TW201546887A - CMOS-MEMS integration by sequential bonding method - Google Patents

CMOS-MEMS integration by sequential bonding method Download PDF

Info

Publication number
TW201546887A
TW201546887A TW104113492A TW104113492A TW201546887A TW 201546887 A TW201546887 A TW 201546887A TW 104113492 A TW104113492 A TW 104113492A TW 104113492 A TW104113492 A TW 104113492A TW 201546887 A TW201546887 A TW 201546887A
Authority
TW
Taiwan
Prior art keywords
bonding
wafer
temperature
pad
mems
Prior art date
Application number
TW104113492A
Other languages
Chinese (zh)
Other versions
TWI538036B (en
Inventor
Ii Jong Shin
Peter Smeys
Jongwoo Shin
Original Assignee
Invensense Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/696,994 external-priority patent/US9761557B2/en
Application filed by Invensense Inc filed Critical Invensense Inc
Publication of TW201546887A publication Critical patent/TW201546887A/en
Application granted granted Critical
Publication of TWI538036B publication Critical patent/TWI538036B/en

Links

Abstract

Methods for bonding two wafers are disclosed. In one aspect, a first wafer includes an integrated circuit and the second wafer including a MEMS device. The method comprises depositing a bond pad on a metal on the first wafer and sequentially bonding the first wafer to the second wafer utilizing first and second temperatures. The second wafer is bonded to the bond pad at the first temperature and the bond pad and the metal are bonded at the second temperature. In another aspect, a first wafer including an integrated circuit, the second wafer includes a MEMS device. The method comprises depositing a bond pad on a metal on one of the first wafer and the second wafer and bonding the first wafer to the second wafer at a first temperature via a direct bond interface. The method includes bonding the bond pad to the metal at a second temperature.

Description

藉由連續接合方法之CMOS-MEMS整合 CMOS-MEMS integration by continuous bonding method 相關申請的交叉參考 Cross-reference to related applications

本申請案依據35 USC119(e)要求2014年4月28日所提交之發明名稱為“CMOS-MEMS INTEGRATION BY SEQUENTIAL BONDING METHOD”的美國臨時專利申請案編號61/985,340的優先權,並且是2014年8月6日所提交之發明名稱為“METHOD TO IMPROVE SURFACE ROUGHTNESS AND ELIMINATE SHARP CORNERS ON AN ACTUATOR LAYER OF A MEMS DEVICE”的美國專利申請案編號15/453,431(代理人案號IVS-416/5415P)的部分連續案,該二者整體納入本申請作為參考。 The present application claims priority to U.S. Provisional Patent Application Serial No. 61/985,340, entitled " CMOS- MEMS INTEGRATION BY SEQUENTIAL BONDING METHOD", filed on Apr. 28, 2014, which is incorporated herein by reference. U.S. Patent Application Serial No. 15/453,431 (Attorney Docket No. IVS-416/5415P), entitled "METHOD TO IMPROVE SURFACE ROUGHTNESS AND ELIMINATE SHARP CORNERS ON AN ACTUATOR LAYER OF A MEMS DEVICE", filed on August 6 Partial continuation, both of which are incorporated herein by reference in its entirety.

本發明大致涉及MEMS(Microelectromechanical system;微機電系統)裝置的製造,尤其涉及一種用以接合第一與第二基板的方法及系統。 The present invention generally relates to the fabrication of MEMS (Microelectromechanical system) devices, and more particularly to a method and system for bonding first and second substrates.

用以在CMOS與MEMS之間接合鍺與鋁以形成強大的電性及機械接觸的方法已被修改。不過,在 MEMS裝置上沉積並圖案化鍺後,具有鍺墊的MEMS裝置晶圓的過度上架期(shelf time),可因自周圍環境收集水分以及原生氧化物形成而導致鋁-鍺接合品質不良。另外,鍺材料屬性可能是在鍺墊與CMOS-MEMS接合製程之間所插入之新製程的限制因素。因此,需要一種方法及系統來解決上述問題。本發明解決此類需要。 Methods for joining germanium and aluminum between CMOS and MEMS to form strong electrical and mechanical contacts have been modified. However, in After depositing and patterning the germanium on the MEMS device, the excessive shelf time of the MEMS device wafer with the germanium pad can result in poor aluminum-germanium bonding quality due to moisture collection from the surrounding environment and formation of native oxide. In addition, the tantalum material properties may be a limiting factor in the new process inserted between the mat and the CMOS-MEMS bonding process. Therefore, a method and system are needed to solve the above problems. The present invention addresses such needs.

本發明揭露用以接合第一晶圓與第二晶圓的方法。在第一態樣中,第一晶圓包括積體電路,且第二晶圓包括MEMS裝置。該方法包括在該第一晶圓的金屬上沉積接合墊,以及利用第一及第二溫度依序接合該第一晶圓與該第二晶圓。以該第一溫度將該第二晶圓與該接合墊接合,以及以該第二溫度將該接合墊與該金屬接合。 The present invention discloses a method for bonding a first wafer and a second wafer. In a first aspect, the first wafer includes an integrated circuit and the second wafer includes a MEMS device. The method includes depositing a bond pad on a metal of the first wafer, and sequentially bonding the first wafer and the second wafer using the first and second temperatures. The second wafer is bonded to the bond pad at the first temperature, and the bond pad is bonded to the metal at the second temperature.

在第二態樣中,第一晶圓包括積體電路,第二晶圓包括MEMS裝置。該方法包括在該第一晶圓及該第二晶圓的其中一個的金屬上沉積接合墊,以及通過直接接合介面以第一溫度接合該第一晶圓與該第二晶圓。該方法包括以第二溫度接合該接合墊與該金屬。 In a second aspect, the first wafer includes an integrated circuit and the second wafer includes a MEMS device. The method includes depositing a bond pad on a metal of one of the first wafer and the second wafer, and bonding the first wafer and the second wafer at a first temperature through a direct bonding interface. The method includes bonding the bond pad to the metal at a second temperature.

100‧‧‧整合感測器 100‧‧‧ integrated sensor

101‧‧‧操作層 101‧‧‧Operation layer

102‧‧‧薄介電膜 102‧‧‧Thin dielectric film

103‧‧‧裝置層 103‧‧‧Device layer

104‧‧‧支座 104‧‧‧Support

105‧‧‧鍺墊 105‧‧‧锗 pads

106a‧‧‧可移動結構 106a‧‧‧Removable structure

107‧‧‧CMOS基板 107‧‧‧ CMOS substrate

108‧‧‧導電材料層、鋁層 108‧‧‧ Conductive material layer, aluminum layer

111‧‧‧MEMS基板 111‧‧‧ MEMS substrate

202、204、206、402、404、406‧‧‧步驟 202, 204, 206, 402, 404, 406‧ ‧ steps

502‧‧‧MEMS矽基板 502‧‧‧MEMS substrate

503‧‧‧CMOS基板、裝置層 503‧‧‧ CMOS substrate, device layer

504‧‧‧直接接合介面材料 504‧‧‧Direct joint interface material

505‧‧‧鍺墊 505‧‧‧锗 pads

508‧‧‧頂級鋁層 508‧‧‧ top aluminum layer

第1A及1B圖顯示用以接合CMOS-MEMS整合感測器的傳統製程的相關示意圖。 Figures 1A and 1B show related diagrams of conventional processes for bonding CMOS-MEMS integrated sensors.

第2圖顯示依據本發明用以接合CMOS-MEMS整合感測器的第一製程的流程圖。 2 is a flow chart showing a first process for bonding a CMOS-MEMS integrated sensor in accordance with the present invention.

第3A及3B圖顯示第2圖中所示製程的相 關示意圖。 Figures 3A and 3B show the phase of the process shown in Figure 2 Off schematic.

第4圖顯示依據本發明用以接合CMOS-MEMS整合感測器的第二製程的流程圖。 Figure 4 shows a flow diagram of a second process for bonding a CMOS-MEMS integrated sensor in accordance with the present invention.

第5A及5B圖顯示第4圖中所示製程的相關示意圖。 Figures 5A and 5B show related diagrams of the process shown in Figure 4.

第6圖顯示在第一溫度實現MEMS矽化物接合以及在第二溫度實現共晶接合的示例接合曲線圖。 Figure 6 shows an example bond graph for achieving MEMS telluride bonding at a first temperature and eutectic bonding at a second temperature.

本發明大致涉及MEMS(microelectromechanical system;微機電系統)裝置的製造,尤其涉及一種用以接合第一與第二基板的方法及系統。下面所提供的說明使本領域的技術人員能夠製造和使用本發明,並且該說明係按照專利申請及其要求的背景提供。本領域的技術人員很容易瞭解對這裡所述的較佳實施例、總體原理以及特徵所作的各種變更。因此,本發明並不意圖受限於所示實施例,而是具有符合這裡所述原理及特徵的最廣範圍。 The present invention generally relates to the fabrication of MEMS (microelectromechanical system) devices, and more particularly to a method and system for bonding first and second substrates. The description provided below enables one skilled in the art to make and use the invention, and the description is provided in the context of the patent application and its claims. Various modifications to the preferred embodiments, general principles and features described herein will be apparent to those skilled in the art. Therefore, the present invention is not intended to be limited to the embodiments shown, but the broadest scope of the principles and features described herein.

在所述實施例中,微機電系統(MEMS)是指利用類似半導體製程製造並呈現例如移動或變形等機械特徵的一類結構或裝置。在所述實施例中,MEMS裝置可指實施為微機電系統的半導體裝置。MEMS結構可指任意特徵,其可能是較大MEMS裝置的部分。MEMS裝置常常(但不總是)與電性信號互相作用。MEMS裝置包括但不限於陀螺儀、加速度計、磁力計、壓力感測器、麥克風以及射頻元件。包含MEMS結構的矽晶圓被稱為MEMS晶圓。 In the illustrated embodiment, a microelectromechanical system (MEMS) refers to a type of structure or device that is fabricated using a similar semiconductor process and exhibits mechanical features such as movement or deformation. In the described embodiments, a MEMS device can refer to a semiconductor device implemented as a microelectromechanical system. A MEMS structure can refer to any feature that may be part of a larger MEMS device. MEMS devices often (but not always) interact with electrical signals. MEMS devices include, but are not limited to, gyroscopes, accelerometers, magnetometers, pressure sensors, microphones, and radio frequency components. A germanium wafer containing a MEMS structure is referred to as a MEMS wafer.

結構層可指具有可移動結構的矽層。工程化絕緣體上覆矽(engineered silicon-on-insulator;ESOI)晶圓可指在矽結構層下具有孔洞(cavity)的SOI晶圓。蓋晶圓(cap wafer)通常是指用作絕緣體上覆矽晶圓中的較薄矽裝置基板的載體的較厚基板。 A structural layer may refer to a layer of germanium having a movable structure. An engineered silicon-on-insulator (ESOI) wafer may refer to an SOI wafer having a cavity under a germanium structure layer. A cap wafer generally refers to a thicker substrate that serves as a carrier for a thinner germanium device substrate in an insulator overlying a wafer.

MEMS基板為MEMS結構提供機械支撐。MEMS結構層係接附於MEMS基板。MEMS基板也被稱為操作基板(handle substrate)或操作晶圓(handle wafer)。在一些實施例中,操作基板充當MEMS結構的蓋體。蓋體或覆蓋物對結構層提供機械保護並可視需要地形成封閉殼體的一部分。支座(standoff)定義結構層與IC基板之間的垂直間隙。 The MEMS substrate provides mechanical support for the MEMS structure. The MEMS structural layer is attached to the MEMS substrate. A MEMS substrate is also referred to as a handle substrate or a handle wafer. In some embodiments, the handle substrate acts as a cover for the MEMS structure. The cover or cover provides mechanical protection to the structural layer and optionally forms part of the closed housing. A standoff defines a vertical gap between the structural layer and the IC substrate.

支座也可在結構層與IC基板之間提供電性接觸。支座還可提供密封,該密封定義封閉殼體。積體電路(Integrated Circuit;IC)基板可指具有電性電路(通常為CMOS電路)的矽基板。孔洞可指基板中的凹部。晶片包括通常由半導體材料形成的至少一個基板。單一晶片可由多個基板形成,其中,該些基板被機械接合在一起。多晶片包括至少兩個基板,其中,該兩個基板電性連接,但不需要機械接合。 The holder can also provide electrical contact between the structural layer and the IC substrate. The holder may also provide a seal that defines a closed housing. An integrated circuit (IC) substrate may refer to a germanium substrate having an electrical circuit (typically a CMOS circuit). A hole can refer to a recess in a substrate. The wafer includes at least one substrate that is typically formed from a semiconductor material. A single wafer can be formed from a plurality of substrates, wherein the substrates are mechanically bonded together. The multi-wafer includes at least two substrates, wherein the two substrates are electrically connected, but do not require mechanical bonding.

例如,在2008年10月28日所核准之發明名稱為“METHOD OF FABRICATION OF AL/GE BONDING IN A WAFER PACKAGING ENVIRONMENT AND A PRODUCT PRODUCED THEREFROM”的美國專利案編號7,442,570(代 理人案號IVS-105/3404P)中說明了在CMOS基板與MEMS基板之間接合鍺與鋁以形成強大的電性及機械接觸的方法,該專利被讓渡給本申請的受讓人並整體納入本申請作為參考。儘管有時在MEMS基板上沉積並圖案化鍺(Ge)時,此製程在許多環境中有效,但具有鍺墊的MEMS基板的過度上架期可因自周圍環境收集水分以及原生氧化物形成而導致鋁-鍺接合品質不良。另外,鍺材料屬性可能是在鍺墊與CMOS-MEMS接合製程之間所插入之新製程的限制因素。 For example, U.S. Patent No. 7,442,570, issued on October 28, 2008, entitled "METHOD OF FABRICATION OF AL/GE BONDING IN A WAFER PACKAGING ENVIRONMENT AND A PRODUCT PRODUCED THEREFROM" A method for joining germanium and aluminum between a CMOS substrate and a MEMS substrate to form a strong electrical and mechanical contact is described in the PCT document No. IVS-105/3404P), the patent being assigned to the assignee of the present application. This application is incorporated by reference in its entirety. Although germanium (Ge) is sometimes deposited and patterned on MEMS substrates, this process is effective in many environments, but the excessive shelf life of MEMS substrates with germanium pads can result from the collection of moisture from the surrounding environment and the formation of native oxides. Aluminum-锗 bonding quality is poor. In addition, the tantalum material properties may be a limiting factor in the new process inserted between the mat and the CMOS-MEMS bonding process.

出於這些原因,圖案化位於頂部金屬上方的鍺墊已被選擇作為CMOS流程的一部分,並改變CMOS-MEMS接合製程以將MEMS矽直接與CMOS之接合墊上經圖案化的鍺墊接合。 For these reasons, patterned germanium pads over the top metal have been selected as part of the CMOS process and the CMOS-MEMS bonding process is changed to bond the MEMS germanium directly to the patterned germanium pads on the CMOS bond pads.

第1A及1B圖顯示用以接合CMOS-MEMS整合感測器100的製程的相關示意圖。CMOS-MEMS整合感測器100包括MEMS基板111以及CMOS基板107。MEMS基板111包括其中蝕刻有孔洞的操作層101以及裝置層103,這二層藉由位於二層之間的薄介電膜102(例如氧化矽)而接合在一起。在一些實施例中,裝置層103由單晶矽或多晶矽製成。支座104形成有鍺(Ge)墊105,位於支座104的頂部。在裝置層103經圖案化及蝕刻而形成可移動結構106a以後完成MEMS基板111。 1A and 1B are diagrams showing related processes for bonding the CMOS-MEMS integrated sensor 100. The CMOS-MEMS integrated sensor 100 includes a MEMS substrate 111 and a CMOS substrate 107. The MEMS substrate 111 includes an operation layer 101 in which holes are etched, and a device layer 103 which are bonded together by a thin dielectric film 102 (e.g., hafnium oxide) between the two layers. In some embodiments, device layer 103 is made of single crystal germanium or polycrystalline germanium. The holder 104 is formed with a germanium (Ge) pad 105 at the top of the holder 104. The MEMS substrate 111 is completed after the device layer 103 is patterned and etched to form the movable structure 106a.

MEMS整合感測器100包括CMOS基板107。在CMOS基板107上沉積導電材料層108(例如鋁),以提供 從裝置層103至CMOS基板107的電性連接。在一個實施例中,通過共晶接合MEMS基板111上的鍺墊105與CMOS基板107上的鋁層108來實現CMOS基板-MEMS整合。在一個實施例中,將MEMS基板111與CMOS基板107接合來形成MEMS整合感測器100。 The MEMS integrated sensor 100 includes a CMOS substrate 107. Depositing a layer 108 of conductive material (eg, aluminum) on the CMOS substrate 107 to provide Electrical connection from the device layer 103 to the CMOS substrate 107. In one embodiment, CMOS substrate-MEMS integration is achieved by eutectic bonding of germanium pads 105 on MEMS substrate 111 to aluminum layer 108 on CMOS substrate 107. In one embodiment, MEMS substrate 111 is bonded to CMOS substrate 107 to form MEMS integrated sensor 100.

從如第1A圖所示的工程化SOI晶圓開始,通過深反應離子蝕刻(DRIE)形成支座104,以在MEMS晶圓上定義小凸起。它定義裝置層103與鍺墊105之間的距離(間隔),而且,鋁-鍺共晶接合的區域電性連接裝置層103與CMOS金屬墊。定義MEMS孔洞的氣密密封環也藉由將支座104圖案化為密封環形狀來定義。鍺墊105經沉積及圖案化以後續與CMOS基板107上的鋁層108共晶接合。深反應離子蝕刻(DRIE)將圖案化致動器並釋放MEMS結構。 Starting from an engineered SOI wafer as shown in FIG. 1A, a support 104 is formed by deep reactive ion etching (DRIE) to define small bumps on the MEMS wafer. It defines the distance (interval) between the device layer 103 and the pad 105, and the aluminum-germanium eutectic bonded region is electrically connected to the device layer 103 and the CMOS metal pad. A hermetic seal ring defining a MEMS hole is also defined by patterning the support 104 into a seal ring shape. The pad 105 is deposited and patterned for subsequent eutectic bonding with the aluminum layer 108 on the CMOS substrate 107. Deep reactive ion etching (DRIE) will pattern the actuator and release the MEMS structure.

由於鍺墊105因原生氧化物形成的因素而具有有限的上架期,因此應當在該上架期限制內執行CMOS-MEMS接合,以保證接合品質優良。一旦通過深離子反應蝕刻(deep ion reactive etch;DRIE)圖案化致動器,則不可能重做鍺墊105,且在深離子反應蝕刻(DRIE)以後出現的鍺墊105超過鍺上架期的任意晶圓將最終被報廢。而且,MEMS裝置的任意製程步驟插入也可被鍺材料屬性限制。因此,需要一種系統及方法來解決此問題。 Since the mattress 105 has a limited shelf life due to factors of primary oxide formation, CMOS-MEMS bonding should be performed within the shelf life limit to ensure excellent bonding quality. Once the actuator is patterned by deep ion reactive etch (DRIE), it is impossible to redo the pad 105, and the pad 105 that appears after deep ion reactive etching (DRIE) exceeds the shelf life. The wafer will eventually be scrapped. Moreover, any process step insertion of a MEMS device can also be limited by the material properties of the crucible. Therefore, a system and method are needed to solve this problem.

第2圖顯示依據本發明用以接合CMOS-MEMS整合感測器的製程的流程圖。第3A及3B圖顯示第2圖中 所示製程的相關示意圖。請一併參照第2圖、第3A圖以及第3B圖,在依據一個實施例的製程中,通過步驟202在CMOS基板107上的鋁層108上沉積鍺墊105。 Figure 2 shows a flow diagram of a process for bonding a CMOS-MEMS integrated sensor in accordance with the present invention. Figures 3A and 3B show the second picture A schematic diagram of the process shown. Referring to FIG. 2, FIG. 3A and FIG. 3B together, in a process according to an embodiment, a pad 105 is deposited on the aluminum layer 108 on the CMOS substrate 107 by step 202.

接著,通過步驟204,在第一溫度將鍺墊105與MEMS基板111接合。在第3A圖所示的實施例中,將MEMS基板111的裝置層103的支座104與鍺墊105接合,以形成矽化物接合。通常,該第一溫度的溫度範圍在200至300℃之間。另外,通常,在預定壓力下以預定時長(例如在1小時與2小時之間)提供該第一溫度。在該接合步驟之前可能需要對鍺墊105進行一些表面處理,以移除污染物。 Next, in step 204, the pad 105 is bonded to the MEMS substrate 111 at a first temperature. In the embodiment illustrated in FIG. 3A, the support 104 of the device layer 103 of the MEMS substrate 111 is bonded to the mattress 105 to form a germanide bond. Typically, the temperature of the first temperature ranges between 200 and 300 °C. Additionally, typically, the first temperature is provided at a predetermined pressure for a predetermined length of time (e.g., between 1 hour and 2 hours). Some surface treatment of the mattress 105 may be required prior to the bonding step to remove contaminants.

之後,通過步驟206,在第二溫度將鍺墊105與鋁層108接合。通常,該第二溫度的溫度範圍在400至450℃之間。可見,該第一溫度小於該第二溫度。在一個實施例中,藉由鍺墊105與CMOS基板107的鋁層108的共晶接合來實現CMOS-MEMS整合。 Thereafter, through step 206, the crucible pad 105 is bonded to the aluminum layer 108 at a second temperature. Typically, the temperature of the second temperature ranges between 400 and 450 °C. It can be seen that the first temperature is less than the second temperature. In one embodiment, CMOS-MEMS integration is achieved by eutectic bonding of the germanium pad 105 to the aluminum layer 108 of the CMOS substrate 107.

第4圖顯示依據本發明用以接合CMOS-MEMS整合感測器的第二製程的流程圖。第5A及5B圖顯示第4圖中所示製程的相關示意圖。請一併參照第4圖、第5A圖以及第5B圖,在依據一個實施例的製程中,通過步驟402,在MEMS矽基板502(第5A圖)或者CMOS基板503上的頂級鋁層508(第5B圖)上沉積鍺墊505。在第5A及5B圖中,在CMOS基板503上設置直接接合介面材料504。在一個實施例中,直接接合介面材料504包括任意氧化 物、鈷(Co)或鎳(Ni)材料。在依據第5A及5B圖的實施例中,通過步驟404,以低溫(也就是300℃以下)在MEMS矽基板502與直接接合介面材料504之間形成接合,之後,通過步驟406,以第二溫度級(也就是400℃以上)在鍺墊505與頂級鋁層508之間可形成第二接合。 Figure 4 shows a flow diagram of a second process for bonding a CMOS-MEMS integrated sensor in accordance with the present invention. Figures 5A and 5B show related diagrams of the process shown in Figure 4. Referring to FIG. 4, FIG. 5A and FIG. 5B together, in a process according to an embodiment, through step 402, a top-level aluminum layer 508 on the MEMS germanium substrate 502 (FIG. 5A) or the CMOS substrate 503 ( Figure 5B) deposits a mat 505. In FIGS. 5A and 5B, a direct bonding interface material 504 is provided on the CMOS substrate 503. In one embodiment, the direct bonding interface material 504 includes any oxidation Material, cobalt (Co) or nickel (Ni) material. In the embodiment according to FIGS. 5A and 5B, by step 404, bonding is formed between the MEMS germanium substrate 502 and the direct bonding interface material 504 at a low temperature (ie, below 300 ° C), and then, through step 406, to a second A temperature level (i.e., above 400 ° C) can form a second bond between the mattress 505 and the top aluminum layer 508.

在第5B圖的實施例中,可視需要地提供額外的特徵來改進該製程。在該低溫接合之前可向MEMS矽基板502提供高溫退火來進一步提升該整合裝置的上架期。例如,在2014年8月6日所提交之發明名稱為“METHOD TO IMRPOVE SURFACE ROUGHNESS AND ELIMINATE SHARP CORNERS ON AN ACTUATOR LAYER OF A MEMS DEVICE”的美國專利申請案編號14/453,431(代理人案號IVS-416/5415P)中(該申請被讓渡給本申請的受讓人且其整體納入本申請作為參考),已揭露後續的高溫退火將為裝置層503提供平滑表面及圓角。在氫環境背景中的高溫退火意味著1000℃或更高的溫度。 In the embodiment of Figure 5B, additional features may be provided as needed to improve the process. High temperature annealing may be provided to the MEMS(R) substrate 502 prior to the low temperature bonding to further enhance the shelf life of the integrated device. For example, U.S. Patent Application Serial No. 14/453,431, filed on Aug. 6, 2014, entitled "METHOD TO IMRPOVE SURFACE ROUGHNESS AND ELIMINATE SHARP CORNERS ON AN ACTUATOR LAYER OF A MEMS DEVICE" (Attorney Docket IVS- 416/5 415 P) (the application being assigned to the assignee of the present application and the entire disclosure of which is incorporated herein by reference in its entirety in the entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire portion High temperature annealing in the hydrogen environment background means a temperature of 1000 ° C or higher.

第6圖顯示利用任意上述製程在第一溫度實現MEMS矽化物接合(silicide bond)以及在第二溫度實現共晶接合(eutectic bond)的示例接合曲線圖。如圖所示,將溫度升高至例如275℃持續第一預定時長,以在MEMS基板的操作層與鍺墊之間提供矽化物接合。之後,藉由將溫度升高至423℃,以在鍺墊與鋁層之間形成共晶接合。 Figure 6 shows an example bond graph for achieving a MEMS telluride bond at a first temperature and a eutectic bond at a second temperature using any of the above processes. As shown, the temperature is raised to, for example, 275 °C for a first predetermined length of time to provide a telluride bond between the operating layer of the MEMS substrate and the mattress. Thereafter, a eutectic bond was formed between the crucible pad and the aluminum layer by raising the temperature to 423 °C.

本發明揭露一種在兩個基板之間接合鍺與鋁以形成強大的電性及機械接觸的方法及結構。鋁-鍺接合 具有下列獨特的屬性組合:(1)它能形成氣密密封;(2)它能用來在兩個基板之間形成電性導電路徑;(3)它能經圖案化使得該導電路徑得以定位;(4)該接合可通過使用標準晶圓廠CMOS製程中可獲得的鋁來形成。這具有顯著的優點:允許晶圓級接合或封裝而無需對CMOS晶圓添加任何額外的加工層。 The present invention discloses a method and structure for joining germanium and aluminum between two substrates to form a strong electrical and mechanical contact. Aluminum-bismuth joint It has the following unique combination of properties: (1) it can form a hermetic seal; (2) it can be used to form an electrically conductive path between two substrates; (3) it can be patterned to position the conductive path (4) The bonding can be formed by using aluminum available in a standard fab CMOS process. This has the significant advantage of allowing wafer level bonding or packaging without the need to add any additional processing layers to the CMOS wafer.

儘管依據所示實施例來說明本發明,但本領域的技術人員很容易瞭解,可對實施例進行變更且該些變更落入本發明的精神及範圍內。因此,本領域的技術人員可作許多變更而不背離本發明的精神及範圍。 Although the present invention has been described in terms of the embodiments shown, it will be understood by those skilled in the art Therefore, many modifications may be made by those skilled in the art without departing from the spirit and scope of the invention.

該代表圖無元件符號及其代表之意義。 The representative figure has no component symbols and the meaning of its representation.

Claims (21)

一種用以接合第一晶圓與第二晶圓的方法,包括:在該第一晶圓的金屬上沉積接合墊,該第一晶圓包括積體電路,且該第二晶圓包括MEMS裝置;以及利用第一及第二溫度依序接合該第一晶圓與該第二晶圓;其中,在該第一溫度將該第二晶圓與該接合墊接合,以及其中,在該第二溫度將該接合墊與該金屬接合。 A method for bonding a first wafer and a second wafer, comprising: depositing a bonding pad on a metal of the first wafer, the first wafer including an integrated circuit, and the second wafer including a MEMS device And sequentially bonding the first wafer and the second wafer by using the first and second temperatures; wherein the second wafer is bonded to the bonding pad at the first temperature, and wherein, in the second The bonding pad is bonded to the metal at a temperature. 如申請專利範圍第1項所述的方法,其中,該依序接合步驟包括:在不超過300℃的溫度接合該接合墊與該第二晶圓;以及在大於420℃的溫度接合該接合墊與該金屬,以形成共晶接合。 The method of claim 1, wherein the sequential bonding step comprises: bonding the bonding pad and the second wafer at a temperature not exceeding 300 ° C; and bonding the bonding pad at a temperature greater than 420 ° C. And the metal to form a eutectic bond. 如申請專利範圍第1項所述的方法,其中,該第一溫度小於該第二溫度。 The method of claim 1, wherein the first temperature is less than the second temperature. 如申請專利範圍第1項所述的方法,其中,該第一溫度小於400℃,且該第二溫度大於400℃。 The method of claim 1, wherein the first temperature is less than 400 ° C and the second temperature is greater than 400 ° C. 如申請專利範圍第1項所述的方法,其中,該接合墊包括鍺接合墊,且該金屬包括鋁。 The method of claim 1, wherein the bonding pad comprises a tantalum bond pad and the metal comprises aluminum. 如申請專利範圍第1項所述的方法,其中,該鍺接合墊與該鋁之間的該接合包括共晶接合。 The method of claim 1, wherein the bonding between the tantalum bond pad and the aluminum comprises eutectic bonding. 如申請專利範圍第6項所述的方法,其中,該共晶接合提供氣密密封。 The method of claim 6, wherein the eutectic bonding provides a hermetic seal. 如申請專利範圍第6項所述的方法,其中,該第二晶圓包括裝置層以及操作層。 The method of claim 6, wherein the second wafer comprises a device layer and an operation layer. 如申請專利範圍第8項所述的方法,其中,該操作層包括形成於其上的至少一個支座。 The method of claim 8, wherein the operating layer comprises at least one support formed thereon. 如申請專利範圍第9項所述的方法,其中,通過接合該接合墊與該第二晶圓使至少一個支座與該接合墊接合。 The method of claim 9, wherein the at least one support is joined to the bond pad by bonding the bond pad to the second wafer. 如申請專利範圍第6項所述的方法,其中,該第二晶圓包括工程化絕緣體上覆矽(engineered silicon-on-insulator;ESOI)。 The method of claim 6, wherein the second wafer comprises an engineered silicon-on-insulator (ESOI). 一種用以接合第一晶圓與第二晶圓的方法,包括:在該第一晶圓及該第二晶圓的其中一個的金屬上沉積接合墊,該第一晶圓包括積體電路,該第二晶圓包括MEMS裝置;通過直接接合介面在第一溫度接合該第一晶圓與該第二晶圓;以及在第二溫度接合該接合墊與該金屬。 A method for bonding a first wafer and a second wafer, comprising: depositing a bonding pad on a metal of one of the first wafer and the second wafer, the first wafer including an integrated circuit, The second wafer includes a MEMS device; the first wafer and the second wafer are bonded at a first temperature by a direct bonding interface; and the bonding pad and the metal are bonded at a second temperature. 如申請專利範圍第12項所述的方法,其中,該第一溫度小於該第二溫度。 The method of claim 12, wherein the first temperature is less than the second temperature. 如申請專利範圍第12項所述的方法,其中,該第一溫度小於400℃,且該第二溫度大於400℃。 The method of claim 12, wherein the first temperature is less than 400 ° C and the second temperature is greater than 400 ° C. 如申請專利範圍第12項所述的方法,其中,該接合墊包括鍺接合墊,且該金屬包括鋁。 The method of claim 12, wherein the bonding pad comprises a tantalum bond pad and the metal comprises aluminum. 如申請專利範圍第15項所述的方法,其中,該鍺接合墊與該鋁之間的該接合包括共晶接合。 The method of claim 15, wherein the bonding between the tantalum bond pad and the aluminum comprises eutectic bonding. 如申請專利範圍第16項所述的方法,其中,該共晶接合提供氣密密封。 The method of claim 16, wherein the eutectic bonding provides a hermetic seal. 如申請專利範圍第16項所述的方法,其中,在該第二接合步驟之前,在氫環境中提供該第二晶圓的高溫退火。 The method of claim 16, wherein the high temperature annealing of the second wafer is provided in a hydrogen environment prior to the second bonding step. 如申請專利範圍第12項所述的方法,其中,接合至該直接接合介面需要在接合前進行表面處理。 The method of claim 12, wherein bonding to the direct bonding interface requires surface treatment prior to bonding. 如申請專利範圍第12項所述的方法,其中,通過接合該接合墊與該金屬的該步驟提供電性連接。 The method of claim 12, wherein the step of bonding the bond pad to the metal provides an electrical connection. 如申請專利範圍第12項所述的方法,其中,在接合墊形成前蝕刻該接合墊。 The method of claim 12, wherein the bond pad is etched prior to formation of the bond pads.
TW104113492A 2014-04-28 2015-04-28 Cmos-mems integration by sequential bonding method TWI538036B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461985340P 2014-04-28 2014-04-28
US14/696,994 US9761557B2 (en) 2014-04-28 2015-04-27 CMOS-MEMS integration by sequential bonding method

Publications (2)

Publication Number Publication Date
TW201546887A true TW201546887A (en) 2015-12-16
TWI538036B TWI538036B (en) 2016-06-11

Family

ID=55407562

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104113492A TWI538036B (en) 2014-04-28 2015-04-28 Cmos-mems integration by sequential bonding method

Country Status (1)

Country Link
TW (1) TWI538036B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11279615B2 (en) 2017-09-27 2022-03-22 Taiwan Semiconductor Manufacturing Company, Ltd. Method for manufacturing a MEMS device by first hybrid bonding a CMOS wafer to a MEMS wafer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10294098B2 (en) * 2017-09-27 2019-05-21 Taiwan Semiconductor Manufacturing Co., Ltd. Method for manufacturing a MEMS device by first hybrid bonding a CMOS wafer to a MEMS wafer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11279615B2 (en) 2017-09-27 2022-03-22 Taiwan Semiconductor Manufacturing Company, Ltd. Method for manufacturing a MEMS device by first hybrid bonding a CMOS wafer to a MEMS wafer
US11932534B2 (en) 2017-09-27 2024-03-19 Taiwan Semiconductor Manufacturing Company, Ltd. MEMS device having a metallization structure embedded in a dielectric structure with laterally offset sidewalls of a first portion and a second portion

Also Published As

Publication number Publication date
TWI538036B (en) 2016-06-11

Similar Documents

Publication Publication Date Title
US9761557B2 (en) CMOS-MEMS integration by sequential bonding method
TWI582906B (en) Method of providing a cmos-mems structure
CN105480935B (en) CMOS-MEMS integrating devices and manufacture method including multiple chambers under different controlled pressures
US8945969B2 (en) Internal electrical contact for enclosed MEMS devices
US9561954B2 (en) Method of fabricating MEMS devices having a plurality of cavities
TWI683781B (en) Cmos-mems integration using metal silicide formation
TW201209897A (en) Composite wafer semiconductor device and method of forming the same
US9676606B2 (en) Microelectromechanical systems (MEMS) structure to prevent stiction after a wet cleaning process
US20170081181A1 (en) Method for providing a mems device with a plurality of sealed enclosures having uneven standoff structures and mems device thereof
US10160640B2 (en) Mechanisms for forming micro-electro mechanical system device
CN103771332A (en) Electronic device and manufacturing method thereof
JP2010017805A (en) Functional device and manufacturing method therefor
TW201542309A (en) Process for the eutectic bonding of two carrier devices
TWI538036B (en) Cmos-mems integration by sequential bonding method
TWI691455B (en) Cmos-mems integrated device including a contact layer and methods of manufacture
CN102683312B (en) Semiconductor device and the method be used for producing the semiconductor devices
JP2014205235A (en) Functional device
US11267699B2 (en) Modification to rough polysilicon using ion implantation and silicide
EP3469625A1 (en) Thermocompression bonding with raised feature
US20160343684A1 (en) Thermocompression bonding with raised feature
US20150274517A1 (en) Method to improve surface roughness and eliminate sharp corners on an actuator layer of a mems device