TW201600943A - Multiview 3D wrist watch - Google Patents

Multiview 3D wrist watch Download PDF

Info

Publication number
TW201600943A
TW201600943A TW103122129A TW103122129A TW201600943A TW 201600943 A TW201600943 A TW 201600943A TW 103122129 A TW103122129 A TW 103122129A TW 103122129 A TW103122129 A TW 103122129A TW 201600943 A TW201600943 A TW 201600943A
Authority
TW
Taiwan
Prior art keywords
directional
dimensional
wristwatch
pixels
view
Prior art date
Application number
TW103122129A
Other languages
Chinese (zh)
Other versions
TWI540401B (en
Inventor
布萊恩 塔夫
大衛A 費圖
雷蒙G 波蘇雷
Original Assignee
雷亞有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 雷亞有限公司 filed Critical 雷亞有限公司
Priority to TW103122129A priority Critical patent/TWI540401B/en
Publication of TW201600943A publication Critical patent/TW201600943A/en
Application granted granted Critical
Publication of TWI540401B publication Critical patent/TWI540401B/en

Links

Landscapes

  • Electric Clocks (AREA)

Abstract

A multiview 3D wrist watch is disclosed. The wrist watch has clock circuitry to determine a time and a plurality of light sources to generate a plurality of input planar lightbeams. A directional backplane having a plurality of directional pixels scatters the plurality of input planar lightbeams into a plurality of directional lightbeams, each directional lightbeam having a direction and angular spread controlled by characteristics of a directional pixel in the plurality of directional pixels. A shutter layer receives the time from the clock circuitry and modulates the plurality of directional lightbeams to generate a 3D time view.

Description

多視角三維腕錶 Multi-view 3D watch

本發明係關於一種腕錶,尤其係關於一種多視角三維腕錶。 The present invention relates to a wristwatch, and more particularly to a multi-view three-dimensional wristwatch.

數十年來,腕錶一直為人類文化和服飾的一部分,其最早是在20年代開始成為流行。最初的幾個款式是在戰爭時期,因需要而被繫以錶鏈來執持的簡易懷錶。士兵們發現在戰鬥中從口袋拉出懷錶的使用方式不切實際,因此便開始更加頻繁地依靠腕錶。當腕錶開始流行後,其設計亦隨著時間改進及演變。腕錶最初的設計為完全機械式的設計。機械式設計的下一代款式則是採用電子機制與石英振盪器。電子錶從七零年代起成為一樣產品,從那時起,各種型式紛紛出現以增加消費者的需求,包括計算器腕錶、防水腕錶、相機腕錶、GPS腕錶等等。當下的時尚潮流顯示,在失去了一些市場給智慧型手機和其他設備後,腕錶目前正在捲土重來。 Watches have been part of human culture and apparel for decades, and they first became popular in the 1920s. The first few models were simple pocket watches that were held in the form of a watch chain during the war. The soldiers found that the use of pocket watches pulled out of the pocket during the battle was impractical and therefore began to rely more on the watch. When the watch became popular, its design improved and evolved over time. The watch was originally designed as a fully mechanical design. The next generation of mechanical design uses electronic mechanisms and quartz oscillators. Electronic watches have been the same since the 1970s. Since then, various models have appeared to increase consumer demand, including calculator watches, waterproof watches, camera watches, GPS watches and so on. The current fashion trends show that after losing some markets to smart phones and other devices, watches are now making a comeback.

揭露一種多視角三維腕錶。該多視角三維腕錶可以以三維顯示時間,使得使用者觀看之時間彷彿漂浮在空中。該腕錶採用了一獨特的定向背板,該定向背板用來提供定向光束形式的光場。該等定向光束由該定向背板中之複數個定向像素散射。每個定向光束源於一不同的定向像素,並具有基於該定向像素的特性之一給定的方向和角分散。這所指的方向性使定向光束得以使用複數個調節器來調節(即開啟,關閉或亮度的改變),並產生 不同的三維時間影像。 A multi-view three-dimensional wristwatch is disclosed. The multi-view three-dimensional wristwatch can display time in three dimensions, so that the time the user views is like floating in the air. The watch features a unique directional backplane that is used to provide a light field in the form of a directional beam. The directional beams are scattered by a plurality of directional pixels in the directional backplane. Each directional beam originates from a different directional pixel and has a given direction and angular dispersion based on one of the characteristics of the directional pixel. This directionality allows the directional beam to be adjusted (ie, turned on, off, or changed in brightness) using a plurality of regulators and generated Different 3D time images.

在各種實施例中,該等定向像素被佈置在由複數個輸入平面光束所照亮的一定向背板中。該等定向像素接收該等輸入平面光束並將其中一部分散射成定向光束。一光閘層設置於該等定向像素上方以依據需求調節該等定向光束。該光閘層可包括複數個調節器,該等調節器具有動態矩陣定址(例如,液晶顯示器(Liquid Crystal Display,“LCD”)晶胞、微機電系統、流體、磁性、電泳等),並且各調節器調節來自一單一定向像素的一單一定向光束,或來自一組定向像素的一組定向光束。該光閘層藉由每一組定向光束所提供的每一影像,能夠產生三維時間影像。該等三維影像隨著需求可為單一色彩的或多色彩的。 In various embodiments, the directional pixels are disposed in a directional backplane illuminated by a plurality of input plane beams. The directional pixels receive the input plane beams and scatter a portion thereof into a directional beam. A shutter layer is disposed over the directional pixels to adjust the directional beams as needed. The shutter layer may include a plurality of regulators having dynamic matrix addressing (eg, Liquid Crystal Display ("LCD") cell, MEMS, fluid, magnetic, electrophoretic, etc.), and each The adjuster adjusts a single directional beam from a single directional pixel, or a set of directional beams from a set of directional pixels. The shutter layer is capable of generating a three-dimensional time image by each image provided by each set of directional beams. These three-dimensional images may be single color or multi-colored as desired.

在各種實施例中,在該定向背板中的該等定向像素具有設置於該定向背板中或上方之大致為平行的溝槽的圖案化光柵。該定向背板可以是,例如,引導該等輸入平面光束進入該等定向像素之由透明材料構成的一厚板,舉例來說,諸如氮化矽(Silicon Nitride,“SiN”)、玻璃或石英、塑料及氧化銦錫(Indium Tin Oxide,“ITO”)等等。該等圖案化光柵可以包括溝槽,其可以直接被蝕刻在該定向背板中,或以沉積在該定向背板上方的材料(例如,可被沉積和蝕刻或剝離的任何材料,包括任何介電質或金屬)製成。該等溝槽也可是傾斜的。 In various embodiments, the directional pixels in the directional backplane have patterned gratings disposed in substantially parallel grooves in or above the directional backplane. The directional backplane can be, for example, a thick plate of transparent material that directs the input planar beams into the directional pixels, such as, for example, tantalum nitride ("SiN"), glass or quartz. , plastic and indium tin oxide (Indium Tin Oxide, "ITO") and so on. The patterned gratings can include grooves that can be directly etched into the directional backsheet, or materials deposited over the directional backsheet (eg, any material that can be deposited and etched or stripped, including any Made of electricity or metal). The grooves can also be inclined.

更詳細地描述如下,每一個定向像素之特性可由一光柵長度(即,沿著該等輸入平面光束的傳輸軸方向的尺寸)、一光柵寬度(即,橫跨該等輸入平面光束的傳輸軸方向的尺寸)、一溝槽座向、一間距和一工作週期所界定。每個定向像素可以發射一定向光束,其所發射的定向光束具有由該溝槽座向與該光柵間距決定的方向,並且具有由該光柵長度和寬度決定的角分散。藉由使用50%或約50%的工作循環,可以使該等圖案化光柵的第二傅立葉係數消失,從而防止光從額外之無用的方向上散射。如此一來,無論輸出角度為何,都能確保各個定位像素僅會有一定向光束出現。 Described in more detail below, the characteristics of each directional pixel can be a grating length (i.e., a dimension along the direction of the transmission axis of the input plane beam), a grating width (i.e., a transmission axis of the beam across the input planes) The size of the direction), a groove orientation, a spacing and a duty cycle are defined. Each directional pixel can emit a directed beam of light that has a directional beam that has a direction defined by the spacing of the groove and the spacing of the grating, and has an angular dispersion determined by the length and width of the grating. By using a 50% or about 50% duty cycle, the second Fourier coefficients of the patterned gratings can be eliminated, thereby preventing light from scattering from additional unwanted directions. In this way, regardless of the output angle, it is ensured that each of the positioning pixels will only have a certain amount of light beam.

更詳細地描述如下,定向背板可設計成具有定向像素,該等定向像素具有一特定的光柵長度、一光柵寬度、一溝槽座向、一間距及一工作週期並被選為產生一給定的三維時間影像。該三維時間影像從由該等定向像素射出並經由該光閘層調節的該等定向光束來產生,並藉由來自一組定向像素之調節過的定向光束產生一給定的時間影像。 As described in more detail below, the directional backplane can be designed to have directional pixels having a particular grating length, a grating width, a trench orientation, a pitch, and a duty cycle and are selected to produce a A fixed 3D time image. The three-dimensional time image is generated from the directional beams that are emitted by the directional pixels and adjusted via the shutter layer, and a given time image is produced by the directional beam of illumination from a set of directional pixels.

可以理解的是,在下面的描述中,許多具體細節進行了闡述,以供透徹理解這些實施例。然而,應當理解,本實施例可以不限於這些具體細節的情況下實施。在其他情況下,眾所周知的方法和結構可不作詳細描述,以避免不必要地模糊本實施例的描述。此外,該實施例可以彼此組合使用。 It will be understood that in the following description, numerous specific details are set forth However, it should be understood that the embodiments are not limited to the specific details. In other instances, well-known methods and structures may not be described in detail to avoid unnecessarily obscuring the description of the embodiments. Furthermore, this embodiment can be used in combination with each other.

100、105、200、300、330、400、440、600、700‧‧‧腕錶 100, 105, 200, 300, 330, 400, 440, 600, 700‧‧ ‧ watches

205、305、335、405、445、504、505、605、705‧‧‧定向背板 205, 305, 335, 405, 445, 504, 505, 605, 705 ‧ ‧ directional backplane

210、315、345、415、455、510、515、520‧‧‧輸入平面光束 210, 315, 345, 415, 455, 510, 515, 520‧‧‧ input plane beam

215a~215d、340、410a~410d、430a~430d‧‧‧定向像素 215a~215d, 340, 410a~410d, 430a~430d‧‧‧ Directional pixels

220a~220d、320、350、420a~420d、460a~460d‧‧‧定向光束 Directional beam of 220a~220d, 320, 350, 420a~420d, 460a~460d‧‧‧

225a‧‧‧溝槽 225a‧‧‧ trench

230‧‧‧光閘層 230‧‧‧Light barrier

235‧‧‧隔離層 235‧‧‧Isolation

240‧‧‧時間影像 240‧‧‧Time Image

245‧‧‧時鐘電路 245‧‧‧clock circuit

325、355、425a~425d、470a~470d、555‧‧‧液晶顯示單元 325, 355, 425a~425d, 470a~470d, 555‧‧‧ liquid crystal display unit

365、475、480‧‧‧三維影像 365, 475, 480‧‧‧3D images

360a‧‧‧定向光束 360a‧‧‧directional beam

450a~450d、525~535、540~550‧‧‧定向像素 450a~450d, 525~535, 540~550‧‧‧ directional pixels

610、615、620、710、715、720‧‧‧輸入平面光束 610, 615, 620, 710, 715, 720‧‧‧ input plane beam

625~635、660、720‧‧‧定向像素 625~635, 660, 720‧‧‧ directional pixels

640、655、725‧‧‧液晶顯示單元 640, 655, 725‧‧‧ liquid crystal display unit

800‧‧‧時鐘電路確定要顯示的時間 800‧‧‧ clock circuit determines the time to display

805‧‧‧來自複數個狹窄光譜帶光源的光以輸入平面光束的形式輸入至定向背板 805‧‧‧Light from a plurality of narrow spectral band sources is input to the directional backplane in the form of an input planar beam

810‧‧‧時鐘電路根據要顯示的時間控制光閘層以調節在方向背板中的一組定向像素 810‧‧‧The clock circuit controls the shutter layer according to the time to be displayed to adjust a set of directional pixels in the direction backplane

815‧‧‧從定向背板中的定向像素散射之被調節過的定向光束產生三維時間影像 815‧‧‧Three-dimensional time image generation from directional beam of directional pixel scattering in a directional backplane

第1圖示出根據各個實施例而設計之腕錶的示意圖;第2圖示出根據各個實施例之具有定向背板的腕錶的示意圖;第3A圖、第3B圖示出根據第2圖之定向背板的示例俯視圖;第4A圖、第4B圖示出根據第2圖之定向背板的其他示例俯視圖;第5圖示出第2圖之定向背板具有三角形形狀的實施例;第6圖示出第2圖之定向背板具有六角形形狀的實施例;第7圖示出第2圖之定向背板具有圓形形狀的實施例;以及第8圖示出透過根據本發明之多視角三維腕錶產生三維時間影像的流程圖。 1 is a schematic view of a wristwatch designed according to various embodiments; FIG. 2 is a schematic view showing a wristwatch having a directional backplane according to various embodiments; FIGS. 3A and 3B are diagrams according to FIG. An exemplary top view of the directional backplane; FIGS. 4A and 4B illustrate other exemplary top views of the directional backplane according to FIG. 2; and FIG. 5 illustrates an embodiment of the directional backplane of FIG. 2 having a triangular shape; 6 shows an embodiment in which the directional backing plate of FIG. 2 has a hexagonal shape; FIG. 7 shows an embodiment in which the directional backing plate of FIG. 2 has a circular shape; and FIG. 8 shows the transmission according to the present invention. A flow chart for generating a three-dimensional time image from a multi-view three-dimensional wristwatch.

請參照第1圖,其描述了根據各個實施例而設計的腕錶的示意圖。腕錶100是一多視角的三維腕錶,其在類似圓形的顯示器中藉由將數字環繞顯示器放置而顯示時間。腕錶105是一多視角的三維腕錶,其在類似長方形的顯示器中藉由數字指示時間。兩種腕錶100、105皆以三維影像顯示時間,從而使得使用者看到 的時間彷彿漂浮在空中。依據使用者的眼睛的位置,使用者會看到不同的時間影像;也就是說,使用者以自然和真實的方式觀看時間,如同大腦在真實世界中感知三維的視覺訊息一樣。 Please refer to FIG. 1, which depicts a schematic diagram of a wristwatch designed in accordance with various embodiments. The wristwatch 100 is a multi-view three-dimensional wristwatch that displays time in a circular-like display by placing a digital surround display. The wristwatch 105 is a multi-view three-dimensional wristwatch that indicates time by numerals in a rectangular-like display. Both types of watches 100 and 105 display time in three-dimensional images, so that the user can see The time seems to float in the air. Depending on the location of the user's eyes, the user will see different time images; that is, the user views the time in a natural and realistic way, just as the brain perceives three-dimensional visual information in the real world.

可以理解知悉,顯示在腕錶100和105中的時間影像根據需求可為單一色彩的或多色彩的。亦可以理解知悉,此三維時間影像可以是不同的形狀,有不同的效果,並可以包括除了時間以外的其他圖像。例如,三維時間影像可以具有陰影、輪廓或圖案等效果。腕錶顯示器可以是矩形、圓形、多邊形,或可以被設計為腕錶的任何其它形狀。時間影像也可以包括腕錶的標識、背景圖片與其他圖像,以輔助所顯示的時間。如下所述,三維時間影像藉由一獨特的定向背板而產生,該定向背板能夠根據要顯示在三維時間影像中的時間(例如,早上8:13,下午10:34,等等)產生由光閘層所調節的定向光束。 It will be appreciated that the time images displayed in the wristwatches 100 and 105 can be single color or multi-colored as desired. It can also be understood that the three-dimensional time image can be different shapes, have different effects, and can include other images than time. For example, a three-dimensional time image can have effects such as shadows, outlines, or patterns. The wristwatch display can be rectangular, circular, polygonal, or any other shape that can be designed as a wristwatch. The time image can also include the logo of the watch, the background image and other images to assist in the displayed time. As described below, the three-dimensional time image is produced by a unique directional backplane that can be generated according to the time to be displayed in the three-dimensional time image (eg, 8:13 am, 10:34 pm, etc.) A directional beam of light that is regulated by the shutter layer.

以下將參照第2圖,對根據各種實施例之具有定向背板的腕錶的示意圖進行說明。腕錶200包括定向背板205,其接收來自複數個光源的一組輸入平面光束210。所述光源可以包括,例如,一個或多個具有約30納米或更小光譜帶寬的窄帶光源,例如發光二極體(“LEDs”)、雷射(例如,混成雷射)、或者任何其它用於在腕錶中提供照明的光源。輸入平面光束210在大致與定向背板205為同一平面的平面中傳輸,定向背板205是被設計為實質上是平面的。 A schematic diagram of a wristwatch having a directional backplane in accordance with various embodiments will now be described with reference to FIG. The wristwatch 200 includes a directional backing plate 205 that receives a set of input planar light beams 210 from a plurality of light sources. The light source can include, for example, one or more narrowband light sources having a spectral bandwidth of about 30 nanometers or less, such as light emitting diodes ("LEDs"), lasers (eg, hybrid lasers), or any other use. A light source that provides illumination in a wristwatch. The input planar beam 210 is transmitted in a plane that is generally coplanar with the directional backplane 205, which is designed to be substantially planar.

定向背板205可以由透明材料(例如氮化矽、玻璃或石英、塑料、ITO等)的厚板構成,所述厚板具有排列在定向背板205中或上方的複數個定向像素215a~215d。定向像素215a~215d將輸入平面光束210的一部分散射為定向光束220a~220d。在各種實施例中,每個定向像素215a~215d具有實質上為平行的複數個溝槽的複數個圖案化光柵,例如定向像素215a的溝槽225a。所有的光柵溝槽可以在實質上具有相同的厚度,以產生一實質上為平面的設計。該等溝槽可以在定向背板中蝕刻或由以沉積在定向背板205的上方的材料(例如,可被沉積與蝕刻或剝離的任何材料, 包括任何介電質或金屬)來製成。 The directional backing plate 205 can be constructed of a thick plate of a transparent material (e.g., tantalum nitride, glass or quartz, plastic, ITO, etc.) having a plurality of directional pixels 215a-215d arranged in or above the directional backing plate 205. . The directional pixels 215a-215d scatter a portion of the input planar beam 210 into directional beams 220a-220d. In various embodiments, each of the directional pixels 215a-215d has a plurality of patterned gratings of substantially parallel plurality of trenches, such as trenches 225a of directional pixels 215a. All of the grating grooves can have substantially the same thickness to create a substantially planar design. The trenches may be etched in the directional backplane or by a material deposited over the directional backplane 205 (eg, any material that may be deposited and etched or stripped, Made of any dielectric or metal).

每個定向光束220a~220d具有一給定的方向和一角分散,其由形成對應定向像素215a~215d的圖案化光柵所決定。特別地,每個定向光束220a~220d的方向由圖案化光柵的座向及間距來決定。每個定向光束的角方散依次由圖案化光柵的光柵長度和寬度來決定。舉例來說,定向光束220a的方向由圖案化光柵225a的座向及光柵間距來決定。 Each of the directional beams 220a-220d has a given direction and an angular dispersion that is determined by the patterned grating forming the corresponding directional pixels 215a-215d. In particular, the direction of each of the directional beams 220a-220d is determined by the seating orientation and spacing of the patterned grating. The angular extent of each directional beam is determined in turn by the grating length and width of the patterned grating. For example, the direction of the directional beam 220a is determined by the seating orientation of the patterned grating 225a and the grating pitch.

可以理解的是,本發明實質上為平面的設計及從輸入平面光束210之定向光束220a~220d的形成需要具有比傳統繞射光柵顯著更小的節距的光柵。例如,傳統繞射光柵將基本上跨越光柵的光線散射在照明上。在此,當產生定向光束220a~220d時,在每個定向像素215a~215d中的光柵基本上是與輸入平面光束210在一平面上。 It will be appreciated that the substantially planar design of the present invention and the formation of directional beams 220a-220d from the input planar beam 210 require a grating having a significantly smaller pitch than conventional diffraction gratings. For example, conventional diffraction gratings scatter light that substantially spans the grating onto the illumination. Here, when the directional light beams 220a-220d are generated, the grating in each of the directional pixels 215a-215d is substantially in a plane with the input planar light beam 210.

定向光束220a~220d由在定向像素215a~215d中的光柵特性精確地控制,其特性包括光柵長度L、光柵寬度W、溝槽座向、和光柵間距。特別地,光柵225a的光柵長度L控制了沿輸入光傳輸軸之定向光束220a的角分散△Θ,並且,光柵寬度W控制了穿過輸入光傳輸軸的定向光束220a的角分散△Θ,如下: 其中,λ是定向光束220a的波長。由光柵座向角度q所界定的溝槽座向是及由Λ所界定的光柵間距或週期控制了定向光束220a的方向。 The directional beams 220a-220d are precisely controlled by the grating characteristics in the directional pixels 215a-215d, and their characteristics include the grating length L, the grating width W, the groove orientation, and the grating pitch. In particular, the grating length L of the grating 225a controls the angular dispersion ΔΘ of the directional light beam 220a along the input light transmission axis, and the grating width W controls the angular dispersion ΔΘ of the directional light beam 220a passing through the input light transmission axis, as follows : Where λ is the wavelength of the directional beam 220a. The orientation of the directional beam 220a is controlled by the grating seating direction defined by the grating seat to the angle q and by the grating pitch or period defined by Λ.

光柵長度L和光柵寬度W在尺寸上可在0.1~200μm的範圍中變化。溝槽座向角q和光柵間距Λ可被設定以滿足定向光束220a的一期望的方向,並且具有例如依次為-40到40度的溝槽座向角q、以及依次為200-700納米的光柵間距Λ。 The grating length L and the grating width W may vary in size from 0.1 to 200 μm. The trench seating angle q and the grating pitch Λ can be set to satisfy a desired direction of the directional light beam 220a, and have, for example, a groove seating angle q of -40 to 40 degrees in order, and 200-700 nm in order. The grating pitch is Λ.

在各種實施例中,光閘層230(例如,液晶單元)被定位在定向像素215a~215d上方,以調節被定向像素215a~215d 所散射的定向光束220a~220d。定向光束220a~220d的調節涉及到以光閘層230控制它們的亮度(例如,將定向光束220a~220d打開、關閉,或改變定向光束220a~220d的亮度)。例如,在光閘層230的調節器可以被用來打開定向光束220a和定向光束220d,並關閉定向光束220b和定向光束220c。 In various embodiments, a shutter layer 230 (eg, a liquid crystal cell) is positioned over the directional pixels 215a-215d to adjust the oriented pixels 215a-215d The scattered directional beams 220a~220d. The adjustment of the directional beams 220a-220d involves controlling their brightness with the shutter layer 230 (e.g., turning the directional beams 220a-220d on, off, or changing the brightness of the directional beams 220a-220d). For example, a regulator at the shutter layer 230 can be used to turn on the directional beam 220a and the directional beam 220d, and turn off the directional beam 220b and the directional beam 220c.

提供用於定向光束220a~220d的調節的能力能使許多不同的三維時間影像得以產生,例如時間影像240。調節器是由時鐘電路245所控制,其決定將被顯示在腕錶上的時間,並且決定哪個定向光束220a~220d被打開或關閉,以產生對應於將要顯示在腕錶200的時間(例如,上午03時07分)的時間影像240。 The ability to provide adjustments for directional beams 220a-220d enables the generation of many different three-dimensional time images, such as time image 240. The regulator is controlled by a clock circuit 245 which determines the time to be displayed on the wristwatch and determines which directional light beams 220a-220d are turned on or off to produce a time corresponding to that to be displayed on the wristwatch 200 (eg, Time image 240 at 3:07 am).

光閘層230可以設置在隔離層235上方,該隔離層235可以由在定向像素215a~215d與調節器光閘層230之間的物質製成或簡單地由在定向像素215a~215d與調節器光閘層230之間的空間間隔(即,空氣)構成。隔離層235可以具有例如依次為0-100微米的寬度。 The shutter layer 230 may be disposed over the isolation layer 235, which may be made of a substance between the directional pixels 215a-215d and the regulator shutter layer 230 or simply by the directional pixels 215a-215d and the regulator The space between the shutter layers 230 (i.e., air) is formed. The isolation layer 235 may have a width of, for example, 0-100 micron in order.

可以理解的是,圖中所顯示的定向背板205為作說明用途,因此僅具有四個定向像素215a~215d。而根據各種不同實施例,定向背板可以設計成具有許多個定向像素(例如,高於100),這取決於定向背板之用途(例如,在3D顯示銀幕中、在一三維腕錶中、在行動裝置中等)。如是亦知悉,定向像素可以具有任何形狀,包括,例如,圓形、橢圓形、多邊形或其它幾何形狀。 It will be appreciated that the directional backplane 205 shown in the figures is for illustrative purposes and therefore has only four directional pixels 215a-215d. According to various embodiments, the directional backplane can be designed to have a plurality of directional pixels (eg, above 100) depending on the purpose of the directional backplane (eg, in a 3D display screen, in a three-dimensional watch, In the mobile device medium). As is also known, the directional pixels can have any shape including, for example, a circle, an ellipse, a polygon, or other geometric shapes.

請參照第3A圖、第3B圖,其顯示第2圖中的定向背板的俯視圖。如第3A圖所示,腕錶300被示為具有由排列在一透明板中的複數個多邊形定向像素(例如,定向像素310)所構成的定向背板305。每個定向像素都能夠將輸入平面光束315的一部分散射成一輸出定向光束(例如,定向光束320)。每個定向光束由一調節器,例如用於定向光束320的液晶顯示單元325,來調節。被定向底板305中之所有定向像素散射以及被調節器(例如,液晶顯示單元325)調節後的定向光束,當合併形成三維影像360時,可以呈現出多重影像視覺。 Referring to FIGS. 3A and 3B, a plan view of the directional backplane in FIG. 2 is shown. As shown in FIG. 3A, the wristwatch 300 is illustrated as having a directional backing plate 305 comprised of a plurality of polygonal directional pixels (eg, directional pixels 310) arranged in a transparent plate. Each directional pixel is capable of scattering a portion of the input planar beam 315 into an output directional beam (eg, directional beam 320). Each directional beam is adjusted by a regulator, such as liquid crystal display unit 325 for directional beam 320. The directional light beams that are scattered by all of the directional pixels in the directional bottom plate 305 and that are adjusted by the adjuster (eg, liquid crystal display unit 325), when combined to form the three-dimensional image 360, can exhibit multiple image vision.

同樣地,如第3A圖所示,腕錶330被示為具有由複數個圓形定向像素(例如,定向像素340)排列在一透明板上所構成的定向背板335。每個定向像素都能夠將輸入平面光束345的一部分散射成一輸出定向光束(例如,定向光束350)。每個定向光束由一調節器,例如用於定向光束350的液晶顯示單元355,來調節。被定向底板335中之所有定向像素散射以及被由調節器(例如,液晶顯示單元355)調節後的定向光束,當合併形成三維影像365時,可以呈現出多重影像視覺。 Similarly, as shown in FIG. 3A, wristwatch 330 is illustrated as having a directional backing plate 335 that is formed by a plurality of circularly oriented pixels (eg, directional pixels 340) arranged on a transparent plate. Each directional pixel is capable of scattering a portion of the input planar beam 345 into an output directional beam (eg, directional beam 350). Each directional beam is adjusted by a regulator, such as liquid crystal display unit 355 for directional beam 350. The directional beams that are scattered by all of the directional pixels in the directional bottom plate 335 and that are adjusted by the regulator (e.g., liquid crystal display unit 355), when combined to form a three-dimensional image 365, can exhibit multiple image vision.

在各種實施例中,一單一的調節器可以被用於調節從一組定向像素而出的一組定向光束。亦即,一給定的調節器可以被置於一組定向像素之上,而不是如第3A圖、第3B圖所示之每個定向像素皆配置有一單一調節器。 In various embodiments, a single regulator can be used to adjust a set of directional beams from a set of directional pixels. That is, a given regulator can be placed over a set of directional pixels instead of having a single regulator for each directional pixel as shown in Figures 3A and 3B.

現在參見第4A圖、第4B圖,圖中描述根據第2圖所示之定向背板的俯視圖。在第4A圖中,腕錶400被示為具有由複數個多邊形定向像素(例如,定向像素410a)排列在一透明板上所構成的定向背板405。每個定向像素都能夠將輸入平面光束415的一部分散射成一輸出定向光束(例如,定向光束420a)。一組定向光束(例如,定向像素410a~420d散射的定向光束420a~420d)由一調節器調節(例如,液晶顯示單元425a調節定向光束420a~420d)。例如,液晶顯示單元425a是用來打開定向像素410a~410d,而液晶顯示單元425d被用於關閉定向像素430a~430d。被定向底板405中之所有定向畫像素散射以及被液晶顯示單元425a~425d調節後的定向光束,當合併形成三維影像475時,可以呈現出多重影像視覺。 Referring now to Figures 4A and 4B, a top plan view of the directional backplane shown in Figure 2 is depicted. In FIG. 4A, wristwatch 400 is illustrated as having a directional backing plate 405 formed by a plurality of polygonal directional pixels (eg, directional pixels 410a) arranged on a transparent plate. Each directional pixel is capable of scattering a portion of the input planar beam 415 into an output directional beam (e.g., directional beam 420a). A set of directional beams (e.g., directional beams 420a-420d scattered by directional pixels 410a-420d) are adjusted by a regulator (e.g., liquid crystal display unit 425a adjusts directional beams 420a-420d). For example, liquid crystal display unit 425a is used to turn on directional pixels 410a-410d, and liquid crystal display unit 425d is used to turn off directional pixels 430a-430d. The directional light beams that are scattered by all of the directional pixels in the directional bottom plate 405 and that are adjusted by the liquid crystal display units 425a to 425d, when combined to form the three-dimensional image 475, can exhibit multiple image vision.

類似地,在第4B圖中,腕錶440被示為具有由複數個圓形定向像素(例如,定向像素450a)排列在一透明板上所構成的定向背板445。每個定向像素都能夠將輸入平面光束455的一部分散射成一輸出定向光束(例如,定向光束360a)。一組定向光束(例如,定向像素450a~450d散射的定向光束460a~460d)由一調節器來調節(例如,液晶顯示單元470a調節定向光束460a~460d)。 例如,液晶顯示單元470a用來打開定向像素450a~450d,而液晶顯示單元470d被用於關閉定向像素465a~465d。被定向底板445中之所有定向像素散射以及被液晶顯示單元470a~470d調節後的定向光束,當合併形成三維影像480時,可以呈現出多重影像視覺。 Similarly, in FIG. 4B, wristwatch 440 is illustrated as having a directional backing plate 445 formed by a plurality of circularly oriented pixels (eg, directional pixels 450a) arranged on a transparent plate. Each directional pixel is capable of scattering a portion of the input planar beam 455 into an output directional beam (eg, directional beam 360a). A set of directional beams (e.g., directional beams 460a-460d scattered by directional pixels 450a-450d) are adjusted by a regulator (e.g., liquid crystal display unit 470a adjusts directional beams 460a-460d). For example, liquid crystal display unit 470a is used to turn on directional pixels 450a-450d, and liquid crystal display unit 470d is used to turn off directional pixels 465a-465d. The directional light beams scattered by all of the directional pixels in the directional bottom plate 445 and adjusted by the liquid crystal display units 470a-470d, when combined to form the three-dimensional image 480, can exhibit multiple image vision.

可理解之,定向背板可以被設計成具有不同的形狀,舉例來說,諸如三角形(如第5圖所示)、六邊形(如第6圖中所示)或圓形(如第7圖)。在第5圖中,定向背板505從三個不同的空間方向上接收輸入平面光束,例如,輸入平面光束510、515、520。這樣的配置可以在當輸入平面光束代表不同顏色的光線時使用,例如,當輸入平面光束510表示紅色,輸入平面光束515表示綠色,以及輸入平面光束520表示藍色時。各個輸入平面光束510、515、520設置在三角形的定向背板505的一側,以將其光線聚焦於一組定向像素上。例如,輸入平面光束510藉由一組定向像素525~535被散射成定向光束。定向像素525~535的子組也可以從輸入平面光束515、515、520接收光。然而,藉由設計,此光線不會在腕錶500之預定的視像區域散射。 It will be appreciated that the directional backplane can be designed to have different shapes, such as, for example, a triangle (as shown in Figure 5), a hexagon (as shown in Figure 6), or a circle (e.g., number 7). Figure). In FIG. 5, the directional backplane 505 receives input planar beams from three different spatial directions, for example, input planar beams 510, 515, 520. Such a configuration can be used when the input planar beam represents light of a different color, for example, when the input planar beam 510 represents red, the input planar beam 515 represents green, and the input planar beam 520 represents blue. Each input planar beam 510, 515, 520 is disposed on one side of a triangular directional backplane 505 to focus its light onto a set of directional pixels. For example, the input planar beam 510 is scattered into a directional beam by a set of directional pixels 525-535. Subgroups of directional pixels 525-535 can also receive light from input plane beams 515, 515, 520. However, by design, this light does not scatter in the predetermined viewing area of the wristwatch 500.

例如,假設輸入平面光束510被定向像素525~535的子組GA散射成一預定的視像區域。此預定的視像區域可以最大光角θmax來界定,該最大光角θmax是從定向背板504的法向所測量。輸入平面光束510也可以藉由定向像素540~550的子組GB散射,但是只要是滿足下列方程式時,那些不被想要的光線則位於該預定的視像區域之外: 其中,λ A是輸入平面光束510的波長,neff A是在定向背板505中之輸入平面光束510的水平傳輸的有效參數,λ B是輸入平面光束520的波長(將被定向像素540-550散射的),以及neff B是在定向背板505中之輸入平面光束520的水平傳輸的有效參數。在有效參數大 致相同於波長時,公式2簡化為: For example, assuming that the input beam 510 is directed plane pixel subset G A 525 ~ 535 scattered into a predetermined video region. This predetermined maximum light video area may be defined angle θ max, the maximum angle θ max is a measure of light directed from the backplane to the method 504. Input planar light beam 510 may be directed by scattering G B subset of pixels 540 to 550, but as long as the following equation is satisfied, the light that is not desired is located outside of the predetermined video region: Where λ A is the wavelength of the input planar beam 510, n eff A is the effective parameter of the horizontal transmission of the input planar beam 510 in the directional backplane 505, and λ B is the wavelength of the input planar beam 520 (to be oriented 520- 550 scattered), and n eff B are effective parameters for horizontal transmission of the input planar beam 520 in the directional backplane 505. When the effective parameters are approximately the same as the wavelength, Equation 2 is simplified to:

對於折射率n大於2的定向背板並且輸入平面光束靠近掠射角傳輸時,可以看出,顯示器預定的視像區域可以延伸到整個空間(neff 2且sin θmax~1)。對於具有較低折射指數的定向背板,例如玻璃(例如,n=1.46),預定的視像區域被大約限制為θmax<arcsin(n/2)(玻璃為±45°)。 For a directional backplane with a refractive index n greater than 2 and the input planar beam is transmitted close to the glancing angle, it can be seen that the predetermined visual area of the display can extend throughout the space (n eff 2 and sin θ max ~1). For directional back sheets having a lower index of refraction, such as glass (e.g., n = 1.46), the predetermined viewing area is limited to approximately θ max <arcsin(n/2) (glass is ± 45°).

可理解的是,每個定向光束可以由一調節器調節,舉例來說,如液晶顯示單元555。因為定向光束的精確定向及角度控制可以藉由在定向背板505中的每一定向像素來達成,並且定向光束可以藉由調節器例如液晶單元調節,所以定向背板405可被設計用來產生許多不同的三維影像。 It will be appreciated that each directional beam can be adjusted by a regulator, such as, for example, liquid crystal display unit 555. Because the precise orientation and angular control of the directional beam can be achieved by aligning each of the directional pixels in the directional backplane 505, and the directional beam can be adjusted by a regulator such as a liquid crystal cell, the directional backplane 405 can be designed to produce Many different 3D images.

可進一步理解的,第5圖所示之定向背板505可被形成為更精小的設計,如知可以將三角形板的末端切割以形成一六邊形的形狀,如第6圖中所示。定向背板605從三個不同的空間方向上接收輸入平面光束,例如,輸入平面光束610、615、620。各個輸入平面光束610、615、620被設置在六邊形定向背板605的各個交替側,以將其光線聚焦在定向像素(例如,定向像素625~635)的子組上。在各種實施例中,六方形定向背板605具有範圍可依次在10~30毫米間的邊長,並且具有大小可在10~30毫米之間的定向像素。 It can be further understood that the directional backing plate 505 shown in FIG. 5 can be formed into a more compact design, as the end of the triangular plate can be cut to form a hexagonal shape, as shown in FIG. . The directional backplane 605 receives input planar beams from three different spatial directions, for example, input planar beams 610, 615, 620. Individual input planar beams 610, 615, 620 are disposed on respective alternate sides of the hexagonal directional backplane 605 to focus their light onto a subset of directional pixels (e.g., directional pixels 625-635). In various embodiments, the hexagonal directional backsheet 605 has a side length that may range between 10 and 30 millimeters in sequence, and has directional pixels that may range between 10 and 30 millimeters.

可以理解,腕錶600被示為具有複數個調節器的多重配置。舉例而言,一單一的調節器可以被用來調節一組定向像素的定向光束,例如,用於定向像素625~635的液晶顯示單元640,或一單一的調節器可以被用來調節一單一的定向像素,例如,用於定向像素660的液晶顯示單元655。熟悉該技藝的人士了然可以使任何用於定向像素的調節器結構來調節被定向像素散射的定向光束。時鐘電路(未顯示於圖中)是用於控制光閘層的調節器。熟悉 該技藝的人士亦了然可以使用任何光閘層結構來調節定向光束。 It will be appreciated that the wristwatch 600 is illustrated as having multiple configurations of a plurality of adjusters. For example, a single regulator can be used to adjust the directional beam of a set of directional pixels, such as liquid crystal display unit 640 for directional pixels 625-635, or a single regulator can be used to adjust a single The directional pixels, for example, are used to align the liquid crystal display unit 655 of the pixel 660. Those skilled in the art will be able to adapt any directional beam used for directional pixels to align the directional beam scattered by the directional pixels. A clock circuit (not shown) is a regulator for controlling the shutter layer. Familiar with Those skilled in the art can also use any shutter structure to adjust the directional beam.

還可以理解,用於彩色輸入平面光束的定向背板可具有三角形(第5圖)或六邊形(第6圖)之外的任何幾何形狀,只要從三原色來的光是來自三個不同的方向。例如,定向背板可以是多邊形、圓形、橢圓形、或其他能夠從三個不同方向接收光的形狀。現在參照第7圖,描述了具有圓形形狀的定向背板。腕錶700中的定向背板705從三個不同方向接收輸入平面光束710~720。每個定向像素具有圓形形狀,例如,定向像素720,並且散射經過調節器,例如液晶顯示單元725,調節的定向光束。每個液晶顯示單元具有矩形的形狀,並且圓形定向背板705被設計成容納圓形定向像素的長方形的液晶顯示單元(或者亦可根據需求用於容納多邊形定向像素)。 It will also be appreciated that the directional backplane for a color input planar beam may have any geometry other than a triangle (Fig. 5) or a hexagon (Fig. 6) as long as the light from the three primary colors comes from three different direction. For example, the directional backplane can be polygonal, circular, elliptical, or other shape that can receive light from three different directions. Referring now to Figure 7, a directional backing having a circular shape is depicted. The directional backplane 705 in the wristwatch 700 receives input plane beams 710-720 from three different directions. Each directional pixel has a circular shape, for example, directional pixel 720, and is scattered through a regulator, such as liquid crystal display unit 725, an adjusted directional beam. Each liquid crystal display unit has a rectangular shape, and the circular directional back plate 705 is designed to accommodate a rectangular liquid crystal display unit of circularly oriented pixels (or may also be used to accommodate polygonal directional pixels as needed).

第8圖顯示根據本發明之多視角三維腕錶產生三維時間影像的流程圖。多視角三維腕錶藉由上述之定向背板及由時鐘電路控制的光閘層以產生三維時間影像。首先,時鐘電路確定要顯示的時間(800)。來自複數個狹窄光譜帶光源的光以輸入平面光束的形式輸入至定向背板(805)。接著,時鐘電路根據要顯示的時間控制光閘層以調節在方向背板中的一組定向像素(810)。最後,從定向背板中的定向像素散射之被調節過的定向光束產生三維時間影像(815)。 Figure 8 is a flow chart showing the generation of a three-dimensional time image of a multi-view three-dimensional wristwatch according to the present invention. The multi-view three-dimensional wristwatch generates a three-dimensional time image by the above-described directional backplane and the shutter layer controlled by the clock circuit. First, the clock circuit determines the time to display (800). Light from a plurality of narrow spectral band sources is input to the directional backplane (805) in the form of an input planar beam. Next, the clock circuit controls the shutter layer according to the time to be displayed to adjust a set of directional pixels (810) in the directional backplane. Finally, a three-dimensional time image is generated (815) from the directional beam that is conditioned by the directional pixel scattering in the directional backplane.

有利的是,多視角三維腕錶能夠產生三維時間影像,使得使用者觀看時間時彷彿其漂浮在空中。可以調節藉由定向像素所產生的定向光束,以在產生的時間影像中產生各種任何期望的效果。 Advantageously, the multi-view three-dimensional wristwatch is capable of generating a three-dimensional time image such that the user watches the time as if it were floating in the air. The directional beam produced by directional pixels can be adjusted to produce any desired effect in the resulting temporal image.

如是知悉,所揭露的實施例的前述描述,提供以使熟悉此技藝之任何人士可應用本發明。各種對這些實施例的修改,對那些本領域的技術人員,將是顯而易見的,且本文所界定的一般原理可應用於其它實施例而不脫離本發明的精神或範圍。因此,本發明並非旨在被限定於本文所示的實施例,而是應被賦予與本文所揭示的原理和新穎特徵相一致的最廣範圍。 As will be appreciated, the foregoing description of the disclosed embodiments is provided to enable any person skilled in the art to practice the invention. Various modifications to these embodiments are obvious to those skilled in the art, and the general principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Therefore, the present invention is not intended to be limited to the embodiments shown herein, but the scope of the invention should be accorded

200‧‧‧腕錶 200‧‧‧ watch

205‧‧‧定向背板 205‧‧‧Directional backplane

210‧‧‧輸入平面光束 210‧‧‧Input plane beam

215a~215d‧‧‧定向像素 215a~215d‧‧‧ Directional Pixels

220a~220d‧‧‧定向光束 220a~220d‧‧‧ Directional beam

225a‧‧‧溝槽 225a‧‧‧ trench

230‧‧‧光閘層 230‧‧‧Light barrier

235‧‧‧隔離層 235‧‧‧Isolation

240‧‧‧時間影像 240‧‧‧Time Image

245‧‧‧時鐘電路 245‧‧‧clock circuit

Claims (15)

一種多視角三維腕錶,包括:一時鐘電路,用以確定時間;複數個光源,用以產生複數個輸入平面光束;一定向背板,具有複數個定向像素,以將該等輸入平面光束散射成複數個定向光束,每一定向光束具有一方向和一角分散,且該方向和該角分散由該等定向像素中的一定向像素的特性控制;以及一光閘層,用以接收來自該時鐘電路的該時間和調節該等定向光束以產生一三維時間影像。 A multi-view three-dimensional wristwatch comprising: a clock circuit for determining time; a plurality of light sources for generating a plurality of input plane beams; and a fixed backplane having a plurality of directional pixels for scattering the input plane beams into a plurality of directional beams each having a direction and an angular dispersion, and wherein the direction and the angular dispersion are controlled by characteristics of a certain pixel in the directional pixels; and a shutter layer for receiving from the clock circuit This time and adjust the directional beams to produce a three dimensional time image. 如申請專利範圍第1項所述之多視角三維腕錶,進一步包括位在該定向背板上方的一隔離層。 The multi-view three-dimensional wristwatch of claim 1, further comprising an isolation layer positioned above the directional backplane. 如申請專利範圍第2項所述之多視角三維腕錶,其中該光閘層被定位於該隔離層的上方。 The multi-view three-dimensional wristwatch of claim 2, wherein the shutter layer is positioned above the isolation layer. 如申請專利範圍第1項所述之多視角三維腕錶,其中該定向背板實質上為平面的。 The multi-view three-dimensional wristwatch of claim 1, wherein the directional backplane is substantially planar. 如申請專利範圍第1項所述之多視角三維腕錶,其中在該等定向像素中的每一個定向像素包括具有複數個實質上為平行的溝槽的複數個圖案化光柵。 A multi-view three-dimensional wristwatch as claimed in claim 1, wherein each of the directional pixels in the directional pixels comprises a plurality of patterned gratings having a plurality of substantially parallel grooves. 如申請專利範圍第5項所述之多視角三維腕錶,其中一定向像素的特性包括一光柵長度、一光柵寬度、一光柵座向、一光柵間距及一工作週期。 The multi-view three-dimensional wristwatch according to claim 5, wherein the characteristics of the certain pixels include a grating length, a grating width, a grating seating direction, a grating spacing, and a duty cycle. 如申請專利範圍第6項所述之多視角三維腕錶,其中該等定向像素其中之一定向像素的該間距及該座向控制被該定向像素散射的一定向光束的方向。 The multi-view three-dimensional wristwatch of claim 6, wherein the one of the directional pixels aligns the pitch of the pixel and the orientation of the directional beam that is controlled by the directional pixel. 如申請專利範圍第6項所述之多視角三維腕錶,其中該等定向像素其中之一定向像素的該長度及該寬度控制被該定向像素散射的一定向光束的角分散。 The multi-view three-dimensional wristwatch of claim 6, wherein the length of the one of the directional pixels and the width control the angular dispersion of the directed beam scattered by the directional pixel. 如申請專利範圍第1項所述之多視角三維腕錶,其中該光閘層包括複數個調節器。 The multi-view three-dimensional wristwatch of claim 1, wherein the shutter layer comprises a plurality of adjusters. 如申請專利範圍第1項所述之多視角三維腕錶,其中該定向背板包括由透明材料構成的一多邊形厚板。 The multi-view three-dimensional wristwatch of claim 1, wherein the directional backplane comprises a polygonal thick plate made of a transparent material. 如申請專利範圍第1項所述之多視角三維腕錶,其中該定向背板包括由透明材料構成的一圓形厚板。 The multi-view three-dimensional wristwatch of claim 1, wherein the directional backplane comprises a circular thick plate made of a transparent material. 如申請專利範圍第1項所述之多視角三維腕錶,其中該等定向像素包括複數個多邊形定向像素。 The multi-view three-dimensional wristwatch of claim 1, wherein the directional pixels comprise a plurality of polygonal directional pixels. 如申請專利範圍第1項所述之多視角三維腕錶,其中該等定向像素包括複數個環形定向像素。 The multi-view three-dimensional wristwatch of claim 1, wherein the directional pixels comprise a plurality of annular directional pixels. 一種在多視角三維腕錶中產生三維時間影像的方法,包括:確定在該腕錶中要顯示的時間;接收來自該腕錶中之複數個光源的複數個輸入平面光束;控制一光閘層以調節該腕錶中的一定向背板所產生的複數個定向光束;以及從被調節過的該等定向光束產生該三維時間影像。 A method for generating a three-dimensional time image in a multi-view three-dimensional wristwatch, comprising: determining a time to be displayed in the wristwatch; receiving a plurality of input plane beams from a plurality of light sources in the watch; controlling a shutter layer To adjust a plurality of directional beams generated by a certain backplane in the watch; and to generate the three-dimensional time image from the directional beams that have been adjusted. 如申請專利範圍第14項所述之方法,包括將該等輸入平面光束散射成該定向背板所產生的該等定向光束,每一定向光束具有一方向和一角分散,該方向和該角分散由在該定向背板中的複數個定向像素中的一定向像素的特性控制。 The method of claim 14, comprising scattering the input plane beams into the directional beams produced by the directional backplane, each directional beam having a direction and an angular dispersion, the direction and the angular dispersion Controlled by the characteristics of a certain number of pixels in a plurality of directional pixels in the directional backplane.
TW103122129A 2014-06-26 2014-06-26 Multiview 3d wrist watch and method for generating a 3d time view in multiview 3d wrist watch TWI540401B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103122129A TWI540401B (en) 2014-06-26 2014-06-26 Multiview 3d wrist watch and method for generating a 3d time view in multiview 3d wrist watch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103122129A TWI540401B (en) 2014-06-26 2014-06-26 Multiview 3d wrist watch and method for generating a 3d time view in multiview 3d wrist watch

Publications (2)

Publication Number Publication Date
TW201600943A true TW201600943A (en) 2016-01-01
TWI540401B TWI540401B (en) 2016-07-01

Family

ID=55641241

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103122129A TWI540401B (en) 2014-06-26 2014-06-26 Multiview 3d wrist watch and method for generating a 3d time view in multiview 3d wrist watch

Country Status (1)

Country Link
TW (1) TWI540401B (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10089516B2 (en) 2013-07-31 2018-10-02 Digilens, Inc. Method and apparatus for contact image sensing
US10145533B2 (en) 2005-11-11 2018-12-04 Digilens, Inc. Compact holographic illumination device
US10156681B2 (en) 2015-02-12 2018-12-18 Digilens Inc. Waveguide grating device
US10185154B2 (en) 2011-04-07 2019-01-22 Digilens, Inc. Laser despeckler based on angular diversity
US10209517B2 (en) 2013-05-20 2019-02-19 Digilens, Inc. Holographic waveguide eye tracker
US10216061B2 (en) 2012-01-06 2019-02-26 Digilens, Inc. Contact image sensor using switchable bragg gratings
US10234696B2 (en) 2007-07-26 2019-03-19 Digilens, Inc. Optical apparatus for recording a holographic device and method of recording
US10241330B2 (en) 2014-09-19 2019-03-26 Digilens, Inc. Method and apparatus for generating input images for holographic waveguide displays
US10330777B2 (en) 2015-01-20 2019-06-25 Digilens Inc. Holographic waveguide lidar
US10359736B2 (en) 2014-08-08 2019-07-23 Digilens Inc. Method for holographic mastering and replication
US10423222B2 (en) 2014-09-26 2019-09-24 Digilens Inc. Holographic waveguide optical tracker
US10437064B2 (en) 2015-01-12 2019-10-08 Digilens Inc. Environmentally isolated waveguide display
US10437051B2 (en) 2012-05-11 2019-10-08 Digilens Inc. Apparatus for eye tracking
US10459145B2 (en) 2015-03-16 2019-10-29 Digilens Inc. Waveguide device incorporating a light pipe
US10545346B2 (en) 2017-01-05 2020-01-28 Digilens Inc. Wearable heads up displays
US10591756B2 (en) 2015-03-31 2020-03-17 Digilens Inc. Method and apparatus for contact image sensing
US10642058B2 (en) 2011-08-24 2020-05-05 Digilens Inc. Wearable data display
US10670876B2 (en) 2011-08-24 2020-06-02 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
US10678053B2 (en) 2009-04-27 2020-06-09 Digilens Inc. Diffractive projection apparatus
US10690916B2 (en) 2015-10-05 2020-06-23 Digilens Inc. Apparatus for providing waveguide displays with two-dimensional pupil expansion
US10690851B2 (en) 2018-03-16 2020-06-23 Digilens Inc. Holographic waveguides incorporating birefringence control and methods for their fabrication
TWI697713B (en) * 2017-06-16 2020-07-01 美商雷亞有限公司 Multiview backlight, multiview display, and method employing offset multibeam elements
US10732569B2 (en) 2018-01-08 2020-08-04 Digilens Inc. Systems and methods for high-throughput recording of holographic gratings in waveguide cells
US10859768B2 (en) 2016-03-24 2020-12-08 Digilens Inc. Method and apparatus for providing a polarization selective holographic waveguide device
US10890707B2 (en) 2016-04-11 2021-01-12 Digilens Inc. Holographic waveguide apparatus for structured light projection
US10914950B2 (en) 2018-01-08 2021-02-09 Digilens Inc. Waveguide architectures and related methods of manufacturing
US10942430B2 (en) 2017-10-16 2021-03-09 Digilens Inc. Systems and methods for multiplying the image resolution of a pixelated display
US10983340B2 (en) 2016-02-04 2021-04-20 Digilens Inc. Holographic waveguide optical tracker
US11307432B2 (en) 2014-08-08 2022-04-19 Digilens Inc. Waveguide laser illuminator incorporating a Despeckler
US11378732B2 (en) 2019-03-12 2022-07-05 DigLens Inc. Holographic waveguide backlight and related methods of manufacturing
US11402801B2 (en) 2018-07-25 2022-08-02 Digilens Inc. Systems and methods for fabricating a multilayer optical structure
US11442222B2 (en) 2019-08-29 2022-09-13 Digilens Inc. Evacuated gratings and methods of manufacturing
US11448937B2 (en) 2012-11-16 2022-09-20 Digilens Inc. Transparent waveguide display for tiling a display having plural optical powers using overlapping and offset FOV tiles
US11460621B2 (en) 2012-04-25 2022-10-04 Rockwell Collins, Inc. Holographic wide angle display
US11480788B2 (en) 2015-01-12 2022-10-25 Digilens Inc. Light field displays incorporating holographic waveguides
US11513350B2 (en) 2016-12-02 2022-11-29 Digilens Inc. Waveguide device with uniform output illumination
US11543594B2 (en) 2019-02-15 2023-01-03 Digilens Inc. Methods and apparatuses for providing a holographic waveguide display using integrated gratings
US11681143B2 (en) 2019-07-29 2023-06-20 Digilens Inc. Methods and apparatus for multiplying the image resolution and field-of-view of a pixelated display
US11726332B2 (en) 2009-04-27 2023-08-15 Digilens Inc. Diffractive projection apparatus
US11747568B2 (en) 2019-06-07 2023-09-05 Digilens Inc. Waveguides incorporating transmissive and reflective gratings and related methods of manufacturing

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10145533B2 (en) 2005-11-11 2018-12-04 Digilens, Inc. Compact holographic illumination device
US10234696B2 (en) 2007-07-26 2019-03-19 Digilens, Inc. Optical apparatus for recording a holographic device and method of recording
US10725312B2 (en) 2007-07-26 2020-07-28 Digilens Inc. Laser illumination device
US10678053B2 (en) 2009-04-27 2020-06-09 Digilens Inc. Diffractive projection apparatus
US11175512B2 (en) 2009-04-27 2021-11-16 Digilens Inc. Diffractive projection apparatus
US11726332B2 (en) 2009-04-27 2023-08-15 Digilens Inc. Diffractive projection apparatus
US11487131B2 (en) 2011-04-07 2022-11-01 Digilens Inc. Laser despeckler based on angular diversity
US10185154B2 (en) 2011-04-07 2019-01-22 Digilens, Inc. Laser despeckler based on angular diversity
US10670876B2 (en) 2011-08-24 2020-06-02 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
US10642058B2 (en) 2011-08-24 2020-05-05 Digilens Inc. Wearable data display
US11874477B2 (en) 2011-08-24 2024-01-16 Digilens Inc. Wearable data display
US11287666B2 (en) 2011-08-24 2022-03-29 Digilens, Inc. Wearable data display
US10459311B2 (en) 2012-01-06 2019-10-29 Digilens Inc. Contact image sensor using switchable Bragg gratings
US10216061B2 (en) 2012-01-06 2019-02-26 Digilens, Inc. Contact image sensor using switchable bragg gratings
US11460621B2 (en) 2012-04-25 2022-10-04 Rockwell Collins, Inc. Holographic wide angle display
US11994674B2 (en) 2012-05-11 2024-05-28 Digilens Inc. Apparatus for eye tracking
US10437051B2 (en) 2012-05-11 2019-10-08 Digilens Inc. Apparatus for eye tracking
US11448937B2 (en) 2012-11-16 2022-09-20 Digilens Inc. Transparent waveguide display for tiling a display having plural optical powers using overlapping and offset FOV tiles
US10209517B2 (en) 2013-05-20 2019-02-19 Digilens, Inc. Holographic waveguide eye tracker
US11662590B2 (en) 2013-05-20 2023-05-30 Digilens Inc. Holographic waveguide eye tracker
US10089516B2 (en) 2013-07-31 2018-10-02 Digilens, Inc. Method and apparatus for contact image sensing
US10423813B2 (en) 2013-07-31 2019-09-24 Digilens Inc. Method and apparatus for contact image sensing
US11709373B2 (en) 2014-08-08 2023-07-25 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
US10359736B2 (en) 2014-08-08 2019-07-23 Digilens Inc. Method for holographic mastering and replication
US11307432B2 (en) 2014-08-08 2022-04-19 Digilens Inc. Waveguide laser illuminator incorporating a Despeckler
US10241330B2 (en) 2014-09-19 2019-03-26 Digilens, Inc. Method and apparatus for generating input images for holographic waveguide displays
US11726323B2 (en) 2014-09-19 2023-08-15 Digilens Inc. Method and apparatus for generating input images for holographic waveguide displays
US10423222B2 (en) 2014-09-26 2019-09-24 Digilens Inc. Holographic waveguide optical tracker
US10437064B2 (en) 2015-01-12 2019-10-08 Digilens Inc. Environmentally isolated waveguide display
US11740472B2 (en) 2015-01-12 2023-08-29 Digilens Inc. Environmentally isolated waveguide display
US11726329B2 (en) 2015-01-12 2023-08-15 Digilens Inc. Environmentally isolated waveguide display
US11480788B2 (en) 2015-01-12 2022-10-25 Digilens Inc. Light field displays incorporating holographic waveguides
US10330777B2 (en) 2015-01-20 2019-06-25 Digilens Inc. Holographic waveguide lidar
US11703645B2 (en) 2015-02-12 2023-07-18 Digilens Inc. Waveguide grating device
US10527797B2 (en) 2015-02-12 2020-01-07 Digilens Inc. Waveguide grating device
US10156681B2 (en) 2015-02-12 2018-12-18 Digilens Inc. Waveguide grating device
US10459145B2 (en) 2015-03-16 2019-10-29 Digilens Inc. Waveguide device incorporating a light pipe
US12013561B2 (en) 2015-03-16 2024-06-18 Digilens Inc. Waveguide device incorporating a light pipe
US10591756B2 (en) 2015-03-31 2020-03-17 Digilens Inc. Method and apparatus for contact image sensing
US11754842B2 (en) 2015-10-05 2023-09-12 Digilens Inc. Apparatus for providing waveguide displays with two-dimensional pupil expansion
US11281013B2 (en) 2015-10-05 2022-03-22 Digilens Inc. Apparatus for providing waveguide displays with two-dimensional pupil expansion
US10690916B2 (en) 2015-10-05 2020-06-23 Digilens Inc. Apparatus for providing waveguide displays with two-dimensional pupil expansion
US10983340B2 (en) 2016-02-04 2021-04-20 Digilens Inc. Holographic waveguide optical tracker
US11604314B2 (en) 2016-03-24 2023-03-14 Digilens Inc. Method and apparatus for providing a polarization selective holographic waveguide device
US10859768B2 (en) 2016-03-24 2020-12-08 Digilens Inc. Method and apparatus for providing a polarization selective holographic waveguide device
US10890707B2 (en) 2016-04-11 2021-01-12 Digilens Inc. Holographic waveguide apparatus for structured light projection
US11513350B2 (en) 2016-12-02 2022-11-29 Digilens Inc. Waveguide device with uniform output illumination
US10545346B2 (en) 2017-01-05 2020-01-28 Digilens Inc. Wearable heads up displays
US11586046B2 (en) 2017-01-05 2023-02-21 Digilens Inc. Wearable heads up displays
US11194162B2 (en) 2017-01-05 2021-12-07 Digilens Inc. Wearable heads up displays
TWI697713B (en) * 2017-06-16 2020-07-01 美商雷亞有限公司 Multiview backlight, multiview display, and method employing offset multibeam elements
US10942430B2 (en) 2017-10-16 2021-03-09 Digilens Inc. Systems and methods for multiplying the image resolution of a pixelated display
US10732569B2 (en) 2018-01-08 2020-08-04 Digilens Inc. Systems and methods for high-throughput recording of holographic gratings in waveguide cells
US10914950B2 (en) 2018-01-08 2021-02-09 Digilens Inc. Waveguide architectures and related methods of manufacturing
US11150408B2 (en) 2018-03-16 2021-10-19 Digilens Inc. Holographic waveguides incorporating birefringence control and methods for their fabrication
US11726261B2 (en) 2018-03-16 2023-08-15 Digilens Inc. Holographic waveguides incorporating birefringence control and methods for their fabrication
US10690851B2 (en) 2018-03-16 2020-06-23 Digilens Inc. Holographic waveguides incorporating birefringence control and methods for their fabrication
US11402801B2 (en) 2018-07-25 2022-08-02 Digilens Inc. Systems and methods for fabricating a multilayer optical structure
US11543594B2 (en) 2019-02-15 2023-01-03 Digilens Inc. Methods and apparatuses for providing a holographic waveguide display using integrated gratings
US11378732B2 (en) 2019-03-12 2022-07-05 DigLens Inc. Holographic waveguide backlight and related methods of manufacturing
US11747568B2 (en) 2019-06-07 2023-09-05 Digilens Inc. Waveguides incorporating transmissive and reflective gratings and related methods of manufacturing
US11681143B2 (en) 2019-07-29 2023-06-20 Digilens Inc. Methods and apparatus for multiplying the image resolution and field-of-view of a pixelated display
US11442222B2 (en) 2019-08-29 2022-09-13 Digilens Inc. Evacuated gratings and methods of manufacturing
US11592614B2 (en) 2019-08-29 2023-02-28 Digilens Inc. Evacuated gratings and methods of manufacturing
US11899238B2 (en) 2019-08-29 2024-02-13 Digilens Inc. Evacuated gratings and methods of manufacturing

Also Published As

Publication number Publication date
TWI540401B (en) 2016-07-01

Similar Documents

Publication Publication Date Title
TWI540401B (en) Multiview 3d wrist watch and method for generating a 3d time view in multiview 3d wrist watch
JP5917783B1 (en) Multi-view 3D watch
US9785119B2 (en) Multiview display screen and multiview mobile device using same
JP5964500B2 (en) Directional backlight with modulation layer
JP6073470B2 (en) Directional backlight
US9201270B2 (en) Directional backlight with a modulation layer
US10120198B2 (en) Directional backlight
US9488879B2 (en) Liquid crystal lens panel and display apparatus having the same
US9568730B2 (en) Optical device including diffraction elements for diffracting light inside of a light guide, image projecting apparatus, and electronic device
TW201818117A (en) Diffractive backlight display, head-mounted display and image display method
JP2015534135A5 (en)
WO2014051623A1 (en) Directional waveguide-based backlight for use in a multivew display screen
US20210165270A1 (en) Reflective photonic crystal color film, display device using the same and fabricating method therefor
CN112400133A (en) 3D display
JP2015505978A (en) Prism array to reduce the effect of moire in 3D displays
TWI716217B (en) Integrated stereoscopic image display device
WO2023034040A1 (en) Optical systems for mitigating waveguide non-uniformity
TW202122874A (en) Integrated stereoscopic image display device