TW201538925A - Non-contact measurement device and method for object space information and the method thereof for computing the path from capturing the image - Google Patents
Non-contact measurement device and method for object space information and the method thereof for computing the path from capturing the image Download PDFInfo
- Publication number
- TW201538925A TW201538925A TW103112868A TW103112868A TW201538925A TW 201538925 A TW201538925 A TW 201538925A TW 103112868 A TW103112868 A TW 103112868A TW 103112868 A TW103112868 A TW 103112868A TW 201538925 A TW201538925 A TW 201538925A
- Authority
- TW
- Taiwan
- Prior art keywords
- image
- point
- depth
- tested
- compensation angle
- Prior art date
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
本發明係一種物件空間資訊量測裝置與方法,特別是一種非接觸式物件空間資訊量測裝置與方法及取像路徑的計算方法。 The invention relates to an object space information measuring device and method, in particular to a non-contact object space information measuring device and method and a calculating method of an image taking path.
隨著工業的蓬勃發展,傳統二維的檢測方式已經無法滿足複雜的待測物體,因此目前市面上使用三次元量測儀來進行這種複雜待測物體的量測。一般來說三次元量測儀可以分成接觸式與非接觸式兩種,接觸式的三次元量測儀是直接利用探針接觸待測物體來量測尺寸,此種方式的缺點是速度較慢而且也會有傷害待測物體表面之疑慮。近年來,非接觸雷射測距掃描方法廣泛應用於工業自動化,隨著製程能力的提升,在量測的準確性與速度的要求也逐漸提升。為大幅加速整個測量的速度,在雷射測距掃描方法中,會以攝影機結合雷射結構光條紋取代單一雷射光點,將雷射條紋對待測物體進行掃描,以建立正確之工件模型。但當待測物體尺寸較大卻又要求一定的解析及量測精度時,雷射掃描量測的範圍便會隨著高倍率攝 影機的視野縮小而減少,而若物體又非一直線形狀,便無法透過驅動雷射與攝影機沿單一軸向完成全面物體之掃描。 With the vigorous development of industry, the traditional two-dimensional detection method can not meet the complex object to be tested. Therefore, the three-dimensional measuring instrument is currently used on the market to measure the complex object to be tested. Generally, the three-dimensional measuring instrument can be divided into two types: contact type and non-contact type. The contact type three-dimensional measuring instrument directly measures the size by using the probe to contact the object to be tested, and the disadvantage of this method is that the speed is slow. There are also doubts about the surface of the object to be tested. In recent years, non-contact laser ranging scanning methods have been widely used in industrial automation. With the improvement of process capability, the accuracy and speed requirements of measurement have gradually increased. In order to greatly accelerate the speed of the whole measurement, in the laser ranging scanning method, a single laser spot is replaced by a camera combined with a laser structured light stripe, and the laser stripe is scanned to obtain a correct workpiece model. However, when the size of the object to be tested is large but requires a certain resolution and measurement accuracy, the range of the laser scanning measurement will be taken with high magnification. The field of view of the camera is reduced and reduced, and if the object is not in a straight line shape, it is impossible to scan the entire object in a single axial direction by driving the laser and the camera.
一般上述問題雖可透過手動教導移動單元的掃描移動路徑或輸入已知待測物體的三維工程CAD圖面,使移動單元完成物體全面掃描量測,但透過手動教導非常費時且需專業人員進行操作,而大部分要即時進行量測的物體又不一定具有三維工程CAD圖面,且輸入圖面後需進行一定程序的空間座標轉換校正才能使移動單元符合工程CAD圖面所形成之路徑,因此待測物體需定點或設計治具固定工件擺放姿態與位置,否則工程CAD圖面座標又必須重新校正一次座標,如此使得雷射掃描量測或空間物體形貌重建之工作變得困難不易實現。 Generally speaking, the above problem can be achieved by manually teaching the scanning movement path of the mobile unit or inputting the 3D engineering CAD drawing of the known object to be tested, so that the mobile unit can complete the full scan measurement of the object, but the manual teaching is very time consuming and requires professional operation. However, most of the objects to be measured immediately do not necessarily have a three-dimensional engineering CAD drawing, and the space coordinate conversion correction of a certain program is required after inputting the drawing surface, so that the mobile unit conforms to the path formed by the engineering CAD drawing, The object to be tested needs to be fixed or designed to fix the posture and position of the workpiece. Otherwise, the coordinate of the CAD drawing of the engineering must be recalibrated once, which makes the work of laser scanning measurement or reconstruction of the shape of the space object difficult. .
本揭露提出一種非接觸式物件空間資訊量測裝置與方法及取像路徑的計算方法,可經由雷射掃描裝置掃描及時得到的三維待測物體空間訊息資訊,計算出下一個雷射掃描裝置以及攝影機的移動掃描位置與方向,解決必須事先建立完整的待測物體掃描路徑,或給予已知待測物體模型資訊的問題,避免耗費較長的時間在進行教導程序以及需專業人士操作之問題,進而大幅提昇工件及時量測與形貌重建能力。 The present disclosure provides a non-contact object space information measuring device and method and a method for calculating an image capturing path, which can scan a spatial information information of a three-dimensional object to be measured in time through a laser scanning device, and calculate a next laser scanning device and The camera scans the position and direction of the camera, and solves the problem that the complete scan path of the object to be tested must be established in advance, or the information of the model of the object to be tested is given, so as to avoid the problem of requiring a long time for the teaching process and the operation of the professional. In turn, the ability of the workpiece to measure and reconstruct the shape is greatly improved.
本揭露旨在提供一種非接觸式物件空間資訊量測裝置與方法及取像路徑的計算方法,此架構是利用二維的攝影機視覺量測搭配雷射掃描裝置的技術來達到非接觸式三維視覺量測。如第1圖所示,主要先透過攝影機與中央處理單元給予雷射掃描裝置之初始移動路徑,驅動移動控制單元將部分待測物體的三維資訊擷取出來,接下來再利用此三維資訊估測出雷射掃 描裝置與攝影機的移動路徑,隨著及時估測之結果推測雷射掃描裝置與攝影機的下一個移動路徑,當中若遇到待測物體三維曲面轉彎或起伏,雷射掃描裝置與攝影機,會隨待測物體之曲面而偏擺或轉彎,進而達成三維物件量測。 The present disclosure aims to provide a non-contact object space information measuring device and method and a method for calculating an image capturing path, which is to realize non-contact three-dimensional vision by using a two-dimensional camera visual measurement and laser scanning device technology. Measure. As shown in FIG. 1 , the first moving path of the laser scanning device is firstly transmitted through the camera and the central processing unit, and the mobile control unit is driven to extract the three-dimensional information of the object to be tested, and then the three-dimensional information is estimated. Laser sweep The moving path of the drawing device and the camera, and the next moving path of the laser scanning device and the camera are estimated along with the result of the timely estimation. If the three-dimensional curved surface of the object to be tested is turned or undulated, the laser scanning device and the camera will follow The surface of the object to be tested is yawed or turned to achieve three-dimensional object measurement.
本揭露提供之一實施例,係一種非接觸式物件空間資訊量測裝置,包括:攝影機,係為取得一待測物體的一影像;雷射掃描裝置,係為掃描該待測物體;移動平台,係為提供該攝影機及該雷射掃描裝置固定在該移動平台上;移動控制單元,係為控制該移動平台於一三度空間內移動;以及中央處理單元,係連結該移動控制單元,並經由該移動控制單元控制該攝影機的取像角度,及該雷射掃描裝置的掃描角度;其中,該中央處理單元係執行一初始掃描定位以及一取像路徑補償。 The disclosure provides an embodiment of a non-contact object space information measuring device, comprising: a camera for acquiring an image of an object to be tested; a laser scanning device for scanning the object to be tested; Providing the camera and the laser scanning device fixed on the mobile platform; the mobile control unit is configured to control the mobile platform to move in a three-dimensional space; and the central processing unit is coupled to the mobile control unit, and The image capturing angle of the camera and the scanning angle of the laser scanning device are controlled via the movement control unit; wherein the central processing unit performs an initial scanning positioning and an image capturing path compensation.
本揭露提供之另一實施例,係一種非接觸式取像路徑的計算方法,用以驅動一移動平台,其中一攝影機以及一雷射掃描裝置係固定在該移動平台上,其步驟包括:進行一初始掃描定位步驟,根據由該攝影機所擷取之一待測物體的一影像,取得該待測物體的一主軸方向θ p ;以及進行一取像路徑補償步驟,根據由該雷射掃描裝置沿該主軸方向θ p 掃描該待測物體的複數影像,取得一第一時間點的一第一平面方向的一轉彎補償角度△θα以及一第二平面方向的一深度偏擺補償角度△θβ,進而取得一第二時間點的相對應該主軸方向θ p ’,當於該第一時間點進入一第二時間點時,將該雷射掃描裝置的一掃描線導向該第二時間點的相對應該主軸方向θ p ’,以建立一取像路徑。 Another embodiment provided by the present disclosure is a method for calculating a non-contact image taking path for driving a mobile platform, wherein a camera and a laser scanning device are fixed on the mobile platform, and the steps include: performing An initial scanning positioning step of obtaining a spindle direction θ p of the object to be tested according to an image captured by the camera; and performing an image capturing path compensation step according to the laser scanning device Scanning the complex image of the object to be tested along the spindle direction θ p to obtain a turn compensation angle Δθ α in a first plane direction at a first time point and a depth yaw compensation angle Δθ in a second plane direction And obtaining a corresponding spindle direction θ p ' at a second time point, and when entering the second time point at the first time point, directing a scan line of the laser scanning device to the second time point The spindle direction θ p ' is relatively opposed to establish an image capturing path.
本揭露再提供之另一實施例,係一種非接觸式物件空間資訊量測方法,用以驅動一移動平台,其中一攝影機以及一雷射掃描裝置係固定在該 移動平台上,其步驟包括:進行一初始掃描定位步驟,根據由該攝影機所擷取之一待測物體的一影像,取得該待測物體的一主軸方向θ p ;進行一取像路徑補償步驟,根據由該雷射掃描裝置沿該主軸方向θ p 掃描該待測物體的複數影像,取得一第一時間點的一第一平面方向的一轉彎補償角度△θα以及一第二平面方向的一深度偏擺補償角度△θβ,進而取得一第二時間點的相對應該主軸方向θ p ’,當於該第一時間點進入一第二時間點時,將該雷射掃描裝置的一掃描線導向該第二時間點的相對應該主軸方向θ p ’;以及進行該待測物體的量測步驟,經由該初始掃描定位步驟以及該取像路徑補償步驟,量測該待測物體的尺寸。 Another embodiment of the present disclosure is a non-contact object space information measuring method for driving a mobile platform, wherein a camera and a laser scanning device are fixed on the mobile platform, and the steps thereof include: Performing an initial scan positioning step of obtaining a main axis direction θ p of the object to be tested according to an image captured by the camera; performing an image path compensation step according to the laser scanning device Scanning the complex image of the object to be tested along the spindle direction θ p to obtain a turn compensation angle Δθ α in a first plane direction at a first time point and a depth yaw compensation angle Δθ in a second plane direction And obtaining a corresponding spindle direction θ p ' at a second time point, and when entering the second time point at the first time point, directing a scan line of the laser scanning device to the second time point relative to the major axis direction to be θ p '; and performing the step of measuring the object to be measured, through this initial positioning step and scan imaging path compensation step, measuring the object to be measured Inch.
11‧‧‧攝影機 11‧‧‧ camera
12‧‧‧雷射掃描裝置 12‧‧‧ Laser scanning device
13‧‧‧中央處理單元 13‧‧‧Central Processing Unit
14‧‧‧移動平台 14‧‧‧Mobile platform
15‧‧‧待測物體 15‧‧‧ objects to be tested
16‧‧‧移動控制單元 16‧‧‧Mobile Control Unit
17‧‧‧雷射掃描線 17‧‧‧Laser scan line
21~22‧‧‧步驟21~22 21~22‧‧‧Steps 21~22
31~39‧‧‧步驟31~39 31~39‧‧‧Steps 31~39
第1圖 非接觸式物件空間資訊量測裝置之示意圖。 Figure 1 Schematic diagram of a non-contact object space information measuring device.
第2圖 初始掃描定位步驟之示意圖。 Figure 2 Schematic diagram of the initial scan positioning step.
第3圖 取像路徑補償步驟之示意圖。 Figure 3 Schematic diagram of the image path compensation step.
第4圖 雷射掃描裝置的一掃描線導向第二時間點的相應該主軸方向以建立取像路徑之示意圖。 Figure 4 A scan line of the laser scanning device is directed to the corresponding direction of the main axis at a second point in time to establish a schematic representation of the image taking path.
第5A圖 單一雷射掃描線的中間點示意圖。 Figure 5A Schematic diagram of the midpoint of a single laser scan line.
第5B圖 連續雷射掃描線的中間點計算△θα轉彎補償角度之示意圖。 Fig. 5B is a schematic diagram of calculating the Δθ α turning compensation angle at the intermediate point of the continuous laser scanning line.
第6A圖 起點(x s ,z s )與終點(x e ,z e )的深度差異示意圖。 Figure 6A is a schematic diagram showing the difference in depth between the starting point ( x s , z s ) and the ending point ( x e , z e ).
第6B圖 以起點(x s ,z s )與終點(x e ,z e )的深度差異,計算第n條掃描線與第n+k條掃描線之深度偏擺角度△θβ示意圖。 In Fig. 6B , the depth yaw angle Δθ β of the nth scan line and the n+th scan line is calculated from the difference in depth between the starting point ( x s , z s ) and the end point ( x e , z e ).
第7A圖 粗箭頭為θ p 原移動方向示意圖。 The thick arrow in Fig. 7A is a schematic diagram of the original moving direction of θ p .
第7B圖 粗箭頭為根據轉彎補償角度△θα與深度偏擺角度△θβ變動修正後之移動方向示意圖。 The thick arrow in Figure 7B is A schematic diagram of the movement direction after the correction of the turning compensation angle Δθ α and the depth yaw angle Δθ β .
為達成本揭露之基本目的,以下將以具體實施例來說明技術手段、特點。本揭露方法可分為兩項主要流程,分為初始掃描定位步驟以及取像路徑補償步驟以提供自動掃描量測。初始掃描定位步驟如第2圖所示,並請參照第1圖,其中步驟21,係攝影機11辨識物體位置以進行初定位,首先使用攝影機11對工作區域進行取像,當工作區域未放置任何物體時,取得影像作為基本影像T1,當物體擺放入工作區域時,攝影機11所取得之影像為影像T2,只要將影像T1與T2相減,即可找出畫面中置放物體的位置,步驟22,係辨識物體之主軸方向θp,透過影像端點或邊界點,舉例以空間矩量法與邊界偵測法,使用二次空間矩量(Second order spatial moments)演算法可計算出物體的形心及長軸方向,此目的是為了取得掃描物體一起始掃描方向θ p ,而θ p 即係主軸方向。假設物體可以橢圓形狀表示,可令區域R為代表中心在原點的橢圓,則R可以表示成,R={(x,y)|dx 2+2exy+fy 2 1},橢圓方程式之係數d,e,f與二次向量矩μ xx ,μ yy 及μ xy 之間有下列關係:
請參考第4圖,其中主軸方向θ p 在X-Y平面上的轉彎補償角度係△θα,若主軸θ p 未落於待測物體15之走向上,則修正θ p 將掃描線引導回待測物體15之走向。可透過計算出當前掃描線的中間點:
其中雷射掃描線17係由雷射掃描裝置12掃描時產生。 The laser scanning line 17 is generated when scanned by the laser scanning device 12.
請參考第5A圖,係單一雷射掃描線17中間點之示意圖。計算每一條掃描線之中間點(xm,ym)位置後,請參考第5B圖,每第n條到第n+k條掃描線可計算方向角度差的轉彎補償角度△θα: ,其中x座標與y座標右下標之m係指每一掃描線之中間點,右下標之n+k、n+k-1係指第n+k條掃描線以及第n+k-1條掃描線。 Please refer to FIG. 5A, which is a schematic diagram of the intermediate point of a single laser scanning line 17. After calculating the position of the intermediate point (x m , y m ) of each scanning line, refer to Figure 5B. The turning compensation angle Δθ α can be calculated from the nth to the n+thth scanning lines. Wherein the x coordinate and the y coordinate lower subscript m refer to the middle point of each scan line, the right subscript n+k, n+k-1 refers to the n+kth scan line and the n+k- 1 scan line.
請參考第6A圖所示,每條掃描線又可以計算出本身在X-Z平面上的深度偏擺角度△θβ,利用起點(x s ,z s )與終點(x e ,z e )的深度差異,請參考第6B圖,計算第n條掃描線與第n+k條掃描線之深度偏擺角度△θβ,作為下一個掃描方向偏擺角度之修正依據,,其中x座標與z座標右下標之e係指每一掃描線終點;x座標與z座標右下標之s係指每一掃描線起點;右下標中的n+k、1係指每一掃描線第n+k條掃描線以及第1條掃描線。主軸方向θ p 即可根據所求出的X-Z平面角度差的深度偏擺角度△θβ,修正即時掃描之路徑,有效跟隨物體表面的變化、走向及扭曲程度,自動完成全物體的掃描。 Referring to Figure 6A, each scan line can calculate its depth yaw angle Δθ β on the XZ plane, using the depths of the starting point ( x s , z s ) and the end point ( x e , z e ). For the difference, please refer to FIG. 6B to calculate the depth yaw angle Δθ β of the nth scan line and the n+kth scan line as the correction basis for the yaw angle of the next scan direction. Wherein the x coordinate and the z coordinate lower right standard e refer to the end point of each scanning line; the x coordinate and the z coordinate lower right standard s refer to the starting point of each scanning line; the n+k, 1 index in the lower subscript The n+kth scan line and the 1st scan line of each scan line. The main axis direction θ p can correct the path of the instant scanning according to the obtained depth yaw angle Δθ β of the XZ plane angular difference, and effectively follow the change, the trend and the degree of distortion of the surface of the object, and automatically complete the scanning of the whole object.
請參考第7A圖所示,粗箭頭為θ p 為原移動方向,請參考第7B圖所示而粗箭頭為根據轉彎補償角度△θα與深度偏擺角度△θβ,修正後之移動方向。根據第3圖取像路徑補償步驟示意圖的自動掃描量測流程,當深度值的變化小於一設定閥值T Z 且有一者等於0時,則該掃描作動完成,停止掃描。 Please refer to Figure 7A. The thick arrow is θ p for the original moving direction. Please refer to Figure 7B for the thick arrow. According to the turning compensation angle Δθ α and the depth yaw angle Δθ β , the corrected moving direction is corrected. According to the automatic scanning measurement process of the image path compensation step diagram according to FIG. 3, when the change of the depth value is less than a set threshold T Z and one of them is equal to 0, the scanning operation is completed, and the scanning is stopped.
此外,本裝置可為具有X、Y、Z與θ,組合成多軸的移動平台14或者機械手臂,但不以此為限,用於將攝影機11與雷射掃描裝置12移到中央處理單元13所規劃的移動位置,因此上述實施例的第一平面方向(X-Y平面)的一轉彎補償角度△θα以及第二平面方向(X-Z平面)的一深度偏擺補償角 度△θβ,皆可改為第一平面方向(X-Z平面)的一轉彎補償角度△θα以及第二平面方向(X-Y平面)的一深度偏擺補償角度△θβ,或是可改為第一平面方向(Y-Z平面)的一轉彎補償角度△θα以及第二平面方向(Y-X平面)的一深度偏擺補償角度△θβ,都是依本發明專利範圍所做的均等變化與修飾。 In addition, the device may be a mobile platform 14 or a robot arm having X, Y, Z and θ combined into multiple axes, but not limited thereto, for moving the camera 11 and the laser scanning device 12 to the central processing unit. 13 planned moving positions, so a turning compensation angle Δθ α of the first plane direction (XY plane) of the above embodiment and a depth yaw compensation angle Δθ β of the second plane direction (XZ plane) can be Change to a turn compensation angle Δθ α in the first plane direction (XZ plane) and a depth yaw compensation angle Δθ β in the second plane direction (XY plane), or change to the first plane direction (YZ plane) A turn compensation angle Δθ α and a depth yaw compensation angle Δθ β in the second plane direction (YX plane) are equal variations and modifications according to the scope of the present invention.
本揭露之一非接觸式物件空間資訊量測裝置,如第1圖所示,其係包括有:攝影機11,係為取得待測物體15的影像;雷射掃描裝置12,係為掃描待測物體15的輪廓;移動平台14,攝影機11以及雷射掃描裝置12係固定在該移動平台14上;一移動控制單元16,係為控制移動平台14於一三度空間內移動;以及中央處理單元13,係連結移動控制單元16,並經由移動控制單元16控制攝影機11的取像角度,以及雷射掃描裝置12的掃描角度;其中,中央處理單元13係執行一自適性初始掃描定位,以及一自適性取像路徑補償。中央處理單元13,係包括;計算單元,係根據待測物體15的影像,取得待測物體15的一主軸方向,並執行自適性初始掃描定位,根據雷射掃描裝置12掃描所得到的一深度資訊,計算出一轉彎補償角度△θα以及一深度偏擺補償角度△θβ;以及,座標轉換單元,根據待測物體15的轉彎補償角度△θα以及深度偏擺補償角度△θβ,執行自適性取像路徑補償,以轉換為移動路徑並輸出至移動控制單元16。 A non-contact object space information measuring device according to the present disclosure, as shown in FIG. 1, includes: a camera 11 for acquiring an image of an object 15 to be tested; and a laser scanning device 12 for scanning for testing The contour of the object 15; the mobile platform 14, the camera 11 and the laser scanning device 12 are fixed on the mobile platform 14; a mobile control unit 16 for controlling the movement of the mobile platform 14 in a three-dimensional space; and a central processing unit 13, the mobile control unit 16 is connected, and the imaging angle of the camera 11 and the scanning angle of the laser scanning device 12 are controlled via the movement control unit 16; wherein the central processing unit 13 performs an adaptive initial scanning positioning, and a Adaptive image acquisition path compensation. The central processing unit 13 includes a calculation unit that obtains a major axis direction of the object 15 to be tested according to the image of the object 15 to be tested, and performs an adaptive initial scan positioning, according to a depth obtained by the laser scanning device 12 scanning. Information, calculating a turning compensation angle Δθ α and a depth yaw compensation angle Δθ β ; and a coordinate conversion unit according to the turning compensation angle Δθ α of the object 15 to be measured and the depth yaw compensation angle Δθ β , The adaptive image path compensation is performed to be converted into a moving path and output to the mobile control unit 16.
中央處理單元13執行自適性初始掃描定位,更包括:一初始掃描定位模組,請參考第3圖,其係取得由攝影機11所擷取之待測物體15的影像,並取得待測物體15的主軸方向θ p ,該初始掃描定位模組取得攝影機11對一工作區域之一第1影像,再取得當待測物體15移入工作區域後之一第2影像,將該第1影像與該第2影像相減,以取得該待測物體15的一擷取位置影像;初始掃描定位模組舉例根據二次空間矩量(Second order spatial moments)演算法,取得擷取位置影像的形心及長軸方向,建立主軸方向θ p ;該初始掃描定位模組驅動該雷射掃描裝置12沿該主軸方向θ p 找尋一邊界點,其中舉例係根據Sobel梯度邊界偵測法。 The central processing unit 13 performs an adaptive initial scan positioning, and further includes: an initial scan positioning module. Referring to FIG. 3, the image of the object 15 to be measured captured by the camera 11 is obtained, and the object to be tested is obtained. The main axis direction θ p , the initial scan positioning module acquires the first image of the camera 11 for one working area, and obtains the second image after the object 15 to be tested moves into the working area, and the first image and the first image 2 image subtraction to obtain a captured position image of the object 15 to be tested; the initial scan positioning module example obtains the centroid and length of the captured position image according to a second order spatial moments algorithm. In the axial direction, the main axis direction θ p is established; the initial scanning positioning module drives the laser scanning device 12 to find a boundary point along the main axis direction θ p , which is exemplified by the Sobel gradient boundary detection method.
中央處理單元13,執行自適性取像路徑補償,更包括:一取像路徑補償模組,請參考第3圖,其係取得由雷射掃描裝置12沿主軸方向掃描待測物體15的複數影像,根據一第一時間點的一第一平面方向的一轉彎補償角度△θα以及一第二平面方向的一深度偏擺補償角度△θβ,取得一第二時間點的相對應主軸方向θ p 後,於第一時間點進入一第二時間點時,將雷射掃描裝置12的一掃描線導向該第二時間點的相應主軸方向θ p ,以建立取像路徑,由該初始掃描定位模組中取得的主軸方向θ p ,驅動移動控制單元16控制雷射掃描裝置12,沿主軸方向θ p 連續產生掃描線掃描量測,每一條掃描線找出深度值變化最大的起點與終點座標,同一條掃描線的一起點深度值及一終點深度值,若大於或等於一閥值Tz,則每第n掃描線到第n+k掃描線,由中央處理單元13計算出轉彎補償角度△θα以及深度偏擺補償角度△θβ,之後再繼續由該初始掃描定位步驟中取得的主軸方向θ p ,驅動移動控制單元16以控制雷射掃描裝置12,沿主軸方向θ p 連續產生掃描線掃描量測,同一條該掃描線的一起點深度值及一終點深度值,若小於一閥值Tz,而且當起點深度值的深度值變化,或該終點深度值的深度值變化有一者為0時,則移動控制單元16控制雷射掃描裝置12,沿掃描主軸方向θ p 旋轉+90°或-90°,之後再繼續驅動該移動控制單元16控制該雷射掃描裝置12,沿該主軸方向θ p 連續產生掃描線掃描量測,若同一條該掃描線的一起點深度值或一終點深度值若小於一閥值Tz,且當起點深度值的深度值變化,或該終點深度值的深度值變化有一不是0時,則移動控制單元16停止掃描。 The central processing unit 13 performs adaptive image capturing path compensation, and further includes: an image capturing path compensation module. Referring to FIG. 3, the image capturing the plurality of images of the object 15 to be tested by the laser scanning device 12 in the direction of the main axis is obtained. Obtaining a corresponding bending direction θ of a second time point according to a turning compensation angle Δθ α in a first plane direction at a first time point and a depth yaw compensation angle Δθ β in a second plane direction After p enters a second time point at the first time point, a scan line of the laser scanning device 12 is directed to the corresponding spindle direction θ p at the second time point to establish an image capturing path, and the initial scanning position is established. The spindle direction θ p obtained in the module drives the movement control unit 16 to control the laser scanning device 12 to continuously generate scanning line scanning measurements along the main axis direction θ p , and each scanning line finds the starting point and the ending point at which the depth value changes the most. The point depth value and the end point depth value of the same scanning line are greater than or equal to a threshold value T z , and the turning processing is calculated by the central processing unit 13 every nth scanning line to the n+k scanning line. Compensating the angle Δθ α and the depth yaw compensation angle Δθ β , and then continuing the spindle direction θ p obtained in the initial scanning positioning step, driving the movement control unit 16 to control the laser scanning device 12 along the main axis direction θ p Continuously generating scan line scan measurement, the same point depth value and an end point depth value of the same scan line, if less than a threshold T z , and when the depth value of the start depth value changes, or the depth value of the end depth value When there is a change of 0, the movement control unit 16 controls the laser scanning device 12 to rotate +90° or -90° in the scanning spindle direction θ p , and then continues to drive the movement control unit 16 to control the laser scanning device 12 . Scanning line scan measurement is continuously generated along the main axis direction θ p . If the same point depth value or an end depth value of the same scan line is less than a threshold value T z , and the depth value of the starting depth value changes, or When the depth value change of the end point depth value is not 0, the movement control unit 16 stops scanning.
本揭露之一非接觸式取像路徑的計算方法,係用以驅動一移動平台 14,其中攝影機11以及雷射掃描裝置12係固定在該移動平台14上,其步驟包括:進行一初始掃描定位步驟,如第2圖所示,係取得由攝影機11所擷取之待測物體15的影像,並輸出所取得待測物體15的主軸方向θ p ;以及進行一取像路徑補償步驟,如第3圖所示,係取得由該雷射掃描裝置12沿該主軸方向掃描該待測物體15的複數影像,根據一第一時間點的一第一平面方向的一轉彎補償角度△θα以及一第二平面方向的一深度偏擺補償角度△θβ,一第二時間點的相對應主軸方向θ p 後,於該第一時間點進入一第二時間點時,將雷射掃描裝置12的一掃描線導向該第二時間點的相應主軸方向θ p ,以建立取像路徑。其中該初始掃描定位步驟,包括:取得攝影機11對一工作區域之第1影像,再取得待測物體15移入工作區域後第2影像,將第1影像與第2影像相減,以取得待測物體15的擷取位置影像;根據二次空間矩量(Second order spatial moments)演算法,取得擷取位置影像的形心及長軸方向,建立主軸方向θ p ;驅動雷射掃描裝置12沿主軸方向θ p 找尋一邊界點,其中係根據Sobel梯度邊界偵測法,其遮罩係,以 及。 The method for calculating a non-contact imaging path is used to drive a mobile platform 14, wherein the camera 11 and the laser scanning device 12 are fixed on the mobile platform 14, and the steps include: performing an initial scanning positioning. step, as shown by the line image acquired by the camera 11 captured the object to be measured 15, and outputs the object to be measured 15 in the major axis direction as θ p acquired FIG. 2; and performing a channel compensation image capturing step, as in the first As shown in FIG. 3, a plurality of images of the object 15 to be tested are scanned by the laser scanning device 12 along the main axis direction, and a turn compensation angle Δθ α and a first plane direction are used according to a first time point. a depth yaw compensation angle Δθ β in the second plane direction, after a corresponding spindle direction θ p at a second time point, when entering the second time point at the first time point, the laser scanning device 12 is A scan line is directed to the corresponding major axis direction θ p at the second point in time to establish an image capture path. The initial scan positioning step includes: obtaining a first image of the camera 11 for a working area, and then acquiring a second image after the object 15 to be moved into the working area, and subtracting the first image from the second image to obtain a test. The image of the captured position of the object 15; according to the second order spatial moments algorithm, the centroid and the long axis direction of the captured position image are obtained, and the spindle direction θ p is established; the laser scanning device 12 is driven along the main axis The direction θ p finds a boundary point, which is based on the Sobel gradient boundary detection method, and its mask system ,as well as .
該取像路徑補償步驟,如第3圖所示,係執行自動掃描量測,包括步驟31,由初始掃描定位步驟中取得的主軸方向θ p ,驅動移動控制單元16控制雷射掃描裝置12,沿主軸方向θ p 連續產生掃描線以掃描量測;步驟32,由每一條掃描線找出深度值變化最大的起點與終點座標;步驟33,判斷同一條掃描線的起點深度值,與終點深度值若大於或等於一閥值時,則每第n 條掃描線到第n+k條掃描線,如步驟34,由中央處理單元13計算出轉彎補償角度△θα,以及步驟35之深度偏擺補償角度△θβ,步驟36則根據轉彎補償角度△θα與深度偏擺補償角度△θβ,修正該主軸方向θ p ,之後回到步驟31驅動移動控制單元16控制該雷射掃描裝置12,沿修正後之主軸方向θ p ’連續產生掃描線掃描量測;於步驟33中,同一條該掃描線的一起點深度值,與一終點深度值若小於一閥值,而且當起點深度值的深度值變化,或該終點深度值的深度值變化有一者為0時,見步驟37,移動控制單元16控制該雷射掃描裝置12,見步驟38,沿主軸方向θp旋轉+90°或-90°後回到步驟31,繼續驅動該移動控制單元16控制該雷射掃描裝置12,沿主軸方向θ p 連續產生掃描線掃描量測;但於步驟33中,若同一條該掃描線的一起點深度值,或一終點深度值小於一閥值,且當起點深度值的深度值變化不是0,見步驟37,或該終點深度值的深度值變化不是0時,則移動控制單元16停止驅動掃描,見步驟39。 The image capturing path compensating step, as shown in FIG. 3, performs automatic scanning measurement, and includes the step 31 of driving the movement control unit 16 to control the laser scanning device 12 by the spindle direction θ p obtained in the initial scanning positioning step. The scan lines are continuously generated along the spindle direction θ p for scanning measurement; in step 32, the start point and the end point coordinate with the largest change in depth value are found by each scan line; and in step 33, the start point depth value and the end point depth of the same scan line are determined. If the value is greater than or equal to a threshold value, each of the n-th scan line to a first scan line n + k, in step 34, is calculated by the central processing unit 13 to compensate the turning angle △ θ α, step 35 and the depth of the partial The pendulum compensation angle Δθ β , step 36 corrects the main axis direction θ p according to the turning compensation angle Δθ α and the depth yaw compensation angle Δθ β , and then returns to step 31 to drive the movement control unit 16 to control the laser scanning device. 12, θ rear direction along the main axis of the correction p 'is continuously generated scan line measurement; in step 33, with a point of the scan line depth value together with an end point when the value is less than a threshold depth, And when the depth value of the change in depth value change starting point depth value, or the end point depth value has one of 0, see step 37, the movement control unit 16 controls the laser scanning device 12, see step 38, θ p in the major axis direction After rotating +90° or -90°, returning to step 31, continuing to drive the movement control unit 16 to control the laser scanning device 12, continuously generating scanning line scanning measurement along the main axis direction θ p ; but in step 33, if the same a point depth value of the scan line, or an end point depth value is less than a threshold value, and when the depth value change of the start depth value is not 0, see step 37, or the depth value change of the end depth value is not 0, then The mobile control unit 16 stops driving the scan, see step 39.
以上所述,乃僅記載本發明為呈現解決問題所採用的技術手段之較佳實施方式或實施例而已,並非用來限定本發明專利實施之範圍。即凡與本發明專利申請範圍文義相符,或依本發明專利範圍所做的均等變化與修飾,皆為本發明專利範圍所涵蓋。 The above description is only intended to describe the preferred embodiments or embodiments of the present invention, which are not intended to limit the scope of the invention. That is, the equivalent changes and modifications made in accordance with the scope of the patent application of the present invention or the scope of the invention are covered by the scope of the invention.
△θα‧‧‧轉彎補償角度 △θ α ‧‧‧turn compensation angle
△θβ‧‧‧深度偏擺補償角度 △θ β ‧‧‧depth yaw compensation angle
θ p ‧‧‧主軸方向 θ p ‧‧‧main axis direction
θ p ’‧‧‧修正後之主軸方向 θ p '‧‧‧corrected spindle direction
T Z ‧‧‧閥值 T Z ‧‧‧ threshold
Z S ‧‧‧起點深度值 Z S ‧‧‧ starting point depth value
Z e ‧‧‧終點深度值 Z e ‧‧‧end point depth value
21~22‧‧‧步驟21~22 21~22‧‧‧Steps 21~22
31~39‧‧‧步驟31~39 31~39‧‧‧Steps 31~39
Claims (20)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103112868A TWI493153B (en) | 2014-04-08 | 2014-04-08 | Non-contact measurement device and method for object space information and the method thereof for computing the path from capturing the image |
CN201410161954.0A CN104976950B (en) | 2014-04-08 | 2014-04-22 | Object space information measuring device and method and image capturing path calculating method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103112868A TWI493153B (en) | 2014-04-08 | 2014-04-08 | Non-contact measurement device and method for object space information and the method thereof for computing the path from capturing the image |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI493153B TWI493153B (en) | 2015-07-21 |
TW201538925A true TW201538925A (en) | 2015-10-16 |
Family
ID=54151607
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103112868A TWI493153B (en) | 2014-04-08 | 2014-04-08 | Non-contact measurement device and method for object space information and the method thereof for computing the path from capturing the image |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104976950B (en) |
TW (1) | TWI493153B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI565927B (en) * | 2015-10-30 | 2017-01-11 | 財團法人工業技術研究院 | Measurement system |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI571614B (en) * | 2015-08-06 | 2017-02-21 | 信泰光學(深圳)有限公司 | Self-propelled device and environment distance detector thereof |
TWI649659B (en) | 2017-10-27 | 2019-02-01 | 財團法人工業技術研究院 | Automatic optical detection image classification method, system and computer readable medium containing the same |
US11315231B2 (en) | 2018-06-08 | 2022-04-26 | Industrial Technology Research Institute | Industrial image inspection method and system and computer readable recording medium |
CN111070210B (en) * | 2020-01-02 | 2021-02-26 | 中车青岛四方机车车辆股份有限公司 | Workpiece positioning and calibrating method |
CN112902868A (en) * | 2021-01-20 | 2021-06-04 | 上海云铸三维科技有限公司 | Method and device for scanning surface topography along with contour |
CN112923889B (en) * | 2021-01-26 | 2023-03-14 | 杭州思锐迪科技有限公司 | Scanning method, device, three-dimensional scanning system, electronic device and storage medium |
TWI845450B (en) * | 2023-11-24 | 2024-06-11 | 國立臺北科技大學 | 3d object outline data establishment system based on robotic arm and method thereof |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2851063A1 (en) * | 1978-11-25 | 1980-06-04 | Cloos Gmbh Carl | DEVICE FOR AUTOMATICALLY GUIDING A WELDING GUN LONG A PRE-PROGRAMMED WELDING SEAM |
CN1730248A (en) * | 2005-08-20 | 2006-02-08 | 大连海事大学 | Reverse engineering robot system |
TWI309294B (en) * | 2006-07-19 | 2009-05-01 | Univ Nat Sun Yat Sen | 3-d profile measuring system |
CN201053864Y (en) * | 2006-11-04 | 2008-04-30 | 大连海事大学 | Intelligent holographic three-dimensional laser measuring device |
CN101000499A (en) * | 2006-12-18 | 2007-07-18 | 浙江大学 | Contour machining method and system based on multi-sensor integral measuring |
WO2010090673A1 (en) * | 2009-01-20 | 2010-08-12 | The Trustees Of Dartmouth College | Method and apparatus for depth-resolved fluorescence, chromophore, and oximetry imaging for lesion identification during surgery |
CN103229018A (en) * | 2010-10-27 | 2013-07-31 | 株式会社尼康 | Profile measuring apparatus, method for manufacturing structure, and structure manufacturing system |
US10036631B2 (en) * | 2012-05-01 | 2018-07-31 | Texas Department Of Transportation | System and method for measuring three-dimensional surface features |
-
2014
- 2014-04-08 TW TW103112868A patent/TWI493153B/en active
- 2014-04-22 CN CN201410161954.0A patent/CN104976950B/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI565927B (en) * | 2015-10-30 | 2017-01-11 | 財團法人工業技術研究院 | Measurement system |
Also Published As
Publication number | Publication date |
---|---|
CN104976950A (en) | 2015-10-14 |
TWI493153B (en) | 2015-07-21 |
CN104976950B (en) | 2017-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI493153B (en) | Non-contact measurement device and method for object space information and the method thereof for computing the path from capturing the image | |
CN110355754B (en) | Robot hand-eye system, control method, device and storage medium | |
CN108177143B (en) | Robot positioning and grabbing method and system based on laser vision guidance | |
US9279661B2 (en) | Information processing apparatus and information processing method | |
CN108534710B (en) | Single-line laser three-dimensional contour scanning device and method | |
JP5602392B2 (en) | Information processing apparatus, information processing method, and program | |
CN108458670B (en) | Three-dimensional profile scanning device and method of double-line laser | |
JP6324025B2 (en) | Information processing apparatus and information processing method | |
KR20190070875A (en) | Calibration and operation of vision-based manipulation systems | |
US7905031B1 (en) | Process for measuring a part | |
JP2005201824A (en) | Measuring device | |
JP6869159B2 (en) | Robot system | |
JP2016170050A (en) | Position attitude measurement device, position attitude measurement method and computer program | |
JP6180158B2 (en) | Position / orientation measuring apparatus, control method and program for position / orientation measuring apparatus | |
EP3322959B1 (en) | Method for measuring an artefact | |
KR101972432B1 (en) | A laser-vision sensor and calibration method thereof | |
TWI388797B (en) | Three - dimensional model reconstruction method and its system | |
CN109773589B (en) | Method, device and equipment for online measurement and machining guidance of workpiece surface | |
CN118115372A (en) | Workpiece defect detection system and method | |
JP2015007639A (en) | Information processing apparatus, information processing method and program | |
JP5481397B2 (en) | 3D coordinate measuring device | |
JP2019077026A (en) | Control device, robot system, and control device operating method and program | |
KR20090128177A (en) | Calibration apparatus for noncontact measuring system | |
JP2015132523A (en) | Position/attitude measurement apparatus, position/attitude measurement method, and program | |
Heikkilä et al. | Calibration procedures for object locating sensors in flexible robotized machining |