TW201611304A - Memory device and method of fabricating the same - Google Patents

Memory device and method of fabricating the same Download PDF

Info

Publication number
TW201611304A
TW201611304A TW103131779A TW103131779A TW201611304A TW 201611304 A TW201611304 A TW 201611304A TW 103131779 A TW103131779 A TW 103131779A TW 103131779 A TW103131779 A TW 103131779A TW 201611304 A TW201611304 A TW 201611304A
Authority
TW
Taiwan
Prior art keywords
support layer
layer
cup
capacitors
substrate
Prior art date
Application number
TW103131779A
Other languages
Chinese (zh)
Other versions
TWI553886B (en
Inventor
林志豪
張嘉凱
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW103131779A priority Critical patent/TWI553886B/en
Publication of TW201611304A publication Critical patent/TW201611304A/en
Application granted granted Critical
Publication of TWI553886B publication Critical patent/TWI553886B/en

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

A memory device is provided, which includes a plurality of cup-shaped capacitors, a bottom supporting layer and a top supporting layer. The cup-shaped capacitors are located on a substrate. The bottom supporting layer is disposed on the substrate between a plurality of lower sidewalls of the cup-shaped capacitors. The top supporting layer is surrounded by a plurality of upper sidewalls of the cup-shaped capacitors. There is a gap between the top supporting layer and the bottom supporting layer. The top supporting layer includes a periphery supporting layer and a core supporting layer. The periphery supporting layer is disposed out of the cup-shaped capacitors and connects with the cup-shaped capacitors. The core supporting layer is disposed in the periphery supporting layer. And there is a space between the core supporting layer and the periphery supporting layer, and it connects to any adjacent two cup-shaped capacitors.

Description

記憶元件及其製造方法 Memory element and method of manufacturing same

本發明是有關於一種記憶元件及其製造方法,且特別是有關於一種電容器及其製造方法。 The present invention relates to a memory element and a method of fabricating the same, and more particularly to a capacitor and a method of fabricating the same.

隨著半導體技術的微小化,傳統的電容器製程已經不敷使用,研究人員開發具有高介電常數之介電材料以及增加電容器的表面積,以增加電容器的電容值。一般而言,增加表面積最常採用的方式就是增加電容高度或大小。然而,上述方式容易導致電容器本身的機械強度不足的問題以及鄰近的電容器短路(Short)的問題。當電容器的機械強度不足時,則容易發現電容結構變形甚至傾倒的現象;而當鄰近的電容器發生短路現象,則降低產品的可靠度(Reliability)。有鑑於此,如何避免鄰近的電容器短路且同時具有強化結構的電容器,已得到業界的高度注意。 With the miniaturization of semiconductor technology, traditional capacitor processes are no longer sufficient. Researchers have developed dielectric materials with high dielectric constants and increased the surface area of capacitors to increase the capacitance of capacitors. In general, the most common way to increase surface area is to increase the height or size of the capacitor. However, the above-described manner easily causes a problem of insufficient mechanical strength of the capacitor itself and a problem of short-circuiting of adjacent capacitors. When the mechanical strength of the capacitor is insufficient, it is easy to find the phenomenon that the capacitor structure is deformed or even dumped; and when the adjacent capacitor is short-circuited, the reliability of the product is lowered. In view of this, how to avoid capacitors that are short-circuited by adjacent capacitors and have a reinforced structure at the same time has been highly noticed by the industry.

本發明提供一種記憶元件及其製造方法,其可避免鄰近 電容器短路的問題。 The invention provides a memory element and a manufacturing method thereof, which can avoid proximity The problem of capacitor short circuit.

本發明提供一種記憶元件及其製造方法,其可增加電容器的機械強度。 The present invention provides a memory element and a method of fabricating the same that increase the mechanical strength of the capacitor.

本發明提供一種記憶元件,其包括多數個杯狀電容器、底支撐層以及頂支撐層。杯狀電容器位於基底上。底支撐層配置於杯狀電容器的多數個下側壁之間的基底上。頂支撐層配置於杯狀電容器的多數個上側壁周圍。頂支撐層與底支撐層彼此之間具有空隙。頂支撐層包括周邊支撐層與核心支撐層。周邊支撐層配置在杯狀電容器外圍並與杯狀電容器連接。核心支撐層配置在周邊支撐層內。而且核心支撐層與周邊支撐層相隔一間隙,其連接任意相鄰的兩個杯狀電容器。 The present invention provides a memory element that includes a plurality of cup capacitors, a bottom support layer, and a top support layer. A cup capacitor is located on the substrate. The bottom support layer is disposed on the substrate between the plurality of lower sidewalls of the cup capacitor. The top support layer is disposed around a plurality of upper sidewalls of the cup capacitor. The top support layer and the bottom support layer have a gap between each other. The top support layer includes a perimeter support layer and a core support layer. The peripheral support layer is disposed on the periphery of the cup capacitor and connected to the cup capacitor. The core support layer is disposed within the perimeter support layer. Moreover, the core support layer is separated from the peripheral support layer by a gap connecting any adjacent two cup capacitors.

本發明提供一種記憶元件的製造方法,其步驟如下。提供基底。基底上具有多數個導體區。於基底上形成底支撐層。底支撐層裸露出導體區。於基底上形成多數個杯狀下電極。杯狀下電極與導體區電性連接。底支撐層位於杯狀電容器的多數個下側壁之間。於基底上形成頂支撐層,其配置於杯狀電容器的多數個上側壁周圍。頂支撐層與底支撐層彼此之間具有一空隙。頂支撐層包括周邊支撐層與核心支撐層。周邊支撐層位於杯狀電容器外圍並與杯狀電容器連接。核心支撐層位於周邊支撐層內,且與周邊支撐層相隔一間隙。核心支撐層連接任意相鄰的兩個杯狀電容器。 The present invention provides a method of manufacturing a memory element, the steps of which are as follows. A substrate is provided. There are a plurality of conductor regions on the substrate. A bottom support layer is formed on the substrate. The bottom support layer exposes the conductor area. A plurality of cup-shaped lower electrodes are formed on the substrate. The cup-shaped lower electrode is electrically connected to the conductor region. The bottom support layer is located between a plurality of lower sidewalls of the cup capacitor. A top support layer is formed on the substrate, which is disposed around a plurality of upper sidewalls of the cup capacitor. The top support layer and the bottom support layer have a gap between each other. The top support layer includes a perimeter support layer and a core support layer. The peripheral support layer is located on the periphery of the cup capacitor and is connected to the cup capacitor. The core support layer is located within the peripheral support layer and is separated from the peripheral support layer by a gap. The core support layer connects any two adjacent cup capacitors.

基於上述,本發明實施例利用配置在任意相鄰的兩個杯 狀電容器之間的核心支撐層,以避免鄰近的杯狀電容器在蝕刻製程時過度擴孔(Hole Expansion),而導致鄰近的杯狀電容器短路問題。此外,本發明實施例之核心支撐層可提供額外的機械強度,以避免本發明實施例之杯狀電容器變形甚至傾倒的現象。 Based on the above, the embodiment of the present invention utilizes two cups arranged in any adjacent The core support layer between the capacitors avoids the Hole Expansion of the adjacent cup capacitors during the etching process, resulting in a short circuit problem of the adjacent cup capacitors. In addition, the core support layer of the embodiment of the present invention can provide additional mechanical strength to avoid deformation or even dumping of the cup capacitor of the embodiment of the present invention.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

10、40、50‧‧‧溝渠 10, 40, 50‧‧‧ Ditch

20、60‧‧‧開口 20, 60‧‧‧ openings

30、70、80‧‧‧間隙 30, 70, 80 ‧ ‧ gap

32、72‧‧‧空隙 32, 72‧‧‧ gap

100、200‧‧‧基底 100, 200‧‧‧ base

102、126、202、226‧‧‧介電層 102, 126, 202, 226‧‧ dielectric layers

104、204‧‧‧導體區 104, 204‧‧‧ conductor area

106、110、110a、110b、111、118、118a、206、210、210a、210b、211、218、218a、218b‧‧‧支撐層 106, 110, 110a, 110b, 111, 118, 118a, 206, 210, 210a, 210b, 211, 218, 218a, 218b‧‧‧ support layer

108、108a、208、208a‧‧‧絕緣層 108, 108a, 208, 208a‧‧‧ insulation

112、120、212、220‧‧‧罩幕層 112, 120, 212, 220‧‧ ‧ cover layer

114、122、122a、214、222、222a‧‧‧光阻層 114, 122, 122a, 214, 222, 222a‧‧‧ photoresist layer

116、118、216、218‧‧‧材料層 116, 118, 216, 218‧‧‧ material layers

116a、116b、216a、216b‧‧‧間隙壁 116a, 116b, 216a, 216b‧‧ ‧ spacers

123、223‧‧‧凹槽 123, 223‧‧‧ grooves

124、128、224、228‧‧‧電極 124, 128, 224, 228‧‧ ‧ electrodes

130、230‧‧‧電容器 130, 230‧‧‧ capacitors

219‧‧‧填充層 219‧‧‧ fill layer

圖1A至圖1H為依照本發明之第一實施例所繪示的記憶元件之製造流程的上視示意圖。 1A-1H are schematic top views of a manufacturing process of a memory device according to a first embodiment of the present invention.

圖2A至圖2H分別為沿圖1A至圖1H之A-A線的剖面示意圖。 2A to 2H are schematic cross-sectional views taken along line A-A of Figs. 1A to 1H, respectively.

圖3A至圖3H分別為沿圖1A至圖1H之B-B線的剖面示意圖。 3A to 3H are schematic cross-sectional views taken along line B-B of Figs. 1A to 1H, respectively.

圖4A至圖4F為依照本發明之第二實施例所繪示的記憶元件之製造流程的上視示意圖。 4A-4F are top schematic views showing a manufacturing process of a memory element according to a second embodiment of the present invention.

圖5A至圖5F分別為沿圖4A至圖4F之A-A線的剖面示意圖。 5A to 5F are schematic cross-sectional views taken along line A-A of Figs. 4A to 4F, respectively.

圖6A至圖6F分別為沿圖4A至圖4F之B-B線的剖面示意圖。 6A to 6F are schematic cross-sectional views taken along line B-B of Figs. 4A to 4F, respectively.

圖1A至圖1H為依照本發明之第一實施例所繪示的記憶元件之製造流程的上視示意圖。圖2A至圖2H分別為沿圖1A至圖1H之A-A線的剖面示意圖。圖3A至圖3H分別為沿圖1A至圖1K之B-B線的剖面示意圖。 1A-1H are schematic top views of a manufacturing process of a memory device according to a first embodiment of the present invention. 2A to 2H are schematic cross-sectional views taken along line A-A of Figs. 1A to 1H, respectively. 3A to 3H are schematic cross-sectional views taken along line B-B of Figs. 1A to 1K, respectively.

請同時參照圖1A、圖2A以及圖3A,首先,提供基底100。基底100例如為半導體基底、半導體化合物基底或是絕緣層上有半導體基底(Semiconductor Over Insulator,SOI)。半導體例如是IVA族的原子,例如矽或鍺。半導體化合物例如是IVA族的原子所形成之半導體化合物,例如是碳化矽或是矽化鍺,或是IIIA族原子與VA族原子所形成之半導體化合物,例如是砷化鎵。 Referring to FIG. 1A, FIG. 2A, and FIG. 3A simultaneously, first, the substrate 100 is provided. The substrate 100 is, for example, a semiconductor substrate, a semiconductor compound substrate, or a semiconductor substrate (Semiconductor Over Insulator (SOI)). The semiconductor is, for example, an atom of the IVA group, such as ruthenium or osmium. The semiconductor compound is, for example, a semiconductor compound formed of atoms of Group IVA, such as tantalum carbide or germanium telluride, or a semiconductor compound formed of a group IIIA atom and a group VA atom, such as gallium arsenide.

然後,於基底100上依序形成介電層102與多數個導體區104。介電層102的材料可例如是氧化矽、氮氧化矽或低介電常數材料,其形成方法可以利用化學氣相沈積法來形成。導體區104配置於介電層102中。在一實施例中,導體區104成一陣列排列。導體區104材料可例如是摻雜多晶矽、非摻雜多晶矽或其組合,其形成方法可以利用化學氣相沈積法來形成。在一實施例中,導體區104可例如是與基底100中的埋入式字元線電性連接。 Then, a dielectric layer 102 and a plurality of conductor regions 104 are sequentially formed on the substrate 100. The material of the dielectric layer 102 may be, for example, ruthenium oxide, ruthenium oxynitride or a low dielectric constant material, and the formation method thereof may be formed by chemical vapor deposition. Conductor region 104 is disposed in dielectric layer 102. In one embodiment, the conductor regions 104 are arranged in an array. The material of the conductor region 104 may be, for example, doped polysilicon, undoped polysilicon or a combination thereof, and the formation method thereof may be formed by chemical vapor deposition. In an embodiment, the conductor region 104 can be electrically connected, for example, to a buried word line in the substrate 100.

接著,於基底100上依序形成底支撐層106、絕緣層108以及周邊支撐層110。底支撐層106與周邊支撐層110可分別例如是氮化矽(SiN)、氮氧化矽(SiON)、碳氮氧化矽(SiCON)、碳化矽(SiC)或其組合,其形成方法可以利用化學氣相沈積法。底 支撐層106的厚度例如是50埃至1500埃;周邊支撐層110的厚度例如是50埃至2500埃。 Next, a bottom support layer 106, an insulating layer 108, and a peripheral support layer 110 are sequentially formed on the substrate 100. The bottom support layer 106 and the peripheral support layer 110 may be, for example, tantalum nitride (SiN), bismuth oxynitride (SiON), lanthanum oxynitride (SiCON), tantalum carbide (SiC), or a combination thereof, and the formation method thereof may utilize chemistry. Vapor deposition method. bottom The thickness of the support layer 106 is, for example, 50 angstroms to 1500 angstroms; the thickness of the peripheral support layer 110 is, for example, 50 angstroms to 2,500 angstroms.

絕緣層108的材料可例如氧化矽或硼磷矽玻璃(BPSG),其形成方法可以利用化學氣相沈積法。絕緣層108的的厚度例如是5000埃至30000埃。 The material of the insulating layer 108 may be, for example, cerium oxide or borophosphoquinone glass (BPSG), which may be formed by chemical vapor deposition. The thickness of the insulating layer 108 is, for example, 5,000 angstroms to 30,000 angstroms.

請同時繼續參照圖1A、圖2A以及圖3A,接著,於周邊支撐層110上依序形成罩幕層112與圖案化的光阻層114。在一實施例中,罩幕層112可例如是由硬罩幕層、底抗反射層所構成的複合層,然本發明並不限於此。硬罩幕層的材料可例如是矽材料、金屬材料或碳材料等。底抗反射層的材料可例如是有機聚合物、碳或氮氧化矽等。上述硬罩幕層與底抗反射層的形成方法可以利用化學氣相沈積法來形成。圖案化的光阻層114的材料例如是碳、光阻類材料或氮氧化物等。 Referring to FIG. 1A, FIG. 2A and FIG. 3A simultaneously, the mask layer 112 and the patterned photoresist layer 114 are sequentially formed on the peripheral support layer 110. In an embodiment, the mask layer 112 may be, for example, a composite layer composed of a hard mask layer and a bottom anti-reflection layer, but the invention is not limited thereto. The material of the hard mask layer may be, for example, a tantalum material, a metal material or a carbon material. The material of the bottom anti-reflection layer may be, for example, an organic polymer, carbon or bismuth oxynitride or the like. The method of forming the hard mask layer and the bottom anti-reflection layer described above can be formed by chemical vapor deposition. The material of the patterned photoresist layer 114 is, for example, carbon, a photoresist material, or an oxynitride.

請同時參照圖1A、圖1B、圖2A、圖2B、圖3A以及圖3B,以圖案化的光阻層114為罩幕,進行蝕刻製程,以形成周邊支撐層110a。周邊支撐層110a中具有溝渠10,暴露絕緣層108的表面。溝渠10的位置與多數個導體區104的位置部分重疊。溝渠10的形狀包括方形、矩形、跑道形或星形。接著,移除周邊支撐層110a上剩餘的圖案化的光阻層114以及/或罩幕層112。 Referring to FIG. 1A, FIG. 1B, FIG. 2A, FIG. 2B, FIG. 3A and FIG. 3B, the patterned photoresist layer 114 is used as a mask to perform an etching process to form the peripheral supporting layer 110a. The peripheral support layer 110a has a trench 10 therein that exposes the surface of the insulating layer 108. The location of the trench 10 partially overlaps the location of the plurality of conductor regions 104. The shape of the trench 10 includes a square, a rectangle, a racetrack or a star. Next, the patterned photoresist layer 114 and/or the mask layer 112 remaining on the peripheral support layer 110a are removed.

請同時參照圖1B、圖2B、圖3B,於溝渠10上形成間隙壁材料層116。間隙壁材料層116覆蓋周邊支撐層110a的頂面以及溝渠10的側壁與底部上(如圖2D與圖3D所示)。在一實施例 中,間隙壁材料層116可共形地覆蓋周邊支撐層110a的頂面以及溝渠10的側壁與底部上。間隙壁材料層116的材料例如是氧化矽(SiO)、氮氧化矽(SiON)或硼磷矽玻璃(BPSG)等。其形成方法例如是化學氣相沈積法。間隙壁材料層116的材料不以上述為限,只要與周邊支撐層110a之間具有高度的蝕刻選擇比均是本發明涵蓋的範圍。 Referring to FIG. 1B, FIG. 2B, and FIG. 3B simultaneously, a spacer material layer 116 is formed on the trench 10. The spacer material layer 116 covers the top surface of the peripheral support layer 110a and the sidewalls and bottom of the trench 10 (as shown in Figures 2D and 3D). In an embodiment The spacer material layer 116 may conformally cover the top surface of the peripheral support layer 110a and the sidewalls and the bottom of the trench 10. The material of the spacer material layer 116 is, for example, cerium oxide (SiO), cerium oxynitride (SiON) or borophosphoquinone glass (BPSG). The formation method is, for example, a chemical vapor deposition method. The material of the spacer material layer 116 is not limited to the above, as long as the etching selectivity ratio with the peripheral support layer 110a is a range covered by the present invention.

接著,請同時參照圖1C、圖2C、圖3C,對間隙壁材料層116進行非等向性蝕刻製程,以於溝渠10的側壁上形成間隙壁116a。之後,間隙壁116a所圍區域內形成核心支撐層118。具體來說,在溝渠10的側壁上形成間隙壁116a之後,於周邊支撐層110a上形成支撐材料層,以覆蓋周邊支撐層110a的頂面、間隙壁116a的側壁以及溝渠10的底部上(未繪示)。接著,對支撐材料層進行回蝕刻製程,移除部分支撐材料層,暴露周邊支撐層110a的頂面,以於溝渠10中形成核心支撐層118(如圖2F與圖3F所示)。在一實施例中,核心支撐層118可例如是塊狀。核心支撐層118的形狀包括方形、矩形、跑道形或星形。核心支撐層118可例如是氮化矽(SiN)、氮氧化矽(SiON)、碳氮氧化矽(SiCON)、碳化矽(SiC)或其組合,其形成方法可以利用化學氣相沈積法來形成。在一實施例中,回蝕刻製程可例如是乾式蝕刻製程或濕式蝕刻製程。 Next, referring to FIG. 1C , FIG. 2C , and FIG. 3C , the spacer material layer 116 is anisotropically etched to form the spacers 116 a on the sidewalls of the trenches 10 . Thereafter, a core support layer 118 is formed in the area surrounded by the spacers 116a. Specifically, after the spacers 116a are formed on the sidewalls of the trenches 10, a support material layer is formed on the peripheral support layer 110a to cover the top surface of the peripheral support layer 110a, the sidewalls of the spacers 116a, and the bottom of the trenches 10 (not Painted). Next, an etch back process is performed on the support material layer, a portion of the support material layer is removed, and the top surface of the peripheral support layer 110a is exposed to form a core support layer 118 in the trench 10 (as shown in FIGS. 2F and 3F). In an embodiment, the core support layer 118 can be, for example, in the form of a block. The shape of the core support layer 118 includes a square, a rectangle, a racetrack shape, or a star shape. The core support layer 118 may be, for example, tantalum nitride (SiN), lanthanum oxynitride (SiON), lanthanum oxynitride (SiCON), tantalum carbide (SiC), or a combination thereof, and the formation method thereof may be formed by chemical vapor deposition. . In an embodiment, the etch back process can be, for example, a dry etch process or a wet etch process.

請同時參照圖1D、圖2D以及圖3D,於基底100上依序形成罩幕層120與圖案化的光阻層122。在一實施例中,罩幕層 120可例如是由硬罩幕層、底抗反射層所構成的複合層,本發明並不限於此。硬罩幕層的材料可例如是矽材料、金屬材料或碳材料等。矽材料可例如是未摻雜多晶矽或氮氧化矽(SiON)等。底抗反射層的材料可例如是有機聚合物、碳或氮氧化矽等。上述硬罩幕層與底抗反射層的形成方法可以利用化學氣相沈積法來形成。圖案化的光阻層122的材料可例如是碳、光阻類材料或氮氧化物等。圖案化的光阻層122具有多數個凹槽123。凹槽123的位置與下方的導體區104的位置相對應。 Referring to FIG. 1D, FIG. 2D and FIG. 3D simultaneously, the mask layer 120 and the patterned photoresist layer 122 are sequentially formed on the substrate 100. In an embodiment, the mask layer 120 may be, for example, a composite layer composed of a hard mask layer and a bottom anti-reflection layer, and the present invention is not limited thereto. The material of the hard mask layer may be, for example, a tantalum material, a metal material or a carbon material. The germanium material may be, for example, undoped polycrystalline germanium or cerium oxynitride (SiON) or the like. The material of the bottom anti-reflection layer may be, for example, an organic polymer, carbon or bismuth oxynitride or the like. The method of forming the hard mask layer and the bottom anti-reflection layer described above can be formed by chemical vapor deposition. The material of the patterned photoresist layer 122 may be, for example, carbon, a photoresist type material, or an oxynitride or the like. The patterned photoresist layer 122 has a plurality of recesses 123. The position of the groove 123 corresponds to the position of the conductor region 104 below.

請同時參照圖1E、圖1F、圖2E、圖2F、圖3E以及圖3F,以圖案化的光阻層122為罩幕,進行蝕刻製程,移除部分罩幕層120,以形成圖案化的罩幕層120a。然後,以圖案化的罩幕層120a為罩幕,進行蝕刻製程,移除部分周邊支撐層110a、核心支撐層118、絕緣層108以及底支撐層106,以形成周邊支撐層110b、核心支撐層118a、絕緣層108a以及底支撐層106a,並形成多數個開口20,暴露多數個導體區104。在進行蝕刻製程時,圖案化的光阻層122亦同時被移除。此外,由於每一開口20周圍的材料大致相同(大部分為周邊支撐層110b),因此,在進行蝕刻製程時,其可降低因為蝕刻材料的不同造成蝕刻速率的差異,而導致鄰近開口20連通的情況。如此一來,便可避免由於鄰近開口20的連通所導致後續的電容短路問題。 Referring to FIG. 1E, FIG. 1F, FIG. 2E, FIG. 2F, FIG. 3E and FIG. 3F, the patterned photoresist layer 122 is used as a mask to perform an etching process to remove a portion of the mask layer 120 to form a patterned layer. Mask layer 120a. Then, using the patterned mask layer 120a as a mask, an etching process is performed to remove a portion of the peripheral support layer 110a, the core support layer 118, the insulating layer 108, and the bottom support layer 106 to form a peripheral support layer 110b and a core support layer. 118a, insulating layer 108a and bottom support layer 106a, and forming a plurality of openings 20 exposing a plurality of conductor regions 104. The patterned photoresist layer 122 is also removed simultaneously during the etching process. In addition, since the material around each opening 20 is substantially the same (mostly the peripheral supporting layer 110b), it can reduce the difference in etching rate due to the difference in etching materials when the etching process is performed, thereby causing the adjacent opening 20 to communicate. Case. In this way, the subsequent capacitor short circuit problem due to the communication of the adjacent opening 20 can be avoided.

請同時參照圖1F、圖2F以及圖3F,於每一開口20的內側與底部上形成下電極124。具體來說,先在基底100上共形地形 成下電極材料層(未繪示)。下電極材料層覆蓋每一開口20的內側與底部以及罩幕層120a的頂面。接著,進行非等向性蝕刻製程,移除部分下電極材料層,暴露出罩幕層120a的頂面,以於每一開口20的內側與底部上形成下電極124。每一開口20中的下電極124與所對應的導體區104電性連接。下電極124的材料可例如是氮化鈦(TiN)、氮化鉭(TaN)、鎢(W)、鈦鎢(TiW)、鋁(Al)、銅(Cu)或金屬矽化物,其可利用化學氣相沈積法來形成。 Referring to FIG. 1F, FIG. 2F and FIG. 3F simultaneously, a lower electrode 124 is formed on the inner side and the bottom of each opening 20. Specifically, the conformal terrain is first formed on the substrate 100. A layer of electrode material is formed (not shown). A layer of lower electrode material covers the inside and the bottom of each opening 20 and the top surface of the mask layer 120a. Next, an anisotropic etching process is performed to remove a portion of the lower electrode material layer to expose the top surface of the mask layer 120a to form a lower electrode 124 on the inner side and the bottom of each opening 20. The lower electrode 124 in each opening 20 is electrically connected to the corresponding conductor region 104. The material of the lower electrode 124 may be, for example, titanium nitride (TiN), tantalum nitride (TaN), tungsten (W), titanium tungsten (TiW), aluminum (Al), copper (Cu) or metal telluride, which can be utilized. Formed by chemical vapor deposition.

請同時參照圖1F、圖1G、圖2F、圖2G、圖3F以及圖3G,進行等向性蝕刻製程,移除圖案化的罩幕層120a、間隙壁116b與絕緣層108a,在核心支撐層118a與周邊支撐層110b之間形成間隙30。由於周邊支撐層110b、核心支撐層118a與間隙壁116b、絕緣層108a的材料不同,且等向性蝕刻製程對周邊支撐層110b、核心支撐層118a與間隙壁116b、絕緣層108a具有高蝕刻選擇比,因此,周邊支撐層110b與核心支撐層118a的蝕刻速率較慢。於是,蝕刻液從間隙30中流入,移除絕緣層108a,以於底支撐層106a與周邊支撐層110b以及核心支撐層118a之間形成空隙(Gap)32,暴露出部分下電極124的外側。亦即暴露出開口20中之下電極124的外側。此時,在完全移除絕緣層108a之後,形成一個中間鏤空的結構。底支撐層106a、周邊支撐層110b、核心支撐層118a以及下電極124支托本發明第一實施例之記憶元件的架構。由於周邊支撐層110b上的圖案化的罩幕層120a亦被移除,因此,下電極124的頂面高於周邊支撐層110b與核心支撐層118a的頂面, 藉此以增加後續製程中所形成的杯狀電容器130的電荷儲存能力(如下圖2H與圖3H所示)。在一實施例中,上述等向性蝕刻製程包括濕式蝕刻製程,其可例如是使用蝕刻緩衝液(Buffer Oxide Etchant,BOE)、氫氟酸(HF)、稀釋的氫氟酸(Diluted Hydrogen Fluoride,DHF)或緩衝氫氟酸(BHF)等。 Referring to FIG. 1F, FIG. 1G, FIG. 2F, FIG. 2G, FIG. 3F and FIG. 3G, an isotropic etching process is performed to remove the patterned mask layer 120a, the spacers 116b and the insulating layer 108a in the core supporting layer. A gap 30 is formed between the 118a and the peripheral support layer 110b. Since the materials of the peripheral support layer 110b, the core support layer 118a and the spacers 116b and the insulating layer 108a are different, and the isotropic etching process has high etching options for the peripheral support layer 110b, the core support layer 118a and the spacers 116b, and the insulating layer 108a. Therefore, the etching rate of the peripheral support layer 110b and the core support layer 118a is slower. Then, the etching liquid flows in from the gap 30, and the insulating layer 108a is removed to form a gap (Gap) 32 between the bottom supporting layer 106a and the peripheral supporting layer 110b and the core supporting layer 118a, exposing the outer side of the portion of the lower electrode 124. That is, the outer side of the lower electrode 124 in the opening 20 is exposed. At this time, after the insulating layer 108a is completely removed, an intermediate hollow structure is formed. The bottom support layer 106a, the peripheral support layer 110b, the core support layer 118a, and the lower electrode 124 support the architecture of the memory element of the first embodiment of the present invention. Since the patterned mask layer 120a on the peripheral support layer 110b is also removed, the top surface of the lower electrode 124 is higher than the top surfaces of the peripheral support layer 110b and the core support layer 118a. Thereby, the charge storage capacity of the cup capacitor 130 formed in the subsequent process is increased (as shown in FIG. 2H and FIG. 3H below). In one embodiment, the isotropic etching process includes a wet etching process, which may be, for example, using an etch buffer (Buffer Oxide Etchant, BOE), hydrofluoric acid (HF), diluted hydrofluoric acid (Diluted Hydrogen Fluoride). , DHF) or buffered hydrofluoric acid (BHF), etc.

如圖1G所示,周邊支撐層110b包圍在核心支撐層118a周圍,且周邊支撐層110b與核心支撐層118a之間具有間隙30。周邊支撐層110b與核心支撐層118a構成頂支撐層111,頂支撐層111配置在下電極124的多數個上側壁周圍。由於任意相鄰兩個開口20之間具有核心支撐層118a,且核心支撐層118a與間隙壁116b的材料具有高蝕刻選擇比,因此,其可避免在上述等向性蝕刻製程中開口20產生過度擴孔的情況。此外,核心支撐層118a更提供額外的機械強度,以支托本發明第一實施例之記憶元件的架構。 As shown in FIG. 1G, the peripheral support layer 110b is surrounded by the core support layer 118a, and has a gap 30 between the peripheral support layer 110b and the core support layer 118a. The peripheral support layer 110b and the core support layer 118a constitute a top support layer 111, and the top support layer 111 is disposed around a plurality of upper sidewalls of the lower electrode 124. Since there is a core support layer 118a between any two adjacent openings 20, and the material of the core support layer 118a and the spacers 116b have a high etching selectivity ratio, it can avoid excessive opening 20 in the above isotropic etching process. The case of reaming. In addition, the core support layer 118a provides additional mechanical strength to support the architecture of the memory element of the first embodiment of the present invention.

請同時參照圖1H、圖2H以及圖3H,於下電極124上共形地形成介電層126與上電極128,以形成多數個杯狀電容器130。上電極128還覆蓋底支撐層106a、周邊支撐層110b以及核心支撐層118a。介電層126介於上電極128與下電極124之間,且介於上電極128與底支撐層106a之間、上電極128與周邊支撐層110b之間、以及上電極128與核心支撐層118a之間。在一實施例中,介電層126包括高介電常數材料層,其材料可例如是氧化鉿(HfO)、氧化鋯(ZrO)、氧化鋁(AlO)、氮化鋁(AlN)、氧化鈦(TiO)、氧化鑭(LaO)、氧化釔(YO)、氧化釓(GdO)、氧 化鉭(TaO)或其組合。上電極126的材料可例如是氮化鈦(TiN)、氮化鉭(TaN)、鎢(W)、鈦鎢(TiW)、鋁(Al)、銅(Cu)或金屬矽化物。介電層124及上電極126的形成方法可利用化學氣相沈積法或原子層沈積(ALD)製程來形成。 Referring to FIG. 1H, FIG. 2H and FIG. 3H simultaneously, a dielectric layer 126 and an upper electrode 128 are conformally formed on the lower electrode 124 to form a plurality of cup capacitors 130. The upper electrode 128 also covers the bottom support layer 106a, the peripheral support layer 110b, and the core support layer 118a. The dielectric layer 126 is interposed between the upper electrode 128 and the lower electrode 124, and between the upper electrode 128 and the bottom support layer 106a, between the upper electrode 128 and the peripheral support layer 110b, and the upper electrode 128 and the core support layer 118a. between. In one embodiment, the dielectric layer 126 comprises a high dielectric constant material layer, the material of which may be, for example, hafnium oxide (HfO), zirconium oxide (ZrO), aluminum oxide (AlO), aluminum nitride (AlN), titanium oxide. (TiO), lanthanum oxide (LaO), yttrium oxide (YO), yttrium oxide (GdO), oxygen Tamarind (TaO) or a combination thereof. The material of the upper electrode 126 may be, for example, titanium nitride (TiN), tantalum nitride (TaN), tungsten (W), titanium tungsten (TiW), aluminum (Al), copper (Cu), or metal telluride. The method of forming the dielectric layer 124 and the upper electrode 126 can be formed by a chemical vapor deposition method or an atomic layer deposition (ALD) process.

請同時參照圖1H以及3H,本發明第一實施例之記憶元件包括多數個杯狀電容器130、底支撐層106a以及頂支撐層111。杯狀電容器130位於基底100上。底支撐層106a配置於杯狀電容器130的多數個下側壁之間的基底100上。頂支撐層111配置於杯狀電容器130的多數個上側壁周圍。更具體地說,頂支撐層111包括周邊支撐層110b與核心支撐層118a。周邊支撐層110b配置在杯狀電容器130外圍並與杯狀電容器130連接。核心支撐層118a配置在周邊支撐層110b之內。周邊支撐層110b、核心支撐層118a與底支撐層106a彼此之間具有空隙32。核心支撐層118a與周邊支撐層110b之間具有間隙30,其連接任意相鄰的兩個杯狀電容器130。在一實施例中,周邊支撐層110b、核心支撐層118a與底支撐層106a之間的空隙32為充填空氣。由於充填空氣的介電係數趨近於1,因此,較不容易在相鄰的杯狀電容器130之間產生寄生電容(Parasitic Capacitor)。 Referring to FIGS. 1H and 3H simultaneously, the memory element of the first embodiment of the present invention includes a plurality of cup capacitors 130, a bottom support layer 106a, and a top support layer 111. A cup capacitor 130 is located on the substrate 100. The bottom support layer 106a is disposed on the substrate 100 between the plurality of lower sidewalls of the cup capacitor 130. The top support layer 111 is disposed around a plurality of upper sidewalls of the cup capacitor 130. More specifically, the top support layer 111 includes a peripheral support layer 110b and a core support layer 118a. The peripheral support layer 110b is disposed on the periphery of the cup capacitor 130 and connected to the cup capacitor 130. The core support layer 118a is disposed within the peripheral support layer 110b. The peripheral support layer 110b, the core support layer 118a and the bottom support layer 106a have a gap 32 therebetween. There is a gap 30 between the core support layer 118a and the peripheral support layer 110b, which connects any two adjacent cup capacitors 130. In an embodiment, the gap 32 between the peripheral support layer 110b, the core support layer 118a and the bottom support layer 106a is filled with air. Since the dielectric constant of the filling air approaches 1, it is less likely to generate parasitic capacitance between adjacent cup capacitors 130.

杯狀電容器130包括多數個下電極124、上電極128以及介電層126。下電極124位於基底100上,其中下電極124可例如是杯狀下電極。下電極124的多數個下側壁與底支撐層106a連接。下電極124的多數個上側壁與頂支撐層111連接。上電極128 覆蓋下電極126的表面,亦即覆蓋下電極126的內側、底部及外側。介電層126至少配置在上電極128與下電極124之間。此外,上電極128更覆蓋底支撐層106a與頂支撐層111。介電層126更介於上電極128與底支撐層106a之間以及上電極128與頂支撐層111之間。在一實施例中,杯狀電容器130的頂面高於周邊支撐層110b與核心支撐層118a的頂面,其可增加杯狀電容器130的電荷儲存能力。在一實施例中,本發明第一實施例之記憶元件更包括多數個導體區104配置在基底100上。每一導體區104與所對應的杯狀電容器130的底部電性連接。 The cup capacitor 130 includes a plurality of lower electrodes 124, an upper electrode 128, and a dielectric layer 126. The lower electrode 124 is located on the substrate 100, wherein the lower electrode 124 can be, for example, a cup-shaped lower electrode. A plurality of lower sidewalls of the lower electrode 124 are connected to the bottom support layer 106a. A plurality of upper side walls of the lower electrode 124 are connected to the top support layer 111. Upper electrode 128 The surface of the lower electrode 126 is covered, that is, covers the inner side, the bottom side, and the outer side of the lower electrode 126. The dielectric layer 126 is disposed at least between the upper electrode 128 and the lower electrode 124. In addition, the upper electrode 128 further covers the bottom support layer 106a and the top support layer 111. The dielectric layer 126 is further interposed between the upper electrode 128 and the bottom support layer 106a and between the upper electrode 128 and the top support layer 111. In one embodiment, the top surface of the cup capacitor 130 is higher than the top surface of the peripheral support layer 110b and the core support layer 118a, which may increase the charge storage capability of the cup capacitor 130. In one embodiment, the memory element of the first embodiment of the present invention further includes a plurality of conductor regions 104 disposed on the substrate 100. Each conductor region 104 is electrically connected to the bottom of the corresponding cup capacitor 130.

圖4A至圖4F為依照本發明之第二實施例所繪示的記憶元件之製造流程的上視示意圖。圖5A至圖5F分別為沿圖4A至圖4F之A-A線的剖面示意圖。圖6A至圖6F分別為沿圖4A至圖4F之B-B線的剖面示意圖。 4A-4F are top schematic views showing a manufacturing process of a memory element according to a second embodiment of the present invention. 5A to 5F are schematic cross-sectional views taken along line A-A of Figs. 4A to 4F, respectively. 6A to 6F are schematic cross-sectional views taken along line B-B of Figs. 4A to 4F, respectively.

請同時參照圖4A、圖5A以及圖6A,依照第一實施例的方法在基底200上依序形成介電層202、多數個導體區204。底支撐層206、絕緣層208以及具有溝渠40的周邊支撐層210。並於溝渠40的側壁上形成間隙壁216a。介電層202、多數個導體區204、底支撐層206、絕緣層208以及具有溝渠40的周邊支撐層210以及間隙壁216a的材料與形成方法如上述第一實施例之介電層102、多數個導體區104、底支撐層106、絕緣層108、周邊支撐層210以及間隙壁116a所述,於此不再贅述。 Referring to FIG. 4A, FIG. 5A and FIG. 6A simultaneously, the dielectric layer 202 and the plurality of conductor regions 204 are sequentially formed on the substrate 200 according to the method of the first embodiment. A bottom support layer 206, an insulating layer 208, and a peripheral support layer 210 having a trench 40. A spacer 216a is formed on the sidewall of the trench 40. The dielectric layer 202, the plurality of conductor regions 204, the bottom support layer 206, the insulating layer 208, and the peripheral support layer 210 having the trench 40 and the spacer 216a are formed and formed by the dielectric layer 102, the majority of the first embodiment. The conductor region 104, the bottom support layer 106, the insulating layer 108, the peripheral support layer 210, and the spacers 116a are not described herein.

接著,於周邊支撐層210a上共形地形成支撐材料層218, 以覆蓋周邊支撐層210a的頂面、間隙壁216a的側壁以及溝渠40的底部上。支撐材料層218可例如是氮化矽(SiN)、氮氧化矽(SiON)、碳氮氧化矽(SiCON)、碳化矽(SiC)或其組合,其形成方法可以利用化學氣相沈積法來形成。 Next, a support material layer 218 is conformally formed on the peripheral support layer 210a. To cover the top surface of the peripheral support layer 210a, the sidewalls of the spacer 216a, and the bottom of the trench 40. The support material layer 218 may be, for example, tantalum nitride (SiN), lanthanum oxynitride (SiON), lanthanum oxynitride (SiCON), tantalum carbide (SiC), or a combination thereof, and the formation method thereof may be formed by chemical vapor deposition. .

之後,請參照圖4B、圖5B以及圖6B,對支撐材料層218進行非等向性蝕刻製程,移除部分支撐材料層218,以於間隙壁216a的側壁上形成核心支撐層218a。核心支撐層218a圍出溝渠50。在一實施例中,非等向性蝕刻製程可例如是乾式蝕刻製程。乾式蝕刻製程可例如是反應性離子蝕刻製程(RIE)。核心支撐層218a位於周邊支撐層210a內。間隙壁216a配置在周邊支撐層210a與核心支撐層218a之間。在一實施例中,核心支撐層218a可例如是環狀。核心支撐層218a的形狀包括方形、矩形、跑道形或星形。 Thereafter, referring to FIG. 4B, FIG. 5B and FIG. 6B, the support material layer 218 is subjected to an anisotropic etching process, and a portion of the support material layer 218 is removed to form a core support layer 218a on the sidewall of the spacer 216a. The core support layer 218a encloses the trench 50. In an embodiment, the anisotropic etch process can be, for example, a dry etch process. The dry etching process can be, for example, a reactive ion etching process (RIE). The core support layer 218a is located within the perimeter support layer 210a. The spacer 216a is disposed between the peripheral support layer 210a and the core support layer 218a. In an embodiment, the core support layer 218a can be, for example, annular. The shape of the core support layer 218a includes a square, a rectangle, a racetrack shape, or a star shape.

請同時參照圖4B、圖5B以及圖6B,於核心支撐層218a中形成填充層219。具體來說,先於核心支撐層218a上形成填充材料層,其覆蓋周邊支撐層210a、間隙壁216a以及核心支撐層218a的頂面且填入溝渠50中(未繪示)。然後,利用平坦化製程,移除部分填充材料層,暴露周邊支撐層210a、間隙壁216a以及核心支撐層218a的頂面,以於溝渠50中形成填充層219。在一實施例中,平坦化製程可例如是化學機械研磨製程(CMP)或回蝕刻製程。填充材料層的材料可例如包括氧化矽,其形成方法可以利用化學氣相沈積法來形成。 Referring to FIG. 4B, FIG. 5B, and FIG. 6B simultaneously, a filling layer 219 is formed in the core support layer 218a. Specifically, a filler material layer is formed on the core support layer 218a, which covers the top surface of the peripheral support layer 210a, the spacer 216a, and the core support layer 218a and is filled in the trench 50 (not shown). Then, using a planarization process, a portion of the fill material layer is removed, and the peripheral support layer 210a, the spacers 216a, and the top surface of the core support layer 218a are exposed to form a fill layer 219 in the trench 50. In an embodiment, the planarization process can be, for example, a chemical mechanical polishing process (CMP) or an etch back process. The material of the filling material layer may, for example, include cerium oxide, and the forming method thereof may be formed by chemical vapor deposition.

請同時參照圖4C、圖5C以及圖6C,其步驟如同圖1D、圖2D以及圖3D所述,於周邊支撐層210a上依序形成罩幕層220與圖案化的光阻層222。罩幕層220覆蓋周邊支撐層210a、間隙壁216a以及核心支撐層218a的頂面。圖案化的光阻層222具有多數個凹槽223。凹槽223的位置與下方的導體區204的位置相對應。罩幕層220與圖案化的光阻層222的材料與形成方法如上述第一實施例之罩幕層120與圖案化的光阻層122,於此不再贅述。 Referring to FIG. 4C, FIG. 5C and FIG. 6C simultaneously, the steps are as follows, as shown in FIG. 1D, FIG. 2D and FIG. 3D, the mask layer 220 and the patterned photoresist layer 222 are sequentially formed on the peripheral support layer 210a. The mask layer 220 covers the peripheral support layer 210a, the spacers 216a, and the top surface of the core support layer 218a. The patterned photoresist layer 222 has a plurality of recesses 223. The position of the groove 223 corresponds to the position of the conductor region 204 below. The material and formation method of the mask layer 220 and the patterned photoresist layer 222, such as the mask layer 120 and the patterned photoresist layer 122 of the first embodiment described above, are not described herein again.

請同時參照圖4D、圖5D以及圖6D,其步驟如同圖1F、圖2F以及圖3F所述,以圖案化的光阻層222為罩幕,進行蝕刻製程,移除部分罩幕層220,以形成圖案化的罩幕層220a。然後,以圖案化的罩幕層220a為罩幕,進行蝕刻製程,移除部分周邊支撐層210a、核心支撐層218a、絕緣層208以及底支撐層206,以形成周邊支撐層210b、核心支撐層218b、絕緣層208a以及底支撐層206a,並形成多數個開口60,暴露多數個導體區204。在進行蝕刻製程時,圖案化的光阻層222亦同時被移除。開口60的形成方法如上述第一實施例之開口20,於此不再贅述。 Referring to FIG. 4D, FIG. 5D and FIG. 6D, the steps are as shown in FIG. 1F, FIG. 2F and FIG. 3F. The patterned photoresist layer 222 is used as a mask to perform an etching process to remove a portion of the mask layer 220. To form a patterned mask layer 220a. Then, using the patterned mask layer 220a as a mask, an etching process is performed to remove a portion of the peripheral support layer 210a, the core support layer 218a, the insulating layer 208, and the bottom support layer 206 to form a peripheral support layer 210b and a core support layer. 218b, insulating layer 208a and bottom support layer 206a, and forming a plurality of openings 60, exposing a plurality of conductor regions 204. The patterned photoresist layer 222 is also removed simultaneously during the etching process. The opening 60 is formed by the opening 20 of the first embodiment described above, and details are not described herein again.

之後,於每一開口60的內側與底部上形成下電極224。下電極224的材料與形成方法如上述第一實施例之下電極124所述,於此不再贅述。 Thereafter, a lower electrode 224 is formed on the inner side and the bottom of each opening 60. The material and formation method of the lower electrode 224 are as described in the lower electrode 124 of the first embodiment described above, and will not be described herein.

請同時參照圖4E、圖5E以及圖6E,進行等向性蝕刻製程,移除圖案化的罩幕層220a、間隙壁216b、絕緣層208a,以暴露部分下電極224的外側。在移除絕緣層208a與間隙壁216b的 時候,亦移除填充層219及其下方的絕緣層208a,以於核心支撐層218b中形成間隙70。具體來說,進行等向性蝕刻製程,移除間隙壁216b與填充層219之後,在核心支撐層218b與周邊支撐層210b之間形成間隙80,且在核心支撐層218b中形成間隙70。由於周邊支撐層210b、核心支撐層218b與間隙壁216b、絕緣層208a、填充層219的材料不同,且等向性蝕刻製程對周邊支撐層210b、核心支撐層218b與間隙壁216b、絕緣層208a、填充層219具有高蝕刻選擇比,因此,周邊支撐層110b與核心支撐層118b的蝕刻速率較慢。然後,蝕刻液從間隙70與間隙80中流入,移除絕緣層208a,以於底支撐層206a與周邊支撐層210b以及核心支撐層218b之間形成空隙72,亦即暴露出開口60中之下電極224的外側。此時,在完全移除絕緣層208a之後,形成一個中間鏤空的結構。其以底支撐層206a、周邊支撐層210b、核心支撐層218b以及下電極224支托本發明第二實施例之記憶元件的架構。在一實施例中,上述等向性蝕刻製程包括濕式蝕刻製程,其可例如是使用蝕刻緩衝液(Buffer Oxide Etchant,BOE)、氫氟酸(HF)、稀釋的氫氟酸(Diluted Hydrogen Fluoride,DHF)或緩衝氫氟酸(BHF)等。 Referring to FIG. 4E, FIG. 5E and FIG. 6E simultaneously, an isotropic etching process is performed to remove the patterned mask layer 220a, the spacers 216b, and the insulating layer 208a to expose a portion of the outer side of the lower electrode 224. Removing the insulating layer 208a and the spacer 216b At the same time, the filling layer 219 and the insulating layer 208a under it are also removed to form a gap 70 in the core supporting layer 218b. Specifically, after the isotropic etching process is performed, after the spacers 216b and the filling layer 219 are removed, a gap 80 is formed between the core supporting layer 218b and the peripheral supporting layer 210b, and a gap 70 is formed in the core supporting layer 218b. The material of the peripheral support layer 210b, the core support layer 218b and the spacer 216b, the insulating layer 208a, and the filling layer 219 are different, and the isotropic etching process is performed on the peripheral support layer 210b, the core support layer 218b and the spacer 216b, and the insulating layer 208a. The filling layer 219 has a high etching selectivity ratio, and therefore, the etching rate of the peripheral supporting layer 110b and the core supporting layer 118b is slow. Then, the etchant flows in from the gap 70 and the gap 80, and the insulating layer 208a is removed to form a gap 72 between the bottom support layer 206a and the peripheral support layer 210b and the core support layer 218b, that is, to expose the opening 60. The outer side of the electrode 224. At this time, after the insulating layer 208a is completely removed, an intermediate hollow structure is formed. The support structure of the memory element of the second embodiment of the present invention is supported by the bottom support layer 206a, the peripheral support layer 210b, the core support layer 218b, and the lower electrode 224. In one embodiment, the isotropic etching process includes a wet etching process, which may be, for example, using an etch buffer (Buffer Oxide Etchant, BOE), hydrofluoric acid (HF), diluted hydrofluoric acid (Diluted Hydrogen Fluoride). , DHF) or buffered hydrofluoric acid (BHF), etc.

如圖4E所示,周邊支撐層210b包圍核心支撐層218b,且周邊支撐層210b與核心支撐層218b之間具有間隙80。核心支撐層218b可例如是環狀,其中具有間隙70。由於任意相鄰兩個開口60之間具有核心支撐層218b,且核心支撐層218b與間隙壁216b 的材料具有高蝕刻選擇比,因此,其可避免在上述等向性蝕刻製程中開口60產生過度擴孔的情況。而且核心支撐層218b更提供額外的機械強度,以支托本發明第二實施例之記憶元件的架構。此外,核心支撐層218b中具有間隙70。在進行上述等向性蝕刻製程時,蝕刻液除了從間隙80流入之外,其亦可從間隙70流入,以加速絕緣層208a的移除,進而達到節省製程時間的功效。 As shown in FIG. 4E, the peripheral support layer 210b surrounds the core support layer 218b, and there is a gap 80 between the peripheral support layer 210b and the core support layer 218b. The core support layer 218b can be, for example, annular with a gap 70 therein. Since there is a core support layer 218b between any two adjacent openings 60, and the core support layer 218b and the spacer 216b The material has a high etch selectivity ratio and, therefore, avoids the case where the opening 60 is excessively reamed in the above isotropic etching process. Moreover, the core support layer 218b provides additional mechanical strength to support the architecture of the memory element of the second embodiment of the present invention. In addition, there is a gap 70 in the core support layer 218b. In the above-described isotropic etching process, in addition to flowing in from the gap 80, the etching liquid can also flow in from the gap 70 to accelerate the removal of the insulating layer 208a, thereby achieving the effect of saving process time.

請同時參照圖4F、圖5F以及圖6F,其步驟如同圖1H、圖2H以及圖3H所述,於下電極224上共形地形成介電層226與上電極228,以形成多數個杯狀電容器230。上電極228更覆蓋底支撐層206a、周邊支撐層210b以及核心支撐層218b。介電層226更介於上電極228與底支撐層206a之間以及上電極228與周邊支撐層210b以及核心支撐層218b之間。介電層226與上電極228的材料與形成方法如上述第一實施例之介電層126與上電極128,於此不再贅述。 Referring to FIG. 4F, FIG. 5F and FIG. 6F simultaneously, the steps are as shown in FIG. 1H, FIG. 2H and FIG. 3H, and the dielectric layer 226 and the upper electrode 228 are conformally formed on the lower electrode 224 to form a plurality of cups. Capacitor 230. The upper electrode 228 further covers the bottom support layer 206a, the peripheral support layer 210b, and the core support layer 218b. The dielectric layer 226 is further interposed between the upper electrode 228 and the bottom support layer 206a and between the upper electrode 228 and the peripheral support layer 210b and the core support layer 218b. The material and formation method of the dielectric layer 226 and the upper electrode 228 are as described above for the dielectric layer 126 and the upper electrode 128 of the first embodiment, and details are not described herein again.

綜上所述,本發明實施例利用配置在任意相鄰的兩個杯狀電容器之間的核心支撐層,以避免鄰近的杯狀電容器在進行等向性蝕刻製程的過程中過度擴孔,而導致兩個相鄰的杯狀電容器短路問題。而且,本發明實施例之周邊支撐層與核心支撐層可提供額外的機械強度,以避免本發明實施例之杯狀電容器變形甚至傾倒的現象,進而提升產品的可靠度。由於本發明實施例之周邊支撐層、核心支撐層與底支撐層之間的空隙為充填空氣(其介電係數趨近於1),因此,較不容易在相鄰的杯狀電容器之間產生寄 生電容。此外,本發明另一實施例之核心支撐層中具有間隙,其可加速絕緣層的移除,以達到節省製程時間的功效。 In summary, the embodiment of the present invention utilizes a core support layer disposed between any adjacent two cup capacitors to prevent excessive reaming of adjacent cup capacitors during an isotropic etching process. This causes a short circuit problem between two adjacent cup capacitors. Moreover, the peripheral support layer and the core support layer of the embodiment of the present invention can provide additional mechanical strength to avoid deformation or even dumping of the cup capacitor of the embodiment of the present invention, thereby improving the reliability of the product. Since the gap between the peripheral supporting layer, the core supporting layer and the bottom supporting layer in the embodiment of the present invention is filled with air (the dielectric coefficient thereof is close to 1), it is less likely to be generated between adjacent cup capacitors. send Raw capacitor. In addition, another embodiment of the present invention has a gap in the core supporting layer, which can accelerate the removal of the insulating layer to save the process time.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

30‧‧‧間隙 30‧‧‧ gap

110b、118a、111‧‧‧支撐層 110b, 118a, 111‧‧‧ support layer

128‧‧‧電極 128‧‧‧ electrodes

130‧‧‧電容器 130‧‧‧ capacitor

Claims (10)

一種記憶元件,包括:多數個杯狀電容器,位於一基底上;一底支撐層,配置於該些杯狀電容器的多數個下側壁之間的該基底上;以及一頂支撐層,配置於該些杯狀電容器的多數個上側壁周圍,與該底支撐層彼此之間具有一空隙,該頂支撐層包括:一周邊支撐層,在該些杯狀電容器外圍並與該些杯狀電容器連接;以及一核心支撐層,在該周邊支撐層內,且與該周邊支撐層相隔一間隙,連接任意相鄰的兩個杯狀電容器。 A memory element comprising: a plurality of cup capacitors on a substrate; a bottom support layer disposed on the substrate between the plurality of lower sidewalls of the cup capacitors; and a top support layer disposed thereon a plurality of gaps between the upper sidewalls of the cup-shaped capacitors and the bottom support layer, the top support layer comprising: a peripheral support layer on the periphery of the cup capacitors and connected to the cup capacitors; And a core support layer in the peripheral support layer and separated from the peripheral support layer by a gap to connect any two adjacent cup capacitors. 如申請專利範圍第1項所述的記憶元件,其中該些杯狀電容器包括:多數個杯狀下電極,位於該基底上,該些杯狀下電極的多數個下側壁與該底支撐層連接,該些杯狀下電極的多數個上側壁與該頂支撐層連接;一上電極,覆蓋該些杯狀下電極的表面;以及一介電層,至少配置在該上電極與該些杯狀下電極之間。 The memory device of claim 1, wherein the cup capacitors comprise: a plurality of cup-shaped lower electrodes on the substrate, and a plurality of lower sidewalls of the cup-shaped lower electrodes are connected to the bottom support layer a plurality of upper sidewalls of the cup-shaped lower electrodes are connected to the top support layer; an upper electrode covering the surfaces of the cup-shaped lower electrodes; and a dielectric layer disposed at least on the upper electrodes and the cups Between the lower electrodes. 如申請專利範圍第1項所述的記憶元件,其中該上電極更覆蓋該底支撐層以及該頂支撐層,且該介電層更介於該上電極與該底支撐層之間以及該上電極與該頂支撐層之間。 The memory device of claim 1, wherein the upper electrode further covers the bottom support layer and the top support layer, and the dielectric layer is further between the upper electrode and the bottom support layer and thereon Between the electrode and the top support layer. 如申請專利範圍第1項所述的記憶元件,其中該核心支撐 層為塊狀或環狀。 The memory element according to claim 1, wherein the core support The layer is blocky or ring shaped. 如申請專利範圍第1項所述的記憶元件,其中該核心支撐層的形狀包括方形、矩形、跑道形或星形。 The memory element of claim 1, wherein the shape of the core support layer comprises a square, a rectangle, a racetrack or a star. 如申請專利範圍第1項所述的記憶元件,其中該底支撐層、該頂支撐層的材料各自包括氮化矽(SiN)、氮氧化矽(SiON)、碳氮氧化矽(SiCON)、碳化矽(SiC)或其組合。 The memory element according to claim 1, wherein the bottom support layer and the material of the top support layer each comprise tantalum nitride (SiN), bismuth oxynitride (SiON), bismuth oxynitride (SiCON), carbonization. Bismuth (SiC) or a combination thereof. 如申請專利範圍第1項所述的記憶元件,更包括多數個導體區配置在該基底上,其中每一導體區與所對應的該些杯狀電容器的底部電性連接。 The memory device of claim 1, further comprising a plurality of conductor regions disposed on the substrate, wherein each conductor region is electrically connected to the bottom of the corresponding cup capacitors. 如申請專利範圍第1項所述的記憶元件,其中該頂支撐層與該底支撐層之間的該空隙為充填空氣。 The memory element of claim 1, wherein the gap between the top support layer and the bottom support layer is filled with air. 一種記憶元件的製造方法,包括:提供一基底,該基底上具有多數個導體區;於該基底上形成一底支撐層,該底支撐層裸露出該些導體區;於該基底上形成多數個杯狀下電極,該些杯狀下電極與該些導體區電性連接,其中該底支撐層位於該些杯狀電容器的多數個下側壁之間;以及於該基底上形成一頂支撐層,配置於該些杯狀電容器的多數個上側壁周圍,與該底支撐層彼此之間具有一空隙,該頂支撐層包括:一周邊支撐層,在該些杯狀電容器外圍並與該些杯狀電容器連接;以及 一核心支撐層,在該周邊支撐層內,且與該周邊支撐層相隔一間隙,連接任意相鄰的兩個杯狀電容器。 A method of fabricating a memory device, comprising: providing a substrate having a plurality of conductor regions; forming a bottom support layer on the substrate, the bottom support layer exposing the conductor regions; forming a plurality of the substrate a cup-shaped lower electrode electrically connected to the conductor regions, wherein the bottom support layer is located between a plurality of lower sidewalls of the cup capacitors; and a top support layer is formed on the substrate Arranging around a plurality of upper sidewalls of the cup capacitors, and the bottom support layer has a gap between each other, the top support layer comprising: a peripheral support layer, and the cups on the periphery of the cup capacitors Capacitor connection; A core support layer is disposed in the peripheral support layer and spaced apart from the peripheral support layer by a gap to connect any two adjacent cup capacitors. 如申請專利範圍第9項所述的記憶元件的製造方法,其中該核心支撐層為塊狀或環狀。 The method of manufacturing a memory device according to claim 9, wherein the core support layer is in a block shape or a ring shape.
TW103131779A 2014-09-15 2014-09-15 Memory device and method of fabricating the same TWI553886B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103131779A TWI553886B (en) 2014-09-15 2014-09-15 Memory device and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103131779A TWI553886B (en) 2014-09-15 2014-09-15 Memory device and method of fabricating the same

Publications (2)

Publication Number Publication Date
TW201611304A true TW201611304A (en) 2016-03-16
TWI553886B TWI553886B (en) 2016-10-11

Family

ID=56085265

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103131779A TWI553886B (en) 2014-09-15 2014-09-15 Memory device and method of fabricating the same

Country Status (1)

Country Link
TW (1) TWI553886B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI602309B (en) * 2016-07-26 2017-10-11 華邦電子股份有限公司 Capacitor structure and manufacturing method thereof
CN107808875A (en) * 2016-09-08 2018-03-16 华邦电子股份有限公司 Capacitor arrangement and its manufacture method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7682924B2 (en) * 2007-08-13 2010-03-23 Micron Technology, Inc. Methods of forming a plurality of capacitors
TW200933822A (en) * 2008-01-25 2009-08-01 Ind Tech Res Inst Method for forming capacitor in dynamic random access memory
US7989270B2 (en) * 2009-03-13 2011-08-02 Stats Chippac, Ltd. Semiconductor device and method of forming three-dimensional vertically oriented integrated capacitors

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI602309B (en) * 2016-07-26 2017-10-11 華邦電子股份有限公司 Capacitor structure and manufacturing method thereof
CN107808875A (en) * 2016-09-08 2018-03-16 华邦电子股份有限公司 Capacitor arrangement and its manufacture method
CN107808875B (en) * 2016-09-08 2020-01-31 华邦电子股份有限公司 Capacitor structure and manufacturing method thereof

Also Published As

Publication number Publication date
TWI553886B (en) 2016-10-11

Similar Documents

Publication Publication Date Title
US9543308B2 (en) Semiconductor device
KR102406719B1 (en) Semiconductor device and method for fabricating the same
WO2017070995A1 (en) Three-dimensional semiconductor device and manufacturing method therefor
US10910468B2 (en) Capacitor structure
US20210035983A1 (en) Semiconductor memory device and method of manufacturing the same
US9171670B2 (en) Capacitor structures having supporting patterns and methods of forming the same
US20120264271A1 (en) Method of forming a capacitor and method of manufacturing a semiconductor device using the same
US10910382B2 (en) Method for fabricating semiconductor device
KR20210085699A (en) Semiconductor device including a storage node electrode having a step and manufacturing method the same
TWI654767B (en) Capacitor structure and method of manufacturing the same
US20040175884A1 (en) Method for fabricating capacitor in semiconductor device
US7863149B2 (en) Method for fabricating a capacitor
US20120098132A1 (en) Semiconductor device and method of manufacturing the same
US10504904B2 (en) Semiconductor arrangement with capacitor and method of fabricating the same
US9704854B2 (en) DC-to-DC converter and method for fabricating the same
TWI553886B (en) Memory device and method of fabricating the same
KR20200114789A (en) Semiconductor device and method for fabricating the same
US11424202B2 (en) Semiconductor devices having landing pads
KR20110135768A (en) Fabricating method of a semiconductor device
US20070007656A1 (en) Semiconductor device and methods thereof
US20080026537A1 (en) Method for forming capacitor of semiconductor device
KR20080108697A (en) Method of forming capacitor and method of manufacturing semiconductor device
KR20120093806A (en) Semiconductor device and method for forming the same
CN105529326B (en) memory element and its manufacturing method
KR20230094004A (en) Integrated circuit device