TW201533058A - Coagulation factor VII polypeptides - Google Patents

Coagulation factor VII polypeptides Download PDF

Info

Publication number
TW201533058A
TW201533058A TW103135633A TW103135633A TW201533058A TW 201533058 A TW201533058 A TW 201533058A TW 103135633 A TW103135633 A TW 103135633A TW 103135633 A TW103135633 A TW 103135633A TW 201533058 A TW201533058 A TW 201533058A
Authority
TW
Taiwan
Prior art keywords
factor vii
fviia
vii polypeptide
replaced
factor
Prior art date
Application number
TW103135633A
Other languages
Chinese (zh)
Inventor
Henrik Oestergaard
Prafull S Gandhi
Ole Hvilsted Olsen
Original Assignee
Novo Nordisk Healthcare Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novo Nordisk Healthcare Ag filed Critical Novo Nordisk Healthcare Ag
Publication of TW201533058A publication Critical patent/TW201533058A/en

Links

Landscapes

  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present invention relates to modified coagulation Factor VII polypeptides exhibiting increased resistance to antithrombin inactivation and enhanced proteolytic activity. The present invention also relates to polynucleotide constructs encoding such polypeptides, vectors and host cells comprising and expressing such polynucleotides, pharmaceutical compositions, uses and methods of treatment.

Description

凝血因子VII多肽 Factor VII polypeptide

本發明係關於具有促凝活性之凝血因子VII(因子VII)多肽。其亦關於包含該等多肽之醫藥組成物、治療方法及該等多肽之用途。 The present invention relates to a Factor VII (Factor VII) polypeptide having procoagulant activity. It also relates to pharmaceutical compositions, methods of treatment, and uses of such polypeptides comprising such polypeptides.

序列表Sequence table

SEQ ID NO.1:野生型人類凝血因子VII. SEQ ID NO. 1: wild type human coagulation factor VII.

SEQ ID NO.2:人類凝血因子VII之蛋白酶域. SEQ ID NO. 2: Protease domain of human coagulation factor VII.

SEQ ID NO.3:古人類(黑猩猩)凝血因子VII之蛋白酶域. SEQ ID NO. 3: Protease domain of ancient human (chimpanzee) factor VII.

SEQ ID NO.4:犬類(犬)凝血因子VII之蛋白酶域. SEQ ID NO. 4: Protease domain of canine (dog) coagulation factor VII.

SEQ ID NO.5:豬類(豬)凝血因子VII之蛋白酶域. SEQ ID NO. 5: Protease domain of pig (pig) coagulation factor VII.

SEQ ID NO.6:牛類(牛)凝血因子VII之蛋白酶域. SEQ ID NO. 6: Protease domain of bovine (bovine) coagulation factor VII.

SEQ ID NO.7:鼠類(小鼠)凝血因子VII之蛋白酶域. SEQ ID NO. 7: Mouse (mouse) protease domain of Factor VII.

SEQ ID NO.8:鼠類(大鼠)凝血因子VII之蛋白酶域. SEQ ID NO. 8: Mouse (rat) protease domain of Factor VII.

SEQ ID NO.9:兔類(兔)凝血因子VII之蛋白酶域. SEQ ID NO. 9: Rabbit (rabbit) protease domain of Factor VII.

血管損傷活化涉及細胞與分子組分之間的複雜相互作用之止血系統。最終使得出血停止之過程被稱為止血(haemostasis)。止血之重要部分為凝血及在損傷部位形成凝塊。凝血過程高度取決於若干蛋白分子之功能。此等分子被稱為凝血因子。凝血因子中之一些為可以非活性酶原 或酶促活性形式存在之蛋白酶。酶原形式可藉由經蛋白分解活性凝血因子催化之多肽鏈之特異性裂解轉化為其酶促活性形式。 Vascular injury activation involves a hemostatic system of complex interactions between cells and molecular components. The process that ultimately stops bleeding is called haemostasis. An important part of hemostasis is coagulation and the formation of clots at the site of injury. The coagulation process is highly dependent on the function of several protein molecules. These molecules are called coagulation factors. Inactive zymogen Or a protease present in an enzymatically active form. The zymogen form can be converted to its enzymatically active form by specific cleavage of the polypeptide chain catalyzed by proteolytically active coagulation factors.

因子VII為在肝臟中合成且以單鏈醣蛋白形式分泌至血液中之維生素K依賴性血漿蛋白。因子VII酶原藉由在SEQ ID NO:1之單一位點,亦即在R152與I153之間的特異性蛋白分解裂解轉化成活化形式(因子VIIa),產生藉由單一二硫鍵連接之雙鏈分子。因子VIIa中之兩個多肽鏈稱為輕鏈及重鏈,其分別對應於SEQ ID NO:1(野生型人類凝血因子VII)之殘基1-152及153-406。因子VII主要以酶原形式循環,但較小部分以活化形式(因子VIIa)。 Factor VII is a vitamin K-dependent plasma protein synthesized in the liver and secreted into the blood as a single-chain glycoprotein. Factor VII zymogen is converted to an activated form (Factor VIIa) by specific proteolytic cleavage between a single site of SEQ ID NO: 1, ie, R152 and I153, resulting in a single disulfide bond. Double-stranded molecule. The two polypeptide chains in Factor Vila are referred to as the light and heavy chains, which correspond to residues 1-152 and 153-406 of SEQ ID NO: 1 (wild type human Factor VII), respectively. Factor VII circulates primarily in the form of a zymogen, but a smaller portion is in an activated form (Factor VIIa).

凝血過程可分成三個階段:起始、擴增及傳播。起始及傳播階段促使形成凝血酶,一種在止血中具有許多重要功能之凝血因子。若內襯血管內部表面之內皮細胞之單層障壁變得損壞,則凝血級聯開始。此暴露血液中之血小板將黏著之內皮下細胞及血管外受質蛋白。若此狀況發生,則存在於內皮下細胞之表面上之組織因子(TF)變得暴露於在血液中循環之因子VIIa。TF為膜結合蛋白且充當因子VIIa之受體。因子VIIa為具有本質上低活性之酶,絲胺酸蛋白酶。然而,當因子VIIa結合至TF時,其活性極大地增加。因子VIIa與TF之相互作用亦將因子VIIa定位於攜有TF之細胞之磷脂表面上且將其最佳地安置以將因子X活化為Xa。當此狀況發生時,因子Xa可與因子Va合併以於攜有TF之細胞之表面上形成所謂的「凝血酶原酶」錯合物。凝血酶原酶錯合物隨後藉由凝血酶原裂解產生凝血酶。藉由暴露TF至循環因子VIIa及導致初始產生凝血酶活化之途徑被稱為TF途徑。TF:因子VIIa錯合物亦催化因子IX至因子IXa之活化。隨後,活化 因子IXa可擴散至黏著於損傷位點且已活化之血小板表面。此允許因子IXa與FVIIIa合併以於活化血小板之表面上形成「X酶」錯合物。此錯合物由於其在將因子X活化為Xa中之顯著效率而在傳播階段中起關鍵作用。高效X酶催化的產生因子Xa活性轉而導致藉由凝血酶原酶錯合物催化的凝血酶原高效裂解為凝血酶。 The coagulation process can be divided into three phases: initiation, amplification, and spread. The initiation and propagation phases promote the formation of thrombin, a clotting factor that has many important functions in hemostasis. If the monolayer barrier of the endothelial cells lining the inner surface of the blood vessel becomes damaged, the coagulation cascade begins. This exposed blood platelets will adhere to the subendothelial cells and extravascular receptor proteins. If this occurs, the tissue factor (TF) present on the surface of the subendothelial cells becomes exposed to factor VIIa circulating in the blood. TF is a membrane-bound protein and acts as a receptor for factor VIIa. Factor VIIa is an enzyme with a very low activity, a serine protease. However, when Factor VIIa binds to TF, its activity is greatly increased. The interaction of Factor VIIa with TF also localizes Factor VIIa to the phospholipid surface of cells bearing TF and optimally positions it to activate Factor X to Xa. When this occurs, Factor Xa can be combined with Factor Va to form a so-called "prothrombinase" complex on the surface of cells bearing TF. The prothrombinase complex is then cleaved by prothrombin to produce thrombin. The pathway by exposing TF to circulating factor VIIa and causing initial thrombin activation is referred to as the TF pathway. TF: Factor VIIa complex also catalyzes the activation of Factor IX to Factor IXa. Subsequently, activation Factor IXa can diffuse to the surface of the activated platelets that adhere to the site of injury. This allows Factor IXa to be combined with FVIIIa to form an "X enzyme" complex on the surface of activated platelets. This complex plays a key role in the propagation phase due to its significant efficiency in activating factor X to Xa. Highly efficient X-enzyme-catalyzed production of factor Xa leads to efficient cleavage of prothrombin catalyzed by prothrombinase complex to thrombin.

若在因子IX或因子VIII中存在任何缺乏,則其損害重要X酶活性,且減少凝血所需的凝血酶之生產。藉由TF途徑起初形成之凝血酶充當促進損傷位點之血小板之募集、活化及聚集之促凝信號。此導致形成疏鬆初級血小板栓。然而,此初級血小板栓不穩定且需要強化以維持止血。栓之穩定化涉及將血小板錨定及纏結於血纖維蛋白纖維網中。 If there is any deficiency in Factor IX or Factor VIII, it impairs important X enzyme activity and reduces the production of thrombin required for blood clotting. The thrombin initially formed by the TF pathway acts as a procoagulant signal for the recruitment, activation and aggregation of platelets that promote the site of injury. This results in the formation of loose primary platelet plugs. However, this primary platelet plug is unstable and needs to be strengthened to maintain hemostasis. Stabilization of the plug involves anchoring and entanglement of the platelets in the fibrin web.

形成強力且穩定之凝塊取決於產生局部凝血酶活性之穩固爆發。因此,導致在血管損傷後產生凝血酶之過程中之缺乏可導致例如血友病A及B之出血病症。患有血友病A及B之人分別缺乏功能因子VIIIa或因子IXa。傳播階段中之凝血酶產生極其取決於X酶活性,亦即需要因子VIIIa及FIXa二者。因此,在患有血友病A或B之人中,未能恰當固結初級血小板栓且出血繼續。 The formation of a strong and stable clot depends on a robust burst that produces local thrombin activity. Thus, a deficiency in the process of producing thrombin after vascular injury can lead to bleeding disorders such as hemophilia A and B. People with hemophilia A and B lack functional factor VIIIa or factor IXa, respectively. The production of thrombin in the propagation phase is highly dependent on the X enzyme activity, ie both factors VIIIa and FIXa are required. Therefore, in people with hemophilia A or B, primary platelet plugs are not properly consolidated and bleeding continues.

替代療法為用於血友病A及B之傳統治療,且涉及靜脈內投予因子VIII或因子IX。然而,在許多情況下,患者產生針對注入蛋白之抗體(亦稱為抑制劑),其降低或抵消治療功效。已批准重組因子VIIa(Novoseven®)用於治療具有抑制劑之血友病A或B患者,以及用於停止出血事件或預防與創傷及/或手術相關之出血。亦已批准重組因子VIIa用於治療具有先天性因子VII缺乏之患者。已提出經由TF非依賴性機制操作重組 FVIIa。根據此模式,重組FVIIa藉助於其Gla-域(其隨後在該域中將因子X蛋白分解活化為Xa)指向活化血小板之表面,因此規避對功能X酶錯合物之需要。在不存在TF之情況下之FVIIa之低酵素活性以及Gla-域對膜之低親和性可解釋對於在患有血友病之人中達成止血所需的循環FVIIa之超生理位準之需要。 The replacement therapy is a traditional treatment for hemophilia A and B and involves intravenous administration of Factor VIII or Factor IX. However, in many cases, the patient produces antibodies (also known as inhibitors) directed to the injected protein that reduce or counteract the therapeutic efficacy. Recombinant Factor VIIa (Novoseven®) has been approved for the treatment of hemophilia A or B patients with inhibitors, as well as for stopping bleeding events or preventing bleeding associated with trauma and/or surgery. Recombinant factor VIIa has also been approved for the treatment of patients with a congenital factor VII deficiency. It has been proposed to operate reorganization via a TF-independent mechanism FVIIa. According to this mode, recombinant FVIIa is directed to the surface of activated platelets by virtue of its Gla-domain, which in turn activates factor X proteolysis to Xa in this domain, thus circumventing the need for a functional X enzyme complex. The low enzyme activity of FVIIa in the absence of TF and the low affinity of the Gla-domain to the membrane may explain the need for a super-physiological level of circulating FVIIa required to achieve hemostasis in people with hemophilia.

重組因子VIIa具有2-3小時之活體內功能半衰期,其可使頻繁投藥以解決患者中之出血成為必需。另外,患者通常僅在已開始出血之後接受因子VIIa治療,而非作為預防措施,其通常影響患者之一般生活品質。具有較長活體內功能半衰期之重組因子VIIa變異體將降低所需投藥次數、支持較不頻繁給藥且因此有望顯著改良因子VIIa治療以有利於患者及保健持有者。 Recombinant Factor VIIa has an in vivo functional half-life of 2-3 hours, which necessitates frequent administration to resolve bleeding in a patient. In addition, patients are usually treated with Factor VIIa only after they have started bleeding, rather than as a preventive measure, which usually affects the general quality of life of the patient. Recombinant Factor Vila variants with longer in vivo functional half-lives will reduce the number of administrations required, support less frequent dosing and are therefore expected to significantly improve Factor Vila treatment to benefit patients and health care holders.

WO02/22776揭示具有相比於野生型FVIIa增強之蛋白分解活性之因子VIIa變異體。已在臨床試驗中展示揭示於WO02/22776中的包含取代之因子VII多肽就具有增強之蛋白分解活性之變異體之功效而言顯示有利臨床結果(de Paula等人(2012)J Thromb Haemost,10:81-89)。 WO 02/22776 discloses Factor VIIa variants having enhanced proteolytic activity compared to wild-type FVIIa. It has been shown in clinical trials that the substituted Factor VII polypeptide disclosed in WO 02/22776 shows favorable clinical results in terms of the efficacy of variants with enhanced proteolytic activity (de Paula et al. (2012) J Thromb Haemost , 10 :81-89).

WO2007/031559揭示對藉由抗凝血酶之抑制具有較小易感性之因子VII變異體。 WO2007/031559 discloses Factor VII variants that have less susceptibility to inhibition by antithrombin.

WO2009/126307揭示具有改變之促凝血活性之經修飾之因子VII多肽。 WO 2009/126307 discloses modified Factor VII polypeptides with altered procoagulant activity.

一般而言,在患有凝血病之人中存在許多未滿足的醫療需要。使用重組因子VIIa促進凝塊形成強調其作為治療劑之生長重要性。然而,重組因子VIIa治療仍保留重大未滿足的醫療需要,具有改良之醫藥特 性,例如增加之活體內功能半衰期及增強或較高之活性的重組因子VIIa多肽將滿足此等需要中的一些。 In general, there are many unmet medical needs in people with coagulopathy. The use of recombinant Factor VIIa to promote clot formation emphasizes the importance of its growth as a therapeutic. However, recombinant Factor VIIa treatment still retains significant unmet medical needs, with improved pharmaceuticals Retinoids, such as increased in vivo functional half-life and enhanced or higher activity, will satisfy some of these needs.

本發明提供經設計以具有改良之醫藥特性之因子VII多肽。在一個廣泛態樣中,本發明係關於相比於人類野生型因子VIIa展示增加之活體內功能半衰期之因子VII多肽。在另一廣泛態樣中,本發明係關於相比於人類野生型因子VIIa具有增強之活性之因子VII多肽。在另一廣泛態樣中,本發明係關於藉由內源性血漿抑制劑,特定言之抗凝血酶而展現相比於人類野生型因子VIIa經增加的對不活化之抗性之因子VII多肽。 The present invention provides Factor VII polypeptides designed to have improved pharmaceutical properties. In one broad aspect, the invention relates to a Factor VII polypeptide that exhibits an increased in vivo functional half-life compared to human wild-type Factor Vila. In another broad aspect, the invention relates to a Factor VII polypeptide having enhanced activity compared to human wild-type Factor Vila. In another broad aspect, the invention relates to an agent that exhibits increased resistance to inactivation compared to human wild-type Factor VIIa by an endogenous plasma inhibitor, specifically antithrombin. Peptide.

本文提供具有增加之活體內功能半衰期之因子VII多肽,其包含賦予對於抗凝血酶不活化之抗性及增強之蛋白分解活性或蛋白分解活性之極小損失或無損失之突變組合。在本發明之尤其令人感興趣之態樣中,因子VII多肽耦合至一或多個「半衰期延長部分」以增加活體內功能半衰期。 Provided herein are Factor VII polypeptides having an increased in vivo functional half-life comprising a combination of mutations that confer minimal or no loss of resistance to antithrombin inactivation and enhanced proteolytic or proteolytic activity. In a particularly interesting aspect of the invention, the Factor VII polypeptide is coupled to one or more "half-life extending portions" to increase in vivo functional half-life.

在一個態樣中,本發明係關於包含兩個或兩個以上相對於人類因子VII之胺基酸序列(SEQ ID NO:1)之取代之因子VII多肽,其中T293藉由Lys(K)、Arg(R)、Tyr(Y)或Phe(F)置換且L288藉由Phe(F)、Tyr(Y)、Asn(N)或Ala(A)置換及/或W201藉由Arg(R)、Met(M)或Lys(K)置換及/或K337藉由Ala(A)或Gly(G)置換。 In one aspect, the invention relates to a Factor VII polypeptide comprising two or more substitutions relative to the amino acid sequence of human Factor VII (SEQ ID NO: 1), wherein T293 is by Lys (K), Arg(R), Tyr(Y) or Phe(F) substitution and L288 is replaced by Phe(F), Tyr(Y), Asn(N) or Ala(A) and/or W201 by Arg(R), Met (M) or Lys (K) substitutions and / or K337 substitution by Ala (A) or Gly (G).

本發明之因子VII多肽可包含藉由Lys(K)置換T293及藉由Phe(F)置換L288。因子VII多肽可包含藉由Lys(K)置換T293及藉由Tyr(Y)置換L288。因子VII多肽可包含藉由Arg(R)置換T293及藉由Phe(F)置換 L288。因子VII多肽可包含藉由Arg(R)置換T293及藉由Tyr(Y)置換L288。因子VII多肽可包含或可進一步包含藉由Ala(A)置換K337。因子VII多肽可包含藉由Lys(K)置換T293及藉由Arg(R)置換W201。 The Factor VII polypeptide of the present invention may comprise a substitution of T293 by Lys (K) and L288 by Phe (F). The Factor VII polypeptide may comprise a substitution of T293 by Lys (K) and L288 by Tyr (Y). Factor VII polypeptide may comprise replacing T293 by Arg(R) and replacing by Phe(F) L288. The Factor VII polypeptide may comprise a substitution of T293 by Arg (R) and a substitution of L288 by Tyr (Y). The Factor VII polypeptide may comprise or may further comprise a substitution of K337 by Ala (A). The Factor VII polypeptide may comprise a substitution of T293 by Lys (K) and a substitution of W201 by Arg (R).

在一個令人感興趣的具體實例中,本發明係關於與至少一個半衰期延長部分耦合之因子VII多肽。 In an interesting embodiment, the invention relates to a Factor VII polypeptide coupled to at least one half-life extending moiety.

在另一態樣中,本發明係關於製造本發明之因子VII多肽之方法。 In another aspect, the invention relates to a method of making a Factor VII polypeptide of the invention.

在另一態樣中,本發明係關於包含本發明之因子VII多肽之醫藥組成物。 In another aspect, the invention relates to a pharmaceutical composition comprising a Factor VII polypeptide of the invention.

本發明之一般目標為改良在患有凝血病之人類中當前可供使用之治療選擇及獲得具有改良之治療效用之因子VII多肽。 A general object of the present invention is to improve the currently available therapeutic options in humans with coagulopathy and to obtain a Factor VII polypeptide with improved therapeutic utility.

本發明具有之一個目標為獲得具有延長之活體內功能半衰期,同時維持醫藥學上可接受之蛋白分解活性之因子VII多肽。為達成此目標,本發明之因子VII多肽包含藉由血漿抑制劑抗凝血酶對不活化賦予減小之易感性,同時實質上保持蛋白分解活性之突變組合;在尤其令人感興趣的本發明之具體實例中,因子VII多肽亦耦合至一或多個「半衰期延長部分」。 One object of the present invention is to obtain a Factor VII polypeptide having an extended in vivo functional half-life while maintaining pharmaceutically acceptable proteolytic activity. To achieve this goal, the Factor VII polypeptide of the present invention comprises a combination of mutations which confer reduced susceptibility to inactivation by plasma inhibitor antithrombin while substantially maintaining proteolytic activity; In a specific embodiment of the invention, the Factor VII polypeptide is also coupled to one or more "half-life extending portions".

藉由本發明之經修飾因子VII多肽之醫療提供相較於當前可供使用之治療方案之多種優勢,諸如在注射之間的較長持續時間、較低劑量、更便利投藥及在注射之間經潛在改良之止血保護。 The medical provision of the modified Factor VII polypeptide of the present invention provides a number of advantages over currently available treatment regimens, such as longer durations between injections, lower doses, more convenient administration, and between injections. Potentially improved hemostasis protection.

圖1顯示來自不同物種之FVIIa蛋白酶域之胺基酸序列比對。 Figure 1 shows an amino acid sequence alignment of FVIIa protease domains from different species.

圖2顯示在試管內抗凝血酶反應性與FVIIa抗凝血酶錯合物之活體內積聚之間的相關性。 Figure 2 shows the correlation between antithrombin reactivity in vitro and in vivo accumulation of FVIIa antithrombin complex.

圖3顯示相比於FVIIa WT中之位置201處之色胺酸之構形的FVIIa變異體W201RT293Y雙突變體中之位置201處之精胺酸之構形。 Figure 3 shows the configuration of arginine at position 201 in the FVIIa variant W201 RT293Y double mutant of the configuration of tryptophan at position 201 in FVIIa WT.

圖4顯示來自FVIIa變異體W201R T293Y雙突變體之位置293處之酪胺酸與抗凝血酶之間的相互作用之假想模式。此基於以棒狀圖示顯示的抗凝血酶與FVIIa變異體W201R T293Y雙突變體之間的錯合物之理論模式。抗凝血酶胺基酸以前綴「AT」描繪;而FVIIa胺基酸以前綴「FVIIa」描繪。 Figure 4 shows a hypothetical pattern of the interaction between tyrosine and antithrombin at position 293 of the FVIIa variant W201R T293Y double mutant. This is based on a theoretical model of the complex between the antithrombin and the FVIIa variant W201R T293Y double mutant shown in a bar graph. The anti-thrombin amino acid is depicted by the prefix "AT"; while the FVIIa amino acid is depicted by the prefix "FVIIa".

圖5:(A)肝素前體(heparosan)及(B)在還原端具有順丁烯二醯亞胺官能基之肝素前體聚合物之結構。 Figure 5: (A) Heparin precursor and (B) structure of a heparin precursor polymer having a maleimide functional group at the reducing end.

圖6:藉由SDS-PAGE之共軛物純度之評估。(A)最終FVIIa共軛物之SDS-PAGE分析。凝膠負載有HiMark HMW標準物(泳道1);FVIIa(泳道2);13k-HEP-[C]-FVIIa(泳道3);27k-HEP-[C]-FVIIa(泳道4);40k-HEP-[C]-FVIIa(泳道5);52k-HEP-[C]-FVIIa(泳道6);60k-HEP-[C]-FVIIa(泳道7);65k-HEP-[C]-FVIIa(泳道8);108k-HEP-[C]-FVIIa(泳道9)及157k-HEP-[C]-FVIIa407C(泳道10)。(B)糖共軛52k-HEP-[N]-FVIIa之SDS-PAGE。凝膠負載有HiMark HMW標準物(泳道1)、ST3Gal3(泳道2)、FVIIa(泳道3)、去唾液酸基(asialo)FVIIa(泳道4)及52k-HEP-[N]-FVIIa(泳道5)。[N]-表示肝素前體附接至N-聚糖之因子共軛物。[C]-表示肝素前體附接至半胱胺酸殘基之因子共軛物。 Figure 6: Evaluation of the purity of the conjugate by SDS-PAGE. (A) SDS-PAGE analysis of the final FVIIa conjugate. The gel was loaded with HiMark HMW standards (lane 1); FVIIa (lane 2); 13k-HEP-[C]-FVIIa (lane 3); 27k-HEP-[C]-FVIIa (lane 4); 40k-HEP -[C]-FVIIa (lane 5); 52k-HEP-[C]-FVIIa (lane 6); 60k-HEP-[C]-FVIIa (lane 7); 65k-HEP-[C]-FVIIa (lane) 8); 108k-HEP-[C]-FVIIa (lane 9) and 157k-HEP-[C]-FVIIa407C (lane 10). (B) SDS-PAGE of sugar conjugated 52k-HEP-[N]-FVIIa. The gel was loaded with HiMark HMW standards (lane 1), ST3Gal3 (lane 2), FVIIa (lane 3), asialic FVIIa (lane 4) and 52k-HEP-[N]-FVIIa (lane 5) ). [N]- represents a factor conjugate in which a heparin precursor is attached to an N-glycan. [C]- represents a factor conjugate in which a heparin precursor is attached to a cysteine residue.

圖7:肝素前體共軛物及糖聚乙二醇化FVIIa參考物之FVIIa凝塊活性 位準之分析。 Figure 7: FVIIa clot activity of heparin precursor conjugate and glycoPEGylated FVIIa reference Analysis of the level.

圖8:肝素前體共軛物及糖聚乙二醇化FVIIa參考物之蛋白分解活性。 Figure 8: Proteolytic activity of heparin precursor conjugates and glycoPEGylated FVIIa references.

圖9:史泊格多利大鼠(Sprague Dawley rat)中之PK結果(LOCI)。未經修飾FVIIa(2個研究)、13k-HEP-[C]-FVIIa407C、27k-HEP-[C]-FVIIa407C、40k-HEP-[C]-FVIIa407C、52k-HEP-[C]-FVIIa407C、65k-HEP-[C]-FVIIa407C、108k-HEP-[C]-FVIIa407C及157k-HEP-[C]-FVIIa407C、糖共軛52k-HEP-[N]-FVIIa及參考分子(40kDa-PEG-[N]-FVIIa(2個研究)及40kDa-PEG-[C]-FVIIa407C)之比較。以半對數曲線中之平均值±SD(n=3-6)形式顯示資料。[N]-表示肝素前體附接至N-聚糖之因子共軛物。[C]-表示肝素前體附接至半胱胺酸殘基之因子共軛物。 Figure 9: PK results (LOCI) in Sprague Dawley rats. Unmodified FVIIa (2 studies), 13k-HEP-[C]-FVIIa407C, 27k-HEP-[C]-FVIIa407C, 40k-HEP-[C]-FVIIa407C, 52k-HEP-[C]-FVIIa407C, 65k-HEP-[C]-FVIIa407C, 108k-HEP-[C]-FVIIa407C and 157k-HEP-[C]-FVIIa407C, sugar conjugate 52k-HEP-[N]-FVIIa and reference molecule (40kDa-PEG- Comparison of [N]-FVIIa (2 studies) and 40 kDa-PEG-[C]-FVIIa407C). Data were presented as mean ± SD (n = 3-6) in a semi-logarithmic curve. [N]- represents a factor conjugate in which a heparin precursor is attached to an N-glycan. [C]- represents a factor conjugate in which a heparin precursor is attached to a cysteine residue.

圖10:史泊格多利大鼠中之PK結果(凝塊活性)。未經修飾FVIIa(2個研究)、13k-HEP-[C]-FVIIa407C、27k-HEP-[C]-FVIIa407C、40k-HEP-[C]-FVIIa407C、52k-HEP-[C]-FVIIa407C、65k-HEP-[C]-FVIIa407C、108k-HEP-[C]-FVIIa407C及157k-HEP-[C]-FVIIa407C、糖共軛52k-HEP-[N]-FVIIa及參考分子(40kDa-PEG-[N]-FVIIa(2個研究)及40kDa-PEG-[C]-FVIIa407C)之比較。在半對數曲線中顯示資料。[N]-表示肝素前體附接至N-聚糖之因子共軛物。[C]-表示肝素前體附接至半胱胺酸殘基之因子共軛物。 Figure 10: PK results (clot activity) in S. Pigerdog rats. Unmodified FVIIa (2 studies), 13k-HEP-[C]-FVIIa407C, 27k-HEP-[C]-FVIIa407C, 40k-HEP-[C]-FVIIa407C, 52k-HEP-[C]-FVIIa407C, 65k-HEP-[C]-FVIIa407C, 108k-HEP-[C]-FVIIa407C and 157k-HEP-[C]-FVIIa407C, sugar conjugate 52k-HEP-[N]-FVIIa and reference molecule (40kDa-PEG- Comparison of [N]-FVIIa (2 studies) and 40 kDa-PEG-[C]-FVIIa407C). Display data in a semi-logarithmic curve. [N]- represents a factor conjugate in which a heparin precursor is attached to an N-glycan. [C]- represents a factor conjugate in which a heparin precursor is attached to a cysteine residue.

圖11:多種HEP-[C]-FVIIa407C共軛物之HEP尺寸與平均滯留時間(MRT)之間的關係。相對於共軛物之肝素前體聚合物尺寸標繪來自PK研究之MRT值。曲線表示非共軛FVIIa、13k-HEP-[C]-FVIIa407C、27k-HEP-[C]-FVIIa407C、40k-HEP-[C]-FVIIa407C、52k-HEP-[C]-FVIIa407C、 65k-HEP-[C]-FVIIa407C、108k-HEP-[C]-FVIIa407C及157k-HEP-[C]-FVIIa407C之值。使用Phoenix WinNonlin 6.0(Pharsight公司)藉由非室方法計算MRT(LOCI)。[N]-表示肝素前體附接至N-聚糖之因子共軛物。[C]-表示肝素前體附接至半胱胺酸殘基之因子共軛物。 Figure 11: Relationship between HEP size and mean residence time (MRT) for various HEP-[C]-FVIIa407C conjugates. The MRT values from the PK study were plotted against the heparin precursor polymer size of the conjugate. The curves indicate non-conjugated FVIIa, 13k-HEP-[C]-FVIIa407C, 27k-HEP-[C]-FVIIa407C, 40k-HEP-[C]-FVIIa407C, 52k-HEP-[C]-FVIIa407C, The values of 65k-HEP-[C]-FVIIa407C, 108k-HEP-[C]-FVIIa407C and 157k-HEP-[C]-FVIIa407C. MRT (LOCI) was calculated by a non-compartmental method using Phoenix WinNonlin 6.0 (Pharsight). [N]- represents a factor conjugate in which a heparin precursor is attached to an N-glycan. [C]- represents a factor conjugate in which a heparin precursor is attached to a cysteine residue.

圖12:甘胺醯基唾液酸胞嘧啶核苷單磷酸(GSC)經苯甲醛基團之官能化。GSC藉由4-甲醯基苯甲酸醯化且隨後藉由還原胺化反應與肝素前體(HEP)-胺反應。 Figure 12: Functionalization of glycidyl sialic acid cytidine monophosphate (GSC) via a benzaldehyde group. GSC is deuterated by 4-mercaptobenzoic acid and then reacted with heparin precursor (HEP)-amine by reductive amination.

圖13:肝素前體(HEP)聚合物經苯甲醛基團之官能化及在還原胺化反應中與甘胺醯基唾液酸胞嘧啶核苷單磷酸(GSC)之後續反應。 Figure 13: Functionalization of a heparin precursor (HEP) polymer via a benzaldehyde group and subsequent reaction with glycidyl sialic acid cytidine monophosphate (GSC) in a reductive amination reaction.

圖14:甘胺醯基唾液酸胞嘧啶核苷單磷酸(GSC)經硫基之官能化及與順丁烯二醯亞胺官能化肝素前體(HEP)聚合物之後續反應。 Figure 14: Functionalization of glycosyl sialic acid cytidine monophosphate (GSC) via a thio group and subsequent reaction with a maleimide functionalized heparin precursor (HEP) polymer.

圖15:肝素前體(HEP)-甘胺醯基唾液酸胞嘧啶核苷單磷酸(GSC)。 Figure 15: Heparin precursor (HEP)-glycosyl sialic acid cytidine monophosphate (GSC).

圖16:史泊格多利大鼠中之PK結果(LOCI)。在半對數曲線中比較2×20K-HEP-[N]-FVIIa;1×40K-HEP-[N]-FVIIa及1×40k-PEG-[N]-FVIIa。以平均值±SD(n=3-6)形式顯示資料。 Figure 16: PK results (LOCI) in Spogdogi rats. 2×20K-HEP-[N]-FVIIa; 1×40K-HEP-[N]-FVIIa and 1×40k-PEG-[N]-FVIIa were compared in a semi-logarithmic curve. Data were displayed as mean ± SD (n = 3-6).

圖17:史泊格多利大鼠中之PK結果(凝塊活性)。在半對數曲線中比較2×20K-HEP-[N]-FVIIa;1×40K-HEP-[N]-FVIIa及1×40k-PEG-[N]-FVIIa。 Figure 17: PK results (clot activity) in Spogdogi rats. 2×20K-HEP-[N]-FVIIa; 1×40K-HEP-[N]-FVIIa and 1×40k-PEG-[N]-FVIIa were compared in a semi-logarithmic curve.

圖18:去唾液酸基FVIIa醣蛋白與HEP-GSC在ST3GalIII唾液酸轉移酶存在下反應之反應流程。 Figure 18: Reaction scheme for the reaction of desialyl FVIIa glycoprotein with HEP-GSC in the presence of ST3GalIII sialyltransferase.

本發明係關於展現改良之醫藥特性之因子VII多肽之設計及用途。 The present invention relates to the design and use of Factor VII polypeptides that exhibit improved pharmaceutical properties.

在一個態樣中,本發明係關於展現增加之活體內功能半衰期、藉由血漿抑制劑抗凝血酶對不活化減小之易感性及增強或保留之蛋白分解活性之因子VII多肽之設計及用途。本發明之發明人已發現在人類因子VII中以及共軛至半衰期延長部分之突變之特定組合賦予上述特性。本發明之因子VII多肽在血液中具有延長之功能半衰期,其在治療上適用於需要促凝活性持續時間較長之情況。該等因子VII多肽包含藉由Lys(K)、Arg(R)、Tyr(Y)或Phe(F)置換T293。在此態樣中,本發明係關於一種包含兩個或兩個以上相對於人類因子VII之胺基酸序列(SEQ ID NO:1)之取代之因子VII多肽,其中T293藉由Lys(K)、Arg(R)、Tyr(Y)或Phe(F)置換且L288藉由Phe(F)、Tyr(Y)、Asn(N)、Ala(A)或Trp(W)置換。本發明亦關於一種包含兩個或兩個以上相對於人類因子VII之胺基酸序列(SEQ ID NO:1)之取代之因子VII多肽,其中T293藉由Lys(K)、Arg(R)、Tyr(Y)或Phe(F)置換且W201藉由Arg(R)、Met(M)或Lys(K)置換。此外,本發明係關於一種包含兩個或兩個以上相對於人類因子VII之胺基酸序列(SEQ ID NO:1)之取代之因子VII多肽,其中T293藉由Lys(K)、Arg(R)、Tyr(Y)或Phe(F)置換且K337藉由Ala(A)或Gly(G)置換。視需要,本發明之因子VII多肽可進一步包含藉由Lys(K)、Arg(R)或Asn(N)置換Q176。視需要,本發明之因子VII多肽可進一步包含藉由Asn(N)置換Q286。 In one aspect, the invention relates to the design of a Factor VII polypeptide exhibiting increased in vivo functional half-life, reduced susceptibility to inactivation by plasma inhibitor antithrombin, and enhanced or retained proteolytic activity. use. The inventors of the present invention have found that the specific combination of mutations in human Factor VII and conjugated to half-life extending portions confers the above characteristics. The Factor VII polypeptide of the present invention has an extended functional half-life in the blood, which is therapeutically suitable for situations in which procoagulant activity is required to last for a long period of time. The Factor VII polypeptides comprise a substitution of T293 by Lys (K), Arg (R), Tyr (Y) or Phe (F). In this aspect, the invention relates to a Factor VII polypeptide comprising two or more substitutions relative to the amino acid sequence of human Factor VII (SEQ ID NO: 1), wherein T293 is by Lys (K) , Arg (R), Tyr (Y) or Phe (F) substitution and L288 is replaced by Phe (F), Tyr (Y), Asn (N), Ala (A) or Trp (W). The invention also relates to a Factor VII polypeptide comprising two or more substitutions relative to the amino acid sequence of human Factor VII (SEQ ID NO: 1), wherein T293 is by Lys (K), Arg (R), Tyr (Y) or Phe (F) substitution and W201 substitution by Arg (R), Met (M) or Lys (K). Furthermore, the present invention relates to a Factor VII polypeptide comprising two or more substitutions relative to the amino acid sequence of human Factor VII (SEQ ID NO: 1), wherein T293 is by Lys (K), Arg (R) ), Tyr (Y) or Phe (F) substitution and K337 substitution by Ala (A) or Gly (G). The Factor VII polypeptide of the present invention may further comprise, if desired, replacing Q176 by Lys (K), Arg (R) or Asn (N). The Factor VII polypeptide of the present invention may further comprise replacing Q286 by Asn(N), as needed.

在另一態樣中,本發明係關於展現增強之蛋白分解活性之因子VII多肽之設計及用途。本發明之發明人已發現在位置L288及/或W201處之人類因子VII中之特異性突變賦予因子VII多肽增強之蛋白分解活性。在此態樣中,本發明係關於一種包含一或多個相對於人類因子VII之胺基酸 序列(SEQ ID NO:1)之取代之因子VII多肽,其中L288藉由Phe(F)、Tyr(Y)、Asn(N)、Ala(A)或Trp(W)置換,其限制條件為多肽不具有以下取代對:L288N/R290S或L288N/R290T。另外,根據此態樣,本發明係關於一種包含一或多個相對於人類因子VII之胺基酸序列(SEQ ID NO:1)之取代之因子VII多肽,其特徵在於其中一個取代為藉由Arg(R)、Met(M)或Lys(K)置換W201時。 In another aspect, the invention relates to the design and use of a Factor VII polypeptide exhibiting enhanced proteolytic activity. The inventors of the present invention have found that specific mutations in human Factor VII at position L288 and/or W201 confer enhanced proteolytic activity of the Factor VII polypeptide. In this aspect, the invention relates to an amino acid comprising one or more of human factor VII A substituted Factor VII polypeptide of the sequence (SEQ ID NO: 1) wherein L288 is replaced by Phe (F), Tyr (Y), Asn (N), Ala (A) or Trp (W), the restriction is polypeptide Does not have the following substitution pairs: L288N/R290S or L288N/R290T. Further, according to this aspect, the present invention relates to a Factor VII polypeptide comprising one or more substitutions with respect to the amino acid sequence of human Factor VII (SEQ ID NO: 1), characterized in that one of the substitutions is by When Arg(R), Met(M) or Lys(K) replaces W201.

因子VII Factor VII

凝血因子VII(因子VII)為主要產生於肝臟中之醣蛋白。成熟蛋白由藉由SEQ ID NO:1定義之406個胺基酸殘基(亦揭示於例如美國專利第4784950號中)組成且由四個域組成。存在N端γ-羧基麩胺酸(Gla)富集域,接著為兩個表皮生長因子(EGF)樣域及C端胰蛋白酶樣絲胺酸蛋白酶域。因子VII在血漿中循環,主要呈單鏈分子形式。因子VII藉由在殘基Arg152與Ile153之間的裂解活化為因子VIIa,產生藉由二硫鍵結合在一起之雙鏈蛋白。輕鏈含有Gla及EGF樣域,而重鏈為蛋白酶域。根據因子VII中之SEQ ID NO:1之特異性Glu(E)殘基,亦即E6、E7、E14、E16、E19、E20、E25、E26、E29及E35可經轉譯後γ-羧化。Gla域中之γ-羧基麩胺酸殘基對於許多鈣離子之配位為所需的,其將Gla域維持於調節與磷脂膜之相互作用之構形。 Factor VII (Factor VII) is a glycoprotein mainly produced in the liver. The mature protein consists of 406 amino acid residues defined by SEQ ID NO: 1 (also disclosed, for example, in U.S. Patent No. 4,784,950) and consists of four domains. There is an N-terminal gamma-carboxy glutamic acid (Gla) enrichment domain followed by two epidermal growth factor (EGF)-like domains and a C-terminal trypsin-like serine protease domain. Factor VII circulates in plasma, mainly in the form of single-stranded molecules. Factor VII is activated as Factor VIIa by cleavage between residues Arg152 and Ile153, resulting in a double-stranded protein joined together by disulfide bonds. The light chain contains the Gla and EGF-like domains, while the heavy chain is the protease domain. The specific Glu(E) residues according to SEQ ID NO: 1 in Factor VII, ie, E6, E7, E14, E16, E19, E20, E25, E26, E29 and E35, can be translated for gamma-carboxylation. The coordination of the gamma-carboxy glutamic acid residues in the gla domain for many calcium ions is maintained by maintaining the Gla domain in a configuration that modulates interaction with the phospholipid membrane.

本文中之術語FVII及「因子VII」係指未裂解單鏈酶原因子VII以及裂解、雙鏈且因此活化之蛋白酶因子VIIa。「因子VII」包括可能存在且彼此不同之因子VII之天然對偶基因變異體。人類野生型因子VII序列提供於SEQ ID NO:1中。本文中之術語「因子VII多肽」係指因子VII(如 本文所述)之未裂解單鏈酶原多肽變異體,以及裂解、雙鏈且因此活化之蛋白酶。 The terms FVII and "Factor VII" herein refer to the uncleaved single-chain enzyme factor VII and the cleavage, double-stranded and thus activated protease factor VIIa. "Factor VII" includes natural dual gene variants of Factor VII that may be present and differ from each other. The human wild-type Factor VII sequence is provided in SEQ ID NO: 1. The term "Factor VII polypeptide" as used herein refers to Factor VII (eg The uncleaved single-chain zymogen polypeptide variants described herein, as well as cleavable, double-stranded and thus activated proteases.

因子VII及因子VII多肽可為使用熟知生產及純化方法來源於血漿或以重組方式產生的。糖基化、γ-羧化及其他轉譯後修飾之程度及位置可取決於所選宿主細胞及其生長條件。 Factor VII and Factor VII polypeptides can be derived from plasma or produced recombinantly using well known methods of production and purification. The extent and location of glycosylation, gamma-carboxylation, and other post-translational modifications may depend on the host cell chosen and its growth conditions.

因子VII多肽 Factor VII polypeptide

術語「因子VII」或「FVII」表示因子VII多肽。 The term "Factor VII" or "FVII" means a Factor VII polypeptide.

術語「因子VII多肽」涵蓋野生型因子VII分子以及因子VII變異體、因子VII共軛物及已經化學修飾之因子VII。該等變異體、共軛物及化學修飾因子VII可展現與野生型人類因子VIIa實質上相同或相對於野生型人類因子VIIa經改良之活性。 The term "Factor VII polypeptide" encompasses both wild-type Factor VII molecules as well as Factor VII variants, Factor VII conjugates, and Factor VII that have been chemically modified. Such variants, conjugates and chemically modified Factor VII may exhibit substantially the same activity as wild type human Factor Vila or relative to wild type human Factor VIIa.

如本文所用之術語因子VII多肽之「活性」係指藉由野生型人類因子VII展現之任何活性,且包括(但不限於)凝血或凝聚活性、促凝活性、影響因子X活化或因子IX活化之蛋白分解或催化活性;結合TF、因子X或因子IX之能力;及/或結合至磷脂之能力。可使用公認之分析,例如藉由量測試管內或活體內凝血試管內或活體內評估此等活性。該等分析之結果表明多肽展現可與活體內多肽活性相關之活性,其中活體內活性可稱為生物活性。熟習此項技術者已知測定因子VII多肽活性之分析。評估FVII多肽活性之例示性分析包括試管內蛋白分解分析,諸如在下文實施例中所述之彼等分析。 The term "activity" of a Factor VII polypeptide as used herein refers to any activity exhibited by wild-type human Factor VII and includes, but is not limited to, coagulation or coagulation activity, procoagulant activity, effector X activation or factor IX activation. Proteolytic or catalytic activity; ability to bind TF, Factor X or Factor IX; and/or ability to bind to phospholipids. Acceptable assays can be used, for example, by measuring the activity in a test tube or in vivo in a coagulation tube or in vivo. The results of these analyses indicate that the polypeptide exhibits activity that is associated with the activity of the polypeptide in vivo, wherein in vivo activity can be referred to as biological activity. Analysis of the activity of Factor VII polypeptides is known to those skilled in the art. Exemplary assays for assessing FVII polypeptide activity include in vitro proteolytic assays, such as those described in the Examples below.

如本文所用之術語「增強或保留之活性」係指相比於野生型人類因子VIIa展現實質上相同或增加之活性之因子VIIa多肽,例如i)在 存在及/或不存在TF之情況下相比於重組野生型人類因子VIIa實質上相同或增加之蛋白分解活性;ii)相比於重組野生型人類因子VIIa具有實質上相同或增加之TF親和力之因子VII多肽;iii)對於活化血小板具有實質上相同或增加之親和力之因子VII多肽;或iv)相比於重組野生型人類因子VIIa具有實質上相同或增加之結合至因子X或因子IX之親和力/能力之因子VII多肽。舉例而言,保留之活性意謂相比於野生型人類因子VIIa,保留之活性量為或約為活性之10%、20%、30%、40%、50%、60%、70%、80%、90%、100%或100%以上。舉例而言,增強之活性意謂相比於野生型人類因子VIIa,保留之活性量為或約為活性之110%、120%、130%、140%、150%、160%、170%、180%、190%、200%、300%、400%、500%、1000%、3000%、5000%、10000%、30000%或30000%以上。 The term "enhanced or retained activity" as used herein refers to a Factor VIIa polypeptide that exhibits substantially the same or increased activity compared to wild-type human Factor VIIa, eg, i) Substantially the same or increased proteolytic activity compared to recombinant wild-type human Factor VIIa in the presence and/or absence of TF; ii) substantially identical or increased TF affinity compared to recombinant wild-type human Factor VIIa Factor VII polypeptide; iii) a Factor VII polypeptide having substantially the same or increased affinity for activated platelets; or iv) having substantially the same or increased binding affinity to Factor X or Factor IX as compared to recombinant wild-type human Factor VIIa / Ability Factor VII polypeptide. For example, retained activity means that the amount of activity retained is about or about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80 of activity compared to wild-type human Factor VIIa. %, 90%, 100% or more. For example, enhanced activity means that the amount of activity retained is about or about 110%, 120%, 130%, 140%, 150%, 160%, 170%, 180 of activity compared to wild-type human Factor VIIa. %, 190%, 200%, 300%, 400%, 500%, 1000%, 3000%, 5000%, 10000%, 30,000% or more.

如本文所用之術語「因子VII變異體」意欲指示具有序列SEQ ID NO:1之因子VII,其中親本蛋白之一或多個胺基酸已經另一天然存在之胺基酸取代及/或其中親本蛋白之一或多個胺基酸已缺失及/或其中一或多個胺基酸已插入蛋白中及/或其中一或多個胺基酸已添加至親本蛋白中。該添加可發生於親本蛋白之N端或C端或兩端。在一具體實例中,變異體與序列SEQ ID NO:1具有至少95%一致性。在另一具體實例中,變異體與序列SEQ ID NO:1具有至少80%、85%、90%、95%、96%、97%、98%或99%一致性。如本文所用,任何提及之特定位置係指SEQ ID NO:1中之對應位置。 The term "Factor VII variant" as used herein is intended to indicate a Factor VII having the sequence SEQ ID NO: 1, wherein one or more of the amino acids of the parent protein has been substituted with another naturally occurring amino acid and/or One or more amino acids of the parent protein have been deleted and/or one or more of the amino acids have been inserted into the protein and/or one or more of the amino acids have been added to the parent protein. This addition can occur at the N-terminus or C-terminus or both ends of the parent protein. In a specific example, the variant has at least 95% identity to the sequence of SEQ ID NO:1. In another embodiment, the variant has at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identity to the sequence SEQ ID NO:1. As used herein, any reference to a particular position refers to the corresponding position in SEQ ID NO: 1.

在一些實施例中,相比於野生型人類因子VIIa,本發明之因子VII變異體具有增強或保留之活性。 In some embodiments, the Factor VII variant of the invention has an enhanced or retained activity compared to wild-type human Factor VIIa.

用於本說明書中之胺基酸取代之術語為如下。第一個字母表示天然存在於SEQ ID NO:1之某一位置之胺基酸。後續數字代表在SEQ ID NO:1中之位置。第二個字母表示取代天然胺基酸之不同胺基酸。一實例為K197A-因子VII,其中在SEQ ID NO:1之位置197處之離胺酸經丙胺酸置換。 The terms used for the amino acid substitution in this specification are as follows. The first letter indicates an amino acid naturally present at a position in SEQ ID NO: 1. Subsequent numbers represent positions in SEQ ID NO: 1. The second letter indicates a different amino acid that replaces the native amino acid. An example is K197A-Factor VII wherein the amino acid at position 197 of SEQ ID NO: 1 is replaced with alanine.

在本發明上下文中,已如下文所指示地以胺基酸之三字母或單字母縮寫之習知含義使用該等縮寫。除非明確指示,否則本文中提及之胺基酸為L-胺基酸。 In the context of the present invention, such abbreviations are used in the conventional meaning of the three-letter or one-letter abbreviations of amino acids as indicated below. Unless otherwise indicated, the amino acid referred to herein is an L-amino acid.

胺基酸之縮寫:Abbreviation for amino acid:

如本文所用之術語「因子VII共軛物」意欲指示因子VII多肽,其中胺基酸中之一或多者及/或附接聚糖部分中之一或多者已經化學及/或酶促修飾,諸如藉由烷化、糖基化、醯化、酯形成、二硫鍵形成或醯胺形成。 The term "Factor VII conjugate" as used herein is intended to indicate a Factor VII polypeptide wherein one or more of the amino acids and/or one or more of the attached glycan moieties have been chemically and/or enzymatically modified. , for example by alkylation, glycosylation, deuteration, ester formation, disulfide bond formation or guanamine formation.

在一些具體實例中,本發明之因子VII共軛物展現與野生型因子VII實質上相同或相對於野生型因子VII增強之生物活性。 In some embodiments, a Factor VII conjugate of the invention exhibits substantially the same biological activity as wild-type Factor VII or is enhanced relative to wild-type Factor VII.

增強之蛋白分解活性 Enhanced proteolytic activity

本發明人已出人意料地顯示具有殘基L288及W201之某些突變之因子VII多肽展現增強之蛋白分解活性。 The inventors have surprisingly shown that certain mutant Factor VII polypeptides with residues L288 and W201 exhibit enhanced proteolytic activity.

已描述如WO02/22776中所述之因子VII變異體K337A具有增強之蛋白分解活性。亦已描述如WO03/027147中所述之因子VII變異體L305V及L305I具有較高內在活性。 The Factor VII variant K337A as described in WO 02/22776 has been described to have enhanced proteolytic activity. It has also been described that the Factor VII variants L305V and L305I as described in WO 03/027147 have a higher intrinsic activity.

可藉由如下文進一步論述之此項技術中已知之任何適合之方法測定蛋白分解活性。 Proteolytic activity can be determined by any suitable method known in the art as discussed further below.

舉例而言,增強之蛋白分解活性意謂相比於野生型人類因子VIIa,保留之活性量為或約為活性之110%、120%、130%、140%、150%、160%、170%、180%、190%、200%、300%、400%、500%、1000%、3000%、5000%、10000%、30000%或30000%以上。 For example, enhanced proteolytic activity means that the amount of activity retained is about or about 110%, 120%, 130%, 140%, 150%, 160%, 170% of activity compared to wild-type human Factor VIIa. 180%, 190%, 200%, 300%, 400%, 500%, 1000%, 3000%, 5000%, 10000%, 30,000% or more.

藉由血漿抑制劑對不活化之半衰期抗性 Resistance to half-life of inactivation by plasma inhibitors

除活體內清除率以外,活體內功能半衰期對於化合物在身體中「治療上可用」之時段具有重要性。重組人類野生型因子VIIa之循環半衰期約為2.3小時(「Summary Basis for Approval forNovoSeven©」,FDA參考號96 0597)。 In addition to in vivo clearance, in vivo functional half-life is important for the time when a compound is "therapeutic" in the body. The circulating half-life of recombinant human wild-type Factor VIIa is approximately 2.3 hours ("Summary Basis for Approval for NovoSeven©", FDA reference 96 0597).

術語「活體內功能半衰期」以其通常含義使用,亦即身體/靶器官中剩餘之因子VII多肽之生物活性在末期減少50%所需的時間,或因子VII多肽之活性為其初始值之50%之時間。活體內半衰期之替代術語包括 終末半衰期、血漿半衰期、循環半衰期(circulating half-life/circulatory half-life)及清除半衰期。可藉由此項技術中已知之適合之方法,諸如實施例17中所述之方法及Introduction to Pharmacokinetics and Pharmacodynamics:The Quantitative Basis of Drug Therapy(Thomas N.Tozer,Malcolm Rowland)中所述之彼等方法測定半衰期。 The term "in vivo functional half-life" is used in its ordinary meaning, that is, the time required for the biological activity of the remaining Factor VII polypeptide remaining in the body/target organ to be reduced by 50% at the end, or the activity of the Factor VII polypeptide is 50 of its initial value. % of the time. Alternative terms for in vivo half-life include Terminal half-life, plasma half-life, circulating half-life, and elimination half-life. Suitable methods known in the art, such as those described in Example 17, and those described in Introduction to Pharmacokinetics and Pharmacodynamics: The Quantitative Basis of Drug Therapy (Thomas N. Tozer, Malcolm Rowland) The method measures half-life.

如關於活體內功能半衰期或血漿半衰期使用之術語「增加」係用於表明多肽之相關半衰期相對於如在可比條件下測定的諸如野生型人類因子VIIa之參考分子之半衰期增加。 The term "increase" as used with respect to in vivo functional half-life or plasma half-life is used to indicate that the relative half-life of the polypeptide is increased relative to the half-life of a reference molecule such as wild-type human Factor VIIa as determined under comparable conditions.

在一些具體實例中,相對於野生型人類因子VIIa,本發明之因子VII多肽展現增加之活體內功能半衰期。舉例而言,相關半衰期可增加至少約25%,諸如至少約50%,例如至少約100%、150%、200%、500%、1000%、3000%、5000%、10 000%、30 000%或30 000%以上。 In some embodiments, the Factor VII polypeptide of the invention exhibits an increased in vivo functional half-life relative to wild-type human Factor VIIa. For example, the associated half-life can be increased by at least about 25%, such as at least about 50%, such as at least about 100%, 150%, 200%, 500%, 1000%, 3000%, 5000%, 10 000%, 30 000%. Or more than 30 000%.

儘管對於凝血級聯之生物化學及病理生理學具有詳細理解,但自循環清除個別凝血因子之機制基礎在很大程度上仍為未知的。因子VII及其活化形式因子VIIa相比於其他維生素K依賴性蛋白之酶原及酶形式之循環半衰期之顯著差異表明因子VIIa存在特定及獨特清除機制。兩種類型之途徑似乎在清除因子VIIa中可操作-一種導致消除完整蛋白,另一種藉由血漿抑制劑介導且導致蛋白分解不活化。 Despite a detailed understanding of the biochemical and pathophysiology of the coagulation cascade, the underlying mechanism of self-circulation to clear individual clotting factors remains largely unknown. A significant difference in the circulating half-life of factor VII and its activated form factor VIIa compared to the other zymogen and enzymatic forms of the vitamin K-dependent protein indicates a specific and unique clearance mechanism for factor VIIa. Two types of pathways appear to be operable in the clearance factor VIIa - one leading to the elimination of intact proteins and the other mediated by plasma inhibitors and leading to inactivation of proteolysis.

抗凝血酶III(抗凝血酶,AT)為豐富血漿抑制劑且靶向包括因子VIIa之凝血系統之大部分蛋白酶。其以微莫耳濃度存在於血漿中且屬於藉由自殺受質機制不可逆地結合標靶蛋白酶且使其不活化之絲胺酸蛋白酶抑制劑家族之絲胺酸蛋白酶抑制劑。藉由抗凝血酶之抑制似乎構成在 靜脈內投藥之後活體內重組因子VIIa之主要清除途徑。在血友病患者中之重組因子VIIa之藥物動力學之近期研究中,總清除之約60%可歸因於此途徑(Agerso等人(2011)J Thromb Haemost,9,333-338)。 Antithrombin III (antithrombin, AT) is a rich plasma inhibitor and targets most proteases of the coagulation system including Factor VIIa. It is present in plasma at a micromolar concentration and is a serine protease inhibitor of the family of serine protease inhibitors that irreversibly binds to the target protease by suicidal stressor mechanisms and renders it inactive. Inhibition by antithrombin appears to constitute the primary clearance pathway for recombinant Factor VIIa in vivo following intravenous administration. In a recent study of the pharmacokinetics of recombinant Factor VIIa in hemophilia patients, approximately 60% of the total clearance is attributable to this pathway (Agerso et al. (2011) J Thromb Haemost , 9, 333-338).

在一些具體實例中,相對於野生型人類因子VIIa,本發明之因子VII多肽藉由內源性血漿抑制劑,特定言之抗凝血酶展現對不活化之增加之抗性。 In some embodiments, the Factor VII polypeptide of the invention exhibits resistance to an increase in inactivation by an endogenous plasma inhibitor, in particular an antithrombin, relative to wild-type human Factor VIIa.

本發明之發明人已發現藉由組合上文所提及之兩組突變,亦即賦予增加之AT抗性之突變及賦予增強之蛋白分解活性之突變,達成增加或保留之活性,同時維持對抑制劑不活化之高抗性。亦即,包含突變組合之本發明之因子VII多肽展現對於抗凝血酶不活化之增加之抗性以及實質上保留之蛋白分解活性。當本發明之因子VII多肽與一或多個半衰期延長部分共軛時,達成對半衰期延長出人意料地改良的效果。鑒於此等特性,本發明之該等共軛因子VII多肽展現增加之循環半衰期,同時維持醫藥學上可接受之蛋白分解活性。因此,該共軛因子VII多肽之較低劑量對於在作用位點獲得在功能上充足之濃度可為所需的且因此將可能向具有出血事件或需要增強正常止血系統之個體投予較低劑量及/或以較低頻率投藥。 The inventors of the present invention have found that by combining the two sets of mutations mentioned above, i.e., mutations conferring increased AT resistance and mutations conferring enhanced proteolytic activity, an increase or retention activity is achieved while maintaining The inhibitor is not activated with high resistance. That is, the Factor VII polypeptide of the present invention comprising a combination of mutations exhibits increased resistance to anti-thrombin inactivation and substantially retained proteolytic activity. When the Factor VII polypeptide of the present invention is conjugated to one or more half-life extending moieties, an unexpectedly improved effect on prolonged half-life is achieved. In view of these characteristics, the conjugated Factor VII polypeptides of the present invention exhibit an increased circulating half-life while maintaining pharmaceutically acceptable proteolytic activity. Thus, a lower dose of the conjugated Factor VII polypeptide may be desirable to achieve a functionally sufficient concentration at the site of action and thus will likely be administered to a lower dose of a subject having a bleeding event or requiring an enhanced normal hemostatic system. And / or at a lower frequency.

其他修飾 Other modifications

本發明之因子VII多肽可包含其他修飾,特定言之賦予因子VII多肽額外有利特性之其他修飾。因此,除上文所提及之胺基酸取代以外,本發明之因子VII多肽可例如包含其他胺基酸修飾,例如另一胺基酸取代。在一個該具體實例中,本發明之因子VII多肽具有如例如WO2002077218中描述的選自組R396C、Q250C及407C之另一突變或添加物。 The Factor VII polypeptides of the invention may comprise additional modifications, in particular other modifications that confer additional advantageous properties to the Factor VII polypeptide. Thus, in addition to the amino acid substitutions mentioned above, the Factor VII polypeptides of the invention may, for example, comprise other amino acid modifications, such as another amino acid substitution. In one such example, the Factor VII polypeptide of the invention has another mutation or addition selected from the group consisting of R396C, Q250C and 407C as described, for example, in WO2002077218.

本發明之因子VII多肽可包含在或不在因子VII多肽之一級序列中之其他修飾。其他修飾包括(但不限於)碳水化合物部分之添加物、半衰期延長部分之添加物,例如PEG部分、Fc域等之添加物。舉例而言,可使得該等其他修飾增加因子VII多肽之穩定性或半衰期。 The Factor VII polypeptides of the invention may or may not be included in other modifications of the sequence of the Factor VII polypeptide. Other modifications include, but are not limited to, additions to the carbohydrate moiety, additions to the half-life extending moiety, such as additions to the PEG moiety, the Fc domain, and the like. For example, such other modifications can be made to increase the stability or half-life of the Factor VII polypeptide.

半衰期延長部分或基團 Half-life extension or group

術語「半衰期延長部分」在本文中可互換使用且理解為係指一或多個連接至諸如-SH、-OH、-COOH、-CONH2、-NH2之一或多個胺基酸位點鏈官能基及/或一或多個N-及/或O-聚糖結構且可在共軛/耦合於蛋白/多肽時增加此等蛋白/多肽之活體內功能半衰期之化學基團。 The term "half-life extending moiety" is used interchangeably herein and is understood to mean one or more linked to a chain functional group such as -SH, -OH, -COOH, -CONH2, -NH2 or a plurality of amino acid sites. A chemical group that increases the in vivo functional half-life of such proteins/polypeptides when conjugated/coupled to a protein/polypeptide, and/or one or more N- and/or O-glycan structures.

可藉由如下文(實施例17)進一步論述之此項技術中已知任何適合之方法測定活體內功能半衰期。 The in vivo functional half-life can be determined by any suitable method known in the art as further discussed below (Example 17).

半衰期延長部分之實例包括:生物相容性脂肪酸及其衍生物、例如羥乙基澱粉(HES)之羥烷基澱粉(HAS)、聚乙二醇(PEG)、聚(Glyx-Sery)n(HAP)、玻尿酸(HA)、肝素前體聚合物(HEP)、基於磷酸膽鹼之聚合物(PC聚合物)、Fleximer、聚葡萄糖、聚-唾液酸(PSA)、Fc域、運鐵蛋白、白蛋白、彈性蛋白樣肽(ELP)、XTEN聚合物、PAS聚合物、PA聚合物、白蛋白結合肽、CTP肽、FcRn結合肽及其任何組合。 Examples of half-life extending moieties include: biocompatible fatty acids and derivatives thereof, such as hydroxyethyl starch (HES) hydroxyalkyl starch (HAS), polyethylene glycol (PEG), poly (Glyx-Sery) n ( HAP), hyaluronic acid (HA), heparin precursor polymer (HEP), phosphocholine-based polymer (PC polymer), Fleximer, polydextrose, poly-sialic acid (PSA), Fc domain, transferrin, Albumin, elastin-like peptide (ELP), XTEN polymer, PAS polymer, PA polymer, albumin binding peptide, CTP peptide, FcRn binding peptide, and any combination thereof.

在尤其令人感興趣的具體實例中,本發明之因子VII多肽與一或多個半衰期延長部分耦合。 In a particular embodiment of particular interest, the Factor VII polypeptide of the invention is coupled to one or more half-life extending moieties.

在一具體實例中,本發明之半胱胺酸共軛因子VII多肽具有一或多個共軛至引入因子VII多肽中之半胱胺酸之硫氫基之疏水性半衰期延長部分。此外,可能將半衰期延長部分連接至其他胺基酸殘基。 In one embodiment, the cysteine conjugated Factor VII polypeptide of the invention has one or more hydrophobic half-life extending moieties that are conjugated to the sulfhydryl group of the cysteine introduced into the Factor VII polypeptide. In addition, it is possible to link the half-life extending moiety to other amino acid residues.

在一具體實例中,本發明之因子VII多肽為連接於組織因子之二硫化物,如例如WO2007115953中所描述。 In a specific embodiment, the Factor VII polypeptide of the invention is a disulfide linked to a tissue factor, as described, for example, in WO2007115953.

在另一具體實例中,本發明之因子VII多肽為具有增加之血小板親和力之因子VIIa變異體。 In another embodiment, the Factor VII polypeptide of the invention is a Factor VIIa variant having increased platelet affinity.

肝素前體共軛物 Heparin precursor conjugate

根據本發明之因子VII多肽肝素前體共軛物可具有一或多個連接至FVII多肽之任何部分(包括因子VII多肽之任何胺基酸殘基或碳水化合物部分)之肝素前體聚合物(HEP)分子。該等共軛物之實例提供於WO2014/060397中,該專利以引入方式併入本文中。化學及/或酶促方法可用於將HEP共軛至因子VII多肽上之聚糖。酶促共軛方法之實例描述於例如WO03031464中。聚糖可為天然存在的或可使用此項技術中熟知之方法,例如藉由引入N-糖基化基序(NXT/S,其中X為任何天然存在之胺基酸)而在因子VII之胺基酸序列中對其進行工程改造。 The Factor VII polypeptide heparin precursor conjugate according to the invention may have one or more heparin precursor polymers linked to any portion of the FVII polypeptide, including any amino acid residues or carbohydrate moieties of the Factor VII polypeptide ( HEP) molecule. Examples of such conjugates are provided in WO 2014/060397, which is incorporated herein by reference. Chemical and/or enzymatic methods can be used to conjugate the HEP to the glycan on the Factor VII polypeptide. Examples of enzymatic conjugation methods are described, for example, in WO03031464. The glycan may be naturally occurring or may be carried out using methods well known in the art, for example by introducing an N-glycosylation motif (NXT/S, where X is any naturally occurring amino acid) in Factor VII It is engineered in the amino acid sequence.

根據本發明之「半胱胺酸-HEP因子VII多肽共軛物」具有一或多個共軛至存在於或引入至FVII多肽中之半胱胺酸殘基之硫氫基之HEP分子。 A "cysteine-HEP Factor VII polypeptide conjugate" according to the present invention has one or more HEP molecules conjugated to a sulfhydryl group of a cysteine residue present in or introduced into a FVII polypeptide.

在本發明之一個令人感興趣的具體實例中,因子VII多肽耦合至HEP聚合物。在一個具體實例中,耦合至因子VII多肽之HEP聚合物具有在選自13-65kDa、13-55kDa、25-55kDa、25-50kDa、25-45kDa、30-45kDa、36-44kDa及38-42kDa之範圍內之分子量或40kDa之分子量。 In an interesting embodiment of the invention, the Factor VII polypeptide is coupled to the HEP polymer. In one embodiment, the HEP polymer coupled to the Factor VII polypeptide has a structure selected from the group consisting of 13-65 kDa, 13-55 kDa, 25-55 kDa, 25-50 kDa, 25-45 kDa, 30-45 kDa, 36-44 kDa, and 38-42 kDa. Molecular weight within the range or molecular weight of 40 kDa.

在本發明之一個令人感興趣的具體實例中,因子VII多肽在因子VII多肽之N-聚糖上耦合至HEP聚合物。 In an interesting embodiment of the invention, the Factor VII polypeptide is coupled to the HEP polymer on the N-glycan of the Factor VII polypeptide.

在本發明之另一具體實例中,兩個HEP聚合物經由N-聚糖耦合至相同因子VII多肽。在此具體實例中,耦合至因子VII多肽之HEP聚合物中之每一者具有在選自13-65kDa、13-55kDa、25-55kDa、25-50kDa、25-45kDa、30-45kDa、36-44kDa及38-42kDa之範圍內之分子量或40kDa之分子量。較佳地,聚合物具有相同分子量。 In another embodiment of the invention, two HEP polymers are coupled to the same Factor VII polypeptide via an N-glycan. In this particular example, each of the HEP polymers coupled to the Factor VII polypeptide has a moiety selected from the group consisting of 13-65 kDa, 13-55 kDa, 25-55 kDa, 25-50 kDa, 25-45 kDa, 30-45 kDa, 36- Molecular weight in the range of 44 kDa and 38-42 kDa or molecular weight of 40 kDa. Preferably, the polymers have the same molecular weight.

在一特定具體實例中,兩個20kDa HEP聚合物經由因子VII多肽之N-聚糖耦合至相同因子VII多肽。 In a specific embodiment, two 20 kDa HEP polymers are coupled to the same Factor VII polypeptide via an N-glycan of a Factor VII polypeptide.

在一特定具體實例中,兩個30kDa HEP聚合物經由因子VII多肽之N-聚糖耦合至相同因子VII多肽。 In a specific embodiment, two 30 kDa HEP polymers are coupled to the same Factor VII polypeptide via an N-glycan of a Factor VII polypeptide.

在一特定具體實例中,兩個40kDa HEP聚合物經由因子VII多肽之N-聚糖耦合至相同因子VII多肽。 In a specific embodiment, two 40 kDa HEP polymers are coupled to the same Factor VII polypeptide via an N-glycan of a Factor VII polypeptide.

肝素前體聚合物 Heparin precursor polymer

肝素前體(HEP)為包含(-GlcUA-β 1,4-GlcNAc-α 1,4-)重複序列之天然糖聚合物(參見圖5A)。其屬於葡糖胺聚糖多醣家族且為在生理pH下之帶負電聚合物。其可發現於某些細菌之包膜中但其亦發現於高等脊椎動物中,其於該等脊椎動物中充當天然聚合物肝素及硫酸乙醯肝素之前驅體。儘管未詳細證實,咸信肝素前體在溶酶體中降解。藉由波爾頓-亨特試劑(Bolton-Hunter reagent)標記之100kDa肝素前體聚合物之注射液已顯示肝素前體以體液/身體廢物中之較小片段形式分泌(US 2010/0036001)。 The heparin precursor (HEP) is a natural sugar polymer comprising a repeating sequence of (-GlcUA-β 1,4-GlcNAc-α 1,4-) (see Figure 5A). It belongs to the family of glycosaminoglycans and is a negatively charged polymer at physiological pH. It can be found in the envelope of certain bacteria but it is also found in higher vertebrates, which act as precursors to the natural polymer heparin and acesulfate heparin in these vertebrates. Although not confirmed in detail, the salt of heparin was degraded in lysosomes. Injections of 100 kDa heparin precursor polymer labeled with Bolton-Hunter reagent have shown that heparin precursors are secreted as smaller fragments in body fluid/body waste (US 2010/0036001).

肝素前體聚合物及製造該等聚合物之方法描述於US 2010/0036001中,其內容以引用之方式併入本文中。根據本發明,肝素前體聚合物可為描述或揭示於US 2010/0036001中之任何肝素前體聚合物。 Heparin precursor polymers and methods of making such polymers are described in US 2010/0036001, the contents of which are incorporated herein by reference. According to the present invention, the heparin precursor polymer can be any heparin precursor polymer described or disclosed in US 2010/0036001.

為用於本發明中,可藉由任何適合之方法,諸如US 2010/0036001或US 2008/0109236中所述之方法中之任一者產生肝素前體聚合物。可使用來源於細菌之酶產生肝素前體。舉例而言,D型多殺巴斯德菌(Pasteurella multocida)之肝素前體合成酶PmHS1藉由轉移GlcUA及GlcNAc二者使肝素前體糖鏈聚合。大腸桿菌(Escherichia coli)K5酶KfiA(α GlcNAc轉移酶)及KfiC(β GlcUA轉移酶)亦可一起形成肝素前體之二醣重複序列。 For use in the present invention, the heparin precursor polymer can be produced by any suitable method, such as any of the methods described in US 2010/0036001 or US 2008/0109236. Heparin precursors can be produced using enzymes derived from bacteria. For example, the heparin precursor synthase PmHS1 of Pasteurella multocida polymerizes the heparin precursor sugar chain by transferring both GlcUA and GlcNAc. Escherichia coli K5 enzyme KfiA (α GlcNAc transferase) and KfiC (β GlcUA transferase) may also form a disaccharide repeat of the heparin precursor.

用於本發明中之肝素前體聚合物典型地為式(-GlcUA-β 1,4-GlcNAc-α 1,4-)n之聚合物。 The heparin precursor polymer used in the present invention is typically a polymer of the formula (-GlcUA-β 1,4-GlcNAc-α 1,4-) n .

肝素前體聚合物之尺寸可藉由此式中之重複序列之數目n定義。該等重複序列之數目n可例如為2至約5000。重複序列之數目可例如為50至2000單位、100至1000單位或200至700單位。重複序列之數目可為200至250單位、500至550單位或350至400單位。此等範圍之下限中之任一者可與此等範圍之任何上限組合以在肝素前體聚合物中形成單元數目之適合範圍。 The size of the heparin precursor polymer can be defined by the number n of repeats in this formula. The number n of such repeats can be, for example, from 2 to about 5,000. The number of repeating sequences may be, for example, 50 to 2000 units, 100 to 1000 units, or 200 to 700 units. The number of repeating sequences can be from 200 to 250 units, from 500 to 550 units, or from 350 to 400 units. Any of the lower limits of these ranges can be combined with any upper limit of these ranges to form a suitable range of unit numbers in the heparin precursor polymer.

肝素前體聚合物之尺寸可藉由其分子量定義。分子量可為肝素前體聚合物分子之群體之平均分子量,諸如重量平均分子質量。 The size of the heparin precursor polymer can be defined by its molecular weight. The molecular weight can be the average molecular weight of a population of heparin precursor polymer molecules, such as a weight average molecular mass.

關於肝素前體聚合物之尺寸的如本文所述之分子量值在實踐中可能不恰好為所列尺寸。由於在肝素前體聚合物生產期間之批次間變化,預期有一些變化。為包涵批次間變化,因此應瞭解,應預期圍繞目標HEP聚合物尺寸約+/-10%、9%、8%、7%、6%、5%、4%、3%、2%、或1%之變化。舉例而言,40kDa之HEP聚合物尺寸表示40kDa+/-10%,例如40kDa 可例如在實踐中意謂38.8kDa、41.5kDa或43.8kDa。 The molecular weight values as described herein with respect to the size of the heparin precursor polymer may not be exactly the listed sizes in practice. Some variations are expected due to batch-to-batch variations during heparin precursor polymer production. In order to accommodate batch-to-batch variations, it should be understood that approximately +/- 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2% of the target HEP polymer size should be expected. Or a 1% change. For example, a 40 kDa HEP polymer size represents 40 kDa +/- 10%, such as 40 kDa It may for example mean 38.8 kDa, 41.5 kDa or 43.8 kDa in practice.

肝素前體聚合物可具有例如500Da至1,000kDa之分子量。聚合物之分子量可為500Da至650kDa、5kDa至750kDa、10kDa至500kDa、15kDa至550kDa或25kDa至250kDa。 The heparin precursor polymer may have a molecular weight of, for example, 500 Da to 1,000 kDa. The molecular weight of the polymer may range from 500 Da to 650 kDa, from 5 kDa to 750 kDa, from 10 kDa to 500 kDa, from 15 kDa to 550 kDa, or from 25 kDa to 250 kDa.

可在此等範圍內之特定位準選擇分子量以在因子VII多肽之活性與共軛物之半衰期或平均滯留時間之間達成適合之平衡。舉例而言,聚合物之分子量可在選自15-25kDa、25-35kDa、35-45kDa、45-55kDa、55-65kDa或65-75kDa之範圍內。 The molecular weight can be selected at a particular level within these ranges to achieve a suitable balance between the activity of the Factor VII polypeptide and the half-life or average residence time of the conjugate. For example, the molecular weight of the polymer can range from 15-25 kDa, 25-35 kDa, 35-45 kDa, 45-55 kDa, 55-65 kDa, or 65-75 kDa.

可選擇分子量之更特定範圍。舉例而言,分子量可為20kDa至35kDa,諸如22kDa至32kDa,諸如25kDa至30kDa,諸如約27kDa。分子量可為35至65kDa,諸如40kDa至60kDa,諸如47kDa至57kDa,諸如50kDa至55kDa,諸如約52kDa。分子量可為50至75kDa,諸如60至70kDa,諸如63至67kDa,諸如約65kDa。 A more specific range of molecular weights can be selected. For example, the molecular weight can range from 20 kDa to 35 kDa, such as from 22 kDa to 32 kDa, such as from 25 kDa to 30 kDa, such as about 27 kDa. The molecular weight may range from 35 to 65 kDa, such as from 40 kDa to 60 kDa, such as from 47 kDa to 57 kDa, such as from 50 kDa to 55 kDa, such as about 52 kDa. The molecular weight can be from 50 to 75 kDa, such as from 60 to 70 kDa, such as from 63 to 67 kDa, such as about 65 kDa.

在尤其令人感興趣的實施例中,本發明之因子VII共軛物之肝素前體聚合物具有在選自13-65kDa、13-55kDa、25-55kDa、25-50kDa、25-45kDa、30-45kDa及38-42kDa之範圍內之尺寸。 In a particularly interesting embodiment, the heparin precursor polymer of the Factor VII conjugate of the invention has a composition selected from the group consisting of 13-65 kDa, 13-55 kDa, 25-55 kDa, 25-50 kDa, 25-45 kDa, 30. Sizes in the range of -45kDa and 38-42kDa.

分子量之此等範圍之下限中之任一者可與此等範圍之任何上限組合以形成根據本發明之肝素前體聚合物之分子量之適合之範圍。 Any of the lower limits of such ranges of molecular weight may be combined with any upper limit of these ranges to form a suitable range of molecular weights of the heparin precursor polymer according to the present invention.

肝素前體聚合物可具有窄粒度分佈(即單分散)或寬粒度分佈(即多分散)。可基於式Mw/Mn在數值上表示多分散性(PDI)位準,其中Mw=重量平均分子質量且Mn=數目平均分子量。使用此方程式的理想單分散聚合物之多分散性值為1。較佳地,用於本發明中之肝素前體聚合物為 單分散的。該聚合物可因此具有約1之多分散性,多分散性可小於1.25、較佳小於1.20、較佳小於1.15、較佳小於1.10、較佳小於1.09、較佳小於1.08、較佳小於1.07、較佳小於1.06、較佳小於1.05。 The heparin precursor polymer can have a narrow particle size distribution (i.e., monodisperse) or a broad particle size distribution (i.e., polydisperse). The polydispersity (PDI) level can be numerically represented based on the formula Mw/Mn, where Mw = weight average molecular mass and Mn = number average molecular weight. An ideal monodisperse polymer using this equation has a polydispersity value of one. Preferably, the heparin precursor polymer used in the present invention is Monodisperse. The polymer may thus have a dispersibility of about 1 and a polydispersity of less than 1.25, preferably less than 1.20, preferably less than 1.15, preferably less than 1.10, preferably less than 1.09, preferably less than 1.08, preferably less than 1.07. It is preferably less than 1.06, preferably less than 1.05.

藉由可在瓊脂糖凝膠上進行的與單分散粒度標準物(HA Lo-Ladder,Hyalose LLC)之比較來量測肝素前體之分子量粒度分佈。 The molecular weight particle size distribution of the heparin precursor was measured by comparison with a monodisperse particle size standard (HA Lo-Ladder, Hyalose LLC) which can be carried out on an agarose gel.

或者,可藉由高效尺寸排外層析法-多角度雷射光散射(SEC-MALLS)測定肝素前體聚合物之粒度分佈。該方法可用於評估肝素前體聚合物之分子量及多分散性。 Alternatively, the particle size distribution of the heparin precursor polymer can be determined by high performance size exclusion chromatography - multi-angle laser light scattering (SEC-MALLS). This method can be used to evaluate the molecular weight and polydispersity of heparin precursor polymers.

可在酶促生產方法中調節聚合物尺寸。藉由控制肝素前體受體鏈與UDP糖之莫耳比,有可能選擇所需之最終肝素前體聚合物尺寸。 The polymer size can be adjusted in an enzymatic production process. By controlling the molar ratio of the heparin precursor acceptor chain to the UDP sugar, it is possible to select the desired final heparin precursor polymer size.

肝素前體聚合物可進一步包含反應性基團以允許其連接至因子VII多肽。適合之反應性基團可例如為醛、炔烴、酮、順丁烯二醯亞胺、硫醇、疊氮化合物、胺基、醯肼、羥胺、碳酸酯、螯合劑或其任何組合。舉例而言,圖5B說明包含順丁烯二醯亞胺基團之肝素前體聚合物。 The heparin precursor polymer can further comprise a reactive group to allow it to be linked to a Factor VII polypeptide. Suitable reactive groups can be, for example, aldehydes, alkynes, ketones, maleimide, thiols, azides, amines, hydrazines, hydroxylamines, carbonates, chelating agents, or any combination thereof. For example, Figure 5B illustrates a heparin precursor polymer comprising a maleimide group.

如實施例中所陳述,可藉由使用等莫耳量之兩種糖核苷酸UDP-GlcNAc及UDP-GlcUA之酶促(PmHS1)聚合反應製備具有限定尺寸之順丁烯二醯亞胺或醛官能化肝素前體聚合物。引發三醣(GlcUA-GlcNAc-GlcUA)NH2可用於起始反應,且運行聚合反應直至糖核苷酸建構嵌段耗盡。末端胺(源自引物)可隨後藉由適合之反應性基團(諸如如上文所述之反應性基團,諸如順丁烯二醯亞胺官能基)經官能化以共軛至自由半胱胺酸或醛以還原胺化為胺基。可藉由糖核苷酸:引物化學計算量之變化預定肝素前體聚合物之尺寸。該技術詳細描述於US 2010/0036001中。 As stated in the examples, a maleic imide having a defined size can be prepared by using an enzymatic (PmHS1) polymerization of two molar nucleotides UDP-GlcNAc and UDP-GlcUA. Aldehyde functionalized heparin precursor polymer. Initiator trisaccharide (GlcUA-GlcNAc-GlcUA) NH 2 can be used to initiate the reaction, and the polymerization was run until the sugar nucleotide Construction block depleted. The terminal amine (derived from the primer) can then be functionalized to conjugate to a free caspase by a suitable reactive group such as a reactive group as described above, such as a maleimide functional group. The amine acid or aldehyde is reductively aminated to an amine group. The size of the heparin precursor polymer can be predetermined by the change in the stoichiometric amount of the sugar nucleotide: primer. This technique is described in detail in US 2010/0036001.

反應性基團可存在於還原或非還原端或整個糖鏈中。當將肝素前體聚合物共軛至多肽時,僅存在一個該反應性基團為較佳的。 The reactive group may be present in the reducing or non-reducing end or in the entire sugar chain. When a heparin precursor polymer is conjugated to a polypeptide, it is preferred that only one such reactive group is present.

製備FVII-HEP共軛物之方法 Method for preparing FVII-HEP conjugate

舉例而言,WO 03/031464描述重塑諸如因子VII或因子VIIa多肽之多肽之聚糖結構之方法及添加諸如水溶性聚合物之修飾基團至該多肽之方法。該等方法可用於將肝素前體聚合物附接至根據本發明之因子VII多肽。 For example, WO 03/031464 describes a method of remodeling a glycan structure of a polypeptide such as a Factor VII or Factor Vila polypeptide and a method of adding a modifying group such as a water soluble polymer to the polypeptide. These methods can be used to attach a heparin precursor polymer to a Factor VII polypeptide according to the invention.

如在實施例中所陳述,因子VII多肽可使用唾液酸轉移酶共軛至其聚糖部分。為啟動此方法,HEP聚合物首先需要連接於唾液酸胞嘧啶核苷單磷酸。甘胺醯基唾液酸胞嘧啶核苷單磷酸(GSC)為用於該化學反應之適合之起始點,但可使用其他唾液酸胞嘧啶核苷單磷酸或其片段。實施例陳述將HEP聚合物共價連接至GSC分子之方法。藉由共價連接,創造可轉移至FVIIa之聚糖部分之HEP-GSC(HEP共軛之甘胺醯基唾液酸胞嘧啶核苷單磷酸)分子。 As stated in the examples, the Factor VII polypeptide can be conjugated to its glycan moiety using a sialyltransferase. To initiate this method, the HEP polymer first needs to be attached to sialic acid cytidine monophosphate. Glycosyl sialic acid cytidine monophosphate (GSC) is a suitable starting point for this chemical reaction, but other sialic acid cytidine monophosphates or fragments thereof can be used. The examples set forth a method of covalently linking a HEP polymer to a GSC molecule. By covalent attachment, a HEP-GSC (HEP conjugated glycosidyl sialic acid cytidine monophosphate) molecule that can be transferred to the glycan moiety of FVIIa is created.

一旦已產生因子VII-肝素前體共軛物即可對其進行純化。舉例而言,純化可包含使用針對因子VII多肽之固定mAb,諸如針對FVIIa上之鈣化gla-域之mAb之親和性層析法。在該親和性層析法中,可藉由管柱之澈底洗滌移除非共軛HEP聚合物。可藉由自抗體釋放FVII而自管柱釋放FVII。舉例而言,當抗體對鈣化gla-域具特異性時,可藉由用包含EDTA之緩衝液洗滌達成自管柱之釋放。 Once the Factor VII-heparin precursor conjugate has been produced, it can be purified. For example, purification can include affinity chromatography using a fixed mAb against a Factor VII polypeptide, such as a mAb against a calcified gla-domain on FVIIa. In this affinity chromatography, the non-conjugated HEP polymer can be removed by a bottom wash of the column. FVII can be released from the column by releasing FVII from the antibody. For example, when an antibody is specific for a calcified gla-domain, release from the column can be achieved by washing with a buffer containing EDTA.

尺寸排外層析法可用於分離因子VII-肝素前體共軛物與非共軛因子VII。 Size exclusion chromatography can be used to isolate Factor VII-heparin precursor conjugates with non-conjugated Factor VII.

可藉由超過濾濃縮純共軛物。 The pure conjugate can be concentrated by ultrafiltration.

可藉由例如HPLC定量,諸如FVII輕鏈之HPLC定量測定由生產方法產生之因子VII-肝素前體共軛物之最終濃度。 The final concentration of the Factor VII-heparin precursor conjugate produced by the production process can be quantified by HPLC, such as HPLC quantification, such as FVII light chain.

結合本發明,顯示有可能經由順丁烯二醯亞胺基將諸如HEP之碳水化合物聚合物連接至經硫基修飾之GSC分子且藉助於唾液酸轉移酶將試劑轉移至醣蛋白上之完整糖基,藉此產生含有環狀琥珀醯亞胺基團之鍵。 In connection with the present invention, it is shown that it is possible to attach a carbohydrate polymer such as HEP to a sulfur-modified GSC molecule via a maleimide group and transfer the reagent to the intact sugar on the glycoprotein by means of a sialyltransferase Base, thereby producing a bond containing a cyclic amber quinone imine group.

然而,基於琥珀醯亞胺之鍵可在共軛物長時間儲存於水溶液中時經歷水解開環(Bioconjugation Techniques,G.T.Hermanson,Academic Press,第3版2013第309頁)且儘管鍵可保持完整,但開環反應將添加呈結構異構體及立體異構體形式之非所需非均質性至最終共軛物。 However, the amber imine-based bond can undergo hydrolysis opening and ringing when the conjugate is stored in an aqueous solution for a long time (Bioconjugation Techniques, GTHermanson, Academic Press, 3rd edition 2013, p. 309) and although the bond can remain intact, The ring opening reaction will add undesired heterogeneities in the form of structural isomers and stereoisomers to the final conjugate.

遵循上文,較佳以使得1)醣蛋白之聚糖殘基以完整形式保留,及2)在完整糖基殘基與半衰期延長部分之間的連接子部分不存在異質性之方式將半衰期延長部分連接至醣蛋白。 Following the above, preferably such that the 1) glycan protein glycan residue is retained in intact form, and 2) the half-life is extended in a manner that there is no heterogeneity in the linker portion between the intact glycosyl residue and the half-life extending portion Partially linked to glycoproteins.

在此項技術中需要共軛兩種化合物,諸如將諸如HEP之半衰期延長部分共軛至蛋白或蛋白聚糖之方法,其中化合物經連接以獲得穩定且不含異構體之共軛物。 There is a need in the art to conjugate two compounds, such as a method of conjugated to a protein or proteoglycan, such as a half-life extension of HEP, wherein the compounds are linked to obtain a stable and isomer-free conjugate.

在一個態樣中,本發明提供一種用於基於甘胺醯基唾液酸胞嘧啶核苷單磷酸(GSC)將HEP共軛至FVII之穩定且不含異構體之連接子。可化學合成用於本發明中之GSC起始物質(Dufner,G.Eur.J.Org.Chem.2000,1467-1482)或其可藉由如WO07056191中所述之化學酶途徑獲得。GSC結構顯示於下文中: In one aspect, the invention provides a stable and isomer-free linker for conjugated HEP to FVII based on glycosidic sialic acid cytidine monophosphate (GSC). The GSC starting material (Dufner, G. Eur. J. Org. Chem. 2000, 1467-1482) used in the present invention can be chemically synthesized or it can be obtained by a chemical enzyme route as described in WO07056191. The GSC structure is shown below:

在一具體實例中,根據本發明之共軛物包含包含以下結構之連接子: In a specific example, a conjugate according to the invention comprises a linker comprising:

- 在下文中亦稱為子連接子或子鍵-其於以下方法中之一者中連接HEP-胺及GSC: - Also referred to hereinafter as a sub-linker or sub-bond - which links HEP-amine and GSC in one of the following ways:

突出顯示之4-甲基苯甲醯基子連接子因此構成連接半衰期延長部分與標靶蛋白之完全連接結構的一部分。子連接子因此為相比於諸 如基於琥珀醯亞胺之連接子(製備自順丁烯二醯亞胺與硫氫基之反應)之替代物的穩定結構,因為後一類型之環狀鍵具有在共軛物長時間儲存於水溶液中時經歷水解開環之趨勢(Bioconjugation Techniques,G.T.Hermanson,Academic Press,第3版2013第309頁)。儘管在此狀況下(例如在HEP與唾液酸之間,於醣蛋白上)之鍵可保持完整,但開環反應將添加呈結構異構體及立體異構體形式之非均質性至最終共軛物組成物。 The highlighted 4-methylbenzimidyl linker thus constitutes a portion of the fully linked structure of the linked half-life extending moiety to the target protein. Sub-linkers are therefore compared to Such as a stable structure based on the substitution of an amber quinone imine linker (prepared from the reaction of maleimide with a sulfhydryl group), since the latter type of cyclic bond has been stored in the conjugate for a long time. The tendency to undergo hydrolysis and ring opening in aqueous solution (Bioconjugation Techniques, GTHermanson, Academic Press, 3rd edition 2013, p. 309). Although the bond in this condition (eg, between HEP and sialic acid on the glycoprotein) remains intact, the ring opening reaction adds heterogeneity in the form of structural isomers and stereoisomers to the final total. Yoke composition.

與根據本發明之共軛物相關之一個優點因此為獲得均質組成物,亦即由於連接子結構及穩定性之異構體形成之趨勢顯著減小。另一優點為可以簡單方法,較佳一步方法產生根據本發明之連接子及共軛物。 An advantage associated with the conjugates according to the invention is therefore a significant reduction in the tendency to obtain homogeneous compositions, i.e., isomer formation due to linker structure and stability. Another advantage is that the linkers and conjugates according to the invention can be produced in a simple manner, preferably in a one-step process.

異構體為非所需的,因為此等異構體可產生異質產物且增加在人體中之非所需免疫反應之風險。 Isomers are undesirable because such isomers can produce heterogeneous products and increase the risk of unwanted immune responses in the human body.

如本發明中在HEP與GSC之間使用之4-甲基苯甲醯基子鍵不能形成立體異構體或結構異構體。可如先前所提及地藉由同步酶促聚合反應製備HEP聚合物(US 20100036001)。此方法使用來自多殺巴斯德菌之乙醯肝素合成酶I(PmHS1),其可在大腸桿菌中以麥芽糖結合蛋白融合構築體形式表現。純化MBP-PmHS1能夠在將其添加至糖核苷酸(GlcNAc-UDP及GlcUA-UDP)之等莫耳混合物中時在同步、化學計算量受控反應中產生單分散聚合物。三醣引發劑(GlcUA-GlcNAc-GlcUA)用於引發反應,且藉由引物:糖核苷酸比測定聚合物長度。將進行聚合反應直至消耗約90%之糖核苷酸。藉由陰離子交換層析分離聚合物與反應混合物,且隨後凍乾為穩定粉末。 The 4-methylbenzhydryl-based bond used between HEP and GSC in the present invention cannot form a stereoisomer or a structural isomer. The HEP polymer can be prepared by simultaneous enzymatic polymerization as previously mentioned (US 20100036001). This method uses heparin synthase I (PmHS1) from Pasteurella multocida, which can be expressed in E. coli as a maltose binding protein fusion construct. Purified MBP-PmHS1 is capable of producing a monodisperse polymer in a synchronized, stoichiometrically controlled reaction when it is added to a molar mixture of sugar nucleotides (GlcNAc-UDP and GlcUA-UDP). A trisaccharide initiator (GlcUA-GlcNAc-GlcUA) was used to initiate the reaction, and the polymer length was determined by the primer: sugar nucleotide ratio. The polymerization will proceed until about 90% of the sugar nucleotides are consumed. The polymer and reaction mixture were separated by anion exchange chromatography and then lyophilized to a stable powder.

製備官能性HEP聚合物之方法描述於US 20100036001中, 其例如列舉醛、胺及順丁烯二醯亞胺官能化HEP試劑。US 20100036001以全文引用的方式併入本文中,如同完全闡述於本文中。使用類似化學方法,一系列其他官能修飾HEP衍生物為可用的。用於本發明之某些具體實例中之HEP聚合物最初藉由在還原末端根據US20100036001中所述之方法處理一級胺產生。 A method of preparing a functional HEP polymer is described in US 20100036001. Examples thereof include aldehyde, amine and maleimide functionalized HEP reagents. US 20100036001 is incorporated herein by reference in its entirety as if fully incorporated herein. A series of other functionally modified HEP derivatives are available using similar chemical methods. The HEP polymer used in certain embodiments of the present invention was originally produced by treating a primary amine at the reducing end according to the method described in US20100036001.

根據US20100036001製備之胺官能化HEP聚合物(亦即具有胺處理之HEP)可藉由與4-甲醯基苯甲酸N-琥珀醯亞胺酯反應轉化成HEP-苯甲醛且隨後藉由還原胺化反應耦合至GSC之甘胺醯胺基。所得HEP-GSC產物可隨後使用唾液酸轉移酶酶促共軛至醣蛋白。 The amine functionalized HEP polymer prepared according to US20100036001 (i.e., HEP with amine treatment) can be converted to HEP-benzaldehyde by reaction with N-ammonium imidate of 4-methylmercaptobenzoic acid and then by reducing amine The reaction is coupled to the glycine amide group of GSC. The resulting HEP-GSC product can then be enzymatically conjugated to a glycoprotein using a sialyltransferase.

舉例而言,HEP上之該胺處理可藉由根據以下流程與4-甲醯基苯甲酸N-琥珀醯亞胺酯反應轉化成苯甲醛官能基: For example, the amine treatment on HEP can be converted to a benzaldehyde functional group by reaction with N-ammonium imidate of 4-methylmercaptobenzoic acid according to the following scheme:

可藉由與4-甲醯基苯甲酸之醯基活化形式反應進行在上述流程中將HEP胺(1)轉化成4-甲醯基苯甲醯胺化合物(2)。 The conversion of the HEP amine (1) to the 4-methylmercaptobenzamide compound (2) can be carried out in the above scheme by reacting with a thiol-activated form of 4-mercaptobenzoic acid.

可選擇N-琥珀醯亞胺基作為醯基活化基團,但熟習此項技術者已知多種其他醯基活化基團。非限制性實例包括如自肽化學知曉之1-羥基-7-氮雜苯并三唑-、1-羥基-苯并三唑-、五氟苯基酯。 The N-succinimide group can be selected as the sulfhydryl activating group, but a variety of other sulfhydryl activating groups are known to those skilled in the art. Non-limiting examples include 1-hydroxy-7-azabenzotriazole-, 1-hydroxy-benzotriazole-, pentafluorophenyl ester, as known from peptide chemistry.

經苯甲醛官能基修飾之HEP試劑可在以乾燥形式冷凍(-80℃)儲存時長時間保持穩定。或者,苯甲醛部分可連接至GSC化合物,藉此產生適合於共軛至胺官能化半衰期延長部分之GSC-苯甲醛化合物。此合成途徑描繪於圖12中。 The HEP reagent modified with a benzaldehyde functional group can remain stable for a long period of time when stored in a dry form (-80 ° C). Alternatively, the benzaldehyde moiety can be attached to the GSC compound, thereby producing a GSC-benzaldehyde compound suitable for conjugation to an amine functionalized half-life extension. This synthetic route is depicted in Figure 12.

舉例而言,GSC可在pH中性條件下與4-甲醯基苯甲酸N-琥珀醯亞胺酯反應以提供含有反應性醛基團之GSC化合物(參見例如WO2011101267)。醛衍生之GSC化合物(GSC-苯甲醛)可隨後與HEP-胺及還原劑反應以形成HEP-GSC試劑。 For example, GSC can be reacted with N-succinimide 4-methylmercaptobenzoate under pH neutral conditions to provide a GSC compound containing a reactive aldehyde group (see, for example, WO2011101267). The aldehyde-derived GSC compound (GSC-benzaldehyde) can then be reacted with a HEP-amine and a reducing agent to form a HEP-GSC reagent.

上述反應可經逆轉,以使得HEP-胺首先與4-甲醯基苯甲酸N-琥珀醯亞胺酯反應以形成醛衍生之HEP-聚合物,其隨後在還原劑存在下直接與GSC反應。在實踐中,此消除GSC-CHO之冗長層析處理。此合成途徑描繪於圖13中。 The above reaction can be reversed such that the HEP-amine is first reacted with N-succinimide 4-methylmercaptobenzoate to form an aldehyde-derived HEP-polymer which is then directly reacted with GSC in the presence of a reducing agent. In practice, this eliminates the lengthy chromatographic processing of GSC-CHO. This synthetic route is depicted in Figure 13.

因此,在本發明之一個具體實例中,HEP-苯甲醛藉由還原胺化耦合至GSC。 Thus, in one embodiment of the invention, HEP-benzaldehyde is coupled to the GSC by reductive amination.

還原胺化為兩步反應,其如下進行:最初在醛組分與胺組分(在本發明具體實例中,GSC之甘胺醯基胺基)之間形成亞胺(亦稱為希夫鹼(Schiff base))。隨後在第二步驟中將亞胺還原為胺。選擇還原劑以使其選擇性地將形成之亞胺還原為胺衍生物。 Reductive amination is a two-step reaction which is carried out by initially forming an imine (also known as Schiff base) between the aldehyde component and the amine component (in the embodiment of the invention, the glycidyl amino group of GSC) (Schiff base)). The imine is subsequently reduced to the amine in a second step. A reducing agent is selected to selectively reduce the formed imine to an amine derivative.

熟習此項技術者可獲得多種適合之還原試劑。非限制性實例 包括氰基硼氫化鈉(NaBH3CN)、硼氫化鈉(NaBH4)、吡啶硼烷錯合物(BH3:Py)、二甲基硫醚硼烷錯合物(Me2S:BH3)及甲吡啶硼烷錯合物。 A variety of suitable reducing agents are available to those skilled in the art. Non-limiting example Including sodium cyanoborohydride (NaBH3CN), sodium borohydride (NaBH4), pyridine borane complex (BH3:Py), dimethyl sulfide borane complex (Me2S: BH3) and pyrithione Compound.

儘管可能還原胺化至碳水化合物之還原端(例如至HEP聚合物之還原端),一般將其描述為緩慢且低效之反應(JC.Gildersleeve,Bioconjug Chem.2008年7月;19(7):1485-1490)。諸如安瑪多立反應(Amadori reaction)之副反應在本發明上下文中為非所需的,在該反應中,最初形成之亞胺重排為酮胺亦為可能的,且將導致如先前論述之異質性。 Although it is possible to reductively aminated to the reducing end of the carbohydrate (e.g., to the reducing end of the HEP polymer), it is generally described as a slow and inefficient reaction (JC. Gildersleeve, Bioconjug Chem. July 2008; 19(7) :1485-1490). Side reactions such as the Amadori reaction are undesirable in the context of the present invention, in which it is also possible that the initially formed imine rearrangement to a ketoamine is possible and will result in the discussion as previously discussed. Heterogeneity.

芳族醛(諸如苯甲醛)衍生物不能形成該等重排反應物,因為亞胺不能烯醇化且亦缺乏典型地發現於碳水化合物衍生之亞胺中之所需相鄰羥基。芳族醛(諸如苯甲醛)衍生物因此尤其適用於產生不含異構體之HEP-GSC試劑之還原胺化反應。 Aromatic aldehyde (such as benzaldehyde) derivatives do not form such rearranged reactants because the imine cannot be enolized and also lack the desired adjacent hydroxyl groups typically found in carbohydrate derived imines. Aromatic aldehyde (such as benzaldehyde) derivatives are therefore particularly suitable for use in the reductive amination of HEP-GSC reagents which are free of isomers.

視需要使用過剩GSC及還原劑以驅動還原胺化化學反應快速完成。當反應完成時,過量(非反應)GSC試劑及其他小分子組分(諸如過量還原劑)可隨後藉由透析、切向流過濾或尺寸排外層析法移除。 Excess GSC and reducing agent are used as needed to drive the reductive amination chemical reaction to complete quickly. When the reaction is complete, excess (non-reactive) GSC reagents and other small molecule components (such as excess reducing agent) can then be removed by dialysis, tangential flow filtration, or size exclusion chromatography.

唾液酸轉移酶之天然受質Sia-CMP及GSC衍生物二者均為帶電且具高度親水性之多官能性分子。另外,其持續長時間在溶液中時不穩定,尤其當pH低於6.0時。在該低pH下,受質轉移所需之CMP活化基團由於酸催化之磷酸二酯水解而缺失。GSC及Sia-CMP衍生物之選擇性修飾及分離因此需要小心控制pH,以及快速且高效之分離方法以避免CMP-水解。 The natural receptors of sialyltransferase are both charged and highly hydrophilic polyfunctional molecules. In addition, it is unstable for a long time in the solution, especially when the pH is lower than 6.0. At this low pH, the CMP activating group required for mass transfer is absent due to acid catalyzed hydrolysis of the phosphodiester. Selective modification and separation of GSC and Sia-CMP derivatives therefore requires careful pH control and a fast and efficient separation process to avoid CMP-hydrolysis.

在本發明中,較大半衰期延長部分使用還原胺化化學反應共軛至GSC。已發現芳醛(諸如苯甲醛)修飾之半衰期延長部分對於此類型 之修飾最佳,因為其可在還原胺化條件下有效地與GSC反應。 In the present invention, the longer half-life extension is conjugated to GSC using a reductive amination chemical reaction. The half-life extension of the modification of aromatic aldehydes (such as benzaldehyde) has been found for this type The modification is optimal because it can effectively react with GSC under reductive amination conditions.

由於GSC可在酸性培養基中經歷水解,在耦合為HEP-苯甲醛期間維持接近中性或略微鹼性環境為重要的。HEP聚合物及GSC均為高度水溶性及水性緩衝系統且因此對於將pH維持於接近中性位準較佳。可使用多種有機及無機緩衝液,然而,緩衝組分應較佳在還原胺化條件下不反應。此不包括例如含有一級及很少一部分二級胺基之有機緩衝系統。熟習此項技術者將知曉何等緩衝液適合且何等不適合。適合之緩衝液之一些實例顯示於下表1中: Since GSC can undergo hydrolysis in acidic media, it is important to maintain a near neutral or slightly alkaline environment during coupling to HEP-benzaldehyde. Both HEP polymers and GSC are highly water soluble and aqueous buffer systems and are therefore preferred for maintaining the pH near the neutral level. A wide variety of organic and inorganic buffers can be used, however, the buffer component should preferably not react under reductive amination conditions. This does not include, for example, organic buffer systems containing primary and minor secondary amine groups. Those skilled in the art will know what buffer is suitable and what is not suitable. Some examples of suitable buffers are shown in Table 1 below:

藉由應用此方法,可以使CMP活化基團水解之機率最小化之簡單方法高效製備及分離經半衰期延長部分修飾、具有不含異構體之穩定鍵之GSC試劑。 By applying this method, a simple method for minimizing the probability of hydrolysis of the CMP activating group can efficiently prepare and isolate a GSC reagent having a half-life extended partial modification and having a stable bond containing no isomer.

藉由使該等化合物中之任一者彼此反應,可創造包含4-甲基苯甲醯基子連接子部分之HEP-GSC共軛物。 By reacting any of these compounds with each other, a HEP-GSC conjugate comprising a 4-methylbenzimidyl linker moiety can be created.

GSC亦可與硫代丁內酯反應,藉此產生經硫醇修飾之GSC分子(GSC-SH)。如在本發明中所展示,該等試劑可與順丁烯二醯亞胺官能化HEP聚合物反應以形成HEP-GSC試劑。此合成途徑描繪於圖15中。所得產物具有包含琥珀醯亞胺之鍵聯結構。 GSC can also be reacted with thiobutyrolactone to produce a thiol-modified GSC molecule (GSC-SH). As shown in the present invention, the reagents can be reacted with a maleimide functionalized HEP polymer to form a HEP-GSC reagent. This synthetic route is depicted in Figure 15. The resulting product has a linkage structure comprising amber imine.

然而,基於琥珀醯亞胺之(子)鍵可尤其在經修飾之GSC試劑長時間儲存於水溶液時經歷水解開環且儘管鍵可保持完整,但開環反應將添加呈結構異構體及立體異構體形式之非所需非均質性。 However, the (sub) bond based on amber imine can undergo hydrolysis opening and ringing especially when the modified GSC reagent is stored in an aqueous solution for a long time and although the bond can remain intact, the ring opening reaction will be added as a structural isomer and a stereoisomer. Undesired heterogeneity of the form of the structure.

糖共軛之方法 Sugar conjugation method

可經由存在於(聚)-肽主結構中之殘基上之聚糖進行HEP-GSC共軛物與(聚)-肽之共軛。此形式之共軛亦稱為糖共軛。 Conjugation of the HEP-GSC conjugate to the (poly)-peptide can be carried out via a glycan present on the residue in the (poly)-peptide main structure. The conjugate of this form is also known as sugar conjugation.

多年以來,已證實基於唾液酸轉移酶之方法對於修飾諸如凝血因子FVII之凝血因子上之N-聚糖或O-聚糖為適度且高度選擇性的。 For many years, methods based on sialyltransferase have been shown to be modest and highly selective for modifying N-glycans or O-glycans on coagulation factors such as factor FVII.

相比於涉及蛋白骨架中之胺基酸的基於半胱胺酸烷基化、離胺酸醯化及類似共軛之共軛方法,經由聚糖之共軛為具有較少生物活性干擾的附接諸如蛋白/肽片段之聚合物之較大結構至生物活性蛋白之吸引人的方式。此係由於聚糖為高度親水性的,一般傾向於遠離蛋白表面且在溶液中定向,使得對於蛋白活性重要之結合表面不含聚糖。 The conjugation via a glycan is an attachment with less bioactivity interference than a cysteine acid alkylation, lysine deuteration, and a similar conjugation conjugate method involving an amino acid in the protein backbone. An attractive way to attach a larger structure of a polymer such as a protein/peptide fragment to a biologically active protein. This is due to the fact that the glycans are highly hydrophilic and generally tend to be remote from the surface of the protein and oriented in solution such that the binding surface important for protein activity is free of glycans.

聚糖可為天然存在的或其可經由例如使用此項技術中熟知之方法插入N-鍵聯聚糖而插入。 The glycan may be naturally occurring or it may be inserted, for example, by insertion of an N-linked glycan using methods well known in the art.

GSC為可藉由使用唾液酸轉移酶轉移為醣蛋白之唾液酸衍生物。其可經諸如甘胺醯基胺基上之PEG之取代基選擇性修飾且仍藉由使用唾液酸轉移酶酶促轉移為醣蛋白。可藉由酶促方法大規模地有效製備 GSC(WO07056191)。 GSC is a sialic acid derivative that can be transferred to a glycoprotein by using a sialyltransferase. It can be selectively modified by a substituent such as PEG on a glycidylamine group and is still enzymatically transferred to a glycoprotein by using a sialyltransferase. Can be efficiently prepared on a large scale by enzymatic methods GSC (WO07056191).

唾液酸轉移酶 Sialyltransferase

唾液酸轉移酶為一類糖基轉移酶,其將來自天然活化唾液酸(Sia)-CMP(胞嘧啶核苷單磷酸)化合物之唾液酸轉移為例如蛋白質上之半乳糖基部分。許多唾液酸轉移酶(ST3GalIII、ST3GalI、ST6GalNAcI)能夠轉移已在尤其具有大群體之C5乙醯胺基,諸如40kDa PEG上經修飾之唾液酸-CMP(Sia-CMP)衍生物(WO03031464)。本發明可使用之相關唾液酸轉移酶之廣泛但非限制性清單揭示於WO2006094810中,其以全文引用的方式併入本文中。 Sialyltransferases are a class of glycosyltransferases that transfer sialic acid from a naturally activated sialic acid (Sia)-CMP (cytidine monophosphate) compound to, for example, a galactosyl moiety on a protein. Many sialyltransferases (ST3GalIII, ST3GalI, ST6GalNAcI) are capable of transferring sialic acid-CMP (Sia-CMP) derivatives that have been modified, in particular with a large population of C5 acetylamine groups, such as 40 kDa PEG (WO03031464). A broad, but non-limiting list of related sialyltransferases that can be used in the present invention is disclosed in WO2006094810, which is incorporated herein by reference in its entirety.

在本發明之一個態樣中,可藉由唾液酸酶處理移除醣蛋白上之末端唾液酸以提供去唾液酸基醣蛋白。去唾液酸基醣蛋白及經半衰期延長部分修飾之GSC將一同充當唾液酸轉移酶之受質。反應產物為具有經由完整糖基鍵聯基團(在此狀況下為完整唾液酸連接子基團)連接之半衰期延長部分之醣蛋白共軛物。在圖18中顯示反應流程,其中去唾液酸基FVIIa醣蛋白與HEP-GSC在唾液酸轉移酶存在下反應。 In one aspect of the invention, the terminal sialic acid on the glycoprotein can be removed by treatment with a sialidase to provide a asialoglyl glycoprotein. The asialoglyl glycoprotein and the GSC modified by the half-life extension will act together as a substrate for the sialyltransferase. The reaction product is a glycoprotein conjugate having a half-life extending moiety linked via an intact glycosyl linkage group (in this case, a complete sialic acid linker group). The reaction scheme is shown in Figure 18, in which the asialo-FVIIa glycoprotein is reacted with HEP-GSC in the presence of a sialyltransferase.

術語「唾液酸」係指9-碳羧化糖家族之任何成員。唾液酸家族之最常見成員為N-乙醯基神經胺糖酸(2-酮-5-乙醯胺基-3,5-二去氧基-D-甘油-D-galactononulopyranos-1-酮酸(通常縮寫為Neu5Ac、NeuAc、NeuNAc或NANA)。該家族之第二成員為N-羥乙醯基-神經胺酸(Neu5Gc或NeuGc),其中NeuNAc之N-乙醯基經羥基化。第三唾液酸家族成員為2-酮-3-去氧-尤羅索尼克酸(nonulosonic acid)(KDN)(Nadano等人(1986)J.Biol.Chem.261:11550-11557;Kanamori等人,J.Biol.Chem.265:21811-21819(1990))。亦包 括9-取代唾液酸,諸如9-O-C1-C6醯基-Neu5Ac,如9-O-乳醯Neu5Ac或9-O-乙醯基-Neu5Ac。唾液酸化程序中之唾液酸化合物之合成及用途揭示於1992年10月1日公佈之國際申請案WO92/16640中。 The term "sialic acid" refers to any member of the 9-carboxycarboxylated sugar family. The most common member of the sialic acid family is N-ethyl thioglycolic acid (2-keto-5-acetamido-3,5-dideoxy-D-glycerol-D-galactononulopyranos-1-keto acid (usually abbreviated as Neu5Ac, NeuAc, NeuNAc or NANA.) The second member of this family is N-hydroxyethyl-neuraminic acid (Neu5Gc or NeuGc) in which the N-ethenyl group of NeuNAc is hydroxylated. The member of the sialic acid family is 2-keto-3-deoxy-nonolosonic acid (KDN) (Nadano et al. (1986) J. Biol. Chem. 261: 11550-11557; Kanamori et al., J .Biol. Chem. 265:21811-21819 (1990)). Also included A 9-substituted sialic acid such as 9-O-C1-C6 decyl-Neu5Ac, such as 9-O-chyle Neu5Ac or 9-O-ethinyl-Neu5Ac. The synthesis and use of a sialic acid compound in a sialylation procedure is disclosed in International Application No. WO 92/16640, issued Oct. 1, 1992.

術語「唾液酸衍生物」係指經一或多個化學部分修飾的如上文所定義之唾液酸。修飾基團可例如為烷基(諸如甲基)、疊氮基及氟基,或可充當附接其他化學部分之柄的諸如胺基或巰基之官能基。實例包括9-去氧-9-氟-Neu5Ac及9-疊氮基-9-去氧-Neu5Ac。術語亦涵蓋缺乏諸如羧基之官能基中之一或多者或羥基中之一或多者之唾液酸。術語亦涵蓋羧基經甲醯胺基或酯基置換之衍生物。術語亦指一或多個羥基已氧化為羰基之唾液酸。此外,術語係指例如在藉由過碘酸鹽之氧化處理之後缺乏C9碳原子或C9-C8碳鏈之唾液酸。 The term "sialic acid derivative" refers to a sialic acid as defined above modified by one or more chemical moieties. The modifying group can be, for example, an alkyl group (such as a methyl group), an azide group, and a fluoro group, or can function as a functional group such as an amine group or a thiol group attached to a handle of another chemical moiety. Examples include 9-deoxy-9-fluoro-Neu5Ac and 9-azido-9-deoxy-Neu5Ac. The term also encompasses sialic acid which lacks one or more of the functional groups such as a carboxyl group or one or more of the hydroxyl groups. The term also encompasses derivatives in which the carboxyl group is replaced by a carbenamine or ester group. The term also refers to sialic acid in which one or more hydroxyl groups have been oxidized to a carbonyl group. Further, the term refers to sialic acid lacking a C9 carbon atom or a C9-C8 carbon chain, for example, after oxidation treatment with periodate.

甘胺醯基唾液酸為根據上述定義之唾液酸衍生物,其中NeuNAc之N-乙醯基經亦稱為胺基乙醯基之甘胺醯基置換。甘胺醯基唾液酸可藉由以下結構表示: Glycosyl sialic acid is a sialic acid derivative according to the above definition, wherein the N-acetyl group of NeuNAc is replaced by a glycidinyl group also known as an aminoethyl group. Glycosyl sialic acid can be represented by the following structure:

術語「CMP活化」唾液酸或唾液酸衍生物係指含有唾液酸部分及胞嘧啶核苷單磷酸(CMP)之糖核苷酸。 The term "CMP activation" sialic acid or sialic acid derivative refers to a sugar nucleotide containing a sialic acid moiety and cytosine monophosphate (CMP).

在本說明書中,術語「甘胺醯基唾液酸胞嘧啶核苷單磷酸」用於描述GSC,且為相同CMP活化甘胺醯基唾液酸之替代命名的同義詞。 替代命名包括CMP-5'-甘胺醯基唾液酸、胞嘧啶核苷-5′-單磷-N-甘氨醯基神經胺酸、胞嘧啶核苷-5′-單磷-N-甘胺醯基唾液酸。 In the present specification, the term "glycosyl sialo cytidine monophosphate" is used to describe GSC and is synonymous with the substitution of the same CMP-activated glycosyl sialic acid. Alternative nomenclature includes CMP-5'-glycosyl sialic acid, cytidine-5'-monophosphonium-N-glycidyl tranexylamine, cytidine-5'-monophosphonium-N-gan Aminyl sialic acid.

術語「完整糖基鍵聯基團」係指來源於糖基部分之鍵聯基團,其中醣單體插入於多肽之間且共價連接至多肽且HEP部分不在共軛物形成期間例如藉由偏過碘酸鈉降解,例如氧化。「完整糖基鍵聯基團」可藉由添加糖基單元或自親本醣結構移除一或多個糖基單元來源於天然存在之寡醣。 The term "intact glycosyl linking group" refers to a linking group derived from a glycosyl moiety, wherein a sugar monomer is inserted between the polypeptides and covalently attached to the polypeptide and the HEP moiety is not formed during conjugate formation, for example by Degradation of sodium metaperiodate, such as oxidation. An "intact glycosyl-bonding group" can be derived from a naturally occurring oligosaccharide by the addition of a glycosyl unit or removal of one or more glycosyl units from a parent sugar structure.

術語「去唾液酸基醣蛋白」意欲包括已例如藉由用唾液酸酶之處理或藉由化學處理移除一或多個末端唾液酸殘基,暴露至少一個來自半乳糖或N-乙醯基半乳胺糖之下伏「層」之半乳糖或N-乙醯基半乳胺糖殘基(「暴露半乳糖殘基」)之醣蛋白。 The term "desialyl glycoprotein" is intended to include exposure of at least one from galactose or N-ethylidene groups, for example by treatment with sialidase or by chemical treatment to remove one or more terminal sialic acid residues. A glycoprotein of a galactose or N-ethylmercapto galactosamine residue ("exposed galactose residue") under the galactose.

結構式中之點線表示開放價鍵(亦即連接結構與其他化學部分之鍵)。 The dotted line in the structural formula represents an open valence bond (ie, a bond between a linking structure and other chemical moieties).

聚乙二醇化衍生物 Pegylated derivative

根據本發明之「聚乙二醇化因子VII多肽變異體/衍生物」可具有一或多個附接至FVII多肽之任何部分(包括因子VII多肽之任何胺基酸殘基或碳水化合物部分)之聚乙二醇(PEG)分子。化學及/或酶促方法可用於將PEG或其他半衰期延長部分共軛至因子VII多肽上之聚糖。酶促共軛方法之實例描述於例如WO03031464中。聚糖可為天然存在的或其可如上文關於HEP共軛物所述經工程改造。根據本發明之「半胱胺酸-聚乙二醇化因子VII多肽變異體」具有一或多個共軛至存在於或引入至FVII多肽中之半胱胺酸殘基之硫氫基之PEG分子。 A "PEGylated Factor VII polypeptide variant/derivative" according to the invention may have one or more attachments to any portion of a FVII polypeptide, including any amino acid residues or carbohydrate moieties of a Factor VII polypeptide. Polyethylene glycol (PEG) molecule. Chemical and/or enzymatic methods can be used to conjugate PEG or other half-life extending moiety to the glycan on the Factor VII polypeptide. Examples of enzymatic conjugation methods are described, for example, in WO03031464. The glycan may be naturally occurring or it may be engineered as described above for the HEP conjugate. A "cysteine-pegylated Factor VII polypeptide variant" according to the invention has one or more PEG molecules conjugated to a sulfhydryl group of a cysteine residue present in or introduced into a FVII polypeptide .

融合蛋白 Fusion protein

融合蛋白為經由原先編碼獨立蛋白或肽或其片段之兩個或兩個以上DNA序列之同框接合創造之蛋白。融合蛋白DNA序列之轉譯將產生可具有衍生於初始蛋白或肽中之每一者之功能特性之單一蛋白序列。可藉由諸如重疊PCR或DNA連接之標準分子生物學方法人工創造編碼融合蛋白之DNA序列且排除第一5'-端DNA序列中之終止密碼子,同時保留3'-端DNA序列中之終止密碼子進行組合。所得融合蛋白DNA序列可插入至在諸如細菌、酵母菌、真菌、昆蟲細胞或哺乳動物細胞之標準宿主生物體中支持異源融合蛋白表現之適當表現載體中。 A fusion protein is a protein created by in-frame ligation of two or more DNA sequences that originally encoded an independent protein or peptide or a fragment thereof. Translation of the fusion protein DNA sequence will result in a single protein sequence that can have functional properties derived from each of the original protein or peptide. The DNA sequence encoding the fusion protein can be artificially created by standard molecular biology methods such as overlapping PCR or DNA ligation and the stop codon in the first 5'-end DNA sequence is excluded, while terminating in the 3'-end DNA sequence is retained Codons are combined. The resulting fusion protein DNA sequence can be inserted into a suitable expression vector that supports the expression of the heterologous fusion protein in a standard host organism such as a bacterial, yeast, fungal, insect cell or mammalian cell.

融合蛋白可含有分離定義融合蛋白之蛋白或肽部分之連接子或間隔子肽序列。 The fusion protein may contain a linker or spacer peptide sequence that separates the protein or peptide portion of the defined fusion protein.

在本發明之一個令人感興趣的具體實例中,因子VII多肽為包含因子VII多肽及融合搭配物蛋白/肽,例如Fc域或白蛋白之融合蛋白。 In an interesting embodiment of the invention, the Factor VII polypeptide is a fusion protein comprising a Factor VII polypeptide and a fusion partner protein/peptide, such as an Fc domain or albumin.

Fc融合蛋白 Fc fusion protein

術語「Fc融合蛋白」在本文中意欲包涵稠合至可衍生自任何抗體同型之Fc域之本發明之因子VII多肽。由於IgG抗體之相對較長循環半衰期,IgG Fc域將通常較佳。Fc域可進一步經修飾以調節某些效應功能,諸如補體結合及/或結合至某些Fc受體。FVII多肽與具有結合至FcRn受體之能力之Fc域之融合一般將產生相比於wt FVII多肽之半衰期延長之融合蛋白之循環半衰期。IgG Fc域中之位置234、235及237之突變一般將導致與Fc γ RI受體之結合減少且亦可能導致與Fc γ RIIa及Fc γ RIII受體之結合減少。此等突變不改變與FcRn受體之結合,其藉由細胞內吞再循環途 徑促進長循環半衰期。較佳地,根據本發明之融合蛋白之經修飾之IgG Fc域包含以下突變中之一或多者:分別將導致與某些Fc受體之親和性減小之突變體(L234A、L235E及G237A)及導致C1q-介導之補體固定減小之突變體(A330S及P331S)。或者,Fc域可為IgG4 Fc域,較佳包含S241P/S228P突變。 The term "Fc fusion protein" is intended herein to encompass a Factor VII polypeptide of the invention fused to an Fc domain that can be derived from any antibody isotype. Due to the relatively long circulating half-life of IgG antibodies, the IgG Fc domain will generally be preferred. The Fc domain can be further modified to modulate certain effector functions, such as complement binding and/or binding to certain Fc receptors. Fusion of a FVII polypeptide to an Fc domain having the ability to bind to an FcRn receptor will generally result in a circulating half-life of the fusion protein that has a longer half-life than the wt FVII polypeptide. Mutations at positions 234, 235 and 237 in the Fc Fc domain will generally result in reduced binding to the Fc gamma RI receptor and may also result in reduced binding to the Fc gamma RIIa and Fc gamma RIII receptors. These mutations do not alter binding to the FcRn receptor, which is recirculated by intracellular endocytosis The diameter promotes long cycle half-life. Preferably, the modified IgG Fc domain of the fusion protein according to the invention comprises one or more of the following mutations: mutants which result in reduced affinity to certain Fc receptors, respectively (L234A, L235E and G237A) And mutants (A330S and P331S) that result in a decrease in C1q-mediated complement fixation. Alternatively, the Fc domain can be an IgG4 Fc domain, preferably comprising the S241P/S228P mutation.

生產因子VII多肽 Production of Factor VII polypeptide

可使用熟知生產及純化方法以重組方式生產本發明之因子VII多肽;此等方法之一些實例為下文所述;生產及純化方法之其他實例尤其描述於WO2007/031559中。 The Factor VII polypeptides of the invention can be produced recombinantly using well known methods of production and purification; some examples of such methods are described below; other examples of methods of production and purification are described inter alia in WO2007/031559.

在一個態樣中,本發明係關於一種生產因子VII多肽之方法。可藉助於重組核酸技術生產本文所述之因子VII多肽。一般而言,選殖人類野生型因子VII核酸序列經修飾以編碼所需蛋白。此經修飾之序列隨後插入至表現載體中,其轉而轉換或轉染至宿主細胞中。高等真核細胞,特定言之經培養之哺乳動物細胞較佳作為宿主細胞。 In one aspect, the invention relates to a method of producing a Factor VII polypeptide. The Factor VII polypeptides described herein can be produced by means of recombinant nucleic acid techniques. In general, the human wild-type Factor VII nucleic acid sequence is modified to encode the desired protein. This modified sequence is then inserted into an expression vector which in turn is transformed or transfected into a host cell. Higher eukaryotic cells, specifically cultured mammalian cells, are preferred as host cells.

在另一態樣中,本發明係關於一種含有及表現聚核苷酸構築體之轉殖基因動物。 In another aspect, the invention relates to a transgenic animal comprising and expressing a polynucleotide construct.

已知人類野生型因子VII之完整核苷酸及胺基酸序列(參見U.S.4,784,950,其中描述重組人類因子VII之選殖及表現)。 The complete nucleotide and amino acid sequence of human wild-type Factor VII is known (see U.S. Patent 4,784,950, which describes the selection and expression of recombinant human Factor VII).

可藉由多種已知技術實現胺基酸序列變更。可藉由位點特異性突變誘發來修飾核酸序列。位點特異性突變誘發之技術已在此項技術中為所熟知且描述於例如Zoller及Smith(DNA 3:479-488,1984)或「Splicing by extension overlap」,Horton等人,Gene 77,1989,第61-68頁中。因此,使用因 子VII之核苷酸及胺基酸序列,吾人可引入所選變更。同樣,使用使用特異性引物之聚合酶鏈反應製備DNA構築體之程序已為熟習此項技術者所熟知(參見PCR Protocols,1990,Academic Press,San Diego,California,USA)。 Amino acid sequence changes can be achieved by a variety of known techniques. The nucleic acid sequence can be modified by site-specific mutagenesis. Techniques for site-specific mutagenesis induction are well known in the art and are described, for example, in Zoller and Smith (DNA 3:479-488, 1984) or "Splicing by extension overlap", Horton et al, Gene 77, 1989. , pages 61-68. Therefore, the use of The nucleotides and amino acid sequences of subunit VII, we may introduce selected modifications. Likewise, procedures for preparing DNA constructs using polymerase chain reaction using specific primers are well known to those skilled in the art (see PCR Protocols, 1990, Academic Press, San Diego, California, USA).

編碼本發明之因子VII多肽之核酸構築體可適當地為基因組或cDNA來源。亦可藉由已確立之標準方法,例如Beaucage及Caruthers,Tetrahedron Letters 22(1981),1859-1869描述之胺基磷酸酯方法以合成方式製備編碼因子VII多肽之核酸構築體。亦可藉由使用特異性引物之聚合酶鏈反應,例如如US 4,683,202、Saiki等人,Science 239(1988),487-491或Sambrook等人,上述中所述製備編碼人類因子VII多肽之序列。 A nucleic acid construct encoding a Factor VII polypeptide of the invention may suitably be of genomic or cDNA origin. Nucleic acid constructs encoding Factor VII polypeptides can also be prepared synthetically by established standard methods, such as the aminophosphate methods described by Beaucage and Caruthers, Tetrahedron Letters 22 (1981), 1859-1869. Sequences encoding human Factor VII polypeptides can also be prepared by polymerase chain reaction using specific primers, for example, as described in US 4,683,202, Saiki et al, Science 239 (1988), 487-491 or Sambrook et al., supra.

此外,核酸構築體可為藉由根據標準技術接合合成、基因組或cDNA來源(按需要)之片段,對應於整個核酸構築體之各部分之片段製備之混合合成及基因組、混合合成及cDNA或混合基因組及cDNA來源的。 In addition, the nucleic acid construct can be a synthetic synthesis and genomic, mixed synthesis and cDNA or hybrid preparation of fragments corresponding to the entire nucleic acid construct by ligation of synthetic, genomic or cDNA source (as needed) according to standard techniques. Genomic and cDNA derived.

核酸構築體較佳為DNA構築體。用於生產根據本發明之因子VII多肽之DNA序列將典型地編碼因子VII之胺基端之前多肽以自宿主細胞獲得恰當轉譯後處理(例如麩胺酸殘基之γ-羧化)及分泌。前多肽可為因子VII或另一維生素K依賴性血漿蛋白,諸如因子IX、因子X、凝血酶原、蛋白C或蛋白S之多肽。如熟習此項技術者將瞭解,可在因子VII多肽之胺基酸序列中進行額外修飾,其中彼等修飾不顯著減損蛋白充當促凝劑之能力。 The nucleic acid construct is preferably a DNA construct. The DNA sequence used to produce the Factor VII polypeptide according to the invention will typically encode the amino-terminal end polypeptide of Factor VII with appropriate post-translational processing (e.g., gamma-carboxylation of glutamic acid residues) and secretion from the host cell. The propolypeptide can be Factor VII or another vitamin K-dependent plasma protein, such as a Factor IX, Factor X, Prothrombin, Protein C or Protein S polypeptide. As will be appreciated by those skilled in the art, additional modifications can be made in the amino acid sequence of the Factor VII polypeptide, wherein such modifications do not significantly impair the ability of the protein to act as a coagulant.

編碼人類因子VII多肽之DNA序列通常插入至重組載體中,該載體可為任何載體,其可便利地經受重組DNA程序,且載體之選擇 將通常取決於其欲引入之宿主細胞。因此,載體可自主地複製載體,亦即以染色體外實體形式存在之載體,載體複製獨立於染色體複製,例如質體。或者,載體可為當引入宿主細胞中時整合至宿主細胞基因組中且連同其已整合之染色體進行複製之載體。 The DNA sequence encoding the human Factor VII polypeptide is typically inserted into a recombinant vector which can be any vector which can be conveniently subjected to recombinant DNA procedures and the choice of vector It will usually depend on the host cell into which it is to be introduced. Thus, the vector can autonomously replicate the vector, i.e., the vector in the form of an extrachromosomal entity, the vector replication being independent of chromosomal replication, such as plastids. Alternatively, the vector may be one which, when introduced into a host cell, integrates into the host cell genome and replicates along with its integrated chromosome.

載體較佳為表現載體,其中編碼人類因子VII多肽之DNA序列可操作地連接於轉錄DNA所需的額外片段。一般而言,表現載體衍生自質體或病毒DNA,或可含有二者之要素。術語「可操作地連接」指示片段經配置以使其與其預期目的一致地起作用,例如在啟動子中起始且經由編碼多肽之DNA序列進行之轉錄。 The vector is preferably an expression vector in which the DNA sequence encoding the human Factor VII polypeptide is operably linked to additional fragments required for transcription of the DNA. In general, the expression vector is derived from plastid or viral DNA, or may contain elements of both. The term "operably linked" indicates that the fragment is configured to function in concert with its intended purpose, such as transcription initiated in a promoter and via a DNA sequence encoding a polypeptide.

用於表現因子VIIa多肽變異體之表現載體將包含能夠導引選殖基因或cDNA之轉錄之啟動子。啟動子可為任何DNA序列,其於所選宿主細胞中顯示轉錄活性且可衍生自編碼與宿主細胞同源或異源之蛋白之基因。 A expression vector for expression of a Factor VIIa polypeptide variant will comprise a promoter capable of directing transcription of the cloning gene or cDNA. The promoter may be any DNA sequence which displays transcriptional activity in the host cell of choice and may be derived from a gene encoding a protein either homologous or heterologous to the host cell.

導引編碼哺乳動物細胞中之人類因子VII多肽之DNA之轉錄之適合之啟動子之實例為SV40啟動子(Subramani等人,Mol.Cell Biol.1(1981),854-864)、MT-1(金屬硫蛋白基因)啟動子(Palmiter等人,Science 222(1983),809-814)、CMV啟動子(Boshart等人,Cell 41:521-530,1985)或腺病毒2主要晚期啟動子(Kaufman及Sharp,Mol.Cell.Biol,2:1304-1319,1982)。 An example of a suitable promoter for directing transcription of DNA encoding a human Factor VII polypeptide in a mammalian cell is the SV40 promoter (Subramani et al, Mol. Cell Biol. 1 (1981), 854-864), MT-1. (metallothionein gene) promoter (Palmiter et al, Science 222 (1983), 809-814), CMV promoter (Boshart et al, Cell 41:521-530, 1985) or adenovirus 2 major late promoter ( Kaufman and Sharp, Mol. Cell. Biol, 2: 1304-1319, 1982).

必要時,編碼因子VII多肽之DNA序列亦可可操作地連接至適合之終止子,諸如人類生長激素終止子(Palmiter等人,Science 222,1983,第809-814頁)或TPI1(Alber及Kawasaki,J.Mol.Appl.Gen.1,1982,第419-434頁)或ADH3(McKnight等人,The EMBO J.4,1985,第2093-2099頁)終止 子。表現載體亦可含有一組位於因子VII序列自身之啟動子下游及插入位點上游之RNA剪接位點。較佳RNA剪接位點可自腺病毒及/或免疫球蛋白基因獲得。表現載體中亦含有位於插入位點下游之聚腺苷酸化信號。尤佳聚腺苷酸化信號包括來自SV40之早期或晚期聚腺苷酸化信號(Kaufman及Sharp,同上)、來自腺病毒5 Elb區域之聚腺苷酸化信號、人類生長激素基因終止子(DeNoto等人Nucl.Acids Res.9:3719-3730,1981)或來自人類因子VII基因或牛類因子VII基因之聚腺苷酸化信號。表現載體亦可包括非編碼病毒前導序列,諸如位於啟動子與RNA剪接位點之間的腺病毒2三重前導序列;及強化子序列,諸如SV40強化子。 Where necessary, the DNA sequence encoding the Factor VII polypeptide can also be operably linked to a suitable terminator, such as a human growth hormone terminator (Palmiter et al, Science 222, 1983, pages 809-814) or TPI1 (Alber and Kawasaki, J. Mol. Appl. Gen. 1, 1982, pp. 419-434) or ADH3 (McKnight et al., The EMBO J. 4, 1985, pp. 2093-2099) Termination child. The expression vector may also contain a set of RNA splice sites located downstream of the promoter of the Factor VII sequence and upstream of the insertion site. Preferred RNA splice sites are obtainable from adenovirus and/or immunoglobulin genes. The expression vector also contains a polyadenylation signal downstream of the insertion site. Particularly good polyadenylation signals include early or late polyadenylation signals from SV40 (Kaufman and Sharp, supra), polyadenylation signals from adenovirus 5 Elb regions, human growth hormone gene terminators (DeNoto et al. Nucl. Acids Res. 9: 3719-3730, 1981) or a polyadenylation signal from the human Factor VII gene or the bovine Factor VII gene. The expression vector can also include a non-coding viral leader sequence, such as an adenovirus 2 triple leader sequence located between the promoter and the RNA splice site; and an enhancer sequence, such as the SV40 enhancer.

為將本發明之因子VII多肽導引至宿主細胞之分泌途徑中,可於重組載體中提供分泌信號序列(亦稱為前導序列、前序列或預序列)。分泌信號序列接合至編碼適當閱讀框架中之人類因子VII多肽之DNA序列。分泌信號序列通常安置於編碼肽之DNA序列之5'。分泌信號序列可通常與蛋白相關或可來自編碼另一分泌蛋白之基因。 To direct a Factor VII polypeptide of the invention into the secretory pathway of a host cell, a secretion signal sequence (also referred to as a leader sequence, pre-sequence or pre-sequence) can be provided in the recombinant vector. The secretion signal sequence is ligated to a DNA sequence encoding a human Factor VII polypeptide in an appropriate reading frame. The secretion signal sequence is typically placed 5' to the DNA sequence encoding the peptide. The secretion signal sequence can be typically associated with a protein or can be derived from a gene encoding another secreted protein.

分別用於接合編碼因子VII多肽之DNA序列、啟動子及視情況存在之終止子及/或分泌信號序列及將其插入含有複製所需之資訊之適合之載體之程序已為熟習此項技術者所熟知(參見例如Sambrook等人,Molecular Cloning:A Laboratory Manual,Cold Spring Harbor,New York,1989)。 A procedure for ligating a DNA sequence encoding a Factor VII polypeptide, a promoter, and optionally a terminator and/or a secretion signal sequence, and inserting it into a suitable vector containing the information required for replication, is well known to those skilled in the art. Well known (see, for example, Sambrook et al, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York, 1989).

轉染哺乳動物細胞及表現引入細胞中之DNA序列之方法描述於例如Kaufman及Sharp,J.Mol.Biol.159(1982),601-621;Southern及Berg,J.Mol.Appl.Genet.1(1982),327-341;Loyter等人,Proc.Natl.Acad.Sci.USA 79(1982),422-426;Wigler等人,Cell 14(1978),725;Corsaro及Pearson,Somatic Cell Genetics 7(1981),603,Graham及van der Eb,Virology 52(1973),456;及Neumann等人,EMBO J.1(1982),841-845中。 Methods for transfecting mammalian cells and expressing DNA sequences introduced into cells are described, for example, in Kaufman and Sharp, J. Mol. Biol. 159 (1982), 601-621; Southern and Berg, J. Mol. Appl. Genet. (1982), 327-341; Loyter et al, Proc. Natl. Acad. Sci. USA 79 (1982), 422-426; Wigler et al, Cell 14 (1978), 725; Corsaro and Pearson, Somatic Cell Genetics 7 (1981), 603, Graham and van der Eb, Virology 52 (1973), 456; and Neumann et al, EMBO J. 1 (1982), 841-845.

選殖DNA序列藉由例如磷酸鈣介導之轉染(Wigler等人,Cell 14:725-732,1978;Corsaro及Pearson,Somatic Cell Genetics 7:603-616,1981;Graham及Van der Eb,Virology 52d:456-467,1973)或電穿孔(Neumann等人,EMBO J.1:841-845,1982)引入經培養之哺乳動物細胞中。為鑑別及選擇表現外源DNA之細胞,賦予可選表型之基因(可選標記物)一般連同相關基因或cDNA引入細胞中。較佳可選標記物包括賦予對諸如新黴素、潮黴素及甲胺喋呤之藥物之耐性的基因。可選標記物可為可擴增可選標記物。較佳可擴增可選標記物為二氫葉酸還原酶(DHFR)序列。可選標記物可與相關基因同時引入獨立質體上之細胞中,或其可引入相同質體上。若在相同質體上,則可選標記物及相關基因可在不同啟動子或相同啟動子控制下,後一種配置生產雙順反子訊息物。此類型之構築體在此項技術中已知(例如Levinson及Simonsen,U.S.4,713,339)。添加被稱為「載體DNA」之額外DNA至引入細胞中之混合物中亦可為有利的。 The selected DNA sequence is transfected by, for example, calcium phosphate (Wigler et al, Cell 14: 725-732, 1978; Corsaro and Pearson, Somatic Cell Genetics 7: 603-616, 1981; Graham and Van der Eb, Virology 52d: 456-467, 1973) or electroporation (Neumann et al, EMBO J. 1: 841-845, 1982) introduced into cultured mammalian cells. To identify and select cells expressing foreign DNA, a gene (optional marker) that confers an alternative phenotype is typically introduced into the cell along with the relevant gene or cDNA. Preferred selectable markers include genes that confer tolerance to drugs such as neomycin, hygromycin, and methotrexate. The selectable marker can be an amplifiable selectable marker. Preferably, the selectable marker is a dihydrofolate reductase (DHFR) sequence. The selectable marker can be introduced into the cell on the independent plastid simultaneously with the relevant gene, or it can be introduced into the same plastid. If on the same plastid, the selectable marker and related genes can be under the control of different promoters or the same promoter, and the latter configuration produces a bicistronic message. Constructs of this type are known in the art (e.g., Levinson and Simonsen, U.S. 4,713,339). It may also be advantageous to add additional DNA called "vector DNA" to the mixture introduced into the cells.

在細胞已吸收DNA之後,其生長於適當生長培養基中,典型地1-2天,以開始表現相關基因。如本文所用,術語「適當生長培養基」意謂含有細胞生長及表現相關因子VII多肽所需的養分及其他組分之培養基。培養基一般包括碳源、氮源、必需胺基酸、必需糖、維生素、鹽、磷脂、蛋白質及生長因子。為生產γ-羧化蛋白,培養基將含有維生素K,較佳以約0.1μg/ml至約5μg/ml之濃度。隨後將藥物選擇應用於選擇以穩定方式表現可選標記物之細胞的生長。對於已經可擴增可選標記物轉染之細 胞,可增加藥物濃度以選擇增加複本數之選殖序列,藉此增加表現量。隨後篩選穩定轉染細胞之純系以用於表現相關人類因子VII多肽。 After the cells have absorbed the DNA, they are grown in a suitable growth medium, typically 1-2 days, to begin expressing the relevant genes. As used herein, the term "appropriate growth medium" means a medium containing cell growth and nutrients and other components required for expression of a related Factor VII polypeptide. The medium generally includes a carbon source, a nitrogen source, an essential amino acid, an essential sugar, a vitamin, a salt, a phospholipid, a protein, and a growth factor. For the production of γ- carboxylated proteins, the medium will contain vitamin K, preferably from about 0.1 μ g / ml to a concentration of about 5 μ g / ml of. Drug selection is then applied to select the growth of cells that display the selectable marker in a stable manner. For cells that have been transfected with a selectable marker, the drug concentration can be increased to select a colony that increases the number of copies, thereby increasing the amount of expression. The pure lines of stably transfected cells are then screened for expression of the relevant human Factor VII polypeptide.

引入編碼因子VII多肽之DNA序列之宿主細胞可為任何細胞,其能夠生產轉譯後經修飾人類因子VII多肽且包括酵母菌、真菌及高等真核細胞。 The host cell into which the DNA sequence encoding the Factor VII polypeptide is introduced can be any cell capable of producing a translated human Factor VII polypeptide after translation and including yeast, fungi, and higher eukaryotic cells.

用於本發明中之哺乳動物細胞系之實例為中國倉鼠卵巢(CHO)細胞(例如ATCC CCL 61)、CHO DUKX細胞(Urlaub及Chasin,Proc.Natl.Acad.Sci.USA 77:4216-4220,1980)、幼倉鼠腎(BHK)及293(ATCC CRL 1573;Graham等人,J.Gen.Virol.36:59-72,1977)細胞系。 Examples of mammalian cell lines for use in the present invention are Chinese hamster ovary (CHO) cells (e.g., ATCC CCL 61), CHO DUKX cells (Urlaub and Chasin, Proc. Natl. Acad. Sci. USA 77: 4216-4220, 1980), baby hamster kidney (BHK) and 293 (ATCC CRL 1573; Graham et al, J. Gen. Virol. 36: 59-72, 1977) cell line.

隨後在允許表現因子VII多肽之條件下於適合之營養培養基中培養上文所述之經轉換或轉染宿主細胞,其後可自培養物中回收所有或部分所得肽。用於培養細胞之培養基可為任何適合於生長宿主細胞之習知培養基,諸如含有適當補充劑之基本或複合培養基。適合之培養基係購自商業供應商或可根據公佈之配方(例如於美國菌種保藏中心之目錄中)製備。可隨後藉由習知程序自培養基回收由細胞生產之因子VII多肽,該等習知程序包括藉由離心或過濾分離宿主細胞與培養基;藉助於例如硫酸銨之鹽沈澱上清液或濾液之蛋白質水性組分;藉由多種層析程序,例如離子交換層析法、凝膠過濾層析法、親和性層析法或其類似方法(取決於所述多肽類型)之純化。 The transformed or transfected host cells described above are then cultured in a suitable nutrient medium under conditions permitting expression of the Factor VII polypeptide, after which all or a portion of the resulting peptide can be recovered from the culture. The medium used to culture the cells may be any conventional medium suitable for growing host cells, such as a basic or complex medium containing appropriate supplements. Suitable media are commercially available from commercial suppliers or may be prepared according to published formulations (e.g., in the catalogue of the American Type Culture Collection). The Factor VII polypeptide produced by the cell can then be recovered from the culture medium by conventional procedures, including isolation of the host cell and culture medium by centrifugation or filtration; precipitation of the supernatant or filtrate protein by means of, for example, ammonium sulfate salt Aqueous component; purification by a variety of chromatographic procedures, such as ion exchange chromatography, gel filtration chromatography, affinity chromatography or the like (depending on the type of polypeptide).

轉殖基因動物技術可用於產生本發明之因子VII多肽。較佳在宿主雌性哺乳動物之乳腺內產生蛋白質。乳腺中之表現及將相關蛋白後續分泌為乳汁克服分離蛋白質與其他來源中遇到的許多困難。乳汁易於收 集、可大量獲得且在生物化學上經充分特性化。此外,主要乳蛋白以高濃度(典型地約1至15g/l)存在於乳汁中。 Transgenic animal technology can be used to produce the Factor VII polypeptides of the invention. Preferably, the protein is produced in the mammary gland of the host female mammal. The performance in the mammary gland and the subsequent secretion of related proteins into milk overcome many of the difficulties encountered in separating proteins from other sources. Milk is easy to receive The collection is available in large quantities and is fully characterized in biochemistry. In addition, the main milk protein is present in the milk at a high concentration (typically about 1 to 15 g/l).

自商業觀點,將具有較大產乳量之物種用作宿主明顯較佳。儘管可使用諸如小鼠及大鼠之較小動物(且在原理求證階段較佳),較佳使用家畜哺乳動物,包括(但不限於)豬、山羊、綿羊及牛。由於諸如綿羊之轉殖基因既往史、產乳量、用於收集綿羊奶之設備的成本及即用性之因素,此物種為尤佳的(參見例如WO 88/00239關於影響宿主物種之選擇之因素的比較)。一般需要選擇已經育種以用於乳製品用途之宿主動物品種,諸如東夫里士蘭綿羊(East Friesland sheep),或藉由在以後的日子飼養轉殖基因品系引進奶畜。在任何情況下,應使用具有已知、良好健康狀況之動物。 From a commercial point of view, it is significantly better to use a species with a larger milk production as a host. Although smaller animals such as mice and rats can be used (and preferred at the principle verification stage), livestock mammals are preferred, including but not limited to pigs, goats, sheep, and cattle. This species is particularly preferred due to factors such as the history of sheep's transgenic genes, the amount of milk produced, the cost of equipment used to collect sheep's milk, and the ease of use (see, for example, WO 88/00239 for the selection of host species) Comparison of factors). It is generally desirable to select a host animal species that has been bred for use in dairy products, such as East Friesland sheep, or to introduce dairy animals by breeding a transgenic line at a later date. In any case, animals with known, good health conditions should be used.

為在乳腺中獲得表現,使用來自乳蛋白基因之轉錄啟動子。乳蛋白基因包括編碼酪蛋白(參見U.S.5,304,489)、β-乳球蛋白、a-乳白蛋白及乳清酸性蛋白之彼等基因。β-乳球蛋白(BLG)啟動子較佳。在綿羊β-乳球蛋白基因之情況下,一般將使用基因之5'側接序列之至少近端406bp之區域,儘管5'側接序列之較大部分(達至約5kbp)較佳,諸如包含5'側接啟動子及β-乳球蛋白基因之非編碼部分之約4.25kbp DNA片段(參見Whitelaw等人,Biochem.J.286:31-39(1992))。來自其他物種之啟動子DNA之類似片段亦為適合的。 To obtain performance in the mammary gland, a transcriptional promoter from the milk protein gene is used. The milk protein gene includes genes encoding casein (see U.S. 5,304,489), beta-lactoglobulin, a-lactalbumin, and whey acidic protein. The β-lactoglobulin (BLG) promoter is preferred. In the case of the sheep beta-lactoglobulin gene, at least the proximal 406 bp region of the 5' flanking sequence of the gene will generally be used, although a larger portion of the 5' flanking sequence (up to about 5 kbp) is preferred, such as An approximately 4.25 kbp DNA fragment comprising a 5' flanking promoter and a non-coding portion of the beta-lactoglobulin gene (see Whitelaw et al, Biochem. J. 286: 31-39 (1992)). Similar fragments of promoter DNA from other species are also suitable.

β-乳球蛋白基因之其他區域亦可併入構築體中,因為可表現基因之基因組區域。在此項技術中普遍接受的是缺乏內含子之構築體(例如)與含有該等DNA序列之構築體相比表現較差(參見Brinster等人,Proc.Natl.Acad.Sci.USA 85:836-840(1988);Palmiter等人,Proc.Natl.Acad.Sci.USA 88:478-482(1991);Whitelaw等人,Transgenic Res.1:3-13(1991);WO 89/01343;及WO 91/02318,其中之每一者以引用之方式併入本文中)。就此而言,一般較佳在可能時使用含有所有或一些編碼相關蛋白或多肽之基因之天然內含子之基因組序列,因此較佳進一步摻雜至少一些來自例如β-乳球蛋白基因之內含子。一個該區域為自綿羊β-乳球蛋白基因之3'非編碼區提供內含子剪接及RNA聚腺苷酸化之DNA片段。當取代基因之天然3'非編碼序列時,此綿羊β-乳球蛋白片段可增強及穩定相關蛋白質或多肽之表現量。在其他具體實例內,藉由來自乳汁特異性蛋白基因之對應序列置換圍繞變異因子VII序列之起始ATG之區域。該置換提供假定組織特異性起始環境以增強表現。宜藉由例如BLG基因之序列置換整個變異因子VII前序列及5'非編碼序列,儘管可置換更小區域。 Other regions of the β-lactoglobulin gene can also be incorporated into the construct because the genomic region of the gene can be expressed. It is generally accepted in the art that constructs lacking introns, for example, perform poorly compared to constructs containing such DNA sequences (see Brinster et al., Proc. Natl. Acad. Sci. USA 85: 836). -840 (1988); Palmiter et al., Proc. Natl. Acad. Sci. USA 88: 478-482 (1991); Whitelaw et al, Transgenic Res. 1: 3-13 (1991); WO 89/01343; and WO 91/02318, each of which is incorporated herein by reference. . In this regard, it is generally preferred to use genomic sequences containing all or some of the natural introns encoding genes associated with the protein or polypeptide, and thus preferably further doped at least some from, for example, the beta-lactoglobulin gene. child. One region is a DNA fragment that provides intron splicing and RNA polyadenylation from the 3' non-coding region of the sheep β-lactoglobulin gene. When a native 3' non-coding sequence of a gene is substituted, the sheep beta-lactoglobulin fragment enhances and stabilizes the amount of expression of the associated protein or polypeptide. In other embodiments, the region surrounding the starting ATG of the variant Factor VII sequence is replaced by a corresponding sequence from a milk-specific protein gene. This substitution provides a putative tissue-specific starting environment to enhance performance. It is preferred to replace the entire variant Factor VII pre-sequence and the 5' non-coding sequence by, for example, the sequence of the BLG gene, although smaller regions can be replaced.

為在轉殖基因動物中表現因子VII多肽,編碼變異因子VII之DNA片段可操作地連接於需要其表現以生產表現單元之額外DNA片段。該等額外片段包括上文所提及之啟動子,以及提供mRNA之轉錄及聚腺苷酸化之終止之序列。表現單元將進一步包括可操作地連接於編碼經修飾之因子VII之片段的編碼分泌信號序列之DNA片段。分泌信號序列可為天然因子VII分泌信號序列或可為諸如乳蛋白之另一蛋白質之分泌信號序列(參見例如von Heijne,Nucl.Acids Res.14:4683-4690(1986);及Meade等人,U.S.4,873,316,其以引用之方式併入本文中)。 To express a Factor VII polypeptide in a transgenic animal, a DNA fragment encoding variant Factor VII is operably linked to an additional DNA fragment that is required for its performance to produce a performance unit. Such additional fragments include the promoters mentioned above, as well as sequences that provide for transcription of the mRNA and termination of polyadenylation. The expression unit will further comprise a DNA fragment encoding a secretion signal sequence operably linked to a fragment encoding a modified Factor VII. The secretion signal sequence may be a native Factor VII secretion signal sequence or may be a secretion signal sequence of another protein such as milk protein (see, eg, von Heijne, Nucl. Acids Res. 14: 4683-4690 (1986); and Meade et al. US 4,873,316, which is incorporated herein by reference.

藉由將變異因子VII序列插入至含有額外DNA片段之質體或噬菌體載體中建構用於轉殖基因動物中之表現單元,儘管可藉由基本上任何連接序列建構表現單元。尤其便利的是提供含有編碼乳蛋白之DNA片 段之載體及藉由因子VII變異體之編碼序列置換乳蛋白之編碼序列;藉此產生包括乳蛋白基因之表現控制序列之基因融合體。在任何情況下,質體或其他載體中之表現單元之選殖促進變異因子VII序列之擴增。在細菌(例如大腸桿菌)宿主細胞中進行擴增,因此載體將典型地包括複製源及在細菌宿主細胞中有作用的可選標記物。隨後將表現單元引入所選宿主物種之受精卵(包括早期胚胎)中。可藉由包括以下之若干途徑中之一者引入異源DNA:顯微注射(例如美國專利第4,873,191號)、反轉錄病毒感染(Jaenisch,Science 240:1468-1474(1988))或使用胚胎幹(ES)細胞之定點整合(由Bradley等人,Bio/Technology 10:534-539(1992)綜述)。隨後將卵植入假孕女性之輸卵管或子宮中且允許發育成型。在生殖系中攜帶引入之DNA的後代可以常規、孟德爾(Mendelian)方式向其後代傳遞DNA,允許發展轉殖基因群。產生轉殖基因動物之一般程序為此項技術中已知的(參見例如Hogan等人,Manipulating the Mouse Embryo:A Laboratory Manual,Cold Spring Harbor Laboratory,1986;Simons等人,Bio/Technology 6:179-183(1988);Wall等人,Biol.Reprod.32:645-651(1985);Buhler等人,Bio/Technology 8:140-143(1990);Ebert等人,Bio/Technology 9:835-838(1991);Krimpenfort等人,Bio/Technology 9:844-847(1991);Wall等人,J.Cell.Biochem.49:113-120(1992);U.S.4,873,191;U.S.4,873,316;WO 88/00239,WO 90/05188,WO 92/11757;及GB 87/00458)。最初在小鼠中開發將外來DNA序列引入哺乳動物及其生殖細胞中之技術(參見例如Gordon等人,Proc.Natl.Acad.Sci.USA 77:7380-7384(1980);Gordon及Ruddle,Science 214:1244-1246(1981);Palmiter及Brinster,Cell 41:343-345(1985);Brinster等人,Proc.Natl.Acad.Sci. USA 82:4438-4442(1985);及Hogan等人(同上))。此等技術隨後適用於較大動物,包括家畜物種(參見例如WO 88/00239、WO 90/05188及WO 92/11757;及Simons等人,Bio/Technology 6:179-183(1988))。總之,在目前用於產生轉殖基因小鼠或家畜之最有效途徑中,根據現有技術將相關DNA之幾百個直鏈分子注射至受精卵之原核中之一者中。亦可將DNA注射入受精卵之細胞質中。 The expression unit for use in a transgenic animal is constructed by inserting the variant Factor VII sequence into a plastid or phage vector containing the additional DNA fragment, although the expression unit can be constructed by essentially any ligation sequence. It is especially convenient to provide DNA tablets containing the encoded milk protein. The vector of the segment and the coding sequence of the milk protein are replaced by the coding sequence of the Factor VII variant; thereby generating a gene fusion comprising the expression control sequence of the milk protein gene. In any event, the selection of expression units in a plastid or other vector facilitates amplification of the variant Factor VII sequence. Amplification is carried out in a bacterial (e.g., E. coli) host cell, and thus the vector will typically include a source of replication and a selectable marker that functions in the bacterial host cell. The expression unit is then introduced into the fertilized egg (including the early embryo) of the selected host species. Heterologous DNA can be introduced by one of several pathways including microinjection (e.g., U.S. Patent No. 4,873,191), retroviral infection (Jaenisch, Science 240: 1468-1474 (1988)), or use of embryonic stems. Site-specific integration of (ES) cells (reviewed by Bradley et al, Bio/Technology 10:534-539 (1992)). The eggs are then implanted into the fallopian tubes or uterus of a pseudopregnant woman and allowed to develop. Progeny carrying the introduced DNA in the germline can transmit DNA to their offspring in a conventional, Mendelian manner, allowing the development of a population of transgenes. General procedures for producing transgenic animals are known in the art (see, for example, Hogan et al, Manipulating the Mouse Embryo: A Laboratory Manual, Cold Spring Harbor Laboratory, 1986; Simons et al, Bio/Technology 6: 179- 183 (1988); Wall et al, Biol. Reprod. 32:645-651 (1985); Buhler et al, Bio/Technology 8: 140-143 (1990); Ebert et al, Bio/Technology 9: 835-838 (1991); Krimpenfort et al, Bio/Technology 9: 844-847 (1991); Wall et al, J. Cell. Biochem. 49: 113-120 (1992); US 4, 873, 191; US 4, 873, 316; WO 88/00239, WO 90/05188, WO 92/11757; and GB 87/00458). Techniques for introducing foreign DNA sequences into mammals and their germ cells were originally developed in mice (see, eg, Gordon et al, Proc. Natl. Acad. Sci. USA 77: 7380-7384 (1980); Gordon and Ruddle, Science 214: 1244-1246 (1981); Palmiter and Brinster, Cell 41: 343-345 (1985); Brinster et al., Proc. Natl. Acad. Sci. USA 82: 4438-4442 (1985); and Hogan et al. (ibid.). These techniques are then applicable to larger animals, including livestock species (see, for example, WO 88/00239, WO 90/05188, and WO 92/11757; and Simons et al, Bio/Technology 6: 179-183 (1988)). In summary, among the most effective routes currently used to produce transgenic mice or livestock, hundreds of linear molecules of the relevant DNA are injected into one of the pronuclei of the fertilized egg according to the prior art. DNA can also be injected into the cytoplasm of fertilized eggs.

純化 purification

自細胞培養基回收本發明之因子VII多肽。本發明之因子VII多肽可藉由此項技術中已知之多種程序純化,該等程序包括(但不限於)層析(例如離子交換、親和性、疏水性、層析聚焦及尺寸排阻)、電泳程序(例如製備型等電聚焦(IEF)、差分溶解度(例如硫酸銨沈澱)或萃取(參見例如Protein Purification,J.-C.Janson及Lars Ryden編,VCH Publishers,New York,1989)。較佳地,因子VII多肽可藉由親和性層析法於抗因子VII抗體管柱上純化。如Wakabayashi等人,J.Biol.Chem.261:11097-11108,(1986)及Thim等人,Biochemistry 27:7785-7793,(1988)描述使用鈣依賴性單株抗體尤佳。可藉由習知化學純化手段(諸如高效液相層析)達成額外純化。包括檸檬酸鋇沈澱之其他純化方法為此項技術中已知,且可應用於純化本文所述之新穎因子VII多肽(參見例如Scopes,R.,Protein Purification,Springer-Verlag,N.Y.,1982)。 The Factor VII polypeptide of the present invention is recovered from the cell culture medium. Factor VII polypeptides of the invention can be purified by a variety of procedures known in the art including, but not limited to, chromatography (e.g., ion exchange, affinity, hydrophobicity, chromatofocusing, and size exclusion), Electrophoresis procedures (eg, preparative isoelectric focusing (IEF), differential solubility (eg, ammonium sulfate precipitation) or extraction (see, eg, Protein Purification, J.-C. Janson and Lars Ryden, ed., VCH Publishers, New York, 1989). Preferably, the Factor VII polypeptide can be purified by affinity chromatography on an anti-Factor VII antibody column. For example, Wakabayashi et al, J. Biol. Chem. 261: 11097-11108, (1986) and Thim et al., Biochemistry 27:7785-7793, (1988) describes the use of calcium-dependent monoclonal antibodies. It is possible to achieve additional purification by conventional chemical purification means such as high performance liquid chromatography. Other purification methods including cesium citrate precipitation are It is known in the art and can be applied to purify the novel Factor VII polypeptides described herein (see, for example, Scopes, R., Protein Purification, Springer-Verlag, NY, 1982).

為用於治療目的,本發明之因子VII多肽較佳實質上純。因此,在本發明之一個較佳具體實例中,本發明之因子VII多肽純化至至少約90至95%均質性,較佳至至少約98%均質性。可藉由若干此項技術中已知 之方法評估純度,例如HPLC、凝膠電泳及胺基末端胺基酸定序。 For therapeutic purposes, the Factor VII polypeptides of the invention are preferably substantially pure. Thus, in a preferred embodiment of the invention, the Factor VII polypeptide of the invention is purified to at least about 90 to 95% homogeneity, preferably to at least about 98% homogeneity. Can be known by several of this technology The method evaluates purity, such as HPLC, gel electrophoresis, and amino terminal amino acid sequencing.

因子VII多肽在其活化位點裂解意將其轉化為其雙鏈形式。可根據此項技術中已知之程序,諸如Osterud等人,Biochemistry 11:2853-2857(1972);Thomas,美國專利第4,456,591號;Hedner及Kisiel,J.Clin.Invest.71:1836-1841(1983);或Kisiel及Fujikawa,Behring Inst.Mitt.73:29-42(1983)揭示之彼等程序進行活化。或者,如Bjoern等人(Research Disclosure,269 1986年9月,第564-565頁)所描述,因子VII可藉由經由諸如Mono Q®(Pharmacia fine Chemicals)或其類似物之離子交換層析管柱傳遞該因子VII而活化。所得活化因子VII變異體可隨後如下所述經調配及投予。 Factor VII polypeptide cleavage at its activation site is intended to convert it to its double-stranded form. It can be according to procedures known in the art, such as Osterud et al, Biochemistry 11: 2853-2857 (1972); Thomas, U.S. Patent No. 4,456,591; Hedner and Kisiel, J. Clin. Invest. 71: 1836-1841 (1983) Or; Kisil and and Fujikawa, Behring Inst. Mitt. 73:29-42 (1983) disclose their procedures for activation. Alternatively, Factor VII can be passed through an ion exchange chromatography tube such as Mono Q® (Pharmacia fine Chemicals) or the like as described by Bjoern et al. (Research Disclosure, 269 September 1986, pages 564-565). The column transmits the factor VII and is activated. The resulting activated Factor VII variant can then be formulated and administered as described below.

分析 analysis

本文提供用於選擇根據本發明之較佳因子VII多肽之適合之試管內蛋白分解及抗凝血酶反應性分析。該等分析詳細描述於實施例5中。簡言之,該分析可以簡單初步試管內測試形式如下進行:可在負載反應物之鈣及由磷脂醯基膽鹼(PC)及磷脂醯基絲胺酸(PS)組成之囊泡存在下於生理pH下使用生理受質血漿源因子X(X)作為受質量測FVIIa多肽之蛋白分解活性。藉由在低於反應物之Km之受質濃度下且持續對於容許產生可量測量之FXa同時保持FX之轉化率低於20%足夠長之時段培育FVIIa以及FX進行分析。在添加諸如S-2765之適合之發色受質之後定量產生之FXa且相對於在根據測試之FVIIa變異體之濃度標準化之後的野生型FVIIa進行報導。 Suitable in vitro in vitro proteolytic and antithrombin reactivity assays for selecting preferred Factor VII polypeptides in accordance with the present invention are provided herein. These analyses are described in detail in Example 5. Briefly, the assay can be performed in a simple preliminary in-tube test format as follows: in the presence of calcium in the supported reactants and in the presence of vesicles consisting of phospholipid choline (PC) and phospholipid thioglycine (PS). The physiologically-derived plasma-derived factor X (X) was used as the proteolytic activity of the mass-measured FVIIa polypeptide at physiological pH. FVIIa and FX were analyzed by incubation at a concentration below the Km of the reactants and for a period of time sufficient to allow for the production of measurable FXa while maintaining a FX conversion of less than 20%. FXa was quantified after addition of a suitable chromogenic substrate such as S-2765 and reported relative to wild-type FVIIa after normalization according to the concentration of the tested FVIIa variant.

可在過量血漿源抗凝血酶、低分子量(LMW)肝素及鈣存在下在假一級條件下於生理pH下量測FVIIa多肽之抗凝血酶反應性。使用 諸如S-2288之發色受質在抑制反應之整個時程中不連續地量測殘餘FVIIa活性。藉由資料與單指數衰減函數之非線性最小二乘擬合獲得抑制率且相對於在根據使用之抗凝血酶濃度對抑制率標準化之後的野生型FVIIa進行報導。藉由抗凝血酶之凝血蛋白酶之肝素催化及未催化之抑制之動力學特性化描述於Olson等人(1993),Methods Enzymol.222,525-559中。 The antithrombin reactivity of the FVIIa polypeptide can be measured at physiological pH under pseudo-primary conditions in the presence of excess plasma-derived antithrombin, low molecular weight (LMW) heparin, and calcium. Residual FVIIa activity was measured discontinuously throughout the time course of inhibition reaction using a chromogenic substrate such as S-2288. The inhibition rate was obtained by nonlinear least squares fitting of the data with a single exponential decay function and reported relative to wild-type FVIIa after normalization of the inhibition rate according to the antithrombin concentration used. The kinetic characterization of heparin-catalyzed and uncatalyzed inhibition by coagulation enzymes of antithrombin is described in Olson et al. (1993), Methods Enzymol. 222, 525-559.

醫藥組成物 Pharmaceutical composition

在一個態樣中,本發明係關於包含本發明之因子VII多肽之組成物及調配物。舉例而言,本發明提供一種包含本發明之因子VII多肽、連同醫藥學上可接受之載劑調配之醫藥組成物。 In one aspect, the invention relates to compositions and formulations comprising a Factor VII polypeptide of the invention. For example, the invention provides a pharmaceutical composition comprising a Factor VII polypeptide of the invention in combination with a pharmaceutically acceptable carrier.

因此,本發明之一個目標為提供一種包含因子VII多肽之醫藥調配物,該因子VII多肽以0.25mg/ml至100mg/ml之濃度存在,且其中該調配物具有2.0至中10.0之pH。調配物可進一步包含以下中之一或多者:緩衝系統、防腐劑、張力劑、螯合劑、穩定劑、抗氧化劑或界面活性劑以及其各種組合。熟習此項技術者熟知醫藥組成物中之防腐劑、等張劑、螯合劑、穩定劑、抗氧化劑及表面活性劑之用途。可參考Remington:The Science and Practice of Pharmacy,第19版,1995。 Accordingly, it is an object of the present invention to provide a pharmaceutical formulation comprising a Factor VII polypeptide which is present at a concentration of from 0.25 mg/ml to 100 mg/ml, and wherein the formulation has a pH of from 2.0 to 10.0. The formulation may further comprise one or more of the following: a buffer system, a preservative, a tonicity agent, a chelating agent, a stabilizer, an antioxidant, or a surfactant, and various combinations thereof. Those skilled in the art are familiar with the use of preservatives, isotonic agents, chelating agents, stabilizers, antioxidants, and surfactants in pharmaceutical compositions. See Remington: The Science and Practice of Pharmacy, 19th edition, 1995.

在一具體實例中,醫藥調配物為水性調配物。該調配物典型地為溶液或懸浮液,但亦可包括膠體、分散液、乳液及多相物質。術語「水性調配物」定義為包含至少50% w/w水之調配物。同樣,術語「水溶液」定義為包含至少50% w/w水之溶液,且術語「水性懸浮液」定義為包含至少50% w/w水之懸浮液。 In one embodiment, the pharmaceutical formulation is an aqueous formulation. The formulation is typically a solution or suspension, but may also include colloids, dispersions, emulsions, and multi-phase materials. The term "aqueous formulation" is defined as a formulation comprising at least 50% w/w water. Similarly, the term "aqueous solution" is defined as a solution comprising at least 50% w/w water, and the term "aqueous suspension" is defined as a suspension comprising at least 50% w/w water.

在另一具體實例中,醫藥調配物為經冷乾調配物,醫師或患 者在使用前向其中添加溶劑及/或稀釋劑。 In another embodiment, the pharmaceutical formulation is a lyophilized formulation, physician or patient A solvent and/or a diluent is added thereto before use.

在另一態樣中,醫藥調配物包含因子VII多肽之水溶液及緩衝液,其中多肽以1mg/ml或1mg/ml以上之濃度存在,且其中該調配物之pH為約2.0至約10.0。 In another aspect, the pharmaceutical formulation comprises an aqueous solution of a Factor VII polypeptide and a buffer, wherein the polypeptide is present at a concentration of 1 mg/ml or more, and wherein the pH of the formulation is from about 2.0 to about 10.0.

在另一態樣中,醫藥調配物可為揭示於WO2014/057069中之彼等調配物中之任一者,該專利以引入方式併入本文中;或其可為實施例18中所述之調配物。 In another aspect, the pharmaceutical formulation can be any of the formulations disclosed in WO 2014/057069, which is incorporated herein by reference; or it can be as described in Example 18. Formulation.

可非經腸,諸如靜脈內,諸如肌肉內,諸如皮下投予本發明之因子VII多肽。或者,本發明之FVII多肽可經由經腸路徑(諸如經口)或表面投予。本發明之多肽可預防性地投予。本發明之多肽可治療性地(按需求)投予。 The Factor VII polypeptide of the invention may be administered parenterally, such as intravenously, such as intramuscularly, such as subcutaneously. Alternatively, a FVII polypeptide of the invention may be administered via a gut route, such as orally, or surface. The polypeptide of the present invention can be administered prophylactically. The polypeptides of the invention can be administered therapeutically (as needed).

治療用途 Use for treatment

在廣泛態樣中,本發明之因子VII多肽或包含該多肽之醫藥調配物可用作醫藥品。 In a broad aspect, a Factor VII polypeptide of the invention or a pharmaceutical formulation comprising the polypeptide can be used as a pharmaceutical.

在一個態樣中,本發明之因子VII多肽或包含該多肽之醫藥調配物可用於治療具有凝血病之個體。 In one aspect, a Factor VII polypeptide of the invention or a pharmaceutical formulation comprising the polypeptide can be used to treat an individual having a coagulopathy.

在另一態樣中,本發明之因子VII多肽或包含該多肽之醫藥調配物可用於製備治療出血病症或出血事件或增強正常止血系統之醫藥品。 In another aspect, a Factor VII polypeptide of the invention or a pharmaceutical formulation comprising the polypeptide can be used in the manufacture of a medicament for treating a bleeding disorder or a bleeding event or enhancing a normal hemostatic system.

在另一態樣中,本發明之因子VII多肽或包含該多肽之醫藥調配物可用於治療具有獲得性抑制劑之血友病A、血友病B或血友病A或B。 In another aspect, a Factor VII polypeptide of the invention or a pharmaceutical formulation comprising the polypeptide can be used to treat hemophilia A, hemophilia B or hemophilia A or B with an acquired inhibitor.

在另一態樣中,本發明之因子VII多肽或包含該多肽之醫藥調配物可用於治療個體中之出血病症或出血事件或增強正常止血系統之方法中,該方法包含向有需要之個體投予治療或預防有效量的本發明之因子VII多肽。 In another aspect, a Factor VII polypeptide of the invention or a pharmaceutical formulation comprising the polypeptide can be used in a method of treating a bleeding disorder or a bleeding event in an individual or enhancing a normal hemostatic system, the method comprising administering to an individual in need thereof A therapeutically or prophylactically effective amount of a Factor VII polypeptide of the invention is administered.

如本文所用之術語「個體」包括任何人類患者,或非人類脊椎動物。 The term "individual" as used herein includes any human patient, or non-human vertebrate.

如本文所用之術語「治療」指對任何有需要之人類或其他脊椎動物個體之醫療。該個體預期由醫學從業者或獸醫學從業者進行身體檢查,該醫學從業者或獸醫學從業者給予表明使用該特定治療對該人類或其他脊椎動物之健康有益的試驗性或決定性診斷。該治療之定時及目的可根據個體之健康現狀在個體之間變化。因此,該治療可為防治性、緩解性、症狀性及/或治癒性的。就本發明而言,防治性、緩解性、症狀性及/或治癒性治療可代表本發明之獨立態樣。 The term "treatment" as used herein refers to the medical treatment of any human or other vertebrate individual in need thereof. The individual is expected to undergo a physical examination by a medical practitioner or a veterinary practitioner who gives an experimental or definitive diagnosis indicating the benefit to the health of the human or other vertebrate using the particular treatment. The timing and purpose of the treatment may vary from individual to individual depending on the health status of the individual. Thus, the treatment can be prophylactic, palliative, symptomatic, and/or curative. For the purposes of the present invention, prophylactic, palliative, symptomatic, and/or curative treatments may represent an independent aspect of the invention.

如本文所用之術語「凝血病」係指可由正常凝血級聯之任何促凝組分之任何定性或定量缺乏或纖維蛋白溶解之任何上調造成的增加之出血性趨勢。該等凝血病可為先天性及/或獲得性及/或醫原性的且由熟習此項技術者鑑別。先天性低凝血病之非限制性實例為血友病A、血友病B、因子VII缺乏、因子X缺乏、因子XI缺乏、血管性血友病及血小板減少症,諸如格蘭士文氏thombasthenia及伯納德-蘇利耶症候群(Bernard-Soulier syndrome)。藉由血液中之FIX/因子VIII之功能單元之濃度測定血友病A或B之臨床嚴重程度且分類為輕度、中度或重度。嚴重血友病藉由<0.01U/ml之凝血因子位準(對應於<正常位準之1%)定義,而具有中度及輕度血友 病之人類分別具有1%-5%及>5%之位準。具有「抑制劑」(亦即針對因子VIII之同種抗體)之血友病A及具有「抑制劑」(亦即針對因子IX之同種抗體)之血友病B為部分先天性且部分獲得性之凝血病之非限制性實例。 The term "coagulopathy" as used herein refers to an increased hemorrhagic tendency resulting from any qualitative or quantitative deficiency of any procoagulant component of the normal coagulation cascade or any upregulation of fibrinolysis. Such coagulopathy can be innate and/or acquired and/or iatrogenic and is identified by those skilled in the art. Non-limiting examples of congenital hypocoagulopathy are hemophilia A, hemophilia B, factor VII deficiency, factor X deficiency, factor XI deficiency, von Willebrand's disease, and thrombocytopenia, such as the Glaxo's thombasthenia And Bernard-Soulier syndrome. The clinical severity of hemophilia A or B is determined by the concentration of functional units of FIX/Factor VIII in the blood and is classified as mild, moderate or severe. Severe hemophilia is defined by a phlegm factor level of <0.01 U/ml (corresponding to 1% of <normal level), with moderate and mild hemophilia The human beings have a level of 1%-5% and >5% respectively. Hemophilia A with an "inhibitor" (ie, an alloantibodies against Factor VIII) and hemophilia B with an "inhibitor" (ie, an alloantibody against Factor IX) are partially congenital and partially acquired. A non-limiting example of a coagulopathy.

獲得性凝血病之非限制性實例為由維生素K缺乏造成之絲胺酸蛋白酶缺乏;該維生素K缺乏可能由投予諸如華法林(warfarin)之維生素K拮抗劑造成。亦可在大面積創傷後出現獲得性凝血病。在另外被稱為「血性惡性循環」之此狀況下,其特徵在於血液稀釋(稀釋性血小板減少症及凝血因子稀釋)、體溫過低、凝血因子消耗及代謝紊亂(酸中毒)。液體療法及增加之纖維蛋白溶解可使此狀況加重。該出血可來自身體之任何部分。 A non-limiting example of an acquired coagulopathy is a deficiency of serine protease caused by vitamin K deficiency; this vitamin K deficiency may be caused by administration of a vitamin K antagonist such as warfarin. Acquired coagulopathy can also occur after extensive trauma. In another condition called "blood vicious circle", it is characterized by hemodilution (dilute thrombocytopenia and clotting factor dilution), hypothermia, clotting factor consumption, and metabolic disorders (acidosis). Liquid therapy and increased fibrinolysis can exacerbate this condition. This bleeding can come from any part of the body.

醫原性凝血病之非限制性實例為可指定用於治療血栓栓塞疾病之抗凝血藥,諸如肝素、阿司匹林(aspirin)、華法林及其他血小板凝集抑制劑之過劑量。醫原性凝血病之第二、非限制性實例為藉由過度及/或不當液體治療誘發之凝血病,諸如可藉由輸血誘發之凝血病。 Non-limiting examples of iatrogenic coagulopathy are overdose of anticoagulants that can be designated for the treatment of thromboembolic disorders, such as heparin, aspirin, warfarin, and other platelet aggregation inhibitors. A second, non-limiting example of a iatrogenic coagulopathy is a coagulopathy induced by excessive and/or improper fluid therapy, such as a coagulopathy induced by blood transfusion.

在本發明之一具體實例中,出血與血友病A或B相關。在另一具體實例中,出血與具有獲得性抑制劑之血友病A或B相關。在另一具體實例中,出血與血小板減少症相關。在另一具體實例中,出血與血管性血友病(von Willebrand's disease)相關。在另一具體實例中,出血與嚴重組織損傷相關。在另一具體實例中,出血與嚴重創傷相關。在另一具體實例中,出血與手術相關。在另一具體實例中,出血與出血性胃炎及/或腸炎相關。在另一具體實例中,出血為子宮大出血,諸如在胎盤拉斷情況下。在另一具體實例中,出血發生於機械式止血可能性有限之器官中,諸如顱 內、鼻內或眼內。在另一具體實例中,出血與抗凝血劑治療相關。 In one embodiment of the invention, the bleeding is associated with hemophilia A or B. In another embodiment, the bleeding is associated with hemophilia A or B with an acquired inhibitor. In another embodiment, bleeding is associated with thrombocytopenia. In another embodiment, the bleeding is associated with von Willebrand's disease. In another embodiment, bleeding is associated with severe tissue damage. In another embodiment, bleeding is associated with severe trauma. In another embodiment, the bleeding is associated with surgery. In another embodiment, the bleeding is associated with hemorrhagic gastritis and/or enteritis. In another embodiment, the bleeding is a major uterine bleeding, such as in the case of a placental pull-off. In another embodiment, the bleeding occurs in an organ with limited mechanical hemostasis, such as a skull Inside, inside or inside the eye. In another embodiment, the bleeding is associated with anticoagulant therapy.

本發明藉由具體實例之以下非限制性清單進一步描述: The invention is further described by the following non-limiting list of specific examples:

具體實例1:一種包含兩個或兩個以上相對於人類因子VII之胺基酸序列(SEQ ID NO:1)之取代之因子VII多肽,其中T293藉由Lys(K)、Arg(R)、Tyr(Y)或Phe(F)置換且L288藉由Phe(F)、Tyr(Y)、Asn(N)、Ala(A)或Trp(W)置換及/或W201藉由Arg(R)、Met(M)或Lys(K)置換及/或K337藉由Ala(A)或Gly(G)置換;視需要,其中Q176藉由Lys(K)、Arg(R)或Asn(N)置換;或Q286藉由Asn(N)置換。 Specific Example 1: A Factor VII polypeptide comprising two or more substitutions relative to the amino acid sequence of human Factor VII (SEQ ID NO: 1), wherein T293 is by Lys (K), Arg (R), Tyr (Y) or Phe (F) substitution and L288 is replaced by Phe (F), Tyr (Y), Asn (N), Ala (A) or Trp (W) and / or W201 by Arg (R), Met (M) or Lys (K) substitution and / or K337 by Ala (A) or Gly (G); where appropriate, Q176 is replaced by Lys (K), Arg (R) or Asn (N); Or Q286 is replaced by Asn(N).

具體實例1(i):如具體實例1之因子VII多肽,其中T293藉由Lys(K)、Arg(R)、Tyr(Y)或Phe(F)置換;且L288藉由Phe(F)、Tyr(Y)、Asn(N)、Ala(A)或Trp(W)置換及/或W201藉由Arg(R)、Met(M)或Lys(K)置換及/或K337藉由Ala(A)或Gly(G)置換。 Specific Example 1 (i): The Factor VII polypeptide of Specific Example 1, wherein T293 is replaced by Lys (K), Arg (R), Tyr (Y) or Phe (F); and L288 by Phe (F), Tyr (Y), Asn (N), Ala (A) or Trp (W) substitution and / or W201 by Arg (R), Met (M) or Lys (K) and / or K337 by Ala (A ) or Gly (G) replacement.

具體實例1(ii):如具體實例1之因子VII多肽,其中L288藉由Phe(F)、Tyr(Y)、Asn(N)或Ala(A)置換。 Specific Example 1 (ii): The Factor VII polypeptide of Specific Example 1, wherein L288 is substituted by Phe (F), Tyr (Y), Asn (N) or Ala (A).

具體實例1(iii):如具體實例1之因子VII多肽,其中W201藉由Arg(R)、Met(M)或Lys(K)置換。 Specific Example 1 (iii): The Factor VII polypeptide of Specific Example 1, wherein W201 is substituted by Arg (R), Met (M) or Lys (K).

具體實例1(iv):如具體實例1之因子VII多肽,其中K337藉由Ala(A)或Gly(G)置換。 Specific Example 1 (iv): The Factor VII polypeptide of Specific Example 1, wherein K337 is substituted by Ala (A) or Gly (G).

具體實例2:如具體實例1之因子VII多肽,其中T293藉由Lys(K)、Arg(R)、Tyr(Y)或Phe(F)置換。 Specific Example 2: The Factor VII polypeptide of Specific Example 1, wherein T293 is substituted by Lys (K), Arg (R), Tyr (Y) or Phe (F).

具體實例2(i):如具體實例1至2中任一項之因子VII多肽,其中T293藉由Lys(K)、Arg(R)、Tyr(Y)或Phe(F)置換且L288藉由Phe(F)、 Tyr(Y)、Asn(N)、Ala(A)或Trp(W)置換。 Specific example 2 (i): The Factor VII polypeptide of any one of embodiments 1 to 2, wherein T293 is replaced by Lys (K), Arg (R), Tyr (Y) or Phe (F) and L288 is Phe(F), Tyr (Y), Asn (N), Ala (A) or Trp (W) substitution.

具體實例2(ii):如具體實例1至2中任一項之因子VII多肽,其中T293藉由Lys(K)置換且L288藉由Phe(F)置換。 The factor VII polypeptide of any one of embodiments 1 to 2, wherein T293 is replaced by Lys (K) and L288 is replaced by Phe (F).

具體實例2(iii):如具體實例1至2中任一項之因子VII多肽,其中T293藉由Lys(K)置換且L288藉由Tyr(Y)置換。 The factor VII polypeptide of any one of embodiments 1 to 2, wherein T293 is replaced by Lys (K) and L288 is replaced by Tyr (Y).

具體實例2(iv):如具體實例1至2中任一項之因子VII多肽,其中T293藉由Lys(K)置換且L288藉由Asn(N)置換。 The factor VII polypeptide of any one of embodiments 1 to 2, wherein T293 is replaced by Lys (K) and L288 is replaced by Asn (N).

具體實例2(v):如具體實例1至2中任一項之因子VII多肽,其中T293藉由Lys(K)置換且L288藉由Ala(A)置換。 Specific Example 2 (v): The Factor VII polypeptide of any one of embodiments 1 to 2, wherein T293 is replaced by Lys (K) and L288 is replaced by Ala (A).

具體實例2(vi):如具體實例1至2中任一項之因子VII多肽,其中T293藉由Lys(K)置換且L288藉由Trp(W)置換。 The Factor VII polypeptide of any one of embodiments 1 to 2, wherein T293 is replaced by Lys (K) and L288 is replaced by Trp (W).

具體實例2(vii):如具體實例1至2中任一項之因子VII多肽,其中T293藉由Arg(R)置換且L288藉由Phe(F)置換。 The compound of claim VII, wherein T293 is replaced by Arg (R) and L288 is replaced by Phe (F).

具體實例2(viii):如具體實例1至2中任一項之因子VII多肽,其中T293藉由Arg(R)置換且L288藉由Tyr(Y)置換。 Specific Example 2 (viii): The Factor VII polypeptide of any one of embodiments 1 to 2, wherein T293 is replaced by Arg (R) and L288 is replaced by Tyr (Y).

具體實例2(ix):如具體實例1至2中任一項之因子VII多肽,其中T293藉由Arg(R)置換且L288藉由Asn(N)置換。 The factor VII polypeptide of any one of embodiments 1 to 2, wherein T293 is replaced by Arg (R) and L288 is replaced by Asn (N).

具體實例2(x):如具體實例1至2中任一項之因子VII多肽,其中T293藉由Arg(R)置換且L288藉由Ala(A)置換。 Specific Example 2 (x): The Factor VII polypeptide of any one of embodiments 1 to 2, wherein T293 is replaced by Arg (R) and L288 is replaced by Ala (A).

具體實例2(xi):如具體實例1至2中任一項之因子VII多肽,其中T293藉由Arg(R)置換且L288藉由Trp(W)置換。 The Factor VII polypeptide of any one of embodiments 1 to 2, wherein T293 is replaced by Arg (R) and L288 is replaced by Trp (W).

具體實例2(xii):如具體實例1至2中任一項之因子VII多 肽,其中T293藉由Tyr(Y)置換;且L288藉由Phe(F)置換。 Specific Example 2 (xii): As the specific factor VII of any of the specific examples 1 to 2 Peptide, wherein T293 is replaced by Tyr(Y); and L288 is replaced by Phe(F).

具體實例2(xiii):如具體實例1至2中任一項之因子VII多肽,其中T293藉由Tyr(Y)置換;且L288藉由Tyr(Y)置換。 Specific Example 2 (xiii): The Factor VII polypeptide of any one of embodiments 1 to 2, wherein T293 is replaced by Tyr (Y); and L288 is replaced by Tyr (Y).

具體實例2(xiv):如具體實例1至2中任一項之因子VII多肽,其中T293藉由Tyr(Y)置換且L288藉由Asn(N)置換。 Specific Example 2 (xiv): The Factor VII polypeptide of any one of embodiments 1 to 2, wherein T293 is replaced by Tyr(Y) and L288 is replaced by Asn(N).

具體實例2(xv):如具體實例1至2中任一項之因子VII多肽,其中T293藉由Tyr(Y)置換且L288藉由Ala(A)置換。 Specific Example 2 (xv): The Factor VII polypeptide of any one of embodiments 1 to 2, wherein T293 is replaced by Tyr (Y) and L288 is replaced by Ala (A).

具體實例2(xvi):如具體實例1至2中任一項之因子VII多肽,其中T293藉由Tyr(Y)置換且L288藉由Trp(W)置換。 Specific Example 2 (xvi): The Factor VII polypeptide of any one of embodiments 1 to 2, wherein T293 is replaced by Tyr(Y) and L288 is replaced by Trp(W).

具體實例2(xvii):如具體實例1至2中任一項之因子VII多肽,其中T293藉由Phe(F)置換且L288藉由Phe(F)置換。 Specific Example 2 (xvii): The Factor VII polypeptide of any one of embodiments 1 to 2, wherein T293 is replaced by Phe(F) and L288 is replaced by Phe(F).

具體實例2(xviii):如具體實例1至2中任一項之因子VII多肽,其中T293藉由Phe(F)置換且L288藉由Tyr(Y)置換。 Specific Example 2 (xviii): The Factor VII polypeptide of any one of embodiments 1 to 2, wherein T293 is replaced by Phe(F) and L288 is replaced by Tyr(Y).

具體實例2(xix):如具體實例1至2中任一項之因子VII多肽,其中T293藉由Phe(F)置換且L288藉由Asn(N)置換。 Specific Example 2 (xix): The Factor VII polypeptide of any one of embodiments 1 to 2, wherein T293 is replaced by Phe(F) and L288 is replaced by Asn(N).

具體實例2(xx):如具體實例1至2中任一項之因子VII多肽,其中T293藉由Phe(F)置換且L288藉由Ala(A)置換。 The Factor VII polypeptide of any one of embodiments 1 to 2, wherein T293 is replaced by Phe (F) and L288 is replaced by Ala (A).

具體實例2(xxi):如具體實例1至2中任一項之因子VII多肽,其中T293藉由Phe(F)置換且L288藉由Trp(W)置換。 Specific Example 2 (xxi): The Factor VII polypeptide of any one of embodiments 1 to 2, wherein T293 is replaced by Phe(F) and L288 is replaced by Trp(W).

具體實例2(xxii):如具體實例1至2中任一項之因子VII多肽,其中T293藉由Lys(K)置換且K337藉由Ala(A)置換。 Specific Example 2 (xxii): The Factor VII polypeptide of any one of embodiments 1 to 2, wherein T293 is replaced by Lys (K) and K337 is replaced by Ala (A).

具體實例2(xxiii):如具體實例1至2中任一項之因子VII多 肽,其中T293藉由Arg(R)置換且K337藉由Ala(A)置換。 Specific Example 2 (xxiii): More than Factor VII as in any of Examples 1 to 2 Peptide, wherein T293 is replaced by Arg(R) and K337 is replaced by Ala(A).

具體實例2(xxiv):如具體實例1至2中任一項之因子VII多肽,其中T293藉由Tyr(Y)置換且K337藉由Ala(A)置換。 Specific Example 2 (xxiv): The Factor VII polypeptide of any one of embodiments 1 to 2, wherein T293 is replaced by Tyr (Y) and K337 is replaced by Ala (A).

具體實例2(xxv):如具體實例1至2中任一項之因子VII多肽,其中T293藉由Phe(F)置換且K337藉由Ala(A)置換。 Specific Example 2 (xxv): The Factor VII polypeptide of any one of embodiments 1 to 2, wherein T293 is replaced by Phe(F) and K337 is replaced by Ala(A).

具體實例2(xxvi):如具體實例1至2中任一項之因子VII多肽,其中T293藉由Lys(K)置換且K337藉由Gly(G)置換。 Specific Example 2 (xxvi): The Factor VII polypeptide of any one of embodiments 1 to 2, wherein T293 is replaced by Lys (K) and K337 is replaced by Gly (G).

具體實例2(xxvii):如具體實例1至2中任一項之因子VII多肽,其中T293藉由Arg(R)置換且K337藉由Gly(G)置換。 Specific Example 2 (xxvii): The Factor VII polypeptide of any of embodiments 1 to 2, wherein T293 is replaced by Arg (R) and K337 is replaced by Gly (G).

具體實例2(xxviii):如具體實例1至2中任一項之因子VII多肽,其中T293藉由Tyr(Y)置換且K337藉由Gly(G)置換。 Specific Example 2 (xxviii): The Factor VII polypeptide of any one of embodiments 1 to 2, wherein T293 is replaced by Tyr (Y) and K337 is replaced by Gly (G).

具體實例2(xxix):如具體實例1至2中任一項之因子VII多肽,其中T293藉由Phe(F)置換且K337藉由Gly(G)置換。 Specific Example 2 (xxix): The Factor VII polypeptide of any one of embodiments 1 to 2, wherein T293 is replaced by Phe(F) and K337 is replaced by Gly(G).

具體實例2(xxx):如具體實例2(ii)至2(xxii)中任一項之因子VII多肽,其中K337藉由Ala(A)置換。 Specific Example 2 (xxx): A Factor VII polypeptide according to any one of embodiments 2 (ii) to 2 (xxii), wherein K337 is substituted by Ala (A).

具體實例3:如具體實例2之因子VII多肽,其中該多肽包含下群之取代中之一者:L288F/T293K、L288F/T293K/K337A、L288F/T293K/L305V、L288F/T293K/L305I、L288F/T293R、L288F/T293R/K337A、L288F/T293R/L305V、L288F/T293R/L305I、L288F/T293Y、L288F/T293Y/K337A、L288F/T293Y/L305V、L288F/T293Y/L305I、L288F/T293F、L288F/T293F/K337A、L288F/T293F/L305V、L288F/T293F/L305I、L288Y/T293K、L288Y/T293K/K337A、 L288Y/T293K/L305V、L288Y/T293K/L305I、L288Y/T293R、L288Y/T293R/K337A、L288Y/T293R/L305V、L288Y/T293R/L305I、L288Y/T293Y、L288Y/T293Y/K337A、L288Y/T293Y/L305V、L288Y/T293Y/L305I、L288Y/T293F、L288Y/T293F/K337A、L288Y/T293F/L305V、L288Y/T293F/L305I、L288N/T293K、L288N/T293K/K337A、L288N/T293K/L305V、L288N/T293K/L305I、L288N/T293R、L288N/T293R/K337A、L288N/T293R/L305V、L288N/T293R/L305I、L288N/T293Y、L288N/T293Y/K337A、L288N/T293Y/L305V、L288N/T293Y/L305I、L288N/T293F、L288N/T293F/K337A、L288N/T293F/L305V、L288N/T293F/L305I、L288A/T293K、L288A/T293K/K337A、L288A/T293K/L305V、L288A/T293K/L305I、L288A/T293R、L288A/T293R/K337A、L288A/T293R/L305V、L288A/T293R/L305I、L288A/T293Y、L288A/T293Y/K337A、L288A/T293Y/L305V、L288A/T293Y/L305I、L288A/T293F、L288A/T293F/K337A、L288A/T293F/L305V或L288A/T293F/L305I。 Specific Example 3: The Factor VII polypeptide of Specific Example 2, wherein the polypeptide comprises one of the substitutions of the lower group: L288F/T293K, L288F/T293K/K337A, L288F/T293K/L305V, L288F/T293K/L305I, L288F/ T293R, L288F/T293R/K337A, L288F/T293R/L305V, L288F/T293R/L305I, L288F/T293Y, L288F/T293Y/K337A, L288F/T293Y/L305V, L288F/T293Y/L305I, L288F/T293F, L288F/T293F/ K337A, L288F/T293F/L305V, L288F/T293F/L305I, L288Y/T293K, L288Y/T293K/K337A, L288Y/T293K/L305V, L288Y/T293K/L305I, L288Y/T293R, L288Y/T293R/K337A, L288Y/T293R/L305V, L288Y/T293R/L305I, L288Y/T293Y, L288Y/T293Y/K337A, L288Y/T293Y/L305V, L288Y/T293Y/L305I, L288Y/T293F, L288Y/T293F/K337A, L288Y/T293F/L305V, L288Y/T293F/L305I, L288N/T293K, L288N/T293K/K337A, L288N/T293K/L305V, L288N/T293K/L305I, L288N/T293R, L288N/T293R/K337A, L288N/T293R/L305V, L288N/T293R/L305I, L288N/T293Y, L288N/T293Y/K337A, L288N/T293Y/L305V, L288N/T293Y/L305I, L288N/T293F, L288N/ T293F/K337A, L288N/T293F/L305V, L288N/T293F/L305I, L288A/T293K, L288A/T293K/K337A, L288A/T293K/L305V, L288A/T293K/L305I, L288A/T293R, L288A/T293R/K337A, L288A/ T293R/L305V, L288A/T293R/L305I, L288A/T293Y, L288A/T293Y/K337A, L288A/T293Y/L305V, L288A/T293Y/L305I, L288A/T293F, L288A/T293F/K337A, L288A/T293F/L305V or L288A/ T293F/L305I.

具體實例4:如具體實例2之因子VII多肽,其中該多肽具有以下取代:L288F/T293K、L288F/T293K/K337A、L288F/T293R、L288F/T293R/K337A、L288Y/T293K、L288Y/T293K/K337A、L288Y/T293R、L288Y/T293R/K337A、L288N/T293K、L288N/T293K/K337A、L288N/T293R或L288N/T293R/K337A。 Specific Example 4: The Factor VII polypeptide of Specific Example 2, wherein the polypeptide has the following substitutions: L288F/T293K, L288F/T293K/K337A, L288F/T293R, L288F/T293R/K337A, L288Y/T293K, L288Y/T293K/K337A, L288Y/T293R, L288Y/T293R/K337A, L288N/T293K, L288N/T293K/K337A, L288N/T293R or L288N/T293R/K337A.

具體實例5:如具體實例1之因子VII多肽,其中Q176藉 由Lys(K)、Arg(R)或Asn(N)置換。 Specific Example 5: The Factor VII polypeptide of Specific Example 1, wherein Q176 is borrowed Replaced by Lys (K), Arg (R) or Asn (N).

具體實例6:如具體實例5之因子VII多肽,其中該多肽包含下群之取代中之一者:L288F/Q176K/K337A、L288Y/Q176K/K337A、L288N/Q176K/K337A或L288A/Q176K/K337A。 Specific Example 6: The Factor VII polypeptide of Part 5, wherein the polypeptide comprises one of the substitutions of the lower group: L288F/Q176K/K337A, L288Y/Q176K/K337A, L288N/Q176K/K337A or L288A/Q176K/K337A.

具體實例7:如具體實例1之因子VII多肽,其中Q286藉由Asn(N)置換。 Specific Example 7: The Factor VII polypeptide of Specific Example 1, wherein Q286 is replaced by Asn(N).

具體實例8:一種包含一或多個相對於人類因子VII之胺基酸序列(SEQ ID NO:1)之取代之因子VII多肽,其特徵在於一個取代為藉由Phe(F)、Tyr(Y)、Asn(N)或Ala(A)置換L288時,其限制條件為該多肽不具有以下取代對:L288N/R290S或L288N/R290T。 Specific Example 8: A Factor VII polypeptide comprising one or more substitutions relative to the amino acid sequence of human Factor VII (SEQ ID NO: 1), characterized in that one substitution is by Phe(F), Tyr(Y When Asn(N) or Ala(A) is substituted for L288, the restriction is that the polypeptide does not have the following substitution pair: L288N/R290S or L288N/R290T.

具體實例9:如具體實例1至2(xxx)、5及7至8中任一項之因子VII多肽,其中該因子VII多肽進一步包含以下取代中之一或多者:L305I、L305V或K337A。 The Factor VII polypeptide of any one of embodiments 1 to 2 (xxx), 5, and 7 to 8, wherein the Factor VII polypeptide further comprises one or more of the following substitutions: L305I, L305V or K337A.

具體實例10:一種包含兩個或兩個以上相對於人類因子VII之胺基酸序列(SEQ ID NO:1)之取代之因子VII多肽,其中W201藉由Arg(R)、Met(M)或Lys(K)置換且其中T293藉由Lys(K)、Arg(R)、Tyr(Y)或Phe(F)置換;其中Q176藉由Lys(K)、Arg(R)或Asn(N)置換;或Q286藉由Asn(N)置換。 Specific Example 10: A Factor VII polypeptide comprising two or more substitutions relative to the amino acid sequence of human Factor VII (SEQ ID NO: 1), wherein W201 is by Arg (R), Met (M) or Lys (K) substitution and wherein T293 is replaced by Lys (K), Arg (R), Tyr (Y) or Phe (F); wherein Q176 is replaced by Lys (K), Arg (R) or Asn (N) Or Q286 is replaced by Asn(N).

具體實例10(i):如具體實例1至1(ii)或10中任一項之因子VII多肽,其中T293藉由Lys(K)、Arg(R)、Tyr(Y)或Phe(F)置換且其中W201藉由Arg(R)、Met(M)或Lys(K)置換。 The compound of claim VII, wherein the T293 is by Lys (K), Arg (R), Tyr (Y) or Phe (F) Substitution and wherein W201 is replaced by Arg(R), Met(M) or Lys(K).

具體實例11:根據具體實例10之因子VII多肽,其中T293 藉由Lys(K)、Arg(R)、Tyr(Y)或Phe(F)置換。 Specific Example 11: Factor VII polypeptide according to Specific Example 10, wherein T293 Replacement by Lys (K), Arg (R), Tyr (Y) or Phe (F).

具體實例11(i):如具體實例1至2、10或11中任一項之因子VII多肽,其中T293藉由Lys(K)、Arg(R)、Tyr(Y)或Phe(F)置換且W201藉由Arg(R)、Met(M)或Lys(K)置換。 The factor VII polypeptide of any one of the embodiments 1 to 2, 10 or 11, wherein the T293 is replaced by Lys (K), Arg (R), Tyr (Y) or Phe (F) And W201 is replaced by Arg (R), Met (M) or Lys (K).

具體實例11(ii):如具體實例1至2、10或11中任一項之因子VII多肽,其中T293藉由Lys(K)置換且W201藉由Arg(R)置換。 The factor VII polypeptide of any one of the embodiments 1 to 2, 10 or 11, wherein T293 is replaced by Lys (K) and W201 is replaced by Arg (R).

具體實例11(iii):如具體實例1至2、10或11中任一項之因子VII多肽,其中T293藉由Lys(K)置換且W201藉由Met(M)置換。 The factor VII polypeptide of any one of embodiments 1 to 2, 10 or 11, wherein T293 is replaced by Lys (K) and W201 is replaced by Met (M).

具體實例11(iv):如具體實例1至2、10或11中任一項之因子VII多肽,其中T293藉由Lys(K)置換且W201藉由Lys(K)置換。 The factor VII polypeptide of any one of the embodiments 1 to 2, 10 or 11, wherein T293 is replaced by Lys (K) and W201 is replaced by Lys (K).

具體實例11(v):如具體實例1至2、10或11中任一項之因子VII多肽,其中T293藉由Arg(R)置換且W201藉由Arg(R)置換。 The Factor VII polypeptide of any one of embodiments 1 to 2, 10 or 11, wherein T293 is replaced by Arg (R) and W201 is replaced by Arg (R).

具體實例11(vi):如具體實例1至2、10或11中任一項之因子VII多肽,其中T293藉由Arg(R)置換且W201藉由Met(M)置換。 The factor VII polypeptide of any one of embodiments 1 to 2, 10 or 11, wherein T293 is replaced by Arg (R) and W201 is replaced by Met (M).

具體實例11(vii):如具體實例1至2、10或11中任一項之因子VII多肽,其中T293藉由Arg(R)置換且W201藉由Lys(K)置換。 The factor VII polypeptide of any one of embodiments 1 to 2, 10 or 11, wherein T293 is replaced by Arg (R) and W201 is replaced by Lys (K).

具體實例11(viii):如具體實例1至2、10或11中任一項之因子VII多肽,其中T293藉由Tyr(Y)置換且W201藉由Arg(R)置換。 The Factor VII polypeptide of any one of embodiments 1 to 2, 10 or 11, wherein T293 is replaced by Tyr (Y) and W201 is replaced by Arg (R).

具體實例11(ix):如具體實例1至2、10或11中任一項之因子VII多肽,其中T293藉由Tyr(Y)置換且W201藉由Met(M)置換。 A factor VII polypeptide according to any one of embodiments 1 to 2, 10 or 11, wherein T293 is replaced by Tyr (Y) and W201 is replaced by Met (M).

具體實例11(x):如具體實例1至2、10或11中任一項之因子VII多肽,其中T293藉由Tyr(Y)置換且W201藉由Lys(K)置換。 The Factor VII polypeptide of any one of the embodiments 1 to 2, 10 or 11, wherein T293 is replaced by Tyr (Y) and W201 is replaced by Lys (K).

具體實例11(xi):如具體實例1至2、10或11中任一項之因子VII多肽,其中T293藉由Phe(F)置換且W201藉由Arg(R)置換。 A factor VII polypeptide according to any one of embodiments 1 to 2, 10 or 11, wherein T293 is replaced by Phe(F) and W201 is replaced by Arg(R).

具體實例11(xii):如具體實例1至2、10或11中任一項之因子VII多肽,其中T293藉由Phe(F)置換且W201藉由Met(M)置換。 A factor VII polypeptide according to any one of embodiments 1 to 2, 10 or 11, wherein T293 is replaced by Phe (F) and W201 is replaced by Met (M).

具體實例11(xiii):如具體實例1至2、10或11中任一項之因子VII多肽,其中T293藉由Phe(F)置換且W201藉由Lys(K)置換。 The factor VII polypeptide of any one of the embodiments 1 to 2, 10 or 11, wherein T293 is replaced by Phe (F) and W201 is replaced by Lys (K).

具體實例12:如具體實例11之因子VII多肽,其中該多肽包含下群之取代中之一者:W201R/T293K、W201R/T293K/K337A、W201R/T293K/L305V、W201R/T293K/L305I、W201R/T293R、W201R/T293R/K337A、W201R/T293R/L305V、W201R/T293R/L305I、W201R/T293Y、W201R/T293Y/K337A、W201R/T293Y/L305V、W201R/T293Y/L305I、W201R/T293F、W201R/T293F/K337A、W201R/T293F/L305V、W201R/T293F/L305I、W201K/T293K、W201K/T293K/K337A、W201K/T293K/L305V、W201K/T293K/L305I、W201K/T293R、W201K/T293R/K337A、W201K/T293R/L305V、W201K/T293R/L305I、W201K/T293Y、W201K/T293Y/K337A、W201K/T293Y/L305V、W201K/T293Y/L305I、W201K/T293F、W201K/T293F/K337A、W201K/T293F/L305V、W201K/T293F/L305I、W201M/T293K、W201M/T293K/K337A、W201M/T293K/L305V、W201M/T293K/L305I、W201M/T293R、W201M/T293R/K337A、W201M/T293R/L305V、W201M/T293R/L305I、W201M/T293Y、W201M/T293Y/K337A、W201M/T293Y/L305V、W201M/T293Y/L305I、 W201M/T293F、W201M/T293F/K337A、W201M/T293F/L305V或W201M/T293F/L305I。 Specific Example 12: The Factor VII polypeptide of Embodiment 11, wherein the polypeptide comprises one of the substitutions of the lower group: W201R/T293K, W201R/T293K/K337A, W201R/T293K/L305V, W201R/T293K/L305I, W201R/ T293R, W201R/T293R/K337A, W201R/T293R/L305V, W201R/T293R/L305I, W201R/T293Y, W201R/T293Y/K337A, W201R/T293Y/L305V, W201R/T293Y/L305I, W201R/T293F, W201R/T293F/ K337A, W201R/T293F/L305V, W201R/T293F/L305I, W201K/T293K, W201K/T293K/K337A, W201K/T293K/L305V, W201K/T293K/L305I, W201K/T293R, W201K/T293R/K337A, W201K/T293R/ L305V, W201K/T293R/L305I, W201K/T293Y, W201K/T293Y/K337A, W201K/T293Y/L305V, W201K/T293Y/L305I, W201K/T293F, W201K/T293F/K337A, W201K/T293F/L305V, W201K/T293F/ L305I, W201M/T293K, W201M/T293K/K337A, W201M/T293K/L305V, W201M/T293K/L305I, W201M/T293R, W201M/T293R/K337A, W201M/T293R/L305V, W201M/T293R/L305I, W201M/T293Y, W201M/T293Y/K337A, W201M/T293Y/L305V, W201M/T293Y/L305I, W201M/T293F, W201M/T293F/K337A, W201M/T293F/L305V or W201M/T293F/L305I.

具體實例13:如具體實例11之因子VII多肽,其中該多肽具有以下取代:W201R/T293K、W201R/T293K/K337A、W201R/T293R、W201R/T293R/K337A、W201R/T293Y、W201R/T293F、W201K/T293K或W201M/T293K。 Specific Example 13: The Factor VII polypeptide of Specific Example 11, wherein the polypeptide has the following substitutions: W201R/T293K, W201R/T293K/K337A, W201R/T293R, W201R/T293R/K337A, W201R/T293Y, W201R/T293F, W201K/ T293K or W201M/T293K.

具體實例14:如具體實例10之因子VII多肽,其中Q176藉由Lys(K)、Arg(R)或Asn(N)置換。 Specific Example 14: The Factor VII polypeptide of Embodiment 10, wherein Q176 is substituted by Lys (K), Arg (R) or Asn (N).

具體實例15:如具體實例14之因子VII多肽,其中該多肽包含下群之取代中之一者:W201R/Q176K、W201R/Q176R、W201K/Q176K、W201K/Q176R、W201M/Q176K或W201M/Q176R。 Specific Example 15: The Factor VII polypeptide of Embodiment 14, wherein the polypeptide comprises one of the subgroup substitutions: W201R/Q176K, W201R/Q176R, W201K/Q176K, W201K/Q176R, W201M/Q176K or W201M/Q176R.

具體實例16:如具體實例10之因子VII多肽,其中Q286藉由Asn(N)置換。 Specific Example 16: The Factor VII polypeptide of Embodiment 10, wherein Q286 is replaced by Asn(N).

具體實例17:如具體實例10至11、14及16中任一項之因子VII多肽,其中該因子VII多肽進一步包含以下取代中之一或多者:L305I、L305V或K337A。 The Factor VII polypeptide of any one of embodiments 10 to 11, 14 and 16, wherein the Factor VII polypeptide further comprises one or more of the following substitutions: L305I, L305V or K337A.

具體實例18:一種包含一或多個相對於人類因子VII之胺基酸序列(SEQ ID NO:1)之取代之因子VII多肽,其特徵在於一個取代為藉由Arg(R)、Met(M)或Lys(K)置換W201時。 Specific Example 18: A Factor VII polypeptide comprising one or more substitutions relative to the amino acid sequence of human Factor VII (SEQ ID NO: 1), characterized in that one substitution is by Arg(R), Met (M ) or Lys (K) when W201 is replaced.

具體實例19:一種包含兩個或兩個以上相對於人類因子VII之胺基酸序列(SEQ ID NO:1)之取代之因子VII多肽,其中L288藉由Phe(F)、Tyr(Y)、Asn(N)或Ala(A)置換;其中W201藉由Arg(R)、Met(M)或 Lys(K)置換,且視需要,其中T293藉由Lys(K)、Arg(R)、Tyr(Y)或Phe(F)置換;Q176藉由Lys(K)、Arg(R)或Asn(N)置換;或Q286藉由Asn(N)置換。 Specific Example 19: A Factor VII polypeptide comprising two or more substitutions relative to the amino acid sequence of human Factor VII (SEQ ID NO: 1), wherein L288 is via Phe (F), Tyr (Y), Asn(N) or Ala(A) substitution; wherein W201 is by Arg(R), Met(M) or Lys (K) substitution, and if necessary, where T293 is replaced by Lys (K), Arg (R), Tyr (Y) or Phe (F); Q176 by Lys (K), Arg (R) or Asn ( N) permutation; or Q286 is replaced by Asn(N).

具體實例20:如具體實例19之因子VII多肽,其中該多肽包含下群之取代中之一者:L288F/W201K、L288F/W201R、L288F/W201M、L288N/W201K、L288N/W201R、L288N/W201M、L288Y/W201K、L288Y/W201R、L288Y/W201M、L288A/W201K、L288A/W201R、L288A/W201M、L288F/W201K/T293K、L288F/W201K/T293Y、L288F/W201R/T293K、L288F/W201R/T293Y、L288F/W201M/T293K、L288F/W201M/T293Y、L288N/W201K/T293K、L288N/W201K/T293Y、L288N/W201R/T293K、L288N/W201R/T293Y、L288N/W201M/T293K、L288N/W201M/T293Y、L288A/W201K/T293K、L288A/W201K/T293Y、L288A/W201R/T293K、L288A/W201R/T293Y、L288A/W201M/T293K、L288A/W201M/T293Y、L288Y/W201K/T293K、L288Y/W201K/T293Y、L288Y/W201R/T293K、L288Y/W201R/T293Y、L288Y/W201M/T293K或L288Y/W201M/T293Y。 Specific Example 20: The Factor VII polypeptide of Embodiment 19, wherein the polypeptide comprises one of the subgroup substitutions: L288F/W201K, L288F/W201R, L288F/W201M, L288N/W201K, L288N/W201R, L288N/W201M, L288Y/W201K, L288Y/W201R, L288Y/W201M, L288A/W201K, L288A/W201R, L288A/W201M, L288F/W201K/T293K, L288F/W201K/T293Y, L288F/W201R/T293K, L288F/W201R/T293Y, L288F/ W201M/T293K, L288F/W201M/T293Y, L288N/W201K/T293K, L288N/W201K/T293Y, L288N/W201R/T293K, L288N/W201R/T293Y, L288N/W201M/T293K, L288N/W201M/T293Y, L288A/W201K/ T293K, L288A/W201K/T293Y, L288A/W201R/T293K, L288A/W201R/T293Y, L288A/W201M/T293K, L288A/W201M/T293Y, L288Y/W201K/T293K, L288Y/W201K/T293Y, L288Y/W201R/T293K, L288Y/W201R/T293Y, L288Y/W201M/T293K or L288Y/W201M/T293Y.

具體實例21:如前述具體實例中任一項之因子VII多肽,其中該因子VII多肽進一步包含以下取代中之一或多者:R396C、Q250C或407C。 The factor VII polypeptide of any one of the preceding embodiments, wherein the Factor VII polypeptide further comprises one or more of the following substitutions: R396C, Q250C or 407C.

具體實例22:如前述具體實例中任一項之因子VII多肽,其中該因子VII多肽為裂解、雙鏈因子VIIa多肽。 The factor VII polypeptide of any one of the preceding embodiments, wherein the Factor VII polypeptide is a cleavage, double-stranded Factor Vila polypeptide.

具體實例22(i):如前述具體實例中任一項之因子VII多肽,其包含兩個相對於人類因子VII之胺基酸序列(SEQ ID NO:1)之胺基酸取 代。 Specific Example 22 (i): The Factor VII polypeptide according to any one of the preceding embodiments, comprising two amino acid residues relative to the amino acid sequence of human Factor VII (SEQ ID NO: 1) generation.

具體實例22(ii):如前述具體實例中任一項之因子VII多肽,其包含三個相對於人類因子VII之胺基酸序列(SEQ ID NO:1)之胺基酸取代。 Specific Example 22 (ii): The Factor VII polypeptide of any of the preceding embodiments, comprising three amino acid substitutions relative to the amino acid sequence of human Factor VII (SEQ ID NO: 1).

具體實例22(iii):如前述具體實例中任一項之因子VII多肽,其包含四個相對於人類因子VII之胺基酸序列(SEQ ID NO:1)之胺基酸取代。 Specific Example 22 (iii): The Factor VII polypeptide of any of the preceding embodiments, comprising four amino acid substitutions relative to the amino acid sequence of human Factor VII (SEQ ID NO: 1).

具體實例22(iv):如前述具體實例中任一項之因子VII多肽,其包含五個相對於人類因子VII之胺基酸序列(SEQ ID NO:1)之胺基酸取代。 The compound VII polypeptide according to any one of the preceding embodiments, comprising five amino acid substitutions relative to the amino acid sequence of human Factor VII (SEQ ID NO: 1).

具體實例22(v):如具體實例22(i)至22(iv)中任一項之因子VII多肽,其包含至多十個相對於人類因子VII之胺基酸序列(SEQ ID NO:1)之胺基酸取代。 Specific Example 22 (v): The Factor VII polypeptide of any one of embodiments 22 (i) to 22 (iv) comprising up to ten amino acid sequences relative to human Factor VII (SEQ ID NO: 1) Substituted by an amino acid.

具體實例22(vi):如前述具體實例中任一項之因子VII多肽,如在不存在可溶組織因子之情況下以試管內蛋白分解分析量測,其蛋白分解活性為野生型人類因子VIIa之蛋白分解活性的至少110%,諸如至少120%,諸如至少130%,諸如至少140%,諸如至少150%,諸如至少160%,諸如至少170%,諸如至少180%,諸如至少190%,諸如至少200%,諸如至少300%,諸如至少400%,諸如至少500%,諸如至少1000%,諸如至少3000%,諸如至少5000%,諸如至少10 000%,諸如至少30 000%。 Specific Example 22 (vi): The Factor VII polypeptide according to any one of the preceding specific examples, wherein the proteolytic activity is wild-type human Factor VIIa as measured by in-tube proteolytic analysis in the absence of soluble tissue factor At least 110% of the proteolytic activity, such as at least 120%, such as at least 130%, such as at least 140%, such as at least 150%, such as at least 160%, such as at least 170%, such as at least 180%, such as at least 190%, such as At least 200%, such as at least 300%, such as at least 400%, such as at least 500%, such as at least 1000%, such as at least 3000%, such as at least 5000%, such as at least 10 000%, such as at least 30 000%.

具體實例22(vii):如前述具體實例中任一項之因子VII多肽,如在存在低分子量肝素及不存在可溶組織因子之情況下以抗凝血酶抑 制分析量測,相比於野生型人類因子VIIa(SEQ ID NO:1)之抗凝血酶反應性,其具有小於20%,諸如小於19%,諸如小於18%,諸如小於17%,諸如小於16%,諸如小於15%,諸如小於14%,諸如小於13%,諸如小於12%,諸如小於11%,諸如小於10%,諸如小於9%,諸如小於8%,諸如小於7%,諸如小於6%,諸如小於5%抗凝血酶反應性。 Specific Example 22 (vii): The Factor VII polypeptide according to any one of the preceding specific examples, such as anti-thrombin in the presence of low molecular weight heparin and in the absence of soluble tissue factor Analytical assay, which has less than 20%, such as less than 19%, such as less than 18%, such as less than 17%, such as antithrombin reactivity of wild-type human Factor VIIa (SEQ ID NO: 1), such as Less than 16%, such as less than 15%, such as less than 14%, such as less than 13%, such as less than 12%, such as less than 11%, such as less than 10%, such as less than 9%, such as less than 8%, such as less than 7%, such as Less than 6%, such as less than 5% antithrombin reactivity.

具體實例23:如前述具體實例中任一項之因子VII多肽,其中該因子VII多肽與至少一個半衰期延長部分耦合。 The method of any one of the preceding embodiments, wherein the Factor VII polypeptide is coupled to at least one half-life extending moiety.

具體實例24:如具體實例23之因子VII多肽,其中該半衰期延長部分係選自生物相容性脂肪酸及其衍生物、例如羥乙基澱粉(HES)之羥烷基澱粉(HAS)、聚乙二醇(PEG)、聚(Glyx-Sery)n(HAP)、玻尿酸(HA)、肝素前體聚合物(HEP)、基於磷酸膽鹼之聚合物(PC聚合物)、Fleximer、聚葡萄糖、聚唾液酸(PSA)、Fc域、運鐵蛋白、白蛋白、彈性蛋白樣肽(ELP)、XTEN聚合物、PAS聚合物、PA聚合物、白蛋白結合肽、CTP肽、FcRn結合肽及其任何組合。 Specific Example 24: The Factor VII polypeptide of Embodiment 23, wherein the half-life extending moiety is selected from the group consisting of biocompatible fatty acids and derivatives thereof, such as hydroxyethyl starch (HES) hydroxyalkyl starch (HAS), polyethyl b. Glycol (PEG), poly(Glyx-Sery)n (HAP), hyaluronic acid (HA), heparin precursor polymer (HEP), phosphorylcholine-based polymer (PC polymer), Fleximer, polydextrose, poly Sialic acid (PSA), Fc domain, transferrin, albumin, elastin-like peptide (ELP), XTEN polymer, PAS polymer, PA polymer, albumin binding peptide, CTP peptide, FcRn binding peptide and any combination.

具體實例25:如具體實例24之因子VII多肽,其中該半衰期延長部分為肝素前體聚合物。 Specific Example 25: The Factor VII polypeptide of Embodiment 24, wherein the half-life extending moiety is a heparin precursor polymer.

具體實例26:如具體實例25之因子VII多肽,其中該肝素前體聚合物具有在選自13-65kDa、13-55kDa、25-55kDa、25-50kDa、25-45kDa、30-45kDa及38-42kDa範圍內之分子量或40kDa之分子量。 Specific Example 26: The Factor VII polypeptide of Embodiment 25, wherein the heparin precursor polymer has a moiety selected from the group consisting of 13-65 kDa, 13-55 kDa, 25-55 kDa, 25-50 kDa, 25-45 kDa, 30-45 kDa, and 38- Molecular weight in the range of 42 kDa or molecular weight of 40 kDa.

具體實例26(i):如具體實例25至26中任一項之FVII多肽,其包含式I中顯示之結構片段, The FVII polypeptide of any one of the specific examples 25 to 26, which comprises the structural fragment shown in Formula I,

其中n為95-115之整數。 Wherein n is an integer from 95 to 115.

具體實例26(ii):如前述具體實例中任一項之因子VII多肽,其具有相比於野生型人類因子VIIa(SEQ ID NO:1)增加至少100%之半衰期。 The compound of claim VII, which has a half-life of at least 100% greater than wild-type human Factor VIIa (SEQ ID NO: 1).

具體實例27:如前述具體實例中任一項之因子VII多肽,其中該因子VII多肽為連接於組織因子之二硫化物。 The method of any one of the preceding embodiments, wherein the Factor VII polypeptide is a disulfide linked to a tissue factor.

具體實例28:如前述具體實例中任一項之因子VII多肽,其中該多肽具有增加該多肽之血小板親和力之其他胺基酸修飾。 The method of any one of the preceding embodiments, wherein the polypeptide has other amino acid modifications that increase the platelet affinity of the polypeptide.

具體實例29:如具體實例1至22中任一項之因子VII多肽,其中該多肽為包含如具體實例1至22中任一項之因子VII多肽及例如Fc域或白蛋白之融合搭配物蛋白/肽之融合蛋白。 The compound of claim VII, wherein the polypeptide is a fusion conjugate protein comprising a Factor VII polypeptide according to any one of the specific examples 1 to 22 and, for example, an Fc domain or albumin. / peptide fusion protein.

具體實例30:一種聚核苷酸,其編碼如具體實例1至22及28至29中任一項定義之因子VII多肽。 Specific Example 30: A polynucleotide encoding a Factor VII polypeptide as defined in any one of Specific Examples 1 to 22 and 28 to 29.

具體實例31:一種重組宿主細胞,其包含如具體實例30之聚核苷酸。 Specific Example 31: A recombinant host cell comprising the polynucleotide of Specific Example 30.

具體實例32:一種生產如具體實例1至22及28至29中任一項定義之因子VII多肽之方法,該方法包含在允許表現該聚核苷酸結構之 條件下於適當培養基中培養細胞及自該培養基回收該所得多肽。 Specific Example 32: A method of producing a Factor VII polypeptide as defined in any one of Embodiments 1 to 22 and 28 to 29, which method comprises allowing expression of the structure of the polynucleotide The cells are cultured in an appropriate medium under conditions and the resulting polypeptide is recovered from the medium.

具體實例33:一種醫藥組成物,其包含如具體實例1至29中任一項定義之因子VII多肽及醫藥學上可接受之載劑。 Specific Example 33: A pharmaceutical composition comprising a Factor VII polypeptide as defined in any one of Specific Examples 1 to 29 and a pharmaceutically acceptable carrier.

具體實例34:一種用於治療個體中之出血病症或出血事件或增強正常止血系統之方法,該方法包含向有需要之個體投予治療或預防有效量的如具體實例1至29中任一項定義之因子VII多肽。 Specific Example 34: A method for treating a bleeding disorder or a bleeding event in an individual or enhancing a normal hemostatic system, the method comprising administering to a subject in need thereof a therapeutic or prophylactically effective amount of any one of the specific examples 1 to 29 A defined Factor VII polypeptide.

具體實例35:如具體實例1至26中任一項之因子VII多肽,其用作醫藥品。 Specific Example 35: The Factor VII polypeptide according to any one of Embodiments 1 to 26, which is for use as a pharmaceutical.

具體實例35(i):如具體實例1至26中任一項之因子VII多肽,其用於治療凝血病。 Specific Example 35 (i): The Factor VII polypeptide of any of embodiments 1 to 26 for use in the treatment of a coagulopathy.

具體實例36:如具體實例35(i)之因子VII多肽,其用作治療血友病A或B之醫藥品。 Specific Example 36: The Factor VII polypeptide of Specific Example 35 (i) for use as a medicament for the treatment of hemophilia A or B.

藉由以下實施例進一步說明本發明,然而,不將該等實施例理解為限制保護範疇。揭示於前述說明書及下述實施例中之特徵可單獨及以其任何組合為以其多樣形式實現本發明之材料。 The invention is further illustrated by the following examples, which are not to be construed as limiting the scope of the invention. The features disclosed in the foregoing description and the following examples can be used to implement the materials of the present invention in various forms, alone and in any combination thereof.

實施例Example

蛋白質protein

自Enzyme Research Laboratories公司(South Bend,IN)獲得人類血漿源因子X(FX)及因子Xa(FXa)。根據公開之程序(Freskgard等人,1996)製備可溶組織因子1-219(sTF)或1-209。如先前所描述(Thim等人,1988;Persson及Nielsen,1996)進行重組野生型FVIIa之表現及純化。藉由根據公開程序(Olson等人,1993)之肝素瓊脂糖層析(GE Healthcare) 再純化人類血漿源抗凝血酶(Baxter)。自Sigma Aldrich(St.Louis,MO)獲得牛血清白蛋白(BSA)。 Human plasma source factor X (FX) and factor Xa (FXa) were obtained from Enzyme Research Laboratories, Inc. (South Bend, IN). Soluble tissue factor 1-219 (sTF) or 1-209 was prepared according to the published procedure (Freskgard et al., 1996). The performance and purification of recombinant wild-type FVIIa was performed as previously described (Thim et al., 1988; Persson and Nielsen, 1996). Heparin agarose chromatography (GE Healthcare) according to published procedures (Olson et al., 1993) Human plasma-derived antithrombin (Baxter) was purified. Bovine serum albumin (BSA) was obtained from Sigma Aldrich (St. Louis, MO).

實施例1-FVIIa變異體設計Example 1 - FVIIa variant design

為設計對FX具有較高蛋白分解活性之FVIIa變異體作為受質,採用雙向策略。選擇活性位點區域周圍之FVIIa環及單一胺基酸分別用於與來自不同物種之對應FVII胺基酸(圖1)調換及點突變誘發。如實施例5中概述量測FVIIa蛋白分解活性。三環調換FVIIa變異體之蛋白分解活性顯示於表1中,其中在改變位置288處之胺基酸時,位置287及289處之殘基分別突變為蘇胺酸及麩胺酸。觀測到在位置288發生變化,同時在位置287及289維持相同胺基酸顯著影響蛋白分解活性。亦觀測到取代位置201處之胺基酸,無論藉由大鼠及兔FVII運載之白胺酸或藉由牛類FVII運載之精胺酸,均影響蛋白分解活性。此外,觀測到取代位置337處之胺基酸,無論藉由馬運載之麩醯胺酸或較小胺基酸(諸如丙胺酸),均影響蛋白分解活性(表1)。此等觀測表明位置288及201處之胺基酸可能與FX識別及活化有關。因此,藉由飽和突變誘發進一步研究位置288及201且代表性結果概述於表2中。 To design a FVIIa variant with high proteolytic activity on FX as a substrate, a two-way strategy was employed. The FVIIa loop and the single amino acid surrounding the active site region were selected for exchange with the corresponding FVII amino acids (Fig. 1) from different species and point mutation induction. The FVIIa proteolytic activity was measured as outlined in Example 5. The proteolytic activity of the tricyclic exchange FVIIa variant is shown in Table 1, wherein when the amino acid at position 288 was changed, the residues at positions 287 and 289 were mutated to sulphonic acid and glutamic acid, respectively. It was observed that a change occurred at position 288 while maintaining the same amino acid at positions 287 and 289 significantly affected proteolytic activity. It was also observed that the amino acid at the substitution position 201 affects the proteolytic activity regardless of the leucine acid carried by the rat and the rabbit FVII or the arginine carried by the bovine FVII. Furthermore, it was observed that the amino acid at position 337 of substitution, whether by horse-loaded glutamic acid or a smaller amino acid such as alanine, affects proteolytic activity (Table 1). These observations indicate that amino acids at positions 288 and 201 may be involved in FX recognition and activation. Therefore, positions 288 and 201 were further investigated by saturation mutation and the representative results are summarized in Table 2.

表1.選擇之FVIIa變異體之蛋白分解活性.結果係以相對於野生型FVIIa之百分比(%)顯示。 Table 1. Proteolytic activity of selected FVIIa variants. Results are shown as percentage (%) relative to wild-type FVIIa.

實施例2-FVIIa變異體之選殖Example 2 - Selection of FVIIa variants

使用來自Novagen之KOD XtremeTM Hot Start DNA聚合酶或來自Stratagene之QuickChange®定點突變誘發套組,使用基於定點突變誘發PCR之方法將突變引入編碼FVII cDNA之哺乳表現載體中。將來自Icosagen Cell Factory(Estonia)之pQMCF表現載體及CHOEBNALT85用作表現系統。藉由DNA定序(MWG Biotech.Germany)驗證所需突變之引入。 Using KOD Xtreme TM Hot Start DNA Polymerase from Stratagene or from Novagen the QuickChange® of site-directed mutagenesis kit, using PCR-based site-directed mutagenesis method of introducing mutations into the mammalian expression vector encoding the FVII cDNA. The pQMCF expression vector from Icosagen Cell Factory (Estonia) and CHOEB NALT85 were used as expression systems. The introduction of the desired mutation was verified by DNA sequencing (MWG Biotech. Germany).

實施例3-FVIIa表現Example 3 - FVIIa performance

在來自Icosagen Cell Factory(Estonia)之CHOEBNALT85細胞中表現FVII變異體。簡言之,藉由電穿孔(Gene Pulse Xcell,Biorad,Copenhagen,DK)短暫轉染CHOEBNALT85懸浮細胞。藉由700μg/l Geneticin®(Gibco,Life Technologies)選擇經轉染細胞,且經延長以獲得總共300毫升至10公升上清液。於補充有5mg/l維生素K1的根據製造商之說明書之培養基(Sigma-Aldrich)中培養細胞。取決於規模,細胞培養於搖瓶(37℃.5%-8% CO2及85-125rpm)或擺動培養袋(37℃.5% CO2及30rpm)中。小規模上清液藉由離心接著經由0.22μm PES過濾器(Corning;Fischer Scientific Biotech,Slangerup,DK)過濾收集且較大體積藉由深度過濾繼之以0.22μm絕對過濾(3μm Clarigard,Opticap XL10;0.22μm Durapore,Opticap XL10,Merck Millipore,Hellerup,DK)收集。 FVII variants were expressed in CHOEBNALT85 cells from Icosagen Cell Factory (Estonia). Briefly, CHOEBNALT85 suspension cells were transiently transfected by electroporation (Gene Pulse Xcell, Biorad, Copenhagen, DK). Transfected cells were selected by 700 μg/l Geneticin® (Gibco, Life Technologies) and extended to obtain a total of 300 ml to 10 liters of supernatant. The cells were cultured in a medium (Sigma-Aldrich) supplemented with 5 mg/l of vitamin K1 according to the manufacturer's instructions. Depending on the size, the cells were cultured in shake flasks (37 ° C. 5% - 8% CO 2 and 85-125 rpm) or shake culture bags (37 ° C. 5% CO 2 and 30 rpm). The small-scale supernatant was collected by centrifugation followed by filtration through a 0.22 μm PES filter (Corning; Fischer Scientific Biotech, Slangerup, DK) and the larger volume was further filtered by depth filtration followed by 0.22 μm absolute filtration (3 μm Clarigard, Opticap XL10; 0.22 μm Durapore, Opticap XL10, Merck Millipore, Hellerup, DK).

實施例4-FVIIa純化及濃度測定Example 4 - Purification and Concentration Determination of FVIIa

藉由基本上如他處(Thim等人1988)描述的定向Gla-域之 抗體親和性層析法純化FVII變異體。簡言之,該方案由3步組成。在步驟1中,將5mM CaCl2添加至改良性培養基中且將樣品裝載至親和性管柱上。在用10mM His、2M NaCl、5mM CaCl2、0.005% Tween 80,pH 6.0澈底洗滌之後,用50mM His、15mM EDTA、0.005% Tween 80,pH 6.0將結合蛋白洗提至(步驟2)陰離子交換管柱(Source 15Q,GE Healthcare)上。在用20mM HEPES、20mM NaCl、0.005% Tween 80,pH 8.0洗滌之後,用20mM HEPES、135mM NaCl、10mM CaCl2、0.005% Tween 80,pH 8.0將結合蛋白洗提至(步驟3)CNBr-Sepharose Fast Flow管柱(GE Healthcare)上,人類血漿源FXa根據製造商之說明書以1mg/ml之密度耦合至該管柱。流動速率經最佳化以確保純化酶原變異體基本上完全活化為活化形式。對於具有增強活性、能夠在改良性培養基中或陰離子交換管柱上自動活化之FVIIa變異體,省去步驟2及/或步驟3以防止蛋白分解降解。純化蛋白質儲存於-80℃下。藉由SDS-PAGE分析評估蛋白質品質且藉由活性位點滴定或藉由如下所述之rpHPLC之輕鏈含量定量量測官能分子之濃度。 FVII variants were purified by antibody affinity chromatography of the directed Gla-domain essentially as described elsewhere (Thim et al. 1988). In short, the program consists of 3 steps. In step 1, 5 mM CaCl 2 was added to the modified medium and the sample was loaded onto the affinity column. After washing with 10 mM His, 2 M NaCl, 5 mM CaCl 2 , 0.005% Tween 80, pH 6.0, the bound protein was eluted to (step 2) anion exchange tube with 50 mM His, 15 mM EDTA, 0.005% Tween 80, pH 6.0. Column (Source 15Q, GE Healthcare). After washing with 20 mM HEPES, 20 mM NaCl, 0.005% Tween 80, pH 8.0, the bound protein was eluted with 20 mM HEPES, 135 mM NaCl, 10 mM CaCl 2 , 0.005% Tween 80, pH 8.0 (Step 3) CNBr-Sepharose Fast On the Flow column (GE Healthcare), human plasma source FXa was coupled to the column at a density of 1 mg/ml according to the manufacturer's instructions. The flow rate is optimized to ensure that the purified zymogen variant is substantially fully activated to an activated form. For FVIIa variants with enhanced activity, capable of autoactivation in an improved medium or anion exchange column, step 2 and/or step 3 are omitted to prevent proteolytic degradation. The purified protein was stored at -80 °C. Protein quality was assessed by SDS-PAGE analysis and the concentration of functional molecules was quantitatively quantified by active site titration or by light chain content of rpHPLC as described below.

藉由活性位點滴定量測FVIIa變異體濃度Determination of FVIIa variant concentration by active site titration

基本上如他處(Bock P.E.,1992.J.Biol.Chem.267.14963-14973)描述地藉由活性位點滴定自用亞化學計算含量之d-Phe-Phe-Arg-氯甲基酮(FFR-cmk;Bachem)滴定後的醯胺水解活性之不可逆損失測定純化製劑中之官能分子濃度。簡言之,將所有蛋白稀釋於分析緩衝液(50mM HEPES,pH 7.4、100mM NaCl、10mM CaCl2、1mg/mL BSA及0.1% w/v PEG8000)中。最終濃度為150nM之FVIIa變異體與500nM可溶組織因子(sTF)預培育10分鐘,接著以96孔盤中之100μL總反應體積 中之0-300nM之最終濃度(n=2)添加FFR-cmk。將反應物在室溫下保溫隔夜。在另一96孔盤中,在含有1mM S-2288(Chromogenix,Milano,Italy)之分析緩衝液中將20μL各反應物稀釋10次。在配備有SOFTmax PRO軟體之Spectramax 190微量盤分光光度計中於405nM下連續量測吸收率增加10分鐘。醯胺水解活性報導為去除空白之後的線性進展曲線之斜率。藉由外推法將活性位點濃度測定為完全消除醯胺水解活性所需的FFR-cmk之最小濃度。 Basically, as described elsewhere (Bock PE, 1992. J. Biol. Chem. 267. 14963-14973), the sub-chemically calculated content of d-Phe-Phe-Arg-chloromethylketone (FFR-) was determined by active site titration. Cmk; Bachem) The irreversible loss of the indoleamine hydrolysis activity after titration was determined by the concentration of functional molecules in the purified preparation. Briefly, all proteins were diluted in assay buffer (50 mM HEPES, pH 7.4, 100 mM NaCl, 10 mM CaCl 2 , 1 mg/mL BSA, and 0.1% w/v PEG 8000). FVIIa variants with a final concentration of 150 nM were pre-incubated with 500 nM soluble tissue factor (sTF) for 10 minutes, followed by FFR-cmk at a final concentration of 0-300 nM (n=2) in a total reaction volume of 100 μL in a 96-well plate. . The reaction was incubated overnight at room temperature. In a 96-well plate, 20 μL of each reaction was diluted 10 times in assay buffer containing 1 mM S-2288 (Chromogenix, Milano, Italy). The absorbance was continuously measured at 405 nM for 10 minutes in a Spectramax 190 microplate spectrophotometer equipped with SOFTmax PRO software. The indole hydrolysis activity is reported as the slope of the linear progression curve after removal of the blank. The active site concentration was determined by extrapolation as the minimum concentration of FFR-cmk required to completely eliminate the guanamine hydrolysis activity.

使用反相HPLC自輕鏈含量量測FVIIa變異體濃度-在替代方法中,藉由以反相HPLC(rpHPLC)定量FVIIa輕鏈(LC)含量測定純化製劑中之官能FVIIa分子之濃度。使用在0至3μM範圍內之FVIIa濃度製備野生型FVIIa之校準曲線,同時以1.5μM之評估濃度製備未知濃度之樣品(n=2)。使用添加至樣品中以達到20%(v/v)之濃度之0.5M參(2-羧乙基)膦(TCEP;Calbiochem/Merck KGaA,Darmstadt,Germany)及甲酸之1:1混合物,接著在70℃下加熱樣品10分鐘還原所有樣品。將還原FVIIa變異體裝載至維持於30℃下之C4管柱(Vydac.300Å,粒度5μM,4.6mm,250mm)上。行動相由於水中之0.09% TFA(溶劑A)及於乙腈中之0.085% TFA(溶劑B)組成。在注射80μL樣品後,持續4分鐘在25%溶劑B下,接著經10分鐘以25%-46% B之線性梯度等度運行系統。藉由使用分別為280及348nm之激發及發射波長之螢光偵測峰。藉由峰積分進行輕鏈定量且在野生型FVIIa標準曲線基礎上計算FVIIa變異體之相對量。 The FVIIa variant concentration was measured from the light chain content using reverse phase HPLC - in an alternative method, the concentration of the functional FVIIa molecule in the purified formulation was determined by quantifying the FVIIa light chain (LC) content by reverse phase HPLC (rpHPLC). A calibration curve for wild-type FVIIa was prepared using FVIIa concentrations in the range of 0 to 3 [mu]M while samples of unknown concentration (n=2) were prepared at an estimated concentration of 1.5 [mu]M. A 1:1 mixture of 0.5 M gin (2-carboxyethyl) phosphine (TCEP; Calbiochem/Merck KGaA, Darmstadt, Germany) and formic acid added to the sample to achieve a concentration of 20% (v/v), followed by All samples were reduced by heating the sample at 70 ° C for 10 minutes. The reduced FVIIa variant was loaded onto a C4 column (Vydac. 300Å, particle size 5 μM, 4.6 mm, 250 mm) maintained at 30 °C. The mobile phase consisted of 0.09% TFA (solvent A) in water and 0.085% TFA (solvent B) in acetonitrile. After 80 μL of sample was injected, the system was run at 25% solvent B for 4 minutes followed by a linear gradient of 25%-46% B for 10 minutes. The peaks were detected by fluorescence using excitation and emission wavelengths of 280 and 348 nm, respectively. Light chain quantification was performed by peak integration and the relative amount of FVIIa variants was calculated based on the wild-type FVIIa standard curve.

實施例5-篩選賦予增加之活性之突變Example 5 - Screening for mutations that confer increased activity

如實施例1,表1中所概述,且為了評估位置201及288處 之FVIIa胺基酸之作用;使此等位置經受嚴格定點飽和突變誘發。為了進一步鑑別具有增強之蛋白分解活性之FVIIa變異體,亦選擇其他胺基酸位置305及337用於飽和突變誘發。簡言之,活性量測為各變異體在磷脂囊泡存在下蛋白分解活化巨分子受質因子X之能力(試管內蛋白分解分析)。在存在或不存在輔因子組織因子(sTF)之情況下進行各反應以模擬重組FVIIa之可能的TF依賴性及非依賴性作用機制。此外,為了理解此等取代對藉由抗凝血酶之FVIIa抑制之作用;在低分子量肝素存在下於假一級條件下定量抗凝血酶抑制以模擬內源性肝素樣葡糖胺聚糖(GAG)活體內加速反應之能力。此等結果概述於表2中。如圖2中所示,發現量測之試管內抗凝血酶反應性與FVIIa-抗凝血酶錯合物之活體內積聚相關,因此驗證試管內篩選程序之預測性。 As outlined in Example 1, summarized in Table 1, and in order to evaluate locations 201 and 288 The action of the FVIIa amino acid; subjecting these positions to a strict site-directed saturation mutation induction. To further identify FVIIa variants with enhanced proteolytic activity, other amino acid positions 305 and 337 were also selected for saturation mutation induction. Briefly, activity measurements were the ability of each variant to proteolytically activate macromolecular receptor factor X in the presence of phospholipid vesicles (in vitro in vitro proteolytic analysis). Each reaction was carried out in the presence or absence of cofactor tissue factor (sTF) to mimic the possible TF-dependent and independent mechanism of action of recombinant FVIIa. In addition, in order to understand the effect of these substitutions on FVIIa inhibition by antithrombin; anti-thrombin inhibition was quantified in the presence of low molecular weight heparin under pseudo-primary conditions to mimic endogenous heparin-like glycosaminoglycans ( GAG) The ability to accelerate the response in vivo. These results are summarized in Table 2. As shown in Figure 2, the in vitro in vivo antithrombin reactivity of the assay was found to correlate with the in vivo accumulation of the FVIIa-antithrombin complex, thus verifying the predictability of the in vitro assay procedure.

在位置201處的包括麩醯胺酸、酪胺酸、甲硫胺酸、離胺酸及精胺酸之胺基酸對於在磷脂存在下獲得針對作為受質之FX之蛋白分解活性為所需的。W201R提供在磷脂存在下及在不存在或存在sTF之情況下蛋白分解活性之最大增加。另一方面,相比於FVIIa WT,包括苯丙胺酸、白胺酸及天冬醯胺之胺基酸降低蛋白分解活性。在位置288之情況下,丙胺酸、天冬醯胺、絲胺酸、色胺酸、苯丙胺酸及酪胺酸提供在磷脂存在下 針對作為受質之FX之蛋白分解活性的增加。L288F及L288Y提供在磷脂存在下蛋白分解活性之最大增加。表2中呈現之資料表明先驗地預測蛋白分解活性及抗凝血酶反應性之挑戰。吾人使用飽和突變誘發之方法因此經合理化以探究不同胺基酸於FVIIa變異體中產生的對活性之全面影響。 The amino acid including branic acid, tyrosine, methionine, lysine, and arginine at position 201 is required to obtain proteolytic activity against FX as a substrate in the presence of phospholipids. of. W201R provides the greatest increase in proteolytic activity in the presence of phospholipids and in the absence or presence of sTF. On the other hand, amino acids including phenylalanine, leucine and aspartame reduce proteolytic activity compared to FVIIa WT. In the case of position 288, alanine, aspartame, serine, tryptophan, phenylalanine and tyrosine are provided in the presence of phospholipids Increased proteolytic activity against FX as a substrate. L288F and L288Y provide the greatest increase in proteolytic activity in the presence of phospholipids. The data presented in Table 2 indicates a priori prediction of the proteolytic activity and the challenge of antithrombin reactivity. The method induced by the use of saturation mutations has therefore been rationalized to explore the full effect of the different amino acids on the activity produced in the FVIIa variant.

使用因子X作為受質量測蛋白分解活性(試管內蛋白分解分析)-使用血漿源因子X(FX)作為受質評估FVIIa變異體之蛋白分解活性。將所有蛋白質稀釋於50mM HEPES pH 7.4、100mM NaCl、10mM CaCl2、1mg/mL BSA及0.1% w/v PEG8000中。藉由在96孔盤中以100μL之總反應體積在室溫下於25μM 75:25磷脂醯基膽鹼:磷脂醯基絲胺酸(PC:PS)磷脂(Haematologic technologies,Vermont,USA)存在下培育1至10nM各FVIIa共軛物與40nM FX 30分鐘測定相對蛋白分解活性(n=2)。藉由以100μL之總反應體積在室溫下於25μM PC:PS磷脂存在下培育5pM各FVIIa共軛物與30nM FX 20分鐘測定在sTF存在下之FX活化(n=2)。在培育之後,藉由添加100μL於停止緩衝液(50mM HEPES pH 7.4、100mM NaCl、80mM EDTA)中之1mM S-2765(Chromogenix,Milano,Italy)使反應中止。緊接著中止之後,在Envision微量盤讀取器(PerkinElmer,Waltham,MA)中於405nM下連續量測吸收率增加。藉由線上耦接至Envision微量盤讀取器之Hamilton Microlab Star robot機器人(Hamilton,Bonaduz,Switzeland)進行所有添加、培育及盤移動。由於FX受質濃度([S])低於活化反應之Km,藉由使用線性回歸將資料擬合為Michaelis Menten方程式(v=kcat*[S]*[E]/Km)之簡化形式評估表觀催化速率值(kcat/Km)。自於相同條件下藉由人類血漿源FXa製備之標準曲線評估產生之FXa之量。在根據使用之FVIIa變異體之濃度對量 測之FXa產生速率標準化之後相對於野生型FVIIa報導評估之kcat/Km值。結果提供於表1、表2、表3及表7中。 Factor X was used as the mass-measured proteolytic activity (in-tube proteolytic analysis) - plasma-derived factor X (FX) was used as the proteolytic activity of the FVIIa variant. All proteins were diluted in 50 mM HEPES pH 7.4, 100 mM NaCl, 10 mM CaCl 2 , 1 mg/mL BSA and 0.1% w/v PEG 8000. By using a total reaction volume of 100 μL in a 96-well plate at room temperature in the presence of 25 μM 75:25 phospholipid choline: phospholipidinoic acid (PC:PS) phospholipid (Haematologic technologies, Vermont, USA) The relative proteolytic activity (n=2) was determined by incubating 1 to 10 nM of each FVIIa conjugate with 40 nM FX for 30 minutes. FX activation (n=2) in the presence of sTF was determined by incubating 5 pM of each FVIIa conjugate with 30 nM FX for 20 minutes in the presence of 25 μM PC:PS phospholipid at a total reaction volume of 100 μL. After the incubation, the reaction was stopped by adding 100 μL of 1 mM S-2765 (Chromogenix, Milano, Italy) in stop buffer (50 mM HEPES pH 7.4, 100 mM NaCl, 80 mM EDTA). Immediately after the discontinuation, the increase in absorbance was continuously measured at 405 nM in an Envision microplate reader (PerkinElmer, Waltham, MA). All additions, incubations, and disk movements were performed by a Hamilton Microlab Star robot robot (Hamilton, Bonaduz, Switzerland) coupled to the Envision microplate reader on-line. Since the FX acceptor concentration ([S]) is lower than the K m of the activation reaction, the data is fitted to the Michaelis Menten equation (v=k cat *[S]*[E]/K m ) by linear regression. The apparent catalyzed rate value (k cat /K m ) was evaluated. The amount of FXa produced was evaluated from a standard curve prepared by human plasma source FXa under the same conditions. After generating the normalized rate of FXa measurement of the concentration of FVIIa variant with respect to the use of a wild-type evaluation reports FVIIa k cat / K m values. The results are provided in Table 1, Table 2, Table 3 and Table 7.

藉由抗凝血酶量測FVIIa抑制-不連續方法用於在低分子量(LMW)肝素(Calbiochem/Merck KGaA,Darmstadt,Germany)存在下於假一級條件下藉由人類血漿源抗凝血酶(AT)量測試管內抑制速率。以200μL之總反應體積使用含有50mM HEPES pH 7.4、100mM NaCl、10mM CaCl2、1mg/mL BSA及0.1%w/v PEG8000之緩衝液於96孔盤中進行分析。向200nM FVIIa及12μM LMW肝素之混合物中添加5μM抗凝血酶,最終反應體積為100μL。在不同時間,藉由轉移20μL反應混合物至含有180μL sTF(200nM)、凝聚胺(0.5mg/mL;海美溴銨(Hexadimethrine bromide),Sigma-Aldrich)及S-2288(1mM)之另一微量滴定盤中使反應中止。緊接著在不同時間之轉移之後,在Envision微量盤讀取器中持續10分鐘於405nm下監測到受質裂解。藉由資料與指數衰減函數之非線性最小二乘擬合獲得假一級速率常數(kobs),且自以下關係式獲得二級速率常數(k):k=kobs/[AT]。藉由線上耦接至Envision微量盤讀取器(PerkinElmer,Waltham,MA)之Hamilton Microlab Star機器人(Hamilton,Bonaduz,Switzeland)進行所有添加、培育及盤移動。相對於野生型FVIIa報導抑制速率。結果提供於表2、表3及表7中。 The FVIIa inhibition -discontinuous method was measured by antithrombin for use in human plasma-derived antithrombin under pseudo-primary conditions in the presence of low molecular weight (LMW) heparin (Calbiochem/Merck KGaA, Darmstadt, Germany) AT) The amount of test tube inhibition rate. The assay was performed in a 96-well plate using a buffer containing 50 mM HEPES pH 7.4, 100 mM NaCl, 10 mM CaCl 2 , 1 mg/mL BSA, and 0.1% w/v PEG 8000 in a total reaction volume of 200 μL. 5 μM antithrombin was added to a mixture of 200 nM FVIIa and 12 μM LMW heparin, and the final reaction volume was 100 μL. At different times, by transferring 20 μL of the reaction mixture to another trace containing 180 μL of sTF (200 nM), condensed amine (0.5 mg/mL; Hexadimethrine bromide, Sigma-Aldrich) and S-2288 (1 mM) The reaction was stopped in the titration tray. Immediately after the transfer at different times, the substrate was monitored for cleavage at 405 nm for 10 minutes in an Envision microplate reader. The pseudo first-order rate constant (k obs ) is obtained by nonlinear least squares fitting of the data and the exponential decay function, and the second-order rate constant (k) is obtained from the following relation: k=k obs /[AT]. All additions, incubations, and disk shifts were performed by a Hamilton Microlab Star robot (Hamilton, Bonaduz, Switzerland) coupled to an Envision microplate reader (PerkinElmer, Waltham, MA). The rate of inhibition was reported relative to wild-type FVIIa. The results are provided in Tables 2, 3 and 7.

實施例6-合併賦予增加之活性及抗凝血酶抗性之FVIIa突變.Example 6 - Combining FVIIa mutations conferring increased activity and antithrombin resistance.

為了設計具有高蛋白分解活性及抗凝血酶抗性之FVIIa變異體,將經選擇的促進FVIIa蛋白分解活性之鑑別變異體與賦予抗凝血酶抗性之FVIIa變異體組合。特定言之,藉由在位置293及201、288、305、337、176及/或286之取代製得FVIIa組合變異體。使用實施例5中所述之試管內 蛋白分解及抗凝血酶抑制分析對組合FVIIa純化蛋白製劑之特性化概述於表3中。 In order to design a FVIIa variant having high proteolytic activity and antithrombin resistance, selected variant variants that promote FVIIa proteolytic activity are combined with FVIIa variants that confer antithrombin resistance. In particular, FVIIa combinatorial variants are made by substitution at positions 293 and 201, 288, 305, 337, 176 and/or 286. Using the test tube described in Example 5 Proteolysis and antithrombin inhibition assays The characterization of the combined FVIIa purified protein preparations is summarized in Table 3.

表3表明一些組合產生展現所需高活性而同時具有所需低抗凝血酶反應性之FVIIa變異體。舉例而言,相比於野生型FVIIa,FVIIa變異體L288F T293K顯示在磷脂存在下之600%蛋白分解活性及在低分子量肝素存在下之僅6%抗凝血酶反應性。類似地,相比於野生型FVIIa,FVIIa變異體L288Y T293K顯示在磷脂存在下之447,8%蛋白分解活性及在低分子量肝素存在下之僅5,8%抗凝血酶反應性。此外,相比於野生型FVIIa,W201R T293K顯示在磷脂存在下之609%蛋白分解活性及在低分子量肝素存在下之僅9%抗凝血酶反應性。 Table 3 shows that some combinations produce FVIIa variants that exhibit the desired high activity while having the desired low antithrombin reactivity. For example, the FVIIa variant L288F T293K shows 600% proteolytic activity in the presence of phospholipids and only 6% antithrombin reactivity in the presence of low molecular weight heparin compared to wild-type FVIIa. Similarly, the FVIIa variant L288Y T293K showed 447, 8% proteolytic activity in the presence of phospholipids and only 5,8% antithrombin reactivity in the presence of low molecular weight heparin compared to wild-type FVIIa. Furthermore, W201R T293K showed 609% proteolytic activity in the presence of phospholipids and only 9% antithrombin reactivity in the presence of low molecular weight heparin compared to wild-type FVIIa.

有趣的是,合併兩種FVIIa突變L288F及K337A提供極大增強之活性,相比於野生型FVIIa,蛋白分解活性經量測增加2646%。在進一步共引入突變T293K後,保留增強之活性,同時達成低抗凝血酶反應性。相比於野生型FVIIa,此變異體顯示在磷脂存在下之1310%蛋白分解活性及在低分子量肝素存在下之僅17%抗凝血酶反應性。 Interestingly, the combination of the two FVIIa mutations L288F and K337A provided greatly enhanced activity, with a proteolytic activity increased by 2646% compared to wild-type FVIIa. After further introduction of the mutant T293K, the enhanced activity is retained while achieving low antithrombin reactivity. This variant showed 1310% proteolytic activity in the presence of phospholipids and only 17% antithrombin reactivity in the presence of low molecular weight heparin compared to wild-type FVIIa.

總而言之,可推斷當T293K、T293R及T293Y突變與W201R或L288F組合時相比於野生型FVIIa有效降低抗凝血酶反應性,同時提供相比於野生型FVIIa較高之蛋白分解活性。 In conclusion, it can be inferred that when the T293K, T293R and T293Y mutations are combined with W201R or L288F, the anti-thrombin reactivity is effectively reduced compared to wild-type FVIIa, while providing higher proteolytic activity compared to wild-type FVIIa.

實施例7-FVIIa效能及血漿位準之評估Example 7 - Evaluation of FVIIa potency and plasma level

使用商業FVIIa特異性凝血分析;來自Diagnostica Stago之STACLOT® VIIa-rTF評估效能。該分析係基於J.H.Morrissey等人Blood. 81:734-744(1993)公佈之方法。其量測在磷脂存在下於FVII缺乏血漿中形成血纖維蛋白凝塊之sTF起始FVIIa活性依賴性時間。在ACL9000(ILS)凝血儀器上量測凝塊時間且在基於FVIIa校準曲線之雙對數尺度上使用線性回歸計算結果。相同分析用於量測來自動物PK研究之血漿樣品中之FVIIa凝塊活性。估計血漿中之定量下限(LLOQ)為0.25U/ml。使用比活性將血漿活性位準轉化為nM。 Commercial FVIIa specific coagulation assays were used; STACLOT ® VIIa-rTF from Diagnostica Stago was used to assess potency. The analysis is based on the method published by JHMorrissey et al. Blood. 81:734-744 (1993). It measures the sTF-initiating FVIIa activity-dependent time for the formation of fibrin clots in FVII-deficient plasma in the presence of phospholipids. Clot time was measured on an ACL9000 (ILS) coagulation instrument and the results were calculated using linear regression on a log-log scale based on the FVIIa calibration curve. The same analysis was used to measure FVIIa clot activity in plasma samples from animal PK studies. The lower limit of quantitation (LLOQ) in plasma was estimated to be 0.25 U/ml. The plasma activity level is converted to nM using specific activity.

實施例8-FVIIa變異體之結晶學分析Example 8 - Crystallographic Analysis of FVIIa Variants

為探究鑑別之取代影響蛋白分解活性及抗凝血酶識別之機制,測定代表性FVIIa變異體L288Y T293K、L288F T293K、W201R T293K、W201R T293Y及L288F T293K K337A之晶體結構。 To investigate the mechanism by which the identified substitutions affect proteolytic activity and antithrombin recognition, the crystal structures of representative FVIIa variants L288Y T293K, L288F T293K, W201R T293K, W201R T293Y and L288F T293K K337A were determined.

當在3維層面上比較結構時,與可溶組織因子錯合之野生型(WT)FVIIa之1DAN結構[Banner,D.W.等人,Nature,(1996)第380卷,41-46]已根據SEQ ID NO:1之編號方案對FVIIa之重鏈殘基重新編號。 The 1DAN structure of wild-type (WT) FVIIa that is mismatched with soluble tissue factor when comparing structures on a 3-dimensional scale [Banner, DW et al, Nature, (1996) Vol. 380, 41-46] has been based on SEQ The ID NO:1 numbering scheme renumbers the heavy chain residues of FVIIa.

使用根據[Kirchhofer,D等人,Proteins Structure Function and Genetics,(1995),第22卷,第419-425頁]之懸滴法使與可溶組織因子(片段1-219)錯合之經純化H-D-Phe-Phe-Arg氯甲酮(FFR-cmk;Bachem,Switzerland)活性位點抑制之FVIIa變異體結晶。蛋白質緩衝溶液為25℃下之10mM Tris pH 7.5、100mM NaCl、15mM CaCl2之混合物。FVIIa變異體之蛋白質濃度連同沈澱劑溶液及混合條件顯示於表4中。採用使用24孔VDX盤及1.0ml孔溶液之懸滴法。藉由1.5μl蛋白質溶液及0.5μl孔溶液之混合物建立滴劑。將劃線接種法(Streak seeding)用於起始成核。 Purification with soluble tissue factor (fragment 1-219) by hanging drop method according to [Kirchhofer, D et al., Proteins Structure Function and Genetics, (1995), Vol. 22, pp. 419-425] H- D- Phe-Phe-Arg chloromethyl ketone (FFR-cmk; Bachem, Switzerland) Active site-inhibited FVIIa variant crystals. The protein buffer solution was a mixture of 10 mM Tris pH 7.5, 100 mM NaCl, 15 mM CaCl 2 at 25 °C. The protein concentration of the FVIIa variant together with the precipitant solution and mixing conditions are shown in Table 4. A hanging drop method using a 24-well VDX disk and a 1.0 ml well solution was used. A drop was established by a mixture of 1.5 μl of protein solution and 0.5 μl of a well solution. Streak seeding was used to initiate nucleation.

低溫條件顯示於表4中。使晶體在低溫溶液中浸泡約30秒, 在此之後將晶體轉移至液氮中且在其中急速冰凍。藉由使用如Karplus等人[Karplus,P.A.等人,Science(New York,N.Y.),(2012),第336卷,第1030-1033頁]描述之解析截止之XDS資料簡化軟體[Kabsch,W.,Acta Crystallographica Section D Biological Crystallography,(2010),第66卷,第125-132頁]處理結晶學資料。 The low temperature conditions are shown in Table 4. Soak the crystals in a low temperature solution for about 30 seconds, After this, the crystals were transferred to liquid nitrogen and rapidly frozen therein. The software is simplified by using the XDS data of the analytical cutoff described by Karplus et al. [Karplus, PA et al., Science (New York, NY), (2012), Vol. 336, pp. 1030-1033] [Kabsch, W. Acta Crystallographica Section D Biological Crystallography, (2010), Vol. 66, pp. 125-132] Processing crystallographic data.

將基於來自蛋白質資料庫(PDB)[Berman,H.M.等人,Nucleic Acids Res.,(2000),第28卷,第235-242頁]之1DAN條目[Banner,D.W.等人,Nature,(1996),第380卷,第41-46頁]之結晶學座標的內部產生座標(未公開)用作用於PHENIX套裝軟體[Adams,P.D.等人,Acta Cryst.D,(2010),第66卷,第213-221頁]之phenix.phaser[Mccoy,A.J.等人,J.Appl.Crystallogr.,(2007),第40卷,第658-674頁]中之分子置換計算或藉由phenix.refine軟體[Afonine,P.V.等人,Acta Crystallogr.Sect.D-Biol.Crystallogr.,(2012),第68卷,第352-367頁]直接細化之起始模型。細化後繼之以電腦圖形軟體COOT[Emsley,P.等人,Acta Crystallogr.Sect.D-Biol.Crystallogr.,(2010),第66 卷,第486-501頁]中之相互作用模型校正。5 FVIIa變異體之結晶學資料、細化及模型統計顯示於表5中。 It will be based on the 1DAN entry from the Protein Library (PDB) [Berman, HM et al, Nucleic Acids Res., (2000), Vol. 28, pp. 235-242] [Banner, DW et al, Nature, (1996) , vol. 380, pp. 41-46] The internally generated coordinates (unpublished) of the crystallographic coordinates are used for the PHENIX kit software [Adams, PD et al., Acta Cryst. D, (2010), Vol. 66, p. Molecular displacement calculations in phenix.phaser [Mccoy, AJ et al., J. Appl. Crystallogr., (2007), vol. 40, pp. 658-674] or by phenix.refine software [pp. 213-221] Afonine, PV et al., Acta Crystallogr. Sect. D-Biol. Crystallogr., (2012), Vol. 68, pp. 352-367] The initial model of direct refinement. Refinement followed by computer graphics software COOT [Emsley, P. et al., Acta Crystallogr. Sect. D-Biol. Crystallogr., (2010), 66 Interaction model correction in Volumes, pages 486-501. The crystallographic data, refinement and model statistics of the 5 FVIIa variants are shown in Table 5.

3維結構分析3-dimensional structural analysis

一般而言,在野生型(WT)FVIIa分子1DAN結構[Banner,D.W.等人,Nature,(1996),第380卷,第41-46頁]與FVIIa變異體之結構之間不存在重大差異。藉由gesamt[Krissinel,E.,Journal of Molecular Biochemistry,(2012),第1卷,第76-85頁]計算的1DAN FVIIa重鏈與L288Y T293K、L288F T293K、W201R T293K、W201R T293Y及L288F T293K K337A FVIIa變異體之間的總均方根偏差(RMSD)分別為0.424、0.365、0.451、0.342及0.289Å。用於計算中之Cα-原子對數目分別為254、254、251、254及254。 In general, there is no significant difference between the structure of the wild type (WT) FVIIa molecule 1 DAN [Banner, DW et al, Nature, (1996), Vol. 380, pp. 41-46] and the structure of the FVIIa variant. 1DAN FVIIa heavy chain calculated by gesamt [Krissinel, E., Journal of Molecular Biochemistry, (2012), Vol. 1, pp. 76-85] with L288Y T293K, L288F T293K, W201R T293K, W201R T293Y and L288F T293K K337A The total root mean square deviation (RMSD) between the FVIIa variants was 0.424, 0.365, 0.451, 0.342, and 0.289 Å, respectively. The number of C α -atoms used in the calculations were 254, 254, 251, 254 and 254, respectively.

W201R T293Y FVIIa變異體W201R T293Y FVIIa variant

突變FVIIa W201R:Mutant FVIIa W201R:

詳細而言,雙突變體之重鏈FVIIa Arg 201殘基位於「60-環」 (胰凝乳蛋白酶編號)中。在似然加權2mFo-DFc電子密度圖中,在1.0 σ截止處,存在主鏈環拉伸之跡象,而Arg 201殘基(野生型FVIIa中之Trp殘基)之側鏈以及之前及之後的殘基(分別為Asn及Arg殘基)之側鏈不可見該跡象。此指示彼等側鏈之高靈活性。為幫助結構解釋,使用來自CCP4軟體程式包[Collaborative Computational Project,N.Acta crystallographica,D部分,Biological crystallography,1994,50,760-763]之軟體在來自內部野生型蛋白質晶體之觀測結構因子與來自FVIIa雙突變體之觀測結構因子之間計算差異電子密度圖[Fobs(WT FVIIa/sTF)-Fobs(FVIIa W201R T293Y/sTF)]。使用來自野生型資料或雙突變體資料之相產生類似差異圖。在差異圖之正側上,可明顯看見來自野生型FVIIa之Trp殘基之側鏈(使用來自野生型資料之相,最大峰在5.6 σ位準處),而在差異圖之負側上不存在Arg側鏈之明顯跡象。此亦論證Arg殘基比野生型蛋白之Trp殘基更靈活。然而,應注意,使用似然加權2mFo-DFc電子密度圖,在1DAN結構中均未明顯觀測到Trp殘基之前或之後的側鏈,其與來自FVIIa W201R T293Y/sTF晶體結構之結果類似,而在FVIIa WT結構中清楚可見Trp 201之位置。 In detail, the heavy chain FVIIa Arg 201 residue of the double mutant is located in the "60-loop" (chymotrypsin number). In the likelihood-weighted 2mFo-DFc electron density map, at the 1.0 σ cutoff, there is evidence of stretching of the backbone loop, while the side chain of the Arg 201 residue (Trp residue in wild-type FVIIa) and before and after This sign is not visible in the side chains of the residues (Asn and Arg residues, respectively). This indicates the high flexibility of their side chains. To aid in structural interpretation, the observed structural factors from internal wild-type protein crystals were compared with those from FVIIa using software from the CCP4 software package [Collaborative Computational Project, N. Acta crystallographica, Part D, Biological crystallography, 1994, 50, 760-763]. The difference electron density map [F obs (WT FVIIa/sTF)-F obs (FVIIa W201R T293Y/sTF)] was calculated between the observed structural factors of the mutant. Similar differences were generated using the data from wild-type data or double mutant data. On the positive side of the difference map, the side chain of the Trp residue from wild-type FVIIa was clearly visible (using the phase from the wild-type data, the maximum peak was at the 5.6 σ level), but not on the negative side of the difference map. There are clear signs of Arg side chains. This also demonstrates that the Arg residue is more flexible than the Trp residue of the wild type protein. However, it should be noted that using the likelihood-weighted 2mFo-DFc electron density map, the side chains before or after the Trp residue are not apparently observed in the 1DAN structure, which is similar to the result from the FVIIa W201R T293Y/sTF crystal structure. The location of Trp 201 is clearly visible in the FVIIa WT structure.

關於研究之環之主鏈定向,似然加權2mFo-DFc電子密度圖及phenix.refine細化相對於公佈之1DAN結構更接近於置換Trp側鏈殘基之位置置放200、201及202殘基[Banner.D.W.等人,Nature,1996,380,41-46]。特定言之,殘基Asn 200已經移動且其Cα位置與其於圖3野生型結構中之位置相距3.1Å。另外,在描述之[Fobs(WT FVIIa/sTF)-Fobs(FVIIa W201R T293Y/sTF)]差異圖中,存在表明殘基Asn 200之移動的峰。一個5.7 σ正峰接近野生型環構形之位置且另一4.3 σ負峰略微位於細化雙突變體構形內 部上。此支持如下觀點,即主鏈經移動而距WT Trp側鏈之位置較接近且距FVIIa重鏈之中心相對更接近。 Regarding the orientation of the main chain of the study, the likelihood weighted 2mFo-DFc electron density map and phenix.refine refinement placed 200, 201 and 202 residues closer to the position of the replacement Trp side chain residue than the published 1DAN structure. [Banner. DW et al, Nature, 1996, 380, 41-46]. Certain words, residues Asn 200 and which has been moved to the C α position and its wild type structure of FIG. 3 in the position apart 3.1Å. Further, in the description of the [F obs (WT FVIIa/sTF)-F obs (FVIIa W201R T293Y/sTF)] difference map, there is a peak indicating the movement of the residue Asn 200. A 5.7 σ positive peak is close to the position of the wild type loop configuration and the other 4.3 σ negative peak is slightly located inside the refinement double mutant configuration. This supports the view that the backbone is moved closer to the WT Trp side chain and relatively closer to the center of the FVIIa heavy chain.

對於重鏈FVIIa之殘基200、201及202可見之野生型結構與雙突變蛋白之間的結構性差異可能取決於藉由填滿FVIIa蛋白中之主要疏水體積且從而錨定野生型結構中之環之WT結構中之內向Trp 201殘基側鏈之穩定化。FVIIa W201R T293Y中之對應殘基Arg之側鏈不與緊密結合之側鏈形成相同剛性結構,但更靈活,且因此不以與WT FVIIa結構相同之方式錨定環。 The structural differences between the wild-type structure and the double mutant protein visible for residues 200, 201 and 202 of heavy chain FVIIa may depend on by filling the major hydrophobic volume in the FVIIa protein and thereby anchoring the wild-type structure Stabilization of the inward Trp 201 residue side chain in the WT structure of the loop. The side chain of the corresponding residue Arg in FVIIa W201R T293Y does not form the same rigid structure as the tightly bound side chain, but is more flexible, and thus does not anchor the ring in the same manner as the WT FVIIa structure.

圖3顯示兩種晶體結構:1)藉由淺色碳原子,在與組織因子之錯合物中之FVIIa野生型蛋白,使用來自與PDB結構1DAN相同類型之晶體之內部資料集[Banner.D.W.等人,Nature,1996,380,41-46],及2)藉由深色碳原子,在與組織因子之錯合物中之FVIIa雙突變體W201R T293Y之比較的棒狀圖示。殘基中的一些藉由胺基酸單字碼標記且對於1)及2)分別以「-wt」或「-m」結束。若干側鏈已經截短(已移除Cβ外部之原子),因為似然加權2mFo-DFc電子密度圖不顯示彼等側鏈之任何電子密度。舉例而言,FVIIa雙突變體W201R T293Y之殘基N200、R201及R202出於該原因而均經截短。藉由分子圖形軟體PyMOL[The PyMOL Molecular Graphics System.版本1.6.0.0 Schrödinger,LLC]製備圖式。 Figure 3 shows two crystal structures: 1) FVIIa wild-type protein in a complex with a tissue factor by light-colored carbon atoms, using an internal data set from the same type of crystal as the PDB structure 1DAN [Banner.DW Et al, Nature, 1996, 380, 41-46], and 2) a bar graph of the comparison of the FVIIa double mutant W201R T293Y in a complex with a tissue factor by a dark carbon atom. Some of the residues are marked by a single amino acid code and end with "-wt" or "-m" for 1) and 2) respectively. A plurality of side chains have been truncated (removed outside the C β atoms), since the likelihood 2mFo-DFc weighted electron density map of electron density does not show any of their side chains. For example, residues N200, R201 and R202 of the FVIIa double mutant W201R T293Y are truncated for this reason. The pattern was prepared by the molecular pattern software PyMOL [The PyMOL Molecular Graphics System. Version 1.6.0.0 Schrödinger, LLC].

突變FVIIa T293Y:Mutant FVIIa T293Y:

重鏈FVIIa Tyr 293殘基位於活化環1中。似然加權2mFo-DFc電子密度圖1.0 σ截止處明顯顯示細化結構之Tyr殘基之主鏈及側鏈。Tyr側鏈原子Cβ-Cγ對於野生型Thr殘基中之Cβ-Cγ2原子沿相同方向。 C-Cα-Cβ-Cγ及C-Cα-Cβ-Cγ2二面角對於雙突變體及WT形式之FVIIa殘基293分別為165°及173°。藉此,雙突變體之Tyr 293殘基沿催化域方向且朝向FFR-cmk結合抑制劑之結合位點導引其側鏈。計算之[Fobs(WT FVIIa/sTF)-Fobs(FVIIa W201R T293Y/sTF)]差異圖證實Tyr側鏈之定向,在Tyr環系統處具有負峰(4.7 σ高度)且在缺失Thr O γ1原子處具有正峰(4.2 σ高度)。 The heavy chain FVIIa Tyr 293 residue is located in the activation loop 1. Likelihood weighted 2mFo-DFc electron density map 1.0 The σ cutoff clearly shows the main chain and side chain of the Tyr residue of the refinement structure. The Tyr side chain atom C β -C γ is in the same direction for the C β -C γ 2 atom in the wild type Thr residue. The CC α -C β -C γ and CC α -C β -C γ2 dihedral angles were 165° and 173° for the double mutant and the FVIIa residue 293 of the WT form, respectively. Thereby, the Tyr 293 residue of the double mutant directs its side chain along the catalytic domain direction and toward the binding site of the FFR-cmk binding inhibitor. The calculated [F obs (WT FVIIa/sTF)-F obs (FVIIa W201R T293Y/sTF)] difference map confirms the orientation of the Tyr side chain, has a negative peak (4.7 σ height) at the Tyr loop system and is in the absence of Thr O γ 1 atom has a positive peak (4.2 σ height).

為研究抗凝血酶與FVIIa突變T293Y分子之間的可能相互作用,在FVIIa雙突變體上進行因子Xa分子錯合物與抗凝血酶PDB-編碼2GD4[Johnson.D.J.D.等人,Embo J.,2006,25,2029-2037]之疊加。分子圖形軟體PyMOL[The PyMOL Molecular Graphics System,版本1.6.0.0 Schrödinger,LLC]用於疊加FXa及FVIIa分子且關於1194個原子產生0.769Å之RMSD。自騎乘抗凝血酶分子模式,隨後顯而易見的是產生之理論上分子的錯合物(FVIIa W201R T293Y/抗凝血酶III)中之FVIIa W201R T293Y突變體之Tyr 293殘基尤其與圖4抗凝血酶分子之殘基Leu 395以及Arg 399形成空間重疊。此藉由以CCP4程序組之聯繫軟體在FVIIa雙突變體之Tyr 293與騎乘抗凝血酶分子之間進行的距離計算確認。在突變體FVIIa分子中之Tyr 293殘基與抗凝血酶分子之間使用3.5Å之截止距離且結果顯示於表6中。使用FVIIa(W201R T293Y)及FXa作為常用,在FXa錯合物已疊加於FVIIa突變體(W201R T293Y)/sTF結構上之後FVIIa W201R T293Y雙突變體之殘基Tyr 293與來自抗凝血酶-S195A FXa-五醣錯合物之抗凝血酶PDB:2GD4[Johnson.D.J.D.等人,Embo J.,2006,25,2029-2037]之間3.5Å或3.5Å以下之所有距離概述於表6中。空間重疊將最可能不利地影響抗凝血酶 將其反應中心環(RCL)置放至FVIIa之活性位點中之可能性。藉此,T293Y突變FVIIa分子將較不易受抗凝血酶之抑制。此與顯示藉由抗凝血酶對不活化增加之抗性及延長之半衰期的實驗方式觀測結果一致且對其進行解釋。 To investigate the possible interaction between antithrombin and the FVIIa mutant T293Y molecule, Factor Xa molecular complex and antithrombin PDB-encoding 2GD4 were performed on the FVIIa double mutant [Johnson. DJD et al., Embo J. , 2006, 25, 2029-2037] superposition. The molecular graphic software PyMOL [The PyMOL Molecular Graphics System, version 1.6.0.0 Schrödinger, LLC] was used to superimpose FXa and FVIIa molecules and produced an RMSD of 0.769 Å for 1194 atoms. Self-riding antithrombin molecular pattern, then it is apparent that the Tyr 293 residue of the FVIIa W201R T293Y mutant in the theoretical molecular complex (FVIIa W201R T293Y/anti-thrombin III) is produced, especially with Figure 4 The residues of the antithrombin molecule, Leu 395 and Arg 399, form a spatial overlap. This was confirmed by calculation of the distance between the Tyr 293 of the FVIIa double mutant and the riding antithrombin molecule by the software of the CCP4 program. A cutoff distance of 3.5 Å was used between the Tyr 293 residue in the mutant FVIIa molecule and the antithrombin molecule and the results are shown in Table 6 . FVIIa (W201R T293Y) and FXa were used as usual, after the FXa complex was superimposed on the FVIIa mutant (W201R T293Y)/sTF structure, the residue Tyr 293 of the FVIIa W201R T293Y double mutant and the anti-thrombin-S195A All distances between 3.5 Å or 3.5 Å between FXa-pentaose complex antithrombin PDB: 2GD4 [Johnson. DJD et al, Embo J., 2006, 25, 2029-2037] are summarized in Table 6 . . Spatial overlap will most likely adversely affect the likelihood that antithrombin will place its central loop of reaction (RCL) into the active site of FVIIa. Thereby, the T293Y mutant FVIIa molecule will be less susceptible to inhibition by antithrombin. This is consistent with and explained by experimental observations showing the increased resistance to inactivation by antithrombin and the extended half-life.

圖4為抗凝血酶(以淺色碳原子指示)與FVIIa W201R T293Y雙突變體(以深色碳原子指示)之間的錯合物之理論模式之棒狀圖示。顯示及標記FVIIa突變體W201R T293Y之殘基Tyr 293、Gln 255、Lys 341、Gln 286及抗凝血酶分子殘基Leu 395、Arg 399、Glu 295、Tyr 253及V317之相對位置。基於抗凝血酶/FXa錯合物之結構建構模型[Johnson.D.J.D.等人,Embo J.,2006,25,2029-2037],PDB編碼2GD4,其中使得騎乘抗凝血酶之FXa分子已疊加於FVIIa W201R T293Y變異體分子之重鏈上。FVIIa W201R T293Y之殘基及抗凝血酶分別具有「FVIIa」及「AT」之前綴,接著為單字母胺基酸密碼及殘基數目。藉由分子圖形軟體PyMOL[The PyMOL Molecular Graphics System,版本1.6.0.0 Schrödinger,LLC]製備圖式。 Figure 4 is a bar graph of the theoretical mode of the complex between antithrombin (indicated by light carbon atoms) and FVIIa W201R T293Y double mutant (indicated by dark carbon atoms). The relative positions of residues Tyr 293, Gln 255, Lys 341, Gln 286 and antithrombin molecular residues Leu 395, Arg 399, Glu 295, Tyr 253 and V317 of FVIIa mutant W201R T293Y are shown and labeled. A structural construct model based on antithrombin/FXa complex [Johnson. DJD et al, Embo J., 2006, 25, 2029-2037], PDB encodes 2GD4, in which the FXa molecule that rides antithrombin has been Superimposed on the heavy chain of the FVIIa W201R T293Y variant molecule. The residues and antithrombins of FVIIa W201R T293Y have the prefixes of "FVIIa" and "AT", followed by the one-letter amino acid code and the number of residues. The pattern was prepared by the molecular pattern software PyMOL [The PyMOL Molecular Graphics System, version 1.6.0.0 Schrödinger, LLC].

W201R T293K FVIIa變異體W201R T293K FVIIa variant

FVIIa之殘基201周圍之壓域:詳細而言,雙突變體之重鏈FVIIa Arg 201殘基位於「60-環」(胰凝乳蛋白酶編號)中。在似然加權2mFo-DFc電子密度圖中於1.0 σ截止處明顯可見主鏈環拉伸。亦明顯觀測到Arg 201殘基(野生型FVIIa中之Trp殘基)之側鏈。然而,Arg 202殘基之外部部分胍鹽基團在似然加權2mFo-DFc電子密度圖中且在所選截止處具有缺失電子密度,表明較高遷移率或無序性。關於研究之環(「60-環」)之主鏈定向,其顯示W201R T293K與1DAN結構之間的轉化[Banner,D.W.等人,Nature,(1996),第380卷,第41-46頁]。在疊加兩個結構之後,可見當沿著多肽自殘基197朝向203移動時,在等效Cα位置分別存在0.64、2.48、3.63、6.41、4.15及0.81Å之差異。環之主鏈移動接近1DAN WT Trp側鏈位置之位置[Banner,D.W.等人,Nature,(1996),第380卷,第41-46頁]且亦朝向FVIIa重鏈之中心,催化域移動。W201R T293K FVIIa之Arg 201殘基在朝向公佈之1DAN結構之置換WT Trp側鏈殘基之位置置放之疊加結構中。 Pressure domain around residue 201 of FVIIa: In detail, the heavy chain FVIIa Arg 201 residue of the double mutant is located in the "60-loop" (chymotrypsin number). The main chain loop stretching was clearly observed at the 1.0 σ cutoff in the likelihood weighted 2mFo-DFc electron density map. The side chain of the Arg 201 residue (Trp residue in wild type FVIIa) was also apparently observed. However, the outer portion of the Arg 202 residue has a missing electron density in the likelihood-weighted 2mFo-DFc electron density map and at the selected cutoff, indicating higher mobility or disorder. Regarding the orientation of the backbone of the study loop ("60-ring"), it shows the transformation between the W201R T293K and the 1DAN structure [Banner, DW et al., Nature, (1996), Vol. 380, pp. 41-46] . After superimposing the two structures, it can be seen that when moving along the polypeptide from residue 197 toward 203, there is a difference of 0.64, 2.48, 3.63, 6.41, 4.15, and 0.81 Å at the equivalent C ? positions, respectively. The main chain of the loop moves closer to the position of the 1DAN WT Trp side chain position [Banner, DW et al., Nature, (1996), Vol. 380, pp. 41-46] and also towards the center of the FVIIa heavy chain, the catalytic domain shifts. The Arg 201 residue of W201R T293K FVIIa is placed in a superimposed structure at the position of the displaced WT Trp side chain residue of the published 1DAN structure.

在重鏈「60-環」之野生型結構與W201R T293K FVIIa變異體之間可見之結構性差異可能取決於藉由填滿FVIIa蛋白中之主要疏水體 積且從而錨定野生型結構中之環之WT結構中之內向Trp 201殘基側鏈之穩定化。FVIIa W201R T293K中之對應較小殘基Arg之側鏈不以與WT FVIIa結構中之Trp相同之方式錨定環。 The structural differences seen between the wild-type structure of the heavy chain "60-loop" and the W201R T293K FVIIa variant may depend on the primary hydrophobic body in the FVIIa protein. Stabilization of the inward Trp 201 residue side chain in the WT structure of the loop in the wild type structure is thereby accumulated. The side chain of the corresponding smaller residue Arg in FVIIa W201R T293K does not anchor the ring in the same manner as Trp in the WT FVIIa structure.

FVIIa之殘基293周圍之區域:重鏈FVIIa Lys 293殘基位於活化環1中。似然加權2mFo-DFc電子密度圖之1.0 σ截止處明顯顯示細化結構地之Lys殘基之主鏈及側鏈。Lys側鏈原子Cβ-Cγ對於野生型Thr殘基中之Cβ-Cγ2原子沿相同方向。C-Cα-Cβ-Cγ及C-Cα-Cβ-Cγ2二面角對於雙突變體及WT形式之FVIIa殘基293分別為169°及173°。Lys 293顯示「mttt」旋轉異構體定向,如藉由電腦圖形軟體COOT[Emsley,P.等人,Acta Crystallogr.Sect.D-Biol.Crystallogr.,(2010),第66卷,第486-501頁]可見之Lys之最常見旋轉異構體定向[Lovell,S.C.等人,Proteins,(2000),第40卷,第389-408頁]。此外,W201R T293K FVIIa變異體之Lys 293殘基Nζ原子與殘基Gln 176 Oε1原子形成強力、具有2.68Å之距離之氫鍵,藉此使兩個側鏈穩定化。相比於WT FVIIa 1DAN結構,Gln 176殘基因此改變其側鏈構形以使其與W201R T293K FVIIa變異體中之Lys 293殘基形成之氫鍵最優化。旋轉異構體自WT結構之「tt0°」構形變為不在標準構形中之旋轉異構體構形描述於[Lovell,S.C.等人,Proteins,(2000),第40卷,第389-408頁]中。藉此,雙突變體之Lys 293殘基沿催化域方向且朝向FFR-cmk結合抑制劑之結合位點導引其側鏈且填滿FVIIa活性位點間隙之引發位點。 The region around residue 293 of FVIIa : the heavy chain FVIIa Lys 293 residue is located in the activation loop 1. The 1.0 σ cutoff at the likelihood weighted 2mFo-DFc electron density map clearly shows the main chain and side chains of the Lys residue in the refinement structure. The Lys side chain atom C β -C γ is in the same direction for the C β -C γ 2 atom in the wild type Thr residue. The CC α -C β -C γ and CC α -C β -C γ2 dihedral angles were 169° and 173° for the double mutant and the FVIIa residue 293 of the WT form, respectively. Lys 293 shows "mttt" rotamer orientation, as by computer graphics software COOT [Emsley, P. et al., Acta Crystallogr. Sect. D-Biol. Crystallogr., (2010), Vol. 66, pp. 486- Page 501] The most common rotamer orientation of Lys is visible [Lovell, SC et al., Proteins, (2000), Vol. 40, pp. 389-408]. In addition, the Lys 293 residue N ζ atom of the W201R T293K FVIIa variant forms a strong hydrogen bond with the residue Gln 176 O ε1 atom, which has a distance of 2.68 Å, thereby stabilizing the two side chains. Compared to the WT FVIIa 1DAN structure, the Gln 176 residue thus altered its side chain configuration to optimize its hydrogen bond formation with the Lys 293 residue in the W201R T293K FVIIa variant. The rotamer is changed from the "tt0°" configuration of the WT structure to the rotamer configuration that is not in the standard configuration. [Lovell, SC et al., Proteins, (2000), Vol. 40, pp. 389-408 Page]. Thereby, the Lys 293 residue of the double mutant directs its side chain along the catalytic domain direction and toward the binding site of the FFR-cmk binding inhibitor and fills the initiation site of the FVIIa active site gap.

L288Y T293K FVIIa變異體L288Y T293K FVIIa variant

FVIIa之殘基288周圍之區域:The area around residue 288 of FVIIa:

在晶體結構似然加權2mFo-DFc電子密度圖中於1.0σ截止 處明顯可見該區域。Tyr 288殘基之後的環中之殘基,FVIIa L288Y T293K FVIIa變異體之重鏈中之殘基289至292顯示主鏈構形之改變,最大差異位於殘基Arg 290處,其中Cα原子在FVIIa L288Y T293K FVIIa變異體之疊加分子與FVIIa之WT結構1DAN之間相差2.87Å[Banner,D.W.等人,Nature,(1996),第380卷,第41-46頁]。Tyr288殘基之Cα原子與疊加WT FVIIa中之Leu 288殘基之等效原子顯示0.80Å差異。FVIIa L288Y T293K FVIIa變異體中之Tyr 288之側鏈旋轉異構體為「p90°」,而WT FVIIa 1DAN結構之Ley側鏈旋轉異構體之側鏈旋轉異構體顯示「mt」旋轉異構體[Lovell,S.C.等人,Proteins,(2000),第40卷,第389-408頁]。其產生在不同方向之兩個等效側鏈點,可見分別關於L288Y T293K FVIIa變異體及WT FVIIa之C-Cα-Cβ-Cγ二面角之差異:-69°及157°。L288Y T293K FVIIa變異體中之Tyr 288側鏈之羥基有利地與圍繞水分子相互作用,該等水分子在晶體結構中為有序的且側鏈經FVIIa L288Y T293K變異體之Tyr 288之後的環摺疊。殘基288之後的環之結構性主鏈改變及殘基288自身之突變可至少部分解釋此FVIIa變異體可見之活性改良。 This region is clearly visible at the 1.0 sigma cutoff in the crystal structure likelihood weighted 2mFo-DFc electron density map. Residues in the loop following the Tyr 288 residue, residues 289 to 292 in the heavy chain of the FVIIa L288Y T293K FVIIa variant show a change in the backbone configuration with the largest difference at the residue Arg 290 where the C alpha atom is The superposition molecule of the FVIIa L288Y T293K FVIIa variant differs from the WT structure 1DAN of FVIIa by 2.87 Å [Banner, DW et al, Nature, (1996), Vol. 380, pp. 41-46]. Equivalent atoms C α atoms of residues Tyr288 superimposed WT FVIIa in the residue Leu 288 of the display 0.80Å difference. The side chain rotamer of Tyr 288 in the FVIIa L288Y T293K FVIIa variant is "p90°", while the side chain rotamer of the Ley side chain rotamer of the WT FVIIa 1DAN structure shows "mt" orthotropy Body [Lovell, SC et al., Proteins, (2000), Vol. 40, pp. 389-408]. It produces two equivalent side chain points in different directions, showing the difference in CC α -C β -C γ dihedral angles for L288Y T293K FVIIa variant and WT FVIIa, respectively: -69° and 157°. The hydroxyl group of the Tyr 288 side chain in the L288Y T293K FVIIa variant advantageously interacts with surrounding water molecules which are ordered in the crystal structure and the side chain is folded by the ring after Tyr 288 of the FVIIa L288Y T293K variant. . The structural backbone change of the loop following residue 288 and the mutation of residue 288 itself can at least partially explain the activity improvement seen by this FVIIa variant.

FVIIa之殘基293周圍之區域:The area around residue 293 of FVIIa:

此殘基及與其接觸之其他殘基之3D結構與關於W201R T293K FVIIa變異體描述之結構高度類似。因此,關於該變異體之T293K突變得出之所有結論亦適用於L288Y T293K FVIIa變異體之T293K突變。 The 3D structure of this residue and other residues in contact therewith is highly similar to the structure described for the W201R T293K FVIIa variant. Therefore, all the conclusions about the T293K mutation of this variant also apply to the T293K mutation of the L288Y T293K FVIIa variant.

L288F T293K FVIIa變異體L288F T293K FVIIa variant

FVIIa之殘基288周圍之區域:The area around residue 288 of FVIIa:

在晶體結構似然加權2mFo-DFc電子密度圖中於1.0 σ截止 處明顯可見該區域。此區域之3D結構與L288F T293K FVIIa變異體高度類似。舉例而言,兩種變異體共用相同主鏈定向。兩種FVIIa變異體之間的一個不同之處為Phe 288側鏈具有關於其側鏈之另一較佳旋轉異構體(「m-85°」),實際上與WT FVIIa之Leu 288側鏈指向相同方向。L288F T293K FVIIa變異體之Phe 288側鏈之不尋常特性為就Phe殘基而言,其不尋常地暴露(根據藉由CCP4結晶學程序組之AREAIMOL計算為145Å2[Bailey,S.,Acta Crystallogr.Sect.D-Biol.Crystallogr.,(1994),第50卷,第760-763頁])於周圍溶劑。 This region is clearly visible at the 1.0 σ cutoff in the crystal structure likelihood weighted 2mFo-DFc electron density map. The 3D structure of this region is highly similar to the L288F T293K FVIIa variant. For example, the two variants share the same backbone orientation. One difference between the two FVIIa variants is that the Phe 288 side chain has another preferred rotamer ("m-85°") about its side chain, actually with the Leu 288 side chain of WT FVIIa. Point to the same direction. The unusual property of the Phe 288 side chain of the L288F T293K FVIIa variant is that it is unusually exposed for Phe residues (according to AREAIMOL by the CCP4 crystallography program set to 145 Å 2 [Bailey, S., Acta Crystallogr .Sect. D-Biol. Crystallogr., (1994), Vol. 50, pp. 760-763]).

FVIIa之殘基293周圍之區域:The area around residue 293 of FVIIa:

此殘基及與其接觸之其他殘基之3D結構與關於W201R T293K FVIIa變異體描述之結構高度類似。因此,關於該變異體之T293K突變得出之所有結論亦適用於L288F T293K FVIIa變異體之T293K突變。 The 3D structure of this residue and other residues in contact therewith is highly similar to the structure described for the W201R T293K FVIIa variant. Therefore, all the conclusions about the T293K mutation of this variant also apply to the T293K mutation of the L288F T293K FVIIa variant.

L288F T293K FVIIa變異體L288F T293K FVIIa variant

FVIIa之殘基288周圍之區域:The area around residue 288 of FVIIa:

在晶體結構似然加權2mFo-DFc電子密度圖中於1.0σ截止處明顯可見該區域。此區域之3D結構與L288F T293K FVIIa變異體高度類似。舉例而言,兩種變異體共用相同主鏈定向。兩種FVIIa變異體之間的一個不同之處為Phe 288側鏈具有關於其側鏈之另一較佳旋轉異構體(「m-85°」),實際上與WT FVIIa及L288F T293K FVIIa變異體之Leu 288側鏈指向相同方向。因此該變異體之L288F突變得出之所有結論亦適用於L288F T293K K337A FVIIa變異體之L288F突變。 This region is clearly visible at the 1.0 sigma cutoff in the crystal structure likelihood weighted 2mFo-DFc electron density map. The 3D structure of this region is highly similar to the L288F T293K FVIIa variant. For example, the two variants share the same backbone orientation. One difference between the two FVIIa variants is that the Phe 288 side chain has another preferred rotamer ("m-85°") about its side chain, actually with WT FVIIa and L288F T293K FVIIa variants. The Leu 288 side chain of the body points in the same direction. Therefore, all the conclusions obtained from the L288F mutation of this variant also apply to the L288F mutation of the L288F T293K K337A FVIIa variant.

FVIIa之殘基293周圍之區域:此殘基及與其接觸之其他殘 基之3D結構與關於W201R T293K FVIIa變異體描述之結構高度類似。因此,關於該變異體之T293K突變得出之所有結論亦適用於L288F T293K K337A FVIIa變異體之T293K突變。 The region around residue 293 of FVIIa : the 3D structure of this residue and other residues in contact therewith is highly similar to the structure described for the W201R T293K FVIIa variant. Therefore, all the conclusions about the T293K mutation of this variant also apply to the T293K mutation of the L288F T293K K337A FVIIa variant.

FVIIa之殘基337周圍之區域:The area around residue 337 of FVIIa:

在晶體結構似然加權2mFo-DFc電子密度圖中於1.0σ截止處明顯觀測到該區域。此區域之3D結構與FVIIa之WT結構1DAN類似[Banner,D.W.等人,Nature,(1996),第380卷,第41-46頁],且與此實施例之其他FVIIa變異體類似。整體主鏈及側鏈定向接近WT FVIIa 1DAN結構及其他FVIIa變異體結構,然而,存在略微大於晶體結構之0.40Å之座標誤差之基於phenix.refine最大似然之計算值的小差異。殘基337之等效Cβ原子在FVIIa之WT結構1DAN與L288F T293K K337A FVIIa變異體之間相隔0.8Å。相同殘基之Cα原子相隔0.4Å。殘基336之等效Cα原子在FVIIa之疊加WT結構1DAN與L288F T293K K337A FVIIa變異體之間相隔0.6Å。就Phe 332殘基而言,相比於FVIIa之WT結構1DAN,側鏈朝向L288F T293K K337A FVIIa變異體之Ala 337殘基移動大致0.5Å[Banner,D.W.等人,Nature,(1996),第380卷,第41-46頁]。亦可推斷此實施例之其他FVIIa變異體與FVIIa之WT結構1DAN顯示大致相同的與L288F T293K K337A FVIIa變異體之偏差。此外,其他FVIIa變異體比L288F T293K K337A FVIIa變異體接近得多地叢集至WT FVIIa 1DAN結構。此可至少部分解釋此變異體之改變特性。 This region was clearly observed at the 1.0 sigma cutoff in the crystal structure likelihood weighted 2mFo-DFc electron density map. The 3D structure of this region is similar to the WT structure 1DAN of FVIIa [Banner, DW et al, Nature, (1996), Vol. 380, pp. 41-46] and is similar to the other FVIIa variants of this example. The overall backbone and side chains are oriented close to the WT FVIIa 1DAN structure and other FVIIa variant structures, however, there is a small difference based on the calculated value of the maximum likelihood of phenix.refine which is slightly larger than the 0.40Å coordinate error of the crystal structure. Equivalent residues C β atoms of between 337 1DAN FVIIa structure of WT and L288F T293K K337A FVIIa variant spaced 0.8Å. The C α atoms of the same residue are separated by 0.4 Å. The equivalent C α atom of residue 336 is 0.6 Å apart between the FVIIa superimposed WT structure 1DAN and the L288F T293K K337A FVIIa variant. For the Phe 332 residue, the side chain moves approximately 0.5 Å toward the Ala 337 residue of the L288F T293K K337A FVIIa variant compared to the WT structure 1DAN of FVIIa [Banner, DW et al, Nature, (1996), 380 Volume, pp. 41-46]. It can also be inferred that the other FVIIa variants of this example show substantially the same deviation from the L288F T293K K337A FVIIa variant as the WT structure 1DAN of FVIIa. In addition, other FVIIa variants clustered much closer to the WT FVIIa 1DAN structure than the L288F T293K K337A FVIIa variant. This can explain, at least in part, the changing properties of this variant.

實施例9-14-FVIIa變異體之化學修飾Chemical modification of Example 9-14-FVIIa variant

實施例9-14中使用之縮寫:Abbreviations used in Examples 9-14:

AUS:產脲節桿菌(Arthrobacter ureafaciens)唾液酸酶 AUS: Arthrobacter ureafaciens sialidase

CMP-NAN:胞嘧啶核苷-5'-單磷酸-N-乙醯基神經胺酸 CMP-NAN: Cytosine-5'-monophosphate-N-acetyl-neuraminic acid

CV:管柱體積 CV: column volume

GlcUA:葡糖醛酸 GlcUA: glucuronic acid

GlcNAc:N-乙醯葡萄胺糖 GlcNAc: N-acetylglucosamine

GSC:5'-甘胺醯基唾液酸胞嘧啶核苷單磷酸 GSC: 5'-glycosyl sialyl cytidine monophosphate

GSC-SH:5'-[(4-巰基丁醯基)甘胺醯基]唾液酸胞嘧啶核苷單磷酸 GSC-SH: 5'-[(4-mercaptobutyl) glycine thiol] sialic acid cytidine monophosphate

HEP:肝素前體聚合物 HEP: Heparin precursor polymer

HEP-GSC:GSC官能化肝素前體聚合物 HEP-GSC: GSC functionalized heparin precursor polymer

HEP-[N]-FVIIa:經由N-聚糖共軛至FVIIa之肝素前體. HEP-[N]-FVIIa: Heparin precursor conjugated to FVIIa via N-glycans.

HEPES:2-[4-(2-羥乙基)哌嗪-1-基]乙磺酸 HEPES: 2-[4-(2-Hydroxyethyl)piperazin-1-yl]ethanesulfonic acid

His:組胺酸 His: histidine

PABA:對胺基苯甲脒 PABA: p-aminobenzamide

ST3GalIII N-聚糖特異性a2,3-唾液酸轉移酶 ST3GalIII N-glycan specific a2,3-sialyltransferase

TCEP:參(2-羧乙基)膦 TCEP: ginseng (2-carboxyethyl) phosphine

UDP:二磷酸尿苷 UDP: uridine diphosphate

實施例9-14中使用之定量方法:Quantitative methods used in Examples 9-14:

藉由HPLC分析本發明共軛物之純度。HPLC亦用於定量以FVIIa參考分子計之分離共軛物之量。以非還原或還原形式分析樣品。使用Zorbax 300SB-C3管柱(4.6×50mm;3.5μm Agilent,目錄號:865973-909)。在30℃下操作管柱。注射5μg樣品,且用含有0.1%三氟乙酸之水(A)-乙腈(B)溶劑系統洗提管柱。梯度程序為如下:0分鐘(25% B);4分鐘(25% B);14分鐘(46% B);35分鐘(52% B);40分鐘(90% B);40.1分鐘(25% B)。 藉由將10μl TCEP/甲酸溶液(於水中之70mM參(2-羧乙基)膦及10%甲酸)添加至25μl/30μg FVIIa(或共軛物)中製備還原樣品。使反應物在70℃下靜置10分鐘,隨後在HPLC(5μl注射液)上對其進行分析。 The purity of the conjugate of the invention was analyzed by HPLC. HPLC was also used to quantify the amount of isolated conjugate based on the FVIIa reference molecule. Samples were analyzed in a non-reduced or reduced form. A Zorbax 300SB-C3 column (4.6 x 50 mm; 3.5 [mu]m Agilent, catalog number: 865973-909) was used. The column was operated at 30 °C. A 5 μg sample was injected and the column was eluted with a water (A)-acetonitrile (B) solvent system containing 0.1% trifluoroacetic acid. The gradient program was as follows: 0 minutes (25% B); 4 minutes (25% B); 14 minutes (46% B); 35 minutes (52% B); 40 minutes (90% B); 40.1 minutes (25%) B). A reduced sample was prepared by adding 10 μl of TCEP/formic acid solution (70 mM ginseng (2-carboxyethyl)phosphine and 10% formic acid in water) to 25 μl/30 μg of FVIIa (or conjugate). The reaction was allowed to stand at 70 ° C for 10 minutes and then analyzed on HPLC (5 μl injection).

實施例9-14中使用之起始物質:Starting materials used in Examples 9-14:

HEP-順丁烯二醯亞胺及HEP-苯甲醛聚合物HEP-m-butylene imine and HEP-benzaldehyde polymer

藉由如US 2010/0036001中所述之酶促聚合反應製備定義尺寸之順丁烯二醯亞胺及醛官能化HEP聚合物。使用兩個糖核苷酸(UDP-GlcNAc及UDP-GlcUA)及引發三醣(GlcUA-GlcNAc-GlcUA)NH2用於起始反應,且進行聚合直至糖核苷酸建構嵌段耗盡。方法產生具有單一末端胺基之HEP聚合物。藉由糖核苷酸與引物比測定HEP聚合物之尺寸。末端胺(源自引物)隨後經順丁烯二醯亞胺官能基官能化以共軛至GSC-SH,或經苯甲醛官能基官能化以還原胺化化學反應至GSC之甘胺醯基末端。 A defined size of maleimide and aldehyde functionalized HEP polymers are prepared by enzymatic polymerization as described in US 2010/0036001. Two sugar nucleotides (UDP-GlcNAc and UDP-GlcUA) and a trisaccharide (GlcUA-GlcNAc-GlcUA) NH 2 were used for the initiation of the reaction, and polymerization was carried out until the sugar nucleotide construct block was depleted. The process produces a HEP polymer having a single terminal amine group. The size of the HEP polymer was determined by the ratio of sugar nucleotide to primer. The terminal amine (derived from the primer) is then functionalized with a maleimide functional group to be conjugated to GSC-SH, or functionalized with a benzaldehyde functional group to reductive amination chemical reaction to the glycine thiol end of the GSC .

可藉由使胺官能化HEP聚合物與過剩N-琥珀醯亞胺基-4-甲醯基苯甲酸於中性水溶液中反應製備HEP-苯甲醛(Nano Letters(2007),7(8),2207-2210)。可藉由離子交換層析、尺寸排外層析法或HPLC分離苯甲醛官能化聚合物。 HEP-benzaldehyde can be prepared by reacting an amine functionalized HEP polymer with excess N-succinimide-4-methylmercaptobenzoic acid in a neutral aqueous solution ( Nano Letters (2007), 7(8), 2207-2210). The benzaldehyde functionalized polymer can be separated by ion exchange chromatography, size exclusion chromatography or HPLC.

可藉由使胺官能化HEP聚合物與過剩N-HEP-馬來醯亞胺基丁醯基-氧基琥珀醯亞胺酯反應製備(GMBS;Fujiwara,K.等人(1988),J.Immunol.Meth.112,77-83)。 It can be prepared by reacting an amine functionalized HEP polymer with excess N-HEP-maleimidobutylbutylidene-oxysuccinimide (GMBS; Fujiwara, K. et al. (1988), J. Immunol. Meth. 112, 77-83).

可藉由離子交換層析、尺寸排外層析法或HPLC分離苯甲醛或順丁烯二醯亞胺官能化聚合物。任何藉由末端一級胺官能基(HEP-NH2) 官能化之HEP聚合物可用於本發明實施例中。兩個選擇顯示如下: The benzaldehyde or maleimide functionalized polymer can be separated by ion exchange chromatography, size exclusion chromatography or HPLC. Any terminal functional group by an amine (HEP-NH 2) HEP of functionalized polymers can be used in embodiments of the present invention. The two choices are shown below:

多醣之非還原端中之末端糖殘基可為N-乙醯葡萄胺糖或葡糖醛酸(葡糖醛酸繪製於上文中)。典型地,若等莫耳量之UDP-GlcNAc及UDP-GlcUA已用於聚合反應中,則預期兩種糖殘基之混合物位於非還原端中。 The terminal sugar residue in the non-reducing end of the polysaccharide may be N-acetylglucosamine or glucuronic acid (glucuronic acid is drawn above). Typically, if a molar amount of UDP-GlcNAc and UDP-GlcUA has been used in the polymerization, it is expected that the mixture of the two sugar residues will be in the non-reducing end.

5'-甘胺醯基唾液酸胞嘧啶核苷單磷酸(GSC): 5 ' -Glycidyl sialo cytidine monophosphate (GSC):

可化學合成用於本發明中之GSC起始物質(Dufner,G.Eur.J.Org.Chem.2000,1467-1482)或其可藉由如WO07056191中所述之化學酶途徑獲得。GSC結構顯示於下文中: The GSC starting material (Dufner, G. Eur. J. Org. Chem. 2000, 1467-1482) used in the present invention can be chemically synthesized or it can be obtained by a chemical enzyme route as described in WO07056191. The GSC structure is shown below:

實例9-製備38.8k-HEP-[N]-FVIIa L288F T293KExample 9 - Preparation of 38.8k-HEP-[N]-FVIIa L288F T293K

步驟1:合成[(4-巰基丁醯基)甘胺醯基]唾液酸胞嘧啶核苷單磷酸(GSC-SH)Step 1: Synthesis of [(4-mercaptobutyl) glycine thiol] sialic acid cytidine monophosphate (GSC-SH)

將甘胺醯基唾液酸胞嘧啶核苷單磷酸(200mg;0.318mmol)溶解於水(2mL)中,且添加硫代丁內酯(325mg;3.18mmol)。在室溫下溫和地混合兩相溶液21h。隨後用水(10mL)稀釋反應混合物且塗覆至逆相HPLC管柱(C18,50mm×200mm)。用水(A)、乙腈(B)及250mM碳酸氫銨(C)之梯度系統以50ml/min之流動速率如下洗提管柱:0min(A:90%,B:0%,C:10%);12min(A:90%,B:0%,C:10%);48min(A:70%,B:20%,C:10%)。收集洗提份(20ml大小)且藉由LC-MS分析。收集純洗提份,且經由鈉形式之Dowex 50W×2(100-200網格)樹脂之短墊傳遞緩慢,隨後凍乾為乾燥粉末。隨後使用260nm下之吸收率,且使用甘胺醯基唾液酸胞嘧啶核苷單磷酸作為參考材料藉由HPLC測定標題材料於凍乾粉末中之含量。關於HPLC分析,使用Waters X-Bridge苯基管柱(5μm 4.6mm×250mm)及水乙腈系統(經30分鐘自0-85%乙腈之線性梯度,含有0.1%磷酸)。產量:61.6mg(26%)。LCMS:732.18(MH+);427.14(MH+-CMP)。當儲存於-80℃下時,化合物長時間(>12個月)穩定。 Glycosyl sialic acid cytidine monophosphate (200 mg; 0.318 mmol) was dissolved in water (2 mL), and thiobutyrolactone (325 mg; 3.18 mmol) was added. The two phase solution was gently mixed at room temperature for 21 h. The reaction mixture was then diluted with water (10 mL) and applied to a reverse phase HPLC column (C18, 50 mm x 200 mm). The column was eluted with a gradient system of water (A), acetonitrile (B) and 250 mM ammonium bicarbonate (C) at a flow rate of 50 ml/min as follows: 0 min (A: 90%, B: 0%, C: 10%) 12 min (A: 90%, B: 0%, C: 10%); 48 min (A: 70%, B: 20%, C: 10%). The eluted fraction (20 ml size) was collected and analyzed by LC-MS. The pure eluted fractions were collected and transferred slowly via a short pad of Dowex 50W x 2 (100-200 mesh) resin in sodium form, followed by lyophilization to a dry powder. The content of the title material in the lyophilized powder was then determined by HPLC using the absorbance at 260 nm and using glycidyl sialic acid cytidine monophosphate as a reference material. For HPLC analysis, a Waters X-Bridge phenyl column (5 μm 4.6 mm x 250 mm) and a water acetonitrile system (linear gradient from 0-85% acetonitrile over 30 min, containing 0.1% phosphoric acid) was used. Yield: 61.6 mg (26%). LCMS: 732.18 (MH +); 427.14 (MH + -CMP). The compound was stable for a long time (>12 months) when stored at -80 °C.

步驟2:合成具有琥珀醯亞胺鍵之38.8kDa HEP-GSC試劑Step 2: Synthesis of 38.8 kDa HEP-GSC reagent with amber quinone imine bond

藉由以1:1莫耳比耦合來自步驟1之GSC-SH([(4-巰基丁醯基)甘胺醯基]唾液酸胞嘧啶核苷單磷酸)與HEP-順丁烯二醯亞胺如下製備HEP-GSC試劑:向於50mM Hepes、100mM NaCl,pH 7.0(50μl)中溶解之GSC-SH(0.68mg)中添加35mg於50mM Hepes、100mM NaCl,pH 7.0(1,35ml)中溶解之38.8k-HEP-順丁烯二醯亞胺。將澄清溶液在25℃下靜置2小時。藉由以10kD之截止使用Slide-A-Lyzer卡(Thermo Scientific)之透析移除未反應之GSC-SH。透析緩衝液為50mM Hepes、100mM NaCl、10mM CaCl2,pH 7.0。持續2.5小時對反應混合物透析兩次。如同下文步驟4,假定GSC-SH與HEP-順丁烯二醯亞胺之間的定量反應使用回收材料。藉由此程序製得之HEP-GSC試劑將含有經由琥珀醯亞胺鍵附接至唾液酸胞嘧啶核苷單磷酸之HEP聚合物。 Coupling from GSC-SH ([(4-mercaptobutyl) glycine) sialyl cytosine monophosphate) from step 1 with HEP-m-butyleneimine by 1:1 molar ratio is as follows Preparation of HEP-GSC reagent: Add 35 mg of GSC-SH (0.68 mg) dissolved in 50 mM Hepes, 100 mM NaCl, pH 7.0 (50 μl) to 38.8 dissolved in 50 mM Hepes, 100 mM NaCl, pH 7.0 (1, 35 ml). k-HEP-m-butyleneimine. The clear solution was allowed to stand at 25 ° C for 2 hours. Unreacted GSC-SH was removed by dialysis using a Slide-A-Lyzer card (Thermo Scientific) at a cutoff of 10 kD. The dialysis buffer was 50 mM Hepes, 100 mM NaCl, 10 mM CaCl 2 , pH 7.0. The reaction mixture was dialyzed twice for 2.5 hours. As in step 4 below, it is assumed that the quantitative reaction between GSC-SH and HEP-m-butyleneimine uses recycled materials. The HEP-GSC reagent prepared by this procedure will contain an HEP polymer attached to sialic acid cytidine monophosphate via an amber quinone imine bond.

步驟3:FVIIa L288F T293K之去唾液酸化Step 3: Desialylation of FVIIa L288F T293K

向FVIIa L288F T293K(30mg)中添加於10mM His、100mM NaCl、60mM CaCl2、10mM PABA pH 5.9(10mL)中之唾液酸酶(AUS,100ul,20U),且在室溫下靜置1小時。隨後用50mM HEPES、100mM NaCl、1mM EDTA,pH 7.0(30mL)稀釋反應混合物,且在冰上冷卻。以小份添加250mM EDTA溶液(2.6mL),且藉由添加氫氧化鈉將pH保持於中性。隨後將EDTA處理之樣品塗覆至藉由50mM HEPES、100mM NaCl、1mM EDTA,pH 7.0平衡之2×5ml HiTrap Q FF ion交換蒸餾塔(Amersham Biosciences,GE Healthcare)。用50mM HEPES、100mM NaCl、1mM EDTA,pH 7.0(4CV),接著用50mM HEPES、150mM NaCl,pH 7.0(8CV)洗提非結合蛋白,隨後用50mM HEPES、100mM NaCl、10mM CaCl2,pH 7.0(20 CV)洗提去唾液酸基FVIIa L288F T293K。在50mM Hepes、150mM NaCl、10mM CaCl2,pH 7.0中分離去唾液酸基FVIIa L288F T293K。藉由在使用逆相HPLC還原參(2-羧乙基)膦之後針對FVIIa標準物量化FVIIa L288F T293K輕鏈含量測定產量(19.15mg)。 The sialidase ( AUS, 100 ul, 20 U) in 10 mM His, 100 mM NaCl, 60 mM CaCl 2 , 10 mM PABA pH 5.9 (10 mL) was added to FVIIa L288F T293K (30 mg), and allowed to stand at room temperature for 1 hour. The reaction mixture was then diluted with 50 mM HEPES, 100 mM NaCl, 1 mM EDTA, pH 7.0 (30 mL) and cooled on ice. A 250 mM EDTA solution (2.6 mL) was added in small portions, and the pH was maintained neutral by the addition of sodium hydroxide. The EDTA treated sample was then applied to a 2 x 5 ml HiTrap Q FF ion exchange distillation column (Amersham Biosciences, GE Healthcare) equilibrated with 50 mM HEPES, 100 mM NaCl, 1 mM EDTA, pH 7.0. Non-binding protein was eluted with 50 mM HEPES, 100 mM NaCl, 1 mM EDTA, pH 7.0 (4 CV) followed by 50 mM HEPES, 150 mM NaCl, pH 7.0 (8 CV), followed by 50 mM HEPES, 100 mM NaCl, 10 mM CaCl 2 , pH 7.0 ( 20 CV) elution of sialyl-based FVIIa L288F T293K. Disialyl FVIIa L288F T293K was isolated in 50 mM Hepes, 150 mM NaCl, 10 mM CaCl 2 , pH 7.0. Yield (19.15 mg) was determined by quantifying the FVIIa L288F T293K light chain content against the FVIIa standard after reduction of ginseng (2-carboxyethyl)phosphine using reverse phase HPLC.

步驟4:合成具有琥珀醯亞胺鍵之38.8kDa HEP-[N]-FVIIa L288F T293KStep 4: Synthesis of 38.8 kDa HEP-[N]-FVIIa L288F T293K with amber quinone imine bond

向於50mM Hepes、100mM NaCl、10mM CaCl2、10mM PABA,pH 7.0(18.0mL)中之去唾液酸基FVIIa L288F T293K(19.2mg)中添加於50mM Hepes、100mM NaCl、10mM CaCl2,pH 7.0(2.3mL)中之38.8kDa-HEP-GSC(35mg,來自步驟2),及於20mM Hepes、120mM NaCl、50%甘油,pH 7,0(7.2mL)中之大鼠ST3GalIII酶(5mg;1.1單位/毫克)。將反應混合物在緩慢旋轉下在32℃下保溫隔夜。隨後將反應混合物塗覆至經Gla-域特異性抗體修飾之FVIIa特異性親和性管柱(CV=24mL)且首先用2管柱體積之緩衝液A(50mM Hepes、100mM NaCl、10mM CaCl2,pH 7.4),隨後用2管柱體積之緩衝液B(50mM Hepes、100mM NaCl、10mM EDTA,pH 7.4)進行階段洗提。該方法基本上遵循Thim,L等人Biochemistry(1988)27,7785-779描述之原理。收集具有未摺疊Gla-域之產物且直接塗覆至2×5ml HiTrap Q FF離子交換蒸餾塔(Amersham Biosciences,GE Healthcare)。用10mM His、100mM NaCl、0.01% Tween 80,pH 7.5(3管柱體積)及10mM His、100mM NaCl、10mM CaCl2、0.01% Tween 80,pH 7.5(3.5管柱體積)洗滌管柱。隨後藉由10mM His、100mM NaCl、10mM CaCl2、0.01% Tween 80,pH 6.0(3管柱體積)將pH降低至6.0,且用5管柱體積的由60%緩衝液A(10mM His、100mM NaCl、10mM CaCl2、0.01% Tween 80,pH 6.0)及40%緩衝液B (10mM His、1M NaCl、10mM CaCl2、0.01% Tween 80,pH 6.0)組成之緩衝液混合物洗提肝素前體化材料。將回收之去唾液酸基FVIIa L288F T293K(未經修飾)再循環,亦即再一次如步驟4中所述地肝素前體化且以與剛剛描述相同之方式純化。收集來自兩次肝素前體化操作之合併洗提份且藉由超過濾(Millipore Amicon Ultra,截止10kD)濃縮。 Addition to 50 mM Hepes, 100 mM NaCl, 10 mM CaCl 2 , pH 7.0 to asialo FVIIa L288F T293K (19.2 mg) in 50 mM Hepes, 100 mM NaCl, 10 mM CaCl 2 , 10 mM PABA, pH 7.0 (18.0 mL) 38.8 kDa-HEP-GSC (35 mg from step 2) in 2.3 mL), and rat ST3GalIII enzyme (5 mg; 1.1 units) in 20 mM Hepes, 120 mM NaCl, 50% glycerol, pH 7, 0 (7.2 mL) /mg). The reaction mixture was incubated overnight at 32 ° C with slow rotation. The reaction mixture was then applied to a FVIIa-specific affinity column (CV = 24 mL) modified with a Gla-domain specific antibody and first with 2 column volumes of buffer A (50 mM Hepes, 100 mM NaCl, 10 mM CaCl 2 , pH 7.4), followed by stage elution with 2 column volumes of Buffer B (50 mM Hepes, 100 mM NaCl, 10 mM EDTA, pH 7.4). This method essentially follows the principles described by Thim, L et al. Biochemistry (1988) 27, 7785-779. The product with the unfolded Gla-domain was collected and applied directly to a 2 x 5 ml HiTrap Q FF ion exchange distillation column (Amersham Biosciences, GE Healthcare). The column was washed with 10 mM His, 100 mM NaCl, 0.01% Tween 80, pH 7.5 (3 column volumes) and 10 mM His, 100 mM NaCl, 10 mM CaCl 2 , 0.01% Tween 80, pH 7.5 (3.5 column volumes). The pH was then lowered to 6.0 by 10 mM His, 100 mM NaCl, 10 mM CaCl 2 , 0.01% Tween 80, pH 6.0 (3 column volumes), and with 5 column volumes of 60% buffer A (10 mM His, 100 mM). Pretreatment of heparin by buffer mixture consisting of NaCl, 10 mM CaCl 2 , 0.01% Tween 80, pH 6.0) and 40% buffer B (10 mM His, 1 M NaCl, 10 mM CaCl 2 , 0.01% Tween 80, pH 6.0) material. The recovered asialo FVIIa L288F T293K (unmodified) was recycled, i.e., heparin was again protonated as described in step 4 and purified in the same manner as just described. Pooled extracts from two heparin pre-treatments were collected and concentrated by ultrafiltration (Millipore Amicon Ultra, cut off 10 kD).

步驟5:單糖共軛肝素前體38.8k-HEP-[N]-FVIIa L288F T293K之封端Step 5: Blocking of the monosaccharide conjugated heparin precursor 38.8k-HEP-[N]-FVIIa L288F T293K

最後藉由ST3GalIII酶及CMP-NAN如下對38.8k-HEP-[N]-FVIIa L288F T293K之非唾液酸化N-聚糖封端(亦即唾液酸化):在32℃下藉由ST3GalIII(0.18mg/ml);於8.4ml 10mM His、100mM NaCl、10mM CaCl2、0.01% Tween 80,pH 6.0中之CMP-NAN(4.98mM)對38.8k-HEP-[N]-FVIIa L288F T293K(5.85mg)進行保溫1h。隨後將反應混合物塗覆至經Gla-域特異性抗體修飾之FVIIa特異性親和性管柱且首先用2管柱體積之緩衝液A(50mM Hepes、100mM NaCl、10mM CaCl2,pH 7.4),隨後用2管柱體積之緩衝液B(50mM Hepes、100mM NaCl、10mM EDTA,pH 7.4)進行階段洗提。合併含有38.8k-HEP-[N]-FVIIa L288F T293K之收集之洗提份且以10kD之截止使用Slide-A-Lyzer卡(Thermo Scientific)進行透析。透析緩衝液為10mM His、100mM NaCl、10mM CaCl2、0.01% Tween 80,pH 6.0。在TCEP還原之後藉由輕鏈HPLC分析測定蛋白質濃度。38.8k-HEP-[N]-FVIIa L288F T293K之總產量為2.46mg(13%)。 Finally, the non-sialylated N-glycan of 38.8k-HEP-[N]-FVIIa L288F T293K was capped (ie, sialylated) by ST3GalIII enzyme and CMP-NAN as follows: by ST3GalIII (0.18mg) at 32 °C /ml); CMP-NAN (4.98 mM) vs. 38.8k-HEP-[N]-FVIIa L288F T293K (5.85 mg) in 8.4 ml of 10 mM His, 100 mM NaCl, 10 mM CaCl 2 , 0.01% Tween 80, pH 6.0 Insulation for 1 h. The reaction mixture was then applied to a FVIIa-specific affinity column modified with a Gla-domain specific antibody and first with 2 column volumes of buffer A (50 mM Hepes, 100 mM NaCl, 10 mM CaCl 2 , pH 7.4), followed by Stage elution was carried out with 2 column volumes of Buffer B (50 mM Hepes, 100 mM NaCl, 10 mM EDTA, pH 7.4). The collected fractions containing 38.8k-HEP-[N]-FVIIa L288F T293K were combined and dialyzed against a cut-off of 10 kD using a Slide-A-Lyzer card (Thermo Scientific). The dialysis buffer was 10 mM His, 100 mM NaCl, 10 mM CaCl 2 , 0.01% Tween 80, pH 6.0. Protein concentration was determined by light chain HPLC analysis after TCEP reduction. The total yield of 38.8k-HEP-[N]-FVIIa L288F T293K was 2.46 mg (13%).

實例10-製備41.5kDa-HEP-[N]-FVIIa L288F T293K K337AExample 10 - Preparation of 41.5 kDa-HEP-[N]-FVIIa L288F T293K K337A

步驟1:合成具有4-甲基苯甲醯基鍵之41.5kDa HEP-GSC試劑Step 1: Synthesis of 41.5 kDa HEP-GSC reagent with 4-methylbenzhydryl linkage

向於5.0ml 50mM Hepes、100mM NaCl、10mM CaCl2緩衝液,pH 7.0中之甘胺醯基唾液酸胞嘧啶核苷單磷酸(GSC)(20mg;32μmol)中添加41.5kDa HEP-苯甲醛(99.7mg;2.5μmol)。溫和地旋轉混合物直至所有HEP-苯甲醛溶解。在接下來2小時期間,逐份添加氰基硼氫化鈉於MilliQ水中之1M溶液(5×50μl)以達到48mM之最終濃度。在室溫下靜置反應混合物隔夜。隨後藉由透析如下移除過量GSC:將總反應體積(5250μl)轉移至透析卡(Slide-A-Lyzer透析卡,Thermo Scientific產品號66810,具有10kDa之截止,容量:3-12mL)。溶液相對於2000ml之25mM Hepes緩衝液(pH 7.2)透析2小時且相對於2000ml之25mM Hepes緩衝液(pH 7.2)再一次透析17小時。藉由使用GSC作為參考物的WatersX-Bridge苯基管柱(4.6mm×250mm,5μm)及水乙腈系統(經30分鐘之0-85%乙腈之線性梯度,含有0.1%磷酸)上之HPLC驗證自內部腔室完全移除過量GSC。收集內部腔室材料且經凍乾以獲得41.5kDa呈白色粉末狀之HEP-GSC。藉由NMR且於SEC層析上分析HEP-GSC試劑。藉由此程序製得之HEP-GSC試劑含有經由4-甲基苯甲醯基鍵附接至唾液酸胞嘧啶核苷單磷酸之HEP聚合物。 41.5 kDa HEP-benzaldehyde (99.7) was added to 5.0 ml of 50 mM Hepes, 100 mM NaCl, 10 mM CaCl 2 buffer, glycine sialysine cytidine monophosphate (GSC) (20 mg; 32 μmol) in pH 7.0. Mg; 2.5 μmol). The mixture was gently rotated until all of the HEP-benzaldehyde was dissolved. During the next 2 hours, a 1 M solution of sodium cyanoborohydride in MilliQ water (5 x 50 μl) was added portionwise to reach a final concentration of 48 mM. The reaction mixture was allowed to stand overnight at room temperature. Excess GSC was then removed by dialysis as follows: The total reaction volume (5250 [mu]l) was transferred to a dialysis card (Slide-A-Lyzer dialysis card, Thermo Scientific product number 66810 with a cutoff of 10 kDa, capacity: 3-12 mL). The solution was dialyzed against 2000 ml of 25 mM Hepes buffer (pH 7.2) for 2 hours and dialyzed for another 17 hours with respect to 2000 ml of 25 mM Hepes buffer (pH 7.2). HPLC verification on a Waters X-Bridge phenyl column (4.6 mm x 250 mm, 5 μm) using a GSC as a reference and a water acetonitrile system (linear gradient of 0-85% acetonitrile over 30 minutes, containing 0.1% phosphoric acid) Excess GSC is completely removed from the internal chamber. The internal chamber material was collected and lyophilized to obtain a 41.5 kDa white powdered HEP-GSC. The HEP-GSC reagent was analyzed by NMR and on SEC chromatography. The HEP-GSC reagent prepared by this procedure contains a HEP polymer attached to sialic acid cytidine monophosphate via a 4-methylbenzhydryl bond.

步驟2:FVIIa L288F T293K K337A之去唾液酸化:Step 2: Desialylation of FVIIa L288F T293K K337A:

向FVIIa L288F T293KK337A(43.5mg)於21ml 10mM His、 100mM NaCl、60mM CaCl2、10mM PABA,pH 6.7緩衝液中之溶液中添加唾液酸酶(產脲節桿菌,9單位/毫升)。將反應混合物在室溫下保溫1小時。隨後將反應混合物在冰上冷卻且添加14ml 10mM His、100mM NaCl pH 7.7。隨後在維持中性pH時添加50ml 100mM EDTA溶液。隨後用50ml MilliQ水稀釋反應混合物,且塗覆至在50mM HEPES、50mM NaCl,pH 7.0中平衡之4×5ml互連HiTrap Q FF離子交換蒸餾塔(Amersham Biosciences,GE Healthcare)。用5CV 50mM HEPES、150mM NaCl,pH 7.0洗提包括唾液酸酶之非結合蛋白。用12CV 50mM HEPES、150mM NaCl、30mM CaCl2,pH 7.0洗提去唾液酸蛋白。將含有蛋白質之洗提份合併且添加0.5M PABA以達到10mM之最終濃度。藉由在使用如上文所述之逆相HPLC還原參(2-羧乙基)膦之後相對於FVIIa標準物量化FVIIa L288F T293K K337A輕鏈測定蛋白質產量。以此方式在11.5ml 50mM Hepes、150mM NaCl、30mM CaCl2、10mM PABA,pH 7.0中分離32.5mg去唾液酸基FVIIa L288F T293K K337A(2.83mg/ml)。 To a solution of FVIIa L288F T293KK337A (43.5 mg) in 21 ml of 10 mM His, 100 mM NaCl, 60 mM CaCl 2 , 10 mM PABA, pH 6.7 buffer was added sialidase (U. urealyticum, 9 units/ml). The reaction mixture was incubated at room temperature for 1 hour. The reaction mixture was then cooled on ice and 14 ml of 10 mM His, 100 mM NaCl pH 7.7 was added. 50 ml of 100 mM EDTA solution was then added while maintaining neutral pH. The reaction mixture was then diluted with 50 ml MilliQ water and applied to a 4 x 5 ml interconnected HiTrap Q FF ion exchange distillation column (Amersham Biosciences, GE Healthcare) equilibrated in 50 mM HEPES, 50 mM NaCl, pH 7.0. Non-binding proteins including sialidase were eluted with 5 CV 50 mM HEPES, 150 mM NaCl, pH 7.0. The asialog protein was eluted with 12 CV 50 mM HEPES, 150 mM NaCl, 30 mM CaCl 2 , pH 7.0. The fractions containing the protein were combined and 0.5 M PABA was added to reach a final concentration of 10 mM. Protein yield was determined by quantifying the FVIIa L288F T293K K337A light chain relative to the FVIIa standard after reduction of gin(2-carboxyethyl)phosphine using reverse phase HPLC as described above. In this manner, 32.5 mg of desialyl FVIIa L288F T293K K337A (2.83 mg/ml) was isolated in 11.5 ml of 50 mM Hepes, 150 mM NaCl, 30 mM CaCl 2 , 10 mM PABA, pH 7.0.

向於5.75ml 50mM Hepes、150mM NaCl、30mM CaCl2、10mM PABA,pH 7.0中之去唾液酸基FVIIa L288F T293K K337A(16.3mg)中添加於4.2ml 20mM Hepes、120mM NaCl、50%甘油,pH 7.0中之41.5kDa HEP-GSC(3當量,41.5mg)及大鼠ST3GalIII酶(2.93mg;1.1單位/毫克)。隨後用0.5M PABA水溶液將PABA濃度調節至10mM,且用1N NaOH將pH調節至6.7。將反應混合物在緩慢攪拌下在32℃下保溫隔夜。隨後添加157mM CMP-NAN於50mM Hepes、150mM NaCl、10mM CaCl2,pH 7.0中之溶液(356μl),且再將反應物在32℃下保溫一小時。HPLC分析顯示含有未反應FVIIa L288F T293K K337A(68%)、單肝素前體化FVIIa(25%)及各種聚肝素前體化形式(7%)之產物分佈。 Addition to 4.2 ml of 50 mM Hepes, 150 mM NaCl, 30 mM CaCl 2 , 10 mM PABA, pH 7.0 in asialo FVIIa L288F T293K K337A (16.3 mg) in 4.2 ml of 20 mM Hepes, 120 mM NaCl, 50% glycerol, pH 7.0 41.5 kDa HEP-GSC (3 equivalents, 41.5 mg) and rat ST3GalIII enzyme (2.93 mg; 1.1 units/mg). The PABA concentration was then adjusted to 10 mM with 0.5 M aqueous PABA solution and the pH was adjusted to 6.7 with 1 N NaOH. The reaction mixture was incubated overnight at 32 ° C with slow agitation. A solution (356 μl) of 157 mM CMP-NAN in 50 mM Hepes, 150 mM NaCl, 10 mM CaCl 2 , pH 7.0 was then added, and the reaction was again incubated at 32 ° C for one hour. HPLC analysis showed product distribution with unreacted FVIIa L288F T293K K337A (68%), monoheparin precursor FVIIa (25%) and various polyheparin precursor forms (7%).

隨後將整個反應混合物塗覆至經Gla-域特異性抗體修飾之FVIIa特異性親和性管柱(CV=24mL)且首先用2管柱體積之緩衝液A(50mM Hepes、100mM NaCl、10mM CaCl2,pH 7.4),隨後用2管柱體積之緩衝液B(50mM Hepes、100mM NaCl、10mM EDTA,pH 7.4)進行階段洗提。該方法基本上遵循Thim,L等人Biochemistry(1988)27,7785-779描述之原理。 The entire reaction mixture was then applied to a FVIIa-specific affinity column (CV = 24 mL) modified with a Gla-domain specific antibody and first with 2 column volumes of buffer A (50 mM Hepes, 100 mM NaCl, 10 mM CaCl 2 ) , pH 7.4), followed by stage elution with 2 column volumes of Buffer B (50 mM Hepes, 100 mM NaCl, 10 mM EDTA, pH 7.4). This method essentially follows the principles described by Thim, L et al. Biochemistry (1988) 27, 7785-779.

收集具有未摺疊Gla-域之產物且直接塗覆至藉由含有10mM His、100mM NaCl,pH 6.0之緩衝液平衡之3×5ml互連HiTrap Q FF離子交換蒸餾塔(Amersham Biosciences,GE Healthcare)。用4管柱體積之10mM His、100mM NaCl,pH 6.0洗滌管柱。用12CV 10mM His、100mM NaCl、10mM CaCl2、pH6.0(洗提緩衝液A).洗提未經修飾之FVIIa L288F T293K K337A。隨後用15CV 10mM His、325mM NaCl、10mM CaCl2,pH 6.0洗提41.5kDa-HEP-[N]-FVIIa L288F T293K K337A。合併純洗提份,且藉由上述HPLC定量方法測定蛋白質濃度。分離3.42mg(21%)純41.5kDa-HEP-[N]-FVIIa L288F T293K K337A。 The product with the unfolded Gla-domain was collected and applied directly to a 3 x 5 ml interconnected HiTrap Q FF ion exchange distillation column (Amersham Biosciences, GE Healthcare) equilibrated with a buffer containing 10 mM His, 100 mM NaCl, pH 6.0. The column was washed with 4 column volumes of 10 mM His, 100 mM NaCl, pH 6.0. With 12CV 10mM His, 100mM NaCl, 10mM CaCl 2 , pH6.0 (extraction buffer A). The unmodified FVIIa L288F T293K K337A was eluted. 41.5 kDa-HEP-[N]-FVIIa L288F T293K K337A was subsequently eluted with 15 CV 10 mM His, 325 mM NaCl, 10 mM CaCl 2 , pH 6.0. The purely washed fractions were combined and the protein concentration was determined by the above HPLC quantitative method. 3.42 mg (21%) of pure 41.5 kDa-HEP-[N]-FVIIa L288F T293K K337A was isolated.

最後使用具有10kD之截止之Slide-A-Lyzer卡(Thermo Scientific)相對於10mM His、100mM NaCl、10mM CaCl2,pH 6.0透析含有41.5kDa-HEP-[N]-FVIIa L288F T293K K337A之合併之洗提份,且藉由添加透析緩衝液將濃度調節至(0.40mg/ml)。 Finally, a combined wash containing 41.5 kDa-HEP-[N]-FVIIa L288F T293K K337A was dialyzed against a 10 mM His, 100 mM NaCl, 10 mM CaCl 2 , pH 6.0 using a Slide-A-Lyzer card (Thermo Scientific) with a cutoff of 10 kD. The fraction was adjusted and the concentration was adjusted to (0.40 mg/ml) by adding a dialysis buffer.

實施例11-製備41.5kDa HEP-[N]-FVIIa W201 T293KExample 11 - Preparation of 41.5 kDa HEP-[N]-FVIIa W201 T293K

基本上如實施例10中所述製備此材料。FVIIa W201R T293K(40mg)起初經去唾液酸且藉由Gla特異性離子交換法分離去唾液酸基FVIIa W201R T293K(27.2mg)。去唾液酸類似物隨後與41.5kDa HEP-GSC(如實施例10中所述產生)及ST3GalIII一起保溫。隨後藉由離子交換層析分離共軛產物。最終緩衝液交換得到2.9mg(7.5%)於10mM His、100mM NaCl、10mM CaCl2,pH 6.0中之41.5kDa HEP-[N]-FVIIa W201 T293K。 This material was prepared essentially as described in Example 10. FVIIa W201R T293K (40 mg) was initially desialic acid and the asialo FVIIa W201R T293K (27.2 mg) was isolated by Gla-specific ion exchange. The asialog analog was then incubated with 41.5 kDa HEP-GSC (produced as described in Example 10) and ST3GalIII. The conjugated product was subsequently separated by ion exchange chromatography. Final buffer exchange gave 2.9 mg (7.5%) of 41.5 kDa HEP-[N]-FVIIa W201 T293K in 10 mM His, 100 mM NaCl, 10 mM CaCl 2 , pH 6.0.

實施例12-製備41.5kDa HEP-[N]-FVIIa L288Y T293KExample 12 - Preparation of 41.5 kDa HEP-[N]-FVIIa L288Y T293K

基本上如實施例10中所述製備此材料。FVIIa L288Y T293K(19.9mg)起初經去唾液酸且藉由Gla特異性離子交換法分離去唾液酸基FVIIa L288Y T293K(16.9mg)。去唾液酸類似物隨後與41.5kDa HEP-GSC(如實施例10中所述產生)及ST3GalIII一起保溫。隨後藉由離子交換層析分離共軛產物。最終緩衝液交換得到1.95mg(11.5%)於10mM His、100mM NaCl、10mM CaCl2,pH 6.0中之41.5kDa HEP-[N]-FVIIa L288Y T293K。 This material was prepared essentially as described in Example 10. FVIIa L288Y T293K (19.9 mg) was initially desialic acid and the asialo FVIIa L288Y T293K (16.9 mg) was isolated by Gla-specific ion exchange. The asialog analog was then incubated with 41.5 kDa HEP-GSC (produced as described in Example 10) and ST3GalIII. The conjugated product was subsequently separated by ion exchange chromatography. Final buffer exchange gave 1.95 mg (11.5%) of 41.5 kDa HEP-[N]-FVIIa L288Y T293K in 10 mM His, 100 mM NaCl, 10 mM CaCl 2 , pH 6.0.

實施例13-製備41.5kDa HEP-[N]-FVIIa L288Y T293RExample 13 - Preparation of 41.5 kDa HEP-[N]-FVIIa L288Y T293R

基本上如實施例10中所述製備此材料。在去唾液酸之後,使去唾液酸基FVIIa L288Y T293R(30mg)與41.5kDa HEP-GSC(如實施例10中所述產生)及ST3GalIII反應。隨後藉由離子交換層析分離共軛產物。最終緩衝液交換得到4.33mg(14.4%)41.5kDa HEP-[N]-FVIIa L288Y T293R,其獲得於10mM His、100mM NaCl、10mM CaCl2,pH 6.0中。 This material was prepared essentially as described in Example 10. After asiatic acid, desialyl FVIIa L288Y T293R (30 mg) was reacted with 41.5 kDa HEP-GSC (produced as described in Example 10) and ST3GalIII. The conjugated product was subsequently separated by ion exchange chromatography. The final buffer exchange to give 4.33mg (14.4%) 41.5kDa HEP- [ N] -FVIIa L288Y T293R, which is obtained in 10mM His, 100mM NaCl, 10mM CaCl 2, pH 6.0 in.

實施例14-製備41.5kDa HEP-[N]-FVIIa T293K K337AExample 14 - Preparation of 41.5 kDa HEP-[N]-FVIIa T293K K337A

基本上如實施例10中所述製備此材料。在去唾液酸之後,使去唾液酸基FVIIa L288Y T293R(8mg)與41.5kDa HEP-GSC(如實施例 10中所述產生)及ST3GalIII反應。藉由離子交換層析分離共軛產物。最終緩衝液交換得到1.72mg(15%)於10mM His、100mM NaCl、10mM CaCl2,pH 6.0中之41.5kDa HEP-[N]-FVIIa T293K.K337A。 This material was prepared essentially as described in Example 10. After asiatic acid, desialyl FVIIa L288Y T293R (8 mg) was reacted with 41.5 kDa HEP-GSC (produced as described in Example 10) and ST3GalIII. The conjugated product was separated by ion exchange chromatography. The final buffer exchange yielded 1.72 mg (15%) of 41.5 kDa HEP-[N]-FVIIa T293K in 10 mM His, 100 mM NaCl, 10 mM CaCl 2 , pH 6.0. K337A.

實施例15-經修飾之組合FVIIa變異體之官能特性Example 15 - Functional Properties of Modified Combination FVIIa Variants

如實施例5中所述對糖共軛至PEG或肝素前體(HEP)(如實施例9-14中所述)之FVIIa組合變異體之蛋白分解活性及抗凝血酶反應性特性化。結果概述於表7中。此等資料顯示在PEG或HEP之情況下,FVIIa之化學修飾降低FVIIa變異體蛋白分解活性,但對於一些變異體,允許保留高於野生型FVIIa之蛋白分解活性且另外允許保留抗凝血酶抗性。 The proteolytic activity and antithrombin reactivity of the FVIIa combination variant conjugated to PEG or heparin precursor (HEP) (as described in Examples 9-14) were characterized as described in Example 5. The results are summarized in Table 7. These data show that in the case of PEG or HEP, chemical modification of FVIIa reduces the proteolytic activity of the FVIIa variant, but for some variants, it is allowed to retain higher proteolytic activity than wild-type FVIIa and additionally allow retention of antithrombin resistance Sex.

實施例16-血友病A樣全血血栓彈力描記術中之評估Example 16 - Evaluation of hemophilia A-like whole blood thromboelastography

選擇血栓彈力描記術(TEG)分析用以藉由與FVIIa比較來評估全血血栓A樣全血中之FVIIa變異體之活性。TEG分析提供整個凝血過程-起始、傳播及最終凝塊強度量測之特徵。除流動血液及血管結構中之剪切力之可能影響之外,TEG分析在該方法量測凝塊全血之黏彈特性時模 擬凝血之活體內條件(Viuff,E.等人,Thrombosis Research,(2010),第126卷,第144-149頁)。藉由使用高嶺土起始各TEG分析且在表8中記錄及報導TEG參數凝塊時間(R)及最大血栓生成速率(MTG)。凝塊時間(R)表示自置放血液於樣品杯中直至開始形成凝塊之潛伏時間(2mm振幅);而最大血栓生成(MTG)表示凝塊形成速度。使用標準TEG軟體測定以秒計之凝塊時間(R);而MTG計算為TEG軌跡乘以100之一階導數(100×mm/秒)。 A thromboelastography (TEG) analysis was selected to assess the activity of FVIIa variants in whole blood thrombus A-like whole blood by comparison with FVIIa. TEG analysis provides the characteristics of the entire coagulation process - initiation, propagation, and final clot strength measurements. In addition to the possible effects of shear forces in flowing blood and vascular structures, TEG analysis simulates the viscoelastic properties of clot whole blood in this method. In vivo conditions of pseudocoagulation (Viuff, E. et al., Thrombosis Research, (2010), Vol. 126, pp. 144-149). Each TEG analysis was initiated by the use of kaolin and the TEG parameter clot time (R) and maximum thrombus generation rate (MTG) were recorded and reported in Table 8. The clot time (R) represents the latency (2 mm amplitude) from the placement of blood in the sample cup until the formation of a clot; and the maximum thrombus formation (MTG) indicates the rate of clot formation. The clot time (R) in seconds was determined using standard TEG software; and the MTG was calculated as the TEG trajectory multiplied by a one-step derivative of 100 (100 x mm/sec).

血液樣品係獲自為丹麥國家自願獻血者團(Danish National Corps of Voluntary Blood Donors)之成員且滿足獻血標準之正常、健康供體。在3.2%檸檬酸鹽採血管(Vacuette參考號455322,Greiner bio-one,批次A020601 2007-02)中取血液樣品且在60分鐘內進行分析。藉由添加抗人類FVIII(綿羊抗人類FVIII,批次AA11-01,Haematologic Technologies,VT,USA)抗體至10 Bethesda單位(BU)/毫升之最終濃度(最終0.1mg/ml)自正常人類全血製備血友病A樣血液且在室溫下以2rpm/min溫和地旋轉30分鐘。除以0.069、0.69、6.9、17.3nM測試之FVIIa L288Y T293K及以0.076、0.76、7.6、19.1nM測試之FVIIa W201R T293K以外,以0.1、1、10及25nM最終濃度添加測試化合物。 Blood samples were obtained from normal, healthy donors who are members of the Danish National Corps of Voluntary Blood Donors and meet blood donation criteria. Blood samples were taken in a 3.2% citrate blood collection tube (Vacuette reference 455322, Greiner bio-one, lot A020601 2007-02) and analyzed within 60 minutes. By adding anti-human FVIII (sheep anti-human FVIII, batch AA11-01, Haematologic Technologies, VT, USA) antibody to a final concentration of 10 Bethesda units (BU) / ml (final 0.1 mg / ml) from normal human whole blood Hemophilia A-like blood was prepared and gently spun at 2 rpm/min for 30 minutes at room temperature. Test compounds were added at final concentrations of 0.1, 1, 10 and 25 nM in addition to FVIIa L288Y T293K tested at 0.069, 0.69, 6.9, 17.3 nM and FVIIa W201R T293K tested at 0.076, 0.76, 7.6, 19.1 nM.

來自高嶺土誘發之TEG之資料顯示在血友病A樣血液中,所有化合物劑量依賴性地減少凝塊時間(R-時間)且增加最大血栓生成(MTG)(表8)。當以最高測試濃度評估時,所有40k-HEP-[N]-FVIIa-變異體顯示相比於FVIIa之較短或類似凝塊時間。此外,變異體之最大血栓生成與FVIIa類似或相對於其增加。此外,資料顯示當與對應FVIIa變異體(無40k-肝素前體化)相比時,FVIIa變異體之40k-肝素前體化減小40k-肝素前體化 化合物之活性。表8顯示血友病A樣全血中之高嶺土誘發之TEG中之測試化合物之R-時間(凝塊時間)及MTG(最大血栓生成)。除以17.3nM測試之FVIIa L288Y T293Kthat及以19.1nM測試之FVIIa W201R T293K,測試化合物之最高濃度為25nM。在四個個別供體(n=4)中測試FVIIa、40k-PEG-[N]-FVIIa及40k-HEP-[N]-FVIIa而在兩個個別供體(n=2)中測試剩餘化合物。方括號形式之資料表明來自四個個別供體之參數範圍。 Data from kaolin-induced TEG showed that all compounds dose-dependently reduced clot time (R-time) and increased maximal thrombus formation (MTG) in hemophilia A-like blood (Table 8). All 40k-HEP-[N]-FVIIa-variants showed shorter or similar clot times compared to FVIIa when evaluated at the highest test concentration. In addition, the maximum thrombus formation of the variant is similar to or relative to FVIIa. In addition, the data show that 40k-heparin pro-formation of FVIIa variants reduces 40k-heparin pro-formation when compared to the corresponding FVIIa variant (no 40k-heparin precursor) The activity of the compound. Table 8 shows the R-time (clot time) and MTG (maximal thrombus formation) of the test compound in the kaolin-induced TEG in hemophilia A-like whole blood. The highest concentration of test compound was 25 nM divided by FVIIa L288Y T293Kthat tested at 17.3 nM and FVIIa W201R T293K tested at 19.1 nM. FVIIa, 40k-PEG-[N]-FVIIa and 40k-HEP-[N]-FVIIa were tested in four individual donors (n=4) and the remaining compounds were tested in two individual donors (n=2) . The data in square brackets indicates the range of parameters from the four individual donors.

術參數. Operating parameters.

實施例17-評估大鼠中之PKExample 17 - Evaluation of PK in rats

在大鼠中進行未經修飾形式或與PEG或肝素前體(HEP)糖共軛之鑑別之FVIIa變異體之藥物動力學分析以評估其對FVIIa之活體內存活之影響。對史泊格多利大鼠(三隻/組)靜脈內給藥。在適當時間點以完全特徵形式收集StabyliteTM(TriniLize Stabylite管;Tcoag Ireland有限公司,Ireland)穩定化血漿樣品且冷凍直至進一步分析。分析血漿樣品之凝塊活性(如實施例7中所述)且藉由ELISA量化FVIIa-抗凝血酶錯合物。藉由使用Phoenix WinNonlin 6.0(Pharsight公司)之非室方法進行藥物動力學分析。評估以下參數:FVIIa-抗凝血酶錯合物之Cmax(最大濃度)、凝塊活性之T½(功能終末半衰期)及MRT(功能平均滯留時間)。 Pharmacokinetic analysis of FVIIa variants in unmodified form or conjugated to PEG or heparin precursor (HEP) sugars was performed in rats to assess their effect on in vivo survival of FVIIa. Spirogoli rats (three/group) were administered intravenously. Collected at the appropriate time to completely form wherein Stabylite TM (TriniLize Stabylite tube; Tcoag Ireland Ltd., Ireland) stabilized plasma samples and frozen until further analysis. The clot activity of the plasma samples was analyzed (as described in Example 7) and the FVIIa-antithrombin complex was quantified by ELISA. Pharmacokinetic analysis was performed by using a non-compartmental method of Phoenix WinNonlin 6.0 (Pharsight). The following parameters were evaluated: Cmax (maximum concentration) of FVIIa-antithrombin complex, T1⁄2 (functional terminal half-life) of clot activity, and MRT (functional mean residence time).

簡言之,藉由使用酶免疫分析(EIA)量測FVIIa-抗凝血酶錯合物。將結合至EGF-域之N端且不阻斷抗凝血酶結合之單株抗-FVIIa抗體用於捕獲錯合物(Dako Denmark A/S,Glostrup;產品編碼O9572)。將多株抗人類AT抗體過氧化酶共軛物用於偵測(Siemens Healthcare Diagnostics ApS,Ballerup/Denmark;產品編碼OWMG15)。將人類野生型或變異體FVIIa及血漿源人類抗凝血酶之預成型純化錯合物用作建構EIA校準曲線之標準。將血漿樣品稀釋且進行分析且計算重複量測之平均濃度。EIA之內分析精度在1%-8%之間。 Briefly, FVIIa-antithrombin complexes were measured by using enzyme immunoassay (EIA). A single anti-FVIIa antibody that binds to the N-terminus of the EGF-domain and does not block antithrombin binding is used to capture the complex (Dako Denmark A/S, Glostrup; product code O9572). Multiple anti-human AT antibody peroxidase conjugates were used for detection (Siemens Healthcare Diagnostics ApS, Ballerup/Denmark; product code OWMG 15). A preformed purification complex of human wild-type or variant FVIIa and plasma-derived human antithrombin was used as a standard for constructing an EIA calibration curve. Plasma samples were diluted and analyzed and the average concentration of repeated measurements was calculated. The analytical accuracy within the EIA is between 1% and 8%.

藥物動力學評估參數列舉於表9中。相對於野生型FVIIa,測試變異體展現FVIIa-抗凝血酶錯合物(大鼠AT錯合物)之較小積聚,血漿位準接近於偵測位準。此外,觀測到40k-HEP-[N]-FVIIa L288F T293K(於 大鼠中之18.4小時)相比於40k-PEG-[N]-FVIIa(於大鼠中之7.4小時)顯著延長之功能半衰期。 The pharmacokinetic evaluation parameters are listed in Table 9. The test variant exhibited a smaller accumulation of the FVIIa-antithrombin complex (rat AT complex) relative to wild-type FVIIa, with the plasma level approaching the detection level. In addition, 40k-HEP-[N]-FVIIa L288F T293K was observed (in 18.4 hours in rats) significantly extended functional half-life compared to 40k-PEG-[N]-FVIIa (7.4 hours in rats).

總之,在位置293處存在之Lys增加大鼠之T½且減少FVIIa-抗凝血酶錯合物形成。此外,引入糖共軛肝素前體實質上改良大鼠之T½。 In conclusion, Lys present at position 293 increases T1⁄2 in rats and reduces FVIIa-antithrombin complex formation. In addition, the introduction of a glycoconjugated heparin precursor substantially improved the T1⁄2 of the rat.

實施例18-經由活性位點穩定化之FVIIa L288Y T293K之液體調配物Example 18 - Liquid formulation of FVIIa L288Y T293K stabilized via active site

藉由由於自體溶解、氧化、去醯胺化、異構化等發生的對多肽鏈之多種修飾限制FVIIa在溶液中之穩定性。前述研究已鑑別重鏈上易受自我蛋白侵襲之三個位點;此等位點為Arg290-Gly291、Arg315-Lys316及Lys316-Val317(Nicolaisen等人,FEBS,1993,317:245-249)。不含鈣之條件進一步促進包含γ-羧基麩胺酸(Gla)域之輕鏈之第一38殘基之蛋白分解釋放。 The stability of FVIIa in solution is limited by various modifications to the polypeptide chain due to autolysis, oxidation, deamidation, isomerization, and the like. The foregoing studies have identified three sites on the heavy chain that are susceptible to self-protein attack; these sites are Arg290-Gly291, Arg315-Lys316, and Lys316-Val317 (Nicolaisen et al, FEBS, 1993, 317:245-249). The calcium free conditions further promote proteolytic release of the first 38 residues of the light chain comprising the gamma-carboxy glutamic acid (Gla) domain.

此處,吾人使用小分子PCI-27483-S(2-{2-[5-(6-甲脒基-1H-苯并咪唑-2-基)-6,2'-二羥基-5'-胺磺醯基-聯苯基-3-基]-乙醯胺基}-琥珀酸),其經由非共價相互作用使FVIIa之活性位點穩定化且防止液體調配物中之重鏈之自體溶解(參見WO2014/057069關於PCI-27483-S之其他細節)。 Here, we use the small molecule PCI-27483-S (2-{2-[5-(6-methylindol-1H-benzimidazol-2-yl)-6,2'-dihydroxy-5'- Amidoxime-biphenyl-3-yl]-acetamido}-succinic acid, which stabilizes the active site of FVIIa via non-covalent interactions and prevents heavy chains in liquid formulations Solubilization (see WO 2014/057069 for additional details on PCI-27483-S).

已藉由用逆相HPLC(RP-HPLC)分析還原之FVIIa L288Y T293K評估重鏈裂解之定量。將分析溶液在127mM二硫蘇糖醇(DTT)及3M鹽酸胍中還原,將該等溶液於60℃下保溫15分鐘,接著添加1μL濃縮乙酸(/50μL初始分析溶液)且冷卻至25℃。隨後將25μg還原FVIIa L288Y T293K注射至經溫度平衡於40℃下之ACE 3μM C4管柱(300Å,4.6x100mm;Advanced Chromatography Technologies有限公司,Scotland)上。以具有由於水中之0.05%三氟乙酸(TFA)組成之行動相A及由於80%乙腈中之0.045% TFA組成之35%-80%行動相B之線性梯度分離蛋白片段。梯度時間為30分鐘,流動速率為0.7mL/min,且在215nm之吸收率下偵測洗提峰。 Quantification of heavy chain cleavage has been assessed by analysis of reduced FVIIa L288Y T293K by reverse phase HPLC (RP-HPLC). The assay solution was reduced in 127 mM dithiothreitol (DTT) and 3 M guanidine hydrochloride, and the solutions were incubated at 60 ° C for 15 minutes, followed by the addition of 1 μL of concentrated acetic acid (/50 μL of the initial analysis solution) and cooled to 25 °C. 25 μg of reduced FVIIa L288Y T293K was then injected onto an ACE 3 μM C4 column (300 Å, 4.6 x 100 mm; Advanced Chromatography Technologies, Inc., Scotland) equilibrated at 40 °C. The protein fragment was isolated as a linear gradient with Action Phase A consisting of 0.05% trifluoroacetic acid (TFA) in water and 35%-80% Action Phase B consisting of 0.045% TFA in 80% acetonitrile. The gradient time was 30 minutes, the flow rate was 0.7 mL/min, and the elution peak was detected at an absorbance of 215 nm.

藉由1.47mg/mL CaCl2、7.5mg/mL NaCl、1.55mg/mL L-組胺酸、1.32mg/mL甘胺醯甘胺酸、0.5mg/mL L-甲硫胺酸、0.07mg/mL聚山梨醇酯80、0.021mg/mL PCI-27483-S,1mg/mL之蛋白濃度(亦即1:1.75之蛋白抑制劑莫耳比)及6.8之最終pH製得FVIIa L288Y T293K之調配物。將溶液在靜止條件及遠離光照下於30℃下保溫1個月。如表10中可見,PCI-27483-S之存在導致對FVIIa L288Y T293K之重鏈裂解之接近完整抑制;而未添加PCI-27483-S導致位置315-316及290-291處之裂解之顯著增加。 By 1.47 mg/mL CaCl 2 , 7.5 mg/mL NaCl, 1.55 mg/mL L-histamine, 1.32 mg/mL glycine glycine, 0.5 mg/mL L-methionine, 0.07 mg/ Formulation of FVIIa L288Y T293K with mL polysorbate 80, 0.021 mg/mL PCI-27483-S, protein concentration of 1 mg/mL (ie, 1:1.75 protein inhibitor molar ratio) and final pH of 6.8 . The solution was incubated at 30 ° C for 1 month under static conditions and away from light. As can be seen in Table 10, the presence of PCI-27483-S resulted in near complete inhibition of heavy chain cleavage of FVIIa L288Y T293K; whereas the addition of PCI-27483-S resulted in a significant increase in cleavage at positions 315-316 and 290-291. .

表10如在具有及不具有PCI-27483-S抑制劑之情況下在培育28天後於RP-HPLC層析圖中測定的相對於對應於兩個不同裂解位點的第0天之重鏈片段之峰值區域之百分比增加. Table 10 Heavy chain on day 0 corresponding to two different cleavage sites as determined in RP-HPLC chromatograms after 28 days of incubation with and without PCI-27483-S inhibitor The percentage of the peak area of the fragment increases.

實施例19-免疫原性風險之電腦模擬評估Example 19 - Computer Simulation Evaluation of Immunogenic Risk

電腦模擬研究研究由工程改造以產生FVIIa類似物之蛋白產生之新穎肽序列是否可產生能夠結合至人體中之II類主要組織相容複合體(MHC-II)(亦稱為HLA-II)之肽序列。該結合對於存在T細胞抗原決定基為必需的。用於此研究中之肽/HLA-II結合預測軟體係基於兩種算法,進行HLA-DR預測之NetMHCIIpan 2.1(Nielsen等人2010)及進行HLA-DP/DQ預測之NetMHCII 2.2(Nielsen等人2009)。 Computer simulation studies to investigate whether a novel peptide sequence produced by a protein engineered to produce a FVIIa analog can produce a class II major histocompatibility complex (MHC-II) (also known as HLA-II) that binds to the human body. Peptide sequence. This binding is essential for the presence of T cell epitopes. The peptide/HLA-II binding prediction soft system used in this study is based on two algorithms, NetHHCIIpan 2.1 for HLA-DR prediction (Nielsen et al. 2010) and NetMHCII 2.2 for HLA-DP/DQ prediction (Nielsen et al. 2009). ).

計算免疫原性風險評分(IRS)以使得能夠在免疫原性風險潛能方面比較不同FVIIa類似物。如下進行計算:將FVIIa野生型用作參考物且僅在分析中包括具有10或10以下之預測秩數的不在參考物(FVIIa野生型)中之預測15mers。HLA-II對偶基因分類為三類:具有2之權重之第1類(秩數<=1)、具有0.5之權重之第2類(1>秩數<=3)及具有0.2之權重之第3類(3>秩數<=10)。類別權重(2. 0.5或0.2)乘以對偶基因頻率(關於各群體)以獲得IRS。計算各群體及各HLA-II(DRB1、DP及DQ)之IRS之總和。 The immunogenicity risk score (IRS) was calculated to enable comparison of different FVIIa analogs in terms of immunogenic risk potential. Calculations were performed as follows: FVIIa wild type was used as a reference and only predicted 15mers in the reference (FVIIa wild type) with a predicted rank of 10 or less were included in the analysis. The HLA-II dual genes are classified into three categories: a first type having a weight of 2 (rank number <=1), a second type having a weight of 0.5 (1>rank number <=3), and a weight having a weight of 0.2. Class 3 (3>rank number <=10). The class weight (2.5 or 0.2) is multiplied by the frequency of the dual gene (for each population) to obtain the IRS. Calculate the sum of IRS for each population and each HLA-II (DRB1, DP, and DQ).

所選單一及組合變異體之計算風險評分提供於表11中。尤其有利的組合包括L288F/T293K、L288F/T293K/K337A、L288Y/T293K及L288Y/T293K/K337A,其同時展現高蛋白分解活性以及對藉由抗凝血酶抑制之較小易感性。 The calculated risk scores for the selected single and combined variants are provided in Table 11. Particularly advantageous combinations include L288F/T293K, L288F/T293K/K337A, L288Y/T293K, and L288Y/T293K/K337A, which simultaneously exhibit high proteolytic activity and less susceptibility to inhibition by antithrombin.

<110> 諾佛 儂迪克股份有限公司 <110> Norfolk Dick Co., Ltd.

<120> 凝血因子VII多肽 <120> Coagulation Factor VII Peptide

<130> 8719TW01 <130> 8719TW01

<140> 13188715.0 <140> 13188715.0

<141> 2013-10-15 <141> 2013-10-15

<160> 9 <160> 9

<170> PatentIn 3.5版 <170> PatentIn version 3.5

<210> 1 <210> 1

<211> 406 <211> 406

<212> PRT <212> PRT

<213> 人類 <213> Human

<400> 1 <400> 1

<210> 2 <210> 2

<211> 254 <211> 254

<212> PRT <212> PRT

<213> 人類 <213> Human

<400> 2 <400> 2

<210> 3 <210> 3

<211> 254 <211> 254

<212> PRT <212> PRT

<213> 黑猩猩 <213> Chimpanzee

<400> 3 <400> 3

<210> 4 <210> 4

<211> 254 <211> 254

<212> PRT <212> PRT

<213> 犬 <213> Dog

<400> 4 <400> 4

<210> 5 <210> 5

<211> 255 <211> 255

<212> PRT <212> PRT

<213> 豬類 <213> Pigs

<400> 5 <400> 5

<210> 6 <210> 6

<211> 255 <211> 255

<212> PRT <212> PRT

<213> 牛類 <213> Cattle

<400> 6 <400> 6

<210> 7 <210> 7

<211> 253 <211> 253

<212> PRT <212> PRT

<213> 小鼠 <213> mouse

<400> 7 <400> 7

<210> 8 <210> 8

<211> 253 <211> 253

<212> PRT <212> PRT

<213> 大鼠 <213> Rat

<400> 8 <400> 8

<210> 9 <210> 9

<211> 253 <211> 253

<212> PRT <212> PRT

<213> 兔 <213> Rabbit

<400> 9 <400> 9

Claims (15)

一種包含兩個或兩個以上相對於人類因子VII之胺基酸序列(SEQ ID NO:1)之取代之因子VII多肽,其中T293藉由Lys(K)、Arg(R)、Tyr(Y)或Phe(F)置換;且L288藉由Phe(F)、Tyr(Y)、Asn(N)、Ala(A)或Trp W置換及/或W201藉由Arg(R)、Met(M)或Lys(K)置換及/或K337藉由Ala(A)或Gly(G)置換。 A Factor VII polypeptide comprising two or more substitutions relative to the amino acid sequence of human Factor VII (SEQ ID NO: 1), wherein T293 is by Lys (K), Arg (R), Tyr (Y) Or Phe(F) substitution; and L288 is replaced by Phe(F), Tyr(Y), Asn(N), Ala(A) or TrpW and/or W201 by Arg(R), Met(M) or Lys (K) substitution and / or K337 is replaced by Ala (A) or Gly (G). 如申請專利範圍第1項之因子VII多肽,其中T293藉由Lys(K)、Arg(R)、Tyr(Y)或Phe(F)置換且L288藉由Phe(F)、Tyr(Y)、Asn(N)、Ala(A)或Trp(W)置換。 The Factor VII polypeptide of claim 1, wherein T293 is replaced by Lys (K), Arg (R), Tyr (Y) or Phe (F) and L288 is by Phe (F), Tyr (Y), Asn (N), Ala (A) or Trp (W) substitution. 如申請專利範圍第1項或第2項之因子VII多肽,其中T293藉由Lys(K)置換且L288藉由Phe(F)置換。 A Factor VII polypeptide according to claim 1 or 2, wherein T293 is replaced by Lys (K) and L288 is replaced by Phe (F). 如申請專利範圍第1項或第2項之因子VII多肽,其中T293藉由Lys(K)置換且L288藉由Tyr(Y)置換。 A Factor VII polypeptide according to claim 1 or 2, wherein T293 is replaced by Lys (K) and L288 is replaced by Tyr (Y). 如申請專利範圍第1項或第2項之因子VII多肽,其中T293藉由Arg(R)置換且L288藉由Phe(F)置換。 A Factor VII polypeptide according to claim 1 or 2, wherein T293 is replaced by Arg (R) and L288 is replaced by Phe (F). 如申請專利範圍第1項或第2項之因子VII多肽,其中T293藉由Arg(R)置換且L288藉由Tyr(Y)置換。 A Factor VII polypeptide according to claim 1 or 2, wherein T293 is replaced by Arg (R) and L288 is replaced by Tyr (Y). 如申請專利範圍第1項至第6項中任一項之因子VII多肽,其中K337藉由Ala(A)置換。 The Factor VII polypeptide of any one of claims 1 to 6, wherein K337 is substituted by Ala (A). 如申請專利範圍第1項之因子VII多肽,其中T293藉由Lys(K)、Arg(R)、Tyr(Y)或Phe(F)置換且W201藉由Arg(R)、Met(M)或Lys(K)置換。 A Factor VII polypeptide according to claim 1, wherein T293 is replaced by Lys (K), Arg (R), Tyr (Y) or Phe (F) and W201 is by Arg (R), Met (M) or Lys (K) replacement. 如申請專利範圍第8項之因子VII多肽,其中T293藉由Lys(K)置換且 W201藉由Arg(R)置換。 a Factor VII polypeptide according to claim 8 wherein T293 is replaced by Lys (K) and W201 is replaced by Arg(R). 如前述申請專利範圍中任一項之因子VII多肽,其中該因子VII多肽與至少一個半衰期延長部分耦合。 A Factor VII polypeptide according to any one of the preceding claims, wherein the Factor VII polypeptide is coupled to at least one half-life extending moiety. 如申請專利範圍第10項之因子VII多肽,其中該半衰期延長部分係選自生物相容性脂肪酸及其衍生物、例如羥乙基澱粉(HES)之羥烷基澱粉(HAS)、聚乙二醇(PEG)、聚(Glyx-Sery)n(HAP)、玻尿酸(HA)、肝素前體聚合物(heparosan polymer,HEP)、基於磷酸膽鹼之聚合物(PC聚合物)、Fleximer、聚葡萄糖、聚唾液酸(PSA)、Fc域、運鐵蛋白、白蛋白、彈性蛋白樣肽(ELP)、XTEN聚合物、PAS聚合物、PA聚合物、白蛋白結合肽、CTP肽、FcRn結合肽及其任何組合。 The Factor VII polypeptide of claim 10, wherein the half-life extending moiety is selected from the group consisting of biocompatible fatty acids and derivatives thereof, such as hydroxyethyl starch (HES) hydroxyalkyl starch (HAS), polyethylene. Alcohol (PEG), poly(Glyx-Sery)n (HAP), hyaluronic acid (HA), heparosan polymer (HEP), phosphocholine-based polymer (PC polymer), Fleximer, polydextrose , polysialic acid (PSA), Fc domain, transferrin, albumin, elastin-like peptide (ELP), XTEN polymer, PAS polymer, PA polymer, albumin binding peptide, CTP peptide, FcRn binding peptide and Any combination of them. 如申請專利範圍第11項之因子VII多肽,其中該半衰期延長部分為肝素前體聚合物。 The Factor VII polypeptide of claim 11, wherein the half-life extending moiety is a heparin precursor polymer. 如申請專利範圍第1項至第12項中任一項之FVII多肽,如在不存在可溶組織因子之情況下以試管內蛋白分解分析量測,其蛋白分解活性為野生型人類因子VIIa(SEQ ID NO:1)之蛋白分解活性的至少110%;且如在存在低分子量肝素及不存在可溶組織因子之情況下以抗凝血酶抑制分析量測,與野生型人類因子VIIa相比,其抗凝血酶反應性小於20%。 The FVII polypeptide according to any one of claims 1 to 12, wherein the proteolytic activity is wild-type human factor VIIa as measured by in-tube proteolytic analysis in the absence of soluble tissue factor. At least 110% of the proteolytic activity of SEQ ID NO: 1); and as measured by antithrombin inhibition assay in the presence of low molecular weight heparin and in the absence of soluble tissue factor, compared to wild-type human Factor VIIa , its antithrombin reactivity is less than 20%. 一種用作醫藥品之如申請專利範圍第1項至第13項中任一項之因子VII多肽。 A Factor VII polypeptide for use as a pharmaceutical product according to any one of claims 1 to 13. 一種用作治療凝血病之醫藥品之如申請專利範圍第14項之因子VII多肽。 A factor VII polypeptide as claimed in claim 14 for use as a medicament for the treatment of a coagulopathy.
TW103135633A 2013-10-15 2014-10-15 Coagulation factor VII polypeptides TW201533058A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13018871 2013-10-15
US201361895438P 2013-10-25 2013-10-25
EP14015487 2014-02-12

Publications (1)

Publication Number Publication Date
TW201533058A true TW201533058A (en) 2015-09-01

Family

ID=54694648

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103135633A TW201533058A (en) 2013-10-15 2014-10-15 Coagulation factor VII polypeptides

Country Status (1)

Country Link
TW (1) TW201533058A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112002374A (en) * 2020-06-14 2020-11-27 北京臻知医学科技有限责任公司 MHC-I epitope affinity prediction method based on deep learning

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112002374A (en) * 2020-06-14 2020-11-27 北京臻知医学科技有限责任公司 MHC-I epitope affinity prediction method based on deep learning
CN112002374B (en) * 2020-06-14 2022-04-22 北京臻知医学科技有限责任公司 MHC-I epitope affinity prediction method based on deep learning

Similar Documents

Publication Publication Date Title
US9370583B2 (en) Coagulation factor VII polypeptides
ES2344887T3 (en) FACTOR GLICOFORMS VII.
JP4361728B2 (en) Human coagulation factor VII mutant
US20150307865A1 (en) Coagulation factor vii polypeptides
CA2764758C (en) Chimeric factor vii molecules
US11530401B2 (en) Short-acting Factor VII polypeptides
US20160024487A1 (en) Thrombin sensitive coagulation factor x molecules
US20150225711A1 (en) Factor VII Conjugates
ES2772933T3 (en) Modified von Willebrand factor that has an improved half-life
EP2568041A1 (en) Chemically modified factor IX
TW201533058A (en) Coagulation factor VII polypeptides
NZ749488B2 (en) Short-acting factor vii polypeptides