TW201602031A - ZnONanosheets layer and producing method thereof - Google Patents

ZnONanosheets layer and producing method thereof Download PDF

Info

Publication number
TW201602031A
TW201602031A TW103122916A TW103122916A TW201602031A TW 201602031 A TW201602031 A TW 201602031A TW 103122916 A TW103122916 A TW 103122916A TW 103122916 A TW103122916 A TW 103122916A TW 201602031 A TW201602031 A TW 201602031A
Authority
TW
Taiwan
Prior art keywords
zinc oxide
zinc
oxide nanosheet
aqueous solution
nanosheet
Prior art date
Application number
TW103122916A
Other languages
Chinese (zh)
Other versions
TWI496752B (en
Inventor
楊勝州
劉宜鑫
姬梁文
Original Assignee
國立虎尾科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立虎尾科技大學 filed Critical 國立虎尾科技大學
Priority to TW103122916A priority Critical patent/TWI496752B/en
Application granted granted Critical
Publication of TWI496752B publication Critical patent/TWI496752B/en
Publication of TW201602031A publication Critical patent/TW201602031A/en

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

A method of prepare Zinc Oxide nano-sheet structure layer, comprising the steps of: (1) A ZnO seed layer is then deposited on the surface substrate; (2) The substrate was immersed into an aqueous solution of contained zinc ions and hydroxide ions; (3) The complex Zinc Oxide nanoparticle aggregates or replacement, and then accumulated on the Zinc Oxide seed layer surface. And gradually grow to form vertical structure Zinc Oxide nanosheet structure layer.

Description

氧化鋅奈米片構造層及其製造方法Zinc oxide nanosheet structural layer and manufacturing method thereof

一種奈米構造及製程方法,尤其是關於一種成長具有奈米片狀構造的氧化鋅層製造方法。A nanostructure and process method, and more particularly to a method for producing a zinc oxide layer having a nanosheet structure.

氧化鋅(znic oxide,ZnO),屬於II-VI族寬能隙半導體材料,其結構為纖鋅礦結構(Wurtzite structure),晶格常數a=3.2539Ǻ,c=5.2098 Ǻ,c/a比值為接近完美的1.633。氧化鋅屬於直接能隙(direct bandgap)半導體,其能隙寬度在室溫下約為3.37eV,並且具有高激子結合能(excition binding energy),約為60meV,在可見光範圍具有高穿透率。氧化鋅材料也具光電導(photoconductive)特性、壓電(piezoelectric)特性、聲光(acousto-electric)效應以及電光(electro-optical)效應等,因此廣泛的應用在光檢測器、氣體偵測器以及調變器、發光二極體、CIGS太陽能電池、染料敏化電池(DSSC)以及雷射等元件。Zn oxide (ZnO), belonging to the II-VI wide-gap semiconductor material, has a structure of wurtzite structure, lattice constant a=3.2539Ǻ, c=5.2098 Ǻ, c/a ratio Close to perfect 1.633. Zinc oxide is a direct bandgap semiconductor with an energy gap width of about 3.37 eV at room temperature and high exciton binding energy of about 60 meV with high transmittance in the visible range. . Zinc oxide materials also have photoconductive properties, piezoelectric properties, acousto-electric effects, and electro-optical effects, and are therefore widely used in photodetectors and gas detectors. And modulators, light-emitting diodes, CIGS solar cells, dye-sensitized cells (DSSC) and laser components.

為了改善所製造的元件電氣特性,目前有部分研究試圖在氧化鋅層形成各種不同的構造,例如表面粗糙化、形成微結構或成長奈米顆粒等,該些具有微結構的氧化鋅層在製造上頗為不便,且其或許比單純平面氧化鋅鍍層或有部分性質提昇,但其特性表現仍不甚嘉,尤其是應用於光學方面。In order to improve the electrical characteristics of the fabricated components, some studies have attempted to form various structures in the zinc oxide layer, such as surface roughening, formation of microstructures or growth of nano-particles, etc., which are manufactured in a microstructured zinc oxide layer. It is quite inconvenient, and it may be more improved than the simple planar zinc oxide coating, but its characteristics are still not very good, especially in the optical aspect.

為了解決既有的氧化鋅層製程方式不易、氧化鋅層之電氣效果不佳之技術問題,本發明提供一種成長奈米結構氧化鋅層的製造方法,透過簡便的製程方式可以製造片狀構造的氧化鋅奈米層,解決現有技術製作困難以及應用缺陷的問題。In order to solve the technical problem that the existing zinc oxide layer manufacturing method is not easy and the electrical effect of the zinc oxide layer is not good, the present invention provides a method for manufacturing a zinc oxide layer having a grown nanostructure, and the oxidation of the sheet structure can be produced by a simple process. The zinc nano layer solves the problems of the prior art manufacturing difficulties and application defects.

本發明提出一種氧化鋅奈米片構造層之製造方法,其步驟包含:The invention provides a method for manufacturing a zinc oxide nanosheet structural layer, the steps of which comprise:

沈積一氧化鋅晶種層於一基板之表面;Depositing a zinc oxide seed layer on a surface of a substrate;

將該基板置入於含有鋅離子及氫氧根離子之一水溶液中;及The substrate is placed in an aqueous solution containing one of zinc ions and hydroxide ions;

複數個氧化鋅奈米片團聚或置換並累積於該氧化鋅晶種層表面並逐漸成長形成一站立片狀型態,形成一氧化鋅奈米片構造層。A plurality of zinc oxide nanosheets are agglomerated or replaced and accumulated on the surface of the zinc oxide seed layer and gradually grow to form a standing sheet shape to form a zinc oxide nanosheet structural layer.

其中,該水溶液之pH值為11~13。Wherein, the pH of the aqueous solution is 11-13.

其中,該基板為玻璃基板,該氧化鋅晶種層利用射頻磁控濺鍍沈積於該基板表面。Wherein, the substrate is a glass substrate, and the zinc oxide seed layer is deposited on the surface of the substrate by radio frequency magnetron sputtering.

其中,將該基板置入於含有鋅離子及氫氧根離子之一水溶液之步驟,係將該玻璃基板10置於該水溶液中並保持於室溫下反應。Here, the substrate is placed in an aqueous solution containing one of zinc ions and hydroxide ions, and the glass substrate 10 is placed in the aqueous solution and kept at room temperature for reaction.

其中,該水溶液較佳含有濃度為0.1M之一六水合硝酸鋅以及濃度為0.4M之一氫氧化鈉以去離子水調和後攪拌機攪拌均勻,六水合硝酸鋅與氫氧化鈉之體積比為5:75。Wherein, the aqueous solution preferably contains a concentration of 0.1 M of zinc nitrate hexahydrate and a concentration of 0.4 M sodium hydroxide, and the mixture is uniformly stirred by deionized water, and the volume ratio of zinc nitrate to sodium hydroxide is 5 :75.

其中,該水溶液中團聚而累積在該氧化鋅晶種層表面形成站立片狀型態,係依據下列反應步驟完成:Wherein, the agglomeration in the aqueous solution accumulates on the surface of the zinc oxide seed layer to form a standing sheet shape, which is completed according to the following reaction steps:

鋅離子與氫氧根離子子反應產生氫氧化鋅沈澱叢集(clusters)於該氧化鋅晶種層表面;氫氧化鋅沈澱叢集與水溶液中氫氧根離子反應溶解形成鋅酸根離子錯合物;及鋅酸根離子錯合物去水合形成氧化鋅奈米片構造。The zinc ion reacts with the hydroxide ion to generate a zinc hydroxide precipitation cluster on the surface of the zinc oxide seed layer; the zinc hydroxide precipitation cluster reacts with the hydroxide ion in the aqueous solution to form a zincate ion complex; The zincate ion complex dehydrates to form a zinc oxide nanosheet structure.

本發明又提供一種氧化鋅奈米片構造層,其包含形成於一基板且為站立片狀型態之複數個氧化鋅奈米片,兩兩相鄰之間的該氧化鋅奈米片形成複數個奈米間隔通道,每個該氧化鋅奈米片主要朝向c軸方向(c-axis)生成The invention further provides a zinc oxide nanosheet structural layer comprising a plurality of zinc oxide nanosheets formed on a substrate and in a standing sheet shape, wherein the zinc oxide nanosheets adjacent to each other form a plurality a nanometer interval channel, each of which is mainly generated toward the c-axis direction (c-axis)

其中,該氧化鋅奈米片之厚度為10奈米以內。Wherein, the thickness of the zinc oxide nanosheet is within 10 nm.

其中,該氧化鋅奈米片之平均長度為1.2µm+/-10%。Wherein, the zinc oxide nanosheet has an average length of 1.2 μm +/- 10%.

其中,該氧化鋅奈米片24之平均厚度為5nm+/-10%。The zinc oxide nanosheet 24 has an average thickness of 5 nm +/- 10%.

由上述說明可知,本發明具有以下優點:As can be seen from the above description, the present invention has the following advantages:

1.本發明利用水溶液法形成氧化鋅奈米片構造,可於一般容器內進行化學反應形成固態生成物,相對於其他利用高溫燒結法製得之結晶產物,不僅可省去研磨的過程及避免可能夾帶的雜質。1. The invention adopts an aqueous solution method to form a zinc oxide nanosheet structure, which can be chemically reacted in a general container to form a solid product, and the crystal product obtained by the high-temperature sintering method can not only eliminate the grinding process and avoid the possibility. Entrained impurities.

2.本發明所形成氧化鋅奈米片構造為薄膜型態的二維奈米結構,亦即在水平的方向(X與Y軸)並未受到奈米尺度的限制,而在Z軸的方向有著奈米尺度的表現,使得本發明能廣泛應用於氣體感測器、光感測器或發光二極體等等元件。2. The zinc oxide nanosheet formed by the present invention is constructed as a two-dimensional nanostructure of a film type, that is, in a horizontal direction (X and Y axes) is not limited by the nanometer scale, but in the direction of the Z axis. The performance on the nanometer scale makes the invention widely applicable to components such as gas sensors, photo sensors or light-emitting diodes.

請參考圖1、2、3a、3b,本發明氧化鋅奈米片構造層的製造方法之一較佳實施例,其製造步驟包含:Referring to Figures 1, 2, 3a and 3b, a preferred embodiment of the method for producing a zinc oxide nanosheet structural layer of the present invention comprises the following steps:

Step1. 沈積一氧化鋅(ZnO)晶種層20於一玻璃基板10之表面:Step 1. Depositing a zinc oxide (ZnO) seed layer 20 on the surface of a glass substrate 10:

該玻璃基板10在沈積該氧化鋅晶種層20前較佳先以一化學性清洗手段將其表面之雜質與汙垢清除,該化學性清洗手段為浸泡該玻璃基板10於一有機溶劑中將其表面上之雜質或油汙去除,較佳為浸泡於一丙酮(Acetone)10分鐘,並再浸泡於一異丙醇(Isopropyl alcohol)10分鐘,又利用一去離子水將其上之該有機溶劑清洗乾淨後以100o C加熱乾燥30分鐘。Before depositing the zinc oxide seed layer 20, the glass substrate 10 preferably removes impurities and dirt on the surface by a chemical cleaning means for immersing the glass substrate 10 in an organic solvent. The surface is removed by impurities or oil stains, preferably immersed in acetone (Acetone) for 10 minutes, and then immersed in Isopropyl alcohol for 10 minutes, and the organic solvent is washed with a deionized water. After clean, dry at 100 o C for 30 minutes.

該氧化鋅晶種層20較佳為利用射頻磁控濺鍍(Ratio Frequency Magnetron Sputter)之方法沈積於該玻璃基板10表面,較佳的該氧化鋅晶種層20沈積之厚度為25nm。本實施例利用濺鍍之方法將該氧化鋅晶種層20沈積於該玻璃基板10表面,可解決該玻璃基板10表面與該氧化鋅晶種層20晶格不匹配的問題,使該氧化鋅晶種層20可牢固地沈積於該玻璃基板10表面,也可調節該氧化鋅晶種層20沈積範圍,控制本實施例之奈米氧化鋅之尺寸大小。The zinc oxide seed layer 20 is preferably deposited on the surface of the glass substrate 10 by a method of a Ratio Frequency Magnetron Sputter. Preferably, the zinc oxide seed layer 20 is deposited to a thickness of 25 nm. In this embodiment, the zinc oxide seed layer 20 is deposited on the surface of the glass substrate 10 by sputtering, and the problem of lattice mismatch between the surface of the glass substrate 10 and the zinc oxide seed layer 20 can be solved. The seed layer 20 can be firmly deposited on the surface of the glass substrate 10, and the deposition range of the zinc oxide seed layer 20 can also be adjusted to control the size of the nano zinc oxide of the embodiment.

Step2. 將該玻璃基板10置入於含有鋅離子(Zn2+ )及氫氧根離子(OH- )之一水溶液中:Step 2. Place the glass substrate 10 in an aqueous solution containing zinc ions (Zn 2+ ) and hydroxide ions (OH - ):

本實施例之該水溶液較佳含有濃度為0.1M之一六水合硝酸鋅(Zinc nitrate hexahydrate, Zn(NO3 )2 ‧6H2 O)75mL與濃度為0.4M之一氫氧化鈉(NaOH)75mL以去離子水調和後利用一磁石攪拌機攪拌均勻,將該玻璃基板10置於該水溶液中並保持於室溫(25o C)下反應1小時,該水溶液較佳pH值為11~13。The aqueous solution of the present embodiment preferably contains a concentration of 0.1 M of zinc nitrate hexahydrate (Zn(NO 3 ) 2 ‧6H 2 O) 75 mL and a concentration of 0.4 M sodium hydroxide (NaOH) 75 mL. in deionized water using a magnet stirrer reconcile stir the glass substrate 10 is placed in the solution and maintained at room temperature (25 o C) for 1 hour, the pH of the aqueous solution is preferably 11 ~ 13.

Step3. 成長氧化鋅奈米片構造層:Step3. Growing zinc oxide nanosheet structural layer:

複數個氧化鋅奈米片24團聚或置換並累積於該氧化鋅晶種層20表面並逐漸成長形成一站立片狀型態,形成一氧化鋅奈米片構造層,如圖3所示。兩兩相鄰之間的該氧化鋅奈米片24形成複數個奈米間隔通道,該奈米間隔通道為相鄰的該氧化鋅奈米片構造之相對應連續表面所形成空間,該奈米間隔通道可與一外部光進入而於相鄰之該氧化鋅奈米片24表面多次反射,使該氧化鋅奈米片24大幅提昇可能產生的光電效應。如此,當本實施例之該氧化鋅奈米片構造層應用於光感測器時,可以大幅提昇感測敏感度,達到其他種類鍍層或其他微結構最佳的感測效能。A plurality of zinc oxide nanosheets 24 are agglomerated or replaced and accumulated on the surface of the zinc oxide seed layer 20 and gradually grow to form a standing sheet form to form a zinc oxide nanosheet structural layer, as shown in FIG. The zinc oxide nanosheets 24 adjacent to each other form a plurality of nano-spaced channels which are spaces formed by adjacent continuous surfaces of the zinc oxide nanosheet structure, the nanometer The spacer channel can be reflected multiple times with an external light entering the adjacent surface of the zinc oxide nanosheet 24, so that the zinc oxide nanosheet 24 greatly enhances the photoelectric effect that may be generated. Thus, when the zinc oxide nanosheet structural layer of the embodiment is applied to a photosensor, the sensing sensitivity can be greatly improved to achieve the best sensing performance of other types of plating or other microstructures.

以下簡述該氧化鋅奈米片24於該水溶液中團聚而累積在該氧化鋅晶種層20表面形成站立片狀型態之反應機制原理:The principle of the reaction mechanism in which the zinc oxide nanosheet 24 is agglomerated in the aqueous solution to form a standing sheet-like pattern on the surface of the zinc oxide seed layer 20 is briefly described below:

Zn2+ +2OH- →Zn(OH)2 ↓(1)Zn 2+ +2OH - →Zn(OH) 2 ↓(1)

Zn(OH)2 +2 OH- →Zn(OH)4 2- (2)Zn(OH) 2 +2 OH - →Zn(OH) 4 2- (2)

Zn(OH)4 2- →ZnO+2H2 O+2OH- (3)Zn(OH) 4 2- →ZnO+2H 2 O+2OH - (3)

式(1),鋅離子(Zn2+ )與氫氧根離子(OH- )子反應產生氫氧化鋅 (Zinc hydroxide, Zn(OH)2 )沈澱叢集(clusters)於該氧化鋅晶種層20表面;Formula (1), zinc ion (Zn 2+ ) reacts with hydroxide ion (OH - ) to produce zinc hydroxide (Zn(OH) 2 ) precipitate clusters in the zinc oxide seed layer 20 surface;

式(2),氫氧化鋅沈澱叢集(Zn(OH)2 clusters) 與水溶液中氫氧根離子(OH- )反應溶解形成鋅酸根離子錯合物(Zincate ion, Zn(OH)4 2- );Formula (2), zinc hydroxide precipitate clusters (Zn(OH) 2 clusters) react with hydroxide ions (OH - ) in aqueous solution to form zincate ion complex (Zincate ion, Zn(OH) 4 2- ) ;

式(3),鋅酸根離子錯合物(Zincate ion, Zn(OH)4 2- )去水合形成氧化鋅沈積物(ZnO)。Formula (3), zincate ion complex (Zincate ion, Zn(OH) 4 2- ) dehydrates to form a zinc oxide deposit (ZnO).

本發明利用水溶液法形成該氧化鋅奈米片24,利用氫氧化鈉(NaOH)改變該水溶液中的pH值,使該水溶液中產生金屬離子錯合物反應,因水溶液中之pH值變化小,所形成之金屬離子錯合物濃度較低,使氧化鋅結晶反應在低過飽和度之水溶液下進行。In the present invention, the zinc oxide nanosheet 24 is formed by an aqueous solution method, and the pH value in the aqueous solution is changed by using sodium hydroxide (NaOH) to cause a metal ion complex reaction in the aqueous solution, because the pH value in the aqueous solution changes little. The concentration of the metal ion complex formed is low, and the zinc oxide crystallization reaction is carried out under an aqueous solution of low supersaturation.

在水溶液中的均質成核(Homogeneous nucleation)所需表面活化能會比在該玻璃基板10表面的異質成核所需克服的表面活化能來的大,因此在低過飽和度的水溶液中,該玻璃基板10表面的異質成長比水溶液中的均質成長來的容易進行,且氫氧化鈉(NaOH)將水溶液調節到鹼性環境下,使金屬離子錯合物帶有電荷,金屬離子錯合物因電荷互相排斥在水溶液中不易聚集。本發明之該玻璃基板10表面預先鍍上一層氧化鋅晶種層20,該水溶液中的該鋅酸根離子錯合物可以直接與該氧化鋅結晶反應,沿著結晶面作該氧化鋅的成長,降低異質成長時的活化能,而提高該氧化鋅奈米片24生成的效率。The surface activation energy required for Homogeneous nucleation in an aqueous solution is greater than the surface activation energy to be overcome by heterogeneous nucleation on the surface of the glass substrate 10, so in an aqueous solution with low supersaturation, the glass The heterogeneous growth of the surface of the substrate 10 is easier than the homogeneous growth in the aqueous solution, and the sodium hydroxide (NaOH) adjusts the aqueous solution to an alkaline environment, causing the metal ion complex to carry a charge, and the metal ion complex is charged. Mutual exclusion is less likely to accumulate in aqueous solution. The surface of the glass substrate 10 of the present invention is previously plated with a zinc oxide seed layer 20, and the zincate ion complex in the aqueous solution can directly react with the zinc oxide crystal to grow the zinc oxide along the crystal surface. The activation energy at the time of heterogeneous growth is lowered, and the efficiency of the formation of the zinc oxide nanosheet 24 is improved.

請參考圖2,本發明之X光繞射圖(X-ray diffraction analysis)顯示該氧化鋅奈米片24團聚累積之方向主要朝向c軸向延伸(c-axis-elongated),其中,(002)繞射波峰值大於其他波峰值如(100)、(101)、(102)、(110)、(103)及(112)顯示本發明之該氧化鋅奈米片24主要朝向c軸方向(c-axis)生成。Referring to FIG. 2, the X-ray diffraction analysis of the present invention shows that the direction of accumulation of the zinc oxide nanosheet 24 is mainly c-axis-elongated, wherein (002 The diffracted wave peak is larger than the other wave peaks such as (100), (101), (102), (110), (103), and (112), and the zinc oxide nanosheet 24 of the present invention is mainly oriented toward the c-axis direction ( C-axis) generated.

請參考圖3a, 3b,其顯示本發明該氧化鋅奈米片24以站立片狀型態形成於該氧化鋅晶種層20表面,且該氧化鋅奈米片24之平均厚度約為5nm+/-10%,平均長度約為1.2µm+/-10%,交錯成長於該氧化鋅晶種層20表面。Please refer to FIG. 3a, 3b, which shows that the zinc oxide nanosheet 24 of the present invention is formed on the surface of the zinc oxide seed layer 20 in a standing sheet form, and the average thickness of the zinc oxide nanosheet 24 is about 5 nm+/ -10%, an average length of about 1.2 μm +/- 10%, staggered on the surface of the zinc oxide seed layer 20.

由上述說明可知,本發明具有以下優點:As can be seen from the above description, the present invention has the following advantages:

1.本發明利用水溶液法形成氧化鋅奈米片構造,可於一般容器內進行化學反應形成固態生成物,相對於其他利用高溫燒結法製得之結晶產物,不僅可省去研磨的過程及避免可能夾帶的雜質。1. The invention adopts an aqueous solution method to form a zinc oxide nanosheet structure, which can be chemically reacted in a general container to form a solid product, and the crystal product obtained by the high-temperature sintering method can not only eliminate the grinding process and avoid the possibility. Entrained impurities.

2.本發明所形成氧化鋅奈米片構造為薄膜型態的二維奈米結構,亦即在水平的方向(X與Y軸)並未受到奈米尺度的限制,而在Z軸的方向有著奈米尺度的表現,使得本發明能廣泛應用於氣體感測器、光感測器或發光二極體等等元件。2. The zinc oxide nanosheet formed by the present invention is constructed as a two-dimensional nanostructure of a film type, that is, in a horizontal direction (X and Y axes) is not limited by the nanometer scale, but in the direction of the Z axis. The performance on the nanometer scale makes the invention widely applicable to components such as gas sensors, photo sensors or light-emitting diodes.

10‧‧‧玻璃基板
20‧‧‧氧化鋅晶種層
22‧‧‧團聚
24‧‧‧氧化鋅奈米片構造
10‧‧‧ glass substrate
20‧‧‧Zinc oxide seed layer
22‧‧‧ Reunion
24‧‧‧Zinc oxide nanosheet construction

圖1為本發明第一較佳實施例氧化鋅奈米片構造層形成於氧化鋅晶種層的生成流程示意圖。 圖2為本發明較佳實施例氧化鋅奈米片構造之X光繞射圖。 圖3a, 3b為本發明較佳實施例氧化鋅奈米片構造層之電子顯微鏡圖。1 is a schematic view showing the formation process of a zinc oxide nanosheet structural layer formed on a zinc oxide seed layer according to a first preferred embodiment of the present invention. 2 is a view of an X-ray diffraction pattern of a zinc oxide nanosheet structure according to a preferred embodiment of the present invention. 3a, 3b are electron micrographs of a structural layer of a zinc oxide nanosheet according to a preferred embodiment of the present invention.

10‧‧‧玻璃基板 10‧‧‧ glass substrate

20‧‧‧氧化鋅晶種層 20‧‧‧Zinc oxide seed layer

22‧‧‧團聚 22‧‧‧ Reunion

24‧‧‧氧化鋅奈米片構造 24‧‧‧Zinc oxide nanosheet construction

Claims (10)

一種氧化鋅奈米片構造層,其包含形成於一基板且為站立片狀型態之複數個氧化鋅奈米片,兩兩相鄰之間的該氧化鋅奈米片形成複數個奈米間隔通道,每個該氧化鋅奈米片主要朝向c軸方向(c-axis)生成。A zinc oxide nanosheet structural layer comprising a plurality of zinc oxide nanosheets formed on a substrate and in a standing sheet shape, wherein the zinc oxide nanosheets adjacent to each other form a plurality of nanometer intervals Channels, each of which is formed primarily toward the c-axis. 如申請專利範圍第1項所述的氧化鋅奈米片構造層,該氧化鋅奈米片之厚度為10奈米以內。The zinc oxide nanosheet structural layer according to claim 1, wherein the zinc oxide nanosheet has a thickness of 10 nm or less. 如申請專利範圍第1或2項所述的氧化鋅奈米片構造層,該氧化鋅奈米片之平均長度為1.2µm+/-10%。The zinc oxide nanosheet structural layer according to claim 1 or 2, wherein the zinc oxide nanosheet has an average length of 1.2 μm +/- 10%. 如申請專利範圍第3項所述的氧化鋅奈米片構造層,該氧化鋅奈米片24之平均厚度為5nm+/-10%。The zinc oxide nanosheet structure layer has an average thickness of 5 nm +/- 10% as claimed in claim 3 of the zinc oxide nanosheet construction layer. 一種氧化鋅奈米片構造層之製造方法,其步驟包含: 沈積一氧化鋅晶種層於一基板之表面; 將該基板置入於含有鋅離子及氫氧根離子之一水溶液中;及 複數個氧化鋅奈米片團聚或置換並累積於該氧化鋅晶種層表面並逐漸成長形成一站立片狀型態,形成一氧化鋅奈米片構造層。A method for manufacturing a zinc oxide nanosheet structural layer, comprising the steps of: depositing a zinc oxide seed layer on a surface of a substrate; placing the substrate in an aqueous solution containing one of zinc ions and hydroxide ions; The zinc oxide nanosheets are agglomerated or replaced and accumulated on the surface of the zinc oxide seed layer and gradually grow to form a standing sheet shape to form a zinc oxide nanosheet structural layer. 如申請專利範圍第5項所述的氧化鋅奈米片構造層之製造方法,該水溶液之pH值為11~13。The method for producing a zinc oxide nanosheet structural layer according to claim 5, wherein the aqueous solution has a pH of 11 to 13. 如申請專利範圍第5或6項所述的氧化鋅奈米片構造層之製造方法,該基板為玻璃基板,該氧化鋅晶種層利用射頻磁控濺鍍沈積於該基板表面。The method for manufacturing a zinc oxide nanosheet structural layer according to claim 5 or 6, wherein the substrate is a glass substrate, and the zinc oxide seed layer is deposited on the surface of the substrate by radio frequency magnetron sputtering. 如申請專利範圍第7項所述的氧化鋅奈米片構造層之製造方法,將該基板置入於含有鋅離子及氫氧根離子之一水溶液之步驟,係將該玻璃基板10置於該水溶液中並保持於室溫下反應。The method for producing a zinc oxide nanosheet structural layer according to claim 7, wherein the substrate is placed in an aqueous solution containing one of zinc ions and hydroxide ions, and the glass substrate 10 is placed in the method. The reaction is carried out in an aqueous solution and kept at room temperature. 如申請專利範圍第8項所述的氧化鋅奈米片構造層之製造方法,該水溶液較佳含有濃度為0.1M之一六水合硝酸以及濃度為0.4M之一氫氧化鈉以去離子水調和後攪拌機攪拌均勻,六水合硝酸與氫氧化鈉之體積比為5:75。The method for producing a zinc oxide nanosheet structural layer according to claim 8, wherein the aqueous solution preferably contains a concentration of 0.1 M of a hexahydrate nitric acid and a concentration of 0.4 M sodium hydroxide to be deionized water. After the mixer was stirred evenly, the volume ratio of nitric acid to sodium hydroxide was 5:75. 如申請專利範圍第7項所述的氧化鋅奈米片構造層之製造方法,該水溶液中團聚而累積在該氧化鋅晶種層表面形成站立片狀型態,係依據下列反應步驟完成: 鋅離子與氫氧根離子子反應產生氫氧化鋅沈澱叢集(clusters)於該氧化鋅晶種層表面; 氫氧化鋅沈澱叢集與水溶液中氫氧根離子反應溶解形成鋅酸根離子錯合物;及 鋅酸根離子錯合物去水合形成氧化鋅奈米片構造。The method for producing a zinc oxide nanosheet structural layer according to claim 7, wherein the agglomeration of the aqueous solution accumulates on the surface of the zinc oxide seed layer to form a standing sheet shape, which is completed according to the following reaction steps: zinc The ions react with the hydroxide ions to generate zinc hydroxide precipitation clusters on the surface of the zinc oxide seed layer; the zinc hydroxide precipitation cluster reacts with the hydroxide ions in the aqueous solution to form a zincate ion complex; and zinc The acid ion complex is dehydrated to form a zinc oxide nanosheet structure.
TW103122916A 2014-07-02 2014-07-02 Znonanosheets layer and producing method thereof TWI496752B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103122916A TWI496752B (en) 2014-07-02 2014-07-02 Znonanosheets layer and producing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103122916A TWI496752B (en) 2014-07-02 2014-07-02 Znonanosheets layer and producing method thereof

Publications (2)

Publication Number Publication Date
TWI496752B TWI496752B (en) 2015-08-21
TW201602031A true TW201602031A (en) 2016-01-16

Family

ID=54343342

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103122916A TWI496752B (en) 2014-07-02 2014-07-02 Znonanosheets layer and producing method thereof

Country Status (1)

Country Link
TW (1) TWI496752B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI653753B (en) 2017-09-12 2019-03-11 元太科技工業股份有限公司 Sensing element
CN110498440A (en) * 2019-07-11 2019-11-26 江苏大学 A kind of zinc oxide air-sensitive membrane material, preparation method and applications

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101122020A (en) * 2007-07-25 2008-02-13 北京科技大学 Preparation method for large-area nano zinc oxide directional array
CN103721698B (en) * 2014-01-10 2017-01-04 中国天辰工程有限公司 A kind of Zinc oxide catalytic of ordered lamellar structure and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI653753B (en) 2017-09-12 2019-03-11 元太科技工業股份有限公司 Sensing element
CN109490370A (en) * 2017-09-12 2019-03-19 元太科技工业股份有限公司 Sensing element
US11041822B2 (en) 2017-09-12 2021-06-22 E Ink Holdings Inc. Sensing element
CN109490370B (en) * 2017-09-12 2021-08-24 元太科技工业股份有限公司 Sensing element
CN110498440A (en) * 2019-07-11 2019-11-26 江苏大学 A kind of zinc oxide air-sensitive membrane material, preparation method and applications

Also Published As

Publication number Publication date
TWI496752B (en) 2015-08-21

Similar Documents

Publication Publication Date Title
Lu et al. Controllable electrochemical synthesis of hierarchical ZnO nanostructures on FTO glass
Liu et al. Morphological and stoichiometric study of chemical bath deposited CdS films by varying ammonia concentration
Orhan et al. Characterization of size-controlled ZnO nanorods produced by electrochemical deposition technique
Majumder et al. Straightening of chemically deposited CdS nanowires through annealing towards improved PV device performance
Jia et al. p-Cu2O/n-ZnO heterojunction fabricated by hydrothermal method
Abdullah et al. Effect of deposition time on ZnS thin films properties by chemical bath deposition (CBD) techinique
CN103872186A (en) FeS2 thin film and preparation method thereof
Kumar et al. Superhydrophobic and antireflecting behavior of densely packed and size controlled ZnO nanorods
Yao et al. Effect of protic solvents on CdS thin films prepared by chemical bath deposition
CN100552099C (en) Improved electrochemical deposition process prepares the single c-axle oriented zinc oxide film method
Bobkov et al. Fabrication of oxide heterostructures for promising solar cells of a new generation
TWI496752B (en) Znonanosheets layer and producing method thereof
Raut et al. Studies on effect of pH on structural, optical and morphological properties of chemisynthesized CdSe grains
Phromyothin et al. Growth of ZnO nanorods via low temperature hydrothermal method and their application for Hydrogen production
CN100582012C (en) Nano porous zinc oxide thin film with high C-axis orientation and preparation method thereof
Ravangave et al. Study of structural, morphological and electrical properties of CdxZn1− xS thin films
Deenathayalan et al. Effect of growth layer solution concentration on the structural and optical properties of hydrothermally grown zinc oxide nanorods
CN102181850B (en) In-situ synthesis method for zinc oxide nano film
Yi et al. Effect of KOH treatment on structural and photovoltaic properties of ZnO nanorod arrays
CN102225871B (en) Preparation method of Ga doped ZnO nanowire catalyzed by Sn
Mohammad et al. Structural and optical properties of Nanocrystalline ZnxCd1-xS thin films deposited by chemical bath technique
TWI532199B (en) UV light photo detector with ZnONano-sheets layer and producing method thereof
Majidzade et al. THE LATEST PROGRESS ON SYNTHESIS AND INVESTIGATION OF SB2S3-BASED THIN FILMS
Al-Hardan et al. Ultraviolet Sensors Based on Two-Dimensional Zinc Oxide Structures
Rajkumar et al. Synthesis and characterization of dye (Phenosafranine) sensitized flower-type ZnO nanorods

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees