TW201604570A - A visible light positioning method and a system thereof - Google Patents

A visible light positioning method and a system thereof Download PDF

Info

Publication number
TW201604570A
TW201604570A TW103126233A TW103126233A TW201604570A TW 201604570 A TW201604570 A TW 201604570A TW 103126233 A TW103126233 A TW 103126233A TW 103126233 A TW103126233 A TW 103126233A TW 201604570 A TW201604570 A TW 201604570A
Authority
TW
Taiwan
Prior art keywords
light
receiving device
function
position coordinate
coordinate
Prior art date
Application number
TW103126233A
Other languages
Chinese (zh)
Other versions
TWI533012B (en
Inventor
連振凱
陳衍任
Original Assignee
國立雲林科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立雲林科技大學 filed Critical 國立雲林科技大學
Priority to TW103126233A priority Critical patent/TWI533012B/en
Publication of TW201604570A publication Critical patent/TW201604570A/en
Application granted granted Critical
Publication of TWI533012B publication Critical patent/TWI533012B/en

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Optical Communication System (AREA)

Abstract

A visible light positioning method comprising the following steps: (1) A light power transform step and an electric power transform step calculates an angle/gain relation from the Lambertian model of light signal, (2) An actual position coordinate is calculated by a coordinate calculating step and the electric power transform step, (3) A function modeling method calculates a prediction position coordinate according to a function fitting, (4) An error modifying method aimed to modify an error between the actual position coordinate and the prediction position coordinate, then, the error modifying method calculates the prediction position which had been modified already. This invention uses the light signal to complete a coordinate positioning, the coordinate calculating step and the electric power transform step lets this invention calculates the actual position coordinate without figuring out an angle of the light signal.

Description

應用可見光的定位方法及系統 Method and system for positioning visible light

一種定位方法,尤其是一種應用可見光的定位方法 Positioning method, especially a positioning method using visible light

定位系統目的在提供精確的人員、車輛、船舶、以及航空器之地理位置資訊,廣泛地用於導航、急難救援、運輸規劃等應用。室外定位系統使用射頻訊號是相當普遍的,如全球定位系統(GPS)。但是在室內環境下,因為建築物之遮蔽而使外部之衛星定位訊號並不穩定,且因為室內空間相對距離較短,因此不容易達到精準的定位。目前現有的室內定位技術很多種,理論各有不同,但是不是過於複雜就是效能不佳。 The purpose of the positioning system is to provide accurate geographical information of people, vehicles, ships, and aircraft, and is widely used in navigation, emergency rescue, transportation planning and other applications. Outdoor positioning systems using RF signals are quite common, such as the Global Positioning System (GPS). However, in an indoor environment, the satellite positioning signal of the outside is unstable due to the shielding of the building, and because the relative distance of the indoor space is short, it is not easy to achieve accurate positioning. At present, there are many kinds of indoor positioning technologies, and theories are different, but they are not too complicated or have poor performance.

一種應用可見光的定位方法,其包含下列步驟:步驟一、複數個光接收裝置接收複數個光複數個輸出裝置輸出之一光訊號;步驟二、一光功率轉換步驟及一電功率轉換步驟以朗伯模型計算一角度/增益關係;步驟三、一座標計算步驟及該電功率轉換步驟依據該電功率及一系統參數計算出一實際位置座標; 步驟四、一函數模擬方法依據該角度/增益關係進行一函數擬合,該函數擬合計算出一擬合函數並以該擬合函數計算出一預測位置座標;步驟五、一誤差修正方法針對該實際位置座標與該預測位置座標間之誤差,對該預測位置座標進行補償及修正,並計算出修正過之該預測位置座標。 A method for positioning a visible light, comprising the following steps: Step 1: A plurality of light receiving devices receive a plurality of optical signals outputting an output signal; Step 2, an optical power conversion step and an electrical power conversion step to Lambert The model calculates an angle/gain relationship; step 3, a standard calculation step and the electric power conversion step calculate an actual position coordinate according to the electric power and a system parameter; Step 4: A function simulation method performs a function fitting according to the angle/gain relationship, the function fitting calculates a fitting function and calculates a predicted position coordinate by the fitting function; step 5: an error correction method is The error between the actual position coordinate and the predicted position coordinate, the predicted position coordinate is compensated and corrected, and the corrected predicted position coordinate is calculated.

其中,該函數擬合方法為以一指數函數模型對該角度/增益關係進行該函數擬合。 Wherein, the function fitting method is to fit the function to the angle/gain relationship by an exponential function model.

其中,該誤差修正方法為一誤差補償演算法,該誤差補償演算法如下所示:,其該誤差補償演算法中:d ei 為該誤差修正方法計算後之新最短直線距離;為根據實際情況所運算出之第i組該光輸出裝置與該光接收裝置之間的最短直線距離;及為第i組該光輸出裝置所對應到第 i 組的該補償函數,其中為該實際位置座標。 Wherein, the error correction method is an error compensation algorithm, and the error compensation algorithm is as follows: In the error compensation algorithm: d ei is the new shortest straight line distance calculated by the error correction method; The shortest linear distance between the ith set of the light output device and the light receiving device calculated according to the actual situation; and The compensation function corresponding to the i-th group of the i-th set of the light output device, wherein versus The coordinates of the actual location.

而該誤差正方法以該補償函數和該最短實際距離相乘,完成該預測位置座標之修正,該補償函數如下所示:,其中:QR為該補償函數之最高階數;qr分別為該預測位置座標之各項階數;p qr,i 為第i組該光輸出裝置10對應的第qr階的一補償參 數;及u(n)為連續單位步階函數。 The error positive method multiplies the compensation function by the shortest actual distance to complete the correction of the predicted position coordinate, and the compensation function is as follows: Wherein: the highest order of a compensation function for Q and R; Q r, respectively, and that the order of the predicted position coordinates; p qr, i is the i-th group of the light output apparatus q 10 corresponding to the order r a compensation parameter; and u(n) is a continuous unit step function.

而電功率轉換步驟如下所示:,其中:P e 為該電功率;Ce為光功率轉換為電功率之轉換常數;L r (α)為該光輸出裝置之輻射角度增益;L i (β)為該光接收裝置之入射角度增益;α為該光輸出裝置輸出光訊號的輻射角;及 β 為該光接收裝置接收光訊號的入射角度。 The electric power conversion steps are as follows: Where: P e is the electrical power; C e is the conversion constant of the optical power converted to electrical power; L r (α) is the radiation angle gain of the light output device; L i (β) is the incident angle gain of the light receiving device ; α is the radiation angle at which the light output device outputs the optical signal; and β is the incident angle at which the light receiving device receives the optical signal.

而該系統參數為一最短直線距離,其中:該最短直線距離受一定位空間之空間大小影響。 The system parameter is a shortest linear distance, wherein: the shortest linear distance is affected by the spatial size of a positioning space.

進一步的,該座標計算步驟為應用畢氏定理進行的三邊定位步驟。該實際座標位置為該光接收裝置於該定位空間中之座標;該預測座標位置為該光接收裝置於該定位空間中之座標。該光輸出裝置為LED光源;該光接收裝置為一光檢測器。 Further, the coordinate calculation step is a three-side positioning step using the Bisch's theorem. The actual coordinate position is a coordinate of the light receiving device in the positioning space; the predicted coordinate position is a coordinate of the light receiving device in the positioning space. The light output device is an LED light source; the light receiving device is a light detector.

由上述內容可知本發明有下列優點: It can be seen from the above that the present invention has the following advantages:

1.本發明以可見光作為室內定位系統之訊號並搭配一誤差修正方法使室內定位精準度提昇。 1. The present invention uses visible light as a signal for an indoor positioning system and an error correction method to improve indoor positioning accuracy.

2.藉由接收光訊號完成座標定位,不需預先建立定位資訊。 2. By receiving the optical signal to complete the coordinate positioning, it is not necessary to establish the positioning information in advance.

以該座標計算步驟及該電功率轉換方法使本發明無需進行光訊號之角度判斷,只需計算該光接收裝置接收之電功率( P e )並搭配已知之系統參數即可計算出該最短直線距離( d e ),進而計算出該實際位置座標。 The coordinate calculation step and the electric power conversion method make the invention not need to perform the optical signal angle judgment, and only need to calculate the electric power ( P e ) received by the light receiving device and calculate the shortest linear distance by using the known system parameters ( d e ), and then calculate the actual position coordinates.

10‧‧‧光輸出裝置 10‧‧‧Light output device

20‧‧‧光接收裝置 20‧‧‧Light receiving device

30‧‧‧定位空間 30‧‧‧Location space

( P e )‧‧‧電功率 ( P e )‧‧‧electric power

(x d y d z d )‧‧‧光接收裝置座標 ( x d , y d , z d ) ‧‧‧Light receiving device coordinates

( x ti y ti z ti )‧‧‧光輸出裝置座標 ( x ti , y ti , z ti ) ‧‧‧Light output device coordinates

( d ei )‧‧‧估算的最短直線距離 ( d ei )‧‧‧ Estimated shortest straight line distance

(d i )‧‧‧最短直線距離 ( d i )‧‧‧The shortest straight line distance

(L r (α))‧‧‧輻射角度增益 ( L r (α) )‧‧‧radiation angle gain

(L i (β))‧‧‧入射角度增益 ( L i (β) ) ‧‧‧inclination angle gain

(L t (θ))‧‧‧角度總增益 ( L t (θ) ) ‧ ‧ total angle gain

( α )‧‧‧一輻射角度 ( α )‧‧‧A radiation angle

( β )‧‧‧一入射角度 ( β )‧‧‧ an incident angle

( θ )‧‧‧共同角度 ( θ )‧‧‧Common angle

(α 1/2)‧‧‧輻射半功率角 ( α 1/2 )‧‧‧radiation half power angle

(β 1/2)‧‧‧入射半功率角 ( β 1/2 )‧‧‧incident half power angle

( m r )‧‧‧輻射瓣膜數 ( m r )‧‧‧radiation valves

( m i )‧‧‧入射瓣膜數 ( m i )‧‧‧number of incident valves

( m t )‧‧‧總餘弦階數 ( m t )‧‧‧ total cosine order

圖1為本發明較佳實施例之定位空間側視示意圖 1 is a side view of a positioning space according to a preferred embodiment of the present invention;

圖2為本發明較佳實施例之關係曲線示意圖 2 is a schematic diagram of a relationship curve according to a preferred embodiment of the present invention

圖3為本發明較佳實施例之關係曲線示意圖 3 is a schematic diagram of a relationship curve according to a preferred embodiment of the present invention

圖4為本發明較佳實施例之關係曲線示意圖 4 is a schematic diagram of a relationship curve according to a preferred embodiment of the present invention

圖5為本發明較佳實施例之以理想朗伯模型及實際指數函數繪製之關係曲線圖 Figure 5 is a graph showing the relationship between an ideal Lambertian model and an actual exponential function in accordance with a preferred embodiment of the present invention.

圖6為本發明較佳實施例之以理想朗伯模型及實際指數函數繪製之關係曲線圖 6 is a graph showing the relationship between an ideal Lambertian model and an actual exponential function in accordance with a preferred embodiment of the present invention;

圖7為本發明較佳實施例之以朗伯模型繪製之理想實際/預測位置座標對應圖 7 is a diagram of an ideal actual/predicted position coordinate map drawn by a Lambertian model in accordance with a preferred embodiment of the present invention;

請參考圖1及2,其為本發明之一種可見光定位方法之較佳實施例,該可見光定位方法利用複數個光輸出裝置10輸出之一光訊號,及接收該光訊號之複數個光接收裝置20完成定位一定位空間30中之複數個實際位置座標,該實際位置座標為該光接收裝置20於該定位空間30中之位置,而每一該光訊號皆有不同之光頻率,該光接收裝置20可辨識每一該光訊號的不同頻率。其中,根據朗伯模型(Lambertian model)及指數函數計算出該光訊號被該光輸出裝置10輸出時該光訊號之一輻射角(α)及該光訊號被該光接收裝置20接收時該光訊號之一入射角(β)與一輻射角度增益(L r (α))及一入射角度增益(L i (β))間之一角度/增益關係,該角度/ 增益關係可為一對照表或為一方程式等,本發明實施例中,該角度/增益關係為一關係曲線,如圖2、3及4。本發明利用該角度/增益關係進行一函數擬合,該函數擬合透過數學方法依據該角度/增益關係計算出一擬合函數,該擬合函數之函數值吻合或近似該角度/增益關係。透過代入各項模擬參數於該擬合函數,可計算出代表該光接收裝置20位置的一預測位置座標,進一步的,對該預測位置座標進行誤差修正及補償,使該預測位置座標符合該實際位置座標. Please refer to FIG. 1 and FIG. 2 , which are preferred embodiments of a visible light positioning method according to the present invention. The visible light positioning method uses a plurality of light output devices 10 to output one optical signal and a plurality of light receiving devices that receive the optical signal. 20: Positioning a plurality of actual position coordinates in a positioning space 30, wherein the actual position coordinates are positions of the light receiving device 20 in the positioning space 30, and each of the optical signals has a different optical frequency, and the light receiving Device 20 can identify different frequencies for each of the optical signals. Wherein, the radiation angle (α) of the optical signal when the optical signal is output by the light output device 10 and the light signal received by the light receiving device 20 are calculated according to a Lambertian model and an exponential function. An angle/gain relationship between an incident angle (β) of a signal and a radiation angle gain ( L r (α) ) and an incident angle gain ( L i (β) ), the angle/gain relationship can be a comparison table In the embodiment of the present invention, the angle/gain relationship is a relationship curve, as shown in FIGS. 2, 3, and 4. The invention utilizes the angle/gain relationship to perform a function fitting, and the function fitting calculates a fitting function according to the angle/gain relationship by a mathematical method, and the function value of the fitting function coincides or approximates the angle/gain relationship. By substituting the various simulation parameters in the fitting function, a predicted position coordinate representing the position of the light receiving device 20 can be calculated, and further, error correction and compensation are performed on the predicted position coordinate, so that the predicted position coordinate conforms to the actual Position coordinates.

其中於本發明實施例中,該光輸出裝置10為LED光源,該光接收裝置可為一光檢測器(PD,Photo detector)或為一移動通訊裝置,例如手機。該光輸出裝置10發射該光訊號,該光接收裝置20與一處理單元連結,該光訊號由該光接收裝置20接收後,該光接收裝置20轉換該光訊號為一電功率(P e ),其中該光接收裝置20將該光訊號之光功率及該電功率(P e )之強度以一電訊號輸出至該處理單元,該處理單元透過判斷該電訊號計算出該光接收裝置20之於該定位空間30中的該實際位置座標。其中,該處理單元可為一微處理器、一為控制器(MCU)或為具有運算功能之裝置,在本不限定。 In the embodiment of the present invention, the light output device 10 is an LED light source, and the light receiving device can be a photo detector (PD) or a mobile communication device, such as a mobile phone. The optical output device 10 transmits the optical signal. The optical receiving device 20 is coupled to a processing unit. After the optical signal is received by the optical receiving device 20, the optical receiving device 20 converts the optical signal into an electrical power ( P e ). The light receiving device 20 outputs the optical power of the optical signal and the intensity of the electrical power ( P e ) to the processing unit by an electrical signal, and the processing unit calculates the optical receiving device 20 by determining the electrical signal. The actual position coordinates in the space 30 are located. The processing unit may be a microprocessor, a controller (MCU), or a device having an arithmetic function, which is not limited herein.

該可見光定位方法可包含一定位計算方法、一函數擬合方法及一誤差修正方法,該定位計算方法依據該光訊號之強度及該電功率(P e )之強度計算該實際位置座標,其中,該定位計算方法包含一座標計算步驟、一光功率轉換步驟及一電功率轉換步驟。 該函數擬合方法依據該角度/增益關係計算出該擬合函數。 The visible light positioning method may include a positioning calculation method, a function fitting method, and an error correction method, wherein the positioning calculation method calculates the actual position coordinate according to the intensity of the optical signal and the intensity of the electrical power ( P e ), wherein the The positioning calculation method includes a standard calculation step, an optical power conversion step, and an electric power conversion step. The function fitting method calculates the fitting function according to the angle/gain relationship.

該誤差修正方法計算出之該預測位置座標,因一外在因素之影響,例如:安裝角度、環境光線干擾,造成該預測位置座標與該實際位置座標間的一預測誤差,該誤差修正方法進行計算修正該預測誤差,使該預測位置座標符合該實際位置座標。 The error correction method calculates the predicted position coordinate, because of an external factor, such as: installation angle, ambient light interference, causing a prediction error between the predicted position coordinate and the actual position coordinate, the error correction method is performed The prediction error is corrected such that the predicted position coordinates conform to the actual position coordinates.

本發明實施例中,該座標計算步驟為應用畢氏定理進行的三邊定位步驟,分別利用該光輸出裝置10及該光接收裝置20在該定位空間30中之位置座標進行畢氏定理的計算,於本發明實施例中以xyz三軸定義該定位空間30之三維座標系,其畢氏定理之計算公式如式1所示: In the embodiment of the present invention, the coordinate calculation step is a three-side positioning step using the Bis's theorem, and the calculation of the Bis's theorem is performed by using the light output device 10 and the position coordinates of the light receiving device 20 in the positioning space 30, respectively. In the embodiment of the present invention, the three-dimensional coordinate system of the positioning space 30 is defined by three axes of xyz , and the calculation formula of the Bisch's theorem is as shown in Equation 1:

其中,x d y d z d 代表該光接收裝置20在該定位空間30三維座標系中之一光接收裝置座標(x d y d z d );x ti y ti z ti 代表該光輸出裝置10在該定位空間30中三維座標系中之一光輸出裝置座標(x ti y ti z ti ),在本發明實施例中,安裝於該定位空間30中之該光輸出裝置30為三組,其分別為第一光輸出裝置、第二光輸出裝置及第三光輸出裝置,故i=1~3;d i 為該光輸出裝置10與該光接收裝置20間之一最短直線距離(d i ),在本發明實施例中,安裝於該定位空間30中之該光輸出裝 置30為三組,故i=1~3。 Wherein x d , y d , z d represent a light receiving device coordinate ( x d , y d , z d ) of the light receiving device 20 in the three-dimensional coordinate system of the positioning space 30; x ti , y ti , z ti Representing a light output device coordinate ( x ti , y ti , z ti ) in the three-dimensional coordinate system of the light output device 10 in the positioning space 30, in the embodiment of the present invention, the light installed in the positioning space 30 The output devices 30 are three groups, which are respectively a first light output device, a second light output device, and a third light output device, so i=1~3; d i is between the light output device 10 and the light receiving device 20 One of the shortest linear distances ( d i ), in the embodiment of the present invention, the light output device 30 installed in the positioning space 30 is three groups, so i=1~3.

進一步的,本發明實施例中該光輸出裝置10及該光接收裝置20分別安裝於該定位空間30之頂面及底面,例如室內空間的天花板及地板,其中本發明實施例預設該定位空間30之頂面及底面互為平行,如式2所示,該定位空間30中該光輸出裝置10之z軸座標皆為一相同定值。 Further, in the embodiment of the present invention, the light output device 10 and the light receiving device 20 are respectively mounted on the top surface and the bottom surface of the positioning space 30, such as the ceiling and the floor of the indoor space, wherein the positioning space is preset in the embodiment of the present invention. The top surface and the bottom surface of the 30 are parallel to each other. As shown in Equation 2, the z-axis coordinates of the light output device 10 in the positioning space 30 are all the same value.

該座標計算步驟在上述式2之條件下可將式1所述之該光接收裝置座標(x d y d z d )及該光輸出裝置座標(x ti y ti z ti )進行一線性轉換後透過矩陣運算求得該最短直線距離(d i ),如式3所示。為計算式3中之X矩陣,該處理單元40對式3進行一逆矩陣運算後獲得式4,由式4可知X矩陣。 The coordinate calculation step can perform the light receiving device coordinates ( x d , y d , z d ) of the formula 1 and the light output device coordinates ( x ti , y ti , z ti ) under the condition of the above formula 2 After a linear transformation, the shortest straight line distance ( d i ) is obtained by a matrix operation, as shown in Equation 3. To calculate the X matrix in Equation 3, the processing unit 40 performs an inverse matrix operation on Equation 3 to obtain Equation 4, which is known from Equation 4.

2AX=D (3) 2AX=D (3)

其中,矩陣A為一安裝矩陣,於本發明實施例中該安裝矩陣為以該第一光輸出裝置為參考點,由該第二光輸出裝置及該第三光輸出裝置作為平面座標系中水平距離與垂直距離的變化量。如式5所示: The matrix A is a mounting matrix. In the embodiment of the present invention, the mounting matrix is based on the first light output device, and the second light output device and the third light output device are used as horizontal coordinate systems. The amount of change in distance from the vertical distance. As shown in Equation 5:

矩陣X為該光接收裝置於平面座標系中之光接收裝置座標向量,如式6所示: The matrix X is a coordinate vector of the light receiving device of the light receiving device in the plane coordinate system, as shown in Equation 6:

矩陣D為最短直線距離向量,如式7所示: The matrix D is the shortest straight line distance vector, as shown in Equation 7:

本發明實施例中,該定位計算方法依據該光訊號之強度及該電功率(P e )之強度進行計算出該實際位置座標,其中依據該光輸出裝置10及該光接收裝置20間設置之角度及距離,該光接收裝置20所接收到之該光訊號強度及產生之該電功率(P e )會有所差異,在該光功率轉換步驟中,該光接收裝置20接收該光訊號後產生之一光電流(i e )與該電功率(P e )之關係如式8所示;而該電功率(P e )與該光輸出裝置10之一輸出光功率(P t )及該光接收裝置20之一接收光功率(P r )之關係如式9所示。 In the embodiment of the present invention, the positioning calculation method calculates the actual position coordinate according to the intensity of the optical signal and the intensity of the electric power ( P e ), wherein the angle is set according to the light output device 10 and the light receiving device 20 And the distance between the optical signal received by the optical receiving device 20 and the generated electrical power ( P e ). In the optical power conversion step, the optical receiving device 20 receives the optical signal and generates the optical signal. A relationship between a photocurrent ( i e ) and the electric power ( P e ) is as shown in Equation 8; and the electric power ( P e ) and an output optical power ( P t ) of the light output device 10 and the light receiving device 20 The relationship of one of the received optical powers ( P r ) is as shown in Equation 9.

其中,d代表該光輸出裝置10與該光接收裝置20之安裝位置之距離;R(α)為該光輸出裝置10的幅射強度增益,如式10所示,A(β)為該光接收裝置20的有效接收面積增益,如式11所示,其中,α為該光輸出裝置10輸出光訊號的一輻射角度(α)而β為該光接收裝置20接收光訊號的一入射角度(β),如圖1所示。 Wherein d represents the distance between the light output device 10 and the mounting position of the light receiving device 20; R(α) is the radiation intensity gain of the light output device 10, as shown in Equation 10, A(β) is the light The effective receiving area gain of the receiving device 20 is as shown in Equation 11, where α is a radiation angle ( α ) of the optical output device 10 outputting the optical signal and β is an incident angle of the optical receiving device 20 receiving the optical signal ( β ), as shown in Figure 1.

A(β)=A cos β O(β)C(β) (11) A(β)=A cos β O(β)C(β) (11)

其式10及11中之代號為:m為輻射瓣膜數,如式12所示。 The codes in the formulas 10 and 11 are: m is the number of radiation valves, as shown in Formula 12.

A為該光接收裝置20的表面積、O(β)為光學濾鏡增益、C(β)為聚光鏡增益。 A is the surface area of the light receiving device 20, O(β) is the optical filter gain, and C(β) is the condensing mirror gain.

該電功率轉換步驟如式14所示。 This electric power conversion step is as shown in Equation 14.

其中式14中之函數及代號為:Ce為光功率轉換為電功率之轉換常數;L r (α)為該光輸出裝置之輻射角度增益(L r (α)),如式15所示,其中,請參考圖2,其為以朗伯模型(Lambertian model)繪製之輻射角度增益(L r (α))及輻射半功率角(α 1/2 )之理想關係曲線圖; The function and code in the formula 14 are: C e is a conversion constant for converting optical power into electric power; L r (α) is a radiation angle gain ( L r (α) ) of the light output device, as shown in Equation 15, For example, please refer to FIG. 2 , which is an ideal relationship diagram of the radiation angle gain ( L r (α) ) and the radiation half power angle ( α 1/2 ) drawn by the Lambertian model;

L i (β)為該光接收裝置之入射角度增益(L i (β)),如式16,其中,請參考圖3,其為以朗伯模型(Lambertian model)繪製之入射角度增益(L i (β))及入射半功率角( β 1/2 )之理想關係曲線圖; L i (β) is the incident angle gain ( L i (β) ) of the light receiving device, as in Equation 16, wherein, referring to FIG. 3, the incident angle gain ( L ) plotted by the Lambertian model An ideal relationship diagram of i (β) ) and the incident half power angle ( β 1/2 );

(d)代表該光輸出裝置10與該光接收裝置20之安裝位置之一最短距離(d)。 ( d ) represents the shortest distance ( d ) of one of the mounting positions of the light output device 10 and the light receiving device 20.

其中式15、16中之代號為:m r 為輻射瓣膜數(m r ),隨著該光輸出裝置的輻射半功率角(α 1/2 )變化,如式17所示。 Wherein the codes in the formulas 15 and 16 are: m r is the number of radiation valves ( m r ), which varies as the radiation half power angle ( α 1/2 ) of the light output device is as shown in Equation 17.

m i 為入射瓣膜數(m i ),隨著該光接收裝置的入射半功率角(β 1/2 )變化,如式18所示。 m i is the number of incident valves ( m i ), which varies with the incident half power angle ( β 1/2 ) of the light receiving device, as shown in Equation 18.

本發明實施例中,該光輸出裝置10及該光接收裝置20分別安裝於該定位空間30之頂面及底面,例如室內空間的天花板及地板,其中本發明實施例預設該定位空間30之頂面及底面互為平行,如式2所示,該定位空間30中該光輸出裝置10之z軸座標皆為一相同定值。式17及18中之該輻射角度(α)及該入射角度(β)因該定位空間30之頂面及底面互為平行,而形成內錯角相等。進一步的,式15、16之輻射角度增益(L r (α))及入射角度增益(L i (β))可以一角度總增益(L t (θ))表示,如式20所示: In the embodiment of the present invention, the light output device 10 and the light receiving device 20 are respectively mounted on the top surface and the bottom surface of the positioning space 30, such as the ceiling and the floor of the indoor space, wherein the positioning space 30 is preset in the embodiment of the present invention. The top surface and the bottom surface are parallel to each other. As shown in Equation 2, the z-axis coordinates of the light output device 10 in the positioning space 30 are all the same value. The radiation angle ( α ) and the incident angle ( β ) in Equations 17 and 18 are equal to each other because the top surface and the bottom surface of the positioning space 30 are parallel to each other. Further, the radiation angle gain ( L r (α) ) and the incident angle gain ( L i (β) ) of Equations 15 and 16 can be expressed by an angle total gain ( L t (θ) ), as shown in Equation 20:

其中式20中之代號為:m t 為總餘弦階數(m t )。 Wherein the code in Equation 20 is: m t is the total cosine order ( m t ).

θ為一共同角度(θ),而本發明實施例中該共同角度 θ is a common angle ( θ ), and the common angle in the embodiment of the present invention

(θ)=該輻射角度(α)及該入射角度( β )。 ( θ ) = the radiation angle ( α ) and the incident angle ( β ).

請參考圖4,其為以朗伯模型(Lambertian model)繪製之該角度總增益L t (θ)對應該輻射半功率角(α 1/2 )為50度及該入射半功率 角(β 1/2 )為22度時之理想關係曲線圖。進一步的,該電功率(P e )可由該角度總增益L t (θ)改寫,如式21所示: Please refer to FIG. 4 , which is the total gain L t ) drawn by the Lambertian model corresponding to the radiation half power angle ( α 1/2 ) of 50 degrees and the incident half power angle ( β 1 ). /2 ) is the ideal relationship graph at 22 degrees. Further, the electric power ( P e ) can be rewritten by the total angle gain L t (θ) , as shown in Equation 21:

請參考圖5及6,其圖5分別以朗伯模型(Lambertian model)及指數函數繪製,其內容為該輻射角度增益(L t (α))及該輻射半功率角(α 1/2 )之關係曲線圖;其圖6分別以朗伯模型(Lambertian model)及指數函數繪製,其內容為入射角度增益(L i (β))及入射半功率角(β 1/2 )之關係曲線圖。 Please refer to FIG. 5 and FIG. 6 , which are respectively drawn by a Lambertian model and an exponential function, and the content is the radiation angle gain ( L t (α) ) and the radiation half power angle ( α 1/2 ). The relationship graph is shown in Fig. 6. The graph is plotted by the Lambertian model and the exponential function, and the content is the relationship between the incident angle gain ( L i (β) ) and the incident half power angle ( β 1/2 ). .

本發明實施例中該函數擬合方法以指數函數模型對該該角度/增益關係擬合計算出該擬合函數並以該擬合函數計算出該預測位置座標,該擬合函數如式26及27所示: In the embodiment of the present invention, the function fitting method calculates the fitting function by fitting the angle/gain relationship by an exponential function model, and calculates the predicted position coordinate by using the fitting function, and the fitting function is as shown in Equations 26 and 27 Shown as follows:

其式26及27之擬合函數中之擬合參數,如表1所示: The fitting parameters in the fitting functions of the formulas 26 and 27 are as shown in Table 1:

請參考圖7,其為本發明實施例中,該實際位置座標及該預測位置座標以朗伯模型(Lambertian model)繪製之理想實際/預測位置座標對應圖,其中於理想狀況中該預測位置座標應吻合該實際位置座標,然因該外在因素之影響該預測位置座標與該實際位置座標會出現該預測誤差。 Please refer to FIG. 7 , which is an ideal actual/predicted position coordinate mapping diagram of the actual position coordinate and the predicted position coordinate in a Lambertian model according to an embodiment of the present invention, wherein the predicted position coordinate is ideally used. The actual position coordinate should be matched, but the prediction error occurs due to the influence of the external factor on the predicted position coordinate and the actual position coordinate.

本發明實施例之該誤差修正方法為一誤差補償演算法,該誤差修正方法針對該實際位置座標與該預測位置座標間之誤差進行補償及修正,使修正後之該預測位置座標較吻合該實際位置座標,其該誤差修正方法之計算式如式28所示: The error correction method in the embodiment of the present invention is an error compensation algorithm, and the error correction method compensates and corrects the error between the actual position coordinate and the predicted position coordinate, so that the corrected predicted position coordinate is more consistent with the actual The position coordinate, the calculation formula of the error correction method is as shown in Equation 28:

其式28中之代號及函式為: d ei 為該誤差修正方法計算後之新最短直線距離;為根據實際情況所運算出來之第 i 組該光輸出裝置10與該光接收裝置20之間的最短直線距離;為第 i 組該光輸出裝置10所對應到第 i 組的一補償函 數,其中代號 , 為該實際位置座標。 The code and function in the formula 28 are: d ei is the new shortest straight line distance calculated by the error correction method; The shortest linear distance between the ith group of the light output device 10 and the light receiving device 20 calculated according to actual conditions; a compensation function corresponding to the i-th group of the i-th set of the light output device 10, wherein the code is , The coordinates of the actual location.

式28中之該補償函數如式29所示: The compensation function in Equation 28 is as shown in Equation 29:

其式29中之代號及函式分別為:(1) Q R 為該補償函數之最高階數,本發明實施例中定義 Q=R=N ( N 為正整數);(2) q r 分別為該預測位置座標之各項階數;(3) p qr,i 為第 i 組發射器對應的第 q r 階的一補償參數;(4) u(n)為連續單位步階函數,如式30所示: The code and function in Equation 29 are: (1) Q and R are the highest order of the compensation function, and in the embodiment of the present invention, Q = R = N ( N is a positive integer); (2) q and r is the order of the coordinates of the predicted position; (3) p qr, i is a compensation parameter of the qth and rth orders corresponding to the i-th group of transmitters; (4) u ( n ) is a continuous unit step The function, as shown in Equation 30:

進一步的,於本發明實施例之該誤差修正方法中,具有不同階數之誤差補償,不同階數之誤差補償對該誤差修正方法產生不同之結果,越高階數之誤差補償使該預測位置座標與該實際位置座標間之誤差越小,下表為誤差補償一階(Q=1,R=1)之結果,其該補償參數如表3所示: Further, in the error correction method according to the embodiment of the present invention, error compensation of different orders is performed, and error compensation of different orders produces different results for the error correction method, and higher-order error compensation makes the predicted position coordinate The smaller the error between the coordinates of the actual position and the lower table, the results of the first step of error compensation (Q=1, R=1), the compensation parameters are shown in Table 3:

下表為誤差補償二階(Q=2,R=2)之結果,其該補償參數如表4所示: The following table shows the results of error compensation second order (Q=2, R=2). The compensation parameters are shown in Table 4:

本發明之該可見光定位方法包含下列步驟:步驟一、該光接收裝置20接收該光輸出裝置10輸出之該光訊號,該光訊號由該光接收裝置20轉換為該電功率( P e );步驟二、該光功率轉換步驟及該電功率轉換步驟以朗伯模型(Lambertian model)計算該角度/增益關係;步驟三、該座標計算步驟及該電功率轉換步驟依據該光接收裝置20接收該光訊號轉換之該電功率( P e )強度及參考該系統參數,計算出該實際位置座標;步驟四、該函數模擬方法依據該角度/增益關係進行該函數擬合,該函數擬合計算出該擬合函數並以該擬合函數計算出該預測位置座標;步驟五、該誤差修正方法以該誤差補償演算法針對該實際位置座標與該預測位置座標間之誤差,對該預測位置座標進行補 償及修正。 The visible light positioning method of the present invention comprises the following steps: Step 1: The light receiving device 20 receives the optical signal output by the light output device 10, and the optical signal is converted into the electrical power ( P e ) by the light receiving device 20; The optical power conversion step and the electric power conversion step calculate the angle/gain relationship by a Lambertian model; the third step, the coordinate calculation step, and the electric power conversion step are performed according to the optical receiver 20 receiving the optical signal conversion The electrical power ( P e ) intensity and the reference to the system parameter, the actual position coordinate is calculated; step four, the function simulation method performs the function fitting according to the angle/gain relationship, and the function fits the fitting function and calculates Calculating the predicted position coordinate by using the fitting function; Step 5: The error correction method compensates and corrects the predicted position coordinate by the error compensation algorithm for the error between the actual position coordinate and the predicted position coordinate.

由上述內容可知本發明有下列優點: It can be seen from the above that the present invention has the following advantages:

1.本發明以可見光作為室內定位系統之訊號並搭配一誤差修正方法使室內定位精準度提昇。 1. The present invention uses visible light as a signal for an indoor positioning system and an error correction method to improve indoor positioning accuracy.

2.藉由接收光訊號完成座標定位,不需預先建立定位資訊。 2. By receiving the optical signal to complete the coordinate positioning, it is not necessary to establish the positioning information in advance.

以該座標計算步驟及該電功率轉換步驟使本發明無需進行光訊號之角度判斷,只需計算該光接收裝置接收之電功率( P e )並搭配已知之系統參數即可計算出該最短直線距離( d e ),進而計算出該實際位置座標。 The coordinate calculation step and the electric power conversion step enable the present invention to perform angle judgment of the optical signal, and only need to calculate the electric power ( P e ) received by the optical receiving device and calculate the shortest linear distance by using known system parameters ( d e ), and then calculate the actual position coordinates.

10‧‧‧光輸出裝置 10‧‧‧Light output device

20‧‧‧光接收裝置 20‧‧‧Light receiving device

30‧‧‧定位空間 30‧‧‧Location space

Claims (10)

一種應用可見光的定位方法,其包含下列程序:複數個光接收裝置接收複數個光輸出裝置輸出之一光訊號;一光功率轉換步驟及一電功率轉換步驟以朗伯模型計算一角度/增益關係;一座標計算步驟及該電功率轉換步驟依據該電功率及一系統參數計算出一實際位置座標;一函數模擬方法依據該角度/增益關係進行一函數擬合,該函數擬合計算出一擬合函數並以該擬合函數計算出一預測位置座標;一誤差修正方法針對該實際位置座標與該預測位置座標間之誤差,對該預測位置座標進行補償及修正,並計算出修正過之該預測位置座標。 A method for positioning a visible light, comprising: a plurality of light receiving devices receiving an optical signal outputted by a plurality of light output devices; an optical power conversion step and an electrical power conversion step calculating an angle/gain relationship using a Lambertian model; A standard calculation step and the electric power conversion step calculate an actual position coordinate according to the electric power and a system parameter; a function simulation method performs a function fitting according to the angle/gain relationship, and the function fitting calculates a fitting function and The fitting function calculates a predicted position coordinate; an error correction method compensates and corrects the predicted position coordinate for the error between the actual position coordinate and the predicted position coordinate, and calculates the corrected predicted position coordinate. 如專利範圍第1項之應用可見光的定位方法,該函數擬合方法為以一指數函數模型對該角度/增益關係進行該函數擬合。 For example, in the method of applying visible light according to item 1 of the patent scope, the function fitting method is to fit the function to the angle/gain relationship by an exponential function model. 如專利範圍第1或2項之應用可見光的定位方法,該誤差修正方法為一誤差補償演算法,該誤差補償演算法如下所示:,其該誤差補償演算法中: d ei 為該誤差修正方法計算後之新最短直線距離;為根據實際情況所運算出之第i組該光輸出裝置與該光接收裝置之間的最短直線距離;及為第 i 組該光輸出裝置所對應到第 i 組的該補償 函數,其中為該實際位置座標。 For example, in the method of applying visible light according to the first or second aspect of the patent, the error correction method is an error compensation algorithm, and the error compensation algorithm is as follows: In the error compensation algorithm: d ei is the new shortest straight line distance calculated by the error correction method; The shortest linear distance between the ith set of the light output device and the light receiving device calculated according to the actual situation; and The compensation function corresponding to the i-th group of the i-th set of the light output device, wherein versus The coordinates of the actual location. 如專利範圍第3項之應用可見光的定位方法,該誤差正方法以該補償函數和該最短實際距離相乘,完成該預測位置座標之修正,該補償函數如下所示:,其中: Q R 為該補償函數之最高階數; q r 分別為該預測位置座標之各項階數; p qr,i 為第 i 組該光輸出裝置對應的第 q r 階的一補償參數;及 u(n)為連續單位步階函數。 For example, in the third aspect of the patent scope, a method for applying visible light is applied. The error positive method multiplies the compensation function by the shortest actual distance to complete the correction of the predicted position coordinate. The compensation function is as follows: Where: Q and R are the highest order of the compensation function; q and r are the orders of the predicted position coordinates; p qr, i is the qth and rth order corresponding to the i-th group of the light output device A compensation parameter; and u ( n ) is a continuous unit step function. 如專利範圍第4項之應用可見光的定位方法,電功率轉換步驟如下所示:,其中: P e 為該電功率;Ce為光功率轉換為電功率之轉換常數;L r (α)為該光輸出裝置之輻射角度增益;L i (β)為該光接收裝置之入射角度增益;α為該光輸出裝置輸出光訊號的輻射角;及β為該光接收裝置接收光訊號的入射角度。 As for the method of applying visible light according to item 4 of the patent scope, the electric power conversion steps are as follows: Where: P e is the electrical power; C e is the conversion constant of the optical power converted to electrical power; L r (α) is the radiation angle gain of the light output device; L i (β) is the incident angle gain of the light receiving device ; α is the radiation angle at which the light output device outputs the optical signal; and β is the incident angle at which the light receiving device receives the optical signal. 如專利範圍第5項之應用可見光的定位方法,該系統參數為一接收裝置高度。 The method for positioning visible light according to item 5 of the patent scope, the system parameter is a receiving device height. 如專利範圍第6項之應用可見光的定位方法,該座標計算步驟為應用畢氏定理進行的三邊定位步驟。 For example, in the method of applying visible light according to item 6 of the patent scope, the coordinate calculation step is a three-side positioning step using the Pearson's theorem. 如專利範圍第7項之應用可見光的定位方法,該實際座標位置為該光接收裝置於該定位空間中之座標;該預測座標位置為該光接收裝置於該定位空間中之座標。 For example, in the method of applying visible light according to Item 7, the actual coordinate position is a coordinate of the light receiving device in the positioning space; the predicted coordinate position is a coordinate of the light receiving device in the positioning space. 如專利範圍第8項之應用可見光的定位方法,該光輸出裝置為LED光源;該光接收裝置為一光檢測器。 For example, in the method of positioning visible light according to Item 8 of the patent, the light output device is an LED light source; the light receiving device is a light detector. 一種應用可見光的定位系統,其中包含一光輸出裝置、一光接收裝置及一處理單元,該光輸出裝置及該光接收裝置,其中:該光輸出裝置可輸出一光訊號;該光接收裝置可接收該光訊號,並將該光訊號轉換為電功率,並將該電功率之強度轉換為一電訊號輸出;及該處理單元與該光接收裝置連結,該處理單元接收該電功率強度之該電訊號,依據該電訊號計算出該光接收裝置於一定位空間中之一實際位置座標及一預測位置座標,並對該實際位置座標及該預測位置座標間之誤差進行補償及修正。 A positioning system for applying visible light, comprising: a light output device, a light receiving device and a processing unit, the light output device and the light receiving device, wherein: the light output device can output an optical signal; the light receiving device can Receiving the optical signal, converting the optical signal into electrical power, and converting the intensity of the electrical power into an electrical signal output; and the processing unit is coupled to the optical receiving device, and the processing unit receives the electrical signal of the electrical power intensity, Calculating an actual position coordinate and a predicted position coordinate of the light receiving device in a positioning space according to the electrical signal, and compensating and correcting the error between the actual position coordinate and the predicted position coordinate.
TW103126233A 2014-07-31 2014-07-31 A visible light positioning method and a system thereof TWI533012B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103126233A TWI533012B (en) 2014-07-31 2014-07-31 A visible light positioning method and a system thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103126233A TWI533012B (en) 2014-07-31 2014-07-31 A visible light positioning method and a system thereof

Publications (2)

Publication Number Publication Date
TW201604570A true TW201604570A (en) 2016-02-01
TWI533012B TWI533012B (en) 2016-05-11

Family

ID=55809624

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103126233A TWI533012B (en) 2014-07-31 2014-07-31 A visible light positioning method and a system thereof

Country Status (1)

Country Link
TW (1) TWI533012B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9954614B2 (en) 2016-04-08 2018-04-24 Industrial Technology Research Institute Luminaire positioning system and method thereof
TWI627433B (en) * 2017-10-20 2018-06-21 陳政諄 Indoor light positioning method and system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9954614B2 (en) 2016-04-08 2018-04-24 Industrial Technology Research Institute Luminaire positioning system and method thereof
TWI627433B (en) * 2017-10-20 2018-06-21 陳政諄 Indoor light positioning method and system

Also Published As

Publication number Publication date
TWI533012B (en) 2016-05-11

Similar Documents

Publication Publication Date Title
Rahman et al. Indoor positioning by LED visible light communication and image sensors
Wang et al. The research of indoor positioning based on visible light communication
US10075240B2 (en) Multi-receiving-point geometrical center locating system and method for visible light communication
CN106443578B (en) A kind of indoor positioning base station coordinates scaling method
US20080259310A1 (en) Optical position detection device and electronic equipment
WO2014153430A1 (en) Indoor navigation via multi-beam laser projection
CN107037404B (en) Visible light indoor positioning method
US20180087910A1 (en) Methods and systems for geometrical optics positioning using spatial color coded leds
CN102216800B (en) Sensors, systems and methods for optical position sensing
Xu et al. Experimental indoor visible light positioning systems with centimeter accuracy based on a commercial smartphone camera
Plets et al. Efficient 3D trilateration algorithm for visible light positioning
Plets et al. A performance comparison of different cost functions for RSS-based visible light positioning under the presence of reflections
US20170094471A1 (en) Altitude-based indoor or outdoor detection
US20120154824A1 (en) Position measuring apparatus and method
TWI533012B (en) A visible light positioning method and a system thereof
KR101780122B1 (en) Indoor Positioning Device Using a Single Image Sensor and Method Thereof
Taparugssanagorn et al. A hexagonal coverage LED-ID indoor positioning based on TDOA with extended Kalman filter
Bai et al. A high-coverage camera assisted received signal strength ratio algorithm for indoor visible light positioning
US20180267545A1 (en) Mobile body position estimation system, apparatus, and method
CN111413670B (en) Enhanced camera-assisted positioning method based on received signal strength ratio
Wu et al. Localization accuracy improvement of a visible light positioning system based on the linear illumination of LED sources
JP2010025738A (en) Position detecting system and method for detecting position
CN111220948A (en) Single LED lamp indoor high-precision three-dimensional positioning method, device and system
Hussain et al. Camera pose estimation using a VLC-modulated single rectangular LED for indoor positioning
JP2017227600A (en) Wireless device position estimation device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees