TW201545833A - Devices and methods for machining process parameter estimation - Google Patents

Devices and methods for machining process parameter estimation Download PDF

Info

Publication number
TW201545833A
TW201545833A TW103119717A TW103119717A TW201545833A TW 201545833 A TW201545833 A TW 201545833A TW 103119717 A TW103119717 A TW 103119717A TW 103119717 A TW103119717 A TW 103119717A TW 201545833 A TW201545833 A TW 201545833A
Authority
TW
Taiwan
Prior art keywords
cutting
signal
vibration
optimal
module
Prior art date
Application number
TW103119717A
Other languages
Chinese (zh)
Other versions
TWI542439B (en
Inventor
Chih-Chun Cheng
Ping-Chun Tsai
Wen-Nan Cheng
Jay Chen
Tzu-Fa Yen
His-Hsun Cheng
Wei-Ren Chen
Feng-Tai Wu
Original Assignee
Nat Univ Chung Cheng
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Chung Cheng filed Critical Nat Univ Chung Cheng
Priority to TW103119717A priority Critical patent/TWI542439B/en
Publication of TW201545833A publication Critical patent/TW201545833A/en
Application granted granted Critical
Publication of TWI542439B publication Critical patent/TWI542439B/en

Links

Abstract

The present invention discloses a machining processing parameter assessment device and the method thereof. The device may comprise a signal sensing module, signal analysis module and machining status assessment module. The signal sensing module acquires vibration signals from a machining processing. The signal analysis module analyzes the vibration signals via operational modal analysis to produce system dynamic parameters; such as natural frequency and the damping ratio. The machining status assessment module determines the optimal spindle rotational speed in avoiding chatter according to a mathematical model created based on chatter theory and also a warning signal based on the vibration spectra. The method in determining the optimal machining parameters consists of two phases. In the first phase, the optimal spindle rotational speed is determined via the signal sensing module and the signal analysis module based on the operational modal analysis and chatter theory. In the second phase, with the spindle operated at the optimal speed determined in Phase one, varying cutting depths are assessed via the machining status assessment module in order to determine an optimal cutting depth that matches the optimal spindle speed without chatter.

Description

切削加工參數估測裝置及其方法 Cutting processing parameter estimating device and method thereof

本發明係有關於一種切削加工參數估測方法,特別是一種能準確估測切削加工機對特定材質之工件進行切削作業之最佳轉速,並且同時可計算匹配此最佳轉速之最佳切削深度之估測方法。本發明還涉及應用此切削加工參數估測方法之裝置。 The invention relates to a method for estimating a cutting processing parameter, in particular to an accurate estimation of an optimum rotation speed of a cutting machine for cutting a workpiece of a specific material, and at the same time calculating an optimum cutting depth matching the optimum rotation speed. Estimation method. The invention also relates to an apparatus for applying the cutting process parameter estimation method.

CNC車床、銑床等是機械製造加工過程中常用的切削機械,而在切削加工的過程中,若有顫振產生,則會影響到切削的速度、穩定度及材料的移除率。因此,操作人員需要儘可能事先找出能夠避免顫振產生之最佳加工參數(例如:轉速及與其匹配之切削深度),藉此保證切削穩定度及材料的移除率。一般而言,操作人員通常是根據經驗法則、工具機廠商提供之資料或工具書等等來判定特定材質之工件所需要刀具及刀具主軸轉速等等資訊。然而,由於不同製造商製造出來的刀具及機台均有著不同的特性及其它種種因素,僅憑經驗法則及工具書很難精確地找出適合的加工參數,再者、加工不同工件,其材質、夾持方式等亦影響其加工穩定性。 CNC lathes, milling machines, etc. are commonly used cutting machines in mechanical manufacturing processes. In the process of cutting, if flutter occurs, it will affect the cutting speed, stability and material removal rate. Therefore, the operator needs to find the best machining parameters (such as the rotation speed and the matching cutting depth) that can avoid the chattering as much as possible, thereby ensuring the cutting stability and the material removal rate. Generally speaking, the operator usually determines the tool and the tool spindle speed required for the workpiece of a specific material according to the rule of thumb, the information provided by the machine tool manufacturer, or the reference book. However, because the tools and machines manufactured by different manufacturers have different characteristics and various other factors, it is difficult to accurately find suitable processing parameters based on the rules of thumb and reference books. Furthermore, different workpieces are processed and their materials are processed. The clamping method also affects the processing stability.

中華民國專利公開號第200630182號揭露一種電腦輔助切削顫振偵測與抑制系統,此前案利用偵測系統辨識切削訊號是否為高頻訊號且是否位 於一滑順函數之穩定區間內以判斷是否發生顫振,並於偵測系統判定發生顫振時發出警告。 The Republic of China Patent Publication No. 200630182 discloses a computer-aided cutting flutter detection and suppression system. The previous case uses a detection system to identify whether the cutting signal is a high frequency signal and whether it is a bit. Within a stable interval of a smoothing function to determine whether flutter occurs, and a warning is issued when the detection system determines that chattering has occurred.

中華民國專利公開號第201131325號揭露一種線上振動偵測調控模組,此前案利用振動偵測調控模組量測加工過程中的各種振動現象及工具機加工時所輸出之負載訊號,並加以分析計算並判斷振動訊號是否超過所設定的額定值,若振動訊號超過額定值則送出控制訊號改變主軸轉速或進給速度以防止加工中產生太大的振動。 The Republic of China Patent Publication No. 201131325 discloses an online vibration detection control module. In the previous case, the vibration detection control module is used to measure various vibration phenomena in the processing process and load signals output during tool machining, and analyze them. Calculate and judge whether the vibration signal exceeds the set rated value. If the vibration signal exceeds the rated value, send the control signal to change the spindle speed or feed speed to prevent too much vibration during machining.

中華民國專利公開號第201332708號揭露一種刀具顫振監控方法,此前案係將所量測振動訊號分割成數段,並判斷每段振動訊號間之振幅增長情形是否超過一設定門檻值,並針對該段振動訊號進行快速傅立葉轉換並判斷振動訊號頻率是否為切刃通過頻率,若以上兩種判斷皆同時符合則判定為顫振發生。 The Republic of China Patent Publication No. 201332708 discloses a method for monitoring the vibration of a tool. The previous method divides the measured vibration signal into a plurality of segments, and determines whether the amplitude increase between each of the vibration signals exceeds a set threshold value, and The segment vibration signal performs fast Fourier transform and determines whether the vibration signal frequency is the cutting edge passing frequency. If both the above judgments coincide, the flutter occurs.

上述各前案多為揭露數種偵測顫振的方法,並非在加工前即能提供最佳加工參數,且這些方法或過於繁雜昂貴(例如使用動力計),不適合應用於一般機台線上檢測的需求,或由於欠缺機台動態特性或切削剛性等訊息,以致效能不彰,也因此無法針對特定的轉速提供最適合的切削深度,故無法有效地提升機台切削的穩定度及材料的移除率。 Most of the above-mentioned pre-existing cases disclose several methods for detecting flutter, which do not provide the best processing parameters before processing, and these methods are too complicated and expensive (for example, using a power meter), and are not suitable for general machine on-line inspection. The demand, or lack of information such as the dynamic characteristics of the machine or the rigidity of the cutting, so that the performance is not good, and therefore can not provide the most suitable depth of cut for a specific speed, it can not effectively improve the stability of the machine cutting and material movement Except rate.

因此,本專利提出一種切削加工參數估測裝置及方法,能夠有效改善習知技藝過於複雜昂貴、不夠精確及無法提供最佳化加工參數的情況已成為一個刻不容緩的問題。 Therefore, this patent proposes a cutting processing parameter estimating device and method, which can effectively improve the conventional technology, which is too complicated, expensive, inaccurate, and unable to provide optimized processing parameters has become an urgent problem.

有鑑於上述習知技藝之問題,本發明之其中一目的在於提供一種切削加工參數估測裝置及方法,以解決習知技藝複雜昂貴、不夠精確及無法提供最佳化加工參數的問題。 In view of the above-mentioned problems of the prior art, it is an object of the present invention to provide a cutting tool parameter estimating apparatus and method for solving the problems that the prior art is complicated, expensive, inaccurate, and unable to provide optimized processing parameters.

根據本發明之其中一目的,提出一種切削加工參數估測裝置。此裝置可包含訊號感測模組、訊號分析模組及切削狀態估測模組。訊號感測模組可擷取切削加工機以一轉速範圍進行切削作業時產生之第一振動訊號。訊號分析模組可對此振動訊號執行操作模態分析以產生複數個系統動態參數(機台加工時之自然頻率與阻尼)。切削狀態估測模組可以依切削顫振數學模型分析該系統動態參數以計算切削加工機在此轉速範圍內之最佳轉速。 According to one of the objects of the present invention, a cutting processing parameter estimating device is proposed. The device can include a signal sensing module, a signal analysis module, and a cutting state estimation module. The signal sensing module can capture the first vibration signal generated by the cutting machine during a cutting operation. The signal analysis module can perform operational modal analysis on the vibration signal to generate a plurality of system dynamic parameters (natural frequency and damping during machine processing). The cutting state estimation module can analyze the dynamic parameters of the system according to the mathematical model of the cutting flutter to calculate the optimal rotation speed of the cutting machine in the range of the rotation speed.

根據本發明之其中一目的,再提出一種切削加工參數估測方法。此方法可包含下列步驟:擷取切削加工機以一轉速範圍進行切削作業時產生之第一振動訊號;對第一振動訊號執行操作模態分析以產生複數個系統動態參數;以及,以切削顫振數學模型分析該些系統動態參數以計算切削加工機在此轉速範圍之最佳轉速。 According to one of the objects of the present invention, a method for estimating a cutting process parameter is further proposed. The method may include the steps of: taking a first vibration signal generated by the cutting machine during a cutting operation in a range of speeds; performing an operational modal analysis on the first vibration signal to generate a plurality of system dynamic parameters; and, The vibration mathematical model analyzes the dynamic parameters of the system to calculate the optimum rotational speed of the cutting machine in this rotational speed range.

在一實施例中,訊號感測模組更可擷取切削加工機以最佳轉速並以一切削深度進行切削作業之第二振動訊號,訊號分析模組則可分析第二振動訊號以產生振動特徵訊號,以擷取加工振動頻譜特徵,切削狀態估測模組則可將振動特徵訊號與預設門檻值比對,並重覆調整切削深度,直到振動特徵訊號符合預設門檻值,以取得匹配此最佳轉速之最佳切削深度。 In one embodiment, the signal sensing module can further capture the second vibration signal of the cutting machine at an optimal rotation speed and a cutting depth, and the signal analysis module can analyze the second vibration signal to generate vibration. The characteristic signal is used to extract the processing vibration spectrum characteristic, and the cutting state estimation module can compare the vibration characteristic signal with the preset threshold value, and repeatedly adjust the cutting depth until the vibration characteristic signal meets the preset threshold value to obtain a match. The optimum depth of cut for this optimum speed.

在一實施例中,切削狀態估測模組可依切削顫振數學模型分析該系統動態參數以產生顫振穩定界線圖以計算最佳轉速。 In one embodiment, the cutting state estimation module can analyze the dynamic parameters of the system according to a mathematical model of the cutting flutter to generate a flutter stability boundary map to calculate an optimal rotational speed.

在一實施例中,該些系統動態參數可包含自然頻率與阻尼比。 In an embodiment, the system dynamic parameters may include a natural frequency and a damping ratio.

在一實施例中,切削狀態估測模組可將振動特徵訊號與預設門檻值比 對,若振動特徵訊號超出預設門檻值,切削狀態估測模組則可發出警告訊號。 In an embodiment, the cutting state estimation module can compare the vibration characteristic signal with a preset threshold value Yes, if the vibration characteristic signal exceeds the preset threshold, the cutting state estimation module can issue a warning signal.

承上所述,依本發明之切削加工參數估測裝置及其方法,其可具有一或多個下述優點: In view of the above, the cutting process parameter estimating device and method thereof according to the present invention may have one or more of the following advantages:

(1)本發明之一實施例對擷取之振動訊號進行操作模態分析以獲得複數個系統動態參數,再利用切削顫振數學模型分析該些系統動態參數以計算其顫振穩定界線圖,故可以精確地估測適合切削加工機目前作業之最佳轉速。 (1) An embodiment of the present invention performs operational modal analysis on the extracted vibration signals to obtain a plurality of system dynamic parameters, and then uses the mathematical model of the cutting flutter to analyze the dynamic parameters of the systems to calculate the flutter stability boundary map. Therefore, it is possible to accurately estimate the optimum speed suitable for the current operation of the cutting machine.

(2)本發明之一實施例中不但能夠對擷取之振動訊號進行操作模態分析,以計算適合切削加工機目前作業之最佳轉速,更能夠針對此最佳轉速找出與其匹配的最佳切削深度等最佳加工參數,故可以大幅地增加切削加工機切削的速度、穩定度及材料的移除率。 (2) In one embodiment of the present invention, not only the operational modal analysis of the captured vibration signal can be performed, but also the optimum rotational speed suitable for the current operation of the cutting machine can be calculated, and the best matching speed can be found for the optimal rotational speed. The optimum machining parameters such as the cutting depth can greatly increase the cutting speed, stability and material removal rate of the cutting machine.

(3)本發明之一實施例中能夠對擷取切削中之振動訊號進行操作模態分析,因此切削剛性亦包含於此分析模型中,故加工之最佳轉速估測較為精確。 (3) In one embodiment of the present invention, the operational modal analysis of the vibration signal during the cutting can be performed. Therefore, the cutting rigidity is also included in the analysis model, so that the optimum rotational speed estimation of the machining is more accurate.

(4)本發明之方法簡單、有效率,操作員不需對機台進行實驗模態測試且不需要使用動力計、衝擊錘等裝置,故成本低,因此能夠滿足一般機台線上檢測的需求。 (4) The method of the invention is simple and efficient, and the operator does not need to perform experimental modal test on the machine platform and does not need to use a device such as a power meter or an impact hammer, so the cost is low, so that the requirements for on-line detection of the general machine can be met. .

1‧‧‧切削加工機 1‧‧‧Cutting machine

11‧‧‧第一振動訊號 11‧‧‧First vibration signal

12‧‧‧第二振動訊號 12‧‧‧Second vibration signal

2‧‧‧切削加工參數估測裝置 2‧‧‧Cutting processing parameter estimation device

20‧‧‧訊號感測模組 20‧‧‧Signal Sensing Module

21‧‧‧訊號分析模組 21‧‧‧Signal Analysis Module

211‧‧‧操作模態分析 211‧‧‧Operational modal analysis

212‧‧‧振動訊號特徵分析 212‧‧‧Visonic signal characteristics analysis

2111‧‧‧系統動態參數 2111‧‧‧System Dynamic Parameters

2121‧‧‧振動特徵訊號 2121‧‧‧Vibration signal

22‧‧‧切削狀態估測模組 22‧‧‧Cutting State Estimation Module

221‧‧‧切削顫振數學模型 221‧‧‧Cutting flutter mathematical model

222‧‧‧預設門檻值 222‧‧‧ Preset threshold

2211‧‧‧顫振穩定界線圖 2211‧‧‧ flutter stability boundary map

S31~S43‧‧‧步驟流程 S31~S43‧‧‧Step process

A‧‧‧最佳轉速 A‧‧‧Optimal speed

B‧‧‧最佳切削深度 B‧‧‧Optimal depth of cut

第1圖 係為本發明之切削加工參數估測裝置之第一實施例之第一示意圖。 Fig. 1 is a first schematic view showing a first embodiment of the cutting processing parameter estimating device of the present invention.

第2圖 係為本發明之切削加工參數估測裝置之第一實施例之第二示意圖。 Fig. 2 is a second schematic view showing the first embodiment of the cutting processing parameter estimating device of the present invention.

第3圖 係為本發明之切削加工參數估測裝置之第一實施例之流程圖。 Fig. 3 is a flow chart showing the first embodiment of the cutting processing parameter estimating device of the present invention.

以下將參照相關圖式,說明依本發明之切削加工參數估測裝置及其方法之實施例,為使便於理解,下述實施例中之相同元件係以相同之符號標示來說明。 Embodiments of the cutting tool parameter estimating device and the method thereof according to the present invention will be described below with reference to the related drawings. For ease of understanding, the same components in the following embodiments are denoted by the same reference numerals.

請參閱第1圖,其係為本發明之切削加工參數估測裝置之第一實施例之示意圖。如圖所示,切削加工參數估測裝置2可包含訊號感測模組20、訊號分析模組21及切削狀態估測模組22。 Please refer to FIG. 1 , which is a schematic diagram of a first embodiment of a cutting processing parameter estimating device of the present invention. As shown in the figure, the cutting parameter estimation device 2 can include a signal sensing module 20, a signal analysis module 21, and a cutting state estimation module 22.

首先,當操作人員利用切削加工機1,如CNC車床、銑床等對特定材質之工件進行切削作業時,操作人員可以根據經驗法則事先選定一個較可能符合此工件材質特性的轉速範圍,並以此轉速範圍進行試切,訊號感測模組20此時則可擷取來自切削加工機1產生的第一振動訊號11。訊號分析模組21則可對第一振動訊號11執行操作模態分析211以產生複數個系統動態參數2111,這些系統動態參數2111可以包含自然頻率與阻尼比等等。切削狀態估測模組22可以利用切削顫振數學模型221分析該些系統動態參數2111以產生顫振穩定界線圖(Stability lobe diagram)2211。因此,透過此顫振穩定界線圖2211可以計算出切削加工機1在此轉速範圍內切削穩定性最大的刀具主軸最佳轉速A。 First, when the operator uses a cutting machine 1, such as a CNC lathe, milling machine, etc., to perform a cutting operation on a workpiece of a specific material, the operator can select a rotational speed range that is more likely to conform to the material characteristics of the workpiece according to the rule of thumb. The speed range is subjected to trial cutting, and the signal sensing module 20 can capture the first vibration signal 11 generated by the cutting machine 1 at this time. The signal analysis module 21 can perform an operational modal analysis 211 on the first vibration signal 11 to generate a plurality of system dynamic parameters 2111, which can include natural frequencies and damping ratios, and the like. The cutting state estimation module 22 may analyze the system dynamic parameters 2111 using the cutting flutter mathematical model 221 to generate a jitter stability map 2211. Therefore, the optimum rotational speed A of the tool spindle in which the cutting machine 1 has the highest cutting stability in this rotational speed range can be calculated through the chatter stability boundary map 2211.

顫振穩定界線圖2211則如第2圖所示,圖中之橫軸係為切削主軸轉速,縱軸係為切削與機台動剛性比。其中,顫振穩定界線圖2211之上的部份為切削不穩定區,反之在顫振穩定界線圖2211之下的部份則為切削穩定區。 The flutter stability boundary diagram 2211 is as shown in Fig. 2, in which the horizontal axis is the cutting spindle rotation speed, and the vertical axis is the ratio of the cutting to the machine dynamic rigidity. Wherein, the portion above the flutter stability boundary diagram 2211 is the cutting instability region, and the portion below the flutter stability boundary diagram 2211 is the cutting stability region.

在估測出最佳轉速A後,操作人員則可以將切削加工機1之轉速設定為最佳轉速A,此時,操作人員可以先利用最佳轉速A去設定一較為保守的切削深度去執行切削作業,並利用訊號感測模組20擷取切削加工機1以 最佳轉速A並以此切削深度對工件進行切削作業時產生之第二振動訊號12。 After estimating the optimal speed A, the operator can set the speed of the cutting machine 1 to the optimal speed A. At this time, the operator can first use the optimal speed A to set a conservative cutting depth to execute. Cutting operation, and using the signal sensing module 20 to take the cutting machine 1 The optimum rotational speed A and the second vibration signal 12 generated during the cutting operation of the workpiece by the cutting depth.

由於當顫振發生或即將發生時,其振動頻譜具有獨特的特徵,例如於刀具主軸轉速頻及其倍頻附近的邊頻成長情形,因此,利用訊號分析模組21可以根據上述振動頻譜特徵藉以判斷是否產生顫振的情況。因此,訊號分析模組21可對第二振動訊號12執行振動訊號特徵分析212以擷取加工振動頻譜特徵以產生振動特徵訊號2121。 Since the vibration spectrum has unique characteristics when flutter occurs or is about to occur, for example, the edge frequency of the tool spindle and its frequency multiplication near the multiplier, the signal analysis module 21 can be used according to the vibration spectrum characteristics described above. Determine if there is chattering. Therefore, the signal analysis module 21 can perform the vibration signal feature analysis 212 on the second vibration signal 12 to extract the processed vibration spectrum feature to generate the vibration characteristic signal 2121.

切削狀態估測模組22則將振動特徵訊號2121與一預設門檻值222比對,並判定切削是否以達到不穩定的狀態?若否,則表示切削深度尚未到達極限,此時,操作人員可逐步增加切削深度,當振動特徵訊號2121超越此預設門檻值222時,切削狀態估測模組22可發出一個警告訊號以提醒操作人員,而操作人員則可將切削深度略為減少,使振動特徵訊號2121能夠符合此預設門檻值222,如此則可找出最匹配最佳轉速A之最佳切削深度B。由上述可知,透過上述的方式使操作人員在利用切削加工機1對各種不同材質的工件執行切削作業時均可以輕易的找出最佳的加工參數,使用上極為方便及有效。 The cutting state estimation module 22 compares the vibration characteristic signal 2121 with a preset threshold value 222, and determines whether the cutting is in an unstable state. If not, it indicates that the depth of cut has not reached the limit. At this time, the operator can gradually increase the depth of cut. When the vibration characteristic signal 2121 exceeds the preset threshold 222, the cutting state estimation module 22 can issue a warning signal to remind The operator, while the operator can slightly reduce the depth of cut, so that the vibration characteristic signal 2121 can meet the preset threshold 222, so that the best cutting depth B that best matches the optimal rotational speed A can be found. As can be seen from the above, the above-described method allows the operator to easily find the optimum machining parameters when performing cutting operations on the workpieces of various materials by the cutting machine 1, which is extremely convenient and effective in use.

請參閱第3圖,其係為本發明之切削加工參數估測裝置之第一實施例之流程圖。本實施例包含下列步驟: Please refer to FIG. 3, which is a flow chart of the first embodiment of the cutting processing parameter estimating device of the present invention. This embodiment includes the following steps:

S31:選定一較佳的轉速範圍並利用切削加工機去進行試切。 S31: Select a preferred speed range and use a cutting machine to perform the trial cutting.

S32:擷取切削加工機之振動訊號。 S32: Capture the vibration signal of the cutting machine.

S33:對振動訊號進行操作模態分析,以獲得系統動態參數。 S33: Perform operation modal analysis on the vibration signal to obtain system dynamic parameters.

S34:利用切削顫振數學模型分析系統動態參數。 S34: Analyze system dynamic parameters using a mathematical model of cutting flutter.

S35:獲得此轉速範圍中之最佳轉速。 S35: Obtain the optimum speed in this speed range.

S36:設定切削加工機為此最佳轉速。 S36: Set the cutting machine to this optimum speed.

S37:以一切削深度進行試切。 S37: Trial cutting at a depth of cut.

S38:擷取切削加工機之振動訊號。 S38: Take the vibration signal of the cutting machine.

S39:分折振動訊號取得振動特徵訊號。 S39: The vibration signal is obtained by dividing the vibration signal.

S40:將振動特徵訊號與一預設門檻值比對,以判斷切削作業是否已達不穩定的狀態?若否,則進入步驟41;若是,則進入到步驟42。 S40: Comparing the vibration characteristic signal with a preset threshold value to determine whether the cutting operation has reached an unstable state? If no, go to step 41; if yes, go to step 42.

S41:增加切削深度,並回到步驟37。 S41: Increase the depth of cut and return to step 37.

S42:減少切削深度,並回到步驟37以重新測試此切削深度是否會導致切削失穩?若是,則重新執行步驟42;若否,則進入到步驟43。 S42: Reduce the depth of cut and return to step 37 to retest whether the depth of cut will cause the cutting to be unstable. If yes, go to step 42 again; if no, go to step 43.

S43:獲得最佳切削深度,此時已獲得最佳轉速及最佳切削深度,故最佳加工參數已估測完成。 S43: The optimum cutting depth is obtained. At this time, the optimum rotation speed and the optimum cutting depth have been obtained, so the optimum machining parameters have been estimated.

值得一提的是,一般而言,若欲計算切削加工機之顫振穩定界線圖,需先針對其刀具主軸及刀具進行實驗模態分析(Experimental modal analysis,EMA)或系統鑑別,此過程需要利用衝擊錘或動力計進行量測,且動力計十分昂貴,不符合一般機台線上檢測的需求。另外,執行實驗模態分析也有其限制存在,例如實驗模態分析僅能在系統處於靜態的情況下執行,此時主軸無旋轉,且刀具也沒與工件接觸。亦即實驗模態分析下所獲得之動態模型參數與實際上系統於切削動態下的模態參數並不相同,因此在實際加工過程中也無法達到精確的水準。 It is worth mentioning that, in general, if you want to calculate the flutter stability boundary diagram of the cutting machine, you need to perform experimental modal analysis (EMA) or system identification for the tool spindle and tool. Measurements are made using impact hammers or dynamometers, and the power meters are very expensive and do not meet the requirements of on-line inspection of general machines. In addition, there are limitations to performing experimental modal analysis. For example, experimental modal analysis can only be performed while the system is in a static state. At this time, the spindle has no rotation and the tool is not in contact with the workpiece. That is to say, the dynamic model parameters obtained under the experimental modal analysis are not the same as the modal parameters of the actual system under the cutting dynamics, so the precise level cannot be achieved in the actual machining process.

然而,本發明於一實施例中以擷取之振動訊號,並進行操作模態分析以獲得複數個系統動態參數,再利用切削顫振數學模型分析該些系統動態參數的方式以獲得其顫振穩定界線圖,這種方式不必利用動力計即可以獲得系統於切削動態下的模態參數,不但簡單成本低且極為精確,可以有效率地獲得切削加工機執行特定作業的最佳轉速。 However, in one embodiment, the present invention extracts the vibration signal and performs operational modal analysis to obtain a plurality of system dynamic parameters, and then uses the cutting flutter mathematical model to analyze the dynamic parameters of the systems to obtain the flutter. Stable boundary diagram, which can obtain the modal parameters of the system under the cutting dynamic without using the power meter. It is not only simple and low cost, but also extremely accurate, and can effectively obtain the optimal speed for the cutting machine to perform specific operations.

此外,習知技藝之各項估測方法不但不夠精確,也無法同時準確地估 測適合切削作業的最佳轉速及適合此最佳轉速的最佳切削深度。相反的,本發明在一實施例中,不但能夠利用特殊的估測方式來準確地估測出切削加工機執行特定作業的最佳轉速,還可以利用分析比對切削加工機在此最佳轉速下產生之振動訊號的特徵訊號,藉此來計算出最能夠匹配此最佳轉速之最佳切削深度,以找出最適合的加工參數。 In addition, the estimation methods of the prior art are not only accurate, but also cannot be accurately estimated at the same time. Measure the optimum speed for the cutting operation and the optimum depth of cut for this optimum speed. In contrast, in one embodiment, the present invention can not only accurately estimate the optimum rotational speed of the cutting machine for performing a specific operation, but also utilize the analytical comparison to determine the optimum rotational speed of the cutting machine. The characteristic signal of the generated vibration signal is used to calculate the optimum depth of cut that best matches the optimum rotational speed to find the most suitable processing parameter.

由上述可知,本發明確實可以有效地提高切削速度、穩定度及材料的移除率,故實具進步性之專利要件。 As can be seen from the above, the present invention can effectively improve the cutting speed, the stability, and the material removal rate, so that it is a progressive patent requirement.

綜上所述,本發明之一實施例提出先對擷取之振動訊號進行操作模態分析以獲得複數個系統動態參數,再利用切削顫振數學模型分析此系統動態參數以計算其顫振穩定界線圖,故可以精確地算出適合切削加工機目前作業之最佳轉速。 In summary, an embodiment of the present invention provides an operational modal analysis of the extracted vibration signals to obtain a plurality of system dynamic parameters, and then uses the cutting flutter mathematical model to analyze the dynamic parameters of the system to calculate the flutter stability. The boundary diagram allows accurate calculation of the optimum speed for the current operation of the cutting machine.

又,本發明之一實施例中不但能夠對擷取之振動訊號進行操作模態分析等等運算,以計算適合切削加工機目前作業之最佳轉速,更能夠針對此最佳轉速來找出匹配的最佳切削深度等最佳加工參數,故本發明可以最大化切削加工機的切削速度、穩定度及材料移除率,有效改善了習知技藝的缺點。 In addition, in one embodiment of the present invention, not only the operational modal analysis and the like of the captured vibration signal can be calculated to calculate the optimal rotational speed suitable for the current operation of the cutting machine, and the matching can be found for the optimal rotational speed. The optimum processing parameters such as the optimum depth of cut, the present invention can maximize the cutting speed, stability and material removal rate of the cutting machine, and effectively improve the shortcomings of the prior art.

除此之外,本發明提出切削加工參數估測方法不但簡單,且不需要動力計即能夠進行量測,故能在不大量提高成本的情況之下達到很的高效率,能夠滿足一般機台線上檢測的需求。 In addition, the present invention proposes that the method for estimating the cutting processing parameters is not only simple, but also can be measured without a power meter, so that it can achieve high efficiency without greatly increasing the cost, and can satisfy the general machine. The need for online testing.

可見本發明在突破先前之技術下,確實已達到所欲增進之功效,且也非熟悉該項技藝者所易於思及,其所具之進步性、實用性,顯已符合專利之申請要件,爰依法提出專利申請,懇請 貴局核准本件發明專利申請案,以勵創作,至感德便。 It can be seen that the present invention has achieved the desired effect under the prior art, and is not familiar with the skill of the artist, and its progressiveness and practicability have been met with the patent application requirements.提出 Submit a patent application in accordance with the law, and ask your bureau to approve the application for this invention patent, in order to encourage creation, to the sense of virtue.

以上所述僅為舉例性,而非為限制性者。其它任何未脫離本發明之精 神與範疇,而對其進行之等效修改或變更,均應該包含於後附之申請專利範圍中。 The above is intended to be illustrative only and not limiting. Any other essence that does not deviate from the invention God and the scope, and equivalent modifications or changes to them shall be included in the scope of the patent application attached.

S31~S43‧‧‧步驟流程 S31~S43‧‧‧Step process

Claims (10)

一種切削加工參數估測裝置,係包含:一訊號感測模組,係擷取一切削加工機以一轉速範圍進行切削作業時產生之一第一振動訊號;一訊號分析模組,係對該第一振動訊號執行一操作模態分析以產生複數個系統動態參數;以及一切削狀態估測模組,係以一切削顫振數學模型分析該些系統動態參數以計算該切削加工機在該轉速範圍中之一最佳轉速。 A cutting processing parameter estimating device comprises: a signal sensing module, which is a first vibration signal generated when a cutting machine performs a cutting operation in a speed range; a signal analysis module is The first vibration signal performs an operational modal analysis to generate a plurality of system dynamic parameters; and a cutting state estimation module analyzes the dynamic parameters of the system by a cutting flutter mathematical model to calculate the rotational speed of the cutting machine One of the best speeds in the range. 如申請專利範圍第1項所述之切削加工參數估測裝置,其中該訊號感測模組更擷取該切削加工機以該最佳轉速並以一切削深度進行切削作業之一第二振動訊號,該訊號分析模組則分析該第二振動訊號以產生一振動特徵訊號,以擷取加工振動頻譜特徵,該切削狀態估測模組則將該振動特徵訊號與一預設門檻值比對,並重覆調整該切削深度,直到該振動特徵訊號符合該預設門檻值,以取得匹配該最佳轉速之一最佳切削深度。 The cutting parameter estimation device according to claim 1, wherein the signal sensing module further captures the second vibration signal of the cutting machine at the optimal rotation speed and cutting operation at a cutting depth. The signal analysis module analyzes the second vibration signal to generate a vibration characteristic signal to capture the processing vibration spectrum characteristic, and the cutting state estimation module compares the vibration characteristic signal with a preset threshold value. The depth of cut is repeatedly adjusted until the vibration characteristic signal meets the preset threshold value to obtain an optimum depth of cut that matches one of the optimal rotational speeds. 如申請專利範圍第2項所述之切削加工參數估測裝置,其中該切削狀態估測模組係以該切削顫振數學模型分析該些系統動態參數以產生一顫振穩定界線圖以計算該最佳轉速。 The cutting tool parameter estimating device according to claim 2, wherein the cutting state estimating module analyzes the system dynamic parameters by using the cutting flutter mathematical model to generate a flutter stability boundary map to calculate the The best speed. 如申請專利範圍第3項所述之切削加工參數估測裝置,其中該些系統動態參數係包含自然頻率及阻尼比。 The cutting tool parameter estimating device according to claim 3, wherein the system dynamic parameters comprise a natural frequency and a damping ratio. 如申請專利範圍第3項所述之切削加工參數估測裝置,其中該切削狀態估測模組將該振動特徵訊號與該預設門檻值比對,若該振動特徵訊號超出該預設門檻值,該切削狀態估測模組則發出一警告訊號。 The cutting tool parameter estimating device according to claim 3, wherein the cutting state estimating module compares the vibration characteristic signal with the preset threshold value, if the vibration characteristic signal exceeds the preset threshold value The cutting state estimation module sends a warning signal. 一種切削加工參數估測方法,係包含下列步驟:擷取一切削加工機以一轉速範圍進行切削作業時產生之一第一振動訊 號;對該第一振動訊號執行一操作模態分析以產生複數個系統動態參數;以及以一切削顫振數學模型分析該些系統動態參數以計算該切削加工機在該轉速範圍中之一最佳轉速。 A method for estimating a machining parameter includes the following steps: one of the first vibration signals is generated when a cutting machine performs a cutting operation in a range of speeds Performing an operational modal analysis on the first vibration signal to generate a plurality of system dynamic parameters; and analyzing the system dynamic parameters by a cutting flutter mathematical model to calculate one of the cutting machine positions in the rotational speed range Good speed. 如申請專利範圍第6項所述之切削加工參數估測方法,更包含下列步驟:擷取該切削加工機以該最佳轉速並以一切削深度進行切削作業之一第二振動訊號;分析該第二振動訊號以產生一振動特徵訊號以擷取加工振動頻譜特徵;以及將該振動特徵訊號與一預設門檻值比對,藉此重覆調整該切削深度,直到該振動特徵訊號符合該預設門檻值,以取得匹配該最佳轉速之一最佳切削深度。 The method for estimating a cutting processing parameter according to claim 6, further comprising the steps of: taking a second vibration signal of the cutting machine at the optimum rotation speed and performing a cutting operation at a cutting depth; analyzing the The second vibration signal generates a vibration characteristic signal to extract the processing vibration spectrum characteristic; and compares the vibration characteristic signal with a preset threshold value, thereby repeatedly adjusting the cutting depth until the vibration characteristic signal conforms to the pre- Set the threshold value to obtain the optimum depth of cut that matches one of the optimal speeds. 如申請專利範圍第7項所述之切削加工參數估測方法,更包含下列步驟:以該切削顫振數學模型分析該些系統動態參數以產生一顫振穩定界線圖以計算該最佳轉速。 The method for estimating a cutting processing parameter according to claim 7 further includes the following steps: analyzing the dynamic parameters of the system by the mathematical model of the cutting flutter to generate a flutter stability boundary map to calculate the optimal rotational speed. 如申請專利範圍第8項所述之切削加工參數估測方法,其中該些系統動態參數係包含自然頻率及阻尼比。 The method for estimating a cutting processing parameter according to claim 8, wherein the system dynamic parameters include a natural frequency and a damping ratio. 如申請專利範圍第8項所述之切削加工參數估測方法,更包含下列步驟:當該振動特徵訊號超出該預設門檻值時,發出一警告訊號。 The method for estimating a cutting processing parameter as described in claim 8 further includes the step of: issuing a warning signal when the vibration characteristic signal exceeds the preset threshold value.
TW103119717A 2014-06-06 2014-06-06 Devices and methods for machining process parameter estimation TWI542439B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103119717A TWI542439B (en) 2014-06-06 2014-06-06 Devices and methods for machining process parameter estimation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103119717A TWI542439B (en) 2014-06-06 2014-06-06 Devices and methods for machining process parameter estimation

Publications (2)

Publication Number Publication Date
TW201545833A true TW201545833A (en) 2015-12-16
TWI542439B TWI542439B (en) 2016-07-21

Family

ID=55407343

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103119717A TWI542439B (en) 2014-06-06 2014-06-06 Devices and methods for machining process parameter estimation

Country Status (1)

Country Link
TW (1) TWI542439B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI614081B (en) * 2016-08-17 2018-02-11 財團法人工業技術研究院 Remote machining optimization system and method
TWI626111B (en) * 2016-11-10 2018-06-11 國立中正大學 Spindle speed adjusting device in machining and method thereof
TWI681835B (en) * 2018-04-09 2020-01-11 瑞士商瑞士路勞曼迪有限公司 Method and grinding machine for fabricating a workpiece comprising a helical groove and a program for controlling the grinding machine
CN114643496A (en) * 2020-12-21 2022-06-21 财团法人工业技术研究院 Machining monitoring method and system for machine tool

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI616272B (en) * 2016-12-01 2018-03-01 財團法人資訊工業策進會 Maching parameter adjustment system and maching parameter adjustment method
TWI676873B (en) * 2018-10-01 2019-11-11 財團法人工業技術研究院 Tools monitoring system and monitoring method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI614081B (en) * 2016-08-17 2018-02-11 財團法人工業技術研究院 Remote machining optimization system and method
US10248104B2 (en) 2016-08-17 2019-04-02 Industrial Technology Research Institute Optimizing machine operations using acoustics properties
TWI626111B (en) * 2016-11-10 2018-06-11 國立中正大學 Spindle speed adjusting device in machining and method thereof
US10220480B2 (en) 2016-11-10 2019-03-05 National Chung Cheng University Spindle speed adjusting device in machining and method thereof
TWI681835B (en) * 2018-04-09 2020-01-11 瑞士商瑞士路勞曼迪有限公司 Method and grinding machine for fabricating a workpiece comprising a helical groove and a program for controlling the grinding machine
CN114643496A (en) * 2020-12-21 2022-06-21 财团法人工业技术研究院 Machining monitoring method and system for machine tool

Also Published As

Publication number Publication date
TWI542439B (en) 2016-07-21

Similar Documents

Publication Publication Date Title
TWI542439B (en) Devices and methods for machining process parameter estimation
TWI626111B (en) Spindle speed adjusting device in machining and method thereof
TWI472402B (en) Tool flutter monitoring method
Grossi et al. Spindle speed ramp-up test: A novel experimental approach for chatter stability detection
Li et al. A generic instantaneous undeformed chip thickness model for the cutting force modeling in micromilling
JP6649684B2 (en) An improved database for chatter prediction
Wan et al. Investigation on milling chatter identification at early stage with variance ratio and Hilbert–Huang transform
Kakinuma et al. Detection of chatter vibration in end milling applying disturbance observer
Kious et al. Detection process approach of tool wear in high speed milling
TWI593502B (en) Cutting tool verifying system and cutting tool verifying method thereof
Costes et al. Surface roughness prediction in milling based on tool displacements
Suhail et al. Surface roughness identification using the grey relational analysis with multiple performance characteristics in turning operations
EP2947528A3 (en) Method of calculating stable spindle rotation number capable of suppressing chatter vibration, method of informing the same, method of controlling spindle rotation number, and method of editing nc program, and apparatus therefor
KR101867136B1 (en) Method of tool wear and breakage detection for material cutting operations
Leal-Muñoz et al. Accuracy of a new online method for measuring machining parameters in milling
JP6845192B2 (en) Processing environment measuring device
Stuhr et al. A flexible similarity-based algorithm for tool condition monitoring
Tran et al. Chatter identification in end milling process based on cutting force signal processing
CN105808886B (en) A kind of spindle rotation error discrimination method
Plaza et al. Abrasive feature related acoustic emission in grinding
Fang et al. A comparative study of high-speed machining of Ti-6Al-4V and Inconel 718—part II: Effect of dynamic tool edge wear on cutting vibrations
JP7084242B2 (en) Tool blade number estimation device and machine tools equipped with it, and tool blade number estimation method
Prasad et al. Surface textural analysis using acousto optic emission-and vision-based 3D surface topography—a base for online tool condition monitoring in face turning
KR20180036199A (en) Monitoring method of machine chatter for improving machining accuracy
CN104297344A (en) Ultrasonic flaw detection method of roll forging part