TW201539810A - Thermoelectric thin film structure - Google Patents

Thermoelectric thin film structure Download PDF

Info

Publication number
TW201539810A
TW201539810A TW103112883A TW103112883A TW201539810A TW 201539810 A TW201539810 A TW 201539810A TW 103112883 A TW103112883 A TW 103112883A TW 103112883 A TW103112883 A TW 103112883A TW 201539810 A TW201539810 A TW 201539810A
Authority
TW
Taiwan
Prior art keywords
thermoelectric
thermoelectric conversion
conversion material
film structure
thin film
Prior art date
Application number
TW103112883A
Other languages
Chinese (zh)
Other versions
TWI575786B (en
Inventor
Ming-Chih Lin
Jie-Shen Tsai
Chien-Neng Liao
Chen-Chi Wu
Original Assignee
Taiwan Textile Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Textile Res Inst filed Critical Taiwan Textile Res Inst
Priority to TW103112883A priority Critical patent/TWI575786B/en
Priority to CN201410570401.0A priority patent/CN104979463B/en
Publication of TW201539810A publication Critical patent/TW201539810A/en
Application granted granted Critical
Publication of TWI575786B publication Critical patent/TWI575786B/en

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

A thermoelectric thin film structure includes a thermoelectric transfer material region, which includes a thermoelectric transfer material, and a metal diffusion material region including a metal diffused into the thermoelectric transfer material region at one side of the thermoelectric transfer material. The thermoelectric thin film structure has a transverse Seebeck coefficient.

Description

一種熱電薄膜結構 Thermoelectric film structure

本發明是有關於一種熱電薄膜結構,且特別是一種關於具有金屬擴散材料區之熱電薄膜結構。 This invention relates to a thermoelectric film structure, and more particularly to a thermoelectric film structure having a region of metal diffusion material.

熱電材料為可將熱能與電能互相轉換的材料,其具有席貝克效應(Seebeck effect)及帕耳帖效應(Peltier effect)。席貝克效應是藉由熱電材料之溫度差轉換成電位差,可應用於熱電發電;而帕耳帖效應則是藉由熱電材料之電位差產生溫度差,可應用於熱電致冷。 The thermoelectric material is a material that can convert thermal energy and electrical energy to each other, and has a Seebeck effect and a Peltier effect. The Sibeck effect is converted into a potential difference by the temperature difference of the thermoelectric material, and can be applied to thermoelectric generation; and the Peltier effect is caused by the potential difference of the thermoelectric material, and can be applied to thermoelectric refrigeration.

隨著熱電技術的演進,熱電材料的研究目標由三維的塊材結構轉變至一維的薄膜或奈米線結構。一維結構如熱電薄膜與三維塊材結構相較下具有可撓性,可減少材料的使用,以及具有較大的接觸面積。然而,因為結構的改變,使得能在熱電薄膜上所能施加或獲得的溫差或電位差變小。因此,如何使一維結構的熱電材料,在維持相同溫度差時能獲得更大之電位差,便為現今研究發展重點。 With the evolution of thermoelectric technology, the research goal of thermoelectric materials has changed from three-dimensional block structure to one-dimensional film or nanowire structure. One-dimensional structures such as thermoelectric thin films have flexibility compared to three-dimensional bulk structures, which can reduce the use of materials and have a large contact area. However, because of the change in structure, the temperature difference or potential difference that can be applied or obtained on the thermoelectric film becomes small. Therefore, how to make a one-dimensional thermoelectric material can obtain a larger potential difference while maintaining the same temperature difference is the focus of current research and development.

因此,本發明提供一種具有金屬擴散材料區之熱電薄膜結構,此熱電薄膜結構具有橫向席貝克係數(Transverse Seebeck coefficient),可提升熱電材料之熱電效應。並可應用於熱電轉換元件中。 Accordingly, the present invention provides a thermoelectric film structure having a region of a metal diffusion material having a Transverse Seebeck coefficient which enhances the thermoelectric effect of the thermoelectric material. It can be applied to thermoelectric conversion elements.

本發明之一態樣為一種熱電薄膜結構,其包括一熱電轉換材料區,熱電轉換材料區包括一熱電轉換材料,以及一金屬擴散材料區,金屬擴散材料區包括一金屬擴散分布於熱電轉換材料區中的熱電轉換材料之一側。 One aspect of the present invention is a thermoelectric thin film structure including a thermoelectric conversion material region including a thermoelectric conversion material and a metal diffusion material region, wherein the metal diffusion material region includes a metal diffusion distribution on the thermoelectric conversion material One side of the thermoelectric conversion material in the zone.

於本發明之一或多個實施方式中,熱電轉換材料包含N型熱電轉換材料或P型熱電轉換材料。 In one or more embodiments of the present invention, the thermoelectric conversion material comprises an N-type thermoelectric conversion material or a P-type thermoelectric conversion material.

於本發明之一或多個實施方式中,N型熱電轉換材料為碲化鉍(Bi2Te3)或鉍硒碲(Bi2SexTe3-x)材料,且x介於0至3之間。 In one or more embodiments of the present invention, the N-type thermoelectric conversion material is Bi 2 Te 3 or Bi 2 Se x Te 3-x material, and x is 0 to 3 between.

於本發明之一或多個實施方式中,上述之N型熱電轉換材料為Bi2Se0.5Te2.5In one or more embodiments of the present invention, the N-type thermoelectric conversion material is Bi 2 Se 0.5 Te 2.5 .

於本發明之一或多個實施方式中,P型熱電轉換材料為三碲化二銻(Sb2Te3)或鉍銻碲(BiySb2-yTe3)材料,且y介於0至2之間。 In one or more embodiments of the present invention, the P-type thermoelectric conversion material is a triterpene (Sb 2 Te 3 ) or bismuth (Bi y Sb 2-y Te 3 ) material, and y is between 0 Between 2 and 2.

於本發明之一或多個實施方式中,上述之P型熱電轉換材料為Bi0.5Sb1.5Te3In one or more embodiments of the present invention, the P-type thermoelectric conversion material is Bi 0.5 Sb 1.5 Te 3 .

於本發明之一或多個實施方式中,熱電轉換材料包含碲化鉛(PbTe)、銻化鋅(ZnSb)、鍺化矽(SiGe)、銀銻碲(AgSbTe2)材料、碲化鍺(GeTe)或其組合。 In one or more embodiments of the present invention, the thermoelectric conversion material comprises lead telluride (PbTe), zinc telluride (ZnSb), germanium telluride (SiGe), silver tellurium (AgSbTe 2 ) material, germanium telluride ( GeTe) or a combination thereof.

於本發明之一或多個實施方式中,金屬為金、銅、 銀、白金或其組合。 In one or more embodiments of the present invention, the metal is gold, copper, Silver, platinum or a combination thereof.

於本發明之一或多個實施方式中,上述之金屬擴散分布於熱電轉換材料區中的熱電轉換材料之上下側或左右側,金屬之擴散分布為均勻分布或一濃度梯度分布。 In one or more embodiments of the present invention, the metal diffusion is distributed on the lower side or the left and right sides of the thermoelectric conversion material in the thermoelectric conversion material region, and the diffusion distribution of the metal is a uniform distribution or a concentration gradient distribution.

於本發明之一或多個實施方式中,上述之具有一濃度梯度分布係由金屬擴散材料區之外側至靠近熱電轉換材料區之中心側遞減。 In one or more embodiments of the present invention, the concentration gradient distribution described above is decreased from the outer side of the metal diffusion material region to the center side of the thermoelectric conversion material region.

於本發明之一或多個實施方式中,熱電薄膜結構更包括一基板,熱電轉換材料區位於上端或下端基板,而金屬擴散材料區位於熱電轉換材料之上下側或左右側。 In one or more embodiments of the present invention, the thermoelectric thin film structure further includes a substrate, the thermoelectric conversion material region is located at the upper or lower end substrate, and the metal diffusion material region is located on the lower side or the left and right sides of the thermoelectric conversion material.

於本發明之一或多個實施方式中,上述之基板為一硬基板或一軟基板。 In one or more embodiments of the present invention, the substrate is a hard substrate or a soft substrate.

於本發明之一或多個實施方式中,硬基板之材料包含矽。 In one or more embodiments of the invention, the material of the hard substrate comprises germanium.

於本發明之一或多個實施方式中,軟基板之材料包含聚醯亞胺(polyimide)。 In one or more embodiments of the invention, the material of the soft substrate comprises a polyimide.

於本發明之一或多個實施方式中,上述之熱電薄膜結構係應用於薄膜式熱電發電器或薄膜式熱電致冷晶片。 In one or more embodiments of the present invention, the thermoelectric thin film structure described above is applied to a thin film type thermoelectric generator or a thin film type thermoelectrically cooled wafer.

以上所述僅係用以例示闡述本發明所欲解決的問題、解決問題的技術手段、及其產生的功效等等,本發明之具體細節將在下文的實施方式及相關圖式中詳細介紹。 The above description is only for illustrating the problems to be solved by the present invention, the technical means for solving the problems, the effects thereof, and the like, and the details of the present invention will be described in detail in the following embodiments and related drawings.

100‧‧‧熱電轉換材料區 100‧‧‧ Thermoelectric conversion material area

110‧‧‧金屬擴散材料區 110‧‧‧Metal diffusion material zone

200、310‧‧‧基板 200, 310‧‧‧ substrate

300‧‧‧熱電轉換單元 300‧‧‧Thermal conversion unit

320A、320B‧‧‧N型熱電薄膜結構 320A, 320B‧‧‧N type thermoelectric film structure

322A、322B‧‧‧N型熱電轉換材料區 322A, 322B‧‧‧N type thermoelectric conversion material area

324A、324B‧‧‧第一金屬擴散材料區 324A, 324B‧‧‧First metal diffusion material zone

330A、330B‧‧‧P型熱電薄膜結構 330A, 330B‧‧‧P type thermoelectric film structure

332A、332B‧‧‧P型熱電轉換材料區 332A, 332B‧‧‧P type thermoelectric conversion material area

334A、334B‧‧‧第二金屬擴散材料區 334A, 334B‧‧‧Second metal diffusion material zone

340‧‧‧導電體 340‧‧‧Electrical conductor

410‧‧‧封裝膠 410‧‧‧Package

420、530‧‧‧散熱板 420, 530‧‧ ‧ heat sink

430、540‧‧‧取熱板 430, 540‧‧‧ take hot plate

440、550‧‧‧布膜 440, 550‧‧ ‧ cloth film

450、510、520‧‧‧導線 450, 510, 520‧‧‧ wires

為讓本發明之上述和其他目的、特徵、優點與實施 例能更明顯易懂,所附圖式之詳細說明如下:第1圖繪示根據本發明一實施方式之熱電薄膜結構之剖面示意圖;第2圖繪示根據本發明一實施方式之熱電薄膜結構之剖面示意圖;第3圖繪示根據本發明一實施方式之熱電轉換元件之上視圖;第4圖繪示根據本發明一實施方式之熱電轉換元件之剖面圖;以及第5圖繪示根據本發明一實施方式之熱電轉換元件之爆炸圖。 The above and other objects, features, advantages and embodiments of the present invention are made. The detailed description of the drawings is as follows: FIG. 1 is a schematic cross-sectional view showing a structure of a thermoelectric film according to an embodiment of the present invention; and FIG. 2 is a view showing a thermoelectric film structure according to an embodiment of the present invention. FIG. 3 is a top view of a thermoelectric conversion element according to an embodiment of the present invention; FIG. 4 is a cross-sectional view of a thermoelectric conversion element according to an embodiment of the present invention; and FIG. An exploded view of a thermoelectric conversion element according to an embodiment of the invention.

以下將以圖式揭露本發明之複數實施方式,為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,熟悉本領域之技術人員應當瞭解到,在本發明部分實施方式中,這些實務上的細節並非必要的,因此不應用以限制本發明。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之。 The embodiments of the present invention are disclosed in the following drawings, and for the purpose of clarity However, it should be understood by those skilled in the art that the details of the invention are not essential to the details of the invention. In addition, some of the conventional structures and elements are shown in the drawings in a simplified schematic manner in order to simplify the drawings.

三維之熱電結構主要利用席貝克效應,在與溫差方向相同之方向產生電位差,亦可將多個發電結構串聯以增加效率。但一維之熱電結構例如熱電薄膜,當溫差產生於熱電薄膜之上下表面方向時,因為薄膜之厚度,即上下表面間之距離很小,使得與溫差方向相同之方向所產生之電 位差也偏小。故在本發明之部分實施例中提供一熱電薄膜結構,可產生與溫差方向垂直之電位差,使此熱電薄膜結構具有橫向席貝克係數並藉此提升熱電優值,得以克服一維結構上所造成之熱電材料應用限制。 The three-dimensional thermoelectric structure mainly uses the Schbeck effect to generate a potential difference in the same direction as the temperature difference direction, and a plurality of power generation structures may be connected in series to increase the efficiency. However, a one-dimensional thermoelectric structure such as a thermoelectric film, when the temperature difference is generated in the direction of the lower surface of the thermoelectric film, because the thickness of the film, that is, the distance between the upper and lower surfaces is small, the electricity generated in the same direction as the temperature difference direction is generated. The difference is also small. Therefore, in some embodiments of the present invention, a thermoelectric thin film structure is provided, which can generate a potential difference perpendicular to the temperature difference direction, so that the thermoelectric thin film structure has a lateral Sibeck coefficient and thereby improves the thermoelectric figure of merit, thereby overcoming the one-dimensional structure. The application of thermoelectric materials is limited.

請參閱第1圖,第1圖繪示根據本發明部分實施方式之熱電薄膜結構之剖面示意圖。熱電薄膜結構包括一熱電轉換材料區100以及一金屬擴散材料區110。金屬擴散材料區110位於熱電轉換材料區100之一側。熱電轉換材料區包括一熱電轉換材料,可進行熱與電之能量轉換。在本發明之部分實施方式中,熱電轉換材料包括N型熱電轉換材料及P型熱電轉換材料或N型/P型組合熱電轉換材料。N型熱電轉換材料包括碲化鉍(Bi2Te3)或鉍硒碲(Bi2SexTe3-x)材料,且x介於0至3之間。在本發明之部分實施方式中,N型熱電轉換材料為Bi2Se0.5Te2.5。P型熱電轉換材料包括三碲化二銻(Sb2Te3)或鉍銻碲(BiySb2-yTe3)材料,且y介於0至2之間。在本發明之部分實施方式中,P型熱電轉換材料為Bi0.5Sb1.5Te3。在本發明之部分實施方式中,熱電轉換材料包括碲化鉛(PbTe)、銻化鋅(ZnSb)、鍺化矽(SiGe)、銀銻碲(AgSbTe2)材料、碲化鍺(GeTe)或其組合。 Please refer to FIG. 1. FIG. 1 is a cross-sectional view showing the structure of a thermoelectric film according to some embodiments of the present invention. The thermoelectric thin film structure includes a thermoelectric conversion material region 100 and a metal diffusion material region 110. The metal diffusion material region 110 is located on one side of the thermoelectric conversion material region 100. The thermoelectric conversion material region includes a thermoelectric conversion material for energy conversion between heat and electricity. In some embodiments of the present invention, the thermoelectric conversion material includes an N-type thermoelectric conversion material and a P-type thermoelectric conversion material or an N-type/P-type combined thermoelectric conversion material. The N-type thermoelectric conversion material includes Bi 2 Te 3 or Bi 2 Se x Te 3-x materials, and x is between 0 and 3. In some embodiments of the invention, the N-type thermoelectric conversion material is Bi 2 Se 0.5 Te 2.5 . The P-type thermoelectric conversion material includes a material of Sb 2 Te 3 or Bi y Sb 2-y Te 3 , and y is between 0 and 2. In some embodiments of the invention, the P-type thermoelectric conversion material is Bi 0.5 Sb 1.5 Te 3 . In some embodiments of the present invention, the thermoelectric conversion material includes lead telluride (PbTe), zinc telluride (ZnSb), germanium telluride (SiGe), silver germanium (AgSbTe 2 ) material, germanium telluride (GeTe) or Its combination.

請繼續參閱第1圖。金屬擴散材料區110包括一金屬擴散分佈於熱電轉換材料區100中的熱電轉換材料之一側。在本發明之部分實施方式中,金屬擴散分布於該熱電轉換材料區中的該熱電轉換材料之上下側或左右側。在本發明之部分實施例中,金屬為金、銀、銅、白金或其組合。 在本發明之部分實施方式中,此金屬在金屬擴散材料區110以一濃度梯度分布或均勻分布於熱電轉換材料中。在本發明之部分實施方式中,利用蒸鍍一層金屬薄膜在熱電轉換材料區100之一側之部分上表面上,再進行快速退火使所蒸鍍之金屬薄膜擴散入熱電轉換材料中,以形成金屬擴散材料區110。此時此金屬於金屬擴散材料區中具有一由金屬擴散材料區之外側向靠近熱電轉換材料區中心側減少之濃度梯度分布。在本發明之部分實施方式中金屬薄膜之沉積方式亦可為濺鍍、電鍍或化學鍍等方式。 Please continue to see Figure 1. The metal diffusion material region 110 includes a metal diffusion side of one side of the thermoelectric conversion material in the thermoelectric conversion material region 100. In some embodiments of the present invention, the metal diffusion is distributed on the lower side or the left and right sides of the thermoelectric conversion material in the thermoelectric conversion material region. In some embodiments of the invention, the metal is gold, silver, copper, platinum or a combination thereof. In some embodiments of the invention, the metal is distributed or uniformly distributed in the metal diffusion material region 110 in a concentration gradient. In some embodiments of the present invention, a portion of the metal thin film is vapor-deposited on the upper surface of one side of the thermoelectric conversion material region 100, and then rapid annealing is performed to diffuse the vapor-deposited metal film into the thermoelectric conversion material to form a metal thin film. Metal diffusion material region 110. At this time, the metal has a concentration gradient distribution in the metal diffusion material region which is reduced from the side of the metal diffusion material region toward the center side of the thermoelectric conversion material region. In some embodiments of the present invention, the metal thin film may be deposited by sputtering, electroplating or electroless plating.

在本發明之部分實施方式中,此一具有金屬擴散材料區之熱電薄膜結構具有一橫向席貝克係數,即為當此熱電薄膜結構之上下表面具有一溫度差時,能在熱電薄膜結構之與溫度差垂直方向之兩側測得一電位差,此時所測量電位差之位置需一側在熱電轉換材料區中,且另一側位於金屬擴散材料區中。與不具有金屬擴散材料區之熱電薄膜相較,不具有金屬擴散材料區之熱電薄膜在上下表面具有一溫度差時僅能於上下表面產電位差,且不具有橫向席貝克係數,無法於薄膜與溫度差垂直方向之兩側測得電位差。此具有橫向席貝克係數之熱電薄膜能大幅提升熱電薄膜之電性及熱電優值。在本發明之部分實施方式中,亦可通入電流於此熱電薄膜結構中,可於熱電薄膜結構之上下表面形成溫度差。故此熱電薄膜結構可應用於薄膜式熱電發電器或薄膜式熱電致冷晶片中,並能減少這些裝置之體積及提升其熱電轉換效率。 In some embodiments of the present invention, the thermoelectric film structure having the metal diffusion material region has a lateral Sbeck coefficient, that is, when the lower surface of the thermoelectric film structure has a temperature difference, the thermoelectric film structure can be A potential difference is measured on both sides of the vertical direction of the temperature difference. At this time, the position of the measured potential difference needs to be on one side in the thermoelectric conversion material region, and the other side is located in the metal diffusion material region. Compared with the thermoelectric film without the metal diffusion material region, the thermoelectric film having no metal diffusion material region can only produce a potential difference between the upper and lower surfaces when there is a temperature difference between the upper and lower surfaces, and does not have a lateral Schel Beck coefficient, and cannot be used in the film and The potential difference is measured on both sides of the vertical direction of the temperature difference. The thermoelectric film having a lateral Sibeck coefficient can greatly improve the electrical and thermoelectric merit of the thermoelectric film. In some embodiments of the present invention, an electric current may be applied to the thermoelectric film structure to form a temperature difference on the lower surface of the thermoelectric film structure. Therefore, the thermoelectric film structure can be applied to a thin film type thermoelectric generator or a thin film type thermoelectric cooling chip, and the volume of these devices can be reduced and the thermoelectric conversion efficiency can be improved.

請參照第2圖,第2圖繪示根據本發明部分實施方式之熱電薄膜結構之剖面示意圖。在本發明之部分實施方式中,熱電薄膜結構更包括一基板200,熱電轉換材料區100位於基板200之上端或下端,而金屬擴散材料區110位於熱電轉換材料100之上下側或左右側。基板200可為一軟基板或硬基板。在本發明之部分實施例中,軟基板之材料可為絕緣之高分子聚合物例如聚醯亞胺(polyimide)。使用軟基板可使熱電薄膜結構仍具有可撓性,並可應用於紡織品中。在本發明之部分實施例中,硬基板之材料包含矽。在本發明之部分實施例中,可將複數個熱電薄膜結構串聯,以增加所產生之電位差。 Please refer to FIG. 2, which is a cross-sectional view showing the structure of a thermoelectric film according to some embodiments of the present invention. In some embodiments of the present invention, the thermoelectric film structure further includes a substrate 200, the thermoelectric conversion material region 100 is located at the upper end or the lower end of the substrate 200, and the metal diffusion material region 110 is located on the lower side or the left and right sides of the thermoelectric conversion material 100. The substrate 200 can be a soft substrate or a hard substrate. In some embodiments of the present invention, the material of the soft substrate may be an insulating high molecular polymer such as polyimide. The use of a flexible substrate allows the thermoelectric film structure to remain flexible and can be used in textiles. In some embodiments of the invention, the material of the hard substrate comprises germanium. In some embodiments of the invention, a plurality of thermoelectric thin film structures may be connected in series to increase the potential difference generated.

請參照第3圖,第3圖繪示根據本發明一實施方式之熱電轉換元件之上視圖。此熱電轉換元件將上述之熱電薄膜結構串聯以增加所產生之電位差。熱電轉換元件在本實施方式中為一熱電轉換單元300。熱電轉換單元300具有一基板310,複數個N型熱電薄膜結構320,複數個P型熱電薄膜結構330,以及複數個導電體340。此些N型熱電薄膜結構與P型熱電薄膜結構設置於基板310上並間隔交錯排列,且由導電體340將N型及P型熱電薄膜結構320、330串聯。在部分實施方式中此些N型熱電薄膜結構與P型熱電薄膜結構亦可設置於基板310之下端。基板310可為軟基板或硬基板。在本發明之部分實施例中,軟基板之材料可包括高分子聚合物如聚醯亞胺,硬基板的材料可包括矽或陶瓷材料,可依使用目的去選擇適當之基板材質。N 型熱電薄膜結構320(包括320A、320B)皆包括一N型熱電轉換材料區322,其具有一上表面及一下表面,以及一第一金屬擴散材料區324,其位於N型熱電轉換材料區322之一側,其中,N型熱電轉換材料區322包括一N型熱電轉換材料,第一金屬擴散材料區324包括一第一金屬擴散分布於N型熱電轉換材料之一側。N型熱電轉換材料為碲化鉍(Bi2Te3)或鉍硒碲(Bi2SexTe3-x)材料,且x介於0與3之間。在本發明之部分實施例中,N型熱電轉換材料為Bi2Se0.5Te2.5。第一金屬為金、銅、銀及白金或其組合。在本發明之部分實施例中,第一金屬為銀。第一金屬具有一濃度梯度分布或均勻分布於N型熱電轉換材料之上下側或左右側。在本發明之部分實施方式中,第一金屬之濃度在金屬擴散材料區324中由外側向熱電轉換材料區322之中心遞減。 Referring to FIG. 3, FIG. 3 is a top view of a thermoelectric conversion element according to an embodiment of the present invention. The thermoelectric conversion element connects the above-described thermoelectric thin film structures in series to increase the potential difference generated. The thermoelectric conversion element is a thermoelectric conversion unit 300 in this embodiment. The thermoelectric conversion unit 300 has a substrate 310, a plurality of N-type thermoelectric thin film structures 320, a plurality of P-type thermoelectric thin film structures 330, and a plurality of electrical conductors 340. The N-type thermoelectric thin film structure and the P-type thermoelectric thin film structure are disposed on the substrate 310 and are staggered, and the N-type and P-type thermoelectric thin film structures 320 and 330 are connected in series by the electrical conductor 340. In some embodiments, the N-type thermoelectric film structure and the P-type thermoelectric film structure may also be disposed at the lower end of the substrate 310. The substrate 310 may be a soft substrate or a hard substrate. In some embodiments of the present invention, the material of the soft substrate may include a high molecular polymer such as polyimide, and the material of the hard substrate may include a ceramic material or a ceramic material, and an appropriate substrate material may be selected according to the purpose of use. The N-type thermoelectric film structure 320 (including 320A, 320B) includes an N-type thermoelectric conversion material region 322 having an upper surface and a lower surface, and a first metal diffusion material region 324 located in the N-type thermoelectric conversion material region. One side of the 322, wherein the N-type thermoelectric conversion material region 322 includes an N-type thermoelectric conversion material, and the first metal diffusion material region 324 includes a first metal diffusion distribution on one side of the N-type thermoelectric conversion material. The N-type thermoelectric conversion material is a Bi 2 Te 3 or Bi 2 Se x Te 3-x material, and x is between 0 and 3. In some embodiments of the invention, the N-type thermoelectric conversion material is Bi 2 Se 0.5 Te 2.5 . The first metal is gold, copper, silver, and platinum or a combination thereof. In some embodiments of the invention, the first metal is silver. The first metal has a concentration gradient distribution or is uniformly distributed on the lower side or the left and right sides of the N-type thermoelectric conversion material. In some embodiments of the invention, the concentration of the first metal decreases from the outer side toward the center of the thermoelectric conversion material region 322 in the metal diffusion material region 324.

請繼續參照第3圖,P型熱電薄膜結構330(包括330A、330B)皆包括一P型熱電轉換材料區332,其具有一上表面及一下表面,以及一第二金屬擴散材料區334位於P型熱電轉換材料區332之一側。其中,P型熱電轉換材料區332包括一P型熱電轉換材料,第二金屬擴散材料區334包括一第二金屬擴散分布於此些P型熱電轉換材料之一側,例如上下側或左右側。P型熱電轉換材料包括三碲化二銻(Sb2Te3)或鉍硒碲(BiySb2-yTe3)材料,且y介於0至2之間。在本發明之部分實施方式中,P型熱電轉換材料為Bi0.5Sb1.5Te3。第二金屬為金、銅、銀及白金或其組合。在 本發明之部分實施例中,第二金屬為銀。第二金屬具有一濃度梯度分布或均勻分布於P型熱電轉換材料中。在本發明之部分實施方式中,第二金屬之濃度梯度分布為在金屬擴散材料區334中由外側向熱電轉換材料區332之中心遞減。複數個導電體340形成於每個N型熱電薄膜結構320與P型熱電薄膜結構330的兩端之上,覆蓋部份之N型熱電薄膜結構320與P型熱電薄膜結構330使所有之熱電薄膜結構320、330電性連接並串聯所有熱電薄膜結構320、330。導電體340之材料為金屬,可以是低電阻之金屬或合金,例如銅、鐵、鉻、鎳、錫、銀、金等,亦可依應用狀況做適當選擇。N型熱電薄膜結構320與P型熱電薄膜結構330為間隔交錯排列。在本發明之部分實施方式中,排列順序為N型熱電薄膜結構320A、P型熱電薄膜結構330A、N型熱電薄膜結構320B、P型熱電薄膜結構330B。在串聯方式中,熱電薄膜結構320、330之金屬擴散材料區324、334與熱電轉換材料區322、332之連接順序並未多做限制。金屬擴散材料區324、334在可同側,如熱電薄膜結構320A、330A,或金屬擴散材料區324、334在相異側,如熱電薄膜結構320B、330B之連接方式皆為可實施之方式,並不會對本發明造成限制。當在熱電薄膜結構320、330之上下表面產生溫度差時,在熱電薄膜結構320、330之兩端即會產生電位差,兩端所指為金屬擴散材料區側與熱電轉換材料區側,並可在串聯之最前面與最後面之導電體340中獲得最大之電位差。在本發明之部分實施方式中,亦可 通入電流於此熱電轉換單元300中,可於熱電轉換單元300之上下表面形成溫度差。此熱電轉換元件可應用於薄膜式熱電發電器或薄膜式熱電致冷晶片中。 Referring to FIG. 3, the P-type thermoelectric film structure 330 (including 330A, 330B) includes a P-type thermoelectric conversion material region 332 having an upper surface and a lower surface, and a second metal diffusion material region 334 at P. One side of the type thermoelectric conversion material region 332. The P-type thermoelectric conversion material region 332 includes a P-type thermoelectric conversion material, and the second metal diffusion material region 334 includes a second metal diffusion distribution on one side of the P-type thermoelectric conversion materials, such as upper and lower sides or left and right sides. The P-type thermoelectric conversion material includes a material of Sb 2 Te 3 or Bi y Sb 2-y Te 3 , and y is between 0 and 2. In some embodiments of the invention, the P-type thermoelectric conversion material is Bi 0.5 Sb 1.5 Te 3 . The second metal is gold, copper, silver, and platinum or a combination thereof. In some embodiments of the invention, the second metal is silver. The second metal has a concentration gradient distribution or is uniformly distributed in the P-type thermoelectric conversion material. In some embodiments of the invention, the concentration gradient of the second metal is decremented from the outer side toward the center of the thermoelectric conversion material region 332 in the metal diffusion material region 334. A plurality of electrical conductors 340 are formed on both ends of each of the N-type thermoelectric thin film structure 320 and the P-type thermoelectric thin film structure 330. The covered N-type thermoelectric thin film structure 320 and the P-type thermoelectric thin film structure 330 make all the thermoelectric thin films. The structures 320, 330 are electrically connected and connected in series with all of the thermoelectric thin film structures 320, 330. The material of the conductor 340 is metal, and may be a low-resistance metal or alloy, such as copper, iron, chromium, nickel, tin, silver, gold, etc., and may be appropriately selected depending on the application. The N-type thermoelectric film structure 320 and the P-type thermoelectric film structure 330 are arranged in a staggered manner. In some embodiments of the present invention, the arrangement order is an N-type thermoelectric film structure 320A, a P-type thermoelectric film structure 330A, an N-type thermoelectric film structure 320B, and a P-type thermoelectric film structure 330B. In the series mode, the order of connection of the metal diffusion material regions 324, 334 of the thermoelectric thin film structures 320, 330 with the thermoelectric conversion material regions 322, 332 is not limited. The metal diffusion material regions 324, 334 are on the same side, such as the thermoelectric film structures 320A, 330A, or the metal diffusion material regions 324, 334 are on different sides, such as the thermoelectric thin film structures 320B, 330B. The invention is not limited. When a temperature difference is generated on the lower surface of the thermoelectric thin film structures 320, 330, a potential difference is generated at both ends of the thermoelectric thin film structures 320, 330, and both ends are referred to as a metal diffusion material region side and a thermoelectric conversion material region side, and The largest potential difference is obtained in the first and last conductors 340 of the series. In some embodiments of the present invention, a current may be passed through the thermoelectric conversion unit 300 to form a temperature difference on the upper surface of the thermoelectric conversion unit 300. This thermoelectric conversion element can be applied to a thin film type thermoelectric generator or a thin film type thermoelectrically cooled wafer.

請參照第4圖,第4圖繪示根據本發明一實施方式之熱電轉換元件之剖面圖。在本實施方式中,熱電轉換元件包括一熱電轉換單元300,更包括一封裝膠410,一散熱板420,以及一取熱板430。如熱電轉換單元300具有一基板310,複數個N型、P型熱電薄膜結構320、330及複數個導電體340形成於基板310之上,N型、P型熱電薄膜結構320、330互相間隔交錯排列。導電體340形成於部分之熱電薄膜結構320、330上,並將所有的熱電薄膜結構320、330電性連接並串聯。封裝膠410填補於熱電薄膜結構320、330之空隙中,協助固定熱電薄膜結構並便利封裝程序進行。取熱板430置於熱電薄膜結構320、330之上。取熱板430為一絕緣並能導熱之基板,熱源可置於取熱板430上讓熱能經過取熱板430到達熱電薄膜結構320、330之上表面,使得熱電薄膜結構320、330之上下表面產生溫度差,進而於熱電薄膜結構320、330之兩側產生電位差。取熱板430可為一硬基板如氮化鋁基板或一軟基板例如聚醯亞胺基板,可依熱電轉換元件之用途以選擇適合的取熱板材料。散熱板420之材料為一導熱金屬,例如銅箔或鋁箔,並設置於基板310之下方以加速熱電薄膜結構320、330之散熱,以增加熱電薄膜結構320、330上下表面之溫度差,進而增加所產生的電位差。在本發明之部分實施方式中, 更包括一布膜440覆蓋於取熱板430之上。在本發明之部分實施方式中,更包含兩導線450與導電體340電性連結。在本發明之部分實施方式中,熱電轉換元件可應用於薄膜式熱電發電器或薄膜式熱電致冷晶片中。將熱源放置於布膜440上或直接放置於取熱板430上,使熱電薄膜結構320、330之上下表面具有一溫度差並藉由散熱板420散熱。可使熱電薄膜結構產生電位差,並經由導線450可將產生的電應用於手機充電、發光二極體發光等應用。在本發明之部分實施方式中,亦可由導線450中通入電流,以在熱電薄膜結構之上下表面產生溫度差,進行加熱或降溫的應用。 Referring to FIG. 4, FIG. 4 is a cross-sectional view showing a thermoelectric conversion element according to an embodiment of the present invention. In this embodiment, the thermoelectric conversion element includes a thermoelectric conversion unit 300, and further includes an encapsulant 410, a heat dissipation plate 420, and a heat extraction plate 430. For example, the thermoelectric conversion unit 300 has a substrate 310, a plurality of N-type, P-type thermoelectric thin film structures 320, 330 and a plurality of electrical conductors 340 are formed on the substrate 310, and the N-type and P-type thermoelectric thin film structures 320 and 330 are interlaced with each other. arrangement. Electrical conductors 340 are formed on portions of thermoelectric thin film structures 320, 330, and all of the thermoelectric thin film structures 320, 330 are electrically connected and connected in series. The encapsulant 410 fills the voids of the thermoelectric film structures 320, 330 to assist in fixing the thermoelectric film structure and facilitating the packaging process. The heat take-up plate 430 is placed over the thermoelectric film structures 320, 330. The heat taking plate 430 is an insulating and heat-conducting substrate, and the heat source can be placed on the heat taking plate 430 to allow heat to pass through the heat taking plate 430 to reach the upper surface of the thermoelectric film structures 320, 330, so that the upper surface of the thermoelectric film structures 320, 330 A temperature difference is generated to generate a potential difference across the thermoelectric thin film structures 320, 330. The heat taking plate 430 can be a hard substrate such as an aluminum nitride substrate or a soft substrate such as a polyimide substrate, and can be selected according to the use of the thermoelectric conversion element to select a suitable heat taking plate material. The material of the heat dissipation plate 420 is a heat conductive metal, such as copper foil or aluminum foil, and is disposed under the substrate 310 to accelerate heat dissipation of the thermoelectric film structures 320 and 330 to increase the temperature difference between the upper and lower surfaces of the thermoelectric film structures 320 and 330, thereby increasing The potential difference produced. In some embodiments of the invention, A cover film 440 is further disposed on the heat take-up plate 430. In some embodiments of the present invention, the two wires 450 are further electrically connected to the electrical conductor 340. In some embodiments of the present invention, the thermoelectric conversion element can be applied to a thin film type thermoelectric generator or a thin film type thermoelectrically cooled wafer. The heat source is placed on the film 440 or placed directly on the heat take-up plate 430, so that the upper surface of the thermoelectric film structures 320, 330 has a temperature difference and is dissipated by the heat sink 420. The thermoelectric thin film structure can be made to have a potential difference, and the generated electricity can be applied to the application of the mobile phone charging, the light emitting diode, and the like via the wire 450. In some embodiments of the present invention, an electric current may be applied to the wire 450 to create a temperature difference on the lower surface of the thermoelectric film structure for heating or cooling.

請參照第5圖,第5圖繪示根據本發明一實施方式之熱電轉換元件之爆炸圖。與第4圖繪示之實施方式不同處在於熱電轉換元件包括複數個熱電轉換單元300,此些熱電轉換單元300形成垂直堆疊,並利用導線510、520將複數個熱電轉換單元300電性連接。在本發明之部分實施方式中,更包括一散熱板530設置於此些熱電轉換單元300之下方、一取熱板540設置於此些熱電轉換單元300之上方,以及一布膜550覆蓋於取熱板540之上。取熱板540可為一硬基板如氮化鋁基板或一軟基板例如聚醯亞胺,可依熱電轉換元件之用途以選擇適合的取熱板材料。散熱板530之材料為一導熱金屬,例如銅箔或鋁箔。在本發明之部分實施方式中,熱電轉換元件在面積為36平方公分、取熱板與散熱板溫度差為10K時所產生之電位差可驅動發光二 極體或小風扇。 Referring to FIG. 5, FIG. 5 is an exploded view of a thermoelectric conversion element according to an embodiment of the present invention. The difference from the embodiment shown in FIG. 4 is that the thermoelectric conversion element includes a plurality of thermoelectric conversion units 300 that are vertically stacked and electrically connected to the plurality of thermoelectric conversion units 300 by wires 510 and 520. In some embodiments of the present invention, a heat dissipation plate 530 is disposed under the thermoelectric conversion unit 300, a heat extraction plate 540 is disposed above the thermoelectric conversion unit 300, and a film 550 is covered. Above the hot plate 540. The heat take-up plate 540 can be a hard substrate such as an aluminum nitride substrate or a soft substrate such as polyimide, which can be selected according to the use of the thermoelectric conversion element to select a suitable heat take-up plate material. The material of the heat dissipation plate 530 is a heat conductive metal such as copper foil or aluminum foil. In some embodiments of the present invention, the thermoelectric conversion element can drive the light-emitting two when the area is 36 square centimeters and the temperature difference between the hot plate and the heat sink is 10K. Polar body or small fan.

在本發明之部分實施方式中,熱電轉換元件之應用包括一可撓式熱電充電布,可將熱電薄膜結構結合於任何產品與基材上,並易於攜帶或收納;一攜帶式熱電行動能源,可隨時利用溫差發電或將能源儲存;一生理監控系統,將熱電薄膜結構結合入病患身上之監控設備中,即可隨時利用病患身上之溫差提供監控設備所需之電源;或是一穿帶式織物熱電行動能源,將熱電薄膜結構或熱電轉換元件編入織物中,穿戴在身上時能藉由人體體溫與環境的溫差以替所需之電器充電。 In some embodiments of the present invention, the application of the thermoelectric conversion element includes a flexible thermoelectric charging cloth, which can bond the thermoelectric film structure to any product and substrate, and is easy to carry or store; a portable thermoelectric mobile energy source, The utility model can utilize the temperature difference power generation or store the energy at any time; a physiological monitoring system can integrate the thermoelectric film structure into the monitoring device of the patient, and can provide the power required for the monitoring device by using the temperature difference of the patient at any time; or wear it The belt fabric thermoelectric action energy, the thermoelectric film structure or the thermoelectric conversion element is incorporated into the fabric, and the temperature difference between the body temperature and the environment can be charged for the required electric appliance when worn on the body.

實驗例Experimental example

熱電薄膜結構製備Thermoelectric film structure preparation

以一聚醯亞銨基板表面清理乾淨後,進行濺鍍製程以形成P型或N型熱電轉換材料區,P型熱電薄膜材料為Bi0.5Sb1.5Te3,N型熱電薄膜材料為Bi2Se0.3Te3。製程壓力為5mTorr,濺鍍功率15W及18W,基材溫度為室溫及250℃。所製成之薄膜厚度為數奈米至約2微米。熱電轉換材料區形成完畢後,再以電子束蒸鍍製程形成一金屬薄膜於熱電轉換材料區之一側之上。此處金屬為銀。蒸鍍速率1埃/秒,金屬薄膜厚度為數奈米至300奈米,金屬薄膜位於熱電轉換材料區右側之上。再進行快速退火製成使金屬薄膜擴散入部分之熱電轉換材料區中,在熱電轉換材料區之右側形成一金屬擴散材料區。且金屬擴散材料區中具有金屬之濃度梯度。快速退火製程條件為270℃下5分鐘並使用 全氮氣製程以形成P型或N型熱電薄膜結構。 After the surface of the poly(arylene) substrate is cleaned, a sputtering process is performed to form a P-type or N-type thermoelectric conversion material region, the P-type thermoelectric thin film material is Bi 0.5 Sb 1.5 Te 3 , and the N-type thermoelectric thin film material is Bi 2 Se 0.3 Te 3 . The process pressure is 5 mTorr, the sputtering power is 15 W and 18 W, and the substrate temperature is room temperature and 250 °C. The film is formed to have a thickness of from several nanometers to about 2 microns. After the thermoelectric conversion material region is formed, a metal film is formed on one side of the thermoelectric conversion material region by an electron beam evaporation process. The metal here is silver. The evaporation rate is 1 angstrom/second, the thickness of the metal film is several nanometers to 300 nm, and the metal film is located on the right side of the thermoelectric conversion material region. Further, rapid annealing is performed to diffuse the metal thin film into a portion of the thermoelectric conversion material region, and a metal diffusion material region is formed on the right side of the thermoelectric conversion material region. And the metal diffusion material region has a concentration gradient of the metal. The rapid annealing process conditions were 5 minutes at 270 ° C and a full nitrogen process was used to form a P-type or N-type thermoelectric film structure.

橫向席貝克係數分析Lateral becker coefficient analysis

將以上述方式置備好之P型及N型熱電薄膜結構進行橫向席貝克係數之測量。在P型熱電薄膜結構中,當熱電薄膜結構上下表面之溫差為0.405K時,將兩電壓探針皆置於熱電轉換材料區上,所測得熱電轉換材料區內之電位差為19.31μV,此時此數值可視為外界熱擾之影響。而當上下表面之溫差為0.56K時,將兩電壓探針分別置於熱電轉換材料區上及金屬擴散材料區上,所測得熱電轉換材料區與金屬擴散材料區間之電位差為514.10μV。可由實驗結果得知單獨在熱電轉換材料區中測量電位差時確認原本之熱電轉換材料並不具有橫向席貝克係數。而形成金屬擴散材料區後此熱電薄膜結構則具有一橫向席貝克係數,能夠在與溫度差垂直之方向產生一電位差。所測出之橫向席貝克係數為918.4μV/K,更是大於原本熱電轉換材料之席貝克係數160μV/K。 The P-type and N-type thermoelectric film structures which were prepared in the above manner were measured for the transverse Schiesbeck coefficient. In the P-type thermoelectric film structure, when the temperature difference between the upper and lower surfaces of the thermoelectric film structure is 0.405 K, both voltage probes are placed on the thermoelectric conversion material region, and the potential difference in the thermoelectric conversion material region is 19.31 μV. This value can be regarded as the influence of external thermal disturbance. When the temperature difference between the upper and lower surfaces is 0.56K, the two voltage probes are respectively placed on the thermoelectric conversion material region and the metal diffusion material region, and the potential difference between the thermoelectric conversion material region and the metal diffusion material region is 514.10 μV. It can be confirmed from the experimental results that it is confirmed that the original thermoelectric conversion material does not have a lateral Schiesbeck coefficient when the potential difference is separately measured in the thermoelectric conversion material region. After forming the metal diffusion material region, the thermoelectric film structure has a lateral Sbeck coefficient, which can generate a potential difference in a direction perpendicular to the temperature difference. The measured lateral Sibeck coefficient is 918.4 μV/K, which is greater than the Sibeck coefficient of the original thermoelectric conversion material of 160 μV/K.

而在N型熱電薄膜結構中,當熱電薄膜結構上下表面之溫差為0.156K時,將兩電壓探針皆置於熱電轉換材料區上,所測得熱電轉換材料區內之電位差為-27.19μV,此時此數值可視為外界熱擾之影響。而當上下表面之溫差為0.66K時,將兩電壓探針分別置於熱電轉換材料區上及金屬擴散材料區上,所測得熱電轉換材料區與金屬擴散材料區間之電位差為-491.63μV。可由實驗結果得知單獨在熱電轉換材料區中測量電位差時確認原本之熱電轉換材料並不 具有橫向席貝克係數。而形成金屬擴散材料區後此熱電薄膜結構則具有一橫向席貝克係數,能夠在與溫度差垂直之方向產生一電位差。所測出之橫向席貝克係數為-744.89μV/K,更是大於原本熱電材料之席貝克係數-120μV/K。 In the N-type thermoelectric film structure, when the temperature difference between the upper and lower surfaces of the thermoelectric film structure is 0.156 K, both voltage probes are placed on the thermoelectric conversion material region, and the potential difference in the thermoelectric conversion material region is -27.19 μV. At this time, this value can be regarded as the influence of external thermal disturbance. When the temperature difference between the upper and lower surfaces is 0.66K, the two voltage probes are respectively placed on the thermoelectric conversion material region and the metal diffusion material region, and the potential difference between the thermoelectric conversion material region and the metal diffusion material region is -491.63 μV. It can be confirmed from the experimental results that the original thermoelectric conversion material is not confirmed when the potential difference is measured separately in the thermoelectric conversion material region. Has a lateral Scheib coefficient. After forming the metal diffusion material region, the thermoelectric film structure has a lateral Sbeck coefficient, which can generate a potential difference in a direction perpendicular to the temperature difference. The measured lateral Becker coefficient is -744.89 μV/K, which is greater than the Sibeck coefficient of the original thermoelectric material -120 μV/K.

由實驗例中可知,在本發明之部分實施方式中,此包括一熱電轉換材料區及一位於熱電轉換材料區一側之金屬擴散材料區之熱電薄膜結構,具有橫向席貝克係數,可在熱電薄膜結構之上下表面具有溫度差時,於垂直於溫度差方向,在熱電轉換材料區側與金屬擴散材料區側產生電位差。不同於不具有金屬擴散材料區之熱電薄膜,因不具橫向席貝克係數,故只能在與溫度差相同之方向產生電位差,若在薄膜上下表面產生溫差,因薄膜厚度太薄,使得所產生電位差亦很小。若在薄膜兩側產生溫差,則接觸面積又太小。因此在本發明之部分實施例中所提供之熱電薄膜結構可大幅增加熱電薄膜結構之電性,使熱電薄膜結構不但具有大的受熱面積,亦能產生電位差,並可提升熱電薄膜結構之熱電優值。此熱電薄膜結構可形成熱電薄膜元件並應用於薄膜式熱電發電器與薄膜式熱電致冷晶片中。亦可與紡織物或布膜結合,製造出熱電紡織品可利用人體與環境溫差隨時提供電力。 It can be seen from the experimental examples that, in some embodiments of the present invention, the thermoelectric thin film structure includes a thermoelectric conversion material region and a metal diffusion material region on one side of the thermoelectric conversion material region, and has a lateral Schiesbeck coefficient, which can be used in thermoelectricity. When the lower surface of the film structure has a temperature difference, a potential difference is generated on the side of the thermoelectric conversion material region and the side of the metal diffusion material in a direction perpendicular to the temperature difference. Unlike thermoelectric thin films that do not have a metal diffusion material region, since there is no lateral Sibeck coefficient, the potential difference can only be generated in the same direction as the temperature difference. If a temperature difference occurs on the upper and lower surfaces of the film, the potential difference is generated because the film thickness is too thin. It is also very small. If a temperature difference is generated on both sides of the film, the contact area is too small. Therefore, the thermoelectric film structure provided in some embodiments of the present invention can greatly increase the electrical properties of the thermoelectric film structure, so that the thermoelectric film structure not only has a large heating area, but also can generate a potential difference, and can improve the thermoelectric efficiency of the thermoelectric film structure. value. The thermoelectric thin film structure can form a thermoelectric thin film element and is applied to a thin film type thermoelectric generator and a thin film type thermoelectrically cooled wafer. It can also be combined with textiles or fabrics to create thermoelectric textiles that can be powered at any time by using the temperature difference between the human body and the environment.

100‧‧‧熱電轉換材料區 100‧‧‧ Thermoelectric conversion material area

110‧‧‧金屬擴散材料區 110‧‧‧Metal diffusion material zone

Claims (14)

一種熱電薄膜結構,包含:一熱電轉換材料區,包含一熱電轉換材料;以及一金屬擴散材料區,包含一金屬擴散分布於該熱電轉換材料區中的該熱電轉換材料之一側,以形成該熱電薄膜結構,其中,該熱電轉換材料包含N型熱電轉換材料或P型熱電轉換材料或N型/P型組合熱電轉換材料。 A thermoelectric thin film structure comprising: a thermoelectric conversion material region comprising a thermoelectric conversion material; and a metal diffusion material region comprising a side of the thermoelectric conversion material in which the metal diffusion is distributed in the thermoelectric conversion material region to form the A thermoelectric thin film structure, wherein the thermoelectric conversion material comprises an N-type thermoelectric conversion material or a P-type thermoelectric conversion material or an N-type/P-type combined thermoelectric conversion material. 如請求項1所述之熱電薄膜結構,其中,該N型熱電轉換材料為碲化鉍(Bi2Te3)或鉍硒碲(Bi2SexTe3-x)材料,且x介於0至3之間。 The thermoelectric thin film structure according to claim 1, wherein the N-type thermoelectric conversion material is Bi 2 Te 3 or Bi 2 Se x Te 3-x material, and x is 0. Between 3 and 3. 如請求項2所述之熱電薄膜結構,其中,該N型熱電轉換材料為Bi2Se0.5Te2.5The thermoelectric thin film structure according to claim 2, wherein the N-type thermoelectric conversion material is Bi 2 Se 0.5 Te 2.5 . 如請求項3所述之熱電薄膜結構,其中,該P型熱電轉換材料為三碲化二銻(Sb2Te3)或鉍銻碲(BiySb2-yTe3)材料,且y介於0至2之間。 The thermoelectric film structure according to claim 3, wherein the P-type thermoelectric conversion material is a material of Sb 2 Te 3 or Bi y Sb 2-y Te 3 , and Between 0 and 2. 如請求項4所述之熱電薄膜結構,其中,該P型熱電轉換材料為Bi0.5Sb1.5Te3The thermoelectric film structure according to claim 4, wherein the P-type thermoelectric conversion material is Bi 0.5 Sb 1.5 Te 3 . 如請求項1所述之熱電薄膜結構,其中,該熱電轉換材料包含碲化鉛(PbTe)、銻化鋅(ZnSb)、鍺化矽(SiGe)、銀銻碲(AgSbTe2)材料、碲化鍺(GeTe)或其組合。 The thermoelectric thin film structure according to claim 1, wherein the thermoelectric conversion material comprises lead telluride (PbTe), zinc telluride (ZnSb), germanium telluride (SiGe), silver germanium (AgSbTe 2 ) material, and germanium Ge (TeTe) or a combination thereof. 如請求項1所述之熱電薄膜結構,其中,該金屬為金、銅、銀、白金或其組合。 The thermoelectric film structure of claim 1, wherein the metal is gold, copper, silver, platinum or a combination thereof. 如請求項1所述之熱電薄膜結構,其中,該金屬擴散分布於該熱電轉換材料區中的該熱電轉換材料之上下側或左右側,該金屬之擴散分布為均勻分布或一濃度梯度分布。 The thermoelectric thin film structure according to claim 1, wherein the metal is diffused and distributed on the lower side or the left and right sides of the thermoelectric conversion material in the thermoelectric conversion material region, and the diffusion distribution of the metal is a uniform distribution or a concentration gradient distribution. 如請求項1所述之熱電薄膜結構,其中,該具有一濃度梯度分布係由該金屬擴散材料區之外側至靠近該熱電轉換材料區之中心側遞減。 The thermoelectric thin film structure according to claim 1, wherein the concentration gradient distribution is decreased from an outer side of the metal diffusion material region to a center side of the thermoelectric conversion material region. 如請求項1所述之熱電薄膜結構,更包含一基板,該熱電轉換材料區位於上端或下端基板,而該金屬擴散材料區位於該熱電轉換材料之上下側或左右側。 The thermoelectric film structure of claim 1, further comprising a substrate, the thermoelectric conversion material region being located at the upper or lower end substrate, and the metal diffusion material region being located on the lower side or the left and right sides of the thermoelectric conversion material. 如請求項10所述之熱電薄膜結構,其中,該基板為一硬基板或一軟基板。 The thermoelectric film structure of claim 10, wherein the substrate is a hard substrate or a soft substrate. 如請求項11所述之熱電薄膜結構,其中,該硬基 板之材料包含矽。 The thermoelectric film structure of claim 11, wherein the hard base The material of the board contains enamel. 如請求項11所述之熱電薄膜結構,其中,該軟基板之材料包含聚醯亞胺(polyimide)。 The thermoelectric film structure of claim 11, wherein the material of the soft substrate comprises polyimide. 如請求項1所述之熱電薄膜結構,應用於薄膜式熱電發電器或薄膜式熱電致冷晶片。 The thermoelectric film structure according to claim 1 is applied to a film type thermoelectric generator or a film type thermoelectric cooling chip.
TW103112883A 2014-04-08 2014-04-08 Thermoelectric transfer element TWI575786B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW103112883A TWI575786B (en) 2014-04-08 2014-04-08 Thermoelectric transfer element
CN201410570401.0A CN104979463B (en) 2014-04-08 2014-10-23 Thermoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103112883A TWI575786B (en) 2014-04-08 2014-04-08 Thermoelectric transfer element

Publications (2)

Publication Number Publication Date
TW201539810A true TW201539810A (en) 2015-10-16
TWI575786B TWI575786B (en) 2017-03-21

Family

ID=54275782

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103112883A TWI575786B (en) 2014-04-08 2014-04-08 Thermoelectric transfer element

Country Status (2)

Country Link
CN (1) CN104979463B (en)
TW (1) TWI575786B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018054464A1 (en) * 2016-09-21 2018-03-29 Toyota Motor Europe Multilayer thin film and the preparation thereof
CN111403585B (en) * 2020-03-03 2023-09-12 河北大学 Optical and thermal detector based on bismuth-selenium-tellurium film material and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5429680A (en) * 1993-11-19 1995-07-04 Fuschetti; Dean F. Thermoelectric heat pump
US5817188A (en) * 1995-10-03 1998-10-06 Melcor Corporation Fabrication of thermoelectric modules and solder for such fabrication
US7629531B2 (en) * 2003-05-19 2009-12-08 Digital Angel Corporation Low power thermoelectric generator
TWI237884B (en) * 2004-01-09 2005-08-11 Ind Tech Res Inst Microelectronic thermoelectric device and method of manufacture
US20110000224A1 (en) * 2008-03-19 2011-01-06 Uttam Ghoshal Metal-core thermoelectric cooling and power generation device
US8748726B2 (en) * 2009-08-17 2014-06-10 Laird Technologies, Inc. Synthesis of silver, antimony, and tin doped bismuth telluride nanoparticles and bulk bismuth telluride to form bismuth telluride composites
TW201320418A (en) * 2011-11-04 2013-05-16 Nat Univ Tsing Hua Highly efficient thermoelectric material

Also Published As

Publication number Publication date
CN104979463B (en) 2017-10-20
CN104979463A (en) 2015-10-14
TWI575786B (en) 2017-03-21

Similar Documents

Publication Publication Date Title
Li et al. Chip-level thermoelectric power generators based on high-density silicon nanowire array prepared with top-down CMOS technology
JP4881919B2 (en) Thermoelectric generator with thermoelectric element
JP4290197B2 (en) Low power thermoelectric generator
US7777126B2 (en) Thermoelectric device with thin film elements, apparatus and stacks having the same
TWI473310B (en) Thermoelectric module device with thin film elements and fabrication thereof
JP2003533031A5 (en)
JP2007066987A (en) Thermoelement device and thermoelectric module
JP2006507690A (en) Transformer thermoelectric device
US9812629B2 (en) Thermoelectric conversion structure and its use in heat dissipation device
US20120145209A1 (en) Thermoelectric element and thermoelectric module including the same
TWI575786B (en) Thermoelectric transfer element
KR20120080820A (en) Thermoelectric module
TWI443882B (en) Thermoelectric apparatus and method of fabricating the same
Nimmagadda et al. Materials and devices for on-chip and off-chip peltier cooling: A review
CN101764109A (en) Thermoelectric cooler for semiconductor devices with tsv
RU2604180C1 (en) Thermoelectric energy converter
JP4927822B2 (en) Formable Peltier heat transfer element and method for manufacturing the same
KR102343090B1 (en) Thermo electric module
US20130160808A1 (en) Thermoelectric generating apparatus and module
US20080149159A1 (en) Thermoenergy devices and methods for manufacturing same
KR101411437B1 (en) Thermoelectric Device, Array, Module, Generating Apparatus, Thermal Sensor, Peltier Apparatus and the Method thereof
KR20170010647A (en) Thermo electric element and cooling apparatus comprising the same
Condos et al. Optimisation of Wearable Thermoelectric Generators
US20170005251A1 (en) Thermoelectric device
US20220310898A1 (en) Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and optical sensor