TW201607778A - Fluid ejection structure - Google Patents

Fluid ejection structure Download PDF

Info

Publication number
TW201607778A
TW201607778A TW104120556A TW104120556A TW201607778A TW 201607778 A TW201607778 A TW 201607778A TW 104120556 A TW104120556 A TW 104120556A TW 104120556 A TW104120556 A TW 104120556A TW 201607778 A TW201607778 A TW 201607778A
Authority
TW
Taiwan
Prior art keywords
region
layer
substrate
field oxide
fluid ejection
Prior art date
Application number
TW104120556A
Other languages
Chinese (zh)
Other versions
TWI609798B (en
Inventor
布萊德里D 鍾
加稜P 庫克
麥可H 海葉思
亞當L 果塞爾
香黛爾E 多明尼克
委拉瑞J 馬堤
安東尼M 富樂
史達琳 夏芬斯
Original Assignee
惠普發展公司有限責任合夥企業
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠普發展公司有限責任合夥企業 filed Critical 惠普發展公司有限責任合夥企業
Publication of TW201607778A publication Critical patent/TW201607778A/en
Application granted granted Critical
Publication of TWI609798B publication Critical patent/TWI609798B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14016Structure of bubble jet print heads
    • B41J2/14088Structure of heating means
    • B41J2/14112Resistive element
    • B41J2/14129Layer structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1601Production of bubble jet print heads
    • B41J2/1603Production of bubble jet print heads of the front shooter type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1626Manufacturing processes etching
    • B41J2/1628Manufacturing processes etching dry etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1631Manufacturing processes photolithography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J29/00Details of, or accessories for, typewriters or selective printing mechanisms not otherwise provided for
    • B41J29/377Cooling or ventilating arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

A fluid ejection structure can include thermal resistors, a substrate, layers on the substrate, wherein said layers can include a region proximate to the resistor that has reduced field oxide.

Description

流體射出結構 Fluid injection structure

本發明係有關於一種流體射出結構。 The present invention relates to a fluid ejection structure.

發明背景 Background of the invention

流體射出結構會依據輸入的數位資料來配佈液滴。典型的流體射出結構包含噴嘴陣列等在一噴嘴板中能配佈流體。該等噴嘴陣列可被以一較高的解析度列設而能以高精確度配佈。某些流體射出結構係設有熱電阻器等靠近該等噴嘴能將流體噴出該等噴嘴外。要以熱電阻器造成一噴發事件時,一電流會通過該電阻器,其會迅速地加熱並氣化一靠近該電阻器的流體薄層。該液體變蒸汽的轉變會在該噴發腔室中靠近該流體主體處造成一膨脹的氣泡,並經由該噴嘴射出一細滴。絕緣氧化物層通常會存在於該電阻器底下,俾能將熱導向該噴發腔室中的流體。 The fluid ejection structure dispenses droplets based on the input digital data. A typical fluid ejection structure includes a nozzle array or the like that can dispense a fluid in a nozzle plate. The array of nozzles can be arranged at a higher resolution and can be dispensed with high precision. Certain fluid injection structures are provided with thermal resistors or the like that are capable of ejecting fluid out of the nozzles adjacent to the nozzles. To create an eruption event with a thermal resistor, a current will pass through the resistor, which will rapidly heat and vaporize a thin layer of fluid near the resistor. The liquid-to-steam transition creates an expanded bubble in the firing chamber adjacent the fluid body and ejects a fine droplet through the nozzle. An insulating oxide layer will typically be present underneath the resistor to direct heat to the fluid in the firing chamber.

依據本發明之一實施例,係特地提出一種流體射出結構,包含:眾多個熱電阻器以一每吋至少大約300個的間距列設;一基材;數層在該基材上,包含一散熱區接近於該電阻器,在各電阻器與該基材之間;及一鄰接層區緊鄰於該散熱區,該鄰接層區包含場氧化物在該基材上具有 一第一厚度;其中減少的場氧化物在該散熱區中,有一減少的厚度為所述第一厚度的大約0%和80%之間。 According to an embodiment of the present invention, a fluid ejection structure is specifically provided, comprising: a plurality of thermal resistors arranged at a pitch of at least about 300 per turn; a substrate; and a plurality of layers on the substrate, including a a heat dissipating region is adjacent to the resistor between each resistor and the substrate; and an adjacent layer region is adjacent to the heat dissipating region, the adjoining layer region comprising field oxide having on the substrate a first thickness; wherein the reduced field oxide has a reduced thickness between about 0% and 80% of the first thickness in the heat sink region.

1、101、201、301、401、501‧‧‧流體射出結構 1, 101, 201, 301, 401, 501‧‧‧ fluid injection structure

3、103、203、303、403、503‧‧‧熱電阻器 3, 103, 203, 303, 403, 503‧‧‧ Thermal resistors

5、105‧‧‧噴發腔室 5, 105‧‧‧Ejection chamber

7‧‧‧薄膜層 7‧‧‧film layer

9、109、309、409、509‧‧‧基材 9, 109, 309, 409, 509‧‧‧ substrates

11、111、211、311、411、511‧‧‧流體饋槽 11, 111, 211, 311, 411, 511‧‧‧ fluid feeders

13、13A、113、213、313、313A、413、513、513A‧‧‧場氧化物層 13, 13A, 113, 213, 313, 313A, 413, 513, 513A‧ ‧ field oxide layer

15、215、315、415、515‧‧‧散熱區 15, 215, 315, 415, 515‧‧ ‧ heat dissipation area

17、217、317、417、517‧‧‧鄰接層區 17, 217, 317, 417, 517 ‧ ‧ adjacent layers

23、223、323、423、523‧‧‧槽區 23, 223, 323, 423, 523‧‧‧ slot area

107、307、407、507‧‧‧層疊 107, 307, 407, 507‧ ‧ cascading

119‧‧‧噴嘴板 119‧‧‧Nozzle plate

121‧‧‧噴嘴 121‧‧‧Nozzles

200‧‧‧列印頭匣 200‧‧‧Printing head 匣

227‧‧‧直線陣列 227‧‧‧Line array

229‧‧‧場氧化物帶 229‧‧ ‧ field oxide strip

335、435、447、535、547‧‧‧氧化物層 335, 435, 447, 535, 547‧‧ ‧ oxide layer

337、437、443、445、537‧‧‧導電層 337, 437, 443, 445, 537‧‧‧ conductive layers

431、533‧‧‧p井區 431, 533‧‧‧p well area

433、531‧‧‧n井區 433, 531‧‧‧n well area

441‧‧‧熱電阻器材料層 441‧‧‧Thermal resistor material layer

449‧‧‧閘層 449‧‧‧ gate layer

I‧‧‧對應部份 I‧‧‧corresponding part

T‧‧‧第一厚度 T‧‧‧first thickness

T2‧‧‧厚度 T2‧‧‧ thickness

為了說明之目的,某些依據本揭露構製的範例現將參照所附圖式來被描述,其中:圖1示出一流體射出結構之一截面的簡圖;圖2示出一流體射出結構的另一例之截面的簡圖;圖3示出一流體射出結構的另一例之截面的簡圖;圖4示出一流體射出結構的另一例之截面的簡圖;圖5示出一流體射出結構的又另一例之一截面圖;及圖6示出一流體射出結構的再另一例之一截面圖。 For the purpose of explanation, certain examples constructed in accordance with the present disclosure will now be described with reference to the accompanying drawings in which: FIG. 1 shows a schematic diagram of a section of a fluid ejection structure; FIG. 2 shows a fluid ejection structure. FIG. 3 is a schematic view showing a cross section of another example of a fluid ejection structure; FIG. 4 is a schematic view showing a cross section of another example of a fluid ejection structure; and FIG. 5 is a schematic view showing a fluid ejection. A cross-sectional view of still another example of the structure; and FIG. 6 shows a cross-sectional view of still another example of a fluid ejection structure.

詳細說明 Detailed description

在以下詳細說明中,會參照所附圖式。在該等說明和圖式中之各例應被視為舉例說明,而非意要限制於所述的特定之例或元件。多數個例子能從以下的說明和圖式,藉由不同元件的修正、組合或變化而被獲得。 In the following detailed description, reference will be made to the drawings. The examples in the description and drawings are to be considered as illustrative and not restrictive. Numerous examples can be obtained from the following description and drawings, with modifications, combinations or variations of the various elements.

於本揭露中,流體射出結構將會被論述。典型的流體射出結構係為列印頭。本揭露的流體射出結構可形成 一整合的列印頭匣或一固定式或半永久式列印機之列印頭一部份。典型的流體包含墨水。流體射出結構的其它例包括用於三維列印機和高精度數位滴定裝置的列印頭。其它的流體之例包括三維列印流體,譬如三維列印劑等,包含粉末黏結加強劑和抑制劑,及用於數位滴定的流體,例如用於測試、組配及/或配劑製藥的,生物醫學的,科學的或法學的用途者。該流體射出結構可為一已完成裝置的一部份,或可形成一中間製品。本揭露的流體射出結構係設有熱電阻器等能射出該等液滴。在一例中該等電阻器為熱噴墨(TIJ)電阻器。該等電阻器可被用於任何高精度配佈用途,譬如二維列印,三維列印和數位滴定。 In the present disclosure, the fluid ejection structure will be discussed. A typical fluid ejection structure is a print head. The fluid ejection structure of the present disclosure can be formed An integrated print head or a portion of the print head of a stationary or semi-permanent printer. A typical fluid contains ink. Other examples of fluid ejection structures include printheads for three-dimensional printers and high precision digital titration devices. Examples of other fluids include three-dimensional printing fluids, such as three-dimensional printing agents, including powder binding enhancers and inhibitors, and fluids for digital titration, such as for testing, assembly, and/or formulation pharmaceuticals, Biomedical, scientific or legal use. The fluid ejection structure can be part of a completed device or can form an intermediate article. The fluid ejection structure of the present disclosure is provided with a thermal resistor or the like to emit the droplets. In one example the resistors are thermal inkjet (TIJ) resistors. These resistors can be used for any high precision dispensing applications such as 2D printing, 3D printing and digital titration.

一流體射出結構可包含至少一氧化物層設在一基材或導電廻路上方。該等氧化物層具有電和熱的絕緣性質。一靠近一熱電阻器的氧化物層可在一噴發事件時熱隔絕該熱電阻器,而得促成一迅速且有能量效率的噴發事件。此可造成該等電阻器之一低啟動能量。 A fluid ejection structure can include at least one oxide layer disposed over a substrate or conductive bead. The oxide layers have electrical and thermal insulating properties. An oxide layer adjacent to a thermal resistor can thermally isolate the thermal resistor during an ejection event, resulting in a rapid and energy efficient eruption event. This can result in a low starting energy for one of the resistors.

當一適當的電流被施加於該電阻器時,該電阻器和靠近與該電阻器之界面的流體會迅速地升溫,例如施加大約0.02至200微妙的脈衝寬度範圍,其中該時間量可取決於電阻器電阻、電阻器大小、縱橫比、流體種類、液滴大小和電阻器間距。靠近該電阻器的流體會轉變成蒸汽並造成一膨脹的氣泡。該逐漸脹大的蒸汽泡會將一些該流體迫出一液滴噴嘴外,而造成一射出的細滴。於此一噴發事件之後,由該蒸汽泡造成的局部壓力會減降。此事件可被稱 為氣泡陷縮。當該氣泡陷縮時,存在一近旁流體饋槽中的新流體會被汲回至該噴發腔室中。於該噴發事件後,若該電阻器尚未充分地冷卻下來,則一燒焦效應或小規模的再沸騰可能會因該流體流回至該噴發腔室中而在該熱的電阻器表面上發生。若該流體是墨水,其有時會發生該墨水中的固體在該電阻器上或近旁形成沈積物,其可能造成熱抑止膜,而會負面地影響該電阻器和噴嘴的性能。例如,該電阻器或其保護層,譬如鉭,若該流體重複地與一熱電阻器接觸時,將會較容易氧化。此外,在較高的溫度耗延較多的時間可能會對該等電阻器有負面作用,譬如較短的電阻器功能壽命。且該電阻器或該流體的其它化學和物理性質亦會被一緩慢的冷卻負面地影響。因此,該電阻器之一較快的冷卻可防止一些上述的負面作用。雖靠近該電阻器的絕緣氧化物層會在噴發時促成一較低的啟動能量,但太過分的絕緣會減慢該電阻器於噴發之後的冷卻。 When a suitable current is applied to the resistor, the resistor and the fluid near the interface with the resistor will rapidly heat up, for example, applying a pulse width range of about 0.02 to 200 microseconds, wherein the amount of time may depend on Resistor resistance, resistor size, aspect ratio, fluid type, droplet size, and resistor spacing. Fluid close to the resistor turns into steam and creates an expanding bubble. The progressively expanding vapor bubble forces some of the fluid out of a droplet nozzle to create an ejected droplet. After this eruption event, the local pressure caused by the vapor bubble is reduced. This event can be called Shrink for bubbles. When the bubble collapses, there is a new fluid in the adjacent fluid feed tank that is drawn back into the firing chamber. After the eruption event, if the resistor has not cooled sufficiently, a scorch effect or small-scale reboiling may occur on the surface of the hot resistor as the fluid flows back into the firing chamber. . If the fluid is ink, it sometimes happens that solids in the ink form deposits on or near the resistor, which may cause a thermal suppression film that can negatively impact the performance of the resistor and nozzle. For example, the resistor or its protective layer, such as germanium, will be more susceptible to oxidation if the fluid repeatedly contacts a thermal resistor. In addition, more time delays at higher temperatures may have a negative effect on these resistors, such as shorter resistor functional life. And the resistor or other chemical and physical properties of the fluid are also negatively affected by a slow cooling. Therefore, faster cooling of one of the resistors prevents some of the aforementioned negative effects. Although the insulating oxide layer near the resistor contributes to a lower starting energy during the firing, too much insulation slows the cooling of the resistor after the eruption.

圖1在一截面正視圖中概略地示出一流體射出結構1的一部份之一例的截面。該流體射出結構1包含一熱電組器3。本揭露的流體射出結構1係設有熱電阻器3的陣列等。例如該等熱電阻器3係排列至少一直線陣列,例如多數個平行的直線陣列。該直線陣列可具有一間距為至少大約300個電阻器,每吋至少大約590個電阻器,例如每吋大約600個噴嘴。 Fig. 1 schematically shows a section of an example of a portion of a fluid ejection structure 1 in a front elevational view. The fluid ejection structure 1 comprises a thermoelectric assembly 3. The fluid ejection structure 1 of the present disclosure is provided with an array of the thermal resistors 3 and the like. For example, the thermal resistors 3 are arranged in at least a linear array, such as a plurality of parallel linear arrays. The linear array can have a pitch of at least about 300 resistors, at least about 590 resistors per turn, for example about 600 nozzles per turn.

每個熱電阻器3可被設在一對應的噴發腔室5中或近旁。該熱電阻器3係設在至少一薄膜層7上。該至少一 層7係設在一基材9上。一流體饋槽11係被提供緊鄰於該電阻器3和該至少一層7。該流體饋槽11係能饋送流體至該噴發腔室5。 Each of the thermal resistors 3 can be placed in or near a corresponding firing chamber 5. The thermal resistor 3 is provided on at least one of the film layers 7. At least one Layer 7 is attached to a substrate 9. A fluid feed tank 11 is provided in close proximity to the resistor 3 and the at least one layer 7. The fluid feed tank 11 is capable of feeding fluid to the firing chamber 5.

該至少一層7包含至少一氧化物層。該至少一氧化物層可包含一場氧化物層13。該至少一層7可被分成二區15、17。該至少一層7的一區15係在該電阻器3與該基材9之間,於此稱為散熱區15。緊鄰於該散熱區15之一區在此稱為鄰接區17。如在本揭露中將會說明,藉該數層7等加強的散熱可發生於該散熱區15中。散熱亦可發生於該散熱區15外部,雖然只要一較小程度。在一操作狀態時該流體射出結構1會以一朝下方向射出液滴,因此該散熱區15會延伸於該電阻器3頂上。在圖1中該散熱區15係直接延伸於該電阻器3底下。例如圖1的流體射出結構係在一製造或輸送定向,其可用於說明之目的。該散熱區15可被定義為一層區,其會界定該電阻區3與該基材9間之一最短距離,乃可藉將該數層7上的熱電阻器3筆直地投影至該基材9上來示出,如虛線所示。一鄰接層區17係位在緊鄰於該散熱區15處。在所示之例中,該鄰接層區17係設在該散熱區15之相反於該流體饋槽11的一側上。在該散熱區15的另一側上,係設有該等層7之一槽區23。該槽區23定界在該流體饋槽11。散熱區15可為中心位於該電阻器下方/上方,並可具有比該鄰接區17和該槽區23較少的氧化物絕緣層或較小的總氧化物厚度。 The at least one layer 7 comprises at least one oxide layer. The at least one oxide layer may comprise a field oxide layer 13. The at least one layer 7 can be divided into two zones 15, 17. A region 15 of the at least one layer 7 is between the resistor 3 and the substrate 9, referred to herein as the heat sink region 15. An area adjacent to the heat dissipation zone 15 is referred to herein as the abutment zone 17. As will be explained in the present disclosure, heat dissipation enhanced by the plurality of layers 7 or the like may occur in the heat dissipation region 15. Heat dissipation can also occur outside of the heat sink region 15, albeit to a lesser extent. In an operational state, the fluid exiting structure 1 will eject droplets in a downward direction, so that the heat dissipating region 15 will extend over the resistor 3. In FIG. 1, the heat dissipation region 15 extends directly under the resistor 3. For example, the fluid ejection structure of Figure 1 is in a manufacturing or delivery orientation that can be used for illustrative purposes. The heat dissipation region 15 can be defined as a layer region that defines a shortest distance between the resistance region 3 and the substrate 9 by directly projecting the thermal resistor 3 on the plurality of layers 7 to the substrate. 9 is shown up as shown by the dotted line. An adjacent layer region 17 is tied in close proximity to the heat sink region 15. In the illustrated example, the adjoining layer region 17 is disposed on a side of the heat dissipating region 15 opposite to the fluid feed channel 11. On the other side of the heat dissipating region 15, a groove region 23 of the layers 7 is provided. The groove region 23 is bounded by the fluid feed groove 11. The heat sink region 15 may be centered below/above the resistor and may have less oxide insulating layer or a smaller total oxide thickness than the adjacent region 17 and the trench region 23.

在所示的截面中,一場氧化物層13、13A係設在 該基材9上方。一具有一第一厚度T的場氧化物層13係於該鄰接層區17中被設在該基材9上方。在該散熱區15中,該場氧化物係相對於該等鄰接區減少。在一例中,該散熱區15係有一場氧化物13A存在,其具有一減少的厚度T2。在另一例中,該散熱區15係沒有場氧化物。在本揭露中,”減少的場氧化物”係指該散熱區15中的任何場氧化物之特徵細構係比該鄰接區更少,而具有一厚度T2為該鄰接區厚度T的大約0%至80%,0%至70%,0%至60%,0%至50%,0%至40%,0%至30%,或0%至20%之間。當該減少的場氧化物是該鄰接區厚度的0%時,該散熱區15係沒有場氧化物。在其它之例中,該場氧化物13A係減少至該鄰接區厚度T的20%與80%之間。該減少但非完全略除的場氧化物場13A之例係以一虛線示出。 In the cross section shown, a field oxide layer 13, 13A is Above the substrate 9. A field oxide layer 13 having a first thickness T is disposed over the substrate 9 in the adjacent layer region 17. In the heat sink region 15, the field oxide is reduced relative to the adjacent regions. In one example, the heat sink 15 is provided with a field oxide 13A having a reduced thickness T2. In another example, the heat sink 15 is free of field oxides. In the present disclosure, "reduced field oxide" means that any field oxide in the heat dissipation region 15 has a characteristic fine structure less than the adjacent region, and has a thickness T2 of about 0 of the thickness T of the adjacent region. % to 80%, 0% to 70%, 0% to 60%, 0% to 50%, 0% to 40%, 0% to 30%, or 0% to 20%. When the reduced field oxide is 0% of the thickness of the adjacent region, the heat sink region 15 is free of field oxide. In other examples, the field oxide 13A is reduced to between 20% and 80% of the thickness T of the adjacent region. An example of the reduced but not completely omitted field oxide field 13A is shown by a dashed line.

例如一條帶狀、矩形狀或圓形狀的場氧化物場會被使用適當的矽處理技術來縮減,其可包含在施設對應的條帶狀、矩形狀或圓形狀罩體之後加以蝕刻。在一例中,一氮化矽(SiN)膜會被沈積、光圖案化及蝕刻,然後場氧化物會生長在該SiN膜未存在之處。例如該SiN膜係存在於該散熱區15中。嗣該SiN會被蝕刻,且該場氧化物會保留在該鄰接層區17中。在另一例中,該場氧化物係生長遍及該散熱區15及該鄰接區17和槽區23,但於後會在該散熱區15和該槽區23中被蝕刻成一較薄的層13A。 For example, a strip oxide, rectangular or circular field oxide field may be reduced using a suitable tantalum processing technique, which may include etching after applying a corresponding strip, rectangular or circular shaped shell. In one example, a tantalum nitride (SiN) film will be deposited, photopatterned, and etched, and then the field oxide will grow where the SiN film is not present. For example, the SiN film is present in the heat dissipation region 15. The SiN will be etched and the field oxide will remain in the adjacent layer region 17. In another example, the field oxide is grown throughout the heat sink region 15 and the adjacent region 17 and the trench region 23, but is thereafter etched into a thinner layer 13A in the heat sink region 15 and the trench region 23.

在該圖中該具有第一厚度T的場氧化物層13終止於該散熱區15的邊緣。在其它之例中,該場氧化物層13可 恰終止於該散熱區15外,或恰在該散熱區15內,只要在該散熱區15中該基材9的至少一部份係沒有該場氧化物層13即可。於該槽區23中場氧化物13亦被設在該基材9上方。在該圖中,該槽區23中的場氧化物13係沿該流體饋槽11終止。於該等層7已被設在該基材9上之後,該饋槽11可被蝕刻貫穿該等層7。在該散熱區15中之加總的氧化物層之一平均厚度可比在該鄰接層區17和該槽區23中之加總的氧化物層之一平均厚度更薄。 The field oxide layer 13 having a first thickness T terminates in the edge of the heat sink region 15 in the figure. In other examples, the field oxide layer 13 can Just ending outside the heat dissipating region 15, or just in the heat dissipating region 15, as long as at least a portion of the substrate 9 in the heat dissipating region 15 is free of the field oxide layer 13. The field oxide 13 is also disposed above the substrate 9 in the trench region 23. In the figure, the field oxide 13 in the trench region 23 terminates along the fluid feed channel 11. After the layers 7 have been placed on the substrate 9, the feed channels 11 can be etched through the layers 7. The average thickness of one of the summed oxide layers in the heat sink region 15 may be thinner than the average thickness of one of the summed oxide layers in the adjacent layer region 17 and the trench region 23.

已發現在該散熱區15中靠近該電阻器3的一些氧化物可被移除或省略,以容許該電阻器能在該流體被汲入該噴發腔室5之前較快速地冷卻下來,而又能在該噴發事件時保持一充分的絕緣,即實質上不會影響該啟動能量。場氧化物13,而且又是一電絕緣體,具有較高的熱絕緣性質。藉著減少該散熱區中之一場氧化物厚度。熱能夠更快速地發散至該基材9。藉由加強的散熱,一電阻器之緩慢冷卻的負面作用可被抑止。在不同之例中,減少靠近該電阻器3的場氧化物可以改良電阻器壽命,電阻器可靠性及噴嘴的健全,而實質上不會影響該電阻器3之一啟動能量。在又一例中,因為該電阻器3會較快速地冷卻,故一較大範圍的流體能被以該流體射出結構1來射出。 It has been found that some of the oxide in the heat sink region 15 adjacent to the resistor 3 can be removed or omitted to allow the resistor to cool down relatively quickly before the fluid is drawn into the firing chamber 5, yet A sufficient insulation can be maintained during the eruption event, i.e., the starting energy is not substantially affected. The field oxide 13, and again an electrical insulator, has a high thermal insulating property. By reducing the field oxide thickness in the heat sink. Heat can be dissipated to the substrate 9 more quickly. With the enhanced heat dissipation, the negative effect of slow cooling of a resistor can be suppressed. In a different case, reducing the field oxide near the resistor 3 can improve resistor life, resistor reliability, and nozzle robustness without substantially affecting the activation energy of one of the resistors 3. In still another example, because the resistor 3 will cool more quickly, a larger range of fluid can be ejected with the fluid exiting structure 1.

圖2在另一截面圖中概略地示出一流體射出結構101之另一例。例如圖2的一部份I對應於圖1的簡圖。在一例中,圖2的流體射出結構101會形成一列印頭的一部份。該流體射出結構101包含一流體饋槽111、噴嘴腔室105等及 噴嘴121等在一噴嘴板119中。該流體饋槽111開放於二噴發腔室105中,其開放於噴嘴121等。熱電阻器103係被提供於每一個噴發腔室105中來將流體射出該等噴嘴121外。數添加層,譬如碳化矽、氮化矽及/或鉭,可覆蓋每個電阻器103來在製造時提供保護以避免化學和物理性攻擊並作電隔離,及避免該墨水和噴發事件。 Fig. 2 schematically shows another example of a fluid ejection structure 101 in another cross-sectional view. For example, a portion I of FIG. 2 corresponds to the diagram of FIG. 1. In one example, the fluid ejection structure 101 of Figure 2 forms a portion of a row of printheads. The fluid injection structure 101 includes a fluid feed tank 111, a nozzle chamber 105, and the like. The nozzle 121 is in a nozzle plate 119. The fluid feed tank 111 is opened in the two firing chambers 105, which are open to the nozzles 121 and the like. Thermal resistors 103 are provided in each of the firing chambers 105 to direct fluid out of the nozzles 121. Adding layers, such as tantalum carbide, tantalum nitride, and/or germanium, can cover each resistor 103 to provide protection during manufacturing to avoid chemical and physical attack and electrical isolation, and to avoid such ink and eruption events.

該電阻器103係被在一基材109上之一各別的層疊107支撐。該流體饋槽111會穿過該層疊107和該基材109。該層疊107包含一場氧化物層113。如所示,在一層區中接近於該電阻器103的場氧化物相較於在一鄰接層區中之無減少的場氧化物113係減少的。在所示之例中,接近於該電阻器103的場氧化物係減少至0。在另一例(未示出)中,有些場氧化物係存在靠近於該電阻器103處,而相對於該鄰接層區中的場氧化物層113之厚度具有一減少的厚度。 The resistor 103 is supported by a respective stack 107 on a substrate 109. The fluid feed slot 111 will pass through the stack 107 and the substrate 109. The stack 107 includes a field oxide layer 113. As shown, the field oxide in the layer region that is close to the resistor 103 is reduced compared to the field oxide 113 in the absence of a reduced layer region. In the example shown, the field oxide system close to the resistor 103 is reduced to zero. In another example (not shown), some of the field oxide is present adjacent to the resistor 103 with a reduced thickness relative to the thickness of the field oxide layer 113 in the adjacent layer region.

圖3示出一包含一流體射出結構201之整合的列印頭匣200之一簡圖。該匣200可更包含一流體貯槽能供應流體至一流體饋槽211。圖3的流體射出結構201可對應於圖2的流體射出結構之一截面III-III。該流體射出結構201包含熱電阻器203的直線陣列227等,各個熱電阻器203皆被設成靠近至少一個各別的噴嘴。因為該等熱電阻器203並非直接曝露於此截面中,故該等熱電阻器203係被以虛線示出。在所示之例中,線狀電阻器203之二平行的直線陣列227係沿單一流體饋槽211被提供。該等噴嘴亦不可見於此截面中,係排列成對應的直線陣列。例如,多數個流體饋槽211及一 雙倍量的平行電阻器陣列227能夠被提供。例如,多種顏色的貯槽可被提供於一整合的列印頭匣中,其中每一種顏色的貯槽會流體地連接於至少一個流體饋槽211。 FIG. 3 shows a simplified diagram of an integrated printhead cartridge 200 including a fluid ejection structure 201. The crucible 200 can further include a fluid sump capable of supplying fluid to a fluid feed tank 211. The fluid ejection structure 201 of FIG. 3 may correspond to one of the sections III-III of the fluid ejection structure of FIG. The fluid ejection structure 201 includes a linear array 227 of the thermal resistors 203 and the like, and each of the thermal resistors 203 is disposed adjacent to at least one of the respective nozzles. Since the thermal resistors 203 are not directly exposed to the cross section, the thermal resistors 203 are shown in dashed lines. In the illustrated example, two parallel linear arrays 227 of linear resistors 203 are provided along a single fluid feed slot 211. The nozzles are also not visible in this section and are arranged in a corresponding linear array. For example, a plurality of fluid feed slots 211 and one A double amount of parallel resistor array 227 can be provided. For example, a plurality of color sump can be provided in an integrated print head, wherein each color sump is fluidly coupled to at least one fluid feed 211.

在一例中,該熱電阻器及/或噴嘴陣列具有一間距為每吋至少大約300個電阻器203及/或噴嘴。在另一例中,該熱電阻器及/或噴嘴可具有一間距為每吋至少大約590個電阻器203及/或噴嘴,例如每吋至少大約600個電阻器203及/或噴嘴,例如每吋大約600個電阻器203及/或噴嘴。在又另一例中,該間距可為高達每吋大約2400個電阻器203及/或噴嘴。 In one example, the thermal resistor and/or nozzle array has a spacing of at least about 300 resistors 203 and/or nozzles per turn. In another example, the thermal resistor and/or nozzle can have a pitch of at least about 590 resistors 203 and/or nozzles per turn, such as at least about 600 resistors 203 and/or nozzles per turn, such as each turn. Approximately 600 resistors 203 and/or nozzles. In yet another example, the spacing can be up to about 2400 resistors 203 and/or nozzles per turn.

一流體饋槽211係平行設在該等電阻器陣列227之間。該流體饋槽211係能由該貯槽接收流體。該場氧化物層213會在該流體饋槽211的兩側延伸,而終止於該流體饋槽211。該流體饋槽211可在該等層沈積之後被蝕刻貫穿其中。在散熱區215中靠近於各電阻器陣列227處,該等電阻器203與該基材之間的場氧化物213已被減少。該場氧化物213會在該等電阻器203的兩側延伸,例如在一沿著該流體饋槽211的槽區223中,及在該散熱區215的相反側之一鄰接區217中。 A fluid feed slot 211 is disposed in parallel between the resistor arrays 227. The fluid feed tank 211 is capable of receiving fluid from the sump. The field oxide layer 213 extends on both sides of the fluid feed slot 211 and terminates in the fluid feed slot 211. The fluid feed slot 211 can be etched therethrough after the layers are deposited. The field oxide 213 between the resistors 203 and the substrate has been reduced near the respective resistor arrays 227 in the heat sink region 215. The field oxide 213 will extend on either side of the resistors 203, such as in a trench region 223 along the fluid feed slot 211, and in a contiguous region 217 on the opposite side of the heat sink region 215.

在所示之例中連續減少的場氧化物帶229會跨延該等電阻器陣列227,而延伸穿過每個電阻器203的每個散熱區215。各減少的場氧化物帶229可為沒有場氧化物,或可相較於一具有無減少的場氧化物之鄰接層區會有較少的場氧化物。在該流體饋槽211的兩側,一減少的場氧化物帶 229會平行於該流體饋槽211延伸。在一例中,該場氧化物係藉首先沈積並圖案化一氮化矽(SiN)膜而使該SiN跨延該電阻器陣列227來被圖案化。場氧化物嗣會被生長在該SiN不存在及該SiN被蝕刻掉之處。因此,矩形狀的較少場氧化物帶229可被界定來容許較佳的散熱。 The field oxide strips 229, which are continuously reduced in the illustrated example, will extend across the resistor array 227 and extend through each of the heat sink regions 215 of each resistor 203. Each of the reduced field oxide strips 229 can be free of field oxides or can have fewer field oxides than adjacent regions having a reduced field oxide. On both sides of the fluid feed tank 211, a reduced field oxide strip 229 will extend parallel to the fluid feed slot 211. In one example, the field oxide is patterned by first depositing and patterning a tantalum nitride (SiN) film such that the SiN is stretched across the resistor array 227. The field oxide erbium is grown where the SiN is absent and the SiN is etched away. Thus, a rectangular less field oxide strip 229 can be defined to allow for better heat dissipation.

圖4示出一流體射出結構301之一截面的另一例之簡圖。該流體射出結構301包含一熱電阻器303設在一層疊307上方,其則係設在一基材309上方。在所示的截面部份中,該層疊307和該基材309終止於一流體饋槽311,其係在該層疊307沈積之後被蝕刻貫穿該層疊307。該層疊307包含一散熱區315靠近於該電阻器303,其係藉將該層疊307上的電阻器303筆直地投影於該基材309上來被界定,如圖4中的虛線所示。一槽區323延伸在該散熱區315的一側,介於該散熱區315與該流體饋槽311之間,且一鄰接層區317延伸在該散熱區315之一相反側。 FIG. 4 shows a simplified diagram of another example of a section of a fluid ejection structure 301. The fluid ejection structure 301 includes a thermal resistor 303 disposed over a stack 307 that is disposed over a substrate 309. In the cross-sectional portion shown, the stack 307 and the substrate 309 terminate in a fluid feed slot 311 that is etched through the stack 307 after the stack 307 is deposited. The stack 307 includes a heat sink region 315 adjacent the resistor 303 that is defined by projecting the resistor 303 on the stack 307 straight onto the substrate 309, as shown by the dashed lines in FIG. A slot region 323 extends on one side of the heat dissipation region 315 between the heat dissipation region 315 and the fluid feed slot 311, and an adjacent layer region 317 extends on an opposite side of the heat dissipation region 315.

該層疊307包含至少一氧化物層335,即至少一層其距離係由該基材309算起。在一例中,該氧化物層335不是一場氧化物層313。該氧化物層335會延伸分別穿過該等鄰接區317、靠近區315及槽區323,並終止於該流體體槽311。該流體饋槽311已被蝕刻貫穿該等層307,因而會界定該場氧化物層313和氧化物層335的終止點。該氧化物層335會電及熱絕緣該電阻器303。該層疊307包含一導電層337。該氧化物層335係設在該導電層337上方。該導電層337包含一金屬成分,或可實質上由金屬成分構成。該導電層337會 延伸穿過該鄰接層區317,且至少部份地在該散熱區315中。在一例中,其會跨延該整個散熱區315。該導電層337可為一電力廻路的一部份。該導電層337可具有導熱性質,此使其可適合作為一散熱材料。該導電層337可功能如該電阻器303之一散熱而能在一噴發事件之後冷卻下來。 The stack 307 comprises at least one oxide layer 335, i.e., at least one layer of which is calculated from the substrate 309. In one example, the oxide layer 335 is not a field oxide layer 313. The oxide layer 335 extends through the adjacent regions 317, the regions 315 and the trench regions 323, respectively, and terminates in the fluid body trench 311. The fluid feed channel 311 has been etched through the layers 307, thus defining the termination point of the field oxide layer 313 and the oxide layer 335. The oxide layer 335 electrically and thermally insulates the resistor 303. The stack 307 includes a conductive layer 337. The oxide layer 335 is disposed above the conductive layer 337. The conductive layer 337 contains a metal component or may be substantially composed of a metal component. The conductive layer 337 will Extending through the adjacent layer region 317, and at least partially in the heat sink region 315. In one example, it will span the entire heat sink zone 315. The conductive layer 337 can be part of a power circuit. The conductive layer 337 can have thermal conductivity properties which make it suitable as a heat dissipating material. The conductive layer 337 can function as one of the resistors 303 to dissipate heat to cool down after an eruption event.

場氧化物313、313A係設在該基材309上方。在該散熱區315中該場氧化物313的至少一部份已被略除或由該基材309移除。在一例中,該基材309在該散熱區315中係沒有場氧化物。在另一例中,一相對於該鄰接區317具有一減少的場氧化物厚度之減少的場氧化物場313A,係被提供在該散熱區315中,如虛線所示。藉著局部地移除該場氧化物313,於噴發之後,熱能夠經由該導電層337和該基材309消散,而該氧化物層335會提供該脈衝/噴發事件期間之一充分的隔絕。 Field oxides 313, 313A are disposed above the substrate 309. At least a portion of the field oxide 313 has been removed or removed from the substrate 309 in the heat sink region 315. In one example, the substrate 309 has no field oxide in the heat sink region 315. In another example, a field oxide field 313A having a reduced field oxide thickness relative to the contiguous region 317 is provided in the heat sink region 315 as indicated by the dashed line. By locally removing the field oxide 313, heat can be dissipated via the conductive layer 337 and the substrate 309 after eruption, and the oxide layer 335 provides sufficient isolation during the pulse/eject event.

圖5示出一舉例的流體射出結構401之一截面。該流體射出結構401包含一基材409及一層疊407在該基材409上方。一熱電阻器材料層441係設在該層疊407頂上。在一例中,該熱電阻器材料層441包含鎢矽氮化物(WSiN)。該熱電阻器材料層441之一主動部份403於後將被稱為電阻器403。一介於該電阻器403與該基材409之間的散熱區415可藉將該電阻器403投影於該基材409上來被界定,例如以一近似直角地投影。一鄰接層區417會延伸緊鄰於該散熱區415,在一流體饋槽411的相反側。一槽區423會在該散熱區415和該流體饋槽411之間涵蓋一層疊區。 FIG. 5 shows a cross section of an exemplary fluid ejection structure 401. The fluid ejection structure 401 includes a substrate 409 and a stack 407 above the substrate 409. A layer of thermal resistor material 441 is placed on top of the stack 407. In one example, the thermal resistor material layer 441 comprises tungsten germanium nitride (WSiN). The active portion 403 of one of the thermal resistor material layers 441 will hereinafter be referred to as a resistor 403. A heat sink region 415 between the resistor 403 and the substrate 409 can be defined by projecting the resistor 403 onto the substrate 409, for example, at an approximately right angle. An adjacent layer region 417 extends adjacent to the heat sink region 415 on the opposite side of the fluid feed slot 411. A slot region 423 will cover a stacking zone between the heat sink region 415 and the fluid feed slot 411.

該熱電阻器材料層441係分別設在一第一和第二導電層443、445上方。該第一和第二導電層443、445係為電阻器電力線,能在該電阻器材料層441的主動電阻器部份403上施加一電壓。於該圖中,該第一和第二導電層443、445係為同一層,而該層443的一部份在設有該電阻器403之處被移除。在一例中,該第一和第二導電層443、445包含鋁銅(AlCu)合金。該第一和第二導電層443、445會在該電阻器403的相反兩側延伸。該電阻器403及該第一和第二導電層443、445係設在一第一氧化物層435上方。該第一氧化物層435包含正矽酸乙酯(TEOS)及/或高密度電漿TEOS。該第一氧化物層435會延伸於該鄰接層區417、散熱區415和該槽區423中。該第一氧化物層435終止於該流體饋槽411處。該第一氧化物層435係設在一第三導電層437上方。該第三導電層437包含一金屬成分。在一例中,該第三導電層437包含鈦(TiN)及AlCu。該第三導電層437可為一電力廻路的一部份,例如一電力接地或電力供應迴路。該第三導電層437會由該鄰接層區417延伸至該散熱區415中。在所示之例中,該第三導電區437會在該槽區423中超出該散熱區415而在離該流體饋槽411一距離處終止。在該槽區423中,該第一氧化物層435及該場氧化物413會將該第三導電層437隔離於該流體饋槽411中的流體。該第三導電層437係設在一第二氧化物層447上方。在一例中,該第二氧化物層447包含TEOS及硼磷矽酸鹽(BPSG)。在所示之例中,該第二氧化物層447會延伸並終止於該鄰接層區417中。該散熱區415 係沒有該第二氧化物層447。該第二氧化物層447係設在一場氧化物層413上方。該場氧化物層413會覆蓋該基材409。於本例中,該場氧化物層413會延伸於該鄰接層區417中,及該槽區423中。在本例中,該場氧化物層413會終止於該散熱區415外,分別在該鄰接區417和該槽區423中。該基材409在該散熱區415中係沒有場氧化物。一閘層449係在該散熱區415中設在該基材409上方,而跨延該散熱區415。該閘層449可包含多晶矽和閘氧化物。該多晶矽可作為一保護性蝕刻擋止物,而該閘氧化物會提供電絕緣。該閘層449終止於該鄰接層區417中及該槽區423中。該閘層449於該鄰接層區417中係部份地設在該場氧化物層413上方,靠近一邊緣且部份地在該場氧化物層413上方,於該槽區423中,靠近一相反的邊緣。該第三導電層437在部份的該鄰接層區417、該散熱區415和該槽區423中係設在該閘層449上方。該第二氧化物層447及該閘層449可將該第三導電層437隔絕於該場氧化物層413和該基材409。 The thermal resistor material layer 441 is disposed over the first and second conductive layers 443, 445, respectively. The first and second conductive layers 443, 445 are resistor power lines that can apply a voltage across the active resistor portion 403 of the resistor material layer 441. In the figure, the first and second conductive layers 443, 445 are the same layer, and a portion of the layer 443 is removed where the resistor 403 is provided. In one example, the first and second conductive layers 443, 445 comprise an aluminum copper (AlCu) alloy. The first and second conductive layers 443, 445 may extend on opposite sides of the resistor 403. The resistor 403 and the first and second conductive layers 443, 445 are disposed above a first oxide layer 435. The first oxide layer 435 comprises ethyl orthosilicate (TEOS) and/or high density plasma TEOS. The first oxide layer 435 extends in the adjacent layer region 417, the heat dissipation region 415, and the trench region 423. The first oxide layer 435 terminates at the fluid feed slot 411. The first oxide layer 435 is disposed above a third conductive layer 437. The third conductive layer 437 contains a metal component. In one example, the third conductive layer 437 comprises titanium (TiN) and AlCu. The third conductive layer 437 can be part of a power circuit, such as a power ground or power supply loop. The third conductive layer 437 extends from the adjacent layer region 417 into the heat dissipation region 415. In the illustrated example, the third conductive region 437 will extend beyond the heat sink region 415 in the trench region 423 and terminate at a distance from the fluid feed slot 411. In the trench region 423, the first oxide layer 435 and the field oxide 413 will isolate the third conductive layer 437 from the fluid in the fluid feed slot 411. The third conductive layer 437 is disposed above a second oxide layer 447. In one example, the second oxide layer 447 comprises TEOS and borophosphonate (BPSG). In the illustrated example, the second oxide layer 447 will extend and terminate in the adjacent layer region 417. The heat dissipation area 415 There is no such second oxide layer 447. The second oxide layer 447 is disposed over the field oxide layer 413. The field oxide layer 413 will cover the substrate 409. In this example, the field oxide layer 413 extends in the adjacent layer region 417 and in the trench region 423. In this example, the field oxide layer 413 will terminate outside of the heat sink region 415, respectively in the adjacent region 417 and the trench region 423. The substrate 409 has no field oxide in the heat sink region 415. A gate layer 449 is disposed over the substrate 409 in the heat dissipation region 415 to extend the heat dissipation region 415. The gate layer 449 can comprise polysilicon and gate oxide. The polysilicon can act as a protective etch stop and the gate oxide provides electrical insulation. The gate layer 449 terminates in the adjacent layer region 417 and in the trench region 423. The gate layer 449 is partially disposed above the field oxide layer 413 in the adjacent layer region 417, adjacent to an edge and partially above the field oxide layer 413, in the trench region 423, near a The opposite edge. The third conductive layer 437 is disposed above the gate layer 449 in a portion of the adjacent layer region 417, the heat dissipation region 415, and the trench region 423. The second oxide layer 447 and the gate layer 449 can isolate the third conductive layer 437 from the field oxide layer 413 and the substrate 409.

該基材409可包含具有較高電阻的摻雜n井區433,其會提供該導電基材409與該第三導電層437間之添加的電隔離。此n井區433可被電連接於一接地源或電漂浮。一摻雜n井區433會跨延該散熱區415。例如,該摻雜n井區433會由該鄰接層區417伸入該散熱區415中及該槽區423中,而在一邊緣終止於該鄰接層區417中,並在一相反邊緣終止於該槽區423中。該摻雜n井區433會跨延有該閘層449被設在該基材409上之處的整個表面,其邊緣終止於一各別 的場氧化物層413。 The substrate 409 can include a doped n-well region 433 having a higher electrical resistance that provides added electrical isolation between the conductive substrate 409 and the third conductive layer 437. The n-well region 433 can be electrically connected to a ground source or electrically floating. A doped n well region 433 will span the heat sink region 415. For example, the doped n well region 433 will extend from the adjacent layer region 417 into the heat sink region 415 and into the trench region 423, and terminate in an adjacent layer region 417 at an edge and terminate at an opposite edge. In the groove area 423. The doped n well region 433 spans the entire surface where the gate layer 449 is disposed on the substrate 409, and the edges thereof terminate in a different Field oxide layer 413.

P井區431係提供在該等n井區433的兩側。場氧化物413可被設在該等p井區431上方。例如,該等p井區431會延伸於有一場氧化物層413和另一氧化物層435、437堆疊在該基材409上方之處。例如,在該鄰接層區417中該p井區431會存在於一場氧化物層413與一第二氧化物層447堆疊在該基材409上方之處。例如,在該槽區423中該另一p井區431會存在於一場氧化物層413與一第一氧化物層435堆疊在該基材409上方之處。 A P-well 431 is provided on both sides of the n-well zone 433. Field oxide 413 can be disposed over the p-well regions 431. For example, the p-well regions 431 extend over a portion of the oxide layer 413 and another oxide layer 435, 437 stacked over the substrate 409. For example, in the adjacent layer region 417, the p-well region 431 will exist where a field oxide layer 413 and a second oxide layer 447 are stacked above the substrate 409. For example, the other p-well region 431 may be present in the trench region 423 where a field oxide layer 413 and a first oxide layer 435 are stacked over the substrate 409.

該n井區433會將該第三導電層437電隔離於該等p井區431。為更加強該第三導電層437的電隔離,該第二氧化物層447會終止於該閘層449上,且該閘層449終止於該場氧化物層413上,並在該第二氧化物層447下方,於該鄰接層區417中。在該相反側,於該槽區423中,該閘層449終止在該場氧化物層413上,而該n井區433更伸出終止於該槽區423中。 The n-well region 433 electrically isolates the third conductive layer 437 from the p-well regions 431. To further enhance the electrical isolation of the third conductive layer 437, the second oxide layer 447 terminates on the gate layer 449, and the gate layer 449 terminates on the field oxide layer 413 and is in the second oxide. Below the layer 447, in the adjacent layer region 417. On the opposite side, in the trench region 423, the gate layer 449 terminates on the field oxide layer 413, and the n-well region 433 extends further in the trench region 423.

該舉例的流體射出結構401可提供一適當的噴發事件絕緣和噴發事件後冷卻。該第一氧化物層435會在該噴發事件時熱絕緣該電阻器403,而該被移除和減少的第二氧化物層447及減少的場氧化物層能在噴發後容許熱被傳送至該基材409。該第三導電層437會協助導熱至該基材409。 The exemplary fluid ejection structure 401 can provide an appropriate eruption event insulation and post-emission event cooling. The first oxide layer 435 thermally insulates the resistor 403 during the ejection event, and the removed and reduced second oxide layer 447 and the reduced field oxide layer allow heat to be transferred to the post-ejection The substrate 409. The third conductive layer 437 assists in conducting heat to the substrate 409.

圖6示出另一舉例的流體射出結構501之一截面的一簡圖。該流體射出結構501包含一基材509,及一層疊507在該基材509上方。一熱電阻器503係提供在該層疊507 頂上,例如作為一熱電阻器材料層(未示出)的一部份,並連接於電力線能施一電壓於該電阻器503上。在該電阻器503與該基材509間之一散熱區515能藉將該電阻器503例如以一近似直角投影在該基材509上來被界定。一鄰接層區517會在一流體饋槽511的相反側延伸緊鄰於該散熱區515。一槽區523涵蓋該散熱區515和該流體饋槽511間之一層疊區。 FIG. 6 shows a simplified diagram of a cross section of another exemplary fluid ejection structure 501. The fluid ejection structure 501 includes a substrate 509, and a stack 507 is over the substrate 509. A thermal resistor 503 is provided in the stack 507 Top, for example, as part of a layer of thermal resistor material (not shown), coupled to the power line, can apply a voltage to the resistor 503. A heat sink region 515 between the resistor 503 and the substrate 509 can be defined by projecting the resistor 503 onto the substrate 509, for example, at an approximately right angle. An adjacent layer region 517 extends adjacent to the heat sink region 515 on the opposite side of the fluid feed slot 511. A groove region 523 covers a stacked region between the heat dissipation region 515 and the fluid feed groove 511.

該電阻器503係設在一第一氧化物層535上方。該第一氧化物層535會在該鄰接層區517、散熱區515和槽區535中延伸。該第一氧化物層535終止於該流體饋槽511,其中該流體饋槽511會在該等層507沈積之後被蝕刻貫穿該等層507。該第一氧化物層535係設在一導電層537上方。該導電層537可為一電力廻路的一部份,例如一電力接地或電力供應廻路。該導電層537會由該鄰接層區517延伸至該散熱區515中。在所示之例中,該導電層537會在該槽區523中超越該散熱區515,而在離該流體饋槽511一距離處終止。於該槽區523中,該第一氧化物層535會隔離該導電層537與該流體饋槽511中的流體。該導電層537係設在一第二氧化物層547上方。在所示之例中,該第二氧化物層547會延伸並終止於該鄰接層區517中。該散熱區515係沒有該第二氧化物層547。該第二氧化物層547係設在一場氧化物層513、513A上方。 The resistor 503 is disposed above a first oxide layer 535. The first oxide layer 535 extends in the adjacent layer region 517, the heat sink region 515, and the trench region 535. The first oxide layer 535 terminates in the fluid feed slot 511, wherein the fluid feed slot 511 is etched through the layers 507 after the layers 507 are deposited. The first oxide layer 535 is disposed above a conductive layer 537. The conductive layer 537 can be part of a power circuit, such as a power ground or power supply circuit. The conductive layer 537 will extend from the adjacent layer region 517 into the heat sink region 515. In the illustrated example, the conductive layer 537 will overtake the heat sink region 515 in the trench region 523 and terminate at a distance from the fluid feed slot 511. In the trench region 523, the first oxide layer 535 isolates the conductive layer 537 from the fluid in the fluid feed slot 511. The conductive layer 537 is disposed above a second oxide layer 547. In the illustrated example, the second oxide layer 547 extends and terminates in the adjacent layer region 517. The heat dissipation region 515 is free of the second oxide layer 547. The second oxide layer 547 is disposed over the field oxide layers 513, 513A.

該場氧化物層513會覆蓋該基材509。在本例中,該場氧化物層513會延伸於該鄰接層區517、該散熱區515及該槽區523中。在該鄰接層區517中,該場氧化物層513具有 一第一厚度T。在該散熱區515和該槽區523中,該場氧化物層513A具有一厚度T2,其相對於該第一厚度T是減少的。在所示之例中,該減少的場氧化物場513A會伸入該鄰接區517中,而在該第二氧化物層547終止之點處,終止於該散熱區515的外部。在該槽區523中,該減少的場氧化物場513A會終止於該流體饋槽511。該減少的場氧化物場513A可具有一厚度T2,係為該無減少的厚度T1之大約70%或更少,或大約60%或更少,或大約50%或更少,或大約40%或更少。於此,沒有閘層或蝕刻擋止層在該散熱區515中被提供於該基材上方。該基材509包含摻雜的p井區533,其會重疊該散熱區515並伸入該鄰接層區517和該槽區523中。例如,該p井區533會沿該整個減少的場氧化物場513A延伸並超出。 The field oxide layer 513 covers the substrate 509. In this example, the field oxide layer 513 extends in the adjacent layer region 517, the heat sink region 515, and the trench region 523. In the adjacent layer region 517, the field oxide layer 513 has A first thickness T. In the heat dissipation region 515 and the groove region 523, the field oxide layer 513A has a thickness T2 which is reduced with respect to the first thickness T. In the illustrated example, the reduced field oxide field 513A extends into the contiguous region 517 and terminates outside of the heat sink region 515 at the point where the second oxide layer 547 terminates. In the trench region 523, the reduced field oxide field 513A will terminate in the fluid feed slot 511. The reduced field oxide field 513A can have a thickness T2 of about 70% or less, or about 60% or less, or about 50% or less, or about 40% of the reduced thickness T1. Or less. Here, no gate layer or etch stop layer is provided over the substrate in the heat dissipation region 515. The substrate 509 includes a doped p well region 533 that overlaps the heat sink region 515 and projects into the adjacent layer region 517 and the trench region 523. For example, the p-well 533 will extend along and beyond the entire reduced field oxide field 513A.

在一例中,該流體射出結構501並不具有多晶矽作為一保護性蝕刻擋止物。一乾蝕刻製程可被用來移除一預先曝露或圖案化的第二氧化物層547。例如,當該第二氧化物層547被蝕刻來清除該第二氧化物層547的一部份時,該場氧化物會曝露於該用以清除該第二氧化物層547的同一蝕刻製程,因而可蝕刻並薄化該場氧化物,其並未被任何多晶矽保護。於此最終蝕刻之後,緊鄰於該第二氧化物層547的場氧化物513之該厚度T2可為該原來的場氧化物厚度T之80%或更少,70%或更少,60%或更少,50%或更少,40%或更少,30%或更少,或20%或更少。在一例中,該減少的場氧化物場513A具有一厚度T2為該鄰接厚度T的大約20%和大約80%之間。在一例中,該減少的場氧化物場513A 終止在與該第二氧化物層547大約相同點處。因此,該減少的場氧化物場513A會由該第二氧化物層547的末端點延伸至該流體饋槽511。該減少的場氧化物場513A係被減少成厚得足以提供該導電層537與該基材509之間的電隔離。因此,在該減少的場氧化物場513A下方不需要n井摻雜區531。 In one example, the fluid exit structure 501 does not have polysilicon as a protective etch stop. A dry etch process can be used to remove a pre-exposed or patterned second oxide layer 547. For example, when the second oxide layer 547 is etched to remove a portion of the second oxide layer 547, the field oxide is exposed to the same etching process used to remove the second oxide layer 547. The field oxide can thus be etched and thinned, which is not protected by any polysilicon. After the final etching, the thickness T2 of the field oxide 513 adjacent to the second oxide layer 547 may be 80% or less, 70% or less, 60% or less of the original field oxide thickness T. Less, 50% or less, 40% or less, 30% or less, or 20% or less. In one example, the reduced field oxide field 513A has a thickness T2 between about 20% and about 80% of the adjacent thickness T. In one example, the reduced field oxide field 513A Termination is at approximately the same point as the second oxide layer 547. Therefore, the reduced field oxide field 513A extends from the end point of the second oxide layer 547 to the fluid feed slot 511. The reduced field oxide field 513A is reduced to be thick enough to provide electrical isolation between the conductive layer 537 and the substrate 509. Therefore, the n-well doped region 531 is not required below the reduced field oxide field 513A.

該舉例的流體射出結構501可提供一適當的噴發事件絕緣及噴發事件後冷卻。該第一氧化物層535在該噴發事件時會熱絕緣該電阻器503,而該減少的第二氧化物層547和場氧化物513A可在噴發後容許熱被傳送至該基材509。該導電層537和減少的場氧化物513A會協助導熱至該基材509。 The exemplary fluid ejection structure 501 provides an appropriate eruption event insulation and post-emission event cooling. The first oxide layer 535 thermally insulates the resistor 503 during the erupting event, and the reduced second oxide layer 547 and field oxide 513A allow heat to be transferred to the substrate 509 after eruption. The conductive layer 537 and the reduced field oxide 513A assist in conducting heat to the substrate 509.

在本揭露所述的不同之例中,靠近該電阻器的氧化物層係厚得足以在一噴發事件期間來絕緣,並薄得足以在噴發之後且在流體被噴出一噴發腔室後而再重填該噴發腔室之前,可容許熱發散至該基材來冷卻該電阻器。在本揭露的不同之例中,加熱和冷卻事件會發生在使用小於1微秒至數(或數十)微秒的脈衝寬度範圍內。在本揭露的不同之例中,所有的各層厚度可在大約10至大約2000nm的範圍內。例如一場氧化物層可具有一厚度為大約200至大約1000nm之間,例如在大約400至大約700nm之間。 In a different embodiment of the present disclosure, the oxide layer adjacent the resistor is thick enough to be insulated during an eruption event and is thin enough after the eruption and after the fluid is ejected from a firing chamber. Heat can be dissipated to the substrate to cool the resistor before refilling the firing chamber. In the different examples of the present disclosure, heating and cooling events can occur over a range of pulse widths ranging from less than 1 microsecond to several (or tens of) microseconds. In various embodiments of the present disclosure, all of the layers may have a thickness in the range of from about 10 to about 2000 nm. For example, a field oxide layer can have a thickness between about 200 and about 1000 nm, such as between about 400 and about 700 nm.

場氧化物可藉使用適當的積體電路(IC)晶圓製造技術來被沈積和減少,譬如藉圖案化會阻擋場氧化物生長的膜層,或光微影術及乾或濕蝕刻技術等。在不同之例中,該減少的場氧化物場之厚度T2可為該相鄰厚度T的大約 0至80%之間。例如,該減少的場氧化物厚度當完全略除時(例如被阻止生長)係為0%,或當只部份地移除時係高於0%,例如可至20%、30%、40%、50%、60%、70%或80%。其它的層亦可被佈設或略除而來提供足夠強固的電絕緣和隔離,或來在該結構製造時提供化學或物理性蝕刻擋止物。該等舉例的流體射出結構之該加強的熱性能可以至少某種程度地抑制熱引生的問題,包括一電阻器之鉭保護層的化學或物理性劣化,及該電阻器上的污染物之沈積。使用本揭露的某些範圍例,一較佳且較長使用壽命的電阻器可被獲得,且一較寬廣範圍的流體可被射出。 Field oxides can be deposited and reduced using appropriate integrated circuit (IC) wafer fabrication techniques, such as coatings that block field oxide growth by patterning, or photolithography and dry or wet etching techniques. . In a different example, the reduced field oxide field thickness T2 can be about the adjacent thickness T. Between 0 and 80%. For example, the reduced field oxide thickness is 0% when completely ablated (eg, prevented growth), or greater than 0% when only partially removed, for example, up to 20%, 30%, 40 %, 50%, 60%, 70% or 80%. Other layers may also be routed or omitted to provide sufficiently strong electrical insulation and isolation, or to provide a chemical or physical etch stop during fabrication of the structure. The enhanced thermal properties of such exemplary fluid ejection structures can at least somely inhibit thermal induced problems, including chemical or physical degradation of the protective layer of a resistor, and contaminants on the resistor. Deposition. Using certain ranges of the present disclosure, a preferred and long life resistor can be obtained and a wide range of fluids can be ejected.

401‧‧‧流體射出結構 401‧‧‧ fluid injection structure

403‧‧‧熱電阻器 403‧‧‧Thermal resistor

407‧‧‧層疊 407‧‧‧ cascading

409‧‧‧基材 409‧‧‧Substrate

411‧‧‧流體饋槽 411‧‧‧ fluid feeder

413‧‧‧場氧化物層 413‧‧ ‧ field oxide layer

415‧‧‧散熱區 415‧‧‧heating area

417‧‧‧鄰接層區 417‧‧‧Adjacent area

423‧‧‧槽區 423‧‧‧Slots

431‧‧‧p井區 431‧‧‧p well area

433‧‧‧n井區 433‧‧‧n well area

435、447‧‧‧氧化物層 435, 447‧‧‧ oxide layer

437、443、445‧‧‧導電層 437, 443, 445‧‧‧ conductive layer

441‧‧‧熱電阻器材料層 441‧‧‧Thermal resistor material layer

449‧‧‧閘層 449‧‧‧ gate layer

Claims (15)

一種流體射出結構,包含:眾多個熱電阻器以一每吋至少大約300個的間距列設;一基材;數層在該基材上,包含一散熱區接近於該電阻器,在各電阻器與該基材之間;及一鄰接層區緊鄰於該散熱區,該鄰接層區包含場氧化物在該基材上具有一第一厚度;其中減少的場氧化物在該散熱區中,有一減少的厚度為所述第一厚度的大約0%和80%之間。 A fluid ejection structure comprising: a plurality of thermal resistors arranged at a pitch of at least about 300 per turn; a substrate; and a plurality of layers on the substrate, comprising a heat dissipation region close to the resistor, at each resistor Between the substrate and the substrate; and an adjacent layer region adjacent to the heat dissipation region, the adjacent layer region comprising a field oxide having a first thickness on the substrate; wherein the reduced field oxide is in the heat dissipation region, There is a reduced thickness between about 0% and 80% of the first thickness. 如請求項1之流體射出結構,其中至少一熱電阻器材料層包含該等眾多個熱電阻器,其中該散熱區及該鄰接層區係由堆疊在該基材與該熱電阻器材料層之間的數層所組成。 The fluid ejection structure of claim 1, wherein the at least one thermal resistor material layer comprises the plurality of thermal resistors, wherein the heat dissipation region and the adjacent layer region are stacked on the substrate and the thermal resistor material layer It consists of several layers. 如請求項1之流體射出結構,包含至少一流體槽及至少一熱電阻器陣列平行於該流體槽,其中該減少的場氧化物場會跨延該整個熱電阻器陣列。 The fluid ejection structure of claim 1, comprising at least one fluid channel and at least one thermal resistor array parallel to the fluid channel, wherein the reduced field oxide field spans the entire thermal resistor array. 如請求項1之流體射出結構,其中:該鄰接層區包含至少一氧化物層不同於該鄰接層區中的該場氧化物;且該數層在該散熱區中係沒有該氧化物層。 The fluid ejection structure of claim 1, wherein: the adjacent layer region comprises at least one oxide layer different from the field oxide in the adjacent layer region; and the number of layers does not have the oxide layer in the heat dissipation region. 如請求項1之流體射出結構,其中在該散熱區中的氧化物層之一平均厚度係比在該鄰接層區中者更薄。 The fluid ejection structure of claim 1, wherein an average thickness of one of the oxide layers in the heat dissipation region is thinner than in the adjacent layer region. 如請求項1之流體射出結構,包含一導電廻路層其含有一金屬成分,而由該鄰接層區延伸至該散熱區中。 The fluid ejection structure of claim 1, comprising a conductive via layer comprising a metal component extending from the adjacent layer region into the heat dissipation region. 如請求項6之流體射出結構,其中該導電層為一電力廻路的一部份。 The fluid ejection structure of claim 6, wherein the conductive layer is part of a power circuit. 如請求項1之流體射出結構,其中該散熱區係沒有場氧化物。 The fluid ejection structure of claim 1, wherein the heat dissipation zone has no field oxide. 如請求項8之流體射出結構,其中至少一閘層係設在該基材與該導電層之間。 The fluid ejection structure of claim 8, wherein at least one of the gate layers is disposed between the substrate and the conductive layer. 如請求項8之流體射出結構,其中該基材包含一n井區跨延該散熱區。 The fluid ejection structure of claim 8, wherein the substrate comprises an n-well region spanning the heat dissipation region. 如請求項1之流體射出結構,其中減少層厚度的場氧化物係被提供在該散熱區中,且沒有閘層被設在該散熱區中。 The fluid ejection structure of claim 1, wherein a field oxide system having a reduced layer thickness is provided in the heat dissipation region, and no gate layer is disposed in the heat dissipation region. 如請求項11之流體射出結構,其中該基材包含一p井區跨延該散熱區。 The fluid ejection structure of claim 11, wherein the substrate comprises a p-well region spanning the heat dissipation region. 如請求項1之流體射出結構,包含:至少一噴發腔室靠近至少一個該等電阻器;一流體饋槽通至該噴發腔室;其中該鄰接層區相反於該流體饋槽而緊鄰於該散熱區延伸;及一槽區係被提供在該散熱區與該流體饋槽之間,該槽區包含場氧化物會覆蓋該基材並終止於一流體饋槽。 The fluid ejection structure of claim 1, comprising: at least one firing chamber adjacent to the at least one of the resistors; a fluid feed channel leading to the firing chamber; wherein the adjacent layer region is opposite to the fluid feed slot and adjacent to the A heat sink region extends; and a slot region is provided between the heat sink region and the fluid feed slot, the trench region containing field oxide covering the substrate and terminating in a fluid feed slot. 如請求項1之流體射出結構,其中該鄰接層區更包含:一熱電阻器材料層;至少二氧化物層不同於該場氧化物;及一電力迴路層;且該散熱區更包含:至少一相較於該鄰接層區較少氧化物層;該電力迴路層;及一閘氧化物層。 The fluid ejection structure of claim 1, wherein the adjacent layer region further comprises: a thermal resistor material layer; at least the dioxide layer is different from the field oxide; and a power circuit layer; and the heat dissipation region further comprises: at least One oxide layer is less than the adjacent layer region; the power circuit layer; and a gate oxide layer. 一種流體射出結構,包含:至少一熱電阻器材料層包含一熱電阻器陣列具有一間距為每吋至少約300個;一基材;及至少一氧化物層在一熱電阻器材料層與該基材之間,該至少一氧化物層包含:一減少的場氧化物層場在一接近於該電阻器的區域中設在該基材上方,能在噴發之後加強該電阻器的冷卻;及一無減少的場氧化物層在一接近於該電阻器的區域之外部設在該基材上方。 A fluid ejection structure comprising: at least one layer of thermal resistor material comprising a thermal resistor array having a pitch of at least about 300 per turn; a substrate; and at least one oxide layer in a layer of thermal resistor material and Between the substrates, the at least one oxide layer comprises: a reduced field oxide layer field disposed over the substrate in a region proximate to the resistor to enhance cooling of the resistor after erupting; A field oxide layer having no reduction is disposed over the substrate outside of a region proximate to the resistor.
TW104120556A 2014-06-30 2015-06-25 Fluid ejection structure TWI609798B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
??PCT/US14/44845 2014-06-30
PCT/US2014/044845 WO2016003407A1 (en) 2014-06-30 2014-06-30 Fluid ejection structure

Publications (2)

Publication Number Publication Date
TW201607778A true TW201607778A (en) 2016-03-01
TWI609798B TWI609798B (en) 2018-01-01

Family

ID=51263480

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104120556A TWI609798B (en) 2014-06-30 2015-06-25 Fluid ejection structure

Country Status (5)

Country Link
US (1) US9815282B2 (en)
EP (1) EP3160751B1 (en)
CN (1) CN106068186B (en)
TW (1) TWI609798B (en)
WO (1) WO2016003407A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI743382B (en) * 2017-07-28 2021-10-21 美商惠普發展公司有限責任合夥企業 Fluid ejection device and method of forming a fluid ejection device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10406758B2 (en) * 2013-11-12 2019-09-10 Robotic Research System and method for 3D printing parts with additional features
JP6639671B2 (en) 2016-02-29 2020-02-05 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. Fluid propulsion device including heat sink
CN110036077B (en) 2017-02-24 2022-03-04 惠普发展公司,有限责任合伙企业 Ink-jet primer liquid
JP7114380B2 (en) * 2018-07-20 2022-08-08 キヤノン株式会社 Element substrate and liquid ejection head

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09300623A (en) 1996-05-17 1997-11-25 Hitachi Koki Co Ltd Ink-jet recording head and its device
US5945253A (en) * 1996-08-29 1999-08-31 Xerox Corporation High performance curable polymers and processes for the preparation thereof
US5980025A (en) * 1997-11-21 1999-11-09 Xerox Corporation Thermal inkjet printhead with increased resistance control and method for making the printhead
CN1306904A (en) * 2000-01-21 2001-08-08 汉欣企业有限公司 Ink jetting print bead with bubble driven elastic film
KR100429844B1 (en) 2001-10-25 2004-05-03 삼성전자주식회사 Monolithic ink-jet printhead and manufacturing method thereof
JP2003145767A (en) * 2001-11-09 2003-05-21 Canon Inc Liquid discharge head, its manufacturing method and liquid discharge apparatus
US6504226B1 (en) * 2001-12-20 2003-01-07 Stmicroelectronics, Inc. Thin-film transistor used as heating element for microreaction chamber
US6938993B2 (en) * 2002-10-31 2005-09-06 Benq Corporation Fluid injection head structure
US6890067B2 (en) * 2003-07-03 2005-05-10 Hewlett-Packard Development Company, L.P. Fluid ejection assembly
JP2005081652A (en) 2003-09-08 2005-03-31 Rohm Co Ltd Heater apparatus for inkjet printer head, and method for manufacturing it
KR20090007139A (en) * 2007-07-13 2009-01-16 삼성전자주식회사 Inkjet print head and manufacturing method thereof
US20120091121A1 (en) * 2010-10-19 2012-04-19 Zachary Justin Reitmeier Heater stack for inkjet printheads
US8444255B2 (en) 2011-05-18 2013-05-21 Hewlett-Packard Development Company, L.P. Power distribution in a thermal ink jet printhead

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI743382B (en) * 2017-07-28 2021-10-21 美商惠普發展公司有限責任合夥企業 Fluid ejection device and method of forming a fluid ejection device

Also Published As

Publication number Publication date
EP3160751A1 (en) 2017-05-03
US9815282B2 (en) 2017-11-14
WO2016003407A1 (en) 2016-01-07
CN106068186B (en) 2018-12-21
US20170106651A1 (en) 2017-04-20
EP3160751B1 (en) 2020-02-12
TWI609798B (en) 2018-01-01
CN106068186A (en) 2016-11-02

Similar Documents

Publication Publication Date Title
TWI609798B (en) Fluid ejection structure
JP6566709B2 (en) Inkjet recording head substrate
JP5525519B2 (en) Print head with separated heater
JP2005014601A (en) Ink-jet printhead
TWI474933B (en) Heating element
KR20040034250A (en) Monolithic ink jet printhead having taper shaped nozzle and method of manufacturing thereof
JP2004358971A (en) Integral-type inkjet print head and manufacturing method therefor
JP2003300320A (en) Liquid ejector and printer
JP2005022402A (en) Ink-jet printhead
KR100717022B1 (en) Inkjet printhead and method of manufacturing the same
US20160001560A1 (en) Method of cleaning liquid discharge head
JP2004130810A (en) Integral ink jet printhead with ink chamber limited by side wall, and its manufacturing process
JP2005014615A (en) Thermally-driven inkjet printhead without cavitation damage to heater
JP4604337B2 (en) Printer, printer head and printer head manufacturing method
JP2004237732A (en) Ink jet printhead and method for manufacturing the same
JP2004351931A (en) Ink-jet printhead and its manufacturing method
JP4394464B2 (en) Inkjet print head
KR100499132B1 (en) Inkjet printhead and manufacturing method thereof
JP2005022413A (en) Method of driving inkjet printhead
JP2005125638A (en) Liquid jet head, liquid jet device, and method of manufacturing liquid jet head
KR100477704B1 (en) Monolithic inkjet printhead and method of manufacturing thereof
JP2017087464A (en) Method for manufacturing substrate for liquid discharge device
KR100503086B1 (en) Monolithic inkjet printhead and method of manufacturing thereof
KR100499147B1 (en) Monolithic inkjet printhead having auxiliary heater
US20070296768A1 (en) Print head and fabrication method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees