群組。301次試驗/訓練拆分隨機地將來自「高」群組的24位患者及來自「低」群組的22位患者加入訓練集,同時將剩餘患者留在試驗集中。
反覆3:翻轉來自「高」群組的5位患者及來自「低」群組的1位患者之標籤且執行新CMC/D反覆。在標籤翻轉之後,44位患者被分 類為屬於「高」群組且47位患者屬於「低」群組。301次試驗/訓練拆分隨機地將來自「高」群組的22位患者及來自「低」群組的24位患者加入訓練集,同時將剩餘患者留在試驗集中。
結果(實例2)
方法1. 在步驟1144使用上文之「方法1」定義為相對於所有301個主分類器之MMV的最終CMC/D分類器就患者結果而言表徵為圖7中所示的卡普蘭-邁耶存活曲線。藉由比較根據用「高」或「低」MMV標籤及來自與開發樣本集1100相關聯之臨床資料的相關聯發展時間(TTP)分類的樣本界定之群組來獲得該曲線。最終CMC/D分類器看來不能夠區分發展較早之患者與發展較遲之患者,其中用於TTP之卡普蘭-邁耶曲線對於兩個群組係類似的。對數秩測試給出0.51之p值且對數秩危險比(HR)為1.34,其中95%信賴區間(CI)為0.56至3.14。此分類器之準確度度量未展示任何特別受關注之效能。
儘管CMC/D分類器似乎給出比硬幣翻轉好的敏感性,但該分類器似乎對「低」風險患者作用不佳,從而將該等患者的一半以上錯誤識別為「高」風險(低特異性)。
關於不考慮訓練/試驗集之患者(離開研究而無發展之患者),25位患者經分類具有標籤「高」且21位患者經分類具有標籤「低」。圖8為用於方法1中所獲得之分類的針對TTP的卡普蘭-邁耶曲線的圖表,包括退出研究的患者之一半(46)。對於將用於試驗/訓練拆分中之患者,採用MMV標籤。對於退出研究之彼等患者(代碼「8」),使用所有301個MC之普通多數議決。對數秩測試p值=0.42,對數秩HR=1.42,其中95% CI=[0.61-3.33]。
方法2. 針對「方法2」所獲得之最終CMC/D分類器表徵為圖9 中所示之卡普蘭-邁耶曲線。對數秩測試給出0.037之p值且對數秩危險比(HR)為2.74,其中95%信賴區間(CI)為1.05至5.49。301個MC之HR之分佈展示於圖10中且展示「表現良好」形狀,其中極小分數之MC具有低於1的HR比。每一經分類風險群組在進入研究3年、4年及5年之後的無發展百分比展示於下表12中:
準確度度量(使用MMV標籤)在此方法中亦相當有前景:
此等度量中之每一者跨所創建的301個MC之分佈展示於圖11A至圖11C中。此分類器之效能就總準確度以及每一風險群組(「高」及「低」)內之準確度而言相當良好。另外,301個MC之度量之分佈表現良好且以平均值為中心。
關於相對於方法1的此明顯較好效能之一個假定與方法2中所使用之更大訓練集(24個樣本用於「高」且22個樣本用於「低」)有關,而在方法1中僅使用每一群組之11個樣本。
藉由準確度效能支援的兩個卡普蘭-邁耶曲線(「高」及「低」)之間的統計學上顯著之差異(如圖9中所表明)指向分類器之良好鑑別能力。採用開發集,(根據MMV)分類為「低」的彼等患者具有87.3%之機率在3年之時段中不發展及82.9%之機率在4年之時段中不發展。針對分類為「高」風險之患者,此比較分別63.9%之機率在3年之時段中不發展及58.8%之機率在4年之時段中不發展。
方法3. 上文所解釋的方法3中之標籤翻轉過程與方法2相比未明顯改良分類器之總鑑別能力,如對相關聯試驗集之評估。然而,基於 吾人對其他項目之體驗,吾人期望自標籤翻轉之聚合導出的試驗之一般化能力比無標籤翻轉情況下導出之試驗好。使用每一反覆之後的MMV標籤建構之卡普蘭-邁耶曲線與結果統計度量一起展示於圖12中。如圖9之卡普蘭-邁耶圖表,圖12之圖表展示測試低及高之彼等樣本之間的TTP曲線之清楚分離。
t-SNE可視化
t分散式隨機相鄰嵌入(t-SNE)為允許2D或3D映射中之高維資料之可視化的工具,且先前在實例1中引入。圖13展示針對上文所述之方法1、2及3中之每一者的經由用於群組標籤之初始指派之t-SNE獲得的用於開發集及用於最終分類標籤的資料之2D映射。每一點用識別其指派至的風險標籤之標識物來表示(「高」或「低」)。應注意,與初始指派之映射相比,方法中之每一者中之最終分類的t-SNE映射由於高及低分類標籤集群而愈加有序。
對關於「驗證集」同齡組中所保留之46位患者之最終分類器的評估未證明為係關於以上分類器效能估計之準確度的資訊,此係因為分析由於缺少此子群組中之任何發展事件而受限制。因此,未包括於分類器開發中之46位患者簡單地與開發集組合以評定關於完全研究群體之分類器之效能。結果展示於圖14中詳言之,圖14展示使用方法2中所獲得的分類標籤且包括「驗證集」之患者之分類的TTP的卡普蘭-邁耶曲線。對於將用於試驗/訓練拆分中之患者,採用MMV標籤。對於「驗證集」患者,使用所有301個MC之普通多數議決。對數秩p值為0.025且對數秩危險比為2.95且具有[1.13,5.83]的95%CI。展示3年、4年及5年研究下的每一經分類風險群組的無發展百分比的表亦展示於圖14中。再次,如圖9及圖12,圖14中的TTP之卡普蘭-邁耶圖表展示高群組及低群組之清楚分離。
分類群組與TGS及PSA之相關性的評估
評定產生於方法2(具有最佳效能之方法)中所開發之分類器的分類群組(「高」及「低」)是否與在研究開始時所判定的總格里森分數(TGS)值及PSA基線位準相關引起關注。應注意,基線PSA位準僅可用於137位患者中之119位且TGS僅可用於133位患者。
如方法2中分類的「高」及「低」群組兩者之基線PSA位準(在研究開始時取得)之分佈展示於圖15中。圖15為兩個分類群組(方法2)之PSA基線位準(在研究開始時取得)之分佈的箱須圖。對於將用於試驗/訓練拆分中之患者,採用MMV標籤。對於「驗證集」患者,使用所有301個MC之普通多數議決。「高」群組之中位PSA為6.15ng/ml且「低」群組之中位PSA為7.42ng/ml。比較兩個群組之排名的不成對曼-惠特尼試驗產生0.19之p值,其指示兩個群組之PSA分佈並無顯著不同。因此,藉由分類器給出的基線PSA位準與癌症發展風險之間的相關性並不明顯。此指示此實例2之分類器在某一意義上係作為前列腺癌發展之風險的預測因子之PSA的正交量測。
方法2中之分類之後的「高」及「低」群組兩者之TGS值的分佈展示於圖16中。詳言之,在圖16中,對於將用於試驗/訓練拆分中之患者,採用MMV標籤。對於「驗證集」患者,使用所有301個MC之普通多數議決。在此圖表中僅考慮TGS可得到的133個患者(來自開發集及驗證集)。應用於圖16中所示之表的費雪精確試驗給出0.61之p值以用於獲得觀察到的相關性或更強相關性,假定TGS值與分類標籤之間不存在相關性。因此,不能拒絕空假定,且不存在TGS與發展風險類別之間的相關性的證據,如開發出的分類器所給出。再次,此指示此實例2之分類器在某一意義上係作為前列腺癌發展之風險的預測因子之PSA的正交量測。
方法2中所開發之分類器在評估考慮患者之結果資料時相當良好地鑑別「高」及「低」前列腺癌發展風險。然而,構成所研究資料集 中之僅可用額外臨床資料的TG分數或PSA基線值看來均不與此風險相關,如分類器所標記。有可能,其他臨床資料可展示某一重大相關性,但此僅可用含有其他相關基線預後因子的更完整資料集來評估。
實例2之結論
嘗試三個不同方法以便開發能夠評估具有低總格里森分數(TGS<8)及觀察性等待中之群體中的患者之癌症之侵襲性或無痛性的CMC/D分類器。使用自來自137位患者之血漿樣本獲得的MALDI質譜之開發集。該等方法中之兩個方法在所選擇的初始風險群組定義方面不同,而第三方法由標籤翻轉反覆之序列組成。關於使用資料集中可用的結果資料(推斷的發展時間)之兩個分類群組(「高」風險及「低」風險)之間的危險比以及關於就預測研究時間內之發展而言總準確度、敏感性及特異性來評估CMC/D分類器之效能。
最佳分類器(來自方法2)表徵為具有1.05至5.49之95%CI的2.74之危險比,其指示指派給「低」風險群組之患者的顯著較好之預後。吾人之資料暗示取得比兩個可購得集合好的有效大小:1.基因健康(Genomic Health),參見Klein,A.E.等人,A 17-gene Assay to Predict Prostate Cancer Aggressiveness in the Context of Gleason Grade Heterogeneity,Tumor Multifocality,and Biopsy Undersampling Euro Urol 66,550-560(2014),優勢率在正確群體中為2.1至2.3,但可能因為患者僅具有TGS<=6;及2.Myriad(Cooperberg,M.R.等人,Validation of a Cell-Cycle Progression Gene Panel to Improve Risk Stratification in a Contemporary Prostatectomy Cohort,J Clin Oncol 31,1428-1434(2013),在根除性前列腺切除術群體中,優勢率為2.1至2.3)。當考慮樣本集合之整個群體時,「高」風險群組中之無發展百分比在3年及4年後分別為73%及69%,而在「低」群組中,無發展患者之百分比在進入研究後的相同時間為92%及88%。儘管此仍然關於 內部驗證集(步驟1146,圖1,其由於可用的樣本之小數目而不可用)或較佳來自單獨研究之獨立驗證集(圖1之步驟1148)待證實,此等分類器效能估計有前景:該等分類器可能導致將引導動作關於具有低TGS的前列腺癌患者進行的試驗。此前列腺癌指示內的CMC/D分類之進一步調查的確值得。
實例3:提羅爾(Tyrol)前列腺癌篩選論證項目資料集及深MALDI光譜
此部分中將描述用於根據自前列腺癌患者獲得之眾多以血液為主之樣本產生用於預測前列腺癌之侵襲性或無痛性的分類器之方法的第三實例。分類器產生之方法類似於上文在實例1及2中所描述之方法,參見圖1。然而,在此實例中,吾人使用吾人稱作「深MALDI」之方法自樣本獲得質譜資料,參見H.Roder等發明人的美國專利申請案公開案2013/0320203。'203申請案公開案中所闡述的質譜獲取及光譜資料處理之描述係以引用的方式併入。另外,與實例1及2之集合相比,患者群體及此資料集中之治療過程中存在某些差異。儘管如此,在此部分中,吾人描述吾人開發的可用以預測前列腺癌之侵襲性或無痛性的若干分類器。
此研究中所分許之樣本係作為提羅爾前列腺癌篩選論證項目之部分收集。參見Bartsch G、Horninger W、Klocker H、Pelzer A、Bektic J、Oberaigner W等人,Tyrol Prostate Cancer Demonstration Project:early detection,treatment,outcome,incidence and mortality.BJU Int 2008:101(7):809-816.doi:10.1111/j.1464-410x.2008.07502.x。此為PSA量測用於前列腺癌篩選之使用的例示性研究。奧地利之提羅爾區域具有約7.8百萬之人口,在地理上地緊湊,其中大部分人口在印斯布魯克之主要健康護理中心100km內。此地理情境及參與防治性篩選項目的受良好教育之人口的意願使此地成為人口廣泛篩選研究之理想地點。PSA測試在印斯布魯克的大學醫院可自由使用且對於提羅 爾的年齡在45與75之間的所有男性(及40歲以上的患有前列腺癌家族歷史之男性)進行鼓勵。參與篩選之患者可為參與實施早期偵測演算法之提羅爾前列腺癌篩選論證項目(TPCSDP)的志願者,該早期偵測演算法經更新以跟上臨床實務在多於20年之過程期間的進步。除收集篩選設定中之樣本之外,研究亦繼續在前列腺癌之診斷做出後及在治療之各種階段中自患者收集樣本。另外,收集臨床、治療及結果資料。作為TPCSDP及相關聯治癒良好之臨床資料的部分創建的生物銀行係目標在於瞭解前列腺癌及其治療之所有階段的研究之無價資源,包括在試驗開發時進行之調查及可改良患者護理之生物標記物。
實例3之研究之目標為開發具有偵測到的前列腺癌(基於自診斷活體檢查獲得之格里森分數被分類為低風險)之患者的以血液為主之預後試驗。此處,術語「預後試驗」用以與用於患者的前列腺癌是否無痛性或侵襲性之試驗互換,如此文件中先前所解釋。對自處於「觀察性等待」之患者之同齡組(實例2,指派給監測協定而非立即根除性前列腺切除術(RPE)的具有格里森分數7或小於7的「低風險」患者)獲得的血漿樣本之先前工作已展示出具有臨床相關效能之此血液試驗的可能,如上文之實例1及2中所解釋。儘管具有六或小於六之格里森分數的患者之群組處於具有快速疾病進展及相關聯存活影響的侵襲性前列腺癌之相對低風險下,但此群組內之某些患者之癌症係侵襲性的且的確快速地發展。以下係臨床相關的:能夠識別此一般低風險類別內之哪些患者實際上處於侵襲性疾病之快速發展的較高風險下,以使得此等患者可引導至利用適當療法之立即干預,處於真正低風險下之哪些患者仍可指派給觀察性等待或主動式監督協定且避免不必要治療之副效應的可能性。因此,此實例中所描述之試驗具有臨床意義。
主動式監督之選項在提羅爾在TPCSDP已充分跟蹤將用於此研究的所收集樣本的時段期間通常未提供。因此,此項目涉及在接近於患 者經診斷患有前列腺癌(診斷始終藉由活體檢查確認)的時間點自具有6或小於6之格里森分數的患者收集的樣本之分析,該等患者將接著經受根除性前列腺切除術(RPE)。疾病之攻擊性的相對位準可接著藉由前列腺癌在RPE之後復發的時間來評估。
樣本
提供來自在TPCSDP研究中登記的前列腺癌患者之血清樣本且在此項目中使用該等樣本。為了分類器開發,僅考慮在樣本收集之年份內經歷活體檢查及RPE的患者。因此,當採集患者之血液樣本時,患者已診斷患有前列腺癌,但尚未經受RPE。另外,血清樣本之所產生質譜必須通過品質控制,且臨床資料(結果以及PSA、%fPSA及年齡)必須可用。此將總共124個樣本保持用於分類器開發。樣本之開發集之臨床特性係概述表13中。所有樣本係自在獲得樣本時具有6或小於6之總格里森分數的前列腺癌患者獲得。
樣本製備
將樣本解凍,且將每一式樣樣本(來自患有前列腺癌之患者的血清)及品質控制血清(自五位健康患者之血清獲得的混合樣本,購自ProMedDx,「血清P3」)的3μl等分試樣點樣至VeriStrat®血清卡(Therapak)上。允許該等卡在環境溫度下乾燥歷時1小時,此後,用6mm皮膚活體檢查穿孔器(Acuderm)打出全血清點。將每一穿孔器置放於具有0.45μm耐綸薄膜(VWR)之離心過濾器中。將一百μl之HPLC等級水(JT Baker)添加至含有穿孔器之離心過濾器。輕緩地渦旋該等穿孔器歷時10分鐘,接著以14,000rcf減速旋轉歷時2分鐘。移除流過物且將流過物轉移回至穿孔器以進行第二輪提取。對於第二輪提取,輕緩地渦旋該等穿孔器歷時3分鐘,接著以14,000rcf減速旋轉歷時2分鐘。接著將來自每一樣本的二十微升濾液轉移至0.5ml艾本德管以用於MALDI分析。
所有後續樣本製備步驟係在定製設計之濕度及溫度控制室(Coy實驗室)中進行。溫度經設定至30℃且相對濕度設定為10%。
將相等體積的新鮮製備之基質(每1ml 50%乙腈:50%水加0.1% TFA 25mg芥子酸)添加至每一20μl血清提取物且將混合物渦旋歷時30秒。將樣本:基質混合物的前三個等分試樣(2×2μl)廢棄至套蓋中。接 著將八個等分試樣之2μl樣本:基質混合物點樣至不鏽鋼MALDI靶板(SimulTOF)之8個不同樣本點位置上。允許MALDI目標在置放於MALDI質譜儀中之前在室中乾燥。
處理樣本之此集合以分6批用於MALDI分析。將QC樣本添加至每一批次回合之開始(2製備)及結束(2製備)。
光譜獲取
使用MALDI-TOF質譜儀(來自Virgin Instruments,Sudbury,MA,USA的SimulTOF 100)獲得MALDI光譜。器具經設定為以正離子模式操作,其中離子使用以0.5kHz之雷射重複率操作的349nm、二極體泵送、頻率三倍之Nd:YLF雷射產生。使用由胰島素(m/z 5734.51)、泛素(m/z 8565.76)、細胞色素C(m/z 12360.97)及肌血球素(m/z 16952.30)組成的標準蛋白質(Bruker Daltonics,德國)之混合物來執行外部校準。
隨著雷射在載台以0.25mm/秒之速度移動時連續地跨點發射,收集來自每一MALDI點之光譜以作為經「硬體平均化」的800點光譜。使用0.01V之最小強度臨限值以拋棄任何「平坦線」光譜。強度高於此臨限值之所有800點光譜係在無任何其他處理之情況下獲取。光譜獲取使用描述於H.Roder等發明人之美國專利申請公開案2013/0320203中的光柵掃描方法。
光柵光譜預處理
分批的光柵光譜尺度重定
執行粗對準步驟以克服產生於器具校準的m/z網格之偏移。由於器具在批量獲取之前經重新校準,因此尺度重定係批量地獨立執行。藉由比較第一獲取之參考光譜中之峰值與歷史參考光譜而針對每一批次判定m/z網格偏移因數。將來自歷史參考之m/z網格應用於具有所計算的偏移之新獲取光譜。
光柵光譜之對準及過濾
此工作流執行漣波濾波器,因為觀察到使用此程序改良雜訊方面之所得平均值。接著對光譜進行背景減除且發現峰值以便執行對準。平均化中所使用之光譜為未經任何其他預處理的經對準之經紋波濾波的光譜。校準步驟使用下文在表14中列出的43個對準點之集合。額外濾波參數需要光譜具有至少20個峰值且該等對準點中的至少5個被用於對準中。
光柵光譜平均化
自經尺度重定、經對準且經濾波之光柵光譜的集區創建平均值。吾人每個點收集多個800點光譜,以使得吾人以來自每一樣本之8個點的800點光柵光譜的數目上超過500之集區結束。吾人自此集區隨機地選擇500,吾人將其一起平均以創建最終400,000點平均值的深MALDI光譜。
平均光譜之預處理
背景估計及減除
關於背景減除之細節係此項技術中已知的且描述於美國專利7,736,905中,該美國專利之內容係以引用的方式併入。額外考慮高物質區域,執行背景之估計。使用背景估計及減除之兩個視方法(表15)。
光譜之正規化
使用一組正規化窗針對每一光譜判定正規化純量。此等窗取自來自使用深MALDI之預先存在項目的分格方法參數。儘管針對此實例資料集調查窗之新集合,但未發現優異集合。在兩階段過程中執行 正規化。第一,使用表16中所發現之窗來正規化光譜。此後,使用表17中所發現之窗來正規化光譜。
藉由t-試驗根據臨床群組復發(患者在RPE之後復發)對無復發(患者在RPE之後不復發)來比較針對每一平均值發現的正規化純量。如圖17中所示,未發現該等純量顯著地與患者復發狀態相關聯。(注意,此時,吾人尚未起始圖1之分類器開發過程且因此尚未產生或指派樣本之類別標籤。吾人恰好使用復發及無復發標籤來確認吾人之正規化純量可接受。)
平均光譜對準
平均光譜之峰值對準通常極好;然而,執行精細調節對準步驟 以解決光譜中之峰值位置的微小差異。識別一組對準點且將其應用於分析光譜(表18)。
特徵定義
藉由查看光譜來互動地選擇特徵定義(亦即,選擇用於分類之特徵或m/z範圍)。使用許多光譜之覆疊而人工地指派左邊界及右邊界。針對批次反覆地執行該過程以保證邊界及特徵代表整個資料集。使用指派給「復發」及「無復發」之光譜的類別標籤來執行最終反覆以保證考慮此等臨床分組適當地指派所選特徵。總共329個特徵經識別以用於新分類器開發項目中。將此等特徵定義應用於所有光譜以創建特徵值之特徵表。所選特徵之實例展示於圖18中。特徵定義之完全清單可在實例3附錄A之表A1中發現。在特徵定義經指派之後,藉由計算 實例3附錄A表A1中所列出之特徵中之每一者上的光譜之積分強度值來創建特徵表。
光譜之批量校正
血清P3分析
在每一回合的開始(1、2)及結束(3、4)塗鋪參考樣本血清P3之兩種製劑。此等樣本之目的為保證因器具效能之微小變化(例如,偵測器之老化)所致的批次之變化可被校正。以下部分描述批量校正程序。為執行批量校正,一個光譜必須充當作為製劑中的來自開始之光譜及來自批次之結束的光譜之平均值的批次的參考。首先描述用於選擇對之程序。
如上所述地對參考樣本進行預處理。使用所有329個特徵來評估可能組合(1-3、1-4、2-3、2-4)。吾人使用函數來比較複本之每一可能組合:A=min(abs(1-ftrval1/ftrval2),abs(1-ftrval2/ftrval1))
其中ftrval1(ftrval2)為複本對之第一(第二)複本之值。此量A給出對之複本的類似程度之量測。針對每一特徵,報告A。若該值>0.5,則特徵經判定為不一致或「差」。針對每一可能組合報告差特徵之得分。若A之值<0.1,則特徵經判定為一致且報告為「良好」。針對每一可能組合報告良好特徵之得分。使用來自每一可能組合的差特徵及良好特徵之得分,吾人計算差/良好之比。具有最低比之組合經報告為最類似組合且不大可能在參考光譜中之任一者中含有任何全身的或局部化的離群值行為。最終,若未發現小於0.25之比,則該批次失敗。對於所有批次,此臨限值容易滿足。最高臨限值為0.125。
批量校正
使用批次1作為基線批次來校正所有其他批次。參考樣本用以藉由以下程序發現用於批次2至6中之每一者的校正係數。
在每一批次j(2 j 6)內,針對以(m/z) i 為中心的每一第i個特徵 定義比及平均幅度,其中為正在校正之批次中的特徵i之平均參考光譜幅度,且為批次1(參考標準)中的特徵i之參考光譜幅度。假定兩個批次之間的幅度之比遵循相依性
基於批次至批次,藉由最小化平方殘差之總和 r j (a 0,a 1,b 0,b 1,c 0))2及使用參考樣本之實驗資料來建構連續擬合。血清P3參考樣本用以計算校正函數。選取步驟以不包括離群值點。以避免參數估計中之偏差。針對不同批次所獲得的係數a 0a 1b 0b 1c 0之值在實例3附錄B(表B.1)中列出。用以針對每一批次之參考光譜建構擬合之點的對(m/z) i 平面中之投影與藉由擬合本身界定之表面一起展示於附錄B之圖B.1中。
一旦最終擬合針對每一批次判定,下一步驟為根據 針對所有樣本校正所有特徵(具有以(m/z)計之幅度 A)。在此校正之後,針對參考光譜計算的經校正特徵值位於藉由r=1界定之水平線周圍,如實例3附錄B之圖B.2中所示。計算後校正係數以比較品質控制臨限值。此等係數可在實例3附錄B表B.2中及該附錄之圖B.2中之對應圖表發現。
最終特徵表組配
藉由部分離子電流(PIC)方法之正規化
檢查批次校正特徵表以發現本質穩定性之區域以用作最終正規化窗。首先,藉由比較臨床群組復發及無復發來發現單變量p值。自PIC分析排除p值小於0.15之特徵,此係因為此等特徵可貢獻試驗開發中之有意義資訊。在PIC分析中使用188個特徵之集合,其中的13個特徵將在正規化中使用(參見表19)。
光譜之部分離子電流正規化係此項技術中已知的,參見例如美國專利7,736,905,因此,出於簡潔起見,省略詳細描述。
按照臨床群組(復發、無復發)比較使用表19中發現之特徵計算的正規化純量以保證正規化不妨礙新分類器開發工作。如圖19中所示,未發現純量與臨床群組之間的關聯。
在正規化之後,特徵表定案以供下文所描述之分類器開發過程使用。亦即,為了分類所選擇的特徵之積分強度值經計算且儲存於表中以用於開發集中之光譜中之每一者。
特徵之血清P3分析
作為預處理程序之最終評估,跨初始特徵表及PIC正規化之後的所有批次分析血清P3樣本。在批量校正之前,中值及平均值CV分別為14.2%及17.5%。在批量校正及最終正規化之後,血清P3樣本之中值及平均值CV為13.7%及17.4%。此等適度改良反映批量校正在資料處理中的相對較小作用且表面跨批次幾乎不引入變化性。
實例3之分類器開發
使用圖1中所示且先前以某一長度描述之平台/方法來進行新的分類器開發過程,吾人將該平台/方法稱為「診斷皮層(Diagnostic Cortex)」TM。圖1之方法對於建構分類器及建立預後試驗(其中哪些患者應指派給較佳或更糟預後群組(低及高風險,或早及晚復發/發展,分別在圖1中,區塊1104及1106)並不先驗明顯)特別有用。藉由正則化(步驟1132)及在步驟1144處選擇或定義最終分類器時使用多數表決或平均機率截止將資料之過度擬合的風險減至最小。藉由觀察具有類似良好效能之許多主分類器(MC)及將袋外(out-of-bag)估計用於效能量度來增強藉由圖1之方法產生的分類器之效能量度之可信度。
分類器產生程序相當詳細地描述於上文之實例1及2中。關於該方法之另一描述及實例,讀者亦被引導至H.Roder等發明人之美國專利申請案公開案第2015/0102216號。以下論述將提供當前實例3中之方法的其他解釋。
類別標籤之定義
如圖1之步驟1102中所示,針對開發集1100中之樣本中之每一者(在此實例中,通過QC濾波的124個以血液為主之樣本且其患者之臨床資料可得到)進行初始類別標籤指派。在此實例中,吾人正嘗試為每一樣本指派正確類別標籤,低風險或高風險(或,等效地,分別晚或早),其中低風險或等效表示疾病之良好預後、無痛性及遲發展且高風險或等效表示前列腺癌之相對不良預後、侵襲性及疾病之早發展。將時間至事件資料(在此情形下,來自樣本收集的RPE後復發之時間)用於分配初始類別標籤及分類器訓練。在此情況下,類別標籤不明顯,且如圖1中所示,方法使用反覆方法以在創建分類器之同時改進類別標籤。參見迴路1142。在步驟1102針對類別標籤進行初始猜測。樣本係按復發時間排序,且具有最低時間至事件結果之樣本的一半經指派「早」類別標籤(早復發,亦即,不良結果、高風險),而另一半經指派「晚」類別標籤(晚復發,亦即良好結果、低風險)。接著使用結果資料及此等類別標籤來建構分類器。此分類器可接著用以產 生所有開發集樣本之分類,且此等分類接著被用作分類器建構步驟之第二反覆的新類別標籤。反覆此過程,直至會聚(亦即,持續錯誤錯分類之樣本的數目在經由圖1之過程(包括迴路1142)的多次反覆之後在步驟1140減至最小)。
創建及過濾微分類器(步驟1120及1126)
開發集樣本1100在多個不同隨機實現中分裂成訓練集及試驗集。參見步驟1108(圖1)及迴路1136。使用六百二十五種實現(經由迴路1136之反覆)。
在步驟1120中,使用特徵之子集來建構使用訓練集作為參考集的許多k最近相鄰(kNN)微分類器(mC)。在此項目中,吾人關於微分類器所使用之特徵的性質嘗試兩個不同方法。在方法(1)中,參見下文之描述,吾人僅適用質譜特徵,而在方法(2)中,參見下文之描述,除彼等質譜特徵外,吾人亦使用年齡、PSA及%fPSA作為用於微分類器之分類的特徵。
為了能夠考察單一、兩個或三個特徵之子集及改良分類器效能,需要自實例3附錄A之329個特徵之集合取消選擇不適用於分類之特徵。使用實例3附錄C中所概述之裝袋方法進行特徵取消選擇。在方法(2)之情況下,年齡、PSA及%fPSA不比所應有臨限值更多次地通過裝袋方法之過濾準則,但儘管如此,吾人為分類器訓練保留此等三個特徵。取消選擇特徵之方法揭示於J.Röder等人在2015年4月30日申請之美國臨時申請案第62/154,844號中,該案之內容係以引用的方式併入本文中。
將具有特定效能特性之最終分類器作為目標,在步驟1126過濾此等mC。每一mC被應用於其訓練集,且自訓練集之所得分類計算效能量度。僅滿足此等效能量度之臨限值的mC通過將在過程中進一步使用之過濾。丟棄未通過過濾之mC。對於此項目,僅適用危險比過 濾,亦即,分類器被應用於樣本之訓練集,且兩個分類群組之復發時間之間所計算的危險比必須處於一預設範圍內以使mC通過過濾。此項目中所使用之過濾選項在表20中列出。
此處,在表20及下文中,「反覆」意謂使用貫穿圖1之迴路1142的分類器產生之實行,其中「反覆0」至過程中之初始反覆,「反覆1」至第二反覆等。應瞭解,藉由用分類器產生過程之參數(諸如,微分類器之過濾參數,微分類器所使用之特徵之數目,或包括分類之額外非質譜特徵(諸如PSA位準、年齡等))做試驗及執行圖1之過程多次,吾人可探究使用圖1之過程產生的分類器之效能以發現具有最佳效能之分類器。
使用具有丟棄之邏輯回歸組合微分類器
一旦過濾步驟1126完成,在步驟1130,使用使用訓練集標籤訓練之邏輯回歸將該等微分類器組合成一個主分類器,如圖1中之1132所指示。為幫助避免過度擬合,使用極端丟棄來正則化回歸,其中僅少數隨機選擇之mCs包括於邏輯回歸反覆中之每一者中。基於通過過濾之mC的典型數目來選擇步驟1132中之丟棄反覆的數目,以保證每一mC可能多次包括在丟棄過程內。對於此項目,針對每一丟棄反覆隨機地選擇10個mC。在每一反覆中進行的丟棄反覆之數目在表21中列出。
訓練/試驗集拆分(迴路1136)
多個訓練/試驗拆分(迴路1136)及對每一反覆中之新試驗集的主分類器(MC)效能之評估的使用避免選擇單一之特別有利或困難之訓練集用於分類器創建且避免效能評估與可尤其容易難以分類之試驗集的測試之偏向。
在步驟1132執行的定義每一MC之邏輯回歸之輸出為係兩個訓練類別(早或晚)中之一者的機率。在反覆分類器建構及標籤改進過程期間,根據利用應用於邏輯回歸輸出的0.5之截止所獲得的個別MC標籤之多數議決來指派分類。修改此過程以僅併入樣本不在訓練集中(經修改或「袋外」多數議決,MMV)的MC。
實例3 結果
使用經分類為早及晚之樣本的復發時間(樣本收集與RPE之後的復發之間的時間)TTR之卡普蘭-邁耶圖表連同對應危險比(HR)及對數秩p值來評估分類器之效能。對應於表22中之資料的卡普蘭-邁耶圖表展示於圖20中。每個樣本之分類在實例3附錄E中列出。在圖20中應注意,兩個方法中所產生之分類器展示早類別標籤群組與晚類別標籤群組之間的復發時間上的清楚分離。結果概述於表22中。
24:復發時間之多變量分析
基線臨床特性係藉由表25中之分類群組概述。
樣本分類對於兩個方法係相同的,除了在兩個方法之間交換分類的三個樣本。包括PSA、%fPSA及年齡可改良分類(方法2),但任何改良似乎相當邊緣。此與缺少作為預測性因數之PSA、%fPSA及年齡對於表25之多變量分析中之結果的重要性一致。試驗分類仍然為TTR之有效預測因子且為多變量分析中之唯一可用的重要預測性因數。儘管存在具有來自RPE之較高TGS之患者傾向於被指派早分類(具有來自RPE之TGS 8的5/6位患者被分類為早)的指示,但可需要較大樣本數目以確鑿地表明此傾向。由於此研究中之絕大部分患者根據活體檢查具有6之TGS,顯然,自質譜分析獲得之分類在額外之前提供除診斷時的格里森分數外的資訊,因此在RPE之後可獲得更可靠之腫瘤分期。此外,此資訊獨立於如藉由經執行以評定此等變數與分類群組之間的關聯的曼-惠特尼試驗所示的PSA及%fPSA量測(表26)。
實例3中所產生之分類器的結論及臨床意義
將圖1之程序應用於自根據收集自低風險前列腺癌患者之血清樣本產生的深MALDI光譜及相關聯結果資料獲得的特徵表,有可能創建能夠將患者分層為在RPE之後具有較佳及更糟預後之兩個群組的試驗,因此在RPE之前使用以血液為主之樣本區分無痛性與侵襲性前列腺癌。兩種分類群組之間的TTR之差異在統計學上重要且在臨床上有 意義,其中危險比為約2.5。參見圖20及表22至25。稍微小於一半之患者經指派給不良預後群組(早)。在樣本收集之後五年(在RPE之後至少4年),良好預後群組中之患者的92%無疾病,相比而言,不良預後群組(晚)中僅77%無疾病。此差異在樣本收集後十年增加,其中良好預後群組中之患者的83%無復發,相比而言,不良預後群組中之患者的59%無復發。
此可能在臨床上有用之試驗之開發中的下一步驟為驗證類似指示中的患者之獨立同齡組中之當前結果。(參見圖1步驟1148)。此係使用收集自TPCSDP中之患者的額外樣本集規劃。
基於收集自觀察性等待協定中之患者之血漿樣本,此等結果符合關於低風險前列腺癌的先前工作。參見實例1及2。在實例2(觀察性等待中的具有7或小於7之TGS的患者之同齡組)之情況下,在樣本收集之後五年,良好預後群組中之患者的88%無發展,相比而言,不良預後群組中之患者的69%無發展,且良好預後群組與不良預後群組之間的發展時間的危險比為2.95(95% CI:1.13-5.83)。在本發明研究中,指示為類似的(低風險前列腺癌具有6或低於6之格里森分數);然而,在此當前同齡組中,所有患者在診斷之後不久經受RPE。由於吾人期望此後一治療範例對不良預後群組之結果的改良應比良好預後群組更多,因此吾人期望當前設定中之危險比應小於觀察性等待設定中之危險比。兩個開發項目之間的一致性增加吾人對本發明中所描述之分類器及其效能估計之信心。
由於觀察性等待或主動式監督協定現在變得更廣泛地應用於此等「低風險」前列腺癌患者(參見Klotz L、Zhang L、Lam A等人,Long-term follow up of a large active surveillance cohort of patients with prostate cancer J.Clin.Oncol.2015(33):272-277;Morash C、Tey R、Agbassi C等人,Can Urol Assoc 2015:9(5-6):171-178)且存在判定 是否所有此等患者應被視為實際上「低風險」的經辨識問題(參見Cooperberg M.,Long-Term Active Surveillance for Prostate Cancer:Answers and Questions.J.Clin.Oncol.2015:33(3):238-240),可以看出,與對此群體中的RPE後之結果之預測相比,實例3中之試驗的臨床效用可能更多在於在主動式監督設定中對利用來自活體檢查的6或小於6之格里森分數診斷前列腺癌之後的結果之預測。試驗可指示此「低風險」設定中之哪些患者係主動式監督/觀察性等待之實際良好候選者及哪些患者應直接進行更侵襲性之治療方案(諸如即時RPE)。自主動式監督群體獲取一組血清樣本以在彼設定下測試此試驗之效能因此為重要的下一步驟。如上文所解釋,吾人可期望主動式監督設定中的分類群組之間的結果之甚至較佳分離。
另外,由於此試驗係RPE之後復發的預測,因此預測經受即時RPE的具有較高風險前列腺癌之患者的預後可能有用。推測起來,試驗即使在具有較高活體檢查格里森分數之患者之設定中仍應具有對於復發時間之某一預測能力,且可能能夠將額外資訊提供給嘗試在RPE之前評定患者之前列腺癌的侵襲性程度的醫師且可能指示對於額外支援性療法之需要。
測試系統
在用於預測前列腺癌之無痛性或侵襲性的分類器已如實例1至3中所解釋地產生及定義之後(包括利用強度值、最終分類器定義、包括過濾等之微分類器參數規定特徵表),現準備使用分類來自前列腺癌患者的以血液為主之樣本以將樣本之類別標籤指派為早(復發/侵襲性之高風險)或晚(低風險/無痛性)。將類別標籤提供給預訂試驗之醫療從業者。類別標籤可用以引導治療,例如在類別標籤為早或等效之情況下起始更加侵襲性之治療。
圖21為用於使用根據圖1所產生之分類器處理試驗樣本(在此實例 中,來自前列腺癌患者的以血液為主之樣本)之系統的說明。該系統包括質譜儀2106及通用電腦2110,通用電腦實施經寫碼為儲存於記憶體2114中的機器可讀指令及包括經類別標記之質譜學資料之特徵表2122的構成質譜資料集的最終分類器2120。應瞭解,圖21之質譜儀2106及電腦2110可用以根據圖1之分類器開發過程產生分類器。
圖21之系統之操作將在如上文實例中所解釋的用於前列腺癌之無痛性或侵襲性之預測性試驗的情況下描述,但應瞭解,此部分中所描述之方法可用於其他實例中。
圖21之系統獲得眾多樣本2100,例如,來自不同前列腺癌患者的以血液為主之樣本(血清或血漿)。樣本2100由分類器(實施於電腦2110中)使用以進行關於提供樣本之患者是否可能具有侵襲性或無痛性前列腺癌的預測,且通常將恰好經診斷具有「低風險」前列腺癌(TGS<7)且醫師決定觀察性等待/主動式監督是否為適當治療方案或可處於經受RPE之指示準備中,且醫師可能需要額外預測資訊以規劃RPE後的額外支援性療法。試驗之結果為二進位類別標籤,諸如低風險(低、晚或等效)或高風險(高、早或等效),其中低或等效指示患者可能具有無痛性形式之癌症,且高意謂患者可能具有侵襲性形式之癌症。類別標籤之特別名字並不重要且可符合任何二進位系統。
樣本可在血清卡或類似者(其中以血液為主之樣本被塗抹至纖維素或其他類型卡上)上獲得。質譜之獲得及光譜之預處理通常將遵循根據圖1產生分類器時所使用且描述於實例中之方法。作為一個可能實例(其中針對每一樣本獲取典型「稀釋及拍攝」約2000點光譜),獲得樣本之三個等分試樣。將樣本之三個等分試樣點樣至MALDI-ToF樣本「板」2102上且將該板插入至MALDI-ToF質譜儀2106中。質譜儀2106自樣本之三個等分試樣中之每一者獲取質譜2108。質譜係以數位形式表示且供應至程式化通用電腦2110。電腦2110包括執行程式化 指令之中央處理單元2112。記憶體2114儲存表示質譜2108之資料。
記憶體2114亦儲存在步驟1144根據圖之程序定義的最終分類器2120,其包括a)呈N個經類別標記光譜之特徵表之形式的構成質譜資料集2122(其中N為某一整數),在此實例中,用以如實例1至3中所解釋地開發分類器之開發集。最終分類器2120包括:b)表示KNN分類演算法(其實施於如上文在圖1中解釋之微分類器中,以及定義微分類器之參數(諸如使用特徵等)之值)之程式碼2124;c)用於執行根據圖1的患者之質譜所產生之最終分類器的程式碼2126,包括邏輯回歸權重及表示形成最終分類器之主分類器之資料;及d)用於儲存分類結果(包括試驗樣本之最終類別標籤)之資料結構2128。記憶體2114亦儲存用於實施2150處所展示之處理的程式碼2130,其包括:用於在步驟2152中自質譜儀獲取質譜資料的程式碼(未圖示);用於實施背景減除、正規化及對準步驟2154(上文解釋之細節)的預處理常式2132;用於計算經背景減除、經正規化且經對準之光譜中之預定義m/z位置處之積分強度值(步驟2156)的模組(未圖示);及用於使用在步驟2156獲得之值的資料集2122實施最終分類器2120的程式碼常式2138。過程2158產生步驟2160處之類別標籤。模組2140報告2160處所指示之類別標籤(亦即,「低」、「晚」或等效)。
程式碼2130可包括額外及可選模組,例如,用於校正質譜儀之效能之波動的特徵校正功能碼2136(描述於同在申請中美國專利申請案第14/486,442號中);用於處理來自參考樣本之光譜以定義特徵校正功能的一組常式;儲存特徵相依雜訊特性及產生有雜訊特徵值實現且分類此等有雜訊特徵值實現的模組;儲存用於獲得分類器對有雜訊特徵值實現之效能之統計資料之統計演算法的模組;或用以組合根據樣本之多個個別重複測試定義的類別標籤以產生彼樣本之單一類別標籤的模組。如熟習此項技術者將顯而易見,可包括另外其他可選軟體模 組。
圖21之系統可實施為實驗室試驗處理中心,其自腫瘤學家、患者、診所等獲得眾多患者樣本且作為付費服務產生患者樣本之類別標籤。質譜儀2106不必實體地定位於實驗室試驗中心,但電腦2110可經由電腦網路獲得表示試驗樣本之質譜的資料。
其他考慮: 深MALDI光譜
如實例3中所解釋,有可能自使用被稱為「深MALDI」之技術產生分類器中所使用之樣本獲得多得多的光譜資訊,該等技術描述於Roder等人的2013年3月15日申請之待決申請案第13/836,436號中,該案之內容係以引用的方式併入本文中。在彼技術中,多於100,000個雷射點且可能幾十萬的或甚至數百萬的雷射點被應用於含有樣本之MALDI板點(或作為來自若干此等MALDI板點上之點的總和)。此技術產生相比自典型2,000點「稀釋及拍攝」光譜獲得之光譜資訊大大地增加之量的光譜資訊。若使用此技術,則在分類器開發過程期間,可存在許多打(若非數百或甚至數千)的可用於分類器產生之潛在m/z特徵。所有此等特徵可用於分類器開發,或可執行該等特徵之統計分析以識別最可鑑別或區別地表示於低風險及高風險患者中之彼等特徵。若深MALDI被用於產生分類器,則相同程序被用於自測試中樣本獲得光譜資料。舉例而言,實例3中所描述之方法用於分類器產生及圖21之步驟2150的測試環境及預處理步驟2154兩者中。
特徵值在分類器之反覆開發期間的重新選擇
吾人自使用圖1之程序的分類器開發之其他實行已發現,當吾人具有具大量(通常數百或甚至數千個,常常為當使用深MALDI時之特定情況)特徵的特徵空間時且在分類器開發期間的類別標籤之初始定義中存在某一固有不明確性或不定性的情況下(如此處),以下可為有 利的:不僅在圖1之分類器開發過程之反覆期間執行標籤翻轉(步驟1140),而且同時使用新類別標籤分組自用於分類之可得到特徵空間重新選擇特徵(再次,將統計方法用於特徵選擇)。2014年9月15日申請之相關美國申請案第14/486,442號中相當詳細地解釋了此技術。本質上,且參看圖1,當進入迴路1142且在步驟1102之新反覆定義新分組時,同時使用開發集中之群組標籤中之每一者的特徵之統計分析在可得到質譜特徵之特徵空間中選擇新特徵。接著,在步驟1120的後續反覆中,建構微分類器且使用重新定義之群組標籤及新特徵來執行微分類器。此過程之重複反覆傾向於會聚於群組標籤及分類特徵兩者的可一般化且唯一之定義。
m/z特徵
應注意,在以上分類器開發過程中且在將最終分類器應用於試驗樣本中,吾人尚未發現需要使吾人用於分類之m/z特徵與在血液中循環之特定蛋白質或生物標記物關聯。藉由分類器是否起作用及分類器對於新樣本是否可一般化來建立分類器之有效性。吾人已描述之該等方法表面分類器起作用且可一般化。
試驗樣本之分類的構成集合
一旦遵循圖1之分類器產生過程且定義最終分類器以用於未來測試,即儲存產生分類器中所使用的經類別標記光譜之資料集(且特別地,特定m/z範圍下的強度值之特徵表)且接著使用資料集作為用於使用圖21之測試程序之分類的參考集。如所述,光譜之此「構成集合」係自經診斷患有前列腺癌之人的以血液為主之樣本獲得且包括具有無痛性癌症及侵襲性癌症兩者之患者。此構成集合可由來自分類器開發樣本集(1100)或其某一子集中之所有樣本的光譜組成。
提供所附申請專利範圍作為所揭示發明之進一步描述。
附錄
實例1附錄A:前列腺癌之新分類器開發中所使用之特徵定義
所有特徵定義
實例1附錄B:來自分類器開發中所使用之俄勒岡前列腺癌資料集的樣本
分類器開發中所使用之樣本及可取得之臨床資料
實例1附錄C:3次標籤翻轉之後屬於每一患者之MMV標籤
亦包括如表1中所定義之風險位準。
實例2附錄
附錄A:前列腺癌之新分類器開發中所使用之特徵定義
所有特徵定義
實例2
附錄B:來自分類器開發中所使用之俄勒岡前列腺癌資料集的樣本
分類器開發中所使用之樣本及可取得之臨床資料
實例3
附錄A:特徵定義
實例3附錄B:批量校正
圖B.2 批量校正圖表 後校正
實例3附錄C:特徵取消選擇方法
創建開發集樣本至兩個子集之眾多拆分(總共625種)。該等子集中之一者用於特徵(取消)選擇且不考慮剩餘子集。
對於每一拆分,使用作為分類器之訓練集的給定子集及一個單一特徵創建kNN分類器。對於此項目,使用k=7。將所創建分類器應用於訓練子集,且關於分類群組之間的危險比(早對晚)評估分類器效能。將濾波器應用於此等效能估計,以使得特徵僅在將此樣本子集用於訓練之分類器具有充分效能之情況下通過過濾。對於此報告中所使用之方法,針對所有標籤翻轉反覆中之兩個方法,特徵取消選擇步驟使用用於kNN分類器之K=7及在2.5與10.0之間的用於過濾之危險比範圍。
將對於給定子集選擇通過過濾之所有特徵添加至一清單。針對所產生得所有子集實現重複此過程。接著跨子集實現編譯通過過濾的特徵之清單以判定特徵通過過濾之頻率。大部分子集中的通過過濾之特徵可能對於要解決之問題有用且穩固,此係因為該等特徵不依賴於任何特定樣本子集。少數子集實現的通過過濾之特徵可能已過度擬合彼等幾個子集且不可能有用。
圖C.1展示在多少子集實現中多少特徵通過過濾之分佈的實例。
顯而易見,分佈在含有以相對較大比例之子集實現出現之特徵的尾部相當快速地下降,該等特徵為可能對於分類器開發最有用之特徵。
圖C.1:給定數目個子集實現的通過過濾之特徵的數目(y軸)對子集實現的數目(紅色線展示為了特定反覆取消選擇的特徵之截止)
實例3附錄D:最終分類器中所使用之特徵
實例3附錄E:根據樣本之分類
------附錄結束------
2100‧‧‧樣本
2102‧‧‧MALDI-ToF樣本「板」
2106‧‧‧質譜儀
2108‧‧‧質譜
2110‧‧‧通用電腦
2112‧‧‧中央處理單元
2114‧‧‧記憶體
2120‧‧‧最終分類器
2122‧‧‧特徵表
2124‧‧‧表示KNN分類演算法之程式碼
2126‧‧‧程式碼
2128‧‧‧用於儲存分類結果之資料結構
2130‧‧‧程式碼
2132‧‧‧預處理常式
2134‧‧‧平均化
2136‧‧‧特徵校正功能碼
2138‧‧‧程式碼常式
2140‧‧‧模組
2150‧‧‧步驟
2152‧‧‧步驟
2154‧‧‧正規化及對準步驟
2156‧‧‧步驟
2158‧‧‧過程
2160‧‧‧步驟

Claims (15)

  1. 一種用於預測先前經診斷患有前列腺癌之患者中的前列腺癌之侵襲性或無痛性的方法,其包含以下步驟:自該前列腺癌患者獲得以血液為主之樣本;利用質譜儀進行該以血液為主之樣本的質譜分析且藉此獲得包括藉由該質譜儀產生之光譜中之眾多m/z特徵下的強度值之質譜資料;對該質譜資料執行預處理操作;用實施分類器之程式化電腦對該樣本分類,該分類器對在執行該等預處理操作之後的該樣本之該等強度值及來自獲自眾多前列腺癌患者的以血液為主之樣本的質譜之構成集合之m/z特徵的所儲存強度值之集合進行操作;其中該分類器產生該以血液為主之樣本的高、早或等效之類別標籤,其表示該患者處於該前列腺癌之早發展/復發的高風險下,指示該前列腺癌之侵襲性;或低、晚或等效之類別標籤,其表示該患者處於該前列腺癌之早發展/復發的低風險下,指示該前列腺癌之無痛性。
  2. 如請求項1之方法,其中該等微分類器對選自實例1附錄A、實例2附錄A或實例3附錄A中所闡述的特徵之清單的特徵之集合執行K最近相鄰分類演算法。
  3. 如請求項1之方法,其中該分類器係自藉由用極端丟棄對滿足預定義過濾準則之眾多微分類器進行邏輯回歸產生的一或多個主分類器定義。
  4. 如請求項1之方法,其中獲得關於請求項1中的樣本經試驗之該患者之非質譜資訊,包括年齡、PSA及% fPSA中之至少一者, 其中此非質譜資訊亦針對以血液為主之樣本為該構成集合之成員的每一前列腺癌患者獲得且儲存於電腦記憶體中,且其中該最終分類器在產生該樣本之類別標籤時除該質譜資料外還使用此非質譜資訊。
  5. 如請求項1之方法,其中樣本為該構成集合之成員的每一前列腺癌患者係在經診斷患有前列腺癌之後但在根除性前列腺切除術(RPE)之前供應該樣本。
  6. 如請求項1之方法,其中樣本為該構成集合之成員的每一前列腺癌患者在獲得來自此患者的該以血液為主之樣本時具有6或小於6之總格里森分數(Total Gleason Score)。
  7. 一種用於前列腺癌侵襲性或無痛性預測的系統,其包含:電腦系統,其包括記憶體,該記憶體將自藉由用極端丟棄對滿足預定義過濾準則之眾多微分類器進行邏輯回歸產生的一或多個主分類器定義之最終分類器、用於分類之構成集合的質譜特徵值之集合(質譜特徵值之該集合獲自前列腺癌患者的以血液為主之樣本)、分類演算法及自具有丟棄正則化之經過濾微分類器之組合導出的邏輯回歸加權係數之集合儲存於記憶體中;該電腦系統包括程式碼,用於對自患有前列腺癌之人的以血液為主之樣本之質譜獲得的質譜特徵值之集合執行該最終分類器。
  8. 如請求項7之電腦系統,其中將以血液為主之樣本在該構成集合中的每一前列腺癌患者之非質譜資訊儲存於該記憶體中,該非質譜資訊包括年齡、PSA及% fPSA中之至少一者。
  9. 如請求項7之電腦系統,其中樣本為該構成集合之成員的每一前列腺癌患者係在經診斷患有前列腺癌之後但在根除性前列腺切除術(RPE)之前供應該樣本。
  10. 如請求項7之電腦系統,其中樣本為該構成集合之成員的每一前列腺癌患者在獲得來自此患者的該以血液為主之樣本時具有6或小於6之總格里森分數。
  11. 一種實驗室試驗系統,其用於對來自前列腺癌患者的以血液為主之樣本進行試驗以預測該前列腺癌之侵襲性或無痛性,其組合地包含:質譜儀,其利用質譜儀進行該以血液為主之樣本的質譜分析且藉此獲得包括藉由該質譜儀產生之光譜中之眾多m/z特徵下的強度值之質譜資料;及程式化電腦,其包括用於對該質譜資料執行預處理操作及利用藉由作為具有正則化的經過濾微分類器之組合產生的一或多個主分類器定義之最終分類器對該樣本分類的程式碼,該最終分類器對在該等預處理操作執行之後的該樣本之該等強度值及來自獲自前列腺癌患者的以血液為主之樣本的質譜之構成集合的m/z特徵之儲存值之集合進行操作;該程式化電腦產生該以血液為主之樣本的高、早或等效之類別標籤,其表示該患者處於該前列腺癌之早發展/復發的高風險下,指示該前列腺癌之侵襲性;或低、晚或等效之類別標籤,其表示該患者處於該前列腺癌之早發展/復發的低風險下,指示該癌之無痛性。
  12. 如請求項11之系統,其中該等m/z特徵係選自包含實例1附錄A、實例2附錄A或實例3附錄A的特徵之清單。
  13. 如請求項11之系統,其中該以血液為主之樣本的該質譜係使用MALDI-TOF質譜自應用於該以血液為主之樣本的至少100,000個雷射點獲得。
  14. 如請求項1之方法,其中該以血液為主之樣本的該質譜係使用 MALDI-TOF質譜自應用於該樣本的至少100,000個雷射點獲得。
  15. 一種以用於預測前列腺癌侵襲性或無痛性之分類器操作的程式化電腦,其包含處理單元及儲存呈形成自前列腺癌患者的以血液為主之樣本獲得的質譜之構成集合的質譜特徵之集合的特徵值之集合的形式的最終分類器之記憶體,以及經定義為自具有丟棄正則化之微分類器之組合建構的眾多主分類器之多數議決或平均機率截止之最終分類器。
TW104132630A 2014-10-02 2015-10-02 以血液為主之樣本的質譜進行前列腺癌之侵襲性或無痛性的預測試驗 TW201617030A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201462058792P 2014-10-02 2014-10-02

Publications (1)

Publication Number Publication Date
TW201617030A true TW201617030A (zh) 2016-05-16

Family

ID=55631358

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104132630A TW201617030A (zh) 2014-10-02 2015-10-02 以血液為主之樣本的質譜進行前列腺癌之侵襲性或無痛性的預測試驗

Country Status (4)

Country Link
US (2) US9779204B2 (zh)
EP (1) EP3201812B1 (zh)
TW (1) TW201617030A (zh)
WO (1) WO2016054031A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI784887B (zh) * 2018-01-26 2022-11-21 美商菲爾薇解析公司 用於提供量化模型的設備和方法以及相關的非暫時性電腦可讀取媒體
US11656175B2 (en) 2018-01-26 2023-05-23 Viavi Solutions Inc. Reduced false positive identification for spectroscopic classification
US11656174B2 (en) 2018-01-26 2023-05-23 Viavi Solutions Inc. Outlier detection for spectroscopic classification

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10007766B2 (en) 2015-07-13 2018-06-26 Biodesix, Inc. Predictive test for melanoma patient benefit from antibody drug blocking ligand activation of the T-cell programmed cell death 1 (PD-1) checkpoint protein and classifier development methods
US11710539B2 (en) 2016-02-01 2023-07-25 Biodesix, Inc. Predictive test for melanoma patient benefit from interleukin-2 (IL2) therapy
US9552548B1 (en) * 2016-07-01 2017-01-24 Intraspexion Inc. Using classified text and deep learning algorithms to identify risk and provide early warning
US11150238B2 (en) 2017-01-05 2021-10-19 Biodesix, Inc. Method for identification of cancer patients with durable benefit from immunotherapy in overall poor prognosis subgroups
JP2021508104A (ja) * 2017-12-15 2021-02-25 アイオバンス バイオセラピューティクス,インコーポレイテッド 腫瘍浸潤リンパ球の有益な投与を決定するシステム及び方法並びにその使用方法、並びに腫瘍浸潤リンパ球の有益な投与及びその使用方法
US20210065908A1 (en) * 2018-01-12 2021-03-04 Nova Southeastern University Assessment of human comprehension by an automated agent
BR102020015916A2 (pt) * 2020-08-04 2022-02-15 Universidade Estadual De Campinas - Unicamp Método automático para seleção molecular
US11476003B2 (en) 2020-12-15 2022-10-18 Biodesix, Inc. Method for predicting risk of unfavorable outcomes, e.g., in COVID-19 hospitalization, from clinical characteristics and basic laboratory findings
WO2023141569A1 (en) 2022-01-21 2023-07-27 Biodesix, Inc. Sensitive and accurate feature values from deep maldi spectra

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6587829B1 (en) * 1997-07-31 2003-07-01 Schering Corporation Method and apparatus for improving patient compliance with prescriptions
AU2005242724A1 (en) 2004-05-11 2005-11-24 Baylor College Of Medicine Method to predict prostate cancer
US7991557B2 (en) * 2004-06-19 2011-08-02 Genenews Corporation Computer system and methods for constructing biological classifiers and uses thereof
EP1838867B1 (en) 2005-01-06 2011-03-09 Eastern Virginia Medical School Apolipoprotein a-ii isoform as a biomarker for prostate cancer
WO2007022248A2 (en) 2005-08-16 2007-02-22 Sloan Kettering Institute For Cancer Research Methods of detection of cancer using peptide profiles
US8440409B2 (en) 2005-09-19 2013-05-14 The Johns Hopkins University Protein C inhibitor as a biomarker for prostate cancer
US7906342B2 (en) 2006-03-31 2011-03-15 Biodesix, Inc. Monitoring treatment of cancer patients with drugs targeting EGFR pathway using mass spectrometry of patient samples
US7858389B2 (en) * 2006-03-31 2010-12-28 Biodesix, Inc. Selection of non-small-cell lung cancer patients for treatment with monoclonal antibody drugs targeting EGFR pathway
US7736905B2 (en) 2006-03-31 2010-06-15 Biodesix, Inc. Method and system for determining whether a drug will be effective on a patient with a disease
US7899625B2 (en) 2006-07-27 2011-03-01 International Business Machines Corporation Method and system for robust classification strategy for cancer detection from mass spectrometry data
US10121243B2 (en) 2006-09-22 2018-11-06 Koninklijke Philips N.V. Advanced computer-aided diagnosis of lung nodules
US9443141B2 (en) 2008-06-02 2016-09-13 New York University Method, system, and computer-accessible medium for classification of at least one ICTAL state
US20120121618A1 (en) 2009-02-12 2012-05-17 Dana-Farber Cancer Institute, Inc. Predicting And Treating Prostate Cancer
WO2011106084A1 (en) 2010-02-24 2011-09-01 Biodesix, Inc. Cancer patient selection for administration of therapeutic agents using mass spectral analysis
WO2012129408A2 (en) * 2011-03-22 2012-09-27 The Johns Hopkins University Biomarkers for aggressive prostate cancer
EP2856495A2 (en) 2012-05-29 2015-04-08 Biodesix, Inc. Deep-maldi tof mass spectrometry of complex biological samples, e.g., serum, and uses thereof
AU2013287262A1 (en) 2012-07-05 2015-02-26 Biodesix, Inc. Method for predicting whether a cancer patient will not benefit from platinum-based chemotherapy agents
AU2013342273A1 (en) 2012-11-09 2015-05-21 Dana-Farber Cancer Institute, Inc. Metabolic profiling in tissue and serum is indicative of tumor differentiation in prostate cancer
AU2014318499B2 (en) 2013-09-16 2019-05-16 Biodesix, Inc Classifier generation method using combination of mini-classifiers with regularization and uses thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI784887B (zh) * 2018-01-26 2022-11-21 美商菲爾薇解析公司 用於提供量化模型的設備和方法以及相關的非暫時性電腦可讀取媒體
US11656175B2 (en) 2018-01-26 2023-05-23 Viavi Solutions Inc. Reduced false positive identification for spectroscopic classification
US11656174B2 (en) 2018-01-26 2023-05-23 Viavi Solutions Inc. Outlier detection for spectroscopic classification
US11775616B2 (en) 2018-01-26 2023-10-03 Viavi Solutions Inc. Reduced false positive identification for spectroscopic quantification

Also Published As

Publication number Publication date
US10489550B2 (en) 2019-11-26
EP3201812A1 (en) 2017-08-09
US9779204B2 (en) 2017-10-03
EP3201812A4 (en) 2018-06-20
WO2016054031A1 (en) 2016-04-07
US20180129780A1 (en) 2018-05-10
US20160098514A1 (en) 2016-04-07
EP3201812B1 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
TW201617030A (zh) 以血液為主之樣本的質譜進行前列腺癌之侵襲性或無痛性的預測試驗
US10217620B2 (en) Early detection of hepatocellular carcinoma in high risk populations using MALDI-TOF mass spectrometry
JP6063447B2 (ja) 細胞におけるバイオマーカーの発現のクラスターによる解析
US9477906B2 (en) Classification generation method using combination of mini-classifiers with regularization and uses thereof
TWI541674B (zh) 使用血液為主的樣本之質譜供肺癌病患之治療篩選
US11621057B2 (en) Classifier generation methods and predictive test for ovarian cancer patient prognosis under platinum chemotherapy
JP2016200435A (ja) マススペクトル解析システム,方法およびプログラム
Devetyarov et al. Conformal predictors in early diagnostics of ovarian and breast cancers
JP7197795B2 (ja) 機械学習プログラム、機械学習方法および機械学習装置
WO2016042805A1 (ja) 癌評価方法及び癌評価システム
US9563744B1 (en) Method of predicting development and severity of graft-versus-host disease
CN116047074A (zh) 一种用于诊断和/或预测肺癌的标志物、诊断模型及其构建方法
Huang et al. Classification of astrocytomas and oligodendrogliomas from mass spectrometry data using sparse kernel machines
EP3924974A1 (en) Predictive test for identification of early stage nsclc patients at high risk of recurrence after surgery
An et al. Intelligent diagnostic scheme for lung cancer screening with Raman spectra data by tensor network machine learning
Wu et al. Profiling the effects of short time-course cold ischemia on tumor protein phosphorylation using a Bayesian approach
Bozkurt et al. Comparison of Bayesian network and binary logistic regression methods for prediction of prostate cancer
US20230253109A1 (en) Cancer screening device and cancer screening method
Jiang A Bayesian Approach: Measurement Invariance Testing and Prediction
CN115458164A (zh) 一种前列腺健康指数的评估模型及其构建方法、评估方法
CN116106398A (zh) 用于诊断ckd的标志物