TW201537150A - Apparatus and method for inspecting light source - Google Patents

Apparatus and method for inspecting light source Download PDF

Info

Publication number
TW201537150A
TW201537150A TW103110373A TW103110373A TW201537150A TW 201537150 A TW201537150 A TW 201537150A TW 103110373 A TW103110373 A TW 103110373A TW 103110373 A TW103110373 A TW 103110373A TW 201537150 A TW201537150 A TW 201537150A
Authority
TW
Taiwan
Prior art keywords
value
measurement
light source
module
signal
Prior art date
Application number
TW103110373A
Other languages
Chinese (zh)
Other versions
TWI487887B (en
Inventor
Yu-Chih Wang
Jiing-Fa Wen
Chien-Fu Huang
Shih-Ting Liao
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW103110373A priority Critical patent/TWI487887B/en
Priority to CN201410178761.6A priority patent/CN104931235B/en
Application granted granted Critical
Publication of TWI487887B publication Critical patent/TWI487887B/en
Publication of TW201537150A publication Critical patent/TW201537150A/en

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

An apparatus and a method for inspecting a light source are provided, the apparatus comprising a first photo-sensor module, a second photo-sensor module, a movement module, and a processor module. The first photo-sensor module receives light at a first location from the light source during a first time interval to generate a first base signal, and during a second time interval to generate a first measurement signal. The second photo-sensor module, disposed at the movement module, receives light at a second location from the light source during the second time interval to generate a second measurement signal. The movement module makes the second photo-sensor module move relatively to the first photo-sensor module. The processor module, coupled with and driving the movement module, calculates a first terminal value corresponding to the second location based on the aforementioned signals. The apparatus may further comprise a measurement module that receives the aforementioned signals to generate measurement values.

Description

光源檢測裝置與方法 Light source detecting device and method

本揭露係關於光源檢測,特別係關於光源的空間均勻性(spatial uniformity)和時間穩定性(temporal stability)的具補償因子的低誤差檢測裝置與方法。 The present disclosure relates to light source detection, and in particular to a low error detection apparatus and method with compensation factors for spatial uniformity and temporal stability of a light source.

大氣質量或厚度(air mass,簡稱AM)是用來量化(quantify)地表接收到太陽光「輻照度」(irradiance,單位為瓦特/平方公尺〔W/m2〕)的一個概念。太陽於正上方垂直地表方向入射時,假設光穿透的大氣層厚度為1,則地表的光照條件記為AM1,此太陽光之輻照度能量約為1366W/m2。由於地球人口多集中於溫帶或亞熱帶緯度地方,太陽光實際入射角是以傾斜角度照射地面,國際標準中定義這些地區平均所受的光照條件為AM1.5G,代表太陽光與地面垂直線的夾角約呈48度傾斜入射,也就是光約當穿透了1.5倍厚度的大氣層,其中G(global)表示考量了光的散射因素;AM1.5G時,太陽光的輻照度能量約為963.75W/m2。為量測計算方便,通常將AM1.5G計為1000W/m2Air mass (AM) is a concept used to quantify the surface's "irradiance" (in watts per square meter [W/m 2 ]). When the sun is incident vertically above the surface direction, assuming that the thickness of the atmosphere penetrated by the light is 1, the illumination condition of the surface is recorded as AM1, and the irradiance energy of the sunlight is about 1366 W/m 2 . Since the Earth's population is concentrated in temperate or subtropical latitudes, the actual incident angle of sunlight is irradiated to the ground at an oblique angle. The international standard defines the average illumination condition of these areas as AM1.5G, which represents the angle between the sun and the vertical line of the ground. It is about 48 degrees obliquely incident, that is, the light penetrates into the atmosphere of 1.5 times the thickness, where G(global) means that the scattering factor of light is considered; when AM1.5G, the irradiance energy of sunlight is about 963.75W/ m 2 . For the convenience of measurement calculation, AM1.5G is usually counted as 1000W/m 2 .

量測太陽電池(solar cell或photovoltaic cell)的發電效率時,通常需在實驗室中以太陽模擬器(solar simulator)重 現AM1.5G的標準太陽光條件,作為人造的標準光源。太陽模擬器受制於燈泡、透鏡、鏡組的損耗或缺陷,隨使用時間而產生誤差或變異量,因而需定期校正或維修。為確保太陽模擬器之性能,國際標準IEC 60904-9針對太陽模擬器性能檢測,建議應考量:光譜合致度(spectral match)、光源照明平面之輻照度的不均勻度(空間均勻性)和光源隨時間變化的幅度(時間穩定性),對太陽模擬器進行A、B、C三個等級的性能分類。其中,空間均勻性建議將光源的照明平面至少等分為64個等面積區,量測各等分區之數據。然而實務上區的數目可能高達數百,在目前實驗室仍以人工和少量的昂貴感測器檢驗太陽模擬器的現實下空間均勻性的量測顯得曠時費工,且更嚴重的是光源長時間使用時,光源的不穩定性會造成前後量測期間數據隨之浮動而失真。 When measuring the power generation efficiency of a solar cell or a photovoltaic cell, it is usually necessary to use a solar simulator in the laboratory. The standard solar condition of AM1.5G is now used as a standard light source for man-made. The solar simulator is subject to losses or defects in the bulb, lens, and mirror, and varies or varies with time of use and requires periodic calibration or repair. In order to ensure the performance of the solar simulator, the international standard IEC 60904-9 for solar simulator performance testing, it is recommended to consider: spectral match (spectral match), irradiance unevenness (spatial uniformity) of the light source illumination plane and light source The magnitude of the change over time (time stability), the performance of the three levels of A, B, C for the solar simulator. Among them, spatial uniformity is recommended to divide the illumination plane of the light source into at least 64 equal-area zones, and measure the data of each partition. However, the number of practical upper areas may be as high as hundreds. In the current laboratory, it is still time-consuming to measure the realistic spatial uniformity of the solar simulator with manual and a small number of expensive sensors, and more serious is the light source. When used for a long time, the instability of the light source will cause the data to fluctuate and be distorted during the measurement before and after the measurement.

鑒於上述問題,本揭露旨在提供一種光源檢測裝置與方法,用於自動量測光源的空間均勻性和時間穩定性,特別是量測前者時,透過即時補償以消除光源隨時間變化的負面影響。 In view of the above problems, the present disclosure is directed to providing a light source detecting apparatus and method for automatically measuring the spatial uniformity and time stability of a light source, in particular, when measuring the former, through instantaneous compensation to eliminate the negative influence of the light source over time. .

本揭露提供之光源檢測裝置,包含:第一感光模組、第二感光模組、移動模組和處理模組。第一感光模組於第一時段於第一位置接收光源產生的光,以產生第一基準訊號,並於第二時段於第一位置接收光源產生的光,以產生第一量測訊號。第二感光模組設於移動模組上,用以於第二時段於第二位置接收光源產生的光,以產生第二量測訊號。移動模組用以使第二感光模組 相對第一感光模組進行一維度或二維度之移動。處理模組耦接並用以驅動移動模組,且用以依據第一基準訊號、第一量測訊號以及第二量測訊號計算對應第二位置的第一終值。在一實施例中,本揭露提供之光源檢測裝置更包含量測模組,量測模組耦接第一感光模組、第二感光模組和處理模組,用以接收前述訊號以產生對應的基準值或量測值。 The light source detecting device provided by the present disclosure comprises: a first photosensitive module, a second photosensitive module, a moving module and a processing module. The first photosensitive module receives the light generated by the light source at the first position in the first time period to generate a first reference signal, and receives the light generated by the light source at the first position in the second time period to generate the first measurement signal. The second photosensitive module is disposed on the mobile module, and is configured to receive light generated by the light source at the second position during the second time period to generate a second measurement signal. The mobile module is used to make the second photosensitive module One-dimensional or two-dimensional movement is performed with respect to the first photosensitive module. The processing module is coupled to the mobile module, and configured to calculate a first final value corresponding to the second location according to the first reference signal, the first measurement signal, and the second measurement signal. In one embodiment, the light source detecting device of the present disclosure further includes a measuring module coupled to the first sensing module, the second sensing module, and the processing module for receiving the signal to generate a corresponding Reference value or measurement value.

本揭露提供之光源檢測方法包含:於第一時段和第二時段於第一位置接收光源產生的光,以分別產生第一基準訊號和第一量測訊號;選擇性地於第二時段於第二位置接收光源產生的光,以產生第二量測訊號;以及依據第一基準訊號、第一量測訊號以及第二量測訊號,計算對應第二位置的修正補償值為第一終值。在一實施例中,本揭露提供之光源檢測方法更包含依據前述訊號產生對應的基準值或量測值,而第一終值等於第二量測值乘以第一基準值除以第一量測值。 The light source detecting method provided by the present disclosure includes: receiving light generated by a light source at a first position in a first time period and a second time period to respectively generate a first reference signal and a first measurement signal; and selectively in the second time period The second position receives the light generated by the light source to generate the second measurement signal; and calculates the correction compensation value corresponding to the second position as the first final value according to the first reference signal, the first measurement signal, and the second measurement signal. In an embodiment, the light source detecting method provided by the present disclosure further includes generating a corresponding reference value or a measured value according to the foregoing signal, and the first final value is equal to the second measured value multiplied by the first reference value divided by the first amount. Measured value.

綜上所述,本揭露提供之光源檢測裝置與方法以不同時段量測的第一量測訊號和第一基準訊號的關係為一個補償因子,並用此因子修正第二量測值。由於第一和第二量測訊號是在同時段取得,本揭露的補償修正具有即時性。在裝置設計上,本揭露只需兩個感光模組且可自動控制第二感光模組的位置,有助於顯著減少製造成本和檢測所需時間。在其他實施例中,本揭露提供之光源檢測裝置更可包含一或多個第三感光模組平行量測,第二和第三感光模組間可有另一個補償因子修正其量測值。 In summary, the relationship between the first measurement signal and the first reference signal measured by the light source detecting device and the method in different time periods is a compensation factor, and the second measurement value is corrected by the factor. Since the first and second measurement signals are acquired at the same time, the compensation correction of the present disclosure is immediacy. In terms of device design, the present disclosure requires only two photosensitive modules and can automatically control the position of the second photosensitive module, which helps to significantly reduce manufacturing costs and time required for detection. In other embodiments, the light source detecting device provided by the present disclosure may further include one or more third photosensitive modules for parallel measurement, and another compensation factor between the second and third photosensitive modules may be used to correct the measured values.

以上之關於本揭露內容之說明及以下之實施方式之說明係用以示範與解釋本揭露之精神與原理,並且提供本揭露之專利申請範圍更進一步之解釋。 The above description of the disclosure and the following embodiments are intended to illustrate and explain the spirit and principles of the disclosure, and to provide further explanation of the scope of the disclosure.

1‧‧‧光源檢測裝置 1‧‧‧Light source detection device

11‧‧‧第一感光模組 11‧‧‧First sensor module

12‧‧‧第二感光模組 12‧‧‧Second sensor module

13‧‧‧第三感光模組 13‧‧‧ third sensor module

14‧‧‧移動模組 14‧‧‧Mobile Module

141‧‧‧第一軌道 141‧‧‧First track

142‧‧‧第二軌道 142‧‧‧second track

143‧‧‧載臺 143‧‧‧ stage

15‧‧‧量測模組 15‧‧‧Measurement module

16‧‧‧處理模組 16‧‧‧Processing module

41‧‧‧照光範圍 41‧‧‧Lighting range

42‧‧‧有效範圍 42‧‧‧effective range

第1圖係依據本揭露一實施例光源檢測裝置的高階方塊圖。 1 is a high-order block diagram of a light source detecting device according to an embodiment of the present disclosure.

第2圖係依據本揭露一實施例第一感光模組、第二感光模組和移動模組的配置示意圖。 FIG. 2 is a schematic diagram showing the configuration of a first photosensitive module, a second photosensitive module, and a moving module according to an embodiment of the present disclosure.

第3圖係依據本揭露一實施例移動模組的立體圖。 Figure 3 is a perspective view of a mobile module in accordance with an embodiment of the present disclosure.

第4圖係依據本揭露一實施例第一感光模組、第二感光模組、多個第三感光模組和移動模組的配置示意圖。 4 is a schematic diagram showing the configuration of a first photosensitive module, a second photosensitive module, a plurality of third photosensitive modules, and a moving module according to an embodiment of the present disclosure.

第5圖係依據本揭露一實施例第一量測訊號、第二量測訊號和有效量測時段的示意圖。 FIG. 5 is a schematic diagram of a first measurement signal, a second measurement signal, and an effective measurement period according to an embodiment of the present disclosure.

第6圖係依據本揭露一實施例光源檢測方法的流程圖。 Figure 6 is a flow chart of a light source detecting method according to an embodiment of the present disclosure.

以下在實施方式中詳細敘述本揭露之詳細特徵以及優點,其內容足以使任何熟習相關技藝者了解本揭露之技術內容並據以實施,且依據本說明書所揭露之內容、申請專利範圍及圖式,任何熟習相關技藝者可輕易地理解本揭露相關之目的及優點。以下之實施例係進一步詳細說明本揭露之觀點,但非以任何觀點限制本揭露之範疇。 The detailed features and advantages of the present disclosure are described in detail in the following detailed description of the embodiments of the disclosure, and the disclosure of The objects and advantages associated with the present disclosure can be readily understood by those skilled in the art. The following examples are intended to further illustrate the present disclosure, but are not intended to limit the scope of the disclosure.

請同時參見第1圖和第2圖。第1圖係依據本揭露 一實施例光源檢測裝置的高階方塊圖。如第1圖所示,光源檢測裝置1,包含:第一感光模組11、第二感光模組12、移動模組14(詳見第3圖說明)、量測模組15和處理模組16。第一感光模組和第二感光模組可以是任何光電轉換元件,例如光電二極體(photodiode)、太陽電池(solar cell或photovoltaic cell)或電荷耦合元件(charge-coupled device,簡稱CCD)。第一感光模組和第二感光模組的規格不一定相同,也毋需採用同樣的光電轉換原理;由於第一感光模組屬參考性質,實務上可以選用較平價的元件。量測模組15可包含類比/數位轉換器(analogue/digital converter)、數位多功能電表(digital multimeter)或資料擷取卡(data acquisition hardware)等。處理模組16則具運算、儲存和控制移動模組14等功能,可用一臺電腦實作。第2圖係第一感光模組11、第二感光模組12和移動模組14的配置示意圖。光源檢測裝置1適用的對象包含但不限於平面光源。以檢測平面光源為例,光源檢測裝置1係置於光源的照光範圍41內。有效範圍42與照光範圍41相對,有效範圍42指的是此光源用於對太陽電池評價時,真正被使用的光源平面區域。 Please also refer to Figure 1 and Figure 2. Figure 1 is based on the disclosure A high level block diagram of a light source detecting device of an embodiment. As shown in FIG. 1 , the light source detecting device 1 includes: a first photosensitive module 11 , a second photosensitive module 12 , a moving module 14 (described in detail in FIG. 3 ), a measuring module 15 and a processing module. 16. The first photosensitive module and the second photosensitive module may be any photoelectric conversion element, such as a photodiode, a solar cell or a photovoltaic cell, or a charge-coupled device (CCD). The specifications of the first photosensitive module and the second photosensitive module are not necessarily the same, and the same photoelectric conversion principle is not required; since the first photosensitive module is a reference property, a relatively inexpensive component can be selected in practice. The measurement module 15 can include an analog/digital converter, a digital multimeter, or a data acquisition hardware. The processing module 16 has functions such as computing, storing, and controlling the mobile module 14, and can be implemented by one computer. 2 is a schematic view showing the arrangement of the first photosensitive module 11, the second photosensitive module 12, and the moving module 14. The object to which the light source detecting device 1 is applied includes, but is not limited to, a planar light source. Taking the detection planar light source as an example, the light source detecting device 1 is placed in the illumination range 41 of the light source. The effective range 42 is opposite to the illumination range 41, which refers to the planar area of the source that is actually used when the source is used to evaluate the solar cell.

固定的第一感光模組11首先於第一時段在第一位置依其所接收的光,產生第一基準訊號。接著處理模組16驅動移動模組14將第二感測元件12移動至第二位置。第二位置在光源檢測裝置1即為有效範圍42之中,由於有效範圍42內的光源才是本揭露之檢測重點,第二位置必須落在其中,但第一位置只要在 照光範圍41內即可。第二感測模組12於第二時段在第二位置依其所接收的光產生第二量測訊號;同時,在第一位置第一感光模組11亦產生第一量測訊號。第二感測模組12亦可於第一時段受光產生訊號。此訊號的功能非屬本揭露之範疇,但舉例而言可配合第一基準訊號提供更可信的基準值。上述的第一基準訊號、第一量測訊號和第二量測訊號為量測模組15所接收,並分別產生第一基準值、第一量測值和第二量測值。這些訊號的性質乃視產生訊號的感光模組採用的光電轉換原理而定;舉例來說,訊號可以是光電流(photocurrent),而基準值或量測值以毫安培(mA)表示;或照度(illumination intensity),基準值或量測值以勒克斯(lux)表示;或國際單位制之光度單位之物理量表示。本揭露並不限定量測模組15產生基準值或量測值的方式;舉例而言,將第一基準訊號視為一個定義域(domain)為第一時段的時間數列(time series),則第一基準值可以是此時間數列的平均值或中位數。 The fixed first photosensitive module 11 first generates a first reference signal according to the received light at the first position in the first time period. The processing module 16 then drives the mobile module 14 to move the second sensing element 12 to the second position. The second position is in the effective range 42 of the light source detecting device 1. Since the light source in the effective range 42 is the detection focus of the present disclosure, the second position must fall therein, but the first position is only The illumination range is within 41. The second sensing module 12 generates a second measurement signal according to the received light in the second position in the second time period; meanwhile, the first sensing module 11 also generates the first measurement signal in the first position. The second sensing module 12 can also receive signals during the first time period. The function of this signal is not within the scope of this disclosure, but for example, it can provide a more reliable reference value with the first reference signal. The first reference signal, the first measurement signal and the second measurement signal are received by the measurement module 15, and respectively generate a first reference value, a first measurement value and a second measurement value. The nature of these signals depends on the principle of photoelectric conversion used by the sensor module that generates the signal; for example, the signal can be photocurrent, and the reference or measurement is expressed in milliamps (mA); or illumination (illumination intensity), the reference value or measurement value is expressed in lux; or the physical quantity of the unit of measure of the International System of Units. The disclosure does not limit the manner in which the measurement module 15 generates the reference value or the measured value; for example, if the first reference signal is regarded as a domain with a time series of the first time period, then The first reference value can be the average or median of the time series.

最後,處理模組16依據這些值計算第二位置上經補償修正的量測值,亦即第一終值。在一實施例中,補償因子是第一基準值和第一量測值的比值,而第一終值等於第二量測值乘以補償因子。一臺平面光源整體的輻照度可能會在半小時間增加2%至5%,而這個算法的意義即在於逆轉光源隨時間的變化。以較先的量測為依歸,則藉由在同一位置取得先後兩個值(第一基準值和第一量測值),可知這段時間整體輻照度的變化幅度,並據此 修正其他位置上的數據(第二量測值)。 Finally, the processing module 16 calculates the compensated corrected measured value at the second position, that is, the first final value, based on the values. In an embodiment, the compensation factor is a ratio of the first reference value to the first measurement value, and the first final value is equal to the second measurement value multiplied by the compensation factor. The overall irradiance of a planar light source may increase by 2% to 5% in half a small time, and the significance of this algorithm is to reverse the change of the light source with time. According to the previous measurement, by taking two values (the first reference value and the first measurement value) at the same position, the variation range of the overall irradiance during this time is known, and accordingly Correct the data at other locations (second measurement).

請參見第3圖。第3圖係依據一實施例移動模組14的立體圖。如第3圖所示,移動模組14包含第一軌道141、第二軌道142和載臺143。載臺143用以承載第二感光模組12,並可在第一軌道141上沿一平面的第一維度滑動。第一軌道141則可在第二軌道上沿同一平面的第二維度滑動。移動模組14可能包含受處理模組16控制的電動機(motor,未標示),用以曳引載臺143與第一軌道141。移動模組14亦可由機器手臂配合適當之夾持器具替換。 See Figure 3. Figure 3 is a perspective view of the mobile module 14 in accordance with an embodiment. As shown in FIG. 3, the mobile module 14 includes a first track 141, a second track 142, and a stage 143. The stage 143 is configured to carry the second photosensitive module 12 and is slidable along a first dimension of a plane on the first track 141. The first track 141 is slidable along a second dimension of the same plane on the second track. The mobile module 14 may include a motor (not labeled) controlled by the processing module 16 for pulling the stage 143 and the first track 141. The mobile module 14 can also be replaced by a robotic arm with a suitable gripping device.

第3圖中的載臺143可輕易地被延伸或複製以承載更多的感光模組。如第4圖所示,在此實施例中,移動模組14的第一軌道141上分布了第二感光模組12和四個第三感光模組13,涵蓋有效範圍42的寬度。請注意第二感光模組12和第三感光模組13實質上並無不同,在此僅為說明方便而區分;因此對某第三感光模組13,第三量測訊號在某第三位置上產生,並被量測模組15轉換為第三量測值,以及最後處理模組16計算對應第三位置的第二終值的過程,應與第二感光模組12類似。本揭露亦不限定感光模組的數量,以及如何在第一軌道141上排列和分布,凡所屬領域具通常知識者皆可自由設計。如第4圖的配置方式,優點在於第二感光模組12和第三感光模組13不需再沿第一維度而只需沿第二維度移動量測,可簡化移動模組14的設計,更重要的是進一步縮短了整體檢測平面光源所需的時間。 The stage 143 in Figure 3 can be easily extended or duplicated to carry more photosensitive modules. As shown in FIG. 4, in this embodiment, the second photosensitive module 12 and the four third photosensitive modules 13 are distributed on the first track 141 of the mobile module 14, covering the width of the effective range 42. Please note that the second photosensitive module 12 and the third photosensitive module 13 are substantially different, and are distinguished here for convenience of description; therefore, for a third photosensitive module 13, the third measuring signal is at a third position. The process of generating and converting the measurement module 15 to the third measurement value and calculating the second final value corresponding to the third position by the final processing module 16 should be similar to the second photosensitive module 12. The disclosure also does not limit the number of photosensitive modules, and how they are arranged and distributed on the first track 141, and those of ordinary skill in the art can freely design. As shown in FIG. 4, the second photosensitive module 12 and the third photosensitive module 13 do not need to be measured along the second dimension in the first dimension, which simplifies the design of the mobile module 14. More importantly, the time required to detect the planar light source as a whole is further shortened.

當光源檢測裝置1具有多個活動的感光模組時,可能需要另外一層的補償修正來消弭個體之間的固有差別;所謂固有差別即是在相同條件下不同感光模組量測的結果所存在之歧異。在一實施例中,第二感光模組12被選為參考元件。仿照第一終值中補償因子的算法,假設來自第二感光模組12和第三感光模組13的數據呈固定比值,則可在一標準光照條件下(如AM1.5G)使第二感光模組12和第三感光模組13分別產生第二基準訊號和第三基準訊號,再將兩訊號分別轉換為第二基準值和第三基準值。在一實施例中,用以消弭感光模組間個體差異的補償因子,即第二基準值和該第三基準值的比值,而前述第二終值等於第三量測值乘以此補償因子,再乘上前述依據第一感光模組11的補償因子。 When the light source detecting device 1 has a plurality of active photosensitive modules, another layer of compensation correction may be needed to eliminate the inherent difference between the individuals; the so-called inherent difference is that the results of different photosensitive module measurements under the same conditions exist. The difference. In an embodiment, the second photosensitive module 12 is selected as a reference component. Following the algorithm of the compensation factor in the first final value, assuming that the data from the second photosensitive module 12 and the third photosensitive module 13 have a fixed ratio, the second photosensitive can be made under a standard illumination condition (such as AM1.5G). The module 12 and the third sensing module 13 respectively generate a second reference signal and a third reference signal, and then convert the two signals into a second reference value and a third reference value, respectively. In one embodiment, a compensation factor for eliminating individual differences between the photosensitive modules, that is, a ratio of the second reference value to the third reference value, and the second final value is equal to the third measurement value multiplied by the compensation factor And multiplying the aforementioned compensation factor according to the first photosensitive module 11.

光源檢測裝置1可用於連續發光的穩態式照明光源,也可用於脈衝發光的照明光源。應用於後者時,由於一次脈波的長度(可視為前述的第二時段)只在10到100毫秒(ms)間,量測模組15不需隨時接收第二量測訊號並產生第二量測值。請參見第5圖。第5圖係依據本揭露一實施例,關於第一量測訊號和第二量測訊號的示意圖。如第5圖所示,量測模組15可在第一量測訊號超過某一預設值時才被觸發接收第二量測訊號。由於脈波最前段和最後段通常存在雜訊,量測模組15可等候一延遲(delay)才進入有效量測時段,有效量測時段係第二時段的一部分。如前所述,量測模組15可取第二量測訊號(作為一時間數列) 在有效量測時段中的平均值或中位數,以產生第二量測值。 The light source detecting device 1 can be used for a steady-state illumination source that continuously emits light, and can also be used for a pulse-illuminated illumination source. When applied to the latter, since the length of the primary pulse wave (which can be regarded as the aforementioned second time period) is only between 10 and 100 milliseconds (ms), the measurement module 15 does not need to receive the second measurement signal at any time and generate the second amount. Measured value. See Figure 5. FIG. 5 is a schematic diagram of a first measurement signal and a second measurement signal according to an embodiment of the disclosure. As shown in FIG. 5, the measurement module 15 can be triggered to receive the second measurement signal when the first measurement signal exceeds a certain preset value. Since the noise is usually present in the foremost and last segments of the pulse wave, the measurement module 15 can wait for a delay to enter the effective measurement period, and the effective measurement period is a part of the second period. As described above, the measurement module 15 can take the second measurement signal (as a time series) The average or median in the effective measurement period to produce a second measurement.

請配合第1圖參見第6圖。第6圖係依據本揭露一實施例光源檢測方法的流程圖。如圖所示,於步驟S61中,第一感光模組11於第一時段在第一位置接收光源產生的光以產生第一基準訊號,量測模組15並依據第一基準訊號產生第一基準值。於步驟S63中,第一感光模組11於第二時段在第一位置產生第一量測訊號,量測模組15並依據第一量測訊號產生第一量測值;第二感光模組12被移動模組14移動至第二位置產生第二量測訊號。於步驟S65中,處理模組16判斷第一量測值是否大於預設值;若是則進行步驟S67,若否則回到步驟S63繼續等待第一感光模組11的觸發。於步驟S67中,量測模組15依據有效量測時段的第二量測訊號產生第二量測值,有效量測時段係第二時段的一部分。於步驟S69中,處理模組16依據第一基準值、第一量測值和第二量測值計算對應第二位置的第一終值。在一實施例中,第一終值等於第二量測值乘以第一基準值除以第一量測值。 Please refer to Figure 6 in conjunction with Figure 1. Figure 6 is a flow chart of a light source detecting method according to an embodiment of the present disclosure. As shown in the figure, in step S61, the first photosensitive module 11 receives the light generated by the light source at the first position to generate the first reference signal, and the measurement module 15 generates the first signal according to the first reference signal. Reference value. In step S63, the first photosensitive module 11 generates a first measurement signal at the first position in the second time period, and the measurement module 15 generates a first measurement value according to the first measurement signal; the second photosensitive module 12 is moved by the mobile module 14 to the second position to generate a second measurement signal. In step S65, the processing module 16 determines whether the first measured value is greater than a preset value; if yes, proceeds to step S67, and if not, returns to step S63 to continue waiting for the triggering of the first photosensitive module 11. In step S67, the measurement module 15 generates a second measurement value according to the second measurement signal of the effective measurement period, and the effective measurement period is a part of the second time period. In step S69, the processing module 16 calculates a first final value corresponding to the second location according to the first reference value, the first measured value, and the second measured value. In an embodiment, the first final value is equal to the second measured value multiplied by the first reference value divided by the first measured value.

在一實施例中,移動模組14復於第三時段將第二感光模組12移動至第四位置,步驟S63至S69針對第四位置執行以產生第三終值,如此反覆直到光源檢測裝置1完成有效範圍42的量測。取得對應多個位置的終值後,即可依據IEC 60904-9所建議的公式計算光源各處的輻照度的不均勻度。同時,若以第二感光模組12或第三感光模組13量測有效範圍42上,同一位置在不同時段的輻照度,亦可估計出光源隨時間的變化。對於脈衝發 光的照明光源,第二感光模組12或第三感光模組13在有效範圍42上,量測模組15可在第一量測訊號超過某一預設值時,進入有效量測時段接收第二量測訊號或第三量測訊號,此有效量測時段(作為一時間數列),如第5圖所示,可估計出脈衝發光之每次脈衝光之時間穩定性(有效量測時段之時間內光源強度變化量)。 In an embodiment, the mobile module 14 moves the second photosensitive module 12 to the fourth position over the third period, and the steps S63 to S69 are performed for the fourth position to generate the third final value, so as to repeat until the light source detecting device 1 Complete the measurement of the effective range 42. After obtaining the final values corresponding to the plurality of positions, the unevenness of the irradiance throughout the light source can be calculated according to the formula suggested by IEC 60904-9. At the same time, if the irradiance of the same position at different time periods is measured by the second photosensitive module 12 or the third photosensitive module 13, the change of the light source with time can also be estimated. For pulse hair The illumination source of the light, the second photosensitive module 12 or the third photosensitive module 13 is on the effective range 42, and the measurement module 15 can enter the effective measurement period when the first measurement signal exceeds a certain preset value. The second measurement signal or the third measurement signal, the effective measurement period (as a time series), as shown in Fig. 5, the time stability of each pulse light of the pulse illumination can be estimated (effective measurement period) The amount of change in light source intensity during the time).

綜上所述,本揭露之光源檢測裝置與方法可自動量測光源的空間均勻性和時間穩定性,特別是量測前者時能透過即時補償以消除光源時間不穩定性的負面影響。對於脈衝式的光源,本揭露提供一種觸發機制使量測模組14在必要時才接收第二量測訊號產生第二量測值,減少數據量和處理模組16的負擔。本揭露亦可使用多個置於有效範圍42上的感光模組提高量測速率,並以另一基於標準光照條件的跨模組補償因子校正終值。 In summary, the light source detecting device and method of the present disclosure can automatically measure the spatial uniformity and time stability of the light source, and in particular, the former can measure the former to eliminate the negative influence of the time instability of the light source. For a pulsed light source, the present disclosure provides a trigger mechanism that causes the measurement module 14 to receive a second measurement signal to generate a second measurement value when necessary, reducing the amount of data and the burden on the processing module 16. The disclosure may also use a plurality of photosensitive modules placed on the effective range 42 to increase the measurement rate and correct the final value by another cross-module compensation factor based on standard illumination conditions.

雖然本揭露以前述之實施例揭露如上,然其並非用以限定本揭露。在不脫離本揭露之精神和範圍內,所為之更動與潤飾,均屬本揭露之專利保護範圍。關於本揭露所界定之保護範圍請參考所附之申請專利範圍。 Although the disclosure is disclosed above in the foregoing embodiments, it is not intended to limit the disclosure. All changes and refinements are beyond the scope of this disclosure. Please refer to the attached patent application for the scope of protection defined by this disclosure.

1‧‧‧光源檢測裝置 1‧‧‧Light source detection device

11‧‧‧第一感光模組 11‧‧‧First sensor module

12‧‧‧第二感光模組 12‧‧‧Second sensor module

14‧‧‧移動模組 14‧‧‧Mobile Module

15‧‧‧量測模組 15‧‧‧Measurement module

16‧‧‧處理模組 16‧‧‧Processing module

Claims (16)

一種光源檢測裝置,包含:一第一感光模組,用以於一第一時段於一第一位置接收一光源產生的光以產生一第一基準訊號,並用以於一第二時段於該第一位置接收該光源產生的光以產生一第一量測訊號;一第二感光模組,用以於該第二時段於一第二位置接收該光源產生的光以產生一第二量測訊號;一移動模組,用以使該第二感光模組相對該第一感光模組移動,該第二感光模組設置於該移動模組;以及一處理模組,耦接該移動模組,用以驅動該移動模組,並用以依據該第一基準訊號、該第一量測訊號以及該第二量測訊號,計算對應該第二位置的一第一終值。 A light source detecting device includes: a first photosensitive module configured to receive light generated by a light source at a first position for generating a first reference signal for a second time period; Receiving light generated by the light source to generate a first measurement signal; and a second photosensitive module for receiving light generated by the light source at a second position during the second time period to generate a second measurement signal a mobile module for moving the second photosensitive module relative to the first photosensitive module, the second photosensitive module being disposed on the mobile module, and a processing module coupled to the mobile module The driving module is configured to calculate a first final value corresponding to the second position according to the first reference signal, the first measurement signal, and the second measurement signal. 如請求項1所述的光源檢測裝置,更包含一量測模組,耦接該第一感光模組、該第二感光模組和該處理模組,用以接收該第一基準訊號以產生一第一基準值,並用以接收該第一量測訊號以產生一第一量測值,以及用以接收該第二量測訊號以產生一第二量測值。 The light source detecting device of claim 1, further comprising a measuring module coupled to the first photosensitive module, the second photosensitive module and the processing module for receiving the first reference signal to generate a first reference value for receiving the first measurement signal to generate a first measurement value, and for receiving the second measurement signal to generate a second measurement value. 如請求項2所述的光源檢測裝置,其中該第一終值係該第二量測值乘以該第一基準值除以該第一量測值。 The light source detecting device of claim 2, wherein the first final value is the second measured value multiplied by the first reference value divided by the first measured value. 如請求項3所述的光源檢測裝置,其中當該第一量測值大於一預設值時,該量測模組接收該第二量測訊號,以產生該第 二量測值。 The light source detecting device of claim 3, wherein when the first measured value is greater than a predetermined value, the measuring module receives the second measuring signal to generate the first Two measurements. 如請求項4所述的光源檢測裝置,其中該量測模組接收該第二量測訊號,以產生該第二量測值係依據一有效量測時段的該第二量測訊號產生該第二量測值,該第二時段包含該有效量測時段。 The light source detecting device of claim 4, wherein the measuring module receives the second measuring signal to generate the second measured value according to the second measuring signal of an effective measuring period to generate the first The second measurement value includes the effective measurement period. 如請求項2所述的光源檢測裝置,更包含:至少一第三感光模組,設置於該移動模組,耦接該量測模組,用以於該第二時段於一第三位置接收該光源產生的光以產生一第三量測訊號;其中該移動模組更用以使該第三感光模組相對該第一感光模組移動,該量測模組更用以接收該第三量測訊號以產生一第三量測值,該處理模組更用以依據該第一基準值、該第一量測值、該第三量測值以及一補償因子,計算對應該第三位置的一第二終值,該補償因子關聯於該第二感光模組和該第三感光模組。 The light source detecting device of claim 2, further comprising: at least one third photosensitive module, disposed in the mobile module, coupled to the measuring module, for receiving in a third position during the second time period The light generated by the light source generates a third measurement signal; wherein the movement module is further configured to move the third photosensitive module relative to the first photosensitive module, and the measurement module is further configured to receive the third Measuring the signal to generate a third measurement value, the processing module is further configured to calculate the corresponding third position according to the first reference value, the first measurement value, the third measurement value, and a compensation factor a second final value associated with the second photosensitive module and the third photosensitive module. 如請求項6所述的光源檢測裝置,其中於一標準光照條件下,該第二感光模組產生一第二基準訊號,該第二基準訊號對應一第二基準值,該第三感光模組產生一第三基準訊號,該第三基準訊號對應一第三基準值,該補償因子係該第二基準值除以該第三基準值,該第二終值係該第三量測值乘以該補償因子乘以該第一基準值除以該第一量測值。 The light source detecting device of claim 6, wherein the second photosensitive module generates a second reference signal under a standard illumination condition, and the second reference signal corresponds to a second reference value, the third photosensitive module Generating a third reference signal, the third reference signal corresponding to a third reference value, the compensation factor is the second reference value divided by the third reference value, the second final value is the third measured value multiplied by The compensation factor is multiplied by the first reference value divided by the first measured value. 如請求項1所述的光源檢測裝置,其中該第二感光模組更用以於一第三時段於一第四位置接收該光源產生的光以產生一第四量測訊號,該處理模組更用以依據該第一基準訊號、該第一量測訊號以及該第四量測訊號,計算對應該第四位置的一第三終值。 The light source detecting device of claim 1, wherein the second sensing module is further configured to receive light generated by the light source at a fourth position for generating a fourth measuring signal in a third time period, the processing module The method further calculates a third final value corresponding to the fourth position according to the first reference signal, the first measurement signal, and the fourth measurement signal. 如請求項1所述的光源檢測裝置,其中該第一感光模組或該第二感光模組係光電二極體、太陽電池或電荷耦合元件。 The light source detecting device of claim 1, wherein the first photosensitive module or the second photosensitive module is a photodiode, a solar cell or a charge coupled device. 一種光源檢測方法,包含:於一第一時段於一第一位置接收一光源產生的光以產生一第一基準訊號;於一第二時段於該第一位置接收該光源產生的光以產生一第一量測訊號;於該第二時段於一第二位置接收該光源產生的光以產生一第二量測訊號;以及依據該第一基準訊號、該第一量測訊號以及該第二量測訊號,計算對應該第二位置的一第一終值。 A method for detecting a light source, comprising: receiving light generated by a light source at a first position for generating a first reference signal during a first time period; receiving light generated by the light source at the first position for a second time period to generate a light source a first measurement signal; receiving, at a second position, the light generated by the light source to generate a second measurement signal; and, according to the first reference signal, the first measurement signal, and the second quantity The test signal calculates a first final value corresponding to the second position. 如請求項10所述的光源檢測方法,更包含:依據該第一基準訊號,產生一第一基準值;依據該第一量測訊號,產生一第一量測值;以及選擇性地依據該第二量測訊號,產生一第二量測值;其中該第一終值係該第二量測值乘以該第一基準值除以該第一量測值。 The method of detecting a light source according to claim 10, further comprising: generating a first reference value according to the first reference signal; generating a first measurement value according to the first measurement signal; and selectively The second measurement signal generates a second measurement value; wherein the first final value is the second measurement value multiplied by the first reference value divided by the first measurement value. 如請求項11所述的光源檢測方法,其中選擇性地依據該第二量測訊號產生該第二量測值的步驟包含:判斷該第一量測值是否大於一預設值;以及當該第一量測值大於該預設值時,依據該第二量測訊號產生該第二量測值。 The method of detecting a light source according to claim 11, wherein the step of selectively generating the second measurement value according to the second measurement signal comprises: determining whether the first measurement value is greater than a preset value; and when When the first measurement value is greater than the preset value, the second measurement value is generated according to the second measurement signal. 如請求項12所述的光源檢測方法,其中依據該第二量測訊號產生該第二量測值的步驟係依據一有效量測時段的該第二量測訊號產生該第二量測值,該第二時段包含該有效量測時段。 The method of detecting a light source according to claim 12, wherein the step of generating the second measurement value according to the second measurement signal generates the second measurement value according to the second measurement signal of an effective measurement period, The second time period includes the effective measurement period. 如請求項11所述的光源檢測方法,更包含:於該第二時段於一第三位置接收該光源產生的光以產生一第三量測訊號;依據該第三量測訊號,產生一第三量測值;以及依據該第一基準值、該第一量測值、該第三量測值以及一補償因子,計算對應該第三位置的一第二終值。 The method of detecting a light source according to claim 11, further comprising: receiving light generated by the light source at a third position during the second time period to generate a third measurement signal; generating a first according to the third measurement signal And measuring a second final value corresponding to the third position according to the first reference value, the first measured value, the third measured value, and a compensation factor. 如請求項14所述的光源檢測方法,更包含:於一標準光照條件下,產生一第二基準訊號,該第二基準訊號對應一第二基準值;以及於該標準光照條件下,產生一第三基準訊號,該第三基準訊號對應一第三基準值;其中該補償因子係該第二基準值除以該第三基準值,該第二終值係該第三量測值乘以該補償因子乘以該第一基準值除以該第一量測值。 The light source detecting method of claim 14, further comprising: generating a second reference signal under a standard illumination condition, the second reference signal corresponding to a second reference value; and generating a a third reference signal, the third reference signal corresponding to a third reference value; wherein the compensation factor is the second reference value divided by the third reference value, the second final value is the third measured value multiplied by the The compensation factor is multiplied by the first reference value divided by the first measured value. 如請求項10所述的光源檢測方法,更包含:於一第三時段於一第四位置接收該光源產生的光以產生一第四量測訊號;以及依據該第一基準訊號、該第一量測訊號以及該第四量測訊號,計算對應該第四位置的一第三終值。 The light source detecting method of claim 10, further comprising: receiving light generated by the light source at a fourth position during a third time period to generate a fourth measurement signal; and according to the first reference signal, the first The measurement signal and the fourth measurement signal calculate a third final value corresponding to the fourth position.
TW103110373A 2014-03-19 2014-03-19 Apparatus and method for inspecting light source TWI487887B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW103110373A TWI487887B (en) 2014-03-19 2014-03-19 Apparatus and method for inspecting light source
CN201410178761.6A CN104931235B (en) 2014-03-19 2014-04-30 Light source detection device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103110373A TWI487887B (en) 2014-03-19 2014-03-19 Apparatus and method for inspecting light source

Publications (2)

Publication Number Publication Date
TWI487887B TWI487887B (en) 2015-06-11
TW201537150A true TW201537150A (en) 2015-10-01

Family

ID=53937862

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103110373A TWI487887B (en) 2014-03-19 2014-03-19 Apparatus and method for inspecting light source

Country Status (2)

Country Link
CN (1) CN104931235B (en)
TW (1) TWI487887B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106802183A (en) * 2016-11-30 2017-06-06 努比亚技术有限公司 A kind of photosensitive sensors calibration method and terminal
CN109283192A (en) * 2018-11-20 2019-01-29 苏州精濑光电有限公司 Illumination auto-correction method, apparatus and system
CN115150997A (en) * 2021-03-30 2022-10-04 三赢科技(深圳)有限公司 Light source system, display device and illuminance adjusting method
CN114166473B (en) * 2021-11-11 2023-08-08 青岛海泰新光科技股份有限公司 Automatic detection device and method for light source light emitting uniformity

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5236858B2 (en) * 2005-02-01 2013-07-17 日清紡ホールディングス株式会社 Measuring method of output characteristics of solar cell.
JP5148073B2 (en) * 2005-06-17 2013-02-20 日清紡ホールディングス株式会社 Measurement method using solar simulator
CN201247099Y (en) * 2008-05-15 2009-05-27 上海赫爽太阳能科技有限公司 Wireless multi-point light homogeneity tester
TW201043988A (en) * 2009-05-04 2010-12-16 Applied Materials Inc Calibration procedure for solar simulators used in single-junction and tandem-junction solar cell testing apparatus
JP5328041B2 (en) * 2009-12-01 2013-10-30 日清紡メカトロニクス株式会社 Solar simulator and measurement method using solar simulator
CN102346231A (en) * 2010-07-30 2012-02-08 致茂电子(苏州)有限公司 Sunlight simulator provided with detection device and solar battery detection device
CN102455214A (en) * 2010-10-25 2012-05-16 中国计量科学研究院 Device for detecting uniformity and stability of irradiation of solar simulator
CN202403895U (en) * 2011-12-31 2012-08-29 保定天威英利新能源有限公司 Aligning device for sun simulator
CN202522669U (en) * 2012-04-17 2012-11-07 保定维特瑞光电能源科技有限公司 Light source simulator used for detecting solar battery

Also Published As

Publication number Publication date
TWI487887B (en) 2015-06-11
CN104931235A (en) 2015-09-23
CN104931235B (en) 2017-09-19

Similar Documents

Publication Publication Date Title
TWI487887B (en) Apparatus and method for inspecting light source
US20090261810A1 (en) Simulator system and method for measuring current voltage characteristic curves of a solar concentrator
KR101121451B1 (en) Apparatus and method for inspecting quantum efficiency homogeneity of solar cell using imaging device
TWI461882B (en) Multipoint direct-prediction method for maximum power point tracking of photovoltaic modules system and control device of photovoltaic modules array
JOP20200200A1 (en) Soiling detection apparatus and method
US8796604B2 (en) Apparatus having a controllable filter matrix to selectively acquire different components of solar irradiance
Razongles et al. Bifacial photovoltaic modules: Measurement challenges
US20140076400A1 (en) System for monitoring operating angle of solar tracker in real time
CN102494779B (en) Infrared measurement system and measurement method for surface temperature of seawater
CN109323851B (en) Terahertz focal plane response rate and response rate nonuniformity test system and method
JP5692193B2 (en) Simulated solar irradiation device
JP6407100B2 (en) Solar cell module inspection apparatus and solar cell module inspection method
US10886876B2 (en) Measuring soiling and non-uniform soiling of PV modules without a clean reference device
JP2017108586A (en) Solar cell module characteristics test apparatus
JP6063152B2 (en) Shadow detection device for solar power plant using optical fiber
Dubard et al. Photovoltaic module performance measurements traceability: Uncertainties survey
US20180034410A1 (en) Photovoltaic power generation system evaluation apparatus, evaluation method, and storage medium storing a program for an evaluation apparatus
ITMI20120409A1 (en) DEVICE FOR MEASURING AND MONITORING SOLAR RAYS ACCIDENTS ON A PHOTOVOLTAIC MODULE
JP6573307B2 (en) IV characteristic measuring apparatus, IV characteristic measuring method, and program for IV characteristic measuring apparatus
Zhou et al. A new spatial integration method for luminous flux determination of light-emitting diodes
El Bahir et al. Estimator of local solar irradiation based on a PV model
GB2531343A (en) Method and apparatus for assessing photoresponsive elements
Askins et al. Realization of a solar simulator for production testing of HCPV modules
KR20160076212A (en) Device for testing solar cell module at shady condition and method thereof
Schrott et al. Scientific system for high-resolution measurement of the circumsolar radiation