TW201545308A - Three-dimensional multiple chip packages including multiple chip stacks - Google Patents

Three-dimensional multiple chip packages including multiple chip stacks Download PDF

Info

Publication number
TW201545308A
TW201545308A TW103118937A TW103118937A TW201545308A TW 201545308 A TW201545308 A TW 201545308A TW 103118937 A TW103118937 A TW 103118937A TW 103118937 A TW103118937 A TW 103118937A TW 201545308 A TW201545308 A TW 201545308A
Authority
TW
Taiwan
Prior art keywords
wafer
wafers
stacks
item
layer
Prior art date
Application number
TW103118937A
Other languages
Chinese (zh)
Other versions
TWI569403B (en
Inventor
Shih-Hung Chen
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW103118937A priority Critical patent/TWI569403B/en
Publication of TW201545308A publication Critical patent/TW201545308A/en
Application granted granted Critical
Publication of TWI569403B publication Critical patent/TWI569403B/en

Links

Abstract

A structure of a multichip package and a method for fabricating the multichip package are described. The multichip package includes multiple chip stacks including chips in multiple chip layers. Each of the chip stacks includes two or more chips, each chip being inside vertical projection of at least another chip in the chip stack and disposed in a respective chip layer. Each of the chip stacks also includes horizontal conductive lines extending to perimeter regions around the chip stacks, the chips in a particular chip layer being electrically connected to horizontal conductive lines disposed in the particular chip layer. Each of the chip stacks also includes vertical conductive lines in the perimeter regions electrically connected to one or more of the horizontal conductive lines in at least two chip layers. The multichip package also includes a controller chip electrically connected to at least one chip in the chip stacks.

Description

包含多晶片疊層的三維多晶片封裝3D multi-chip package with multi-wafer stack 【0001】【0001】

本揭露書是有關於一種三維多晶片封裝。The present disclosure is directed to a three-dimensional multi-chip package.

【0002】【0002】

在三維多晶片封裝之中,多個晶片(晶粒)可已被垂直堆疊並內連接(interconnected)而形成單一元件。堆疊的晶片可以藉由電連接(electrical connection),例如位於堆疊晶片邊緣周邊的打線,來進行內連接。三維多晶片封裝可以在小封裝設計(small form factor)中達到較高的儲存容量及/或功能性。In a three-dimensional multi-chip package, a plurality of wafers (grains) may have been vertically stacked and interconnected to form a single component. The stacked wafers can be interconnected by electrical connections, such as wire bonding around the edges of the stacked wafer edges. Three-dimensional multi-chip packages can achieve higher storage capacity and/or functionality in a small form factor.

【0003】[0003]

穿矽通孔(Through-Silicon Via,TSV) 是一種穿過矽晶片的垂直電連接。與打線相比,穿矽通孔可在堆疊的晶片之間提供較短的電連接。較短電連接的較短訊號傳輸時間以及較低的電阻和寄生電容,可以賦予較寬的連接匯流排(connection bus)以及較寬的連接速度,還有較低的電力耗損。Through-Silicon Via (TSV) is a vertical electrical connection through a silicon wafer. Through-via vias provide a shorter electrical connection between stacked wafers than wire bonding. Shorter signal transmission times and lower resistance and parasitic capacitance for shorter electrical connections allow for a wider connection bus and wider connection speeds, as well as lower power consumption.

【0004】[0004]

穿矽通孔存在許多製程挑戰。打開穿矽開口 (through-silicon hole)並在開口中填充導電材料,例如銅,可能是一項挑戰。對準位於由不同製造者(以不同的設計規則)所製作的兩晶片之間的穿矽通孔連接也是另一個挑戰。穿矽通孔可能引發改變附近元件之電路特性的應力。穿矽通孔一般也要求較鬆弛的設計規則(relaxed design rules),因而可能增加矽面積和成本。There are many process challenges in wearing through holes. Opening a through-silicon hole and filling the opening with a conductive material, such as copper, can be a challenge. It is another challenge to align the through-via via connections between two wafers made by different manufacturers (with different design rules). Passing through the via may cause stress that changes the circuit characteristics of nearby components. Through-holes generally require looser design rules, which may increase the area and cost.

【0005】[0005]

三維多晶片封裝可以藉由使用穿介電質通孔(Through-Dielectric Vias,TSVs)來形成。例如於2012年8月29日提出申請的美國專利第 13/597,669號申請案,其發明名稱為「晶片疊層結構及其製作方法(Chip Stack Structure and Manufacturing Method Thereof)」描述使用穿介電質通孔的堆疊晶片結構(stacked chips structure)。堆疊晶片結構具有兩個或更多分別貼附(mounted)於不同基材上的晶片,且具有位於這些基材之間的介電層。堆疊晶片(stacked chips)之間是使用配置於這些基材中的水平導體(horizontal conductors),以及在堆疊晶片之邊緣外側的位置穿過基材或介電層的垂直導體(vertical conductors)來進行內連接。穿介電質通孔可在堆疊晶片之間提供較打線更密集的連接。然而和打線類似,堆疊晶片之間的連接距離通常是由堆疊晶片的尺寸來決定。因此,堆疊晶片之間的連接速度與頻寬可能受到堆疊晶片尺寸的限制。Three-dimensional multi-chip packages can be formed by using through-dielectric Vias (TSVs). For example, U.S. Patent Application Serial No. 13/597,669, filed on Aug. 29, 2012, entitled,,,,,,,,,,,,,,,,,,,,,,,, A stacked chip structure of via holes. A stacked wafer structure has two or more wafers that are individually mounted on different substrates and has a dielectric layer between the substrates. Between the stacked chips is performed using horizontal conductors disposed in the substrates, and vertical conductors passing through the substrate or dielectric layer at positions outside the edges of the stacked wafers. Internal connection. The through dielectric vias provide a denser connection between the stacked wafers. However, similar to wire bonding, the connection distance between stacked wafers is usually determined by the size of the stacked wafers. Therefore, the connection speed and bandwidth between stacked wafers may be limited by the size of the stacked wafer.

【0006】[0006]

製作多晶片封裝的挑戰之一是多晶片封裝的製程良率可能小於多晶片封裝中之特定構件的製程良率。再者,多晶片封裝中有缺陷的構件(例如,有缺陷的晶片)會使整體封裝的功能失效(non-functioning)。One of the challenges in making a multi-chip package is that the process yield of a multi-chip package may be less than the process yield of a particular component in a multi-chip package. Furthermore, defective components (eg, defective wafers) in a multi-wafer package can render the overall package non-functional.

【0007】【0007】

因此,有需要提供一種具有穿介電質通孔的三維多晶片封裝,使三維多晶片封裝中的內連接晶片之間具有較高的連接速度和頻寬。也有需要提供一種具有內建備用修復資源(built-in redundancy)的三維多晶片封裝。Accordingly, there is a need to provide a three-dimensional multi-chip package with dielectric vias that provides higher connection speeds and bandwidths between interconnected wafers in a three-dimensional multi-chip package. There is also a need to provide a three-dimensional multi-chip package with built-in redundancy.

【0008】[0008]

本技術提供一種多晶片封裝以及製作此多晶片封裝的方法。此多晶片封裝可以包括由晶片疊層(chip stacks)所構成的陣列。其中,晶片疊層被位於包圍陣列中每一晶片疊層之週圍區域(perimeter region)內的絕緣體所分開。在晶片疊層中晶片之間的垂直連接,是使用穿過週圍區域的層間連接(interlayer connections)所作成。從晶片至層間連接的水平連接,可以使用位於晶片疊層中的晶片層(chip layers)內部的線路來作成。建構來控制晶片疊層陣列中晶片之運用的控制晶片,可以被包含於此多晶片封裝之中。The present technology provides a multi-chip package and a method of fabricating the multi-chip package. The multi-chip package can include an array of chip stacks. Wherein the wafer stack is separated by an insulator located within a perimeter region of each wafer stack in the array. The vertical connections between the wafers in the wafer stack are made using interlayer connections through the surrounding area. The horizontal connection from the wafer to the interlayer connection can be made using circuitry inside the chip layers in the wafer stack. A control wafer constructed to control the operation of the wafer in the wafer stack array can be included in the multi-chip package.

【0009】【0009】

描述一種多晶片封裝,其包括複數個晶片疊層,而這些晶片疊層包括配置於複數個晶片層中的多個晶片(chips)。每一個晶片疊層包含兩個或更多的晶片。每一個晶片位於該晶片疊層中至少另一個晶片的垂直投影(vertical projection)之中,並且各自配置於晶片層中之一者內。每一晶片疊層也包含水平導線,其延伸至晶片疊層週邊的週圍區域。位於特定晶片層中的晶片電性連結至設於特定晶片層中的水平導線。每一晶片疊層也包含垂直導線,其位於週圍區域,且電性連接至一或多條位於至少兩晶片層之中的水平導線。A multi-chip package is described that includes a plurality of wafer stacks including a plurality of chips disposed in a plurality of wafer layers. Each wafer stack contains two or more wafers. Each wafer is located in a vertical projection of at least one other of the wafer stacks and is each disposed within one of the wafer layers. Each wafer stack also includes horizontal wires that extend to the surrounding area of the periphery of the wafer stack. The wafers located in a particular wafer layer are electrically bonded to horizontal wires disposed in a particular wafer layer. Each wafer stack also includes vertical wires that are located in the surrounding area and that are electrically connected to one or more horizontal wires that are located in at least two of the wafer layers.

【0010】[0010]

多晶片封裝也包括一控制晶片,電性連接至晶片疊層中的至少一晶片。The multi-chip package also includes a control wafer electrically coupled to at least one of the wafer stacks.

【0011】[0011]

本技術的其他層面及優點,可見於下述的圖式、說明書及申請專利範圍,其詳細說明如下:Other aspects and advantages of the present technology can be found in the following drawings, specifications, and patent claims, which are described in detail below:

【0052】[0052]

100‧‧‧三維立體多晶片封裝
101‧‧‧三維立體多晶片封裝
110‧‧‧晶片疊層
110a‧‧‧晶片疊層
110b‧‧‧晶片疊層
121‧‧‧第一階層晶片
121a‧‧‧晶片
121b‧‧‧晶片
122‧‧‧第二階層晶片
122a‧‧‧晶片
122b‧‧‧晶片
123‧‧‧第三階層晶片
123a‧‧‧晶片
123b‧‧‧晶片
131‧‧‧絕緣層
132‧‧‧絕緣層
133‧‧‧絕緣層
134‧‧‧絕緣層
141‧‧‧絕緣層
142‧‧‧絕緣層
143‧‧‧絕緣層
144‧‧‧絕緣層
151‧‧‧水平導線
161‧‧‧垂直導線
164‧‧‧第1B圖的局部放大
165‧‧‧第1B圖的局部放大
190‧‧‧控制晶片
301‧‧‧溝渠
302‧‧‧溝渠
400‧‧‧單一晶片疊層
411‧‧‧第5圖的局部放大
412‧‧‧第6圖的局部放大
1301‧‧‧匯流排介面單元
1302‧‧‧備用修復資源/修復單元
1303‧‧‧頻率控制單元
1304‧‧‧晶片疊層狀態寄存器
A-A’‧‧‧剖線晶片疊層
a-p‧‧‧晶片疊層
L1‧‧‧最大晶片尺寸/2
L2‧‧‧週圍區域的寬度
100‧‧‧Three-dimensional multi-chip package
101‧‧‧Three-dimensional multi-chip package
110‧‧‧ wafer stack
110a‧‧‧ wafer stack
110b‧‧‧ wafer stack
121‧‧‧First Class Wafer
121a‧‧‧ wafer
121b‧‧‧ wafer
122‧‧‧second level wafer
122a‧‧‧ wafer
122b‧‧‧ wafer
123‧‧‧Third-level wafer
123a‧‧‧ wafer
123b‧‧‧ wafer
131‧‧‧Insulation
132‧‧‧Insulation
133‧‧‧Insulation
134‧‧‧Insulation
141‧‧‧Insulation
142‧‧‧Insulation
143‧‧‧Insulation
144‧‧‧Insulation
151‧‧‧ horizontal wire
161‧‧‧Vertical wire
Partial magnification of 164‧‧‧1B
165‧‧‧ Partial enlargement of Figure 1B
190‧‧‧Control chip
301‧‧‧ Ditch
302‧‧‧ Ditch
400‧‧‧Single wafer stack
Partial magnification of 411‧‧‧Fig.
Partial magnification of 412‧‧‧Fig.
1301‧‧‧ Busbar interface unit
1302‧‧‧Alternative Repair Resource/Repair Unit
1303‧‧‧frequency control unit
1304‧‧‧Wafer Stack Status Register
A-A'‧‧‧Dissection wafer stack
Ap‧‧‧ wafer stack
L 1 ‧‧‧Maximum Wafer Size/2
L 2 ‧‧‧Width of the surrounding area

【0012】[0012]

第1A圖和第1B圖係分別繪示的一種具有多個晶片疊層的三維多晶片封裝的側視圖和上視圖。
第2A圖和第2B圖係根據另一實施例所分別繪示的一種具有多個晶片疊層的三維多晶片封裝的側視圖和上視圖。
第3圖係繪示第1A圖之三維多晶片封裝中的其中一個晶片疊層的較詳細結構側視圖。
第4A圖至第4H圖係繪示,製作第3圖之晶片疊層底部二階層的製程步驟結構剖面示意圖。
第5圖係繪示單一晶片疊層的上視圖。
第6圖係繪示具有多個晶片疊層之封裝的上視圖。
第7圖係繪示第5圖之單一晶片疊層的對準偏移(alignment displacements)。
第8圖係繪示第6圖之具有多個晶片疊層之封裝的對準偏移。
第9圖係繪示第5圖之單一晶片疊層的對準偏移(alignment displacement)。
第10圖係繪示第6圖之具有多個晶片疊層之封裝的對準偏移。
第11圖係繪示位於第5圖之單一晶片疊層中有缺陷的穿矽通孔和有缺陷的晶片。
第12圖係繪示位於第6圖之具有多個晶片疊層之封裝中有缺陷的穿矽通孔和有缺陷的晶片。
第13圖係繪示一種控制晶片的範例方塊圖。
1A and 1B are side and top views, respectively, of a three-dimensional multi-chip package having a plurality of wafer stacks.
2A and 2B are side and top views, respectively, of a three-dimensional multi-chip package having a plurality of wafer stacks, according to another embodiment.
Figure 3 is a side view showing a more detailed structure of one of the wafer stacks in the three-dimensional multi-chip package of Figure 1A.
4A to 4H are cross-sectional views showing the structure of the process steps of the bottom two layers of the wafer stack of FIG.
Figure 5 is a top view of a single wafer stack.
Figure 6 is a top view of a package having a plurality of wafer stacks.
Figure 7 is a diagram showing the alignment displacements of the single wafer stack of Figure 5.
Figure 8 is a diagram showing the alignment offset of the package having a plurality of wafer stacks of Figure 6.
Figure 9 is a diagram showing the alignment displacement of the single wafer stack of Figure 5.
Figure 10 is a diagram showing the alignment offset of the package having a plurality of wafer stacks of Figure 6.
Figure 11 is a diagram showing the defective through-via and defective wafers in the single wafer stack of Figure 5.
Figure 12 is a diagram showing a through-via via and a defective wafer in a package having a plurality of wafer stacks in Figure 6.
Figure 13 is a block diagram showing an example of a control wafer.

【0013】[0013]

以下配合圖示提供本技術的詳細說明實施例。The detailed description of the present technology is provided below in conjunction with the drawings.

【0014】[0014]

第1A圖和第1B圖係分別繪示的一種具有多個晶片疊層的三維多晶片封裝100的側視圖和上視圖。三維多晶片封裝100包括複數個晶片疊層,例如晶片疊層110a、110b...等等。1A and 1B are side and top views, respectively, of a three-dimensional multi-chip package 100 having a plurality of wafer stacks. The three-dimensional multi-chip package 100 includes a plurality of wafer stacks, such as wafer stacks 110a, 110b, and the like.

【0015】[0015]

每一個晶片疊層(例如晶片疊層110a)包括兩個或更多個垂直方向堆疊的晶片(例如晶片121a、122a和123a)。意即是,特定晶片疊層中的每一個晶片位於該特定晶片疊層中至少另一個晶片的垂直投影之中。Each wafer stack (e.g., wafer stack 110a) includes two or more wafers stacked in a vertical direction (e.g., wafers 121a, 122a, and 123a). That is, each wafer in a particular wafer stack is located in a vertical projection of at least one other wafer in the particular wafer stack.

【0016】[0016]

三維多晶片封裝100之晶片疊層中的晶片可以具有相同或不同的尺寸。三維多晶片封裝100之晶片疊層中的晶片可以是相同或不同型態的晶片。在一些實施例中,晶片疊層(例如晶片疊層110a、110b…)可以具有相同的晶片組合。例如,第一階層(頂階層)晶片(121a、121b …)可以是邏輯晶片(例如,一或多個具有匯流排介面單元(bus interface unit)和記憶存取單元(memory access unit)的處理器核心),同時,第二階層晶片(122a、122b …)可以是第一型的記憶體晶片(例如,是動態隨機存取記憶體(dynamic random-access-memory)如DRAM晶片)。第三階層晶片(123a、123b …)可以是第二型的記憶體晶片(例如,是非揮發記憶體晶片,如快閃記憶體晶片或相變記憶體晶片(phase change memory chip))。在另一實施例之中,第一階層晶片是邏輯晶片,同時第二階層和第三階層晶片是這些邏輯晶片的第一階層和第二階層快取記憶體(cache memories)(例如,第二階層和第三階層晶片可以是具有相同或不同速度的相同或不同型態的記憶體)。在又另一個實施例中,第一階層晶片是邏輯晶片,同時第二階層和第三階層晶片是這些邏輯晶片的記憶體。第二階層晶片可以包括記憶體的週邊電路(例如,I/O電路(I/O circuit)、錯誤-更正碼或錯誤控制電路(error-correcting code or ECC circuits))。第三階層晶片可以包括記憶體的記憶胞陣列。在另一個實施例中,所有晶片疊層中的所有晶片可以是相同型態的記憶體晶片,其具有建構來作為管理該些記憶體晶片之存取的記憶控制器的控制晶片。The wafers in the wafer stack of the three-dimensional multi-chip package 100 may have the same or different sizes. The wafers in the wafer stack of the three-dimensional multi-chip package 100 may be wafers of the same or different types. In some embodiments, the wafer stack (eg, wafer stacks 110a, 110b...) can have the same wafer combination. For example, the first level (top level) wafers (121a, 121b ...) may be logic chips (eg, one or more processors having a bus interface unit and a memory access unit) At the same time, the second level chip (122a, 122b ...) may be a first type of memory chip (for example, a dynamic random-access-memory such as a DRAM chip). The third level wafer (123a, 123b ...) may be a second type of memory wafer (for example, a non-volatile memory wafer such as a flash memory wafer or a phase change memory chip). In another embodiment, the first level of the wafer is a logic wafer, and the second and third level wafers are the first level and the second level of cache memories of the logic chips (eg, second The level and third level wafers may be the same or different types of memory having the same or different speeds). In yet another embodiment, the first level of the wafer is a logic wafer while the second and third level wafers are the memory of the logic wafers. The second level wafer may include peripheral circuits of the memory (for example, an I/O circuit, an error-correcting code or ECC circuits). The third level wafer may comprise a memory cell array of memory. In another embodiment, all of the wafers in all of the wafer stacks may be memory chips of the same type having control wafers constructed as memory controllers for managing access to the memory chips.

【0017】[0017]

在一些實施例之中,具有相同型態的晶片疊層(例如,包含一邏輯晶片、一第一記憶體晶片及一第二記憶體晶片)重複結構(multiple instances)可以提供在三維多晶片封裝100之中。這些具有相同型態的晶片疊層重複結構,是建構來提供較高的內連接頻寬和備用修復資源,將以下述說明配合第5圖至第12圖加以詳述。In some embodiments, multiple layers of wafer stacks having the same pattern (eg, including a logic die, a first memory die, and a second memory die) can be provided in a three-dimensional multi-chip package 100 in. These wafer stack repeating structures of the same type are constructed to provide a higher internal connection bandwidth and alternate repair resources, which will be described in more detail in conjunction with Figures 5 through 12, as described below.

【0018】[0018]

三維多晶片封裝100之晶片疊層中的晶片配置在複數個晶片層中。每一個晶片層包括多個晶片以及連接這些晶片的導線,且包括一或多個絕緣層,用以支持晶片層中的晶片和導線。例如,第一階層(頂階層)晶片層包括絕緣層131和位於絕緣層131上方的第一階層晶片(121a, 121b …)。第二階層晶片層包括絕緣層132和位於絕緣層132上方的第二階層晶片(122a、122b …)。第三階層(底階層)晶片層包括絕緣層133和位於絕緣層133上方的第三階層晶片(123a、123b …)。每一個晶片層也可以包括一絕緣層(例如絕緣層141、142或143),覆蓋於晶片層中的晶片上,並且支持位於其上方的晶片層。The wafers in the wafer stack of the three-dimensional multi-chip package 100 are disposed in a plurality of wafer layers. Each wafer layer includes a plurality of wafers and wires connecting the wafers and includes one or more insulating layers for supporting the wafers and wires in the wafer layer. For example, the first level (top level) wafer layer includes an insulating layer 131 and first level wafers (121a, 121b ...) over the insulating layer 131. The second level wafer layer includes an insulating layer 132 and second level wafers (122a, 122b ...) over the insulating layer 132. The third level (bottom level) wafer layer includes an insulating layer 133 and third level wafers (123a, 123b ...) over the insulating layer 133. Each wafer layer may also include an insulating layer (e.g., insulating layer 141, 142 or 143) overlying the wafer in the wafer layer and supporting the wafer layer above it.

【0019】[0019]

絕緣層131、132、133、142及143可以包括二氧化矽、聚合物或其他適合支持前述之導線和晶片的絕緣材料。另外,絕緣層也可以包括多種型態的材料。The insulating layers 131, 132, 133, 142, and 143 may include ceria, a polymer, or other insulating material suitable for supporting the aforementioned wires and wafers. In addition, the insulating layer may also comprise a plurality of types of materials.

【0020】[0020]

底部的絕緣層133可以配置在基材層的上方。例如,底部的絕緣層可以是生長在矽晶圓表面的二氧化矽層。在另一個實例中,底部的絕緣層可以是被印刷電路版或陶瓷基板所承載的絕緣層。The insulating layer 133 at the bottom may be disposed above the substrate layer. For example, the insulating layer at the bottom may be a layer of ruthenium dioxide grown on the surface of the tantalum wafer. In another example, the insulating layer at the bottom may be an insulating layer carried by a printed circuit board or ceramic substrate.

【0021】[0021]

晶片層中的晶片電性連接至晶片層中的水平導線。例如,第一階層晶片層中的第一階層晶片(121a, 121b …)電性連接至配置於絕緣層131中的水平導線151。第二階層晶片層中的第二階層晶片(122a、122b …)電性連接至配置於絕緣層132中的水平導線151。第三階層晶片層中的第三階層晶片(123a、123b …)電性連接至配置於絕緣層133中的水平導線151。位於兩不同晶片層中的水平導線151,可藉由垂直導線161(穿介電質通孔),穿過水平導線151之間的絕緣層來進行連接。例如,位於第二階層晶片層中(配置於絕緣層132中)的水平導線151以及位於第三階層晶片層中(配置於絕緣層133中)的水平導線151,可藉由穿過絕緣層132和143的垂直導線161(穿介電質通孔)來連接。因此,位於每一晶片疊層(例如晶片疊層110a)中的晶片,可以藉由使用水平導線151和垂直導線161來電性內連接。The wafers in the wafer layer are electrically connected to horizontal wires in the wafer layer. For example, the first level wafers (121a, 121b ...) in the first level wafer layer are electrically connected to the horizontal lines 151 disposed in the insulating layer 131. The second level wafers (122a, 122b ...) in the second level wafer layer are electrically connected to the horizontal lines 151 disposed in the insulating layer 132. The third level wafers (123a, 123b ...) in the third level wafer layer are electrically connected to the horizontal lines 151 disposed in the insulating layer 133. The horizontal wires 151 located in the two different wafer layers can be connected by the vertical wires 161 (through the dielectric vias) through the insulating layer between the horizontal wires 151. For example, the horizontal wires 151 located in the second level wafer layer (disposed in the insulating layer 132) and the horizontal wires 151 located in the third layer wafer layer (disposed in the insulating layer 133) may pass through the insulating layer 132. Connect with the vertical wire 161 (through the dielectric via) of 143. Thus, wafers located in each wafer stack (e.g., wafer stack 110a) can be electrically interconnected by using horizontal wires 151 and vertical wires 161.

【0022】[0022]

在第1A圖中,僅繪示一階層的水平導線151對應每一晶片層。為了因應更複雜的佈線,一晶片層可以具有一層以上的水平導線,以連接三維多晶片封裝100中的晶片。例如第三階層晶片層(包含第三階層晶片123a、123b …)可以包含配置於絕緣層143中的另一層水平導線。In Fig. 1A, only one level of horizontal wires 151 are shown corresponding to each wafer layer. In order to accommodate more complicated wiring, a wafer layer may have more than one layer of horizontal wires to connect the wafers in the three-dimensional multi-chip package 100. For example, the third level wafer layer (including the third level wafers 123a, 123b ...) may include another layer of horizontal wires disposed in the insulating layer 143.

【0023】[0023]

一晶片疊層中的每一垂直導線161係位於該晶片疊層中至少一晶片的垂直投影外側的週圍區域中,並且位於三維多晶片封裝100的另一晶片疊層之晶片的垂直投影外側。意即是,特定晶片疊層的垂直導線(穿介電質通孔)係位於該特定晶片疊層之晶片週邊的週圍區域,以及位於該特定晶片疊層與三維多晶片封裝100中的其他其相鄰晶片疊層之間的區域,如第1B圖中的局部放大164和165所繪示。Each of the vertical wires 161 in a wafer stack is located in a peripheral region outside the vertical projection of at least one of the wafer stacks and outside the vertical projection of the wafer of another wafer stack of the three-dimensional multi-chip package 100. That is, the vertical wires (through dielectric vias) of a particular wafer stack are located in the surrounding area of the periphery of the wafer of the particular wafer stack, as well as other others in the particular wafer stack and three-dimensional multi-chip package 100. The area between adjacent wafer stacks is illustrated by partial magnifications 164 and 165 in Figure 1B.

【0024】[0024]

晶片疊層的每一水平導線151位於三維多晶片封裝100中另一晶片疊層之晶片的垂直投影外側。意即是,一晶片疊層的水平導線係位於晶片週邊的週圍區域內部,並且電性連接位於該晶片疊層中的晶片。Each horizontal wire 151 of the wafer stack is located outside of the vertical projection of the wafer of another wafer stack in the three-dimensional multi-chip package 100. That is, the horizontal wires of a wafer stack are located inside the peripheral area of the wafer periphery and are electrically connected to the wafers located in the wafer stack.

【0025】[0025]

三維多晶片封裝100也包括配置於頂階層晶片層之晶片上方的控制晶片190。如第1A圖所繪示,控制晶片190配置於絕緣層134之上。絕緣層134配置在覆蓋絕緣層131和頂階層晶片層之晶片(晶片121a、121b…)上的絕緣層141上方。額外的絕緣層144可以覆蓋在控制晶片190和絕緣層134之上。控制晶片190係建構來提供控制訊號,藉以控制多晶片封裝中晶片的操作以或配置。在此實施例中,控制晶片190包括一控制器或為控制器的一部分,其中此控制器電性連接至複數個晶片疊層中的至少一晶片。以及在一些實施例之中,(此控制器)通過位於其中一個週圍區域的一穿介電質通孔中的至少一垂直導線161,電性連接至每一該些晶片疊層中的至少一晶片。例如,控制晶片190可以通過位於絕緣層134中的水平導線151和穿過絕緣層134和141的垂直導線161(穿介電質通孔)而被(晶片)連接。控制晶片190包括建構來控制三維多晶片封裝100中晶片疊層之活動(例如,藉由傳送控制訊號到一或多個晶片疊層)的電路(例如,控制功能單元(control function unit)或其他控制邏輯、匯流排介面單元)。在一實施例之中,控制晶片190並非三維多晶片封裝100的一部分(即係一封裝外(off-package)的控制器)。此一控制器可以通過導線及/或其他電路(例如,三維多晶片封裝100的I/O電路或橋接晶片(bridge chip))與三維多晶片封裝100中的晶片疊層產生介面。The three-dimensional multi-chip package 100 also includes a control wafer 190 disposed over the wafer of the top-level wafer layer. As shown in FIG. 1A, the control wafer 190 is disposed over the insulating layer 134. The insulating layer 134 is disposed over the insulating layer 141 on the wafer (wafers 121a, 121b...) covering the insulating layer 131 and the top layer wafer layer. An additional insulating layer 144 can be overlying the control wafer 190 and the insulating layer 134. Control wafer 190 is constructed to provide control signals for controlling the operation or configuration of the wafers in the multi-chip package. In this embodiment, the control wafer 190 includes a controller or is part of a controller, wherein the controller is electrically coupled to at least one of the plurality of wafer stacks. And in some embodiments, the controller is electrically coupled to at least one of each of the plurality of wafer stacks by at least one vertical wire 161 in a through dielectric via located in one of the surrounding regions Wafer. For example, the control wafer 190 may be (wafer) connected by a horizontal wire 151 located in the insulating layer 134 and a vertical wire 161 (through dielectric via) passing through the insulating layers 134 and 141. Control wafer 190 includes circuitry (e.g., by transferring control signals to one or more wafer stacks) that is configured to control wafer stacking in three-dimensional multi-chip package 100 (e.g., control function unit or other) Control logic, bus interface unit). In one embodiment, the control wafer 190 is not part of the three-dimensional multi-chip package 100 (ie, an off-package controller). Such a controller can create an interface with the wafer stack in the three-dimensional multi-chip package 100 via wires and/or other circuitry (eg, I/O circuitry or bridge chip of the three-dimensional multi-chip package 100).

【0026】[0026]

第2A圖和第2B圖係根據另一實施例所分別繪示的一種具有多個晶片疊層的三維多晶片封裝(101)的側視圖和上視圖。其中側視圖係沿著上視圖中的剖線A-A’所繪示而成。與第1A圖和第1B圖所繪示的三維多晶片封裝100類似,三維多晶片封裝101具有多(12)個晶片疊層110以及配置於三個晶片層中的多個晶片。第一階層(頂階層)晶片層包括絕緣層131和位於絕緣層131上方的第一階層(頂階層)晶片121。第二階層晶片層包括絕緣層132和142以及位於絕緣層132上方的第二階層晶片122。第三階層(底階層)晶片層包括絕緣層133和143以及位於絕緣層133上方的第三階層晶片123。晶片疊層中的晶片可以通過垂直導線161及水平導線151而被連接。控制晶片190和其他頂階層晶片121一樣,配置於絕緣層131上方。意即是,控制晶片190配置於三維多晶片封裝101的頂階層晶片層之中。相較之下,第1A圖所繪示的控制晶片190位於三維多晶片封裝100之頂階層晶片層中的頂階層晶片(121a、121b…)上方。2A and 2B are side and top views, respectively, of a three-dimensional multi-chip package (101) having a plurality of wafer stacks, according to another embodiment. The side view is depicted along section line A-A' in the top view. Similar to the three-dimensional multi-chip package 100 illustrated in FIGS. 1A and 1B, the three-dimensional multi-chip package 101 has a plurality (12) of wafer stacks 110 and a plurality of wafers disposed in three wafer layers. The first level (top level) wafer layer includes an insulating layer 131 and a first level (top level) wafer 121 over the insulating layer 131. The second level wafer layer includes insulating layers 132 and 142 and a second level wafer 122 over the insulating layer 132. The third level (bottom level) wafer layer includes insulating layers 133 and 143 and a third level wafer 123 above the insulating layer 133. The wafers in the wafer stack can be connected by vertical wires 161 and horizontal wires 151. The control wafer 190 is disposed above the insulating layer 131 like the other top level wafers 121. That is, the control wafer 190 is disposed in the top layer wafer layer of the three-dimensional multi-chip package 101. In contrast, the control wafer 190 illustrated in FIG. 1A is located above the top level wafers (121a, 121b...) in the top level wafer layer of the three-dimensional multi-chip package 100.

【0027】[0027]

在第2A圖和第2B圖中,控制晶片190通過位於絕緣層131中的水平導線151電性連接至晶片疊層110中的至少一晶片。控制晶片190包括建構來控制三維多晶片封裝101中晶片疊層110之活動的電路。三維多晶片封裝101也可以包括覆蓋控制晶片190、第一階層晶片121和絕緣層131的絕緣層144。In FIGS. 2A and 2B, the control wafer 190 is electrically connected to at least one of the wafer stacks 110 through horizontal wires 151 located in the insulating layer 131. Control wafer 190 includes circuitry that is configured to control the activity of wafer stack 110 in three-dimensional multi-chip package 101. The three-dimensional multi-chip package 101 may also include an insulating layer 144 covering the control wafer 190, the first-level wafer 121, and the insulating layer 131.

【0028】[0028]

值得注意的是,第1A圖和第2A圖中的側視圖,係連接每一晶片疊層中的晶片,以及連接控制晶片190和晶片疊層的水平導線151和垂直導線161的簡化圖。繪示於第1A圖和第2A圖中的水平導線151或垂直導線161的每一個線段,可能包含多個不同長度或尺寸之導線段落,詳情請參照下述內容和第3圖。It is to be noted that the side views in FIGS. 1A and 2A are a simplified view of the wafers in each wafer stack, and the horizontal wires 151 and the vertical wires 161 connecting the control wafer 190 and the wafer stack. Each of the horizontal wires 151 or the vertical wires 161 shown in FIGS. 1A and 2A may include a plurality of wire segments of different lengths or sizes. For details, refer to the following and FIG.

【0029】[0029]

第3圖係繪示第1A圖之三維多晶片封裝100中的晶片疊層110b的更詳細結構側視圖。如第1A圖所述,晶片疊層110b包括配置於絕緣層133上方的第三階層晶片123b,配置於絕緣層132上方的第二階層晶片122b,以及配置於絕緣層131上方的第一階層晶片121b。晶片121b、122b和123b可通過配置於特定絕緣層中的水平導線151以及包括穿過絕緣層131、132、142和143之穿介電質通孔的垂直導線161彼此內連接。而這些穿介電質通孔可以具有不同尺寸(直徑)。3 is a side view showing a more detailed structure of the wafer stack 110b in the three-dimensional multi-chip package 100 of FIG. 1A. As shown in FIG. 1A, the wafer stack 110b includes a third level wafer 123b disposed over the insulating layer 133, a second level wafer 122b disposed over the insulating layer 132, and a first level wafer disposed over the insulating layer 131. 121b. The wafers 121b, 122b, and 123b may be connected to each other by horizontal wires 151 disposed in a specific insulating layer and vertical wires 161 including through dielectric vias through the insulating layers 131, 132, 142, and 143. These through dielectric vias can have different sizes (diameters).

【0030】[0030]

第4A圖至第4H圖係繪示,製作第3圖之晶片疊層110b的底部二階層的製程步驟結構剖面示意圖。此一製程步驟始於第4A圖所繪示的絕緣層133。使用鑲嵌製程(damascene process)在絕緣層133中形成水平導線151,如第4B圖至第4C圖所繪示。在第4B圖中,圖案化(例如,使用光阻)並且蝕刻絕緣層133,以形成多個溝渠301。4A to 4H are schematic cross-sectional views showing the structure of the bottom two-layer process of the wafer stack 110b of FIG. This process step begins with the insulating layer 133 depicted in FIG. 4A. A horizontal wire 151 is formed in the insulating layer 133 using a damascene process, as shown in FIGS. 4B to 4C. In FIG. 4B, the insulating layer 133 is patterned (eg, using a photoresist) and etched to form a plurality of trenches 301.

【0031】[0031]

接著,以導電材料,例如銅或鋁,填充溝渠301以形成水平導線151,如第4C圖所繪示。在水平導線151形成之後,可以使用平坦化方法,例如化學機械研磨(Chemical Mechanical Pluishing,CMP),來平坦化如第4C圖所繪示之結構的上表面。也可以使用其他方法來製作水平導線151。例如,首先在絕緣層133上方形成一毯覆金屬層(例如,一鋁金屬層)。然後,圖案化並且蝕刻(例如,使用光阻和電漿蝕刻)此金屬層,以形成水平導線151。Next, the trench 301 is filled with a conductive material such as copper or aluminum to form a horizontal wire 151 as shown in FIG. 4C. After the horizontal wires 151 are formed, a planarization method such as Chemical Mechanical Pluishing (CMP) may be used to planarize the upper surface of the structure as depicted in FIG. 4C. Other methods can also be used to make the horizontal wire 151. For example, a blanket metal layer (eg, an aluminum metal layer) is first formed over the insulating layer 133. This metal layer is then patterned and etched (eg, using photoresist and plasma etching) to form horizontal wires 151.

【0032】[0032]

可以將晶片123b(晶片疊層110b的第三階層晶片)覆晶貼附(flip mounted)於絕緣層133上,如第4D圖所繪示。晶片123b(例如,通過控制崩潰晶片接合或C4銲墊(Controlled Collapse Chip Connection or C4 bumps))與配置於絕緣層133中的至少一些水平導線電性連接。The wafer 123b (the third level wafer of the wafer stack 110b) may be flip-chip mounted on the insulating layer 133 as shown in FIG. 4D. The wafers 123b are electrically connected to at least some of the horizontal wires disposed in the insulating layer 133 (for example, by Controlled Collapse Chip Connection or C4 bumps).

【0033】[0033]

在另一個實施例中,晶片123b可以面朝上地貼附於絕緣層133上。例如,可以在絕緣層133中形成一個深度與晶片123b之厚度大約相同的溝渠,然後將晶片123b貼附於溝渠之中,讓晶片的連接墊(connection pad)朝上。再於晶片123b上方以及晶片123b週邊的週圍區域中形成電性連接至晶片連接墊的水平導線151。In another embodiment, the wafer 123b may be attached to the insulating layer 133 face up. For example, a trench having a depth approximately the same as the thickness of the wafer 123b may be formed in the insulating layer 133, and then the wafer 123b may be attached to the trench with the connection pad of the wafer facing upward. A horizontal wire 151 electrically connected to the wafer connection pad is formed in the peripheral region of the wafer 123b and in the periphery of the wafer 123b.

【0034】[0034]

在將晶片123b貼附至絕緣層133之前,可以先對其進行測試和薄化(減少厚度)步驟。Before the wafer 123b is attached to the insulating layer 133, it may be tested and thinned (thickness reduction).

【0035】[0035]

如第4E圖所繪示,在將第三階層晶片123b配置於絕緣層133上之後,形成絕緣層143以覆蓋晶片123b、絕緣層133以及形成在絕緣層133中的水平導線151。可以使用平坦化方法,例如化學機械研磨,來平坦化絕緣層143。接著,在絕緣層143上方形成絕緣層132。在一實施例中,絕緣層132和143可能是形成於晶片123b和絕緣層133上方的單一絕緣層。As shown in FIG. 4E, after the third-level wafer 123b is disposed on the insulating layer 133, the insulating layer 143 is formed to cover the wafer 123b, the insulating layer 133, and the horizontal wires 151 formed in the insulating layer 133. The insulating layer 143 may be planarized using a planarization method such as chemical mechanical polishing. Next, an insulating layer 132 is formed over the insulating layer 143. In an embodiment, the insulating layers 132 and 143 may be a single insulating layer formed over the wafer 123b and the insulating layer 133.

【0036】[0036]

使用如前所述在絕緣層133中形成水平導線151的鑲嵌製程(第4A圖至第4C圖),在絕緣層132中形成水平導線151。The horizontal wire 151 is formed in the insulating layer 132 by using a damascene process (Figs. 4A to 4C) in which the horizontal wires 151 are formed in the insulating layer 133 as described above.

【0037】[0037]

之後,圖案化(例如,使用光阻)並蝕刻第4E圖所繪示的結構,以形成溝渠302,如第4F圖所繪示。如第4G圖所繪示,接著以導電材料(例如,銅或鋁)填充溝渠302,以形成垂直導線161,藉以使絕緣層132中的一或多條水平導線151與絕緣層133中的一或多條水平導線151電性連接。值得注意的是,當垂直導線161穿過晶片123b週邊之週圍區域中的絕緣層132和143時,其係一種穿介電質通孔。可以使用平坦化方法,例如化學機械研磨,來平坦化絕緣層132。Thereafter, the structure depicted in FIG. 4E is patterned (eg, using photoresist) and etched to form trenches 302, as depicted in FIG. 4F. As depicted in FIG. 4G, the trench 302 is then filled with a conductive material (eg, copper or aluminum) to form a vertical wire 161, thereby causing one of the one or more horizontal wires 151 and the insulating layer 133 in the insulating layer 132. Or a plurality of horizontal wires 151 are electrically connected. It is to be noted that when the vertical wires 161 pass through the insulating layers 132 and 143 in the peripheral region around the periphery of the wafer 123b, they are through a dielectric via. The planarization method, such as chemical mechanical polishing, can be used to planarize the insulating layer 132.

【0038】[0038]

後續,在絕緣層132上貼附第二階層晶片122b,如第4H圖所繪示。晶片122b電性連接至位於絕緣層132中的一或多條水平導線151。因此,晶片122b可經由絕緣層132中的一或多條水平導線151、晶片122b和123b週邊之週圍區域中的一或多條垂直導線161(穿介電質通孔),以及絕緣層133中的一或多條水平導線151電性連接至晶片123b。Subsequently, the second level wafer 122b is attached to the insulating layer 132 as shown in FIG. 4H. The wafer 122b is electrically connected to one or more horizontal wires 151 located in the insulating layer 132. Therefore, the wafer 122b may pass through one or more horizontal wires 151 in the insulating layer 132, one or more vertical wires 161 (through dielectric vias) in the surrounding area around the wafers 122b and 123b, and the insulating layer 133 One or more horizontal wires 151 are electrically connected to the wafer 123b.

【0039】[0039]

雖然第4A圖至第4H圖僅繪示形成一部分晶片疊層110b的步驟,但整體的三維多晶片封裝100(或三維多晶片封裝100的重複結構)都可依照第4A圖至第4H圖及相關的步驟類似敘述來加以完成。例如,製程始於絕緣層133,水平導線可以形成在絕緣層133之中。以及,為了形成三維多晶片封裝100的重複結構,多個第三階層晶片(123a、123b…)可以被貼附於絕緣層133上各自的位置。製程繼續以形成絕緣層143和142、絕緣層132和131、位於這些絕緣層中的水平導線以及穿過這些絕緣層的垂直導線(穿介電質通孔)。以及,將第二階層晶片(122a、122b…)、第一階層晶片(121a、121b…)和控制晶片190貼附於各自的位置。在將控制晶片190的重複結構貼附在其各自的位置之後,形成絕緣層144以覆蓋控制晶片190。再將整個結構切割成三維多晶片封裝100的單獨結構。Although FIGS. 4A-4H only illustrate the steps of forming a portion of the wafer stack 110b, the overall three-dimensional multi-chip package 100 (or the repeating structure of the three-dimensional multi-chip package 100) can be in accordance with FIGS. 4A-4H. The relevant steps are similar to the description. For example, the process begins with an insulating layer 133, and a horizontal wire may be formed in the insulating layer 133. And, in order to form a repeating structure of the three-dimensional multi-chip package 100, a plurality of third-level wafers (123a, 123b...) may be attached to respective positions on the insulating layer 133. The process continues to form insulating layers 143 and 142, insulating layers 132 and 131, horizontal wires in these insulating layers, and vertical wires (through dielectric vias) through the insulating layers. And, the second-level wafers (122a, 122b, ...), the first-level wafers (121a, 121b, ...), and the control wafer 190 are attached to respective positions. After attaching the repeating structures of the control wafer 190 to their respective positions, an insulating layer 144 is formed to cover the control wafer 190. The entire structure is then cut into a separate structure of the three-dimensional multi-chip package 100.

【0040】[0040]

晶片疊層中兩晶片之間使用前述的水平導線和垂直導線的最大連接距離,是晶片尺寸、晶片疊層之週圍區域的寬度以及位於晶片疊層週邊之週圍區域中的垂直連接高度三者總和的函數。例如,繪示於第3圖之晶片疊中的層晶片之間的最大連接距離(D)可以是最大晶片尺寸2 × L1 、兩倍(2×)晶片疊層之週圍區域的寬度L2 以及頂層和底層絕緣層的垂直連接高度H三者的總和:D = 2 × L1 + 2 × L2 + H。D是訊號可以在疊層中兩晶片之間傳輸之最長傳導路徑的距離估計值。傳導路徑可以包括在頂層絕緣層中從晶片中心延伸至晶片邊緣的水平導線(L1 )、位於頂層絕緣層中的水平導線(L2 ),其延伸經過週圍區域的寬度從頂層絕緣層中的晶片邊緣至晶片疊層邊緣、從頂層絕緣層延伸至底層絕緣層的垂直導線(H)、位於底層絕緣層中的水平導線(L2 ),其延伸經過週圍區域的寬度從底層絕緣層中的晶片邊緣至晶片疊層邊緣以及在底層絕緣層中從晶片中心延伸至晶片邊緣的水平導線(L1 )。晶片尺寸(2 × L1 )可以介於約1毫米(mm)到20毫米之間。晶片厚度在薄化之後可介於10微米(µm)到25微米之間。晶片疊層之垂直連接的整體高度(H),可以介於約20微米(µm)到500微米之間,端視晶片疊層中的階層數而定。晶片疊層之週圍區域的寬度(L2 ),可以介於約數微米(µm)到數毫米之間,端視晶片尺寸以及週圍區域中垂直連接(穿介電質通孔)的數量而定(例如,在第3圖中,假如晶片122b小於晶片123b,則晶片122b的L2 會大於晶片123b的L2 )。穿介電質通孔的直徑約2微米,且與另一穿介電質通孔之間的間隔也約2微米。需注意的是,第3圖並未按照比例繪示。由於晶片尺寸可以遠大於垂直連接的高度和晶片疊層之週圍區域的寬度,晶片疊層中兩晶片之間最大連接距離很大比例是被堆疊的晶片尺寸所決定。The maximum connection distance between the two wafers in the wafer stack using the aforementioned horizontal and vertical wires is the sum of the wafer size, the width of the surrounding area of the wafer stack, and the vertical connection height in the surrounding area around the wafer stack. The function. For example, the maximum connection distance (D) between the layer wafers shown in the wafer stack of FIG. 3 may be the maximum wafer size 2 × L 1 , twice the width (2 ×) of the area around the wafer stack L 2 And the sum of the vertical connection heights H of the top and bottom insulation layers: D = 2 × L 1 + 2 × L 2 + H. D is an estimate of the distance of the longest conduction path that the signal can transmit between the two wafers in the stack. The conductive path may include a horizontal wire (L 1 ) extending from the center of the wafer to the edge of the wafer in the top insulating layer, and a horizontal wire (L 2 ) in the top insulating layer extending across the width of the surrounding region from the top insulating layer a vertical wire (H) extending from the edge of the wafer to the edge of the wafer stack, extending from the top insulating layer to the underlying insulating layer, and a horizontal wire (L 2 ) in the underlying insulating layer extending through the width of the surrounding region from the underlying insulating layer The edge of the wafer to the edge of the wafer stack and the horizontal wire (L 1 ) extending from the center of the wafer to the edge of the wafer in the underlying insulating layer. The wafer size (2 x L 1 ) can be between about 1 mm (mm) and 20 mm. The thickness of the wafer may be between 10 micrometers (μm) and 25 micrometers after thinning. The overall height (H) of the vertical connection of the wafer stack can range from about 20 micrometers (μm) to about 500 micrometers, depending on the number of layers in the wafer stack. The width (L 2 ) of the surrounding area of the wafer stack may range from about a few micrometers (μm) to several millimeters depending on the size of the wafer and the number of vertical connections (through dielectric vias) in the surrounding area ( For example, in FIG. 3, if the wafer is less than the wafer 122b 123b, 122b of the wafer may be greater than L 2 L 2 of the wafer 123b). The through dielectric vias have a diameter of about 2 microns and the spacing between the other through dielectric vias is also about 2 microns. It should be noted that Figure 3 is not drawn to scale. Since the wafer size can be much larger than the height of the vertical connection and the width of the surrounding area of the wafer stack, the maximum connection distance between the two wafers in the wafer stack is determined by the size of the stacked wafer.

【0041】[0041]

比起兩晶片之間較長的連接距離,晶片之間較短連接會有較短的訊號傳輸時間和較小的電阻及寄生電容。較短的訊號傳輸時間和較小的電阻及寄生電容可以賦予較短連接具有較高的連接速度和頻寬。如前所述,晶片疊層中兩晶片之間最大連接距離很大比例是被堆疊的晶片尺寸所決定。因此,晶片疊層的內連接速度和頻寬可藉由縮小晶片疊層中晶片的尺寸來改善。更具體的,三維多晶片封裝中堆疊晶片的尺寸,可藉由讓封裝中具有多個晶片疊層,且每一晶片疊層具有較小尺寸的晶片,來加以縮小。多晶片疊層可以形成並與一控制晶片內連接,如前所述之三維多晶片封裝100所揭示。例如,包含多個晶片疊層和一控制晶片的三維多晶片封裝可能包括4到400個晶片疊層(例如,晶片疊層的2乘2陣列,至晶片疊層的20乘20陣列)。封裝中的每一晶片可以具有介於約1毫米至100毫米的寬度尺寸、長度尺寸或寬度和長度的尺寸。最佳的晶片疊層數量與最佳的晶片尺寸,可以按照晶片疊層中連接晶片的水平和垂直導線的設計規則來決定。最佳的晶片疊層數量與最佳的晶片尺寸,也可以按照晶片疊層中連接晶片的複雜程度來決定。The shorter connection between the wafers has a shorter signal transmission time and less resistance and parasitic capacitance than the longer connection distance between the two wafers. Shorter signal transmission times and smaller resistors and parasitic capacitances give higher connection speeds and bandwidths for shorter connections. As previously mentioned, a large proportion of the maximum connection distance between two wafers in a wafer stack is determined by the size of the stacked wafer. Thus, the internal connection speed and bandwidth of the wafer stack can be improved by reducing the size of the wafer in the wafer stack. More specifically, the size of stacked wafers in a three-dimensional multi-chip package can be reduced by having a plurality of wafer stacks in the package and each wafer stack having a smaller size wafer. The multi-wafer stack can be formed and connected to a control wafer as disclosed in the three-dimensional multi-chip package 100 as previously described. For example, a three-dimensional multi-chip package comprising a plurality of wafer stacks and a control wafer may include from 4 to 400 wafer stacks (eg, a 2 by 2 array of wafer stacks to a 20 by 20 array of wafer stacks). Each wafer in the package can have a width dimension, a length dimension, or a width and length dimension of between about 1 mm and 100 mm. The optimal number of wafer stacks and the optimum wafer size can be determined by the design rules for the horizontal and vertical wires connecting the wafers in the wafer stack. The optimal number of wafer stacks and the optimum wafer size can also be determined by the complexity of the wafers in the wafer stack.

【0042】[0042]

例如,繪示於第5圖中的三層式單一晶片疊層400,包括一個位於第一階層中具有16個處理器核心的晶片、一個位於第二階層的16Mb DRAM晶片以及一個位於第三階層的16Mb NAND晶片。與晶片疊層400一樣的功能可以使用16個相同的晶片疊層來達成,其中每一個晶片疊層包括一個位於第一階層中具有一個處理器核心的晶片、一個位於第二階層的1Mb DRAM晶片以及一個位於第三階層的1Mb NAND晶片。這16個較小晶片疊層的重複結構(instances)和一個控制晶片可以形成單一的三維多晶片封裝,例如繪示於第1A圖和第1B圖中的三維多晶片封裝100。For example, the three-layer single wafer stack 400 illustrated in FIG. 5 includes a wafer having 16 processor cores in a first level, a 16Mb DRAM wafer in a second level, and a third level. 16Mb NAND chip. The same function as wafer stack 400 can be achieved using 16 identical wafer stacks, each of which includes a wafer with one processor core in the first level and a 1Mb DRAM wafer in the second level. And a 1Mb NAND chip in the third level. The repeating of the 16 smaller wafer stacks and a control wafer can form a single three-dimensional multi-chip package, such as the three-dimensional multi-chip package 100 illustrated in FIGS. 1A and 1B.

【0043】[0043]

第5圖係繪示單一晶片疊層400的上視圖,其具有一個位於第一階層中且具有16個處理器核心的晶片、一個位於第二階層的16Mb DRAM晶片以及一個位於第三階層的16Mb NAND晶片。第6圖係繪示三維多晶片封裝100的上視圖,其具有16較小晶片疊層的重複結構,每個包含一個位於第一階層中的處理器核心、一個位於第二階層的1Mb DRAM晶片以及一個位於第三階層的1Mb NAND晶片之較小晶片疊層重複結構。為了簡化起見,三維多晶片封裝100的控制晶片並未繪示於第6圖中。值得注意的是,當單一晶片疊層以16個較小(且相同)的晶片疊層來加以實現時,最大晶片尺寸2 × L1 一般可降至 = 。同時,由於整體週長(total perimeter length)增加 =2.5,位於每一晶片疊層邊緣的垂直連接(穿介電質通孔)的數量可以減少(以一預先給定之垂直連接的總數來計算之)。因此,晶片疊層之週圍區域的寬度L2 也可以縮小,如第5圖和第6圖的局部放大411和412所繪示。最大晶片尺寸2 × L1 和晶片疊層之週圍區域的寬度L2 的縮小,會縮小三維多晶片封裝100之較小晶片疊層中晶片間的最大連接距離。與單一晶片封裝400中晶片之間的連接速率和頻寬相比,縮小三維多晶片封裝100中晶片之間的最大連接距離,會增進三維多晶片封裝100之較小晶片疊層中的晶片間的連接速率和頻寬。Figure 5 is a top view of a single wafer stack 400 having a wafer in the first level with 16 processor cores, a 16Mb DRAM wafer in the second level, and a 16Mb in the third level. NAND wafer. Figure 6 is a top view of a three-dimensional multi-chip package 100 having a repeating structure of 16 smaller wafer stacks, each comprising a processor core in a first level, and a 1Mb DRAM chip in a second level. And a smaller wafer stack repeat structure of a 1Mb NAND wafer on the third level. For the sake of simplicity, the control wafer of the three-dimensional multi-chip package 100 is not shown in FIG. It is worth noting that when a single wafer stack is implemented with 16 smaller (and identical) wafer stacks, the maximum wafer size of 2 × L 1 can generally be reduced. = . At the same time, due to the increase in the total perimeter length (total perimeter length) = 2.5, the number of vertical connections (through dielectric vias) at the edge of each wafer stack can be reduced (calculated by the total number of pre-defined vertical connections). Therefore, the width L 2 of the surrounding area of the wafer stack can also be reduced, as shown by partial enlargements 411 and 412 of Figs. 5 and 6. The reduction in the maximum wafer size 2 x L 1 and the width L 2 of the surrounding area of the wafer stack reduces the maximum connection distance between the wafers in the smaller wafer stack of the three-dimensional multi-chip package 100. Reducing the maximum connection distance between the wafers in the three-dimensional multi-chip package 100 compared to the connection rate and bandwidth between the wafers in the single wafer package 400 enhances the inter-wafer spacing in the smaller wafer stack of the three-dimensional multi-chip package 100. Connection rate and bandwidth.

【0044】[0044]

除了具有較高連接速率和頻寬之外,三維多晶片封裝100,其具有16個較小晶片疊層重複結構,每個包含一個位於第一階層中的處理器核心、一個位於第二階層的1Mb DRAM晶片以及一個位於第三階層的1Mb NAND晶片,與包括一個位於第一階層中具有16個處理器核心的晶片、一個位於第二階層的16Mb DRAM晶片以及一個位於第三階層的16Mb NAND晶片的單一晶片疊層400相比,還有其他相異之處。例如,每一個三維多晶片封裝100中的較小晶片可以具有比單一晶片疊層400中的晶片還要高的製程良率。In addition to having a higher connection rate and bandwidth, the three-dimensional multi-chip package 100 has 16 smaller wafer stack repeating structures, each containing a processor core located in a first level and a second level 1Mb DRAM chip and a 1Mb NAND chip in the third level, including a chip with 16 processor cores in the first level, a 16Mb DRAM chip in the second level, and a 16Mb NAND chip in the third level Compared to the single wafer stack 400, there are other differences. For example, a smaller wafer in each three-dimensional multi-chip package 100 can have a higher process yield than a wafer in a single wafer stack 400.

【0045】[0045]

第7圖係繪示前述單一晶片疊層400的上視圖。第8圖也繪示了前述具有16個小晶片疊層重複結構之三維多晶片封裝100的上視圖。第7圖和第8圖也繪示了位在晶片之相對角落的對準標記,用來將晶片貼附於絕緣層上。由於對準標記之間具有較短的距離,三維多晶片封裝100之較小晶片疊層中的較小晶片,可以比單一晶片疊層400中的較大晶片擁有更大的合理對位失準(rotational misalignment)。由於對位失準之晶片的偏移距離(displacement distance)是晶片尺寸和晶片合理對位失準之角度的乘積(product)。較大的合理對位失準對於較小晶片疊層中的晶片而言,可能因為他的較小晶片尺寸而不會在對位失準時產生較大的偏移距離,如第9圖和第10圖所繪示。然而,由於三維多晶片封裝100中16個晶片疊層的每一個晶片可能在不同方向有不同的對準偏移。為了貼附較大量的晶片疊層,可能需要增加對準容差(alignment tolerance)。Figure 7 is a top plan view of the aforementioned single wafer stack 400. Figure 8 also depicts a top view of the aforementioned three-dimensional multi-chip package 100 having 16 small wafer stacked repeat structures. Figures 7 and 8 also illustrate alignment marks located at opposite corners of the wafer for attaching the wafer to the insulating layer. Because of the shorter distance between the alignment marks, the smaller of the smaller wafer stacks of the three-dimensional multi-chip package 100 can have a greater reasonable misalignment than the larger ones of the single wafer stack 400. (rotational misalignment). The displacement distance of the wafer due to misalignment is the product of the wafer size and the angle at which the wafer is reasonably misaligned. Larger reasonable misalignment for wafers in smaller wafer stacks may not result in larger offset distances due to his smaller wafer size, such as Figure 9 and Figure 10 shows. However, since each of the 16 wafer stacks in the three-dimensional multi-chip package 100 may have different alignment offsets in different directions. In order to attach a larger amount of wafer stack, it may be necessary to increase alignment tolerance.

【0046】[0046]

與單一晶片疊層400更便宜的貼附方式相比,三維多晶片封裝100可能需要更高的貼附成本(且花費更長的時間來進行貼附)。然而,由於較大晶片和其所要貼附的表面之間曲率不匹配(mismatch in curvature) ,要將單一晶片疊層400中的大晶片貼附到一平坦表面可能會有困難。故而,使用較大晶片之單一晶片疊層400的製程良率可能因此降低。The three-dimensional multi-chip package 100 may require higher attachment costs (and take longer to attach) than a single wafer stack 400 that is less expensive to attach. However, it may be difficult to attach a large wafer in a single wafer stack 400 to a flat surface due to mismatch in curvature between the larger wafer and the surface to which it is to be attached. Thus, the process yield of a single wafer stack 400 using larger wafers may therefore be reduced.

【0047】[0047]

與單一晶片疊層相比,具有多晶片疊層和控制晶片的封裝,例如如第1A圖和第1B圖所繪示的三維多晶片封裝100,可以提供額外的備用修復資源和動態控制能力(dynamic control capability)。例如,晶片疊層(110a、110b...)可以彼此獨立地進行操作。控制晶片(例如實施於控制晶片190中的電路和邏輯)可以根據工作負荷(work loading)和熱工狀態(thermal condition)(例如,藉由傳送控制訊號至特定晶片疊層來)動態地調整晶片疊層的操作頻率。A package having a multi-wafer stack and a control wafer, such as the three-dimensional multi-chip package 100 as illustrated in FIGS. 1A and 1B, can provide additional backup repair resources and dynamic control capabilities as compared to a single wafer stack ( Dynamic control capability). For example, the wafer stacks (110a, 110b...) can be operated independently of each other. Control wafers (eg, circuits and logic implemented in control wafer 190) can dynamically adjust the wafer based on work loading and thermal conditions (eg, by transferring control signals to a particular wafer stack) The operating frequency of the stack.

【0048】[0048]

第13圖係繪示控制晶片190的範例方塊圖。控制晶片190包括匯流排介面單元1301,以傳送或接收來自多晶片封裝中之晶片疊層的訊號。控制晶片190中的頻率控制單元1303可以(藉由匯流排介面單元)傳送頻率控制訊號到多晶片封裝中的特定晶片疊層,以調整特定晶片疊層的操作頻率。頻率控制單元1303也可以維持位於晶片疊層狀態寄存器(chip stack status registers)1304中的特定晶片疊層(或多晶片封裝中的其他晶片疊層)的電流操作頻率。FIG. 13 is a block diagram showing an example of a control wafer 190. The control wafer 190 includes a busbar interface unit 1301 for transmitting or receiving signals from the wafer stack in the multi-chip package. The frequency control unit 1303 in the control wafer 190 can (by the bus interface unit) transmit the frequency control signals to a particular wafer stack in the multi-chip package to adjust the operating frequency of the particular wafer stack. The frequency control unit 1303 can also maintain the current operating frequency of a particular wafer stack (or other wafer stack in a multi-chip package) located in the chip stack status registers 1304.

【0049】[0049]

控制晶片190也可以活化或去活化(activate or deactivate)特定晶片疊層或晶片疊層中的特定晶片。例如,控制晶片190中的備用修復資源或修復單元1302可以(藉由匯流排介面單元10301)傳送活化/不活化控制訊號到特定晶片疊層或特定晶片。備用修復資源或修復單元1302可以維持和更新晶片疊層狀態寄存器1304中有關多晶片封裝之特定晶片疊層的活動狀態。控制晶片190可以將特定晶片疊層去活化,例如當此特定晶片疊層已不再發揮其功能時。一晶片疊層可能因為有缺陷的穿介電質通孔(垂直導線)、有缺陷的水平導線或晶片疊層中有缺陷的晶片而失去其功能。第11圖繪示單一晶片疊層400中有缺陷的穿介電質通孔和有缺陷的晶片。如第11圖所繪示,有缺陷的單一穿介電質通孔和有缺陷的單一晶片可能會使單一晶片疊層400整個失效。然而如第12圖所繪示,藉由三維多晶片封裝100的多晶片疊層,控制晶片可以將包含有缺陷之穿介電質通孔或有缺陷之晶片的晶片疊層(例如,晶片疊層"a")永久地去活化,同時讓整個多晶片封裝100和其他晶片疊層(例如,晶片疊層"b"、"c"..."p")仍可發揮其功能。Control wafer 190 can also activate or deactivate specific wafers in a particular wafer stack or wafer stack. For example, the alternate repair resource or repair unit 1302 in the control wafer 190 can (by the bus interface unit 10301) transfer the activation/inactivation control signal to a particular wafer stack or a particular wafer. The alternate repair resource or repair unit 1302 can maintain and update the active state of the particular wafer stack associated with the multi-chip package in the wafer stack status register 1304. Control wafer 190 can deactivate a particular wafer stack, such as when the particular wafer stack is no longer functioning. A wafer stack may lose its function due to defective through dielectric vias (vertical leads), defective horizontal leads, or defective wafers in the wafer stack. Figure 11 illustrates a defective through dielectric via and a defective wafer in a single wafer stack 400. As depicted in FIG. 11, a defective single through dielectric via and a defective single wafer may defeat the entire single wafer stack 400. However, as illustrated in FIG. 12, by the multi-wafer stack of the three-dimensional multi-chip package 100, the control wafer can be a wafer stack (eg, a wafer stack) containing defective through-silicon vias or defective wafers. Layer "a") is permanently deactivated while still allowing the entire multi-chip package 100 and other wafer stacks (e.g., wafer stacks "b", "c" ... "p") to perform their functions.

【0050】[0050]

藉由多晶片疊層,三維多晶片封裝100可以提供內建的備用修復資源或自修複(self-repair)能力。例如,具有16個處理器核心(16個晶片疊層的每一者具有一個處理器核心) 的三維多晶片封裝100,藉由14個處理器核心即可發揮其功能。控制晶片190可以建構來將工作負荷動態地分配給16個包含有處理器核心之晶片疊層中的14個,空出兩個多餘或備用的晶片疊層。例如,備用修復資源或修復單元1302可以藉由將工作負荷直接指向晶片疊層"a"至"n",並且對應地更新晶片疊層狀態寄存器1304,來將工作負荷指派給晶片疊層"a"至"n"(如第12圖所繪示)。假如其中一或二個處理器核心(一或二個晶片疊層)失效,控制晶片190會以備用晶片疊層(如第12圖所繪示的晶片疊層"o"和"p")來加以置換。假如有失效的處理器核心(晶片疊層)存在,三維多晶片封裝100也可以將其效能「降階(downgrade)」。例如,假如三維多晶片封裝100只剩下10個有功能的處理器核心,三維多晶片封裝100仍可以10個有功能的處理器核心發揮其功能。With a multi-wafer stack, the three-dimensional multi-chip package 100 can provide built-in spare repair resources or self-repair capabilities. For example, a three-dimensional multi-chip package 100 having 16 processor cores (each of which has a processor core of 16 wafer stacks) can function by 14 processor cores. Control wafer 190 can be constructed to dynamically distribute the workload to 14 of the 16 wafer stacks containing the processor core, freeing up two redundant or spare wafer stacks. For example, the alternate repair resource or repair unit 1302 can assign a workload to the wafer stack "a" by directing the workload directly to the wafer stack "a" through "n" and correspondingly updating the wafer stack status register 1304. "To" n" (as shown in Figure 12). If one or two processor cores (one or two wafer stacks) fail, the control wafer 190 will be in a spare wafer stack (such as the wafer stacks "o" and "p" shown in Figure 12). Replace it. The three-dimensional multi-chip package 100 can also "downgrade" its performance if a failed processor core (wafer stack) is present. For example, if the three-dimensional multi-chip package 100 has only 10 functional processor cores left, the three-dimensional multi-chip package 100 can still function with ten functional processor cores.

【0051】[0051]

綜上所述,雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。In conclusion, the present invention has been disclosed in the above preferred embodiments, and is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

100‧‧‧三維立體多晶片封裝 100‧‧‧Three-dimensional multi-chip package

110a‧‧‧晶片疊層 110a‧‧‧ wafer stack

110b‧‧‧晶片疊層 110b‧‧‧ wafer stack

121a‧‧‧晶片 121a‧‧‧ wafer

121b‧‧‧晶片 121b‧‧‧ wafer

122a‧‧‧晶片 122a‧‧‧ wafer

122b‧‧‧晶片 122b‧‧‧ wafer

123a‧‧‧晶片 123a‧‧‧ wafer

123b‧‧‧晶片 123b‧‧‧ wafer

131‧‧‧絕緣層 131‧‧‧Insulation

132‧‧‧絕緣層 132‧‧‧Insulation

133‧‧‧絕緣層 133‧‧‧Insulation

134‧‧‧絕緣層 134‧‧‧Insulation

141‧‧‧絕緣層 141‧‧‧Insulation

142‧‧‧絕緣層 142‧‧‧Insulation

143‧‧‧絕緣層 143‧‧‧Insulation

144‧‧‧絕緣層 144‧‧‧Insulation

151‧‧‧水平導線 151‧‧‧ horizontal wire

161‧‧‧垂直導線 161‧‧‧Vertical wire

190‧‧‧控制晶片 190‧‧‧Control chip

Claims (20)

【第1項】[Item 1] 一種裝置,包括:
一多晶片封裝,包括多個晶片配置於複數個晶片層中,該些晶片疊層各包括:
二或更多的該些晶片,該些晶片各位於該晶片疊層中至少另一個晶片的一垂直投影(vertical projection)之中,且該些晶片各配置於該些晶片層之一者中;
一或更多的水平導線,延伸至該些晶片疊層週邊的數個週圍區域中,位於一特定晶片層的該些晶片係電性連結至配置於該特定晶片層中的該些水平導線;以及
一或更多的垂直導線,位於該些週圍區域,且電性連接至位於該些晶片層至少二者之中的一或更多的該些水平導線;以及
一控制器,電性連接至位於該複數個晶片疊層中的該些晶片之至少一者。
A device comprising:
A multi-chip package comprising a plurality of wafers disposed in a plurality of wafer layers, each of the wafer stacks comprising:
Two or more of the wafers, each of the wafers being located in a vertical projection of at least one other of the wafer stacks, and the wafers are each disposed in one of the wafer layers;
One or more horizontal wires extending into a plurality of peripheral regions of the periphery of the plurality of wafer layers, the plurality of wafers located in a specific wafer layer being electrically connected to the horizontal wires disposed in the specific wafer layer; And one or more vertical wires located in the surrounding area and electrically connected to the one or more of the horizontal wires located in at least two of the plurality of wafer layers; and a controller electrically connected to At least one of the plurality of wafers in the plurality of wafer stacks.
【第2項】[Item 2] 如申請專利範圍第1項所述之裝置,其中該控制器包括一晶片配置於一頂層晶片層中的該些晶片之上。The device of claim 1, wherein the controller comprises a wafer disposed on the wafers in a top wafer layer. 【第3項】[Item 3] 如申請專利範圍第1項所述之裝置,其中該控制器包括一晶片配置於一頂層晶片層之中。The device of claim 1, wherein the controller comprises a wafer disposed in a top wafer layer. 【第4項】[Item 4] 如申請專利範圍第1項所述之裝置,其中該些晶片疊層各包括一邏輯晶片和一記憶體晶片。The device of claim 1, wherein the plurality of wafer stacks each comprise a logic wafer and a memory wafer. 【第5項】[Item 5] 如申請專利範圍第1項所述之裝置,其中該些晶片疊層各包括一邏輯晶片、一揮發記憶體晶片和一非揮發記憶體晶片。The device of claim 1, wherein the wafer stacks each comprise a logic wafer, a volatile memory wafer, and a non-volatile memory wafer. 【第6項】[Item 6] 如申請專利範圍第1項所述之裝置,其中該控制器包括數個電路,建構來去活化該些晶片疊層之一或多者。The device of claim 1, wherein the controller comprises a plurality of circuits configured to deactivate one or more of the plurality of wafer stacks. 【第7項】[Item 7] 如申請專利範圍第1項所述之裝置,其中該控制器包括數個電路,建構來調整該些晶片疊層之一或多者的一操作頻率。The device of claim 1, wherein the controller comprises a plurality of circuits configured to adjust an operating frequency of one or more of the plurality of wafer stacks. 【第8項】[Item 8] 如申請專利範圍第1項所述之裝置,其中該些晶片疊層各個中的該些晶片,係覆晶貼附(flip mounted)於其所分別對應的該些晶片層中。The device of claim 1, wherein the wafers in each of the wafer stacks are flip-chip mounted in the respective wafer layers corresponding thereto. 【第9項】[Item 9] 如申請專利範圍第1項所述之裝置,其中該些晶片疊層的數量係介於4到400間。The device of claim 1, wherein the number of the wafer stacks is between 4 and 400. 【第10項】[Item 10] 如申請專利範圍第1項所述之裝置,其中該些複數個晶片疊層中的晶片之寬度或長度之至少一者的尺寸係介於1毫米(millimeter)至10毫米之間。The device of claim 1, wherein at least one of a width or a length of the plurality of wafer stacks is between 1 millimeter and 10 millimeters. 【第11項】[Item 11] 一種製備三維多晶片封裝(three-dimensional multichip package)的方法,該方法包括:
形成複數個晶片疊層,該些晶片疊層包括多個晶片配置於複數個晶片層中,該些晶片疊層各個的形成包括:
提供二或更多的該些晶片,該些晶片各位於該晶片疊層中至少另一個晶片的一垂直投影之中,且該些晶片各配置於該些晶片層之個別的一個中;
形成一或更多的水平導線,延伸至該晶片疊層週邊的數個週圍區域中,位於一特定晶片層的該些晶片係電性連結至配置於該特定晶片層中的該些水平導線;以及
形成一或更多的垂直導線於該些週圍區域,且電性連接至位於該些晶片層至少二者之中的一或更多該些水平導線;以及
提供一控制器,該控制器電性連接至位於該複數個晶片疊層中的該些晶片之至少一者。
A method of fabricating a three-dimensional multichip package, the method comprising:
Forming a plurality of wafer stacks, the plurality of wafers comprising a plurality of wafers disposed in a plurality of wafer layers, each of the wafer stacks comprising:
Providing two or more of the wafers, each of the wafers being located in a vertical projection of at least one other of the wafer stacks, and the wafers are each disposed in an individual one of the wafer layers;
Forming one or more horizontal wires extending into a plurality of surrounding regions of the periphery of the wafer stack, the wafers located in a specific wafer layer being electrically connected to the horizontal wires disposed in the specific wafer layer; And forming one or more vertical wires in the surrounding regions, and electrically connected to one or more of the horizontal wires located in at least two of the plurality of wafer layers; and providing a controller, the controller Optionally connected to at least one of the plurality of wafers located in the plurality of wafer stacks.
【第12項】[Item 12] 如申請專利範圍第11項所述之方法,其中該控制器包括一晶片配置於一頂層晶片層的該些晶片之上。The method of claim 11, wherein the controller comprises a wafer disposed on the wafers of a top wafer layer. 【第13項】[Item 13] 如申請專利範圍第11項所述之方法,其中該控制器包括一晶片配置於一頂層晶片層之中。The method of claim 11, wherein the controller comprises a wafer disposed in a top wafer layer. 【第14項】[Item 14] 如申請專利範圍第11項所述之方法,其中該些晶片疊層各包括一邏輯晶片和一記憶體晶片。The method of claim 11, wherein the plurality of wafer stacks each comprise a logic wafer and a memory wafer. 【第15項】[Item 15] 如申請專利範圍第11項所述之方法,其中該些晶片疊層各包括一邏輯晶片、一揮發記憶體晶片和一非揮發記憶體晶片。The method of claim 11, wherein the wafer stacks each comprise a logic wafer, a volatile memory wafer, and a non-volatile memory wafer. 【第16項】[Item 16] 如申請專利範圍第11項所述之方法,其中該控制器包括一電路,建構來去活化該些晶片疊層之一或多者。The method of claim 11, wherein the controller includes a circuit configured to deactivate one or more of the plurality of wafer stacks. 【第17項】[Item 17] 如申請專利範圍第11項所述之方法,其中該控制器包括一電路,建構來調整該些晶片疊層之一或多者的一操作頻率。The method of claim 11, wherein the controller includes a circuit configured to adjust an operating frequency of one or more of the plurality of wafer stacks. 【第18項】[Item 18] 如申請專利範圍第11項所述之方法,包括覆晶貼附每一該些晶片疊層中的該些晶片。The method of claim 11, comprising the flip chip attaching the wafers in each of the plurality of wafer stacks. 【第19項】[Item 19] 如申請專利範圍第11項所述之方法,其中該些晶片疊層的數量係介於4到400間。The method of claim 11, wherein the number of the wafer stacks is between 4 and 400. 【第20項】[Item 20] 一種製備三維多晶片封裝的方法,該方法包括:
於一第一介電層中,形成由多個導體所構成的一第一圖案化層;
於該第一介電層中貼附複數個第一晶片;
於位在該第一介電層上方的一第二介電層上,形成由多個導體所構成的一第二圖案化層;
於複數個該第一晶片週邊的數個週圍區域中形成穿介電質通孔(through-dielectric vias)以連接一或多個該第二圖案化層中的該些導體至一或多個該第一圖案化層中的該些導體;以及
於該第二介電層中貼附複數個第二晶片。

A method of fabricating a three-dimensional multi-chip package, the method comprising:
Forming a first patterned layer composed of a plurality of conductors in a first dielectric layer;
Attaching a plurality of first wafers to the first dielectric layer;
Forming a second patterned layer formed of a plurality of conductors on a second dielectric layer above the first dielectric layer;
Forming through-dielectric vias in a plurality of peripheral regions around the plurality of first wafers to connect the ones of the one or more of the second patterned layers to one or more The plurality of conductors in the first patterned layer; and a plurality of second wafers attached to the second dielectric layer.

TW103118937A 2014-05-30 2014-05-30 Three-dimensional multiple chip packages including multiple chip stacks TWI569403B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103118937A TWI569403B (en) 2014-05-30 2014-05-30 Three-dimensional multiple chip packages including multiple chip stacks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103118937A TWI569403B (en) 2014-05-30 2014-05-30 Three-dimensional multiple chip packages including multiple chip stacks

Publications (2)

Publication Number Publication Date
TW201545308A true TW201545308A (en) 2015-12-01
TWI569403B TWI569403B (en) 2017-02-01

Family

ID=55407194

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103118937A TWI569403B (en) 2014-05-30 2014-05-30 Three-dimensional multiple chip packages including multiple chip stacks

Country Status (1)

Country Link
TW (1) TWI569403B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101554761B1 (en) * 2008-03-12 2015-09-21 인벤사스 코포레이션 Support mounted electrically interconnected die assembly
KR20110137565A (en) * 2010-06-17 2011-12-23 삼성전자주식회사 Semiconductor chip package and manufacturing method of semiconductor chip package
US8841765B2 (en) * 2011-04-22 2014-09-23 Tessera, Inc. Multi-chip module with stacked face-down connected dies

Also Published As

Publication number Publication date
TWI569403B (en) 2017-02-01

Similar Documents

Publication Publication Date Title
US11211333B2 (en) Through silicon via optimization for three-dimensional integrated circuits
JP4979320B2 (en) Semiconductor wafer, manufacturing method thereof, and manufacturing method of semiconductor device
US9147672B1 (en) Three-dimensional multiple chip packages including multiple chip stacks
KR102534732B1 (en) semiconductor package
US20090180257A1 (en) Stacked semiconductor apparatus, system and method of fabrication
US9190345B1 (en) Semiconductor devices and methods of manufacture thereof
KR20140083657A (en) Circuit board having embedded interposer, electronic module using the device, and method for manufacturing the same
US9312208B2 (en) Through silicon via structure
TW202038414A (en) semiconductor device package and device for semiconductor packaging
KR101883379B1 (en) Semiconductor device
US20130082382A1 (en) Semiconductor device
US20230369157A1 (en) Semiconductor die, manufacturing method thereof, and semiconductor package
US20240105619A1 (en) Semiconductor device and method of manufacture
US10204863B2 (en) Semiconductor package structure
CN109755215B (en) Semiconductor package and method of manufacturing the same
CN105280615B (en) A kind of multichip packaging structure and the method for preparing this multi-chip package
TWI569403B (en) Three-dimensional multiple chip packages including multiple chip stacks
CN116075927A (en) Front end of line interconnect structure and associated systems and methods
TWI794729B (en) Semiconductor device and structure and method for manufacturing the same
US20220359483A1 (en) Semiconductor packages and methods for forming the same
CN108109990B (en) Through silicon via adapter plate for system-in-package
US11469295B1 (en) Decoupling capacitor integrated in system on chip (SOC) device
US20220130781A1 (en) Circuit substrate structure and manufacturing method thereof
TW202303996A (en) Capacitor structure, semiconductor structure, and method for manufacturing thereof
TW201603228A (en) Integrated circuit device and its fabrication method