TW201533219A - Phosphors - Google Patents
Phosphors Download PDFInfo
- Publication number
- TW201533219A TW201533219A TW104100578A TW104100578A TW201533219A TW 201533219 A TW201533219 A TW 201533219A TW 104100578 A TW104100578 A TW 104100578A TW 104100578 A TW104100578 A TW 104100578A TW 201533219 A TW201533219 A TW 201533219A
- Authority
- TW
- Taiwan
- Prior art keywords
- compound
- formula
- sio
- phosphor
- mmol
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/0883—Arsenides; Nitrides; Phosphides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7728—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
- C09K11/77347—Silicon Nitrides or Silicon Oxynitrides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7728—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
- C09K11/7735—Germanates
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Luminescent Compositions (AREA)
- Led Device Packages (AREA)
Abstract
Description
本發明係關於摻銪鹼土金屬氮氧化矽、製備此等化合物之方法及根據本發明之摻銪鹼土金屬氮氧化矽用作轉換磷光體之用途。本發明進一步關於一種包含根據本發明之摻銪鹼土金屬氮氧化矽之發光裝置。 The present invention relates to cerium-doped alkaline earth metal cerium oxynitride, a process for preparing the same, and a cerium-doped alkaline earth metal cerium oxynitride according to the present invention for use as a conversion phosphor. The invention further relates to a light-emitting device comprising an erbium-doped alkaline earth metal lanthanum oxynitride according to the invention.
作為磷光體轉換LED(簡稱pc-LED)之轉換磷光體,可在藍色及/或UV光譜區中激發之無機螢光粉末為極其重要的。同時,已知諸如鹼土金屬正矽酸鹽、硫代鎵酸鹽、石榴石、氮化物及氮氧化物之許多轉換磷光體系統,其中各者皆摻雜有Ce3+或Eu2+。特定而言最後提及之氮化物及氮氧化物磷光體目前為密集研究之主題,因為此等材料顯示發射波長大於600nm之紅光發射,且因此對於產生色溫度<4000K之暖白色pc-LED至關重要。 As a conversion phosphor of a phosphor-converted LED (abbreviated as pc-LED), an inorganic phosphor powder which can be excited in a blue and/or UV spectral region is extremely important. At the same time, many conversion phosphor systems such as alkaline earth metal orthosilicates, thiogallates, garnets, nitrides and oxynitrides are known, each of which is doped with Ce 3+ or Eu 2+ . In particular, the last mentioned nitride and oxynitride phosphors are currently the subject of intensive research because these materials exhibit red light emission with emission wavelengths greater than 600 nm, and therefore for warm white pc-LEDs with a color temperature <4000K It is vital.
然而,若具有顯示再進一步偏移入紅光之發射的可用磷光體,則將為合乎需要的。因此,本發明之目標為提供此類型之磷光體。 However, it would be desirable to have an available phosphor that displays an emission that is further shifted into red light. Accordingly, it is an object of the present invention to provide phosphors of this type.
已出人意料地發現若將某些其他元素,尤其元素Mg、Zn、Ge及/或S中之一或多者併入摻銪鹼土金屬氮氧化矽中,則實現此目標。因此,本發明係關於此類型之化合物。 It has surprisingly been found that this goal is achieved if certain other elements, especially one or more of the elements Mg, Zn, Ge and/or S, are incorporated into the cerium-doped alkaline earth metal cerium oxynitride. Accordingly, the present invention is directed to compounds of this type.
本發明係關於下式(1)之化合物,EAa Eux Ee Nf Yy˙m SiO2˙n Si3N4 式(1) The present invention relates to a compound of the following formula (1), EA a Eu x E e N f Y y ̇m SiO 2 ̇n Si 3 N 4 (1)
其中以下各者適用於所用符號及指數: EA表示選自由Mg、Ca、Sr、Ba及Zn組成之群的一或多種元素;E表示選自由Si及Ge組成之群的一或多種元素;Y表示選自由O及S組成之群的一或多種元素;0.80a1.995;0.005x0.20;4.00e6.00;5.00f8.70;0.01y3.00;其中,對於指數a、x、e、f及y:2a+2x+4e=3f+2y;0m4.00;0n0.50;其特徵在於化合物含有元素Mg及/或Zn及/或Ge及/或S中之至少一者。 Wherein the following applies to the symbols and indices used: EA represents one or more elements selected from the group consisting of Mg, Ca, Sr, Ba, and Zn; E represents one or more elements selected from the group consisting of Si and Ge; Represents one or more elements selected from the group consisting of O and S; 0.80 a 1.995; 0.005 x 0.20; 4.00 e 6.00;5.00 f 8.70;0.01 y 3.00; where, for the indices a, x, e, f, and y: 2a + 2x + 4e = 3f + 2y; m 4.00;0 n 0.50; characterized in that the compound contains at least one of the elements Mg and/or Zn and/or Ge and/or S.
在式(1)之一較佳實施例中,以下各者彼此獨立地適用於指數:1.20a1.995;較佳1.60a1.995;0.01x0.20;較佳0.02x0.16;4.50e5.50;較佳4.80e5.20;特定而言e=5.00;6.00f8.00;較佳6.00f7.90;0.1y2.5;較佳0.15y1.5;0m3.00;較佳0m2.50;0n0.50;較佳0n0.20。 In a preferred embodiment of formula (1), the following are applied independently of each other to the index: 1.20 a 1.995; preferably 1.60 a 1.995;0.01 x 0.20; preferably 0.02 x 0.16; 4.50 e 5.50; preferably 4.80 e 5.20; specifically e=5.00; 6.00 f 8.00; preferably 6.00 f 7.90; 0.1 y 2.5; preferably 0.15 y 1.5;0 m 3.00; preferably 0 m 2.50;0 n 0.50; preferably 0 n 0.20.
在一尤其較佳實施例中,上文所提及之對於式(1)中之指數之優選項同時出現。 In a particularly preferred embodiment, the preferences mentioned above for the index in formula (1) occur simultaneously.
因此以下各者較佳適用於所用指數:1.20a1.995;0.01x0.20; 4.50e5.50;6.00f8.00;0.1y2.5;0m3.00;及0n0.50。 Therefore, the following are better applicable to the index used: 1.20 a 1.995;0.01 x 0.20; 4.50 e 5.50; 6.00 f 8.00; 0.1 y 2.5;0 m 3.00; and 0 n 0.50.
以下各者尤其較佳適用於所用指數:1.60a1.995;0.02x0.16;4.80e5.20;特定而言e=5.00;6.00f7.90;0.15y1.5;0m2.50;及0n0.20。 The following are particularly preferred for the index used: 1.60 a 1.995;0.02 x 0.16; 4.80 e 5.20; specifically e=5.00; 6.00 f 7.90; 0.15 y 1.5;0 m 2.50; and 0 n 0.20.
由於在根據本發明之化合物中存在Mg及/或Zn及/或Ge及/或S,所以與相對應的化合物相比紅光偏移得以達成,該等相對應的化合物不含有此等元素但除此之外具有相同的組成,具有除此之外繼續保持良好之發射性質及較高發射效率。 Due to the presence of Mg and/or Zn and/or Ge and/or S in the compounds according to the invention, a red shift is achieved compared to the corresponding compound, which does not contain such elements but In addition to this, it has the same composition, and has continued to maintain good emission properties and higher emission efficiency.
若根據本發明之化合物含有Mg,則其比例較佳至多為元素EA之40%、較佳5%至40%。 If the compound according to the invention contains Mg, the proportion thereof is preferably at most 40%, preferably from 5% to 40%, of the element EA.
若根據本發明之化合物含有Zn,則其比例較佳至多為元素EA之40%、較佳5%至40%。 If the compound according to the invention contains Zn, the proportion thereof is preferably at most 40%, preferably from 5% to 40%, of the element EA.
若根據本發明之化合物含有Ge,則其比例至多為元素E之100%、較佳1%至100%、尤其較佳2%至20%。 If the compound according to the invention contains Ge, the proportion is at most 100%, preferably from 1% to 100%, particularly preferably from 2% to 20%, of the element E.
若根據本發明之化合物含有S,則其比例至多為元素Y之100%、較佳1%至100%、尤其較佳2%至100%。 If the compound according to the invention contains S, the proportion is at most 100%, preferably from 1% to 100%, particularly preferably from 2% to 100%, of the element Y.
式(1)化合物之較佳實施例為下式(2)、式(3)及式(4)之化合物, EA2-x+1.5z Eux E5 N8-2/3y+z Yy˙m SiO2˙n Si3N4 式(2) Preferred examples of the compound of the formula (1) are compounds of the following formula (2), formula (3) and formula (4), EA 2-x+1.5z Eu x E 5 N 8-2/3y+z Y y ̇m SiO 2 ̇n Si 3 N 4 (2)
EA2-x-0.5y+1.5z Eux E5 N8-y+z Yy˙m SiO2˙n Si3N4 式(3) EA 2-x-0.5y+1.5z Eu x E 5 N 8-y+z Y y ̇m SiO 2 ̇n Si 3 N 4 (3)
EA2-x+1.5z Eux E5 N8-y+z Y3/2y˙m SiO2˙n Si3N4 式(4) EA 2-x+1.5z Eu x E 5 N 8-y+z Y 3/2y ̇m SiO 2 ̇n Si 3 N 4 (4)
其中EA、E、Y及指數x、y、m及n具有上文給定之意義,且此外:0z3.0,較佳0z1.0,尤其較佳z=0;其特徵在於化合物含有元素Mg及/或Zn及/或Ge及/或S中之至少一者。此處Mg及/或Zn及/或Ge及/或S之含量較佳在上文針對此等元素所指出之範圍內。 Where EA, E, Y and the indices x, y, m and n have the meaning given above, and in addition: 0 z 3.0, preferably 0 z 1.0, particularly preferably z=0; characterized in that the compound contains at least one of the elements Mg and/or Zn and/or Ge and/or S. The content of Mg and/or Zn and/or Ge and/or S herein is preferably within the range indicated above for these elements.
式(2)之化合物之較佳實施例為下式(2a)之化合物,式(3)之化合物之較佳實施例為下式(3a)之化合物,且式(4)之化合物之較佳實施例為下式(4a)之化合物,(Mgo Cap Srq Bar Zns)2-x+1.5z Eux(Sit Geu)5 N8-2/3y+z(Ov Sw)y˙m SiO2˙n Si3N4式(2a) A preferred embodiment of the compound of the formula (2) is a compound of the following formula (2a), and a preferred embodiment of the compound of the formula (3) is a compound of the following formula (3a), and a compound of the formula (4) is preferred. An example is a compound of the following formula (4a), (Mg o Ca p Sr q Ba r Zn s ) 2-x+1.5z Eu x (Si t Ge u ) 5 N 8-2/3y+z (O v S w ) y ̇m SiO 2 ̇n Si 3 N 4 (2a)
(Mgo Cap Srq Bar Zns)2-x-0.5y+1.5z Eux(Sit Geu)5 N8-y+z(Ov Sw)y˙m SiO2˙n Si3N4式(3a) (Mg o Ca p Sr q Ba r Zn s ) 2-x-0.5y+1.5z Eu x (Si t Ge u ) 5 N 8-y+z (O v S w ) y ̇m SiO 2 ̇n Si 3 N 4 type (3a)
(Mgo Cap Srq Bar Zns)2-x+1.5z Eux(Sit Geu)5 N8-y+z(Ov Sw)3/2y˙m SiO2˙n Si3N4式(4a) (Mg o Ca p Sr q Ba r Zn s ) 2-x+1.5z Eu x (Si t Ge u ) 5 N 8-y+z (O v S w ) 3/2y ̇m SiO 2 ̇n Si 3 N 4 type (4a)
其中x、y及z具有上文給定之意義,且此外:0o0.4;0p1;0q1;0r1;0s0.4;0t1;0u1; 0v1;0w1;其限制條件為o+p+q+r+s=1及t+u=1及v+w=1;且此外其限制條件為指數o、s、u及/或w中之至少一者>0,亦即存在元素Mg、Zn、Ge及/或S中之至少一者,其中上文所指出之比例較佳應用於此等元素。 Where x, y, and z have the meanings given above, and in addition: 0 o 0.4;0 p 1;0 q 1;0 r 1;0 s 0.4;0 t 1;0 u 1; 0 v 1;0 w 1; the constraint is o + p + q + r + s = 1 and t + u = 1 and v + w = 1; and furthermore, the constraint is at least one of the indices o, s, u and / or w >0, that is, at least one of the elements Mg, Zn, Ge, and/or S is present, wherein the ratios indicated above are preferably applied to such elements.
在式(1)至式(4)及式(2a)至式(4a)之化合物中,m範圍較佳介於0至1且n範圍較佳介於0至0.3、尤其較佳0。 In the compounds of the formulae (1) to (4) and the formulae (2a) to (4a), the m range is preferably from 0 to 1 and the n range is preferably from 0 to 0.3, particularly preferably 0.
若m>0,則SiO2可呈結晶及/或非晶形式。若n>0,則Si3N4可呈結晶及/或非晶形式。 If m>0, SiO 2 may be in a crystalline and/or amorphous form. If n>0, Si 3 N 4 may be in a crystalline and/or amorphous form.
此外,本發明係關於一種用於製備根據本發明之化合物之方法,其特徵在於以下方法步驟:(a)製備混合物,其包含銪源、矽及/或鍺源及式EA3N2之氮化物,其中EA具有上文給定之意義;(b)在非氧化條件下煅燒混合物。 Furthermore, the invention relates to a process for the preparation of a compound according to the invention, characterized in that the process step comprises: (a) preparing a mixture comprising a source of ruthenium, osmium and/or ruthenium and a nitrogen of the formula EA 3 N 2 a compound wherein EA has the meaning given above; (b) calcining the mixture under non-oxidizing conditions.
若根據本發明之化合物含有硫,則此外採用呈含硫化合物形式(例如呈硫酸鹽或硫化物形式)之上文所提及之組份中的至少一者,及/或添加元素硫。 If the compound according to the invention contains sulphur, then at least one of the above-mentioned components in the form of a sulphur-containing compound (for example in the form of a sulphate or a sulphide), and/or the addition of elemental sulphur, is additionally employed.
在步驟(a)中所採用之銪源可為任何可設想的、可用以製備摻銪鹼土金屬氮氧化矽之銪化合物。所採用之銪源較佳為氧化銪(尤其Eu2O3)及/或氮化銪(EuN),尤其為Eu2O3。 The ruthenium source used in step (a) can be any conceivable ruthenium compound which can be used to prepare bismuth-doped alkaline earth metal ruthenium oxynitride. The germanium source used is preferably cerium oxide (especially Eu 2 O 3 ) and/or cerium nitride (EuN), especially Eu 2 O 3 .
在步驟(a)中所採用之矽或鍺源可為任何可設想的、可用以製備摻銪鹼土金屬氮氧化矽或相對應的鍺化合物之矽或鍺化合物。在本發 明方法中所採用之矽源較佳為氮化矽及/或氧化矽,且在本發明方法中所採用之鍺源較佳為氮化鍺及/或氧化鍺。 The ruthenium or osmium source employed in step (a) can be any conceivable ruthenium or osmium compound which can be used to prepare cerium-doped alkaline earth metal cerium oxynitride or the corresponding cerium compound. In this hair The germanium source used in the method is preferably tantalum nitride and/or hafnium oxide, and the germanium source used in the method of the present invention is preferably tantalum nitride and/or hafnium oxide.
所採用之化合物較佳彼此呈比率,以使得元素EA、矽及/或鍺、銪、氮及氧及/或硫之原子數目基本上對應於上文所提及之式子之產物中的所需比率。特定而言,此處使用化學計量比率,但亦可能存在略微過量之氮化物EA3N2。 The compounds employed are preferably in a ratio to each other such that the number of atoms of the elements EA, hydrazine and/or hydrazine, hydrazine, nitrogen and oxygen and/or sulphur substantially corresponds to those in the products of the formulas mentioned above. Need ratio. In particular, stoichiometric ratios are used here, but there may also be a slight excess of nitride EA 3 N 2 .
在步驟(a)中較佳採用呈粉末形式之起始化合物,且例如藉助於研缽將其彼此加工,以得到均質混合物。 The starting compounds in powder form are preferably employed in step (a) and are processed into each other, for example by means of a mortar, to obtain a homogeneous mixture.
在非氧化條件下實施步驟b)中之煅燒。非氧化條件係指任何可設想的非氧化氛圍,尤其實質上無氧之氛圍,亦即最大氧含量<100ppm,尤其<10ppm之氛圍,其中在本發明情況下真空並不適合用作非氧化氛圍。例如經由使用保護氣體,尤其氮氣或氬氣,可生成非氧化氛圍。較佳非氧化氛圍為還原氛圍。還原氛圍定義為包含至少一種具有還原作用之氣體。熟習此項技術者已知何種氣體具有還原作用。適合的還原氣體之實例為氫氣、一氧化碳、氨氣或乙烯,更佳為氫氣,其中此等氣體亦可與其他非氧化氣體混合。還原氛圍尤其較佳由氮氣與氫之混合物產生,該混合物較佳在各情況下以體積計呈10:50至33:30之H2:N2比率。 The calcination in step b) is carried out under non-oxidizing conditions. Non-oxidizing conditions refer to any conceivable non-oxidizing atmosphere, in particular a substantially oxygen-free atmosphere, that is to say an atmosphere having a maximum oxygen content of <100 ppm, in particular <10 ppm, wherein in the case of the invention vacuum is not suitable for use as a non-oxidizing atmosphere. A non-oxidizing atmosphere can be generated, for example, by using a shielding gas, especially nitrogen or argon. Preferably, the non-oxidizing atmosphere is a reducing atmosphere. The reducing atmosphere is defined to include at least one gas having a reducing action. It is known to those skilled in the art which gases have a reducing effect. Examples of suitable reducing gases are hydrogen, carbon monoxide, ammonia or ethylene, more preferably hydrogen, wherein such gases can also be combined with other non-oxidizing gases. The reducing atmosphere is particularly preferably produced by a mixture of nitrogen and hydrogen, preferably in a ratio of H 2 :N 2 in a range of from 10:50 to 33:30 by volume.
煅燒較佳在範圍介於1200℃至2000℃,尤其較佳1400℃至1800℃且特定而言1500℃至1700℃之溫度下進行。此處煅燒時間較佳為2h至14h,更佳為4h至12h且特定而言6h至10h。 The calcination is preferably carried out at a temperature ranging from 1200 ° C to 2000 ° C, particularly preferably from 1400 ° C to 1800 ° C and, in particular, from 1500 ° C to 1700 ° C. The calcination time here is preferably from 2 h to 14 h, more preferably from 4 h to 12 h and specifically from 6 h to 10 h.
煅燒較佳藉由將所得混合物引入例如高溫爐中之氮化硼容器中來進行。高溫爐為例如含有鉬箔托盤之管式爐。 Calcination is preferably carried out by introducing the resulting mixture into a boron nitride vessel such as a high temperature furnace. The high temperature furnace is, for example, a tube furnace containing a molybdenum foil tray.
在煅燒後,較佳用酸處理所獲得之化合物以洗滌出未反應之EA3N2。所用酸較佳為鹽酸。在此操作中,較佳使所獲得之粉末在0.5M至2M鹽酸(尤其約1M鹽酸)中懸浮0.5h至3h,尤其較佳0.5至1.5 h,隨後濾出,用水沖洗且在範圍介於80℃至150℃之溫度下乾燥。 After calcination, the obtained compound is preferably treated with an acid to wash out unreacted EA 3 N 2 . The acid used is preferably hydrochloric acid. In this operation, the obtained powder is preferably suspended in 0.5 M to 2 M hydrochloric acid (especially about 1 M hydrochloric acid) for 0.5 h to 3 h, particularly preferably 0.5 to 1.5 h, and then filtered off, rinsed with water and in a range Dry at a temperature of 80 ° C to 150 ° C.
在本發明之另一實施例中,在如上文所述可藉由酸處理來進行之煅燒及處理後,進行另一煅燒步驟。此較佳在200℃至400℃,尤其較佳在250℃至350℃溫度範圍內進行。此另一煅燒步驟較佳在還原氛圍下進行。此煅燒步驟之持續時間通常在15分鐘與10h之間,較佳在30分鐘與2h之間。此類型之後煅燒方法描述於例如WO 2014/008970中。 In another embodiment of the invention, another calcination step is carried out after calcination and treatment by acid treatment as described above. This is preferably carried out at a temperature ranging from 200 ° C to 400 ° C, particularly preferably from 250 ° C to 350 ° C. This further calcination step is preferably carried out under a reducing atmosphere. The duration of this calcination step is usually between 15 minutes and 10 hours, preferably between 30 minutes and 2 hours. This type of post calcination process is described, for example, in WO 2014/008970.
在本發明之另一較佳實施例中,在煅燒步驟之後,進行連同一或多種鹼土金屬氮化物及/或氮化鋅一起之另一煅燒步驟。出於此目的,使來自第一煅燒步驟之產物與鹼土金屬氮化物混合,其中鹼土金屬可能已存在於來自第一煅燒步驟之產物中或可與其不同,且在非氧化條件下煅燒混合物。此類型後煅燒步驟可對發射效率具有有利影響。 In another preferred embodiment of the invention, after the calcining step, another calcination step in which one or more alkaline earth metal nitrides and/or zinc nitride are combined is carried out. For this purpose, the product from the first calcination step is mixed with an alkaline earth metal nitride, wherein the alkaline earth metal may already be present in or different from the product from the first calcination step and the mixture is calcined under non-oxidative conditions. This type of post calcination step can have a beneficial effect on the emission efficiency.
此處來自第一煅燒步驟之產物與鹼土金屬氮化物之重量比範圍較佳介於2:1至20:1且範圍更佳介於4:1至9:1。 Here, the weight ratio of the product from the first calcination step to the alkaline earth metal nitride is preferably in the range of 2:1 to 20:1 and more preferably in the range of 4:1 to 9:1.
此類型之方法可使得發射效率提高且視所採用之鹼土金屬氮化物而定亦增加發射波長之偏移,且因此可為有利的。此處可發生發射波長偏移,尤其當來自第一煅燒步驟之產物中之鹼土金屬與後煅燒步驟之鹼土金屬氮化物中之鹼土金屬彼此不同時。 This type of method can increase the emission efficiency and also increase the shift of the emission wavelength depending on the alkaline earth metal nitride employed, and thus can be advantageous. The emission wavelength shift can occur here, especially when the alkaline earth metal in the product from the first calcination step and the alkaline earth metal in the alkaline earth metal nitride in the post-calcination step are different from each other.
舉例而言,若在用於製備上文所提及之根據本發明之化合物之方法中採用鋇作為鹼土金屬且在後煅燒中採用氮化鍶作為鹼土金屬,則後煅燒之產物呈現紅光偏移之發射。 For example, if ruthenium is used as the alkaline earth metal in the process for preparing the compound according to the invention mentioned above and lanthanum nitride is used as the alkaline earth metal in the post-calcination, the post-calcined product exhibits a red light shift. Move to launch.
在另一實施例中,根據本發明之化合物可經塗佈。如根據先前技術熟習此項技術者已知且用於磷光體之所有塗佈方法皆適用於此目的。特定而言,用於塗佈之適合的材料為金屬氧化物及氮化物,尤其鹼土金屬氧化物(諸如Al2O3)及鹼土金屬氮化物(諸如AlN);以及 SiO2。此處塗佈可藉由例如流化床方法來進行。其他適合的塗佈方法自JP 04-304290、WO 91/10715、WO 99/27033、US 2007/0298250、WO 2009/065480及WO 2010/075908中已知。亦有可能施加有機塗層作為替代物,及/或除上文所提及之無機塗層以外亦施加有機塗層。 In another embodiment, the compounds according to the invention may be coated. All coating methods known to those skilled in the art and used for phosphors according to the prior art are suitable for this purpose. In particular, suitable materials for coating are metal oxides and nitrides, especially alkaline earth metal oxides (such as Al 2 O 3 ) and alkaline earth metal nitrides (such as AlN); and SiO 2 . The coating here can be carried out, for example, by a fluidized bed process. Other suitable coating methods are known from JP 04-304290, WO 91/10715, WO 99/27033, US 2007/0298250, WO 2009/065480 and WO 2010/075908. It is also possible to apply an organic coating as an alternative and/or to apply an organic coating in addition to the inorganic coatings mentioned above.
此外,本發明係關於根據本發明之化合物之用途,其用作磷光體,尤其用作轉換磷光體。 Furthermore, the invention relates to the use of the compounds according to the invention as phosphors, in particular as conversion phosphors.
在本申請案意義上術語「轉換磷光體」係指吸收在電磁波譜之某一波長區中、較佳在藍色或UV光譜區中之輻射且發射在電磁波譜之另一波長區中、較佳在紅色或橙色光譜區中、尤其在紅色光譜區中之可見光的材料。就此而論亦應理解術語「輻射誘導之發射效率」,亦即轉換磷光體吸收某一波長區中之輻射且以某一效率發射另一波長區中之輻射。術語「發射波長偏移」係指轉換磷光體在不同波長下發光,亦即與另一種或類似轉換磷光體相比,偏移至更短或更長波長。因此最大發射值偏移。 In the sense of the present application, the term "converting phosphor" means radiation absorbed in a certain wavelength region of the electromagnetic spectrum, preferably in the blue or UV spectral region, and emitted in another wavelength region of the electromagnetic spectrum. A material that is preferably visible in the red or orange spectral region, especially in the red spectral region. In this connection, the term "radiation-induced emission efficiency" should also be understood, that is, the conversion phosphor absorbs radiation in a certain wavelength region and emits radiation in another wavelength region with a certain efficiency. The term "emission wavelength shift" refers to the conversion of a phosphor at different wavelengths, i.e., to a shorter or longer wavelength than another or similar conversion phosphor. Therefore the maximum emission value is offset.
此外,本發明係關於一種發射轉換材料,其包含上文所提及之根據本發明之式子的化合物中之一者。發射轉換材料可由根據本發明之化合物組成且在此情況下將等效於上文所定義之術語「轉換磷光體」。 Furthermore, the invention relates to an emission conversion material comprising one of the compounds of the formula according to the invention mentioned above. The emission conversion material may consist of a compound according to the invention and in this case will be equivalent to the term "conversion phosphor" as defined above.
除根據本發明之化合物以外,根據本發明之發光轉換材料亦有可能包含其他轉換磷光體。在此情況下,根據本發明之發射轉換材料包含至少兩種轉換磷光體之混合物,其中此等轉換磷光體中之一者為根據本發明之化合物。尤其較佳的是,至少兩種轉換磷光體為發射不同波長之光的磷光體,彼此互補。因為根據本發明之化合物為發射紅光之磷光體,所以此較佳與發射綠光或黃光之磷光體或亦與發射青光或藍光之磷光體組合使用。或者,根據本發明之發射紅光之轉換磷光體亦可與發射藍光及綠光之轉換磷光體組合使用。或者,根據本發明 之發射紅光之轉換磷光體亦可與發射綠光之轉換磷光體組合使用。因此,根據本發明之轉換磷光體較佳可在根據本發明之發射轉換材料中與一或多種其他轉換磷光體組合使用,隨後其一起較佳發射白光。 In addition to the compounds according to the invention, it is also possible for the luminescence conversion material according to the invention to comprise further conversion phosphors. In this case, the emission conversion material according to the invention comprises a mixture of at least two conversion phosphors, wherein one of the conversion phosphors is a compound according to the invention. It is especially preferred that at least two of the conversion phosphors are phosphors that emit light of different wavelengths, complementary to each other. Since the compound according to the invention is a red-emitting phosphor, this is preferably used in combination with a phosphor that emits green or yellow light or also with a phosphor that emits cyan or blue light. Alternatively, the red-emitting conversion phosphor according to the present invention may also be used in combination with a blue- and green-emitting conversion phosphor. Or according to the invention The red-emitting conversion phosphor can also be used in combination with a green-emitting conversion phosphor. Accordingly, the conversion phosphor according to the present invention is preferably used in combination with one or more other conversion phosphors in the emissive conversion material according to the present invention, which together preferably emit white light.
在本申請案之上下文中,藍光表示最大發射值處於400nm與459nm之間的光,青光表示最大發射值處於460nm與505nm之間的光,綠光表示最大發射值處於506nm與545nm之間的光,黃光表示最大發射值處於546nm與565nm之間的光,橙光表示最大發射值處於566nm與600nm之間的光且紅光表示最大發射值處於601nm與670nm之間的光。根據本發明之化合物較佳為發射紅光之轉換磷光體。 In the context of the present application, blue light means light having a maximum emission value between 400 nm and 459 nm, cyan means light having a maximum emission value between 460 nm and 505 nm, and green light means a maximum emission value between 506 nm and 545 nm. Light, yellow light indicates light having a maximum emission value between 546 nm and 565 nm, orange light indicates light having a maximum emission value between 566 nm and 600 nm, and red light indicates light having a maximum emission value between 601 nm and 670 nm. The compound according to the invention is preferably a red-emitting conversion phosphor.
一般而言,可採用任何可能的轉換磷光體作為可與根據本發明之化合物一起採用之另一轉換磷光體。此處,例如以下各者為適合的:Ba2SiO4:Eu2+、BaSi2O5:Pb2+、BaxSr1-xF2:Eu2+、BaSrMgSi2O7:Eu2+、BaTiP2O7、(Ba,Ti)2P2O7:Ti、Ba3WO6:U、BaY2F8:Er3+、Yb+、Be2SiO4:Mn2+、Bi4Ge3O12、CaAl2O4:Ce3+、CaLa4O7:Ce3+、CaAl2O4:Eu2+、CaAl2O4:Mn2+、CaAl4O7:Pb2+、Mn2+、CaAl2O4:Tb3+、Ca3Al2Si3O12:Ce3+、Ca3Al2Si3Oi2:Ce3+、Ca3Al2Si3O2:Eu2+、Ca2B5O9Br:Eu2+、Ca2B5O9Cl:Eu2+、Ca2B5O9Cl:Pb2+、CaB2O4:Mn2+、Ca2B2O5:Mn2+、CaB2O4:Pb2+、CaB2P2O9:Eu2+、Ca5B2SiO10:Eu3+、Ca0.5Ba0.5Al12O19:Ce3+、Mn2+、Ca2Ba3(PO4)3Cl:Eu2+、SiO2中之CaBr2:Eu2+、SiO2中之CaCl2:Eu2+、SiO2中之CaCl2:Eu2+、Mn2+、CaF2:Ce3+、CaF2:Ce3+、Mn2+、CaF2:Ce3+、Tb3+、CaF2:Eu2+、CaF2:Mn2+、CaF2:U、CaGa2O4:Mn2+、CaGa4O7:Mn2+、CaGa2S4:Ce3+、CaGa2S4:Eu2+、CaGa2S4:Mn2+、CaGa2S4:Pb2+、CaGeO3:Mn2+、SiO2中之CaI2:Eu2+、SiO2中之CaI2:Eu2+、Mn2+、CaLaBO4:Eu3+、CaLaB3O7:Ce3+、Mn2+、Ca2La2BO6.5:Pb2+、Ca2MgSi2O7、Ca2MgSi2O7:Ce3+、CaMgSi2O6:Eu2+、Ca3MgSi2O8:Eu2+、Ca2MgSi2O7:Eu2+、 CaMgSi2O6:Eu2+,Mn2+、Ca2MgSi2O7:Eu2+,Mn2+、CaMoO4、CaMoO4:Eu3+、CaO:Bi3+、CaO:Cd2+、CaO:Cu+、CaO:Eu3+、CaO:Eu3+,Na+、CaO:Mn2+、CaO:Pb2+、CaO:Sb3+、CaO:Sm3+、CaO:Tb3+、CaO:Tl、CaO:Zn2+、Ca2P2O7:Ce3+、α-Ca3(PO4)2:Ce3+、β-Ca3(PO4)2:Ce3+、Ca5(PO4)3Cl:Eu2+、Ca5(PO4)3Cl:Mn2+、Ca5(PO4)3Cl:Sb3+、Ca5(PO4)3Cl:Sn2+、β-Ca3(PO4)2:Eu2+,Mn2+、Ca5(PO4)3F:Mn2+、Cas(PO4)3F:Sb3+、Cas(PO4)3F:Sn2+、α-Ca3(PO4)2:Eu2+、β-Ca3(PO4)2:Eu2+、Ca2P2O7:Eu2+、Ca2P2O7:Eu2+,Mn2+、CaP2O6:Mn2+、α-Ca3(PO4)2:Pb2+、α-Ca3(PO4)2:Sn2+、β-Ca3(PO4)2:Sn2+、β-Ca2P2O7:Sn,Mn、α-Ca3(PO4)2:Tr、CaS:Bi3+、CaS:Bi3+,Na、CaS:Ce3+、CaS:Eu2+、CaS:Cu+,Na+、CaS:La3+、CaS:Mn2+、CaSO4:Bi、CaSO4:Ce3+、CaSO4:Ce3+,Mn2+、CaSO4:Eu2+、CaSO4:Eu2+,Mn2+、CaSO4:Pb2+、CaS:Pb2+、CaS:Pb2+,Cl、CaS:Pb2+,Mn2+、CaS:Pr3+,Pb2+,Cl、CaS:Sb3+、CaS:Sb3+,Na、CaS:Sm3+、CaS:Sn2+、CaS:Sn2+,F、CaS:Tb3+、CaS:Tb3+,Cl、CaS:Y3+、CaS:Yb2+、CaS:Yb2+,Cl、CaSiO3:Ce3+、Ca3SiO4Cl2:Eu2+、Ca3SiO4Cl2:Pb2+、CaSiO3:Eu2+、CaSiO3:Mn2+,Pb、CaSiO3:Pb2+、CaSiO3:Pb2+,Mn2+、CaSiO3:Ti4+、CaSr2(PO4)2:Bi3+、β-(Ca,Sr)3(PO4)2:Sn2+Mn2+、CaTi0.9Al0.1O3:Bi3+、CaTiO3:Eu3+、CaTiO3:Pr3+、Ca5(VO4)3Cl、CaWO4、CaWO4:Pb2+、CaWO4:W、Ca3WO6:U、CaYAlO4:Eu3+、CaYBO4:Bi3+、CaYBO4:Eu3+、CaYB0.8O3.7:Eu3+、CaY2ZrO6:Eu3+、(Ca,Zn,Mg)3(PO4)2:Sn、CeF3、(Ce,Mg)BaAl11O18:Ce、(Ce,Mg)SrAl11O18:Ce、CeMgAl11O19:Ce:Tb、Cd2B6O11:Mn2+、CdS:Ag+,Cr、CdS:In、CdS:In、CdS:In,Te、CdS:Te、CdWO4、CsF、Csl、CsI:Na+、CsI:Tl、(ErCl3)0.25(BaCl2)0.75、GaN:Zn、Gd3Ga5O12:Cr3+、Gd3Ga5O12:Cr,Ce、GdNbO4:Bi3+、Gd2O2S:Eu3+、Gd2O2Pr3+、Gd2O2S:Pr,Ce,F、Gd2O2S:Tb3+、 Gd2SiO5:Ce3+、KAl11O17:Tl+、KGa11O17:Mn2+、K2La2Ti3O10:Eu、KMgF3:Eu2+、KMgF3:Mn2+、K2SiF6:Mn4+、LaAl3B4O12:Eu3+、IaAlB2O6:Eu3+、LaAlO3:Eu3+、LaAlO3:Sm3+、LaAsO4:Eu3+、LaBr3:Ce3+、LaBO3:Eu3+、(La,Ce,Tb)PO4:Ce:Tb、LaCl3:Ce3+、La2O3:Bi3+、LaOBr:Tb3+、LaOBr:Tm3+、LaOCl:Bi3+、LaOCl:Eu3+、LaOF:Eu3+、La2O3:Eu3+、La2O3:Pr3+、La2O2S:Tb3+、LaPO4:Ce3+、LaPO4:Eu3+、LaSiO3Cl:Ce3+、LaSiO3Cl:Ce3+,Tb3+、LaVO4:Eu3+、La2W3O12:Eu3+、LiAlF4:Mn2+、LiAl5O8:Fe3+、LiAlO2:Fe3+、LiAlO2:Mn2+、LiAl5O8:Mn2+、Li2CaP2O7:Ce3+,Mn2+、LiCeBa4Si4O14:Mn2+、LiCeSrBa3Si4O14:Mn2+、LiInO2:Eu3+、LiInO2:Sm3+、LiLaO2:Eu3+、LuAlO3:Ce3+、(Lu,Gd)2Si05:Ce3+、Lu2SiO5:Ce3+、Lu2Si2O7:Ce3+、LuTaO4:Nb5+、Lu1-xYxAlO3:Ce3+、MgAl2O4:Mn2+、MgSrAl10O17:Ce、MgB2O4:Mn2+、MgBa2(PO4)2:Sn2+、MgBa2(PO4)2:U、MgBaP2O7:Eu2+、MgBaP2O7:Eu2+,Mn2+、MgBa3Si2O8:Eu2+、MgBa(SO4)2:Eu2+、Mg3Ca3(PO4)4:Eu2+、MgCaP2O7:Mn2+、Mg2Ca(SO4)3:Eu2+、Mg2Ca(SO4)3:Eu2+,Mn2、MgCeAlnO19:Tb3+、Mg4(F)GeO6:Mn2+、Mg4(F)(Ge,Sn)O6:Mn2+、MgF2:Mn2+、MgGa2O4:Mn2+、Mg8Ge2O11F2:Mn4+、MgS:Eu2+、MgSiO3:Mn2+、Mg2SiO4:Mn2+、Mg3SiO3F4:Ti4+、MgSO4:Eu2+、MgSO4:Pb2+、MgSrBa2Si2O7:Eu2+、MgSrP2O7:Eu2+、MgSr5(PO4)4:Sn2+、MgSr3Si2O8:Eu2+,Mn2+、Mg2Sr(SO4)3:Eu2+、Mg2TiO4:Mn4+、MgWO4、MgYBO4:Eu3+、Na3Ce(PO4)2:Tb3+、NaI:Tl、Na1.23K0.42Eu0.12TiSi4O11:Eu3+、Na1.23K0.42Eu0.12TiSi5O13.xH2O:Eu3+、Na1.29K0.46Er0.08TiSi4O11:Eu3+、Na2Mg3Al2Si2O10:Tb、Na(Mg2-xMnx)LiSi4O10F2:Mn、NaYF4:Er3+,Yb3+、NaYO2:Eu3+、P46(70%)+P47(30%)、SrAl12O19:Ce3+,Mn2+、SrAl2O4:Eu2+、SrAl4O7:Eu3+、SrAl12O19:Eu2+、SrAl2S4:Eu2+、 Sr2B5O9Cl:Eu2+、SrB4O7:Eu2+(F,Cl,Br)、SrB4O7:Pb2+、SrB4O7:Pb2+,Mn2+、SrB8O13:Sm2+、SrxBayClzAl2O4-z/2:Mn2+,Ce3+、SrBaSiO4:Eu2+、SiO2中之Sr(Cl,Br,I)2:Eu2+、SiO2中之SrCl2:Eu2+、Sr5Cl(PO4)3:Eu、SrwFxB4O6.5:Eu2+、SrwFxByOz:Eu2+,Sm2+、SrF2:Eu2+、SrGa12O19:Mn2+、SrGa2S4:Ce3+、SrGa2S4:Eu2+、SrGa2S4:Pb2+、SrIn2O4:Pr3+,Al3+、(Sr,Mg)3(PO4)2:Sn、SrMgSi2O6:Eu2+、Sr2MgSi2O7:Eu2+、Sr3MgSi2O8:Eu2+、SrMoO4:U、SrO.3B2O3:Eu2+,Cl、β-SrO.3B2O3:Pb2+、β-SrO.3B2O3:Pb2+,Mn2+、α-SrO.3B2O3:Sm2+、Sr6P5BO20:Eu、Sr5(PO4)3Cl:Eu2+、Sr5(PO4)3Cl:Eu2+,Pr3+、Sr5(PO4)3Cl:Mn2+、Sr5(PO4)3Cl:Sb3+、Sr2P2O7:Eu2+、β-Sr3(PO4)2:Eu2+、Sr5(PO4)3F:Mn2+、Sr5(PO4)3F:Sb3+、Sr5(PO4)3F:Sb3+,Mn2+、Sr5(PO4)3F:Sn2+、Sr2P2O7:Sn2+、β-Sr3(PO4)2:Sn2+、β-Sr3(PO4)2:Sn2+,Mn2+(Al)、SrS:Ce3+、SrS:Eu2+、SrS:Mn2+、SrS:Cu+,Na、SrSO4:Bi、SrSO4:Ce3+、SrSO4:Eu2+、SrSO4:Eu2+,Mn2+、Sr5Si4O10Cl6:Eu2+、Sr2SiO4:Eu2+、SrTiO3:Pr3+、SrTiO3:Pr3+,Al3+、Sr3WO6:U、SrY2O3:Eu3+、ThO2:Eu3+、ThO2:Pr3+、ThO2:Tb3+、YAl3B4O12:Bi3+、YAl3B4O12:Ce3+、YAl3B4O12:Ce3+,Mn、YAl3B4O12:Ce3+,Tb3+、YAl3B4O12:Eu3+、YAl3B4O12:Eu3+,Cr3+、YAl3B4O12:Th4+,Ce3+,Mn2+、YAlO3:Ce3+、Y3Al5O12:Ce3+、Y3Al5O12:Cr3+、YAlO3:Eu3+、Y3Al5O12:Eu3r、Y4Al2O9:Eu3+、Y3Al5O12:Mn4+、YAlO3:Sm3+、YAlO3:Tb3+、Y3Al5O12:Tb3+、YAsO4:Eu3+、YBO3:Ce3+、YBO3:Eu3+、YF3:Er3+,Yb3+、YF3:Mn2+、YF3:Mn2+,Th4+、YF3:Tm3+,Yb3+、(Y,Gd)BO3:Eu、(Y,Gd)BO3:Tb、(Y,Gd)2O3:Eu3+、Y1.34Gd0.60O3(Eu,Pr)、Y2O3:Bi3+、YOBr:Eu3+、Y2O3:Ce、Y2O3:Er3+、Y2O3:Eu3+(YOE)、Y2O3:Ce3+,Tb3+、YOCl:Ce3+、YOCl:Eu3+、YOF:Eu3+、YOF:Tb3+、Y2O3:Ho3+、 Y2O2S:Eu3+、Y2O2S:Pr3+、Y2O2S:Tb3+、Y2O3:Tb3+、YPO4:Ce3+、YPO4:Ce3+,Tb3+、YPO4:Eu3+、YPO4:Mn2+,Th4+、YPO4:V5+、Y(P,V)O4:Eu、Y2SiO5:Ce3+、YTaO4、YTaO4:Nb5+、YVO4:Dy3+、YVO4:Eu3+、ZnAl2O4:Mn2+、ZnB2O4:Mn2+、ZnBa2S3:Mn2+、(Zn,Be)2SiO4:Mn2+、Zn0.4Cd0.6S:Ag、Zn0.6Cd0.4S:Ag、(Zn,Cd)S:Ag,Cl、(Zn,Cd)S:Cu、ZnF2:Mn2+、ZnGa2O4、ZnGa2O4:Mn2+、ZnGa2S4:Mn2+、Zn2GeO4:Mn2+、(Zn,Mg)F2:Mn2+、ZnMg2(PO4)2:Mn2+、(Zn,Mg)3(PO4)2:Mn2+、ZnO:Al3+,Ga3+、ZnO:Bi3+、ZnO:Ga3+、ZnO:Ga、ZnO-CdO:Ga、ZnO:S、ZnO:Se、ZnO:Zn、ZnS:Ag+,Cl-、ZnS:Ag,Cu,Cl、ZnS:Ag,Ni、ZnS:Au,In、ZnS-CdS(25-75)、ZnS-CdS(50-50)、ZnS-CdS(75-25)、ZnS-CdS:Ag,Br,Ni、ZnS-CdS:Ag+,Cl、ZnS-CdS:Cu,Br、ZnS-CdS:Cu,I、ZnS:Cl-、ZnS:Eu2+、ZnS:Cu、ZnS:Cu+,Al3+、ZnS:Cu+,Cl-、ZnS:Cu,Sn、ZnS:Eu2+、ZnS:Mn2+、ZnS:Mn,Cu、ZnS:Mn2+,Te2+、ZnS:P、ZnS:P3-,Cl-、ZnS:Pb2+、ZnS:Pb2+,Cl-、ZnS:Pb,Cu、Zn3(PO4)2:Mn2+、Zn2SiO4:Mn2+、Zn2SiO4:Mn2+,As5+、Zn2SiO4:Mn,Sb2O2、Zn2SiO4:Mn2+,P、Zn2SiO4:Ti4+、ZnS:Sn2+、ZnS:Sn,Ag、ZnS:Sn2+,Li+、ZnS:Te,Mn、ZnS-ZnTe:Mn2+、ZnSe:Cu+,Cl或ZnWO4。 In general, any possible conversion phosphor can be employed as another conversion phosphor that can be employed with the compounds according to the invention. Here, for example, the following are suitable: Ba 2 SiO 4 :Eu 2+ , BaSi 2 O 5 :Pb 2+ , Ba x Sr 1-x F 2 :Eu 2+ , BaSrMgSi 2 O 7 :Eu 2+ , BaTiP 2 O 7 , (Ba, Ti) 2 P 2 O 7 : Ti, Ba 3 WO 6 : U, BaY 2 F 8 : Er 3+ , Yb + , Be 2 SiO 4 : Mn 2+ , Bi 4 Ge 3 O 12 , CaAl 2 O 4 :Ce 3+ , CaLa 4 O 7 :Ce 3+ , CaAl 2 O 4 :Eu 2+ , CaAl 2 O 4 :Mn 2+ , CaAl 4 O 7 :Pb 2+ , Mn 2+ , CaAl 2 O 4 :Tb 3+ , Ca 3 Al 2 Si 3 O 12 :Ce 3+ , Ca 3 Al 2 Si 3 Oi 2 :Ce 3+ , Ca 3 Al 2 Si 3 O 2 :Eu 2+ Ca 2 B 5 O 9 Br:Eu 2+ , Ca 2 B 5 O 9 Cl:Eu 2+ , Ca 2 B 5 O 9 Cl:Pb 2+ , CaB 2 O 4 :Mn 2+ , Ca 2 B 2 O 5 : Mn 2+ , CaB 2 O 4 : Pb 2+ , CaB 2 P 2 O 9 : Eu 2+ , Ca 5 B 2 SiO 10 : Eu 3+ , Ca 0.5 Ba 0.5 Al 12 O 19 : Ce 3+ , Mn 2+, Ca 2 Ba 3 (PO 4) 3 Cl: Eu 2+, SiO 2 in the CaBr 2: Eu 2+, SiO 2 in the CaCl 2: Eu 2+, SiO 2 in the CaCl 2: Eu 2+ , Mn 2+ , CaF 2 :Ce 3+ , CaF 2 :Ce 3+ , Mn 2+ , CaF 2 :Ce 3+ , Tb 3+ , CaF 2 :Eu 2+ , CaF 2 :Mn 2 + , CaF 2 : U, CaGa 2 O 4 : Mn 2+ , CaGa 4 O 7 : Mn 2+ , CaGa 2 S 4 : Ce 3+ , CaGa 2 S 4 : Eu 2+ , CaGa 2 S 4 : Mn 2 +, CaGa 2 S 4: Pb 2+, CaGeO 3: Mn 2+, SiO 2 in the CaI 2: Eu 2+, SiO 2 in the CaI 2: Eu 2+, Mn 2+ , CaLaBO 4: Eu 3+ , CaLaB 3 O 7 :Ce 3+ , Mn 2+ , Ca 2 La 2 BO 6 . 5 : Pb 2+ , Ca 2 MgSi 2 O 7 , Ca 2 MgSi 2 O 7 :Ce 3+ , CaMgSi 2 O 6 : Eu 2+ , Ca 3 MgSi 2 O 8 :Eu 2+ , Ca 2 MgSi 2 O 7 :Eu 2+ , CaMgSi 2 O 6 :Eu 2+ , Mn 2+ , Ca 2 MgSi 2 O 7 :Eu 2+ , Mn 2+ , CaMoO 4 , CaMoO 4 :Eu 3+ , CaO:Bi 3+ , CaO:Cd 2+ , CaO:Cu + ,CaO:Eu 3+ ,CaO:Eu 3+ ,Na + ,CaO:Mn 2 + , CaO: Pb 2+ , CaO: Sb 3+ , CaO: Sm 3+ , CaO: Tb 3+ , CaO: Tl, CaO: Zn 2+ , Ca 2 P 2 O 7 : Ce 3+ , α-Ca 3 (PO 4 ) 2 :Ce 3+ , β-Ca 3 (PO 4 ) 2 :Ce 3+ , Ca 5 (PO 4 ) 3 Cl:Eu 2+ , Ca 5 (PO 4 ) 3 Cl:Mn 2+ , Ca 5 (PO 4 ) 3 Cl: Sb 3+ , Ca 5 (PO 4 ) 3 Cl: Sn 2+ , β-Ca 3 (PO 4 ) 2 : Eu 2+ , Mn 2+ , Ca 5 (PO 4 ) 3 F: Mn 2+ Ca s (PO 4) 3 F : Sb 3+, Ca s (PO 4) 3 F: Sn 2+, α-Ca 3 (PO 4) 2: Eu 2+, β-Ca 3 (PO 4) 2: Eu 2+ , Ca 2 P 2 O 7 :Eu 2+ , Ca 2 P 2 O 7 :Eu 2+ , Mn 2+ , CaP 2 O 6 :Mn 2+ , α-Ca 3 (PO 4 ) 2 :Pb 2+ , α-Ca 3 (PO 4 ) 2 :S 2+ , β-Ca 3 (PO 4 ) 2 :S 2+ , β-Ca 2 P 2 O 7 :Sn,Mn,α-Ca 3 (PO 4 ) 2 : Tr, CaS: Bi 3+ , CaS: Bi 3+ , Na, CaS: Ce 3+ , CaS : Eu 2+ , CaS : Cu + , Na + , CaS : La 3+ , CaS : Mn 2 + , CaSO 4 : Bi, CaSO 4 : Ce 3+ , CaSO 4 : Ce 3+ , Mn 2+ , CaSO 4 : Eu 2+ , CaSO 4 : Eu 2+ , Mn 2+ , CaSO 4 : Pb 2+ , CaS: Pb 2+ , CaS: Pb 2+ , Cl, CaS: Pb 2+ , Mn 2+ , CaS: Pr 3+ , Pb 2+ , Cl, CaS: Sb 3+ , CaS: Sb 3+ , Na, CaS: Sm 3+ , CaS: Sn 2+ , CaS: Sn 2+ , F, CaS: Tb 3+ , CaS: Tb 3+ , Cl, CaS: Y 3+ , CaS: Yb 2+ , CaS: Yb 2 + , Cl, CaSiO 3 : Ce 3+ , Ca 3 SiO 4 Cl 2 : Eu 2+ , Ca 3 SiO 4 Cl 2 : Pb 2+ , CaSiO 3 : Eu 2+ , CaSiO 3 : Mn 2+ , Pb, CaSiO 3 : Pb 2+ , CaSiO 3 : Pb 2+ , Mn 2+ , CaSiO 3 : Ti 4+ , CaSr 2 (PO 4 ) 2 :Bi 3+ , β-(Ca,Sr) 3 (PO 4 ) 2 :Sn 2+ Mn 2+ , CaTi 0 . 9 Al 0 . 1 O 3 :Bi 3+ , CaTiO 3 : Eu 3+ , CaTiO 3 :Pr 3+ , Ca 5 (VO 4 ) 3 Cl, CaWO 4 , CaWO 4 :Pb 2+ , CaWO 4 :W, Ca 3 WO 6 :U, CaYAlO 4 :Eu 3+ , CaYBO 4 : Bi 3+ , CaYBO 4 :Eu 3+ , CaYB 0 . 8 O 3 . 7 :Eu 3+ , CaY 2 ZrO 6 :Eu 3+ , (Ca,Zn,Mg) 3 (PO 4 ) 2 :Sn, CeF 3 , (Ce, Mg) BaAl 11 O 18 :Ce, (Ce,Mg)SrAl 11 O 18 :Ce, CeMgAl 11 O 19 :Ce:Tb, Cd 2 B 6 O 11 :Mn 2+ , CdS: Ag + , Cr, CdS: In, CdS: In, CdS: In, Te, CdS: Te, CdWO 4 , CsF, Csl, CsI: Na + , CsI: Tl, (ErCl 3 ) 0.25 (BaCl 2 ) 0.75 , GaN: Zn, Gd 3 Ga 5 O 12 : Cr 3+ , Gd 3 Ga 5 O 12 : Cr, Ce, GdNbO 4 : Bi 3+ , Gd 2 O 2 S: Eu 3+ , Gd 2 O 2 Pr 3+ , Gd 2 O 2 S: Pr, Ce, F, Gd 2 O 2 S: Tb 3+ , Gd 2 SiO 5 : Ce 3+ , KAl 11 O 17 : Tl + , KGa 11 O 17 : Mn 2+ , K 2 La 2 Ti 3 O 10 :Eu, KMgF 3 :Eu 2+ , KMgF 3 :Mn 2+ , K 2 SiF 6 :Mn 4+ , LaAl 3 B 4 O 12 :Eu 3+ , IaAlB 2 O 6 :Eu 3+ , LaAlO 3 :Eu 3+ , LaAlO 3 :Sm 3+ , LaAsO 4 :Eu 3+ ,LaBr 3 :Ce 3+ ,LaBO 3 :Eu 3+ ,(La,Ce,Tb) PO 4 : Ce: Tb, LaCl 3 : Ce 3+ , La 2 O 3 : Bi 3+ , LaOBr: Tb 3+ , LaOBr: Tm 3+ , LaOCl : Bi 3+ , LaOCl : Eu 3+ , LaOF : Eu 3+ , La 2 O 3 :Eu 3+ , La 2 O 3 :Pr 3+ , La 2 O 2 S:Tb 3+ , LaPO 4 :Ce 3+ , LaPO 4 :Eu 3+ ,LaSiO 3 Cl:Ce 3+ , LaSiO 3 Cl:Ce 3+ , Tb 3+ , LaVO 4 :Eu 3+ , La 2 W 3 O 12 :Eu 3+ , LiAlF 4 :Mn 2+ , LiAl 5 O 8 :Fe 3+ , LiAlO 2 : Fe 3+ , LiAlO 2 : Mn 2+ , LiAl 5 O 8 : Mn 2+ , Li 2 CaP 2 O 7 : Ce 3+ , Mn 2+ , LiCeBa 4 Si 4 O 14 : Mn 2+ , LiCeSrBa 3 Si 4 O 14 :Mn 2+ , LiInO 2 :Eu 3+ , LiInO 2 :Sm 3+ , LiLaO 2 :Eu 3+ , LuAlO 3 :Ce 3+ , (Lu,Gd) 2 Si0 5 :Ce 3+ , Lu 2 SiO 5 :Ce 3+ , Lu 2 Si 2 O 7 :Ce 3+ , LuTaO 4 :Nb 5+ , Lu 1-x Y x AlO 3 :Ce 3+ , MgAl 2 O 4 :Mn 2+ , MgSrAl 10 O 17 :Ce, MgB 2 O 4 :Mn 2+ , MgBa 2 (PO 4 ) 2 :Sn 2+ , MgBa 2 (PO 4 ) 2 :U, MgB aP 2 O 7 :Eu 2+ , MgBaP 2 O 7 :Eu 2+ ,Mn 2+ , MgBa 3 Si 2 O 8 :Eu 2+ , MgBa(SO 4 ) 2 :Eu 2+ ,Mg 3 Ca 3 (PO 4 ) 4 :Eu 2+ , MgCaP 2 O 7 :Mn 2+ , Mg 2 Ca(SO 4 ) 3 :Eu 2+ , Mg 2 Ca(SO 4 ) 3 :Eu 2+ ,Mn 2 ,MgCeAl n O 19 : Tb 3+ , Mg 4 (F) GeO 6 : Mn 2+ , Mg 4 (F) (Ge, Sn) O 6 : Mn 2+ , MgF 2 : Mn 2+ , MgGa 2 O 4 : Mn 2+ , Mg 8 Ge 2 O 11 F 2 :Mn 4+ , MgS:Eu 2+ , MgSiO 3 :Mn 2+ , Mg 2 SiO 4 :Mn 2+ , Mg 3 SiO 3 F 4 :Ti 4+ , MgSO 4 :Eu 2+ , MgSO 4 :Pb 2+ , MgSrBa 2 Si 2 O 7 :Eu 2+ , MgSrP 2 O 7 :Eu 2+ , MgSr 5 (PO 4 ) 4 :Sn 2+ , MgSr 3 Si 2 O 8 :Eu 2+ , Mn 2+ , Mg 2 Sr(SO 4 ) 3 :Eu 2+ , Mg 2 TiO 4 :Mn 4+ , MgWO 4 , MgYBO 4 :Eu 3+ , Na 3 Ce(PO 4 ) 2 :Tb 3 + , NaI: Tl, Na 1.23 K 0.42 Eu 0.12 TiSi 4 O 11 : Eu 3+ , Na 1.23 K 0.42 Eu 0.12 TiSi 5 O 13 . xH 2 O:Eu 3+ , Na 1.29 K 0.46 Er 0.08 TiSi 4 O 11 :Eu 3+ , Na 2 Mg 3 Al 2 Si 2 O 10 :Tb, Na(Mg 2-x Mn x )LiSi 4 O 10 F 2 : Mn, NaYF 4 : Er 3+ , Yb 3+ , NaYO 2 : Eu 3+ , P46 (70%) + P47 (30%), SrAl 12 O 19 : Ce 3+ , Mn 2+ , SrAl 2 O 4 : Eu 2+ , SrAl 4 O 7 :Eu 3+ , SrAl 12 O 19 :Eu 2+ , SrAl 2 S 4 :Eu 2+ , Sr 2 B 5 O 9 Cl:Eu 2+ , SrB 4 O 7 : Eu 2+ (F, Cl, Br), SrB 4 O 7 : Pb 2+ , SrB 4 O 7 : Pb 2+ , Mn 2+ , SrB 8 O 13 : Sm 2+ , Sr x Ba y Cl z Al 2 O 4-z / 2: Mn 2+, Ce 3+, SrBaSiO 4: Eu 2+, SiO 2 in the Sr (Cl, Br, I) 2: Eu 2+, SiO 2 in the SrCl 2: Eu 2+ , Sr 5 Cl(PO 4 ) 3 :Eu, Sr w F x B 4 O 6.5 :Eu 2+ , Sr w F x B y O z :Eu 2+ ,Sm 2+ ,SrF 2 :Eu 2+ ,SrGa 12 O 19 :Mn 2+ , SrGa 2 S 4 :Ce 3+ , SrGa 2 S 4 :Eu 2+ , SrGa 2 S 4 :Pb 2+ , SrIn 2 O 4 :Pr 3+ ,Al 3+ ,(Sr ,Mg) 3 (PO 4 ) 2 :Sn, SrMgSi 2 O 6 :Eu 2+ , Sr 2 MgSi 2 O 7 :Eu 2+ , Sr 3 MgSi 2 O 8 :Eu 2+ , SrMoO 4 :U, SrO. 3B 2 O 3 :Eu 2+ , Cl, β-SrO. 3B 2 O 3 : Pb 2+ , β-SrO. 3B 2 O 3 : Pb 2+ , Mn 2+ , α-SrO. 3B 2 O 3 :Sm 2+ , Sr 6 P 5 BO 20 :Eu, Sr 5 (PO 4 ) 3 Cl:Eu 2+ , Sr 5 (PO 4 ) 3 Cl:Eu 2+ ,Pr 3+ ,Sr 5 (PO 4 ) 3 Cl:Mn 2+ , Sr 5 (PO 4 ) 3 Cl:Sb 3+ , Sr 2 P 2 O 7 :Eu 2+ , β-Sr 3 (PO 4 ) 2 :Eu 2+ ,Sr 5 (PO 4 ) 3 F:Mn 2+ , Sr 5 (PO 4 ) 3 F:Sb 3+ , Sr 5 (PO 4 ) 3 F:Sb 3+ , Mn 2+ , Sr 5 (PO 4 ) 3 F :S 2+ , Sr 2 P 2 O 7 :S 2+ , β-Sr 3 (PO 4 ) 2 :S 2+ , β-Sr 3 (PO 4 ) 2 :Sn 2+ , Mn 2+ (Al) , SrS:Ce 3+ , SrS:Eu 2+ , SrS:Mn 2+ , SrS:Cu + ,Na,SrSO 4 :Bi,SrSO 4 :Ce 3+ , SrSO 4 :Eu 2+ ,SrSO 4 :Eu 2 + , Mn 2+ , Sr 5 Si 4 O 10 Cl 6 :Eu 2+ , Sr 2 SiO 4 :Eu 2+ , SrTiO 3 :Pr 3+ , SrTiO 3 :Pr 3+ ,Al 3+ ,Sr 3 WO 6 :U, SrY 2 O 3 :Eu 3+ , ThO 2 :Eu 3+ , ThO 2 :Pr 3+ , ThO 2 :Tb 3+ , YAl 3 B 4 O 12 :Bi 3+ , YAl 3 B 4 O 12 : Ce 3+, YAl 3 B 4 O 12: Ce 3+, Mn, YAl 3 B 4 O 12: Ce 3+, Tb 3+, YAl 3 B 4 O 12: Eu 3+, YAl 3 B 4 O 12 :Eu 3+ , Cr 3+ , YAl 3 B 4 O 12 :Th 4+ , Ce 3+ , Mn 2+ , YAlO 3 :Ce 3+ , Y 3 Al 5 O 12 :Ce 3+ , Y 3 Al 5 O 12 :Cr 3+ , YAlO 3 :Eu 3+ , Y 3 Al 5 O 12 :Eu 3r , Y 4 Al 2 O 9 :Eu 3+ , Y 3 Al 5 O 12 :Mn 4+ , YAlO 3 :Sm 3+ , YAlO 3 :Tb 3+ , Y 3 Al 5 O 12 :Tb 3+ , YAsO 4 :Eu 3+ ,YBO 3 :Ce 3+ , YBO 3 :Eu 3+ , YF 3 :Er 3+ , Yb 3+ , YF 3 :Mn 2+ , YF 3 :Mn 2+ , Th 4+ , YF 3 :Tm 3+ ,Yb 3 + , (Y, Gd) BO 3 : Eu, (Y, Gd) BO 3 : Tb, (Y, Gd) 2 O 3 : Eu 3+ , Y 1.34 Gd 0.60 O 3 (Eu, Pr), Y 2 O 3 : Bi 3+ , YOBr : Eu 3+ , Y 2 O 3 : Ce, Y 2 O 3 : Er 3+ , Y 2 O 3 : Eu 3+ (YOE), Y 2 O 3 : Ce 3+ , Tb 3+ , YOCl: Ce 3+ , YOCl: Eu 3+ , YOF: Eu 3+ , YOF: Tb 3+ , Y 2 O 3 : Ho 3+ , Y 2 O 2 S: Eu 3+ , Y 2 O 2 S: Pr 3+ , Y 2 O 2 S: Tb 3+ , Y 2 O 3 : Tb 3+ , YPO 4 : Ce 3+ , YPO 4 : Ce 3+ , Tb 3+ , YPO 4 : Eu 3+ , YPO 4 : Mn 2+ , Th 4+ , YPO 4 : V 5+ , Y (P, V) O 4 : Eu, Y 2 SiO 5 : Ce 3+ , YTaO 4 , YTaO 4 : Nb 5+ , YVO 4 :Dy 3+ , YVO 4 :Eu 3+ , ZnAl 2 O 4 :Mn 2+ , ZnB 2 O 4 :Mn 2+ ZnBa 2 S 3 :Mn 2+ , (Zn,Be) 2 SiO 4 :Mn 2+ , Zn 0.4 Cd 0.6 S:Ag, Zn 0.6 Cd 0.4 S:Ag, (Zn,Cd)S:Ag,Cl, (Zn, Cd)S: Cu, ZnF 2 : Mn 2+ , ZnGa 2 O 4 , ZnGa 2 O 4 : Mn 2+ , ZnGa 2 S 4 : Mn 2+ , Zn 2 GeO 4 : Mn 2+ , (Zn ,Mg)F 2 :Mn 2+ , ZnMg 2 (PO 4 ) 2 :Mn 2+ , (Zn,Mg) 3 (PO 4 ) 2 :Mn 2+ , ZnO:Al 3+ ,Ga 3+ ,ZnO: Bi 3+ , ZnO : Ga 3+ , ZnO : Ga, ZnO-CdO: Ga, ZnO: S, ZnO: Se, ZnO: Zn, ZnS: Ag + , Cl - , ZnS: Ag, Cu, Cl, ZnS: Ag, Ni, ZnS: Au, In, ZnS-CdS (25-75), ZnS-CdS (50-50), ZnS-CdS (75-25), ZnS-CdS: Ag, Br, Ni, ZnS-CdS :Ag + , Cl, ZnS-CdS: Cu, Br, ZnS-CdS: Cu, I, ZnS: Cl - , ZnS: Eu 2+ , ZnS: Cu, ZnS: Cu + , Al 3+ , ZnS: Cu + , Cl - , ZnS: Cu, Sn, ZnS: Eu 2+ , ZnS: Mn 2+ , ZnS: Mn, Cu, ZnS: Mn 2+ , Te 2+ , ZnS: P, ZnS: P 3- , Cl - , ZnS: Pb 2+ , ZnS: Pb 2+ , Cl - , ZnS: Pb, Cu, Zn 3 (PO 4 ) 2 : Mn 2+ , Zn 2 SiO 4 : Mn 2+ , Zn 2 SiO 4 : Mn 2 + , As 5+ , Zn 2 SiO 4 : Mn, Sb 2 O 2 , Zn 2 SiO 4 : Mn 2+ , P, Zn 2 SiO 4 : Ti 4+ , ZnS: Sn 2+ , ZnS: Sn, Ag, ZnS: Sn 2+ , Li + , ZnS: Te, Mn, ZnS-ZnTe: Mn 2+ , ZnSe: Cu + , Cl or ZnWO 4 .
此外,本發明係關於根據本發明之發射轉換材料用於光源之用途。光源尤其較佳為LED,尤其磷光體轉換LED,簡稱pc-LED。此處,除根據本發明之轉換磷光體以外,發射轉換材料尤其較佳包含至少一種其他轉換磷光體,特定而言使得光源發射白光或具有某一色點(按需選色原則(colour-on-demand principle))之光。「按需選色原則」係指隨著pc-LED使用一或多種轉換磷光體而產生具有某一色點之光。 Furthermore, the invention relates to the use of an emissive conversion material according to the invention for a light source. The light source is particularly preferably an LED, in particular a phosphor converted LED, referred to as a pc-LED. Here, in addition to the conversion phosphor according to the invention, the emission-converting material particularly preferably comprises at least one further conversion phosphor, in particular such that the light source emits white light or has a certain color point (colour-on-option). Demand principle)) light. "On-demand color selection principle" refers to the generation of light having a certain color point as the pc-LED uses one or more conversion phosphors.
此外,本發明因此關於包含一次光源及發射轉換材料之光源。 Furthermore, the invention is therefore directed to a light source comprising a primary light source and a emitting conversion material.
此處,除根據本發明之轉換磷光體以外,發射轉換材料亦尤其較佳包含至少一種其他轉換磷光體,使得光源較佳發射白光或具有某一色點之光。 Here, in addition to the conversion phosphor according to the present invention, the emission conversion material particularly preferably comprises at least one other conversion phosphor such that the light source preferably emits white light or light having a certain color point.
根據本發明之光源較佳為pc-LED。pc-LED一般包含一次光源及發射轉換材料。出於此目的,可將根據本發明之發射轉換材料分散於樹脂(例如環氧或聚矽氧樹脂)中,或在尺寸比率適合的情況下,直接配置於一次光源上或者遠離該一次光源(後一配置亦包括「遠端磷光體技術」),視應用而定。 The light source according to the invention is preferably a pc-LED. The pc-LED generally includes a primary light source and a transmissive conversion material. For this purpose, the emissive conversion material according to the present invention may be dispersed in a resin such as epoxy or polyoxymethylene resin, or directly disposed on or away from the primary light source if the size ratio is suitable ( The latter configuration also includes "remote phosphor technology", depending on the application.
一次光源可為半導體晶片、諸如ZnO之發光光源、所謂的TCO(透明導電氧化物)、基於ZnSe或基於SiC之配置、基於有機發光層(OLED)之配置或電漿或放電源,最佳為半導體晶片。如自先前技術已知,若一次光源為半導體晶片,則其較佳為發光氮化銦鋁鎵(InAlGaN)。此類型之一次光源之可能形式為熟習此項技術者已知。此外,雷射適合用作光源。 The primary light source may be a semiconductor wafer, an illuminating light source such as ZnO, a so-called TCO (transparent conductive oxide), a ZnSe-based or SiC-based configuration, an organic light-emitting layer (OLED)-based configuration or a plasma or discharge source, preferably Semiconductor wafer. As is known from the prior art, if the primary source is a semiconductor wafer, it is preferably indium aluminum gallium nitride (InAlGaN). Possible forms of this type of primary light source are known to those skilled in the art. In addition, lasers are suitable for use as a light source.
為了用於光源,特定而言pc-LED,亦可將根據本發明之發射轉換材料轉換成任何所需外部形狀,諸如球形顆粒、薄片及結構化材料及陶瓷。此等形狀概述於術語「成形體」下。因此,成形體為發射轉換成形體。 For use with light sources, in particular pc-LEDs, the emissive conversion material according to the invention can also be converted into any desired external shape, such as spherical particles, flakes and structured materials and ceramics. These shapes are outlined under the term "formed body". Therefore, the formed body is an emission conversion molded body.
此外,本發明係關於包含至少一個根據本發明之光源之照明單元。此類型之照明單元主要用於顯示裝置,尤其利用背光之液晶顯示裝置(LC顯示器)。因此,本發明亦係關於此類型之顯示裝置。 Furthermore, the invention relates to a lighting unit comprising at least one light source according to the invention. This type of lighting unit is mainly used for display devices, in particular liquid crystal display devices (LC displays) that use backlights. Accordingly, the present invention is also directed to display devices of this type.
在根據本發明之照明單元中,發射轉換材料與一次光源(尤其半導體晶片)之間的光學耦合較佳藉助於光導配置進行。以此方式,一次光源有可能安裝於中心位置,且就此藉助於光導裝置(例如光纖)與發射轉換材料光學耦合。以此方式,有可能獲得適於照明期望的燈,其係由可經配置以形成光屏之一或多種不同的轉換磷光體及耦合至一 次光源之光波導所組成。以此方式,較強一次光源有可能置放於有利於電氣裝置之位置,且無需進一步佈設電纜線,僅藉由在任何所需位置佈置光波導來安裝與光波導耦合之包含發射轉換材料的燈。 In the illumination unit according to the invention, the optical coupling between the emission conversion material and the primary light source, in particular the semiconductor wafer, is preferably carried out by means of a light guide arrangement. In this way, it is possible for the primary light source to be mounted in a central position and optically coupled to the emission conversion material by means of a light guiding device, such as an optical fiber. In this way, it is possible to obtain a lamp suitable for illumination, which is configurable to form one or more different conversion phosphors of the screen and coupled to one The optical waveguide of the secondary light source is composed of. In this way, a stronger primary light source is likely to be placed in a position that is advantageous for the electrical device, and no further cable routing is required, and the optical waveguide is arranged at any desired location to mount the optical conversion waveguide-coupled emission-converting material. light.
以下實例及圖式意欲說明本發明。然而,其決不應視為限制性的。 The following examples and drawings are intended to illustrate the invention. However, it should never be considered limiting.
藉由以下通用方法量測粉末發射光譜:在具有作為激發光源之氙氣燈之Edinburgh Instruments FL 920螢光光譜儀的累計球中,在450nm波長下,照射深度為5mm之鬆散磷光體粉末床(其表面已使用玻璃板校平),且在465nm至800nm範圍內以1nm步長量測所發射之螢光輻射之強度。 The powder emission spectrum was measured by the following general method: in a cumulative sphere of an Edinburgh Instruments FL 920 fluorescence spectrometer having a xenon lamp as an excitation source, a bed of loose phosphor powder having a depth of 5 mm was irradiated at a wavelength of 450 nm (the surface thereof) The glass plate has been used for leveling and the intensity of the emitted fluorescent radiation is measured in steps of 1 nm in the range of 465 nm to 800 nm.
在手套工作箱中一起稱量出1.408g Eu2O3(4.00mmol)、18.979g(43.13mmol)Ba3N2、21.074g Si3N4(150.33mmol)、2.471g Ca3N2(16.67mmol)及1.399g(23.3mmol)SiO2;且在手動研缽中混合,直至已形成均質混合物。將混合物轉移入氮化硼舟皿(boron nitride boat)中,置放於管式爐中心之鉬箔托盤上,且在1650℃下、在氮氣/氫氣氛圍(70 l/min之N2+10 l/min之H2)下煅燒8h。將以此方式獲得之磷光體懸浮於1M鹽酸中一小時,隨後將其濾出,用水洗滌且乾燥。 1.408 g of Eu 2 O 3 (4.00 mmol), 18.979 g (43.13 mmol) of Ba 3 N 2 , 21.074 g of Si 3 N 4 (150.33 mmol), and 2.471 g of Ca 3 N 2 (16.67) were weighed together in a glove box. Methyl) and 1.399 g (23.3 mmol) of SiO 2 ; and mixed in a hand mortar until a homogeneous mixture has formed. The mixture was transferred to a boron nitride boat and placed on a molybdenum foil tray at the center of the tube furnace at a nitrogen/hydrogen atmosphere (70 l/min N 2 +10 at 1650 ° C). Calcined for 8 h under H 2 ) of l/min. The phosphor obtained in this manner was suspended in 1 M hydrochloric acid for one hour, then it was filtered off, washed with water and dried.
在手套工作箱中一起稱量出0.443g Eu2O3(1.26mmol)、3.500g Ba3N2(7.95mmol)、5.552g Si3N4(39.58mmol)、0.376g SiO2(6.25mmol)及2.313g Sr3N2(7.95mmol);且在手動研缽中混合,直至已形成均質混合物。將混合物轉移入氮化硼舟皿中,置放於管式爐中心之 鉬箔托盤上,且在1625℃下、在氮氣/氫氣氛圍(70 l/min之N2+10 l/min之H2)下煅燒8h。將以此方式獲得之磷光體懸浮於1M鹽酸中一小時,隨後將其濾出,用水洗滌且乾燥。 0.443 g of Eu 2 O 3 (1.26 mmol), 3.500 g of Ba 3 N 2 (7.95 mmol), 5.552 g of Si 3 N 4 (39.58 mmol), and 0.376 g of SiO 2 (6.25 mmol) were weighed together in a glove box. And 2.313 g of Sr 3 N 2 (7.95 mmol); and mixed in a hand mortar until a homogeneous mixture had formed. The mixture was transferred into a boron nitride boat and placed on a molybdenum foil tray in the center of the tube furnace at a nitrogen/hydrogen atmosphere (70 l/min N 2 +10 l/min H at 1625 ° C). 2 ) Calcined for 8 h. The phosphor obtained in this manner was suspended in 1 M hydrochloric acid for one hour, then it was filtered off, washed with water and dried.
在手套工作箱中一起稱量出2.115g Eu2O3(6.00mmol)、27.205g Ba3N2(63.00mmol)、33.998g Si3N4(242.35mmol)、2.075g Ca3N2(11.50mmol)、1.611g Mg3N2(11.50mmol)及2.253g SiO2(37.50mmol);且在手動研缽中混合,直至已形成均質混合物。將混合物轉移入氮化硼舟皿中,且置放於管式爐中心之鉬箔托盤上。利用各種保持點進行煅燒。第一保持點在700℃下,滯留時間為2h。此在純氮氣下進行。隨後在氮氣下將溫度提高至1600℃。保持時間為8h,在此期間持續2h傳送入5體積%之氫氣。將以此方式獲得之磷光體懸浮於1M鹽酸中一小時,隨後將其濾出,用水洗滌且乾燥。 2.115 g of Eu 2 O 3 (6.00 mmol), 27.205 g of Ba 3 N 2 (63.00 mmol), 33.998 g of Si 3 N 4 (242.35 mmol), and 2.075 g of Ca 3 N 2 (11.50) were weighed together in a glove box. Methyl), 1.611 g of Mg 3 N 2 (11.50 mmol) and 2.253 g of SiO 2 (37.50 mmol); and mixed in a manual mortar until a homogeneous mixture has formed. The mixture was transferred to a boron nitride boat and placed on a molybdenum foil tray in the center of the tube furnace. Calcination is carried out using various holding points. The first holding point was at 700 ° C and the residence time was 2 h. This was carried out under pure nitrogen. The temperature was then raised to 1600 ° C under nitrogen. The holding time was 8 h, during which time 5 vol% of hydrogen was delivered for 2 h. The phosphor obtained in this manner was suspended in 1 M hydrochloric acid for one hour, then it was filtered off, washed with water and dried.
在手套工作箱中一起稱量出1.761g Eu2O3(5mmol)、14.004g Ba3N2(31.668mmol)、9.211g Sr3N2(31.668mmol)、19.395g Si3N4(138.300mmol)、5.476g Ge3N4(20.000mmol)及1.502g SiO2(25.000mmol);且在手動研缽中混合,直至已形成均質混合物。將混合物轉移入氮化硼舟皿中,置放於管式爐中心之鉬箔托盤上,且在1600℃下、在氮氣/氫氣氛圍(60 l/min之N2+5 l/min之H2)下煅燒8h。將以此方式獲得之磷光體懸浮於1M鹽酸中一小時,隨後將其濾出,用水洗滌且乾燥。 1.761 g of Eu 2 O 3 (5 mmol), 14.004 g of Ba 3 N 2 (31.668 mmol), 9.211 g of Sr 3 N 2 (31.668 mmol), and 19.395 g of Si 3 N 4 (138.300 mmol) were weighed together in a glove box. ), 5.476 g Ge 3 N 4 (20.000 mmol) and 1.502 g SiO 2 (25.000 mmol); and mixed in a hand mortar until a homogeneous mixture has formed. The mixture was transferred into a boron nitride boat and placed on a molybdenum foil tray in the center of the tube furnace at a nitrogen/hydrogen atmosphere (60 l/min N 2 +5 l/min H at 1600 ° C). 2 ) Calcined for 8 h. The phosphor obtained in this manner was suspended in 1 M hydrochloric acid for one hour, then it was filtered off, washed with water and dried.
在手套工作箱中一起稱量出0.443g Eu2O3(1.26mmol)、2.807g Ba3N2(6.38mmol)、0.932g BaSO4(4.00mmol)、5.272g Si3N4(37.58 mmol)、0.376g SiO2(6.25mmol)及2.313g Sr3N2(7.95mmol);且在手動研缽中混合,直至已形成均質混合物。將混合物與2.00g硫一起轉移入經覆蓋之氮化硼舟皿中,置放於管式爐中心之鉬箔托盤上,且在1600℃下、在氮氣/氫氣氛圍下(40 l/min之N2+40 l/min之H2)煅燒8h。將以此方式獲得之磷光體懸浮於1M鹽酸中1h,隨後將其濾出,用水洗滌且乾燥。 0.443 g of Eu 2 O 3 (1.26 mmol), 2.807 g of Ba 3 N 2 (6.38 mmol), 0.932 g of BaSO 4 (4.00 mmol), and 5.272 g of Si 3 N 4 (37.58 mmol) were weighed together in a glove box. 0.376 g of SiO 2 (6.25 mmol) and 2.313 g of Sr 3 N 2 (7.95 mmol); and mixed in a manual mortar until a homogeneous mixture had formed. The mixture was transferred together with 2.00 g of sulfur into a covered boron nitride boat and placed on a molybdenum foil tray in the center of the tube furnace at 1600 ° C under a nitrogen/hydrogen atmosphere (40 l/min) H 2 ) of N 2 + 40 l/min was calcined for 8 h. The phosphor obtained in this way was suspended in 1 M hydrochloric acid for 1 h, which was then filtered off, washed with water and dried.
在手套工作箱中一起稱量出0.443g Eu2O3(1.26mmol)、3.500g Ba3N2(6.08mmol)、1.166g BaSO4(5.00mmol)、5.552g Si3N4(39.58mmol)、0.376g SiO2(6.25mmol)及22.313g Sr3N2(7.95mmol);且在手動研缽中混合,直至已形成均質混合物。將混合物與2.00g硫一起轉移入經覆蓋之氮化硼舟皿中,置放於管式爐中心之鉬箔托盤上,且在1600℃下、在氮氣/氫氣氛圍下(40 l/min之N2+40 l/min之H2)煅燒8h。將以此方式獲得之磷光體懸浮於1M鹽酸中1h,隨後將其濾出,用水洗滌且乾燥。 0.443 g of Eu 2 O 3 (1.26 mmol), 3.500 g of Ba 3 N 2 (6.08 mmol), 1.166 g of BaSO 4 (5.00 mmol), and 5.552 g of Si 3 N 4 (39.58 mmol) were weighed together in a glove box. 0.376 g of SiO 2 (6.25 mmol) and 22.313 g of Sr 3 N 2 (7.95 mmol); and mixed in a manual mortar until a homogeneous mixture had formed. The mixture was transferred together with 2.00 g of sulfur into a covered boron nitride boat and placed on a molybdenum foil tray in the center of the tube furnace at 1600 ° C under a nitrogen/hydrogen atmosphere (40 l/min) H 2 ) of N 2 + 40 l/min was calcined for 8 h. The phosphor obtained in this way was suspended in 1 M hydrochloric acid for 1 h, which was then filtered off, washed with water and dried.
在手套工作箱中一起稱量出1.309g Eu2O3(3.72mmol)、18.979g Ba3N2(40.00mmol)、0.702g Zn3N2(3.13mmol)、21.074g Si3N4(150.33mmol)、2.471g Ca3N2(16.67mmol)及1.399g SiO2(23.3mmol);且在手動研缽中混合,直至已形成均質混合物。將混合物轉移入氮化硼舟皿中,置放於管式爐中心之鉬箔托盤上,且在1650℃下、在氮氣/氫氣氛圍(70 l/min之N2+2 l/min之H2)下煅燒8h。將以此方式獲得之磷光體懸浮於1M鹽酸中1h,隨後將其濾出,用水洗滌且乾燥。 1.309 g of Eu 2 O 3 (3.72 mmol), 18.979 g of Ba 3 N 2 (40.00 mmol), 0.702 g of Zn 3 N 2 (3.13 mmol), and 21.074 g of Si 3 N 4 (150.33) were weighed together in a glove box. Methyl), 2.471 g Ca 3 N 2 (16.67 mmol) and 1.399 g SiO 2 (23.3 mmol); and mixed in a manual mortar until a homogeneous mixture has formed. Transfer the mixture into a boron nitride boat and place it on a molybdenum foil tray in the center of the tube furnace at a temperature of 1650 ° C in a nitrogen/hydrogen atmosphere (70 °/min N 2 +2 l/min H) 2 ) Calcined for 8 h. The phosphor obtained in this way was suspended in 1 M hydrochloric acid for 1 h, which was then filtered off, washed with water and dried.
在手套工作箱中一起稱量出2.115g Eu2O3(6.00mmol)、17.600g Ba3N2(40.00mmol)、33.998g Si3N4(242.35mmol)、4.151g Ca3N2(23.00mmol)、2.321g Mg3N2(23.00mmol)及2.253g SiO2(37.50mmol);且在手動研缽中混合,直至已形成均質混合物。將混合物轉移入氮化硼舟皿中,且置放於管式爐中心之鉬箔托盤上。利用各種保持點進行煅燒。第一保持點在700℃下,滯留時間為2h。此在純氮氣下進行。隨後在氮氣下將溫度提高至1600℃。保持時間為8h,在此期間持續2h傳送入5體積%之氫氣。 2.115 g of Eu 2 O 3 (6.00 mmol), 17.600 g of Ba 3 N 2 (40.00 mmol), 33.998 g of Si 3 N 4 (242.35 mmol), 4.151 g of Ca 3 N 2 (23.00) were weighed together in a glove box. Methyl), 2.321 g of Mg 3 N 2 (23.00 mmol) and 2.253 g of SiO 2 (37.50 mmol); and mixed in a manual mortar until a homogeneous mixture has formed. The mixture was transferred to a boron nitride boat and placed on a molybdenum foil tray in the center of the tube furnace. Calcination is carried out using various holding points. The first holding point was at 700 ° C and the residence time was 2 h. This was carried out under pure nitrogen. The temperature was then raised to 1600 ° C under nitrogen. The holding time was 8 h, during which time 5 vol% of hydrogen was delivered for 2 h.
將以此方式獲得之60g磷光體與20重量%之8.554g氮化鋇、2.050g氮化鈣與1.396g氮化鎂之混合物在手套工作箱中混合,直至已形成均質混合物。隨後進行另一煅燒,在此期間之條件與第一煅燒步驟相同。為了移除過量氮化鈣、氮化鋇及氮化鎂,將以此方式獲得之磷光體懸浮於1M鹽酸中另外1h,隨後將其濾出,用水洗滌且乾燥。 A mixture of 60 g of phosphor obtained in this manner and 20% by weight of 8.554 g of tantalum nitride, 2.050 g of calcium nitride and 1.396 g of magnesium nitride was mixed in a glove box until a homogeneous mixture had formed. Another calcination is then carried out, during which the conditions are the same as in the first calcination step. In order to remove excess calcium nitride, tantalum nitride and magnesium nitride, the phosphor obtained in this way was suspended in 1 M hydrochloric acid for an additional 1 h, which was then filtered off, washed with water and dried.
在手套工作箱中一起稱量出1.761g Eu2O3(5mmol)、28.008g Ba3N2(63.336mmol)、19.395g Si3N4(138.300mmol)、5.476g Ge3N4(20.000mmol)及1.502g SiO2(25.000mmol);且在手動研缽中混合,直至已形成均質混合物。將混合物轉移入氮化硼舟皿中,置放於管式爐中心之鉬箔托盤上,且在1600℃下、在氮氣/氫氣氛圍(60 l/min之N2+5 l/min之H2)下煅燒8h。 1.761 g of Eu 2 O 3 (5 mmol), 28.008 g of Ba 3 N 2 (63.336 mmol), 19.395 g of Si 3 N 4 (138.300 mmol), and 5.476 g of Ge 3 N 4 (20.000 mmol) were weighed together in a glove box. And 1.502 g of SiO 2 (25.000 mmol); and mixed in a hand mortar until a homogeneous mixture has formed. The mixture was transferred into a boron nitride boat and placed on a molybdenum foil tray in the center of the tube furnace at a nitrogen/hydrogen atmosphere (60 l/min N 2 +5 l/min H at 1600 ° C). 2 ) Calcined for 8 h.
將以此方式獲得之磷光體與20重量%之氮化鍶在手套工作箱中混合,直至已形成均質混合物。隨後進行另一煅燒,在此期間之條件與第一煅燒步驟相同。為了移除過量氮化鍶,將以此方式獲得之磷光體懸浮於1M鹽酸另外1h,隨後將其濾出,用水洗滌且乾燥。 The phosphor obtained in this way was mixed with 20% by weight of tantalum nitride in a glove box until a homogeneous mixture had formed. Another calcination is then carried out, during which the conditions are the same as in the first calcination step. In order to remove excess tantalum nitride, the phosphor obtained in this way was suspended in 1 M hydrochloric acid for another 1 h, which was then filtered off, washed with water and dried.
稱量出展示於各別LED實例中之質量mp(以g為單位)之磷光體,與m聚矽氧(以g為單位)光學透明聚矽氧混合,且隨後在行星式離心混合 器中混合以產生均質混合物,從而使得總質量中之磷光體濃度為cp(以重量%計)。藉助於自動分配器將以此方式獲得之聚矽氧/磷光體混合物施用於藍光半導體LED之晶片且經由供應熱來固化。在本發明實例中用於LED表徵之藍光半導體LED之發射波長為442nm且在350mA之電流強度下操作。使用Instrument Systems CAS 140光譜儀及隨附的ISP 250累計球來進行LED光度表徵。經由測定波長依賴性光譜功率密度來表徵LED。使用由LED所發射之光的所得光譜來計算色點座標CIE x及CIE y。調節所施用之磷光體之量,以使得所有LED均具有類似色點座標CIE x。所用磷光體之峰波長愈大,各別LED光譜所產生之色點座標CIE y愈小。結果展示於下表1中。 The phosphors of mass m p (in g) displayed in individual LED instances are weighed and mixed with m -polyoxygen (in g) optically transparent polyfluorene, and then in a planetary centrifugal mixer were mixed to produce a homogeneous mixture so that the concentration of the phosphor to the total mass of c p (in% by weight). The polyoxyn/phosphor mixture obtained in this way is applied to the wafer of the blue semiconductor LED by means of an automatic dispenser and cured by supplying heat. The blue semiconductor LED used for LED characterization in the examples of the present invention has an emission wavelength of 442 nm and operates at a current intensity of 350 mA. LED photometric characterization was performed using an Instrument Systems CAS 140 spectrometer and the accompanying ISP 250 integrated sphere. LEDs are characterized by measuring wavelength dependent spectral power densities. The color point coordinates CIE x and CIE y are calculated using the resulting spectra of the light emitted by the LEDs. The amount of phosphor applied is adjusted such that all LEDs have similar color point coordinates CIE x. The larger the peak wavelength of the phosphor used, the smaller the color point coordinate CIE y produced by the individual LED spectra. The results are shown in Table 1 below.
圖1:根據比較實例V1之磷光體之發射光譜;峰波長:652nm;CIE 1931 x=0.647,CIE 1931 y=0.350。 Figure 1: Emission spectrum of a phosphor according to Comparative Example V1; peak wavelength: 652 nm; CIE 1931 x = 0.647, CIE 1931 y = 0.350.
圖2:根據比較實例V1之磷光體之激發光譜。 Figure 2: Excitation spectrum of the phosphor according to Comparative Example V1.
圖3:根據比較實例V2之磷光體之發射光譜;峰波長:621nm;CIE 1931 x=0.620,CIE 1931 y=0.372。 Figure 3: Emission spectrum of the phosphor according to Comparative Example V2; peak wavelength: 621 nm; CIE 1931 x = 0.620, CIE 1931 y = 0.372.
圖4:根據比較實例V2之磷光體之激發光譜。 Figure 4: Excitation spectrum of the phosphor according to Comparative Example V2.
圖5:根據實例1之磷光體之發射光譜;與比較實例V1相比峰波 長偏移入紅光中5nm;峰波長:657nm,CIE 1931 x=0.672,CIE 1931 y=0.326。 Figure 5: Emission spectrum of the phosphor according to Example 1; peak wave compared with Comparative Example V1 The long shift is 5 nm in red light; the peak wavelength is 657 nm, CIE 1931 x=0.672, CIE 1931 y=0.326.
圖6:根據實例1之磷光體之激發光譜;最佳可激發性存在於450nm下。 Figure 6: Excitation spectrum of the phosphor according to Example 1; the best excitability is present at 450 nm.
圖7:根據實例2之磷光體之發射光譜;因為併入鍺,所以發生光譜之紅光偏移;峰波長:624nm;CIE 1931 x=0.635,CIE 1931 y=0.362;併入鍺使譜帶之半值寬度自90nm(比較實例V2)減少至86nm。 Figure 7: The emission spectrum of the phosphor according to Example 2; due to the incorporation of yttrium, the red shift of the spectrum occurs; peak wavelength: 624 nm; CIE 1931 x = 0.635, CIE 1931 y = 0.362; The half value width was reduced from 90 nm (Comparative Example V2) to 86 nm.
圖8:根據實例5之磷光體之發射光譜;因為併入鋅,所以發生發射譜帶之紅光偏移;峰波長:665nm;CIE 1931 x=0.661,CIE 1931 y=0.330。 Figure 8: Emission spectrum of the phosphor according to Example 5; red light shift of the emission band occurs due to incorporation of zinc; peak wavelength: 665 nm; CIE 1931 x = 0.661, CIE 1931 y = 0.330.
圖9:表1中所展示之LED實例之色點座標CIE x及CIE y的位置。 Figure 9: Location of the color point coordinates CIE x and CIE y of the LED example shown in Table 1.
Claims (16)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14000060 | 2014-01-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201533219A true TW201533219A (en) | 2015-09-01 |
Family
ID=49920121
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104100578A TW201533219A (en) | 2014-01-09 | 2015-01-08 | Phosphors |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3092284A1 (en) |
JP (1) | JP2017509735A (en) |
TW (1) | TW201533219A (en) |
WO (1) | WO2015104036A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105947998B (en) * | 2016-04-29 | 2018-05-15 | 金国范 | A kind of method that imidodisulfuryl fluoride lithium salt is prepared using lithium nitride |
CN110628423B (en) * | 2019-10-09 | 2020-11-20 | 厦门大学 | Oxysulfide elastic stress luminescent material and preparation method thereof |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5051277A (en) | 1990-01-22 | 1991-09-24 | Gte Laboratories Incorporated | Method of forming a protective bi-layer coating on phosphore particles |
JP2967559B2 (en) | 1991-03-29 | 1999-10-25 | 日亜化学工業株式会社 | Phosphor and manufacturing method thereof |
US6265068B1 (en) | 1997-11-26 | 2001-07-24 | 3M Innovative Properties Company | Diamond-like carbon coatings on inorganic phosphors |
EP1104799A1 (en) * | 1999-11-30 | 2001-06-06 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Red emitting luminescent material |
MY149573A (en) * | 2002-10-16 | 2013-09-13 | Nichia Corp | Oxynitride phosphor and production process thereof, and light-emitting device using oxynitride phosphor |
US20070298250A1 (en) | 2006-06-22 | 2007-12-27 | Weimer Alan W | Methods for producing coated phosphor and host material particles using atomic layer deposition methods |
US7830434B2 (en) * | 2006-08-16 | 2010-11-09 | Intematix Corporation | Semiconductor color image sensor responsive at shorter wavelengths |
EP2060616A4 (en) * | 2006-09-15 | 2010-08-04 | Mitsubishi Chem Corp | Phosphor, method for producing the same, phosphor-containing composition, light-emitting device, image display and illuminating device |
EP2052052B1 (en) * | 2006-12-29 | 2011-10-05 | LG Innotek Co., Ltd. | Phosphor material, coating phosphor composition, method of preparing phosphor material and light emitting device |
JP2009263610A (en) * | 2007-08-01 | 2009-11-12 | Mitsubishi Chemicals Corp | Phosphor and method for producing the same, crystalline silicon nitride and method for producing the same, phosphor-containing composition, light-emitting device using the phosphor, image display device, and illuminating device |
DE102007056343A1 (en) | 2007-11-22 | 2009-05-28 | Litec Lll Gmbh | Surface-modified phosphors |
KR101047775B1 (en) * | 2008-09-23 | 2011-07-07 | 주식회사 포스포 | Phosphor and Light Emitting Device |
CN101724401A (en) * | 2008-10-21 | 2010-06-09 | 大连路明发光科技股份有限公司 | Red luminous silicon-oxygen nitride fluorescent material, preparation method and light emitting device using same |
DE102008060680A1 (en) | 2008-12-08 | 2010-06-10 | Merck Patent Gmbh | Surface modified silicate phosphors |
KR100958700B1 (en) * | 2009-09-21 | 2010-05-18 | 금호전기주식회사 | Oxynitride phosphor, method for manufacturing the same and light-emitting device comprising the same |
JP5782049B2 (en) * | 2010-01-29 | 2015-09-24 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung | Phosphor |
CN101798510A (en) * | 2010-03-15 | 2010-08-11 | 彩虹集团公司 | Nitride phosphor material and preparation method thereof |
JP2015529701A (en) | 2012-07-13 | 2015-10-08 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung | Method for manufacturing phosphor |
-
2014
- 2014-11-24 JP JP2016546055A patent/JP2017509735A/en active Pending
- 2014-11-24 WO PCT/EP2014/003128 patent/WO2015104036A1/en active Application Filing
- 2014-11-24 EP EP14802597.6A patent/EP3092284A1/en not_active Withdrawn
-
2015
- 2015-01-08 TW TW104100578A patent/TW201533219A/en unknown
Also Published As
Publication number | Publication date |
---|---|
WO2015104036A1 (en) | 2015-07-16 |
EP3092284A1 (en) | 2016-11-16 |
JP2017509735A (en) | 2017-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9580649B2 (en) | Process for production of phosphors | |
US20160244665A1 (en) | Phosphors | |
US10125315B2 (en) | Phosphors and phosphor-converted LEDs | |
US20170051201A1 (en) | Phosphors | |
US9920246B2 (en) | Phosphors | |
US20160108311A1 (en) | Phosphors | |
JP2008095091A (en) | Fluorescent substance and its production method, fluorescent substance containing composition, light emitting device, image display device, and illuminating device | |
US20160200973A1 (en) | Phosphors | |
US20160152891A1 (en) | Phosphors | |
US9745511B2 (en) | Phosphors | |
TW201418416A (en) | Eu-activated phosphors | |
US20170306223A1 (en) | Phosphors | |
TW201728745A (en) | Mn-activated phosphors | |
JP5590092B2 (en) | Phosphor, phosphor-containing composition, light emitting device, image display device and lighting device | |
TW201533219A (en) | Phosphors | |
US20200194625A1 (en) | Mn4+-activated luminescent material as conversion phosphor for led solid-state light sources | |
US20170107426A1 (en) | Europium- or samarium-doped terbium molybdates | |
JP2023057391A (en) | Phosphor | |
TW201414802A (en) | Process for the preparation of europium-doped phosphors |