TW201545364A - Antireflection multilayered structure of multi-junction solar cell - Google Patents

Antireflection multilayered structure of multi-junction solar cell Download PDF

Info

Publication number
TW201545364A
TW201545364A TW103117539A TW103117539A TW201545364A TW 201545364 A TW201545364 A TW 201545364A TW 103117539 A TW103117539 A TW 103117539A TW 103117539 A TW103117539 A TW 103117539A TW 201545364 A TW201545364 A TW 201545364A
Authority
TW
Taiwan
Prior art keywords
layer
junction
solar cell
reflection
thickness
Prior art date
Application number
TW103117539A
Other languages
Chinese (zh)
Other versions
TWI575765B (en
Inventor
Ray Young Lin
zheng-yang Zhang
deng-xiang Zhang
Original Assignee
Taicrystal Internat Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taicrystal Internat Technology Co Ltd filed Critical Taicrystal Internat Technology Co Ltd
Priority to TW103117539A priority Critical patent/TWI575765B/en
Publication of TW201545364A publication Critical patent/TW201545364A/en
Application granted granted Critical
Publication of TWI575765B publication Critical patent/TWI575765B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

An antireflection multilayered structure of a multi-junction solar cell comprises a plurality of antireflection layers, wherein the plurality of antireflection layers is formed on the surface of a multi-junction solar cell. The plurality of antireflection layers comprises at least a first antireflection layer, a second antireflection layer and a third antireflection layer, wherein the first antireflection layer is a magnesium fluoride layer, and the third antireflection layer is a zinc sulfide layer. The second antireflection layer is a thin film. The refractive index of the second antireflection layer is between the first antireflection layer and the third antireflection layer. By adding the thin film structure whose the refractive index is between the magnesium fluoride layer and the zinc sulfide layer, the antireflection spectral range of the multi-junction solar cell can be increased, especially for the short wavelength rang, thereby improving the total current output of the multi-junction solar cell. In addition, the open-circuit voltage can be effectively enhanced by utilizing proper material combination having high energy gap and thickness selection so as to greatly improve photoelectric conversion efficiency.

Description

多接面太陽能電池之抗反射多層結構 Anti-reflective multilayer structure of multi-junction solar cell

一種多接面太陽能電池,尤其是一種藉由可增加抗反射頻譜範圍的抗反射多層結構而提高電流輸出,配合高能隙的適當材料組合及厚度選擇而提高多接面太陽能電池的開路電壓,而有效提高光電轉換效率。 A multi-junction solar cell, in particular, an increase in current output by an anti-reflection multilayer structure capable of increasing an anti-reflection spectrum range, an appropriate material combination and thickness selection of a high energy gap, and an open circuit voltage of a multi-junction solar cell is improved, and Effectively improve the photoelectric conversion efficiency.

太陽能是一種永不耗盡且無污染的能源,在面對目前石化能源所面臨的污染與短缺的問題時,一直是各國及各太陽能廠致力研究開發的一項替代能源技術。 Solar energy is an energy that is never depleted and pollution-free. In the face of the current pollution and shortage of petrochemical energy, it has been an alternative energy technology that countries and solar power plants are committed to research and development.

太陽能電池(Solar Cell)是一種能量轉換的光電元件,經由太陽光照射後,把光的能量轉換成電能,其中堆疊型太陽能電池或多接面太陽能電池(multi-junction solar cell),多接面太陽能電池用於接收一具有多種波長光的混波光信號以產生一輸出電流,且該多接面太陽能電池包含多個串接的子電池,每一子電池的能隙不同,因此每一子電池可各自感應不同波長的光而產生短路電流Isc,短路電流Isc的大小是相關於所對應波長光強度與自身材料的量子效率,也就是說Isc=光強度×量子效率,又由於該多個子電池是串接,其中之一子電池所產生的最小短路電流將決定該多接面太陽能電池的輸出電流。 Solar Cell is an energy-converting photoelectric component that converts the energy of light into electrical energy after being irradiated by sunlight. The stacked solar cell or multi-junction solar cell has multiple junctions. The solar cell is configured to receive a mixed-wave optical signal having multiple wavelengths of light to generate an output current, and the multi-junction solar cell comprises a plurality of serially connected sub-cells, each sub-cell having a different energy gap, and thus each sub-cell The short-circuit current Isc can be generated by sensing different wavelengths of light, and the magnitude of the short-circuit current Isc is related to the quantum intensity of the corresponding wavelength light intensity and the self material, that is, Isc=light intensity×quantum efficiency, and due to the plurality of sub-cells It is a series connection, and the minimum short circuit current generated by one of the sub-cells will determine the output current of the multi-junction solar cell.

參閱第一a圖,習知技術的多接面太陽能電池元件的示意圖,參閱第一b圖,第一a圖的外部量子效率的示意圖。第一a圖所示,多接面太陽能電池1a包含第一子電池11a、緩衝層12a、第一穿隧接面13a、第二子電池14a、第二穿隧接面15a及第三子電池16a,為了減少可見光的反射損失並提升短路電流,在多接面太陽能電池1a上會形成單層或雙層的抗反射層3a、3b,雙層的抗反射層3a、3b的設置雖可減少入射光之可見光在太陽能電池元件的反射,但習知技術的雙層抗反射層3a、3b即使將厚度 及材料最佳化後,比如抗反射層3a以ZnS的材料製成、厚度為63.8nm,抗反射層3a以MgF2的材料製成厚度為118.4nm的材料製成,總電流輸出最多也只能達到15.19ma/cm2,如表一所示,抗反射頻譜也受到侷限,如第一b圖所示。 Referring to FIG. 1A, a schematic diagram of a multi-junction solar cell element of the prior art, see FIG. 1b, a schematic diagram of the external quantum efficiency of the first a diagram. As shown in FIG. a, the multi-junction solar cell 1a includes a first sub-cell 11a, a buffer layer 12a, a first tunnel junction surface 13a, a second sub-cell 14a, a second tunnel junction surface 15a, and a third sub-cell. 16a, in order to reduce the reflection loss of visible light and increase the short-circuit current, a single-layer or double-layer anti-reflection layer 3a, 3b is formed on the multi-junction solar cell 1a, and the arrangement of the double-layer anti-reflection layers 3a, 3b can be reduced. The visible light of the incident light is reflected by the solar cell element, but the double-layer anti-reflection layer 3a, 3b of the prior art is optimized to have a thickness and a material, for example, the anti-reflective layer 3a is made of a material of ZnS and has a thickness of 63.8 nm. The anti-reflection layer 3a is made of a material of MgF 2 and has a thickness of 118.4 nm, and the total current output can only reach 15.19 ma/cm 2 at most . As shown in Table 1, the anti-reflection spectrum is also limited, such as Figure b shows.

如表一所示,現有之InGaP/In0.01Ga0.99As/Ge三接面太陽能之 短路電流只有15.19mA/cm2,開路電壓只有2.696volt,光電轉換效率為38.99%,其中以Ge材料為主的第一子電池11a產生的電流雖高達25.15mA/cm2,但總電流輸出只有為15.19mA/cm2,且以Ge材料為主的第一子電池11a與InGaA為主的第一子電池14a之間的能隙差距過大,導致開路電壓過低、吸收頻譜無法往短波長平移,造成光電轉換效率下降。 As shown in Table 1, the short-circuit current of the existing InGaP/In 0.01 Ga 0.99 As/Ge three-junction solar energy is only 15.19 mA/cm 2 , the open circuit voltage is only 2.696 volt, and the photoelectric conversion efficiency is 38.99%, of which Ge material is mainly used. The current generated by the first sub-cell 11a is as high as 25.15 mA/cm2, but the total current output is only 15.19 mA/cm2, and between the first sub-cell 11a mainly composed of Ge material and the first sub-cell 14a mainly composed of InGaA. The gap of the energy gap is too large, resulting in an open circuit voltage that is too low, and the absorption spectrum cannot be shifted to a short wavelength, resulting in a decrease in photoelectric conversion efficiency.

因此非常需要提供一種透過電流匹配以產生最大有效電 流、適當地堆疊磊晶材料使太陽能電池的整體能隙更平滑及達到寬闊的抗反射頻譜的多接面太陽能電池,以有效增加多接面太陽能電池的光電轉換效率。 Therefore, it is highly desirable to provide a through-current matching to generate the maximum effective power. Flowing, properly stacking the epitaxial material to make the overall energy gap of the solar cell smoother and achieving a wide anti-reflection spectrum multi-junction solar cell to effectively increase the photoelectric conversion efficiency of the multi-junction solar cell.

本發明的主要目的在於提供一種多接面太陽能電池之抗反射多層結構,至少包含複數抗反射層,其中複數抗反射層形成於一多接面太陽能電池之表面上,複數抗反射層形至少包含一第一抗反射層、一第二抗反射層及一第三抗反射層,其中該第一抗反射層為一氟化鎂層(MgF 2),該第三抗反射層為一硫化鋅層(ZnS),其中該第二抗反射層為一薄膜,其中 該第二反射層之折射率介於該第一抗反射層與該第三抗反射層之間。 The main object of the present invention is to provide an anti-reflection multilayer structure of a multi-junction solar cell, comprising at least a plurality of anti-reflection layers, wherein a plurality of anti-reflection layers are formed on a surface of a multi-junction solar cell, and the plurality of anti-reflection layers comprise at least a first anti-reflective layer, a second anti-reflective layer and a third anti-reflective layer, wherein the first anti-reflective layer is a magnesium fluoride layer (MgF 2), and the third anti-reflective layer is a zinc sulfide layer (ZnS), wherein the second anti-reflective layer is a film, wherein The second reflective layer has a refractive index between the first anti-reflective layer and the third anti-reflective layer.

其中,該第二抗反射層的材料至少包括氮化矽(Si3N4)、氧 化鋁(Al2O3)、五氧化二鉭(Ta2O5)、二氧化矽(SiO2)及二氧化鈦(TiO2)之至少其中之一。該第一抗反射層31之厚度介於90~130nm之間,該第二抗反射層之厚度介於30~60nm之間,該第三抗反射層之厚度介於10~40nm之間。 The material of the second anti-reflective layer includes at least tantalum nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 ), tantalum pentoxide (Ta 2 O 5 ), cerium oxide (SiO 2 ), and At least one of titanium dioxide (TiO 2 ). The thickness of the first anti-reflective layer 31 is between 90 and 130 nm, the thickness of the second anti-reflective layer is between 30 and 60 nm, and the thickness of the third anti-reflective layer is between 10 and 40 nm.

本發明的主要特點在於:藉由加入折射率介於氟化鎂層和硫 化鋅層之薄膜結構,以增加多接面太陽能電池的抗反射頻譜範圍,特別是在短波長範圍,進而提升多接面太陽能電池的總電流輸出。 The main feature of the present invention is that by adding a refractive index between the magnesium fluoride layer and sulfur The thin film structure of the zinc layer increases the anti-reflection spectrum range of the multi-junction solar cell, especially in the short wavelength range, thereby increasing the total current output of the multi-junction solar cell.

本發明的另一目的在於提供一種可增加抗反射頻譜範圍及 高開路電壓之多接面太陽能電池,由下至上依序至少包含一基板、一第一p-n接面、一第一緩衝層、一第一穿隧接面、一第二p-n接面、一第二穿隧接面及一第三p-n接面。 Another object of the present invention is to provide an anti-reflection spectrum range and The multi-junction solar cell with a high open circuit voltage includes at least a substrate, a first pn junction, a first buffer layer, a first tunnel junction surface, a second pn junction surface, and a first Two tunneling junctions and a third pn junction.

該基板系位於該高光電轉換效率多接面太陽能電池之底 層,以鍺材料製成;該第一p-n接面位於該基板之上,並以Si1-xGex的材料製成,其中0.9x1;該第一緩衝層位於該第一p-n接面之上,並以GaAs1-yPy的材料製成,其中0y0.09;該第一穿隧接面系位於該第一緩衝層之上;該第二p-n接面系位於該第一穿隧接面之上;該第二穿隧接面系位於該第二p-n接面之上;該第三p-n接面則位於該第二穿隧接面之上。 The substrate is located on the bottom layer of the high photoelectric conversion efficiency multi-junction solar cell, and is made of a germanium material; the first pn junction is located on the substrate and is made of Si 1-x Ge x material, wherein 0.9 x 1; the first buffer layer is located above the first pn junction and is made of GaAs 1-y P y material, wherein 0 y 0.09; the first tunneling interface is located above the first buffer layer; the second pn junction is located above the first tunneling junction; the second tunneling interface is located at the second tunnel Above the junction; the third pn junction is located above the second tunnel junction.

該第一p-n接面之厚度介於1~2μm之間;該第一緩衝層之 厚度介於0.05~0.2μm之間;該第一穿隧接面之厚度介於0.04~0.08μm之間;該第二p-n接面以GaAs1-yPy的材料製成,其中0y0.09,該第二p-n接面之厚度介於2~4μm之間;該第二穿隧接面之厚度介於0.03~0.05μm之間;第三p-n接面之厚度介於1.525~4.625μm之間,並以In1-zGazP的材料製成,其中0.5z0.56。 The thickness of the first pn junction is between 1 and 2 μm; the thickness of the first buffer layer is between 0.05 and 0.2 μm; the thickness of the first tunnel junction is between 0.04 and 0.08 μm; The second pn junction is made of GaAs 1-y P y material, wherein 0 y 0.09, the thickness of the second pn junction is between 2 and 4 μm; the thickness of the second tunnel junction is between 0.03 and 0.05 μm; and the thickness of the third pn junction is between 1.525 and 4.625 μm. Between, and made of In 1-z Ga z P material, of which 0.5 z 0.56.

本發明的另一特點在於,以Si1-xGex的材料作為本發明的底 部子電池,由於Si1-xGex的能隙較鍺大,使吸收頻譜往短波長平移,並利用高能隙的適當材料組合及厚度選擇,使開路電壓得以有效提高。 Another feature of the present invention is that a material of Si 1-x Ge x is used as the bottom subcell of the present invention, since the energy gap of Si 1-x Ge x is relatively large, the absorption spectrum is shifted to a short wavelength, and high energy is utilized. The appropriate material combination and thickness selection of the gap enables the open circuit voltage to be effectively improved.

本發明透過同時提高短路電流及開路電壓,使多接面太陽能 電池的光電轉換效率大幅提升。 The invention enables multi-junction solar energy by simultaneously increasing short-circuit current and open circuit voltage The photoelectric conversion efficiency of the battery is greatly improved.

〔習知〕 [study]

1a‧‧‧多接面太陽能電池 1a‧‧‧Multiple junction solar cells

11a‧‧‧第一子電池 11a‧‧‧First subcell

12a‧‧‧緩衝層 12a‧‧‧buffer layer

13a‧‧‧第一穿隧接面 13a‧‧‧First tunneling junction

14a‧‧‧第二子電池 14a‧‧‧Second subcell

15a‧‧‧第二穿隧接面 15a‧‧‧Second tunnel junction

16a‧‧‧第三子電池 16a‧‧‧ third sub-battery

3a、3b‧‧‧抗反射層 3a, 3b‧‧‧ anti-reflection layer

〔本發明〕 〔this invention〕

100‧‧‧多接面太陽能電池之抗反射多層結構 Anti-reflective multilayer structure of 100‧‧‧ multi-connected solar cells

1‧‧‧多接面太陽能電池 1‧‧‧Multiple junction solar cells

3‧‧‧複數抗反射層 3‧‧‧Multiple anti-reflective layers

31‧‧‧第一抗反射層 31‧‧‧First anti-reflective layer

32‧‧‧第二抗反射層 32‧‧‧Second anti-reflective layer

33‧‧‧第三抗反射層 33‧‧‧ third anti-reflective layer

11‧‧‧基板 11‧‧‧Substrate

12‧‧‧第一p-n接面 12‧‧‧First p-n junction

13‧‧‧第一緩衝層 13‧‧‧First buffer layer

14‧‧‧第一穿隧接面 14‧‧‧First tunneling junction

141‧‧‧第一N型穿隧層 141‧‧‧First N-type tunneling layer

143‧‧‧第一P型穿隧層 143‧‧‧First P-type tunneling layer

15‧‧‧第二緩衝層 15‧‧‧Second buffer layer

16‧‧‧第二p-n接面 16‧‧‧Second p-n junction

17‧‧‧第一窗層 17‧‧‧First window layer

18‧‧‧第二穿隧接面 18‧‧‧Second tunnel junction

181‧‧‧第二N型穿隧層 181‧‧‧Second N-type tunneling layer

183‧‧‧第二P型穿隧層 183‧‧‧Second P-type tunneling layer

19‧‧‧第三緩衝層 19‧‧‧ third buffer layer

20‧‧‧第三p-n接面 20‧‧‧ third p-n junction

21‧‧‧第二窗層 21‧‧‧Second window

第一a圖為習知技術的多接面太陽能電池元件的示意圖。 The first a diagram is a schematic diagram of a multi-junction solar cell component of the prior art.

第一b圖為第一a圖的外部量子效率的示意圖。 The first b-figure is a schematic diagram of the external quantum efficiency of the first a-graph.

第二圖為本發明多接面太陽能電池之抗反射多層結構的示意圖。 The second figure is a schematic view of the anti-reflection multilayer structure of the multi-junction solar cell of the present invention.

第二b圖為第二a圖的外部量子效率的示意圖。 The second b-figure is a schematic diagram of the external quantum efficiency of the second a-graph.

第三圖為本發明多接面太陽能電池之抗反射多層結構的第一較佳實施例示意圖。 The third figure is a schematic view of a first preferred embodiment of the anti-reflection multilayer structure of the multi-junction solar cell of the present invention.

第四圖為本發明多接面太陽能電池之抗反射多層結構的第二較佳實施例示意圖。 The fourth figure is a schematic view of a second preferred embodiment of the anti-reflection multilayer structure of the multi-junction solar cell of the present invention.

第五圖為本發明多接面太陽能電池之抗反射多層結構的第三實施例示意圖。 Figure 5 is a schematic view showing a third embodiment of the anti-reflection multilayer structure of the multi-junction solar cell of the present invention.

以下配合圖式及元件符號對本發明之實施方式做更詳細的說明,俾使熟習該項技藝者在研讀本說明書後能據以實施。 The embodiments of the present invention will be described in more detail below with reference to the drawings and the <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt;

參閱第二a圖,本發明多接面太陽能電池之抗反射多層結構的示意圖,參閱第二b圖,第二b圖為第二a圖的外部量子效率的示意圖。如第二a圖所示,本發明多接面太陽能電池之抗反射多層結構100至少包含複數抗反射層3,該等抗反射層3系形成於一多接面太陽能電池1之表面上。 Referring to FIG. 2A, a schematic diagram of the anti-reflection multilayer structure of the multi-junction solar cell of the present invention is referred to the second b-figure, and the second b-figure is a schematic diagram of the external quantum efficiency of the second a-graph. As shown in FIG. 2a, the anti-reflective multilayer structure 100 of the multi-junction solar cell of the present invention comprises at least a plurality of anti-reflective layers 3 formed on the surface of a multi-junction solar cell 1.

該等抗反射層3至少包含一第一抗反射層31、一第二抗反射層32及一第三抗反射層33,其中該第一抗反射層31為氟化鎂層(MgF 2),該第三抗反射層33為硫化鋅層(ZnS),其中該第二抗反射層32為一薄膜,其中該第二反射層32之折射率介於該第一抗反射層31與該第三抗反射層33之間。 The anti-reflective layer 3 includes at least a first anti-reflective layer 31, a second anti-reflective layer 32 and a third anti-reflective layer 33, wherein the first anti-reflective layer 31 is a magnesium fluoride layer (MgF 2). The third anti-reflective layer 33 is a zinc sulfide layer (ZnS), wherein the second anti-reflective layer 32 is a film, wherein the second reflective layer 32 has a refractive index between the first anti-reflective layer 31 and the third Between the anti-reflection layers 33.

其中,該第二抗反射層32的材料至少包括氮化矽(Si3N4)、氧化鋁(Al2O3)、五氧化二鉭(Ta2O5)、二氧化矽(SiO2)及二氧化鈦(TiO2)之至少其中之一,該第二抗反射層32的材料並不限定於上述的材料,只要與特性類似於上述材料的材質亦落在本發明的範圍之內。 The material of the second anti-reflective layer 32 includes at least tantalum nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 ), tantalum pentoxide (Ta 2 O 5 ), and cerium oxide (SiO 2 ). And at least one of titanium dioxide (TiO 2 ), the material of the second anti-reflective layer 32 is not limited to the above materials, and any material having properties similar to those described above falls within the scope of the invention.

在本發明的一較佳實施例中,該第一抗反射層31之厚度介 於90~130nm之間,該第二抗反射層之厚度介於30~60nm之間,該第三抗反射層之厚度介於10~40nm之間。 In a preferred embodiment of the present invention, the thickness of the first anti-reflective layer 31 is Between 90 and 130 nm, the thickness of the second anti-reflective layer is between 30 and 60 nm, and the thickness of the third anti-reflective layer is between 10 and 40 nm.

該多接面太陽能電池1由下至上依序至少包含一基板11、 一第一p-n接面12、一第一緩衝層13、一第一穿隧接面14、一第二p-n接面16、一第二穿隧接面18及一第三p-n接面20。 The multi-junction solar cell 1 includes at least one substrate 11 from bottom to top. A first p-n junction 12, a first buffer layer 13, a first tunnel junction 14, a second p-n junction 16, a second tunnel junction 18 and a third p-n junction 20.

本發明的特點在於:藉由加入折射率介於氟化鎂層和硫化鋅 層之薄膜結構,以增加多接面太陽能電池100的抗反射頻譜範圍,特別是在短波長(300~500nm)的範圍,以由Si3N4材料製成的該第二抗反射層32為例,多接面太陽能電池的100的總電流輸出被提升為15.27mA/cm2,第三p-n接面20的電流則可提升到15.72mA/cm2,光電轉換效率為38.99%,如第二b圖及表二所示。 The invention is characterized in that the anti-reflection spectrum range of the multi-junction solar cell 100 is increased by adding a thin film structure having a refractive index between the magnesium fluoride layer and the zinc sulfide layer, especially at a short wavelength (300 to 500 nm). For example, the second anti-reflection layer 32 made of Si 3 N 4 material is taken as an example, the total current output of the multi-junction solar cell 100 is raised to 15.27 mA/cm 2 , and the current of the third pn junction 20 is It can be upgraded to 15.72 mA/cm2, and the photoelectric conversion efficiency is 38.99%, as shown in the second b and Table 2.

透過在MgF2層和ZnS層之間加入折射率介於上述兩者之間 薄膜結構,因此可增加抗反射頻譜的範圍,而提昇多接面太陽能電池之光電轉換效率。 By adding a refractive index between the MgF2 layer and the ZnS layer between the two The thin film structure can increase the range of the anti-reflection spectrum and improve the photoelectric conversion efficiency of the multi-junction solar cell.

參閱第三圖,本發明多接面太陽能電池之抗反射多層結構的 第一較佳實施例示意圖。如第三圖所示,該第一穿隧接面14包含一第一N型穿隧層141及一第一P型穿隧層143,該第一N型穿隧層141位於該第一緩衝層13之上並以GaAs1-yPy製成,其中0y0.09,該第一N型穿隧層141之厚度介於0.03~0.05μm之間;該第一P型穿隧層143位於該第一N型穿 隧層141之上並以In1-zGazP製成,其中0.5z0.56,該第一P型穿隧層143之厚度介於0.02~0.04μm之間。 Referring to the third figure, a schematic view of a first preferred embodiment of the anti-reflective multilayer structure of the multi-junction solar cell of the present invention is shown. As shown in the third figure, the first tunneling junction 14 includes a first N-type tunneling layer 141 and a first P-type tunneling layer 143. The first N-type tunneling layer 141 is located in the first buffer. Above layer 13 and made of GaAs 1-y P y , where 0 y 0.09, the thickness of the first N-type tunneling layer 141 is between 0.03 and 0.05 μm; the first P-type tunneling layer 143 is located above the first N-type tunneling layer 141 and is In 1-z Ga z P made, of which 0.5 z 0.56, the thickness of the first P-type tunneling layer 143 is between 0.02 and 0.04 μm.

該第二穿隧接面181包含一第二N型穿隧層181及一第二P 型穿隧層183,該第二N型穿隧層181位於該第二p-n接面16之上並以Al1-wlnwP製成,其中0.43w0.45,該第二N型穿隧層181之厚度介於0.01~0.03μm之間;該第二P型穿隧層183位於該第二N型穿隧層181之上並以In1-zGazP的材料製成,其中0.5z0.56,該第二P型穿隧層183之厚度介於0.01~0.03μm之間。 The second tunneling junction 181 includes a second N-type tunneling layer 181 and a second P-type tunneling layer 183. The second N-type tunneling layer 181 is located above the second pn junction 16 and Made by Al 1-w ln w P, of which 0.43 w 0.45, the thickness of the second N-type tunneling layer 181 is between 0.01 and 0.03 μm; the second P-type tunneling layer 183 is located above the second N-type tunneling layer 181 and is In 1-z Ga z P made of material, of which 0.5 z 0.56, the thickness of the second P-type tunneling layer 183 is between 0.01 and 0.03 μm.

參閱第四圖,本發明多接面太陽能電池之抗反射多層結構的 第二較佳實施例示意圖。如第四圖所示,本發明更形成有一第二緩衝層15及一第三緩衝層19,該第二緩衝層15位於該第一穿隧接面14與該第二p-n接面16之間,該第三緩衝層19介於該第二穿隧接面18與該第三p-n接面20之間。 Referring to the fourth figure, the anti-reflective multilayer structure of the multi-junction solar cell of the present invention A schematic view of a second preferred embodiment. As shown in the fourth figure, the second buffer layer 15 and a third buffer layer 19 are formed between the first tunnel junction 14 and the second pn junction 16 . The third buffer layer 19 is interposed between the second tunnel junction surface 18 and the third pn junction surface 20 .

參閱第五圖,本發明多接面太陽能電池之抗反射多層結構的 第三較佳實施例示意圖。如第五圖所示,本發明更形成有一第一窗層17及一第二窗層21,該第一窗層17位於該第二p-n接面16與該第二穿隧接面18之間,該第二窗層21位於該第三p-n接面20之上。 Referring to the fifth figure, the anti-reflective multilayer structure of the multi-junction solar cell of the present invention A schematic diagram of a third preferred embodiment. As shown in FIG. 5 , the first window layer 17 and a second window layer 21 are formed between the second pn junction 16 and the second tunnel junction 18 . The second window layer 21 is located above the third pn junction 20.

本發明的另一特點在於,利用高能隙的適當材料組合及厚度選擇,使開路電壓得以有效提高。 Another feature of the present invention is that the open circuit voltage is effectively increased by utilizing a suitable combination of materials and thickness selection of high energy gaps.

綜上所述,本發明藉由加入折射率介於氟化鎂層和硫化鋅層之薄膜結構,使多接面太陽能電池的抗反射頻譜範圍變大,進而提升總電流輸出量,配合利用高能隙的適當材料組合及厚度選擇,使開路電壓得以有效提高,而有效提升多接面太陽能電池的光電轉換效率。 In summary, the present invention increases the anti-reflection spectrum range of the multi-junction solar cell by adding a thin film structure having a refractive index between the magnesium fluoride layer and the zinc sulfide layer, thereby increasing the total current output and utilizing high energy. The appropriate material combination and thickness selection of the gap enable the open circuit voltage to be effectively improved, and effectively improve the photoelectric conversion efficiency of the multi-junction solar cell.

以上所述者僅為用以解釋本發明之較佳實施例,並非企圖據以對本發明做任何形式上之限制,是以,凡有在相同之發明精神下所作有關本發明之任何修飾或變更,皆仍應包括在本發明意圖保護之範疇。 The above is only a preferred embodiment for explaining the present invention, and is not intended to limit the present invention in any way, and any modifications or alterations to the present invention made in the spirit of the same invention. All should still be included in the scope of the intention of the present invention.

100‧‧‧多接面太陽能電池之抗反射多層結構 Anti-reflective multilayer structure of 100‧‧‧ multi-connected solar cells

1‧‧‧多接面太陽能電池 1‧‧‧Multiple junction solar cells

3‧‧‧複數抗反射層 3‧‧‧Multiple anti-reflective layers

31‧‧‧第一抗反射層 31‧‧‧First anti-reflective layer

32‧‧‧第二抗反射層 32‧‧‧Second anti-reflective layer

33‧‧‧第三抗反射層 33‧‧‧ third anti-reflective layer

11‧‧‧基板 11‧‧‧Substrate

12‧‧‧第一p-n接面 12‧‧‧First p-n junction

13‧‧‧第一緩衝層 13‧‧‧First buffer layer

14‧‧‧第一穿隧接面 14‧‧‧First tunneling junction

16‧‧‧第二p-n接面 16‧‧‧Second p-n junction

18‧‧‧第二穿隧接面 18‧‧‧Second tunnel junction

20‧‧‧第三p-n接面 20‧‧‧ third p-n junction

Claims (10)

一種多接面太陽能電池之抗反射頻譜增加結構,至少包含:複數抗反射層,形成於一多接面太陽能電池之表面上,至少包含一第一抗反射層、一第二抗反射層及一第三抗反射層,其中該第一抗反射層為一氟化鎂層,該第三抗反射層為一硫化鋅層,其中該第二抗反射層為一薄膜,其中該第二反射層之折射率介於該第一抗反射層與該第三抗反射層之間。 The anti-reflection spectrum increasing structure of the multi-junction solar cell comprises at least: a plurality of anti-reflection layers formed on a surface of a multi-junction solar cell, comprising at least a first anti-reflection layer, a second anti-reflection layer and a a third anti-reflective layer, wherein the first anti-reflective layer is a magnesium fluoride layer, the third anti-reflective layer is a zinc sulfide layer, wherein the second anti-reflective layer is a film, wherein the second reflective layer The refractive index is between the first anti-reflective layer and the third anti-reflective layer. 依據申請專利範圍第1項所述之多接面太陽能電池之抗反射多層結構,其中該第二抗反射層的材料至少包括氮化矽、氧化鋁、五氧化二鉭、二氧化矽及二氧化鈦之至少其中之一。 The anti-reflective multilayer structure of the multi-junction solar cell according to claim 1, wherein the material of the second anti-reflection layer comprises at least tantalum nitride, aluminum oxide, tantalum pentoxide, cerium oxide and titanium dioxide. At least one of them. 依據申請專利範圍第1項所述之多接面太陽能電池之抗反射多層結構,其中該第一抗反射層之厚度介於90~130nm之間。 The anti-reflection multilayer structure of the multi-junction solar cell according to claim 1, wherein the first anti-reflection layer has a thickness of between 90 and 130 nm. 依據申請專利範圍第1項所述之多接面太陽能電池之抗反射多層結構,其中該第二抗反射層之厚度介於30~60nm之間。 The anti-reflective multilayer structure of the multi-junction solar cell according to claim 1, wherein the second anti-reflection layer has a thickness of between 30 and 60 nm. 依據申請專利範圍第1項所述之多接面太陽能電池之抗反射多層結構,其中該第三抗反射層之厚度介於10~40nm之間。 The anti-reflection multilayer structure of the multi-junction solar cell according to claim 1, wherein the third anti-reflection layer has a thickness of between 10 and 40 nm. 依據申請專利範圍第1項所述之多接面太陽能電池之抗反射多層結構,其中該多接面太陽能電池由下至上依序包含:一基板,位於該多接面太陽能電池之底層,以鍺材料製成;一第一p-n接面,位於該基板之上,以Si1-xGex的材料製成,其中0.9x1,且該第一p-n接面之厚度介於1~2μm之間;一第一緩衝層,位於該第一p-n接面之上,以GaAs1-yPy的材料製成,其中0y0.09,且該第一緩衝層之厚度介於0.05~0.2μm之間;一第一穿隧接面,位於該第一緩衝層之上;一第二p-n接面,位於該第一穿隧接面之上,以GaAs1-yPy的材料製成,其中0y0.09,該第二p-n接面之厚度介於2~4μm之間;一第二穿隧接面,位於該第二p-n接面之上;以及一第三p-n接面,位於該第二穿隧接面之上,該第三p-n接面之厚度介於1.525~4.625μm之間,以In1-zGazP的材料製成,其中0.5z0.56。 The anti-reflection multi-layer structure of the multi-junction solar cell according to claim 1, wherein the multi-junction solar cell comprises, in order from bottom to top, a substrate disposed on the bottom surface of the multi-junction solar cell. Made of material; a first pn junction, located on the substrate, made of Si 1-x Ge x material, of which 0.9 x 1 and the thickness of the first pn junction is between 1 and 2 μm; a first buffer layer is located above the first pn junction and is made of GaAs 1-y P y material, wherein y 0.09, and the first buffer layer has a thickness of between 0.05 and 0.2 μm; a first tunnel junction is located above the first buffer layer; and a second pn junction is located at the first tunnel junction Above the surface, made of GaAs 1-y P y material, of which 0 y 0.09, the second pn junction has a thickness of between 2 and 4 μm; a second tunnel junction is located above the second pn junction; and a third pn junction is located at the second tunnel Above the junction, the thickness of the third pn junction is between 1.525 and 4.625 μm, and is made of In 1-z Ga z P material, wherein 0.5 z 0.56. 依據申請專利範圍第6項所述之多接面太陽能電池之抗反射多層結構, 其中該第一穿隧接面之厚度介於0.04~0.08μm之間,該第一穿隧接面包含一第一N型穿隧層及一第一P型穿隧層,該第一N型穿隧層位於該第一緩衝層之上並以GaAs1-yPy製成,其中0y0.09,該第一N型穿隧層之厚度介於0.03~0.05μm之間;該第一P型穿隧層位於該第一N型穿隧層之上並以In1-zGazP製成,其中0.5z0.56,該第一P型穿隧層之厚度介於0.02~0.04μm之間。 The anti-reflection multi-layer structure of the multi-junction solar cell according to claim 6, wherein the first tunnel junction has a thickness of between 0.04 and 0.08 μm, and the first tunnel junction comprises a first An N-type tunneling layer and a first P-type tunneling layer, the first N-type tunneling layer is located on the first buffer layer and is made of GaAs 1-y P y , wherein 0 y 0.09, the first N-type tunneling layer has a thickness of between 0.03 and 0.05 μm; the first P-type tunneling layer is located above the first N-type tunneling layer and is made of In 1-z Ga z P Cheng, of which 0.5 z 0.56, the thickness of the first P-type tunneling layer is between 0.02 and 0.04 μm. 依據申請專利範圍第6項所述之多接面太陽能電池之抗反射多層結構,其中該第二穿隧接面之厚度介於0.03~0.05μm之間,該第二穿隧接面包含一第二N型穿隧層及一第二P型穿隧層,該第二N型穿隧層位於該第二p-n接面之上並以Al1-wlnwP製成,其中0.43w0.45,該第二N型穿隧層之厚度介於0.01~0.03之間;該第二P型穿隧層位於該第二N型穿隧層之上並以In1-zGazP的材料製成,其中0.5z0.56,該第二P型穿隧層之厚度介於0.01~0.03μm之間。 The anti-reflection multi-layer structure of the multi-junction solar cell according to claim 6, wherein the thickness of the second tunnel junction is between 0.03 and 0.05 μm, and the second tunnel junction comprises a first a second N-type tunneling layer and a second P-type tunneling layer, the second N-type tunneling layer is located above the second pn junction and is made of Al 1-w ln w P, wherein 0.43 w 0.45, the thickness of the second N-type tunneling layer is between 0.01 and 0.03; the second P-type tunneling layer is located above the second N-type tunneling layer and is made of In 1-z Ga z P Made, of which 0.5 z 0.56, the thickness of the second P-type tunneling layer is between 0.01 and 0.03 μm. 依據申請專利範圍第6項所述之多接面太陽能電池之抗反射多層結構,其中更形成有一第二緩衝層及一第三緩衝層,該第二緩衝層位於該第一穿隧接面與該第二p-n接面之間,該第三緩衝層介於該第二穿隧接面與該第三p-n接面之間。 The anti-reflection multi-layer structure of the multi-junction solar cell according to claim 6, wherein a second buffer layer and a third buffer layer are further formed, and the second buffer layer is located on the first tunnel junction surface. Between the second pn junctions, the third buffer layer is between the second tunnel junction and the third pn junction. 依據申請專利範圍第6項所述之多接面太陽能電池之抗反射多層結構,其中更形成有一第一窗層及一第二窗層,該第一窗層位於該第二p-n接面與該第二穿隧接面之間,該第二窗層位於該第三p-n接面之上。 The anti-reflective multi-layer structure of the multi-junction solar cell of claim 6, wherein a first window layer and a second window layer are further formed, the first window layer being located at the second pn junction Between the second tunnel junctions, the second window layer is located above the third pn junction.
TW103117539A 2014-05-19 2014-05-19 The anti - reflection spectrum of the multi - faceted solar cell increases the structure TWI575765B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103117539A TWI575765B (en) 2014-05-19 2014-05-19 The anti - reflection spectrum of the multi - faceted solar cell increases the structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103117539A TWI575765B (en) 2014-05-19 2014-05-19 The anti - reflection spectrum of the multi - faceted solar cell increases the structure

Publications (2)

Publication Number Publication Date
TW201545364A true TW201545364A (en) 2015-12-01
TWI575765B TWI575765B (en) 2017-03-21

Family

ID=55407202

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103117539A TWI575765B (en) 2014-05-19 2014-05-19 The anti - reflection spectrum of the multi - faceted solar cell increases the structure

Country Status (1)

Country Link
TW (1) TWI575765B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106449848A (en) * 2016-10-28 2017-02-22 上海空间电源研究所 Multi-junction solar cell containing composite multi-photon cavity
TWI615988B (en) * 2016-08-01 2018-02-21 Optoelectronic component with anti-reflection spectrum increasing structure
CN114068730A (en) * 2021-11-22 2022-02-18 厦门乾照光电股份有限公司 Solar cell and manufacturing method thereof
TWI844144B (en) * 2022-10-24 2024-06-01 國家原子能科技研究院 A multi-junction solar cell structure grown on both sides of a substrate and a manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI469365B (en) * 2009-04-01 2015-01-11 Gintech Energy Corp High efficeency colored solar cell and manufacturing method thereof
IT1394853B1 (en) * 2009-07-21 2012-07-20 Cesi Ct Elettrotecnico Sperimentale Italiano Giacinto Motta S P A PHOTOVOLTAIC CELL WITH HIGH CONVERSION EFFICIENCY
US9559229B2 (en) * 2009-12-31 2017-01-31 Epistar Corporation Multi-junction solar cell
US20110174362A1 (en) * 2010-01-18 2011-07-21 Applied Materials, Inc. Manufacture of thin film solar cells with high conversion efficiency
TWI419343B (en) * 2010-07-20 2013-12-11 Nexpower Technology Corp Tandem solar cell
US8962991B2 (en) * 2011-02-25 2015-02-24 Solar Junction Corporation Pseudomorphic window layer for multijunction solar cells
TW201349545A (en) * 2012-05-28 2013-12-01 Pinecone En Inc Multi-junction photovoltaic cell and a method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI615988B (en) * 2016-08-01 2018-02-21 Optoelectronic component with anti-reflection spectrum increasing structure
CN106449848A (en) * 2016-10-28 2017-02-22 上海空间电源研究所 Multi-junction solar cell containing composite multi-photon cavity
CN114068730A (en) * 2021-11-22 2022-02-18 厦门乾照光电股份有限公司 Solar cell and manufacturing method thereof
TWI844144B (en) * 2022-10-24 2024-06-01 國家原子能科技研究院 A multi-junction solar cell structure grown on both sides of a substrate and a manufacturing method thereof

Also Published As

Publication number Publication date
TWI575765B (en) 2017-03-21

Similar Documents

Publication Publication Date Title
Lal et al. Optics and light trapping for tandem solar cells on silicon
KR101858570B1 (en) Thin film solar cells for power generating window applications and the preparation method thereof
TWI575765B (en) The anti - reflection spectrum of the multi - faceted solar cell increases the structure
CN204558502U (en) A kind of HIT solar cell
Ganapati et al. Air gaps as intermediate selective reflectors to reach theoretical efficiency limits of multibandgap solar cells
Wang et al. Enhanced optical properties in inclined GaAs nanowire arrays for high-efficiency solar cells
Martins et al. Photonic intermediate structures for perovskite/c-silicon four terminal tandem solar cells
Atwater et al. Nanophotonic design principles for ultrahigh efficiency photovoltaics
Zhengshan et al. Evaluation of spectrum-splitting dichroic mirrors for PV mirror tandem solar cells
TWI593127B (en) High photoelectric conversion efficiency of multi-junction solar cells
Rouhbakhshmeghrazi et al. Novel design of polycrystalline CdTe/Si tandem solar cells using SiO2/TiO2 distributed Bragg reflector
CN103165686B (en) A kind of five-junction solar cell with antireflective coating
TWM496233U (en) Multi-junction solar cell anti-reflective multi-layer structure
Grant et al. Optical Optimization of Perovskite-Silicon Reflective Tandem Solar Cells
TWM496234U (en) High photoelectric conversion efficiency multi-junction solar cell
Manzoor et al. Current-matching in two-terminal perovskite/silicon tandems employing wide-bandgap perovskites and varying light-management schemes
JP5930214B2 (en) Photoelectric conversion element
Siddique et al. A study on the performance of cadmium telluride (CdTe) solar cells simulating with different layers in front contact
TWI615988B (en) Optoelectronic component with anti-reflection spectrum increasing structure
TWI464889B (en) Solar cell with heterojunction and method of manufacturing the same
Sathya et al. Design and analysis of AlGaAs/GaAs/Si multi junction solar cell using PC1D
KR102559541B1 (en) Organic photovoltaics for multi-functional solar cell and wireless power transfer
TWI419343B (en) Tandem solar cell
Rao et al. Efficiency enhancement of the solar cells through subwavelength scaled biomimiced moth eye patterning using lumerical solutions
ZhU et al. Design of InGaP/GaAs/lnGaAs multi-junction cells with reduced layer thicknesses using light-trapping rear texture