TW201537375A - Exercise guiding system, exercise guiding method and anaerobic threshold measuring method - Google Patents
Exercise guiding system, exercise guiding method and anaerobic threshold measuring method Download PDFInfo
- Publication number
- TW201537375A TW201537375A TW103136140A TW103136140A TW201537375A TW 201537375 A TW201537375 A TW 201537375A TW 103136140 A TW103136140 A TW 103136140A TW 103136140 A TW103136140 A TW 103136140A TW 201537375 A TW201537375 A TW 201537375A
- Authority
- TW
- Taiwan
- Prior art keywords
- heartbeat
- information
- module
- user
- value
- Prior art date
Links
Landscapes
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
Description
本揭露是有關於一種運動指引系統、運動指引方法及無氧閾值的量測方法,且特別是有關於利用使用者心跳期間資訊換算無氧閾值的運動指引系統、運動指引方法及無氧閾值的量測方法。 The present disclosure relates to a motion guidance system, a motion guidance method, and an anaerobic threshold measurement method, and more particularly to a motion guidance system, a motion guidance method, and an anaerobic threshold using information conversion anaerobic threshold values during a user's heartbeat. Measurement method.
綜觀各種健身方法及項目,根據其能量代謝及供能方式,可以歸結於三種基本運動形式,有氧運動、無氧運動及包含有氧運動及無氧運動的混合運動。一般來說,有氧運動為長時間、中低運動強度的鍛鍊形式,其透過脂肪代謝產生二氧化碳及水,可在運動過程中消耗體內脂肪故能減肥瘦身。無氧運動為短時間、高強度的鍛鍊形式,其主要通過ATP、磷酸肌酸代謝及醣代謝,在運動過程中消耗大量肌醣原及肝醣原,因此在減肥瘦身的效果較低。此外,無氧運動的代謝產物為乳酸或乳酸酯,若人體一直楚於無氧運動的狀態下,乳酸或乳酸酯將會迅速累積,造成 肌肉疲勞使人停止運動。 A comprehensive view of various fitness methods and projects, according to their energy metabolism and energy supply methods, can be attributed to three basic forms of exercise, aerobic exercise, anaerobic exercise and mixed exercise involving aerobic exercise and anaerobic exercise. In general, aerobic exercise is a long-term, low-intensity exercise form that produces carbon dioxide and water through fat metabolism, which can consume body fat during exercise and can lose weight. Anaerobic exercise is a short-term, high-intensity exercise form, which mainly consumes a lot of muscle glycogen and liver glycogen during exercise, mainly through ATP, phosphocreatine metabolism and glucose metabolism, so the effect of slimming is lower. In addition, the metabolite of anaerobic exercise is lactic acid or lactate. If the human body has been in a state of anaerobic exercise, lactic acid or lactate will accumulate rapidly, resulting in Muscle fatigue causes people to stop exercising.
一般常見的無氧運動判別指標包含最大攝氧量(Maximal Oxygen Uptake,VO2 max)及無氧閾值(Anaerobic Threshold,AT)。 Commonly used anaerobic exercise discriminating indicators include Maximal Oxygen Uptake (VO 2 max) and Anaerobic Threshold (AT).
最大攝氧量為一個人在海平面上從事最激烈的運動時,組織細胞所能消耗或利用的氧氣量的最大值。最大攝氧量可用來評估個人有氧作業能量及心肺耐力,並可藉以設定運動員的耐力運動訓練強度。一般來說,最大攝氧量的單位可用絕對的氧氣攝入量以L/min表示,或是用相對的單位體重攝入量以ml/kg/min表示。一般成年男性的最大攝氧量約在30-40ml/kg/min,而職業運動員如自行車選手或慢跑選手的最大攝氧量則可達80ml/kg/min。由於最大攝氧量的估測方法需要使用者配合從事激烈運動,因此對於年幼者或年長者並不適合。此外,最大攝氧量的檢測儀器價格高昂,不利於推廣到大眾市場。 The maximum oxygen uptake is the maximum amount of oxygen that tissue cells can consume or utilize when they are engaged in the most intense exercise at sea level. The maximum oxygen uptake can be used to assess individual aerobic energy and cardio endurance, and can be used to set the athlete's endurance exercise intensity. In general, the unit of maximum oxygen uptake can be expressed in L/min with absolute oxygen intake, or in ml/kg/min with relative unit weight intake. Generally, the maximum oxygen uptake of adult males is about 30-40ml/kg/min, while the maximum oxygen uptake of professional athletes such as bicycle players or joggers can reach 80ml/kg/min. Since the method of estimating the maximum oxygen uptake requires the user to engage in intense exercise, it is not suitable for young people or seniors. In addition, the maximum oxygen uptake detection instrument is expensive, which is not conducive to promotion to the mass market.
無氧閾值為人體的能量系統從有氧運動到無氧運動的轉折點,亦即,人體開始累積乳酸時,代謝的轉折點。無氧閾值隨著每個人體適能狀況不同而有所差異。無氧閾值的判定包含直接測量血液的乳酸值、換氣率及心跳頻率等。在實際測量時,前兩者的測定較為不便(必須抽血或需要昂貴儀器),而以量測心跳頻率最為簡便。 The anaerobic threshold is the turning point of the body's energy system from aerobic exercise to anaerobic exercise, that is, the turning point of metabolism when the human body begins to accumulate lactic acid. The anaerobic threshold varies with each person's fitness status. The determination of the anaerobic threshold includes direct measurement of the lactic acid value, ventilation rate, and heart rate of the blood. In the actual measurement, the measurement of the first two is inconvenient (the blood must be drawn or expensive equipment is required), and the measurement of the heart rate is the easiest.
相關技術揭露一種以心跳特定資料測定無氧閾值的方法,然而該方法是以系統預設的個人資料,包含年齡、體重、性別等資料來求得最高心率值作為無氧閾值的判斷基礎。然而,進 入無氧呼吸的心跳頻率並不一定是最高心率值。換言之,當兩位年齡相同,但體適能狀況不同的使用者採用該方法推算無氧閾值時,可能會產生與實際無氧閾值誤差的情況。 The related art discloses a method for determining an anaerobic threshold by using heartbeat specific data. However, the method is based on a system-predetermined personal data, including age, weight, sex, and the like, to obtain a maximum heart rate value as a basis for determining an anaerobic threshold. However, The heart rate of anaerobic respiration is not necessarily the highest heart rate. In other words, when two users of the same age but different physical fitness conditions use this method to estimate the anaerobic threshold, an error with the actual anaerobic threshold may occur.
因此,要如何改善無氧閾值的判定方法,並提供一個有效便利可依據個人體適能狀態分析無氧閾值,提供運動指引的運動指引系統,為業界待解決的問題。 Therefore, how to improve the anaerobic threshold determination method, and provide an effective and convenient way to analyze the anaerobic threshold according to the individual fitness status, and provide a motion guidance system for motion guidance, which is an issue to be solved in the industry.
本揭露提供一種運動指引系統、運動指引方法及無氧閾值的量測方法,其在無需使用昂貴儀器的條件下,量測使用者的心跳期間資訊以產生對應使用者的無氧閾值,從而提供使用者適當的運動指引。 The present disclosure provides a motion guidance system, a motion guidance method, and an anaerobic threshold measurement method for measuring a user's heartbeat period information without using an expensive instrument to generate an anaerobic threshold of a corresponding user, thereby providing User appropriate exercise guidelines.
本揭露的範例實施例提出一種運動指引系統,其包括感測模組、計算模組、轉換模組及輸出模組。感測模組持續記錄使用者從事運動時的心跳期間資訊。計算模組耦接至感測模組,其中計算模組從感測模組接收對應使用者的心跳期間資訊並對心跳期間資訊進行心率變異分析以得到第一輸出值。轉換模組耦接至計算模組,其中轉換模組從計算模組接收第一輸出值,根據門檻值識別第一輸出值之中的臨界輸出值,並且依據臨界輸出值獲取對應使用者的無氧閾值,其中對應使用者的無氧閾值為心跳期間資訊之中對應臨界輸出值的第一心率值。輸出模組耦接至轉換模組,其中輸出模組從轉換模組接收無氧閾值,並且根據無氧閾值 輸出使用者的運動指引。 The exemplary embodiment of the present disclosure provides a motion guidance system including a sensing module, a computing module, a conversion module, and an output module. The sensing module continuously records the information during the heartbeat of the user while exercising. The computing module is coupled to the sensing module, wherein the computing module receives the heartbeat period information corresponding to the user from the sensing module and performs heart rate variability analysis on the heartbeat information to obtain the first output value. The conversion module is coupled to the computing module, wherein the conversion module receives the first output value from the computing module, identifies a critical output value among the first output values according to the threshold value, and acquires the corresponding user according to the critical output value. The oxygen threshold, wherein the anaerobic threshold corresponding to the user is the first heart rate value corresponding to the critical output value in the information during the heartbeat. The output module is coupled to the conversion module, wherein the output module receives the anaerobic threshold from the conversion module and is based on the anaerobic threshold Output the user's movement guidelines.
本揭露的範例實施例提出一種運動指引方法,包括持續記錄使用者從事運動時的心跳期間資訊。本運動指引方法也包括對心跳期間資訊進行心率變異分析以得到第一輸出值。本運動指引方法也包括根據門檻值識別第一輸出值之中的臨界輸出值,並且依據臨界輸出值獲取對應使用者的無氧閾值,其中對應使用者的無氧閾值為心跳期間資訊之中對應臨界輸出值的第一心率值。本運動指引方法更包括根據無氧閾值輸出使用者的運動指引。 The exemplary embodiment of the present disclosure proposes a motion guidance method that includes continuously recording information during a heartbeat during a user's exercise. The exercise guidance method also includes performing heart rate variability analysis on the information during the heartbeat to obtain the first output value. The motion guiding method also includes identifying a critical output value among the first output values according to the threshold value, and acquiring an anaerobic threshold value corresponding to the user according to the critical output value, wherein the corresponding user's anaerobic threshold value is corresponding to the information during the heartbeat period The first heart rate value of the critical output value. The exercise guidance method further includes outputting the user's exercise guide according to the anaerobic threshold.
本揭露的範例實施例提出一種無氧閾值的量測方法,其包括計算對應使用者的心跳期間資訊的時間序列。本無氧閾值的量測方法也包括對時間序列作運算以產生心跳期間自我相似性參數。本無氧閾值的量測方法更包括根據門檻值識別心跳期間自我相似性參數之中的臨界參數,並且依據臨界參數獲取對應使用者的無氧閾值,其中對應使用者的無氧閾值為心跳期間資訊之中對應臨界參數的第一心率值。 The exemplary embodiment of the present disclosure proposes an anaerobic threshold measurement method that includes calculating a time series corresponding to a user's heartbeat period information. The method of measuring the anaerobic threshold also includes calculating a time series to generate a self-similarity parameter during heartbeat. The method for measuring the anaerobic threshold further comprises: identifying a critical parameter among the self-similarity parameters during the heartbeat according to the threshold value, and acquiring an anaerobic threshold corresponding to the user according to the critical parameter, wherein the anaerobic threshold of the corresponding user is during the heartbeat period The first heart rate value corresponding to the critical parameter in the information.
基於上述,本揭露範例實施例的運動指引系統、運動指引方法及無氧閾值的量測方法能夠量測使用者運動時的心跳期間資訊,根據心跳期間資訊計算心跳期間自我相似性參數並取得對應使用者的無氧閾值,從而提供使用者適當的運動指引。 Based on the above, the motion guidance system, the motion guidance method, and the anaerobic threshold measurement method of the exemplary embodiment of the present disclosure can measure the heartbeat period information during the user's exercise, calculate the self-similarity parameter during the heartbeat according to the heartbeat period information, and obtain a correspondence. The user's anaerobic threshold provides the user with appropriate exercise guidelines.
為讓本揭露的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the present invention will be more apparent from the following description.
1、6‧‧‧運動指引系統 1, 6‧‧‧ Sports Guidance System
11、61‧‧‧感測模組 11, 61‧‧‧ Sensing Module
12、62‧‧‧計算模組 12, 62‧‧‧ Calculation Module
13、63‧‧‧轉換模組 13, 63‧‧‧ conversion module
14、64‧‧‧輸出模組 14, 64‧‧‧ Output Module
65‧‧‧資料庫模組 65‧‧‧Database Module
66‧‧‧校正模組 66‧‧‧ calibration module
S21、S23、S25、S27‧‧‧計算第一輸出值的步驟 S21, S23, S25, S27‧‧‧Steps for calculating the first output value
S41、S43、S45、S47‧‧‧運動指引方法的步驟 Steps for S41, S43, S45, S47‧‧‧ exercise guidance methods
S51、S53‧‧‧計算第一輸出值的步驟 S51, S53‧‧‧Steps for calculating the first output value
S1001、S1003、S1005、S1007‧‧‧運動指引方法的步驟 S1001, S1003, S1005, S1007‧‧‧ steps of the exercise guidance method
圖1為根據本揭露第一範例實施例所繪示的運動指引系統的方塊圖。 FIG. 1 is a block diagram of a motion guidance system according to a first exemplary embodiment of the present disclosure.
圖2為根據本揭露第一範例實施例所繪示的計算第一輸出值的流程圖。 2 is a flow chart of calculating a first output value according to a first exemplary embodiment of the disclosure.
圖3為依據本揭露的運動指引系統計算出的第一輸出值及對應的心率值的表格。 3 is a table of first output values and corresponding heart rate values calculated by the motion guidance system of the present disclosure.
圖4為根據本揭露第一範例實施例所繪示的運動指引方法的流程圖。 FIG. 4 is a flowchart of a motion guidance method according to a first exemplary embodiment of the disclosure.
圖5為根據本揭露第二範例實施例所繪示的計算第一輸出值的流程圖。 FIG. 5 is a flowchart of calculating a first output value according to a second exemplary embodiment of the disclosure.
圖6為根據本揭露第三範例實施例所繪示的運動指引系統的方塊圖。 FIG. 6 is a block diagram of a motion guidance system according to a third exemplary embodiment of the present disclosure.
圖7為利用氣體分析儀進行最大攝氧量測驗以及依據本揭露的運動指引系統計算出的無氧閾值比較表。 7 is a comparison table of anaerobic threshold values calculated by a gas analyzer for a maximum oxygen uptake test and a motion guidance system according to the present disclosure.
圖8為利用一般年齡公式、本揭露的運動指引系統與氣體分析儀進行最大攝氧量測試檢測出的無氧閾值比較表。 FIG. 8 is a comparison table of anaerobic threshold values detected by the maximum oxygen uptake test using the general age formula, the motion guidance system of the present disclosure, and the gas analyzer.
圖9為藉由一般年齡公式、本揭露的運動指引系統與利用氣體分析儀進行最大攝氧量測試檢測出的無氧閾值反推進入無氧運動時點的心率值占最大心跳頻率的百分比的比較表。 Figure 9 is a comparison of the percentage of the heart rate value at the point of the maximum heart rate by the general age formula, the motion guidance system of the present disclosure, and the anaerobic threshold detected by the maximum oxygen uptake test using the gas analyzer. table.
圖10為根據本揭露第三範例實施例所繪示的運動指引方法 的流程圖。 FIG. 10 is a motion guidance method according to a third exemplary embodiment of the disclosure. Flow chart.
圖11為本揭露的運動指引系統與利用氣體分析儀進行最大攝氧量測試的供能模式分析的比較表。 FIG. 11 is a comparison table of the energy supply mode analysis of the motion guidance system and the maximum oxygen uptake test using the gas analyzer.
以下揭露所使用的名詞解釋將定義如下。 The explanations of the terms used in the following disclosure will be defined as follows.
無氧閾值(Anaerobic Threshold):指運動中,人體從有氧到無氧能量系統轉變的代謝轉折點,可根據血液乳酸值、換氣率及心率值將無氧閾值具體數字化。本揭露以使用者從事運動進入無氧呼吸時點的心率值代表無氧閾值。 Anaerobic Threshold: refers to the metabolic turning point of the human body from the oxygen to the anaerobic energy system during exercise. The anaerobic threshold can be specifically digitized according to the blood lactate value, ventilation rate and heart rate value. The present disclosure indicates that the heart rate value at the point when the user engages in exercise into anaerobic respiration represents an anaerobic threshold.
最大心跳頻率(Maximal Heart Rate):指一個人運動時因運動強度增加,達到的心跳頻率的最大值,為用來衡量運動強度是否恰當的指標。一般計算公式以(220-年齡)表示最大心跳頻率。而普遍認為,當運動強度使運動者的心率值達到其最大心率值的80%時,運動者開始進入無氧運動,亦即,一般無氧閾值的計算公式為(220-年齡)*80%。 Maximum Heart Rate (Maximal Heart Rate): The maximum value of the heartbeat frequency reached by a person as a result of increased exercise intensity. It is an indicator used to measure the appropriate exercise intensity. The general calculation formula expresses the maximum heartbeat frequency by (220-age). It is generally believed that when the exercise intensity causes the athlete's heart rate to reach 80% of its maximum heart rate, the athlete begins to enter the anaerobic exercise, that is, the general anaerobic threshold is calculated as (220-age)*80%. .
心跳期間(R-R Interval):心跳與心跳的間隔,通常以連續心率的RR間隔(R-R Interval)代表。在心電圖上,R波是較為顯著的波形而容易被偵測,R間距代表心臟的跳動速率,故常以RR間距來代表心跳間期。也就是說,心跳期間為心電圖上相鄰的R波間隔時間。 R-R Interval: The interval between heartbeat and heartbeat, usually represented by a continuous heart rate RR interval (R-R Interval). On the electrocardiogram, the R wave is a more significant waveform and is easily detected. The R pitch represents the rate of beat of the heart, so the RR interval is often used to represent the heartbeat interval. That is to say, the heartbeat period is the interval between adjacent R waves on the electrocardiogram.
心率變異分析(Heart Rate Variability,HRV):心率變異分 析又稱心率變異度分析,為一種量測連續心跳速率變化程度的方法,其為一種評估自主神經系統功能的重要方法。計算方式主要是分析藉由心電圖或脈搏量測所得到的心跳與心跳間隔的時間序列。心臟除了本身的節律性放電引發的跳動以外,也受到自律神經系統(Autonomic Nervous System,ANS)所調控。過去研究已有不少文獻顯示自律神經系統的調控與心血管疾病相關的死亡率有顯著的關係,例如心因性猝死、高血壓、出血性休克、敗血性休克等。臨床上,心率變異分析亦被發現可作為預測發生心肌梗塞後的死亡率的指標及預測末期肝癌病患的預後,或應用於多種兒科疾病包括先天性心臟病、心肌炎、糖尿病、新生兒呼吸窘迫症、嬰兒猝死症等。其中分析模式可分為時域(Time Domain)分析或頻域(Frequency Domain)分析。本揭露採用心率變異分析的時域及頻域分析。 Heart Rate Variability (HRV): Heart Rate Variance Analysis, also known as heart rate variability analysis, is a method for measuring the degree of change in continuous heart rate, which is an important method for assessing the function of the autonomic nervous system. The calculation method mainly analyzes the time series of heartbeat and heartbeat interval obtained by electrocardiogram or pulse measurement. In addition to the beating caused by its own rhythmic discharge, the heart is also regulated by the Autonomic Nervous System (ANS). In the past, there have been many studies showing that the regulation of the autonomic nervous system has a significant relationship with cardiovascular disease-related mortality, such as sudden cardiac death, hypertension, hemorrhagic shock, and septic shock. Clinically, heart rate variability analysis has also been found to be an indicator for predicting mortality after myocardial infarction and to predict the prognosis of patients with advanced liver cancer, or for a variety of pediatric diseases including congenital heart disease, myocarditis, diabetes, neonatal respiratory distress Symptoms, sudden death in infants, etc. The analysis mode can be divided into Time Domain analysis or Frequency Domain analysis. The present disclosure uses time domain and frequency domain analysis of heart rate variability analysis.
最大攝氧量(Maximal Oxygen Uptake,VO2 max):一個人在從事最激烈的運動時,組織細胞所能消耗或利用的氧氣量的最大值。最大攝氧量可用來評估個人有氧作業能量及心肺耐力,並可藉以設定運動員的運動訓練強度。 Maximal Oxygen Uptake (VO 2 max): The maximum amount of oxygen that a tissue cell can consume or utilize while exercising the most intense exercise. The maximum oxygen uptake can be used to assess individual aerobic exercise energy and cardiorespiratory endurance, and can be used to set the athlete's exercise training intensity.
最大攝氧量測驗:使用固定式健身車,以逐漸增加負荷的方法進行運動,運動過程中以氣體分析儀蒐集分析攝氧量,並以心率值作為進入無氧閾的運動強度。其判定原則為,當呼吸交換率(Respiratory Exchange Ratio,RER)大於1時,代表使用者進入無氧閾。 Maximum oxygen uptake test: Using a stationary exercise bike, the exercise is carried out by gradually increasing the load. During the exercise, the gas analyzer is used to collect and analyze the oxygen uptake, and the heart rate value is used as the exercise intensity to enter the anaerobic threshold. The principle of judgment is that when the Respiratory Exchange Ratio (RER) is greater than 1, the user enters the anaerobic threshold.
[第一範例實施例] [First Exemplary Embodiment]
圖1為根據本揭露第一範例實施例所繪示的運動指引系統的方塊圖。 FIG. 1 is a block diagram of a motion guidance system according to a first exemplary embodiment of the present disclosure.
請參照圖1,本揭露的運動指引系統1可針對使用者從事運動的運動狀況計算使用者從事運動進入無氧呼吸時點的無氧閾值,並根據無氧閾值提供運動指引。值得注意的是,本揭露的運動指引系統1可安裝在電子產品、攜帶式電子產品、手錶、穿戴式裝置、運動器材、自行車、跑步機、眼鏡及生物感測器等產品上,而本揭露的運動指引系統1可針對的運動至少可為腳踏車、有氧運動及跑步其中之一。 Referring to FIG. 1, the motion guidance system 1 of the present disclosure can calculate an anaerobic threshold for a user to engage in an anaerobic respiration period when the user engages in a motion state of the exercise, and provide a motion guide according to the anaerobic threshold. It should be noted that the motion guidance system 1 of the present disclosure can be installed on products such as electronic products, portable electronic products, watches, wearable devices, sports equipment, bicycles, treadmills, glasses, and biosensors, and the disclosure is disclosed. The exercise guidance system 1 can target at least one of a bicycle, aerobic exercise and running.
運動指引系統1包括感測模組11、計算模組12、轉換模組13及輸出模組14。 The motion guidance system 1 includes a sensing module 11, a computing module 12, a conversion module 13, and an output module 14.
感測模組11可持續地記錄使用者從事運動時的複數組心跳期間資訊。心跳期間資訊的蒐集可透過任何可偵測人體心跳之體外感測器,體外感測器可耦接至感測模組11,使得感測模組可記錄使用者的心跳期間資訊。例如,本揭露的心跳期間資訊為RR間隔(R-R Interval)。值得一提的是,儘管本揭露的感測模組11會直接從體外感測器取得所感測之使用者心跳的RR間隔,但本揭露不限於此。例如,在另一範例實施例中,感測模組11亦可以根據體外感測器所偵測之使用者的心跳數來計算出使用者之心跳的RR間隔。 The sensing module 11 can continuously record the information of the complex array heartbeat during the user's exercise. The information collected during the heartbeat can be transmitted through any external sensor that can detect the heartbeat of the human body. The external sensor can be coupled to the sensing module 11 so that the sensing module can record the information during the heartbeat of the user. For example, the heartbeat period information disclosed herein is an RR interval (R-R Interval). It should be noted that although the sensing module 11 of the present disclosure directly obtains the RR interval of the sensed user heartbeat from the external sensor, the disclosure is not limited thereto. For example, in another exemplary embodiment, the sensing module 11 can also calculate the RR interval of the heartbeat of the user according to the number of heartbeats of the user detected by the external sensor.
計算模組12是耦接至感測模組11。計算模組12從該感 測模組11接收對應使用者的心跳期間資訊並對心跳期間資訊進行心率變異分析以得到第一輸出值α1。 The computing module 12 is coupled to the sensing module 11 . The calculation module 12 from the sense The test module 11 receives the heartbeat period information corresponding to the user and performs heart rate variability analysis on the heartbeat period information to obtain the first output value α1.
圖2為根據本揭露第一範例實施例所繪示的計算第一輸出值的流程圖。 2 is a flow chart of calculating a first output value according to a first exemplary embodiment of the disclosure.
請參照圖2,在步驟S21中,計算模組12會計算使用者的心跳期間資訊的時間序列。例如,在步驟S21中,計算模組12會計算使用者的心跳期間資訊S中每一心跳S( i )與平均心跳的累計離差,以產生時間序列。 Referring to FIG. 2, in step S21, the calculation module 12 calculates a time series of information of the user's heartbeat period. For example, in step S21, the computing module 12 calculates each heartbeat S ( i ) and the average heartbeat in the user's heartbeat period information S. Cumulative dispersion to generate time series .
接著,在步驟S23中,計算模組12會對時間序列作運算以產生心跳期間趨勢值。例如,在步驟S23中,計算模組12會將時間序列C(k)切割成具預定長度n的區段,且利用最小平方法計算每一個區段的局部趨勢值C n (k),以產生心跳期間趨勢值。 Next, in step S23, the calculation module 12 operates on the time series to generate a heartbeat period trend value. For example, in step S23, the module 12 will calculate the time series C (k) is cut into sections having a predetermined length n, and each section is calculated local trend of the values C n (k) by using the least squares method, to Generates a trend value during heartbeat.
然後,在步驟S25中,計算模組12會對心跳期間趨勢值作運算以產生心跳期間波動函數。例如,計算模組12會將時間序列C(k)減去每一個區段的局部趨勢值C n (k)並計算每一個區段的均方根值以產生心跳期間波動函數F(n):
其中N表示時間序列的總長度。 Where N represents the total length of the time series.
最後,在步驟S27中,計算模組12會根據心跳期間波動函數匯出平面圖並利用平面圖上的點得出心跳期間自我相似性參數,其中心跳期間自我相似性參數為上述第一輸出值α1。例如,計算模組12會繪出log10 F(n)相對於log10(n)的平面圖,並且利用 最小平方法計算平面圖中的點的線性方程式,並計算線性方程式的斜率以得到心跳期間自我相似性參數(即,第一輸出值α1)。 Finally, in step S27, the calculation module 12 recurs the plan according to the fluctuation function during the heartbeat and uses the points on the plan to obtain the self-similarity parameter during the heartbeat, and the self-similarity parameter during the center hop is the first output value α1. For example, the calculation module 12 plots the log 10 F ( n ) relative to log 10 ( n ), and calculates the linear equation of the point in the plan using the least squares method, and calculates the slope of the linear equation to obtain the self during the heartbeat. The similarity parameter (ie, the first output value α1).
請再參照圖1,轉換模組13是耦接至計算模組12。轉換 模組13從計算模組12接收第一輸出值α1,根據門檻值識別第一輸出值α1之中的臨界輸出值,並且依據臨界輸出值獲取對應使用者的無氧閾值。在本範例實施例中,轉換模組13會將心跳期間資訊之中對應臨界輸出值的第一心率值作為對應使用者的無氧閾值。值得注意的是,無氧閾值可根據使用者體適能狀況不同而有所變化。以下將參考圖3詳細說明。 Referring to FIG. 1 again, the conversion module 13 is coupled to the computing module 12 . Conversion The module 13 receives the first output value α1 from the calculation module 12, identifies a critical output value among the first output values α1 according to the threshold value, and acquires an anaerobic threshold value corresponding to the user according to the critical output value. In the present exemplary embodiment, the conversion module 13 uses the first heart rate value corresponding to the critical output value among the heartbeat period information as the anaerobic threshold of the corresponding user. It is worth noting that the anaerobic threshold can vary depending on the user's fitness status. The details will be described below with reference to FIG. 3.
圖3為依據本揭露的運動指引系統計算出的第一輸出值 及對應的心率值的表格。在圖3中,運動指引系統1是採取漸增負荷方法,讓使用者踩固定式健身車運動,負荷瓦特數每3分鐘增加20至30,由此根據計算模組12所計算出的第一輸出值α1,來判斷使用者進入無氧呼吸時點的心率值作為無氧閾值。在此,本揭露的門檻值可設定為1,當第一輸出值α1從大於1轉變為小於1則可判斷使用者從有氧運動進入無氧運動,並可定義第一次小於1的第一輸出值α1,即0.933,為臨界輸出值,因此對應使用者的無氧閾值為第一心率值136。然而,本揭露並不以此為限。為了確認使用者進入無氧閾,本揭露還可定義小於1且持續一分鐘以上的第一輸出值α1,即0.856,為臨界輸出值,此時對應使用者的無氧閾值為第一心率值145。取小於1且持續一分鐘以上的第一輸出值α1為為臨界輸出值可避免僅有單次第一輸出值α1小於1, 而其後的第一輸出值α1皆大於1的情況,進而增加本揭露的準確性。然而,本揭露更可定義第一次進入1±δ的範圍的第一輸出值α1為臨界輸出值,其中δ可視情況調整,例如δ=0.1。 3 is a first output value calculated by the motion guidance system according to the present disclosure. And a table of corresponding heart rate values. In FIG. 3, the motion guidance system 1 adopts an increasing load method to allow the user to step on the stationary exercise vehicle, and the load wattage is increased by 20 to 30 every 3 minutes, thereby calculating the first according to the calculation module 12. The value α1 is output to determine the heart rate value at which the user enters the anaerobic respiration point as the anaerobic threshold. Here, the threshold value of the present disclosure can be set to 1, when the first output value α1 is changed from greater than 1 to less than 1, the user can be judged to enter the anaerobic movement from aerobic exercise, and the first time less than 1 can be defined. An output value α1, which is 0.933, is the critical output value, so the anaerobic threshold corresponding to the user is the first heart rate value 136. However, the disclosure is not limited thereto. In order to confirm that the user enters the anaerobic threshold, the disclosure may also define a first output value α1 that is less than 1 and lasts for more than one minute, that is, 0.856, which is a critical output value, and the corresponding user's anaerobic threshold is the first heart rate value. 145. Taking the first output value α1 that is less than 1 and lasts for more than one minute as the critical output value avoids that only a single first output value α1 is less than 1, The subsequent first output value α1 is greater than 1, thereby increasing the accuracy of the disclosure. However, the present disclosure further defines that the first output value α1 entering the range of 1±δ for the first time is a critical output value, wherein δ can be adjusted as appropriate, for example, δ=0.1.
請再參照圖1,輸出模組14是耦接至轉換模組13。輸出模組14會從轉換模組13接收無氧閾值,並且根據所接收的無氧閾值輸出使用者的運動指引。運動指引可提供運動的相關建議,包括運動時間、運動里程數、使用者最佳運動心跳頻率、使用者的主要供能系統(包含脂肪、碳水化合物)等。 Referring to FIG. 1 again, the output module 14 is coupled to the conversion module 13 . The output module 14 receives an anaerobic threshold from the conversion module 13 and outputs a user's motion guidance based on the received anaerobic threshold. The exercise guidelines provide advice on exercise, including exercise time, mileage, optimal user heartbeat frequency, and the user's primary energy system (including fat, carbohydrates).
值得注意的是,本範例實施例中感測模組11可為感測器或感測電路,記錄使用者的心跳期間資訊並將其儲存於本運動指引系統1的記憶體中,而計算模組12及轉換模組13可為軟體或韌體形式實作的程式碼,藉由本運動指引系統1的處理器執行,從記憶體擷取心跳期間資訊並對其作運算而產生無氧閾值。然而,本揭露並不以此為限。計算模組12及轉換模組13也可實作為計算電路及轉換電路,由計算電路接收輸入的心跳期間資訊並由轉換電路輸出無氧閾值。在計算出無氧閾值以後,處理器可根據無氧閾值從記憶體中擷取使用者的運動指引並由輸出模組14輸出。輸出模組14可為顯示器、喇叭等能藉由視覺或聽覺讓使用者了解運動指引的輸出裝置。 It should be noted that the sensing module 11 in the exemplary embodiment may be a sensor or a sensing circuit, and record information of the user's heartbeat and store it in the memory of the motion guiding system 1, and calculate the mode. The group 12 and the conversion module 13 can be implemented in the form of software or firmware. The processor of the motion guidance system 1 executes the information during the heartbeat and retrieves the information from the memory to generate an anaerobic threshold. However, the disclosure is not limited thereto. The calculation module 12 and the conversion module 13 can also be implemented as a calculation circuit and a conversion circuit. The calculation circuit receives the input heartbeat period information and outputs the anaerobic threshold value by the conversion circuit. After calculating the anaerobic threshold, the processor can extract the motion guidance of the user from the memory according to the anaerobic threshold and output it by the output module 14. The output module 14 can be an output device such as a display or a speaker that can visually or audibly let the user know the motion guidance.
圖4為根據本揭露第一範例實施例所繪示的運動指引方法的流程圖。 FIG. 4 is a flowchart of a motion guidance method according to a first exemplary embodiment of the disclosure.
請參照圖4,在步驟S41中,感測模組11會持續記錄使 用者從事運動時的心跳期間資訊。 Referring to FIG. 4, in step S41, the sensing module 11 continues to record. The user engages in information during the heartbeat during exercise.
在步驟S43中,計算模組12會對心跳期間資訊進行心率變異分析以得到第一輸出值。 In step S43, the calculation module 12 performs heart rate variability analysis on the heartbeat information to obtain a first output value.
在步驟S45中,轉換模組13會根據門檻值識別第一輸出值之中的臨界輸出值,並且依據臨界輸出值獲取對應使用者的無氧閾值。 In step S45, the conversion module 13 identifies the critical output value among the first output values according to the threshold value, and acquires the anaerobic threshold of the corresponding user according to the critical output value.
在步驟S47中,輸出模組14會根據無氧閾值輸出使用者的運動指引。 In step S47, the output module 14 outputs the user's motion guidance according to the anaerobic threshold.
[第二範例實施例] [Second exemplary embodiment]
本揭露第二範例實施例的運動指引系統本質上是相同於第一範例實施例的運動指引系統,其中差異在於在第二範例實施例中,計算模組對心跳期間資訊依時間序列進行心率變異分析,接著以時間序列進行排序,再將排序過的時間序列進行心率變異分析的頻域參數計算,並且利用頻域參數計算出第一輸出值。 The motion guidance system of the second exemplary embodiment is essentially the same as the motion guidance system of the first exemplary embodiment, wherein the difference is that in the second exemplary embodiment, the calculation module performs heart rate variability on the information during the heartbeat according to the time series. The analysis is followed by sorting in time series, and then the sorted time series is subjected to frequency domain parameter calculation of heart rate variability analysis, and the first output value is calculated by using frequency domain parameters.
本揭露第二範例實施例的運動指引系統的結構是相同於第一範例實施例的運動指引系統的結構,因此以下參照圖1來說明第二範例實施例與第一範例實施例之差異處。 The structure of the motion guidance system of the second exemplary embodiment is the same as that of the motion guidance system of the first exemplary embodiment. Therefore, the difference between the second exemplary embodiment and the first exemplary embodiment will be described below with reference to FIG.
請參照圖1,本揭露第二範例實施例的運動指引系統1包括感測模組11、計算模組12、轉換模組13及輸出模組14。 Referring to FIG. 1 , the motion guidance system 1 of the second exemplary embodiment includes a sensing module 11 , a computing module 12 , a conversion module 13 , and an output module 14 .
感測模組11可持續地記錄使用者從事運動時的複數組心跳期間資訊。心跳期間資訊的蒐集可透過任何可偵測人體心跳之體外感測器,體外感測器可耦接至感測模組11,使得感測模組可 記錄使用者的心跳期間資訊。例如,本揭露的心跳期間資訊為RR間隔(R-R Interval)。值得一提的是,儘管本揭露的感測模組11會直接從體外感測器取得所感測之使用者心跳的RR間隔,但本揭露不限於此。例如,在另一範例實施例中,感測模組11亦可以根據體外感測器所偵測之使用者的心跳數來計算出使用者之心跳的RR間隔。 The sensing module 11 can continuously record the information of the complex array heartbeat during the user's exercise. The information collected during the heartbeat can be transmitted through any external sensor that can detect the heartbeat of the human body, and the external sensor can be coupled to the sensing module 11 so that the sensing module can be Record the user's heartbeat information. For example, the heartbeat period information disclosed herein is an RR interval (R-R Interval). It should be noted that although the sensing module 11 of the present disclosure directly obtains the RR interval of the sensed user heartbeat from the external sensor, the disclosure is not limited thereto. For example, in another exemplary embodiment, the sensing module 11 can also calculate the RR interval of the heartbeat of the user according to the number of heartbeats of the user detected by the external sensor.
計算模組12是耦接至感測模組11,計算模組12會從該感測模組11接收對應使用者的心跳期間資訊並對心跳期間資訊進行心率變異分析以得到第一輸出值α1。 The computing module 12 is coupled to the sensing module 11 , and the computing module 12 receives the heartbeat period information of the user from the sensing module 11 and performs heart rate variability analysis on the heartbeat information to obtain the first output value α1. .
圖5為根據本揭露第二範例實施例所繪示的計算第一輸出值的流程圖。 FIG. 5 is a flowchart of calculating a first output value according to a second exemplary embodiment of the disclosure.
請參照圖5,在步驟S51中,計算模組12會對於每一組心跳期間資訊依時間序列,進行心率變異分析。例如,在步驟S51中,計算模組12會計算該使用者的心跳期間資訊以時間序列進行排序。 Referring to FIG. 5, in step S51, the calculation module 12 performs heart rate variability analysis on the time series according to the information of each group of heartbeat periods. For example, in step S51, the computing module 12 calculates that the user's heartbeat period information is sorted in time series.
接著,在步驟S53中,計算模組12會將排序過的時間序列進行心率變異分析的頻域參數計算,並且利用頻域參數計算出第一輸出值α1。例如,在步驟S53中,計算模組12會將時間序列轉換為高頻參數HF及低頻參數LF,透過公式(1)得到第一輸出值α1。 Next, in step S53, the calculation module 12 performs frequency domain parameter calculation of the heart rate mutation analysis on the sorted time series, and calculates the first output value α1 using the frequency domain parameters. For example, in step S53, the calculation module 12 converts the time series into the high frequency parameter HF and the low frequency parameter LF , and obtains the first output value α1 through the formula (1).
α1~2/(1+ HF / LF ).................................................(1) 11~2/(1+ HF / LF ).......................................... ..........(1)
值得注意的是,高頻參數從0.15到0.40赫茲的頻帶範圍 擷取,高頻參數為0.15到0.40赫茲的頻帶範圍的心跳期間資訊的變異數,主要受到呼吸影響,代表副交感神經的活性指標。低頻參數從0.04到0.15赫茲的頻帶範圍擷取,低頻參數為0.04到0.15的頻帶範圍的心跳期間資訊的變異數,代表交感神經的活性指標或是交感神經與副交感神經同時調控的指標。 It is worth noting that the high frequency parameters range from 0.15 to 0.40 Hz. The number of variances in the heartbeat period of the frequency range of 0.15 to 0.40 Hz is mainly affected by respiration and represents the activity index of the parasympathetic nerve. The low-frequency parameters are taken from the frequency range of 0.04 to 0.15 Hz, and the low-frequency parameters are the variation of the information during the heartbeat period of the frequency range of 0.04 to 0.15, which represents the activity index of the sympathetic nerve or the index of simultaneous regulation of the sympathetic and parasympathetic nerves.
請再參照圖1,轉換模組13是耦接至計算模組12,轉換 模組13會從計算模組12接收第一輸出值α1,根據門檻值識別第一輸出值α1之中的臨界輸出值,並且依據臨界輸出值獲取對應使用者的無氧閾值。在本範例實施例中,轉換模組13會將心跳期間資訊之中對應臨界輸出值的第一心率值作為對應使用者的無氧閾值。輸出模組14是耦接至轉換模組13,輸出模組14會從轉換模組13接收無氧閾值,並且根據所接收的無氧閾值輸出使用者的運動指引。 Referring to FIG. 1 again, the conversion module 13 is coupled to the computing module 12, and converts The module 13 receives the first output value α1 from the calculation module 12, identifies the critical output value among the first output values α1 according to the threshold value, and acquires the anaerobic threshold of the corresponding user according to the critical output value. In the present exemplary embodiment, the conversion module 13 uses the first heart rate value corresponding to the critical output value among the heartbeat period information as the anaerobic threshold of the corresponding user. The output module 14 is coupled to the conversion module 13. The output module 14 receives an anaerobic threshold from the conversion module 13, and outputs a motion guidance of the user according to the received anaerobic threshold.
值得注意的是,感測模組11可為感測器或感測電路,計 算模組12及轉換模組13可為軟體或韌體形式實作的程式碼,或可實作為計算電路及轉換電路,輸出模組14可為顯示器、喇叭等能藉由視覺或聽覺讓使用者了解運動指引的輸出裝置。 It should be noted that the sensing module 11 can be a sensor or a sensing circuit. The calculation module 12 and the conversion module 13 can be implemented in a software or firmware format, or can be implemented as a calculation circuit and a conversion circuit. The output module 14 can be used for visual or audible use of a display, a speaker, or the like. Learn about the output of the exercise guide.
[第三範例實施例] [Third exemplary embodiment]
本揭露第三範例實施例的運動指引系統本質上是相同於 第二範例實施例的運動指引系統,其中差異在於第三範例實施例的運動指引系統更包括資料庫模組,儲存使用者的狀態資訊,並包括校正模組,根據狀態資訊提供符合使用者身體狀態的校正資 訊,計算出更準確的第一輸出值。 The motion guidance system of the third exemplary embodiment is essentially the same as The motion guidance system of the second exemplary embodiment, wherein the motion guidance system of the third exemplary embodiment further includes a database module for storing user status information, and includes a correction module for providing compliance with the user's body based on the status information. State correction The signal is calculated to calculate a more accurate first output value.
圖6為根據本揭露第三範例實施例所繪示的運動指引系 統的方塊圖。 FIG. 6 is a motion guidance system according to a third exemplary embodiment of the present disclosure. The block diagram.
請參照圖6,本揭露的運動指引系統6可針對使用者從事 運動的運動狀況計算使用者從事運動進入無氧呼吸時點的無氧閾值,並根據無氧閾值提供運動指引。運動指引系統6包括感測模組61、計算模組62、轉換模組63、輸出模組64、資料庫模組65及校正模組66。值得注意的是,本揭露的運動指引系統6可安裝在電子產品、攜帶式電子產品、手錶、穿戴式裝置、運動器材、自行車、跑步機、眼鏡及生物感測器等產品上,而本揭露的運動指引系統6可針對的運動至少可為腳踏車、有氧運動及跑步其中之一。 Referring to FIG. 6, the motion guidance system 6 of the present disclosure can be engaged to a user. The exercise state of the exercise calculates the anaerobic threshold at which the user engages in the anaerobic respiration period and provides exercise guidance based on the anaerobic threshold. The motion guidance system 6 includes a sensing module 61, a computing module 62, a conversion module 63, an output module 64, a database module 65, and a calibration module 66. It should be noted that the motion guidance system 6 of the present disclosure can be installed on products such as electronic products, portable electronic products, watches, wearable devices, sports equipment, bicycles, treadmills, glasses, and biosensors, and the disclosure is disclosed. The exercise guidance system 6 can target at least one of a bicycle, aerobic exercise and running.
感測模組61可持續地記錄使用者從事運動時的複數組心 跳期間資訊,心跳期間資訊的蒐集可透過任何可偵測人體心跳之體外感測器,體外感測器可耦接至感測模組61,使得感測模組可記錄使用者的心跳期間資訊。例如,本揭露的心跳期間資訊為RR間隔(R-R Interval)。值得一提的是,儘管本揭露的感測模組61會直接從體外感測器取得所感測之使用者心跳的RR間隔,但本揭露不限於此。例如,在另一範例實施例中,感測模組61亦可以根據體外感測器所偵測之使用者的心跳數來計算出使用者之心跳的RR間隔。 The sensing module 61 can continuously record the complex array of hearts when the user engages in sports During the hopping period, the information collected during the heartbeat can be transmitted through any external sensor that can detect the heartbeat of the human body. The external sensor can be coupled to the sensing module 61, so that the sensing module can record the information of the user during the heartbeat period. . For example, the heartbeat period information disclosed herein is an RR interval (R-R Interval). It should be noted that although the sensing module 61 of the present disclosure directly obtains the RR interval of the sensed user heartbeat from the external sensor, the disclosure is not limited thereto. For example, in another exemplary embodiment, the sensing module 61 can also calculate the RR interval of the heartbeat of the user according to the number of heartbeats of the user detected by the external sensor.
計算模組62是耦接至感測模組61。計算模組62從該感 測模組61接收對應使用者的心跳期間資訊並對心跳期間資訊進行心率變異分析以得到第一輸出值α1。 The computing module 62 is coupled to the sensing module 61. The calculation module 62 from the sense The test module 61 receives the heartbeat period information corresponding to the user and performs heart rate variability analysis on the heartbeat information to obtain the first output value α1.
轉換模組63是耦接至計算模組62。轉換模組63從計算模組62接收第一輸出值α1,根據門檻值識別第一輸出值α1之中的臨界輸出值,並且依據臨界輸出值獲取對應使用者的無氧閾值,其中對應使用者的無氧閾值為心跳期間資訊之中對應臨界輸出值的第一心率值。 The conversion module 63 is coupled to the calculation module 62. The conversion module 63 receives the first output value α1 from the calculation module 62, identifies the critical output value among the first output values α1 according to the threshold value, and acquires the anaerobic threshold value of the corresponding user according to the critical output value, wherein the corresponding user The anaerobic threshold is the first heart rate value corresponding to the critical output value among the information during the heartbeat.
校正模組66是耦接至該轉換模組63。校正模組接收狀態資訊並依據狀態資訊提供校正資訊到轉換模組63。轉換模組63依據該臨界輸出值和該校正資訊來獲取對應使用者的該無氧閾值。狀態資訊可為運動模式與健康資訊的至少其中之一,而校正資訊可包括使用者的各種心率值、運動強度、運動時間、心率變異參數值、心率變異參數變動的速率及心率變異的時域資訊,用以設定使用者進入無氧呼吸時點。 The calibration module 66 is coupled to the conversion module 63. The calibration module receives the status information and provides correction information to the conversion module 63 based on the status information. The conversion module 63 acquires the anaerobic threshold of the corresponding user according to the critical output value and the correction information. The status information may be at least one of a sports mode and a health information, and the correction information may include various heart rate values, exercise intensity, exercise time, heart rate variability parameter values, rate of heart rate variability parameter changes, and time domain of heart rate variability of the user. Information to set the point at which the user enters anaerobic breathing.
資料庫模組65是耦接至校正模組66並儲存狀態資訊。 The database module 65 is coupled to the correction module 66 and stores state information.
輸出模組64是耦接至轉換模組63。輸出模組64從轉換模組63接收無氧閾值,並且根據所接收的無氧閾值執行供能模式分析以輸出使用者的運動指引。運動指引可提供運動的相關建議,包括運動時間、運動里程數、使用者最佳運動心跳頻率、使用者的主要供能系統(包含脂肪、碳水化合物)等。 The output module 64 is coupled to the conversion module 63. The output module 64 receives an anaerobic threshold from the conversion module 63 and performs an energization mode analysis based on the received anaerobic threshold to output a user's motion guidance. The exercise guidelines provide advice on exercise, including exercise time, mileage, optimal user heartbeat frequency, and the user's primary energy system (including fat, carbohydrates).
值得注意的是,相同於第一範例實施例,本範例實施例中的感測模組61、計算模組62、轉換模組63及輸出模組64可利 用相同於第一範例實施例中的感測模組11、計算模組12、轉換模組13及輸出模組14的方式實作。也就是說,感測模組61可為感測器或感測電路,計算模組62及轉換模組63可為軟體或韌體形式實作的程式碼,或可實作為計算電路及轉換電路,輸出模組64可為顯示器、喇叭等能藉由視覺或聽覺讓使用者了解運動指引的輸出裝置。此外,在本範例實施例中,資料庫模組65可包含於本運動指引系統6的記憶體中並儲存狀態資訊,而校正模組66可為軟體或韌體形式實作的程式碼,經由本運動指引系統6的處理器執行而從記憶體擷取狀態資訊並將其轉換為校正資訊而傳送給轉換模組63以校正第一輸出值α1。然而,本揭露並不以此為限。校正模組66也可為實作為校正電路,接收輸入的狀態資訊並輸出校正資訊至轉換模組63。 It should be noted that, similar to the first exemplary embodiment, the sensing module 61, the computing module 62, the conversion module 63, and the output module 64 in the exemplary embodiment are applicable. The same is true for the sensing module 11, the computing module 12, the conversion module 13, and the output module 14 in the first exemplary embodiment. In other words, the sensing module 61 can be a sensor or a sensing circuit, and the computing module 62 and the conversion module 63 can be implemented in a software or firmware format, or can be implemented as a computing circuit and a conversion circuit. The output module 64 can be an output device such as a display or a speaker that can visually or audibly let the user know the motion guidance. In addition, in the present exemplary embodiment, the database module 65 can be included in the memory of the motion guidance system 6 and store state information, and the calibration module 66 can be implemented in software or firmware. The processor of the motion guidance system 6 executes the state information from the memory and converts it into correction information and transmits it to the conversion module 63 to correct the first output value α1. However, the disclosure is not limited thereto. The correction module 66 can also be used as a correction circuit to receive input state information and output correction information to the conversion module 63.
圖7為利用氣體分析儀進行最大攝氧量測驗以及依據本 揭露的運動指引系統計算出的無氧閾值比較表。在最大攝氧量測驗中,採取漸增負荷方法,讓三位27歲的使用者採固定式健身車運動,負荷瓦特數每3分鐘增加20~30瓦特,同時利用氣體分析儀及本揭露的運動指引系統進行分析。氣體分析儀進行呼吸交換率(RER,Respiratory Exchange Rate)分析,當呼吸交換率RER的值等於1時判斷使用者進入無氧呼吸狀態。而在本揭露的運動指引系統中,當第一輸出值α1小於1且持續一分鐘以上,則判斷使用者進入無氧呼吸狀態,且依據進入無氧呼吸時點的心率值(HR,Heart rate)作為無氧閾值。 Figure 7 shows the maximum oxygen uptake test using a gas analyzer and The anaerobic threshold comparison table calculated by the disclosed exercise guidance system. In the maximum oxygen uptake test, an incremental load method is adopted to allow three 27-year-old users to use a stationary exercise bike. The load wattage is increased by 20 to 30 watts per 3 minutes, while using a gas analyzer and the disclosed The exercise guidance system is analyzed. The gas analyzer performs a Respiratory Exchange Rate (RER) analysis to determine that the user enters an anaerobic respiration state when the value of the respiratory exchange rate RER is equal to one. In the motion guidance system of the present disclosure, when the first output value α1 is less than 1 and lasts for more than one minute, it is determined that the user enters the anaerobic respiration state, and the heart rate value (HR, Heart rate) according to the point of entering the anaerobic respiration point. As an anaerobic threshold.
在圖7中,一共對三個樣本做以上測試。樣本1在本揭露的運動指引系統進入無氧閾的時點為17分鐘,對應的心率值為145bpm(每分鐘跳動次數),而利用呼吸交換率分析進入無氧閾的時點為19分鐘,對應的心率值為153bpm。樣本2在本揭露的運動指引系統進入無氧閾的時點為23分鐘,對應的心率值為167bpm,而利用呼吸交換率分析進入無氧閾的時點為21分鐘,對應的心率值為163bpm。樣本3在本揭露的運動指引系統進入無氧閾的時點為23分鐘,對應的心率值為122bpm(每分鐘跳動次數),而利用呼吸交換率分析進入無氧閾的時點為21分鐘,對應的心率值為119bpm。 In Figure 7, a total of three samples were tested. Sample 1 is 17 minutes at the time when the motion guidance system of the present disclosure enters the anaerobic threshold, the corresponding heart rate is 145 bpm (the number of beats per minute), and the time at which the anaerobic threshold is entered using the respiratory exchange rate is 19 minutes, corresponding to The heart rate is 153 bpm. Sample 2 was 23 minutes at the time when the motion guidance system of the present disclosure entered the anaerobic threshold, and the corresponding heart rate value was 167 bpm, while the time to enter the anaerobic threshold using the respiratory exchange rate analysis was 21 minutes, and the corresponding heart rate value was 163 bpm. Sample 3 is 23 minutes when the motion guidance system of the present disclosure enters the anaerobic threshold, the corresponding heart rate value is 122 bpm (the number of beats per minute), and the time point for entering the anaerobic threshold using the respiratory exchange rate analysis is 21 minutes, corresponding to The heart rate is 119 bpm.
圖8為利用一般年齡公式、本揭露的運動指引系統與氣體分析儀進行最大攝氧量測試檢測出的無氧閾值比較表。在圖8中,由於樣本1至樣本3的年齡均為27歲,因此由一般公式推算的無氧閾值皆相同為154bpm,在樣本2及樣本3都與依據最大攝氧量測驗得出的無氧閾值有顯著差異,這是因為相同年齡的使用者依據體適能狀況不同,具有不同的無氧閾值。 FIG. 8 is a comparison table of anaerobic threshold values detected by the maximum oxygen uptake test using the general age formula, the motion guidance system of the present disclosure, and the gas analyzer. In Fig. 8, since the ages of samples 1 to 3 are both 27 years old, the anaerobic thresholds calculated by the general formula are the same as 154 bpm, and both samples 2 and 3 are the same as those based on the maximal oxygen uptake test. There is a significant difference in oxygen thresholds because users of the same age have different anaerobic thresholds depending on the fitness status.
圖9為藉由一般年齡公式、本揭露的運動指引系統與利用氣體分析儀進行最大攝氧量測試檢測出的無氧閾值反推進入無氧運動時點的心率值占最大心跳頻率的百分比的比較表。在圖9中,由樣本1至樣本3的結果顯示,本揭露的運動指引系統與最大攝氧量測驗,在心率值占最大心跳頻率的百分比,僅分別具有4%、1%、1%的誤差。 Figure 9 is a comparison of the percentage of the heart rate value at the point of the maximum heart rate by the general age formula, the motion guidance system of the present disclosure, and the anaerobic threshold detected by the maximum oxygen uptake test using the gas analyzer. table. In FIG. 9, the results from the sample 1 to the sample 3 show that the motion guidance system and the maximum oxygen uptake test of the present disclosure have a heart rate value as a percentage of the maximum heart rate, and only have 4%, 1%, and 1%, respectively. error.
綜合圖7、圖8及圖9,本揭露的運動指引系統與一般公式相比,得出的無氧閾值相對準確。而相較於最大攝氧量測驗,本揭露的運動指引系統不需使用價格昂貴的設備或是運動時佩戴呼吸分析儀的器材,即可達成準確檢測無氧閾值的功效。 Referring to FIG. 7, FIG. 8 and FIG. 9, the motion guidance system of the present disclosure has a relatively accurate anaerobic threshold compared with the general formula. Compared with the maximal oxygen uptake test, the disclosed motion guidance system can achieve accurate detection of the anaerobic threshold without using expensive equipment or wearing a respiratory analyzer during exercise.
圖10為根據本揭露第三範例實施例所繪示的運動指引方法的流程圖。 FIG. 10 is a flowchart of a motion guidance method according to a third exemplary embodiment of the disclosure.
請參照圖10,在步驟S1001中,感測模組61會持續記錄使用者從事運動時的心跳期間資訊。 Referring to FIG. 10, in step S1001, the sensing module 61 continuously records the information of the heartbeat period during the user's exercise.
在步驟S1003中,計算模組62會對心跳期間資訊進行心率變異分析以得到第一輸出值。 In step S1003, the calculation module 62 performs heart rate variability analysis on the heartbeat information to obtain a first output value.
在步驟S1005中,轉換模組63根據校正模組66的運動模式或健康資訊校正門檻值,並根據校正後的門檻值取得臨界輸出值,依據該臨界輸出值獲取對應的無氧閾值。 In step S1005, the conversion module 63 corrects the threshold according to the motion mode or the health information of the correction module 66, and obtains a critical output value according to the corrected threshold value, and acquires a corresponding anaerobic threshold according to the critical output value.
在步驟S1007中,輸出模組64根據無氧閾值執行供能模式分析以輸出使用者的運動指引。 In step S1007, the output module 64 performs an energization mode analysis based on the anaerobic threshold to output a user's motion guidance.
圖11為本揭露的運動指引系統與利用氣體分析儀進行最大攝氧量測試的供能模式分析的比較表。在圖11中,當氣體分析儀的呼吸交換率RER小於0.85代表正在從事低強度運動並消耗脂肪,呼吸交換率RER介於0.85至1代表處於休息狀態並消耗蛋白質,呼吸交換率RER大於1代表正在從事高強度運動並消耗葡萄糖。當本揭露的第一輸出值α1小於臨界輸出值且在運動狀態代表正在從事低強度運動並消耗脂肪,第一輸出值α1小於臨界輸出值 且在非運動狀態代表正處於非運動狀態並消耗蛋白質,第一輸出值α1大於臨界輸出值代表正在從事高強度運動並消耗葡萄糖。利用圖11,可以正確的執行供能模式分析,進而輸出使用者的運動指引。 FIG. 11 is a comparison table of the energy supply mode analysis of the motion guidance system and the maximum oxygen uptake test using the gas analyzer. In Fig. 11, when the gas analyzer's respiratory exchange rate RER is less than 0.85, it means that it is engaged in low-intensity exercise and consumes fat. The respiratory exchange rate RER is between 0.85 and 1 means that it is at rest and consumes protein. The respiratory exchange rate RER is greater than 1 for Is engaged in high-intensity exercise and consumes glucose. When the first output value α1 of the present disclosure is smaller than the critical output value and the motion state represents that the low-intensity motion is being performed and the fat is consumed, the first output value α1 is smaller than the critical output value. And in the non-moving state, it is in a non-moving state and consumes protein, and the first output value α1 is greater than the critical output value, indicating that high-intensity exercise is being performed and glucose is consumed. With Figure 11, the energy supply mode analysis can be performed correctly, and the user's motion guidance can be output.
綜上所述,本揭露的運動指引系統利用心率變異分析結 合運動模式及健康資訊等校正資料,推導使用者在運動時的無氧閾值,即為使用者從有氧運動進入無氧運動時點的心率值。經由本揭露的運動指引系統計算出的無氧閾值,與利用氣體分析儀進行最大攝氧量測試檢測出的無氧閾值比較,在反推進入無氧運動時點的心率值占最大心跳頻率的百分比僅有10%以下的差距,而本揭露的運動指引系統並不需要價格昂貴的氣體分析儀。總結來說,本揭露的運動指引系統可在沒有使用者年齡限制之下提供無氧閾值的個人化計算,並且利用心率變異分析推導無氧閾值,以相對低的成本即可計算出高準確度的無氧閾值。 In summary, the disclosed motion guidance system utilizes heart rate variability analysis The correction data such as the exercise mode and the health information are used to derive the anaerobic threshold of the user during exercise, that is, the heart rate value when the user enters the anaerobic exercise from the aerobic exercise. The anaerobic threshold calculated by the motion guidance system of the present disclosure is compared with the anaerobic threshold detected by the gas analyzer for the maximum oxygen uptake test, and the heart rate value at the point of the reverse enthalpy movement is the percentage of the maximum heart rate. There is only a gap of less than 10%, and the motion guidance system disclosed herein does not require an expensive gas analyzer. In summary, the disclosed motion guidance system can provide an individualized calculation of an anaerobic threshold without user age limitation, and use heart rate variability analysis to derive an anaerobic threshold, and can calculate high accuracy at a relatively low cost. The anaerobic threshold.
雖然本揭露已以實施例揭露如上,然其並非用以限定本揭露,任何所屬技術領域中具有通常知識者,在不脫離本揭露的精神和範圍內,當可作些許的更動與潤飾,故本揭露的保護範圍當視後附的申請專利範圍所界定者為準。 The present disclosure has been disclosed in the above embodiments, but it is not intended to limit the disclosure, and any person skilled in the art can make some changes and refinements without departing from the spirit and scope of the disclosure. The scope of protection of this disclosure is subject to the definition of the scope of the appended claims.
S1001、S1003、S1005、S1007‧‧‧運動指引方法的步驟 S1001, S1003, S1005, S1007‧‧‧ steps of the exercise guidance method
Claims (26)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/574,392 US9724000B2 (en) | 2014-03-27 | 2014-12-18 | Exercise guiding system, exercise guiding method and anaerobic threshold measuring method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201461970907P | 2014-03-27 | 2014-03-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201537375A true TW201537375A (en) | 2015-10-01 |
TWI597617B TWI597617B (en) | 2017-09-01 |
Family
ID=54850897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103136140A TWI597617B (en) | 2014-03-27 | 2014-10-20 | Exercise guiding system, exercise guiding method and anaerobic threshold measuring method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI597617B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI555508B (en) * | 2015-12-21 | 2016-11-01 | 財團法人工業技術研究院 | Method and system for anaerobic threshold heart rate detection |
TWI577333B (en) * | 2016-03-28 | 2017-04-11 | An Operational System and Method with Immediate Heart Rate Prediction | |
US10159444B2 (en) | 2015-12-21 | 2018-12-25 | Industrial Technology Research Institute | Method and system for anaerobic threshold heart rate detection |
CN109509125A (en) * | 2018-10-29 | 2019-03-22 | 广州精天信息科技有限公司 | A kind of intelligent administration of physical education method and system based on big data cloud platform |
TWI728401B (en) * | 2018-09-25 | 2021-05-21 | 高雄榮民總醫院 | Computer program product and computer readable medium for analyzing functional disturbance of autonomic nervous system through exercising tests |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11452913B2 (en) * | 2020-01-02 | 2022-09-27 | bOMDIC, Inc. | Exercise guiding method based on the different fitness performance levels |
-
2014
- 2014-10-20 TW TW103136140A patent/TWI597617B/en active
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI555508B (en) * | 2015-12-21 | 2016-11-01 | 財團法人工業技術研究院 | Method and system for anaerobic threshold heart rate detection |
US10159444B2 (en) | 2015-12-21 | 2018-12-25 | Industrial Technology Research Institute | Method and system for anaerobic threshold heart rate detection |
TWI577333B (en) * | 2016-03-28 | 2017-04-11 | An Operational System and Method with Immediate Heart Rate Prediction | |
TWI728401B (en) * | 2018-09-25 | 2021-05-21 | 高雄榮民總醫院 | Computer program product and computer readable medium for analyzing functional disturbance of autonomic nervous system through exercising tests |
CN109509125A (en) * | 2018-10-29 | 2019-03-22 | 广州精天信息科技有限公司 | A kind of intelligent administration of physical education method and system based on big data cloud platform |
CN109509125B (en) * | 2018-10-29 | 2023-11-17 | 广东精天科技有限公司 | Intelligent physical education management method and system based on big data cloud platform |
Also Published As
Publication number | Publication date |
---|---|
TWI597617B (en) | 2017-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI597617B (en) | Exercise guiding system, exercise guiding method and anaerobic threshold measuring method | |
US9788778B2 (en) | Measuring psychological stress from cardiovascular and activity signals | |
EP2925217B1 (en) | Method and system for determining a ventilatory threshold | |
US9980678B2 (en) | Psychological acute stress measurement using a wireless sensor | |
US8911329B2 (en) | Real-time exercise coaching system | |
US9265430B2 (en) | Method, system and software product for the measurement of heart rate variability | |
JP6502361B2 (en) | System and method for estimating cardiovascular fitness of a person | |
US20210100500A1 (en) | Vital signs monitoring system | |
Berkoff et al. | Heart rate variability in elite American track-and-field athletes | |
EP2489302B1 (en) | Method and device for estimating energy consumption | |
WO2005011480A2 (en) | Method and apparatus including altimeter and accelerometers for determining work performed by an individual | |
WO2009138923A1 (en) | A method and apparatus for measuring and reducing mental stress | |
AU2011274309B2 (en) | Methods, devices and a marker for physical condition testing | |
TW201538127A (en) | Method and device of sleep detection | |
US11276488B2 (en) | System and method for functional state and / or performance assessment and training program adjustment | |
US10242591B2 (en) | System and method for assessment of cardiovascular fitness | |
US20120029318A1 (en) | Spontaneous exercise electrocardiogram system | |
US9724000B2 (en) | Exercise guiding system, exercise guiding method and anaerobic threshold measuring method | |
GB2469547A (en) | Measurement of heart rate variability | |
US20230165537A1 (en) | Method and system for predicting a vo2max measurement | |
Meina et al. | A combined heart rate and movement index sensor for estimating the energy expenditure | |
Badrinarayanan et al. | Evaluating the Utility of a Cardiac Health Assessment Test in Predicting VO 2 max Obtained from CPET: A Pilot Study | |
Alwardt | Accuracy of the Polar M52 heart rate monitor for estimating energy expenditure, substrate utilization, and maximal oxygen uptake | |
Braithwaite | The Braithwaite Blog |