TW201528672A - Power system and DC converter thereof - Google Patents

Power system and DC converter thereof Download PDF

Info

Publication number
TW201528672A
TW201528672A TW103101367A TW103101367A TW201528672A TW 201528672 A TW201528672 A TW 201528672A TW 103101367 A TW103101367 A TW 103101367A TW 103101367 A TW103101367 A TW 103101367A TW 201528672 A TW201528672 A TW 201528672A
Authority
TW
Taiwan
Prior art keywords
power
converter
switch
isolated
inductor
Prior art date
Application number
TW103101367A
Other languages
Chinese (zh)
Other versions
TWI513160B (en
Inventor
Andrew Ferencz
Shi-Yuan Wang
Original Assignee
Acbel Polytech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Acbel Polytech Inc filed Critical Acbel Polytech Inc
Priority to TW103101367A priority Critical patent/TWI513160B/en
Publication of TW201528672A publication Critical patent/TW201528672A/en
Application granted granted Critical
Publication of TWI513160B publication Critical patent/TWI513160B/en

Links

Abstract

The present invention discloses a power system and its DC converter. The DC converter is mainly composed of a non-isolated converter module and an isolated converter module. The non-isolated converter module is a redundant structure, which includes a first power conversion circuit, a second power conversion circuit and an energy storage element. The first and second non-isolated power conversion modules are connected to and share the energy storage element, and the energy storage element is connected to the input terminal of the isolated converter module; after the first and second power conversion circuits of the non-isolated converter module convert the DC power outputted by two batteries, the result is outputted to the isolated converter module, and then the isolated converter module supplies the DC power to a load. The above design may solve the problem of transformers taking too much space when using two sets of DC isolated converters to assemble a traditional power system.

Description

電源系統及其直流轉換器Power system and its DC converter

本發明是一種電源系統及其直流轉換器,尤指一種由作為前級的一非隔離型轉換模組和作為後級的一隔離型轉換模組組成的直流轉換器,用以解決傳統直流轉換器由二組以上隔離轉換器組成所衍生變壓器佔用體積空間的問題。The invention relates to a power supply system and a DC converter thereof, in particular to a DC converter composed of a non-isolated conversion module as a front stage and an isolated conversion module as a rear stage, which is used for solving the conventional DC conversion. The problem that the transformer is composed of two or more sets of isolated converters occupies a volume space.

如圖7所示係一種電源系統,其包括一交直流轉換器80、一直流轉換器70及兩電池組73、74,其中,交直流轉換器80具有一交流電源輸入端及一直流電源輸出端,其交流電源輸入端用以連接交流市電,其直流電源輸出端則與直流轉換器70的直流電源輸入端連接,而兩電池組73、74分別跨接在直流轉換器70的直流電源輸入端上作為備援,當交流市電異常時,由直流轉換器70將電池組73、74電源轉換為要求的電壓後,持續供應給負載。As shown in FIG. 7, a power supply system includes an AC/DC converter 80, a DC converter 70, and two battery packs 73 and 74. The AC/DC converter 80 has an AC power input terminal and a DC power output. The AC power input end is connected to the AC main power, the DC power output end is connected to the DC power input end of the DC converter 70, and the two battery packs 73 and 74 are respectively connected to the DC power input of the DC converter 70. As a backup, when the AC mains supply is abnormal, the DC converter 70 converts the power of the battery packs 73 and 74 into the required voltage, and continues to supply the load.

當前述電源系統運用在通訊系統時,其直流轉換器70須有負輸出電壓,而具有負輸出電壓直流轉換器70的基本架構係如圖8所示,包括一第一電源轉換模組71、一第二電源轉換模組72,該第一電源轉換模組71、第二電源轉換模組72分別具有一正電源輸入端Vcom及一負電源輸入端RTN1、RTN2,該第一、第二電源轉換模組71、72的正電源輸入端Vcom共同連接至二電池組73、74的正電源端,其負電源輸入端RTN1、RTN2則分別獨立地連接至電池組73、74的負電源端。再者,該第一、第二電源轉換模組71、72分別具有一組電源輸出端,且作並聯連接。When the power supply system is used in the communication system, the DC converter 70 has a negative output voltage, and the basic structure of the DC converter 70 having the negative output voltage is as shown in FIG. 8 , and includes a first power conversion module 71 . a second power conversion module 72, the first power conversion module 71 and the second power conversion module 72 respectively have a positive power input terminal Vcom and a negative power input terminal RTN1, RTN2, the first and second power sources The positive power input terminals Vcom of the conversion modules 71, 72 are commonly connected to the positive power terminals of the two battery packs 73, 74, and the negative power input terminals RTN1, RTN2 are independently connected to the negative power terminals of the battery packs 73, 74, respectively. Furthermore, the first and second power conversion modules 71 and 72 respectively have a set of power output terminals and are connected in parallel.

上述的直流轉換器係採用一冗餘架構,其可各自地進行直流電源轉換,而共同地對負載供應直流電源。當電池組73、74之一異常或與電池組73、74對應之任一、第一電源轉換模組71或第二電源轉換模組72異常時,正常的第一電源轉換模組71或第二電源轉換模組72仍可維持對負載供電,而達到冗餘供電之效果。The DC converter described above employs a redundant architecture that can each perform DC power conversion to collectively supply DC power to the load. When one of the battery packs 73, 74 is abnormal or any one of the battery packs 73, 74, the first power conversion module 71 or the second power conversion module 72 is abnormal, the normal first power conversion module 71 or the first The two power conversion modules 72 can still maintain the power supply to the load and achieve the effect of redundant power supply.

由於上述直流轉換器的第一電源轉換模組71、第二電源轉換模組72都是由隔離型轉換器所構成,而隔離型轉換器具備至少一變壓器,對於接受供電的通訊系統或伺服器系統而言,不論其本身或其使用的電源系統,如何縮小體積、減少佔用空間一直是一個重要的課題,然而上述的直流轉換器,其由隔離型轉換器構成的兩個電源轉換模組71、72分別具有一變壓器,而極佔空間的變壓器自然成為縮小體積的最大障礙。The first power conversion module 71 and the second power conversion module 72 of the DC converter are all composed of an isolated converter, and the isolated converter is provided with at least one transformer for a communication system or server that receives power supply. In terms of the system, how to reduce the size and reduce the space occupation has always been an important issue regardless of the power supply system itself or the power supply system used. However, the above-mentioned DC converter has two power conversion modules 71 composed of isolated converters. , 72 has a transformer, and the space-consuming transformer naturally becomes the biggest obstacle to reduce the volume.

由上述可知,已知電源系統中具有冗餘架構的直流轉換器,因其具有二個以上分別由隔離型轉換器構成的電源轉換模組,而衍生變壓器佔用空間且令直流轉換器無法縮小體積的問題,故既有直流轉換器有待進一步檢討並謀求可行的解決方案。As can be seen from the above, it is known that a DC converter having a redundant architecture in a power supply system has a power conversion module composed of two or more isolated converters, and the transformer takes up space and the DC converter cannot reduce the volume. The problem is that there are both DC converters to be further reviewed and to find a viable solution.

因此本發明主要目的在提供一種直流轉換器,主要係由一採用非隔離型的前級轉換模組和一隔離型的後級轉換模組所組成,可解決傳統直流轉換器由二組以上隔離轉換器組成所衍生變壓器佔用體積空間的問題。Therefore, the main object of the present invention is to provide a DC converter, which is mainly composed of a non-isolated pre-stage conversion module and an isolated post-stage conversion module, which can solve the problem that the conventional DC converter is separated by two or more groups. The converter constitutes the problem of the volume occupied by the transformer derived.

為達成前述目的採取的主要技術手段係令前述直流轉換器包括有:一非隔離型轉換模組,係一冗餘架構,其包括一第一電源轉換迴路、一第二電源轉換迴路及一儲能元件,該第一、第二電源轉換迴路連接且共用該儲能元件;一隔離型轉換模組,具有一組輸入端及一組輸出端,該組輸入端係與儲能元件連接;The main technical means for achieving the foregoing objective is that the DC converter includes: a non-isolated conversion module, which is a redundant architecture, and includes a first power conversion circuit, a second power conversion circuit, and a storage. The first component and the second power conversion circuit are connected to and share the energy storage component; and the isolation conversion module has a set of input terminals and a set of output terminals, wherein the input terminals are connected to the energy storage component;

前述的直流轉換器主要係由其非隔離型轉換模組的第一、第二電源轉換迴路將二電池組輸出的直流電源轉換後輸出給隔離型轉換模組,再由隔離型轉換模組供應直流電源給負載;由於非隔離型轉換模組中的第一、第二電源轉換迴路未含有變壓器,在體積上可大幅縮小,而搭配後級的隔離型轉換模組也只有一個變壓器,因此相較於傳統的直流轉換器已大幅縮小體積,並解決傳統直流轉換器採用兩組隔離型轉換器所衍生變壓器佔用空間的體積問題。The DC converter described above mainly converts the DC power output of the two battery packs to the isolated conversion module by the first and second power conversion circuits of the non-isolated conversion module, and then supplies the isolated conversion module. The DC power supply is applied to the load; since the first and second power conversion circuits in the non-isolated conversion module do not contain a transformer, the volume can be greatly reduced, and the isolated conversion module with the latter stage has only one transformer, so the phase Compared with the traditional DC converter, the volume has been greatly reduced, and the volume problem of the transformer occupied by the conventional DC converter using two sets of isolated converters is solved.

本發明又一目的在提供一種可縮小體積的電源系統,為達成前述目的係令該電源系統包括有:一交直流轉換器,具有一交流電源輸入端及一直流電源輸出端,其交流電源輸入端用以連接交流市電;一直流轉換器,係由前述的直流轉換器構成,其具有一直流電源輸入端及一電源輸出端,其直流電源輸入端係與交直流轉換器的直流電源輸出端連接;兩電池組,分別跨接在直流轉換器的直流電源輸入端上。Another object of the present invention is to provide a power supply system capable of reducing the volume. To achieve the foregoing objective, the power supply system includes: an AC/DC converter having an AC power input end and a DC power output end, and an AC power input thereof. The end is used for connecting AC mains; the DC converter is composed of the aforementioned DC converter, and has a DC power input end and a power output end, and the DC power input end is connected to the DC power output end of the AC/DC converter. Connected; two battery packs, respectively, connected across the DC power input of the DC converter.

上述電源系統包括前述直流轉換器,故有助於縮小電源系統的體積。The above power supply system includes the aforementioned DC converter, thereby helping to reduce the size of the power supply system.

關於本發明直流轉換器一較佳實施例的基本架構,請參閱圖1所示,包括一非隔離轉換模組10、一隔離型轉換模組20及一控制器30;其中:The basic architecture of a preferred embodiment of the DC converter of the present invention, as shown in FIG. 1, includes a non-isolated conversion module 10, an isolated conversion module 20, and a controller 30;

該非隔離型轉換模組10主要係由一第一電源轉換迴路11和一第二電源轉換迴路12組成,該第一、第二電源轉換迴路11、12分別具有一正電源端Vcom、一負電源端RTN1、RTN2。在本實施例中,本發明的直流轉換器進一步包括一第一EMI濾波器41及一第二EMI濾波器42,該非隔離型轉換模組10的第一電源轉換迴路11、第二電源轉換迴路12以其正電源端Vcom、負電源端RTN1、RTN2分別透過第一EMI濾波器41、第二EMI濾波器42與一第一電池組103、一第二電池組104連接,其中第一、第二電池組103、104的正極端V+共接且分別與第一、第二電源轉換迴路11、12的正電源端Vcom連接,第一、第二電池組103、104的負極端則分別與第一、第二電源轉換迴路11、12的負電源端RTN1、RTN2連接。The non-isolated conversion module 10 is mainly composed of a first power conversion circuit 11 and a second power conversion circuit 12, and the first and second power conversion circuits 11 and 12 respectively have a positive power terminal Vcom and a negative power source. End RTN1, RTN2. In the embodiment, the DC converter of the present invention further includes a first EMI filter 41 and a second EMI filter 42. The first power conversion circuit 11 and the second power conversion circuit of the non-isolated conversion module 10 The first power supply terminal Vcom and the negative power supply terminal RTN1 and RTN2 are connected to the first battery pack 103 and the second battery pack 104 through the first EMI filter 41 and the second EMI filter 42 respectively. The positive terminals V+ of the two battery packs 103 and 104 are connected in common and are respectively connected to the positive power terminals Vcom of the first and second power conversion circuits 11 and 12. The negative terminals of the first and second battery groups 103 and 104 are respectively 1. The negative power terminals RTN1 and RTN2 of the second power conversion circuits 11, 12 are connected.

該控制器30分別和非隔離型轉換模組10的第一電源轉換迴路11、第二電源轉換迴路12和隔離型轉換模組20連接,以控制該非隔離型轉換模組10和隔離型轉換模組20的電源轉換工作。The controller 30 is connected to the first power conversion circuit 11 , the second power conversion circuit 12 and the isolated conversion module 20 of the non-isolated conversion module 10 to control the non-isolated conversion module 10 and the isolated conversion module. Group 20 power conversion work.

關於該非隔離型轉換模組10一較佳實施例的具體構造,請參閱圖2所示,在本實施例中,該非隔離型轉換模組10的第一、第二電源轉換迴路11、12分別為一降壓型轉換器;其中:For the specific configuration of the non-isolated conversion module 10, please refer to FIG. 2. In this embodiment, the first and second power conversion circuits 11 and 12 of the non-isolated conversion module 10 respectively Is a buck converter; where:

該第一電源轉換迴路11包括一第一二極體D1、一第一開關Q1、一第一電感L1及一儲能元件;在本實施例中,儲能元件為一輸出電容C,該輸出電容C具有一第一端及一第二端,其第一端和第一二極體D1的陰極連接至正電源端Vcom,其第二端和第一電感L1的一端連接,第一電感L1的另端和第一二極體D1的陽極、第一開關Q1連接,本實施例中,第一開關Q1為一場效電晶體,其以源極和第一電感L1的另端、第一二極體D1的陽極連接,第一開關Q1的汲極連接負電源端RTN1,其閘極則連接並受控於該控制器30。The first power conversion circuit 11 includes a first diode D1, a first switch Q1, a first inductor L1, and an energy storage component. In this embodiment, the energy storage component is an output capacitor C, and the output is The capacitor C has a first end and a second end. The first end and the cathode of the first diode D1 are connected to the positive power terminal Vcom, and the second end is connected to one end of the first inductor L1. The first inductor L1 The other end is connected to the anode of the first diode D1 and the first switch Q1. In this embodiment, the first switch Q1 is a field effect transistor, and the source and the other end of the first inductor L1 are the first two. The anode of the pole D1 is connected, the drain of the first switch Q1 is connected to the negative power terminal RTN1, and the gate is connected and controlled by the controller 30.

該第二電源轉換迴路12包括一第二二極體D2、一第二開關Q2、一第二電感L2及一儲能元件;在本實施例中,儲能元件與第一電源轉換迴路11共用該輸出電容C,該輸出電容C的第一端是和第二二極體D2的陰極共同連接至正電源端Vcom,第二端則和第二電感L2的一端連接,第二電感L2的另端和第二二極體D2的陽極、第二開關Q2連接,與第一電源轉換迴路11相同的是:第二開關Q2為一場效電晶體,其以源極和第二電感L2的另端、第二二極體D2的陽極連接,第二開關Q2的汲極連接負電源端RTN2,其閘極和控制器30連接,而受該控制器30所控制。The second power conversion circuit 12 includes a second diode D2, a second switch Q2, a second inductor L2, and an energy storage component. In this embodiment, the energy storage component is shared with the first power conversion circuit 11. The output capacitor C, the first end of the output capacitor C is connected to the cathode of the second diode D2 to the positive power terminal Vcom, the second terminal is connected to one end of the second inductor L2, and the second inductor L2 is The terminal is connected to the anode of the second diode D2 and the second switch Q2. The same as the first power conversion circuit 11 is: the second switch Q2 is a field effect transistor, and the other end of the source and the second inductor L2 The anode of the second diode D2 is connected, the drain of the second switch Q2 is connected to the negative power terminal RTN2, and the gate thereof is connected to the controller 30 and controlled by the controller 30.

前述輸出電容C的第一端、第二端並分別構成非隔離型轉換模組10的正電源輸出端Vout和負電源輸出端RTN,且和隔離型轉換模組20的該組輸入端連接。The first end and the second end of the output capacitor C respectively constitute a positive power output terminal Vout and a negative power output terminal RTN of the non-isolated conversion module 10, and are connected to the set of input terminals of the isolated conversion module 20.

前述非隔離型轉換模組10的第一、第二電源轉換迴路11、12在控制器30的交替驅動下,分別將第一、第二電池組103、104電源轉換為一設定電壓的直流電源傳送給隔離型轉換模組20轉換為另一設定電壓的直流電源再供應給負載。關於非隔離型轉換模組10的工作原理詳如以下所述:The first and second power conversion circuits 11 and 12 of the non-isolated conversion module 10 respectively convert the power supplies of the first and second battery packs 103 and 104 into a set voltage DC power supply under the alternate driving of the controller 30. The DC power source that is transmitted to the isolated conversion module 20 and converted to another set voltage is supplied to the load. The working principle of the non-isolated conversion module 10 is as follows:

就第一電源轉換迴路11而言,當其第一開關Q1導通,電流流經輸出電容C、第一電感L1,此時輸出電容C的電壓升高,而第一電感L1進行儲能。俟第一開關Q1關閉,儲存在第一電感L1上的能量透過第一二極體D1對輸出電容C充電。另一方面,當第二電源轉換迴路12的第二開關Q2導通,電流流經輸出電容C、第二電感L2,此時輸出電容C的電壓升高,並由第二電感L2進行儲能。而在第二開關Q2關閉,儲存在第二電感L2上的能量透過第二二極體D2對輸出電容C充電。如此交替的驅動,共同地輸出直流電源給該隔離型轉換模組20,該隔離型轉換模組20輸出的直流電源可以是正電壓,也可以是負電壓。As for the first power conversion circuit 11, when the first switch Q1 is turned on, current flows through the output capacitor C and the first inductor L1, at which time the voltage of the output capacitor C rises, and the first inductor L1 performs energy storage. The first switch Q1 is turned off, and the energy stored on the first inductor L1 charges the output capacitor C through the first diode D1. On the other hand, when the second switch Q2 of the second power conversion circuit 12 is turned on, current flows through the output capacitor C and the second inductor L2, at which time the voltage of the output capacitor C rises and is stored by the second inductor L2. When the second switch Q2 is turned off, the energy stored in the second inductor L2 charges the output capacitor C through the second diode D2. The alternate driving is performed to output a DC power to the isolated conversion module 20. The DC power output from the isolated conversion module 20 can be a positive voltage or a negative voltage.

由於非隔離型轉換模組10的第一、第二電源轉換迴路11、12並未使用變壓器,在其後級的隔離型轉換模組20也只有一個變壓器,因此可以有效解決變壓器佔用空間所衍生的體積問題。Since the first and second power conversion circuits 11 and 12 of the non-isolated conversion module 10 do not use a transformer, the isolation conversion module 20 in the subsequent stage also has only one transformer, so that the space occupied by the transformer can be effectively solved. The volume problem.

關於前述非隔離型轉換模組10的又一較佳實施例,請參閱圖3所示,其第一、第二電源轉換迴路11’、12’係由升壓型轉換器所構成,其中:For a further preferred embodiment of the non-isolated conversion module 10, referring to FIG. 3, the first and second power conversion circuits 11', 12' are formed by a boost converter, wherein:

該第一電源轉換迴路11’包括一第一二極體D1、一第一開關Q1、一第一電感L1及一輸出電容C,該輸出電容C具有一第一端及一第二端,其第一端和第一開關Q1的源極連接至正電源端Vcom,其第二端和第一二極體D1的陽極連接,第一二極體D1的陰極和第一開關Q1的汲極連接,其汲極又和第一電感L1的一端連接,第一電感L1的另端係連接至負電源端RTN1,第一開關Q1的閘極則和控制器30連接。The first power conversion circuit 11' includes a first diode D1, a first switch Q1, a first inductor L1, and an output capacitor C. The output capacitor C has a first end and a second end. The first end and the first switch Q1 have a source connected to the positive power terminal Vcom, the second end of which is connected to the anode of the first diode D1, and the cathode of the first diode D1 is connected to the drain of the first switch Q1. The drain is connected to one end of the first inductor L1, the other end of the first inductor L1 is connected to the negative power terminal RTN1, and the gate of the first switch Q1 is connected to the controller 30.

該第二電源轉換迴路12’包括一第二二極體D2、一第二開關Q2、一第二電感L1及一輸出電容C,該輸出電容C係與第一電源轉換迴路12’共用,其第一端和第二開關Q2的源極連接至正電源端Vcom,其第一端和第二二極體D2的陽極連接,第二二極體D2的陰極和第二開關Q2的汲極連接,第二開關Q2的汲極又和第二電感L2的一端連接,第二電感L2的另端係連接至負電源端RTN2,第二開關Q2的閘極則和控制器30連接。The second power conversion circuit 12' includes a second diode D2, a second switch Q2, a second inductor L1, and an output capacitor C. The output capacitor C is shared with the first power conversion circuit 12'. The first terminal and the second switch Q2 have their sources connected to the positive power supply terminal Vcom, the first end of which is connected to the anode of the second diode D2, the cathode of the second diode D2 and the second terminal of the second switch Q2. The drain of the second switch Q2 is connected to one end of the second inductor L2, the other end of the second inductor L2 is connected to the negative power supply terminal RTN2, and the gate of the second switch Q2 is connected to the controller 30.

上述實施例與前一實施例的差異,非隔離型轉換模組10的第一、第二電源轉換迴路11’、12’係對第一、第二電池組103、104的電源進行升壓轉換,再由隔離型轉換模組20轉換為其他設定電壓的直流電源,其依然可以是正電壓,也可以是負電壓。關於上述非隔離型轉換模組10的工作原理詳如以下所述:The difference between the above embodiment and the previous embodiment is that the first and second power conversion circuits 11', 12' of the non-isolated conversion module 10 perform boost conversion on the power supplies of the first and second battery packs 103, 104. Then, the isolated conversion module 20 converts to a DC power source of another set voltage, which may still be a positive voltage or a negative voltage. The working principle of the non-isolated conversion module 10 described above is as follows:

關於第一電源轉換迴路11’的工作方式,當其第一開關Q1導通,係對第一電感L1儲能。俟第一開關Q1關閉,儲存在第一電感L1上的能量對輸出電容C放電,電流流經輸出電容C及第一二極體D1。Regarding the operation of the first power conversion circuit 11', when the first switch Q1 is turned on, the first inductor L1 is stored. The first switch Q1 is turned off, and the energy stored on the first inductor L1 discharges the output capacitor C, and the current flows through the output capacitor C and the first diode D1.

關於第二電源轉換迴路12’的工作方式是:當第二開關Q2導通,即對第二電感L2儲能。俟第二開關Q2關閉,儲存在第二電感L2上的能量對輸出電容C放電,電流流經輸出電容C及第二二極體D2。如此交替的驅動,共同地輸出直流電源給該隔離型轉換模組20,同樣的,該隔離型轉換模組20輸出的直流電源可以是正電壓,也可以是負電壓。The second power conversion circuit 12' operates in such a manner that when the second switch Q2 is turned on, the second inductor L2 is stored. The second switch Q2 is turned off, and the energy stored in the second inductor L2 discharges the output capacitor C, and the current flows through the output capacitor C and the second diode D2. The alternate driving is performed to output a DC power supply to the isolated conversion module 20. Similarly, the DC power output of the isolated conversion module 20 may be a positive voltage or a negative voltage.

關於本發明直流轉換器之又一較佳實施例,請參閱圖4所示,該非隔離型轉換模組10的第一、第二電源轉換迴路11、12在其負電源端RTN1、RTN2上分設有一電流檢測元件51、52,該電流檢測元件51、52分別連接至控制器30,以便由控制器30感測非隔離型轉換模組10的輸入電流。所述的電流檢測元件51、52可以是霍爾元件、電阻或比流器(CT)。For another preferred embodiment of the DC converter of the present invention, referring to FIG. 4, the first and second power conversion circuits 11, 12 of the non-isolated conversion module 10 are divided on their negative power terminals RTN1 and RTN2. A current detecting element 51, 52 is provided, which is connected to the controller 30, respectively, so that the input current of the non-isolated conversion module 10 is sensed by the controller 30. The current detecting elements 51, 52 may be Hall elements, resistors or current comparators (CT).

由於第一、第二電源轉換迴路11、12的正電源端Vcom共接,而第一、第二電源轉換迴路11、12在其負電源端RTN1、RTN2分設電流檢測元件51、52,可由控制器30分別準確地判斷第一、第二電源轉換迴路11、12的輸入電流,並由控制器30控制第一、第二電源轉換迴路11、12以執行均流,當非隔離型轉換模組10的輸出電流為Iout,第一、第二電源轉換迴路11、12的輸出電流分別為I1、I2時,則Iout=I1+I2,且I1=I2。至於控制器30實現均壓、均流的技術可使用主僕式控制法(Master-Slave method)或主動式均流法(Activecurrent sharing method)。另一方面,前述設計同時可方便決定非隔離型轉換模組10前級無熔絲開關105、106的規格(請參閱圖1所示),透過該等方式決定的無熔絲開關若得以降低規格,則可降低成本。Since the positive power terminals Vcom of the first and second power conversion circuits 11 and 12 are connected in common, the first and second power conversion circuits 11 and 12 are respectively provided with current detecting elements 51 and 52 at their negative power terminals RTN1 and RTN2. The controller 30 accurately determines the input currents of the first and second power conversion circuits 11, 12, respectively, and controls the first and second power conversion circuits 11, 12 by the controller 30 to perform current sharing, when the non-isolated conversion mode The output current of the group 10 is Iout. When the output currents of the first and second power conversion circuits 11 and 12 are I1 and I2, respectively, Iout=I1+I2, and I1=I2. As for the technique for realizing voltage equalization and current sharing by the controller 30, a master-slave method or an active current sharing method can be used. On the other hand, the foregoing design can also conveniently determine the specifications of the front-stage fuseless switches 105, 106 of the non-isolated conversion module 10 (refer to FIG. 1), and the fuseless switch determined by the manners can be reduced. Specifications can reduce costs.

前述實施例係以降壓型的第一、第二電源轉換迴路11、12為例說明,對於所屬技術領域具有通常知識者可以理解的是:其亦可運用在升壓型的第一、第二電源轉換迴路11’、12’上(如圖5所示)。The foregoing embodiment is described by taking the first and second power conversion circuits 11 and 12 of the step-down type as an example. It is understood by those skilled in the art that it can also be applied to the first and second types of the boost type. Power conversion circuits 11', 12' (as shown in Figure 5).

由上述可知,本發明的直流轉換器主要係由一非隔離型轉換模組與一隔離型轉換模組所構成,由於非隔離型轉換模組中的第一、第二電源轉換迴路不具有變壓器,搭配作為後級的隔離型轉換模組也只一個變壓器,因此相較於至少有二個變壓器的傳統直流轉換器可大幅縮小佔用空間,並解決體積問題。It can be seen from the above that the DC converter of the present invention is mainly composed of a non-isolated conversion module and an isolated conversion module, and the first and second power conversion circuits in the non-isolated conversion module do not have a transformer. Compared with the isolated conversion module as the latter stage, there is only one transformer, so the conventional DC converter with at least two transformers can greatly reduce the space and solve the volume problem.

請參閱圖6所示,係一種包括有前述直流轉換器的電源系統100,該電源系統100包括:一交直流轉換器101,具有一交流電源輸入端及一直流電源輸出端,其交流電源輸入端用以連接交流市電;一直流轉換器102,可分別由前述各實施例的直流轉換器所構成,該直流轉換器102具有一直流電源輸入端及一電源輸出端,其直流電源輸入端由其第一、第二電源轉換迴路的正、負電源端所構成,且與該交直流轉換器101的直流電源輸出端連接;兩電池組,分別跨接在直流轉換器102的直流電源輸入端上;更具體的說,兩電池組包括一第一電池組103、一第二電池組104,該第一、第二電池組103、104的正極端共同和直流轉換器102中第一、第二電源轉換迴路的正電源端連接,第一電池組103的負極端係與直流轉換器102中第一電源轉換迴路的負電源端連接,第二電池組104的負極端係與直流轉換器102中第二電源轉換迴路的負電源端連接。Please refer to FIG. 6 , which is a power system 100 including the foregoing DC converter. The power system 100 includes: an AC/DC converter 101 having an AC power input terminal and a DC power output terminal, and an AC power input thereof. The end is used to connect the AC mains; the DC converter 102 can be respectively composed of the DC converters of the foregoing embodiments, the DC converter 102 has a DC power input end and a power output end, and the DC power input end is The first and second power conversion circuits are formed by positive and negative power terminals, and are connected to the DC power output end of the AC/DC converter 101; the two battery groups are respectively connected to the DC power input end of the DC converter 102. More specifically, the two battery packs include a first battery pack 103 and a second battery pack 104. The positive terminals of the first and second battery packs 103 and 104 are common to the first and second converters 102. The positive power terminal of the second power conversion circuit is connected, the negative terminal of the first battery pack 103 is connected to the negative power terminal of the first power conversion circuit of the DC converter 102, and the negative terminal of the second battery pack 104 is Connected to the negative power supply terminal of the second power conversion circuit in the DC converter 102.

前述電源系統因採用上述各實施例的直流轉換器,該直流轉換器的設計可減少使用變壓器,有助於縮小體積,而電源系統運用了該直流轉換器,對系統而言亦有助於體積的縮小。The foregoing power supply system adopts the DC converter of the above embodiments, and the DC converter is designed to reduce the use of the transformer, which helps to reduce the volume, and the power supply system uses the DC converter, which also contributes to the volume of the system. The reduction.

10‧‧‧非隔離型轉換模組
11,11’‧‧‧第一電源轉換迴路
12, 12’‧‧‧第二電源轉換迴路
20‧‧‧隔離型轉換模組
30‧‧‧控制器
41‧‧‧第一EMI濾波器
42‧‧‧第二EMI濾波器
51, 52‧‧‧電流檢測元件
100‧‧‧電源系統
101‧‧‧交直流轉換器
102‧‧‧直流轉換器
103‧‧‧第一電池組
104‧‧‧第二電池組
105, 106‧‧‧無熔絲開關
70‧‧‧直流轉換器
71‧‧‧第一電源轉換模組
72‧‧‧第二電源轉換模組
73,74‧‧‧電池組
10‧‧‧ Non-isolated conversion module
11,11'‧‧‧First power conversion circuit
12, 12'‧‧‧Second power conversion circuit
20‧‧‧Isolated conversion module
30‧‧‧ Controller
41‧‧‧First EMI filter
42‧‧‧Second EMI filter
51, 52‧‧‧ Current sensing components
100‧‧‧Power system
101‧‧‧ AC-DC converter
102‧‧‧DC Converter
103‧‧‧First battery pack
104‧‧‧Second battery pack
105, 106‧‧‧ no fuse switch
70‧‧‧DC Converter
71‧‧‧First power conversion module
72‧‧‧Second power conversion module
73, 74‧‧‧ battery pack

圖1 係本發明直流轉換器一較佳實施例的系統方塊圖。圖2 係本發明非隔離型轉換模組之一較佳實施例電路圖。圖3 係本發明非隔離型轉換模組又一較佳實施例電路圖。圖4 係本發明非隔離型轉換模組再一較佳實施例電路圖。圖5 係本發明非隔離型轉換模組另一較佳實施例電路圖。圖6 係本發明電源系統的方塊圖。圖7 係已知電源系統的方塊圖。圖8 已知直流轉換器的系統方塊圖。1 is a system block diagram of a preferred embodiment of a DC converter of the present invention. 2 is a circuit diagram of a preferred embodiment of a non-isolated conversion module of the present invention. 3 is a circuit diagram of still another preferred embodiment of the non-isolated conversion module of the present invention. 4 is a circuit diagram of still another preferred embodiment of the non-isolated conversion module of the present invention. FIG. 5 is a circuit diagram of another preferred embodiment of the non-isolated conversion module of the present invention. Figure 6 is a block diagram of a power supply system of the present invention. Figure 7 is a block diagram of a known power supply system. Figure 8 shows a system block diagram of a known DC converter.

10‧‧‧非隔離型轉換模組 10‧‧‧ Non-isolated conversion module

11‧‧‧第一電源轉換迴路 11‧‧‧First power conversion circuit

12‧‧‧第二電源轉換迴路 12‧‧‧Second power conversion circuit

Claims (10)

一種直流轉換器,包括有:一非隔離型轉換模組,係一冗餘架構,其包括一第一電源轉換迴路、一第二電源轉換迴路及一儲能元件,該第一、第二電源轉換迴路連接且共用該儲能元件;一隔離型轉換模組,具有一組輸入端及一組輸出端,該組輸入端係與儲能元件連接。A DC converter includes: a non-isolated conversion module, which is a redundant architecture, including a first power conversion circuit, a second power conversion circuit, and an energy storage component, the first and second power sources The conversion circuit is connected and shares the energy storage component; an isolated conversion module has a set of inputs and a set of outputs, the set of inputs being connected to the energy storage component. 如請求項1所述之直流轉換器,該非隔離型轉換模組的第一、第二電源轉換迴路分別為一降壓型轉換器,且分別具有一正電源端、一負電源端,該儲能元件為一輸出電容,該輸出電容具有一第一端及一第二端;其中:該第一電源轉換迴路包括一第一二極體、一第一開關、一第一電感;該輸出電容的第一端和第一二極體的陰極連接至第一電源轉換迴路的正電源端,其第二端和第一電感的一端連接,第一電感的另端和第一二極體的陽極、第一開關連接,該第一開關為一場效電晶體,其以源極和第一電感的另端、第一二極體的陽極連接,第一開關的汲極連接第一電源轉換迴路的負電源端,其閘極連接至一控制器;該第二電源轉換迴路包括一第二二極體、一第二開關、一第二電感,該輸出電容的第一端是和第二二極體的陰極共同連接至第二電源轉換迴路的正電源端,第二端和第二電感的一端連接,第二電感的另端和第二二極體的陽極、第二開關連接;第二開關為一場效電晶體,其以源極和第二電感的另端、第二二極體的陽極連接,第二開關的汲極連接第二電源轉換迴路的負電源端,其閘極和控制器連接,而受該控制器控制;該輸出電容的第一端、第二端並分別構成非隔離型轉換模組的正電源輸出端和負電源輸出端,且和隔離型轉換模組的該組輸入端連接。The DC converter according to claim 1, wherein the first and second power conversion circuits of the non-isolated conversion module are respectively a buck converter, and each has a positive power terminal and a negative power terminal, and the storage device The energy component is an output capacitor, the output capacitor has a first end and a second end, wherein: the first power conversion circuit includes a first diode, a first switch, and a first inductor; the output capacitor The first end and the cathode of the first diode are connected to the positive power terminal of the first power conversion loop, and the second end is connected to one end of the first inductor, the other end of the first inductor and the anode of the first diode a first switch is connected, the first switch is a field effect transistor, and the source is connected to the other end of the first inductor and the anode of the first diode, and the drain of the first switch is connected to the first power conversion circuit. a negative power supply terminal, the gate is connected to a controller; the second power conversion circuit includes a second diode, a second switch, and a second inductor, and the first end of the output capacitor is the second diode The cathode of the body is connected in common to the positive of the second power conversion circuit a power terminal, the second end is connected to one end of the second inductor, the other end of the second inductor is connected to the anode of the second diode, and the second switch; the second switch is a field effect transistor, the source and the second The other end of the inductor, the anode of the second diode, the drain of the second switch is connected to the negative power terminal of the second power conversion loop, and the gate is connected to the controller and controlled by the controller; the output capacitor The first end and the second end respectively constitute a positive power output end and a negative power output end of the non-isolated conversion module, and are connected to the set input end of the isolated conversion module. 如請求項1所述之直流轉換器,該非隔離型轉換模組的第一、第二電源轉換迴路分別為一升壓型轉換器,且分別具有一正電源端、一負電源端,該儲能元件為一輸出電容,該輸出電容具有一第一端及一第二端;其中:該第一電源轉換迴路包括一第一二極體、一第一開關及一第一電感,該輸出電容的第一端和第一開關的源極連接至第一電源轉換迴路的正電源端,其第二端和第一二極體的陽極連接,第一二極體的陰極和第一開關的汲極連接,其汲極又和第一電感的一端連接,第一電感的另端係連接至第一電源轉換迴路的負電源端,第一開關的閘極和一控制器連接;該第二電源轉換迴路包括一第二二極體、一第二開關及一第二電感,該輸出電容的第一端和第二開關的源極連接至第二電源轉換迴路的正電源端,其第二端和第二二極體的陽極連接,第二二極體的陰極和第二開關的汲極連接,第二開關的汲極又和第二電感的一端連接,第二電感的另端係連接至第二電源轉換迴路的負電源端,第二開關的閘極和控制器連接;該輸出電容的第一端、第二端並分別構成非隔離型轉換模組的正電源輸出端和負電源輸出端,且和隔離型轉換模組的該組輸入端連接。The DC converter according to claim 1, wherein the first and second power conversion circuits of the non-isolated conversion module are respectively a boost converter, and each has a positive power terminal and a negative power terminal, and the storage The energy component is an output capacitor having a first end and a second end. The first power conversion circuit includes a first diode, a first switch and a first inductor. The output capacitor The first end and the first switch have a source connected to the positive power terminal of the first power conversion circuit, the second end of which is connected to the anode of the first diode, the cathode of the first diode and the first switch a pole connection, the drain of which is connected to one end of the first inductor, the other end of the first inductor is connected to the negative power terminal of the first power conversion loop, and the gate of the first switch is connected to a controller; the second power source The switching circuit includes a second diode, a second switch, and a second inductor. The first end of the output capacitor and the source of the second switch are connected to the positive power terminal of the second power conversion circuit, and the second end thereof Connected to the anode of the second diode, the second diode The cathode is connected to the drain of the second switch, the drain of the second switch is connected to one end of the second inductor, the other end of the second inductor is connected to the negative power terminal of the second power conversion loop, and the gate of the second switch The pole is connected to the controller; the first end and the second end of the output capacitor respectively constitute a positive power output end and a negative power output end of the non-isolated conversion module, and are connected to the input end of the isolated conversion module . 如請求項2或3所述之直流轉換器,該非隔離型轉換模組的第一、第二電源轉換迴路在其負電源端上分設有一電流檢測元件,兩電流檢測元件分別連接至控制器。The DC converter of claim 2 or 3, wherein the first and second power conversion circuits of the non-isolated conversion module are respectively provided with a current detecting component on the negative power terminal thereof, and the two current detecting components are respectively connected to the controller. . 如請求項4所述之直流轉換器,該非隔離型轉換模組的第一電源轉換迴路、第二電源轉換迴路的正電源端、負電源端分別連接一第一EMI濾波器及一第二EMI濾波器。The DC converter according to claim 4, wherein the first power conversion circuit of the non-isolated conversion module, the positive power supply terminal and the negative power supply terminal of the second power conversion circuit are respectively connected to a first EMI filter and a second EMI filter. 如請求項4所述之直流轉換器,該電流檢測元件為一霍爾元件。A DC converter as claimed in claim 4, wherein the current detecting element is a Hall element. 如請求項4所述之直流轉換器,該電流檢測元件為一電阻。The DC converter of claim 4, wherein the current detecting component is a resistor. 如請求項4所述之直流轉換器,該電流檢測元件為一比流器。The DC converter of claim 4, wherein the current detecting component is a current comparator. 一種電源系統,包括有:一交直流轉換器,具有一交流電源輸入端及一直流電源輸出端,其交流電源輸入端用以連接交流市電;一直流轉換器,係由請求項1至8中任一項所述的直流轉換器構成,其具有一直流電源輸入端及一電源輸出端,其直流電源輸入端係與交直流轉換器的直流電源輸出端連接;兩電池組,分別跨接在直流轉換器的直流電源輸入端上。A power supply system comprising: an AC-DC converter having an AC power input end and a DC power output end, wherein an AC power input end is used to connect AC mains; a DC-converter is provided in claims 1 to 8 The DC converter of any one of the preceding claims, comprising: a DC power input end and a power output end, wherein the DC power input end is connected to the DC power output end of the AC/DC converter; the two battery packs are respectively connected On the DC power input of the DC converter. 如請求項9所述之電源系統,該非隔離型轉換模組的第一、第二電源轉換迴路分別具有一正電源端、一負電源端,兩電池組包括一第一電池組、一第二電池組,該第一、第二電池組的正極端共同和直流轉換器中第一、第二電源轉換迴路的正電源端連接,第一電池組的負極端係與直流轉換器中第一電源轉換迴路的負電源端連接,第二電池組的負極端係與直流轉換器中第二電源轉換迴路的負電源端連接。The power supply system of claim 9, wherein the first and second power conversion circuits of the non-isolated conversion module respectively have a positive power terminal and a negative power terminal, and the two battery packs comprise a first battery pack and a second battery. a battery pack, the positive ends of the first and second battery packs are connected in common to the positive power terminals of the first and second power conversion circuits in the DC converter, and the negative terminal of the first battery pack and the first power supply in the DC converter The negative power terminal of the conversion circuit is connected, and the negative terminal of the second battery pack is connected to the negative power terminal of the second power conversion circuit of the DC converter.
TW103101367A 2014-01-15 2014-01-15 Power supply system and its DC converter TWI513160B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103101367A TWI513160B (en) 2014-01-15 2014-01-15 Power supply system and its DC converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103101367A TWI513160B (en) 2014-01-15 2014-01-15 Power supply system and its DC converter

Publications (2)

Publication Number Publication Date
TW201528672A true TW201528672A (en) 2015-07-16
TWI513160B TWI513160B (en) 2015-12-11

Family

ID=54198455

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103101367A TWI513160B (en) 2014-01-15 2014-01-15 Power supply system and its DC converter

Country Status (1)

Country Link
TW (1) TWI513160B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI613877B (en) * 2016-08-25 2018-02-01 和碩聯合科技股份有限公司 Redundant power supply control circuit
TWI778812B (en) * 2020-09-27 2022-09-21 光興國際股份有限公司 Signal converter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI332793B (en) * 2005-12-27 2010-11-01 Memetics Technology Co Ltd Cctv camera system and wireless non-video/video door phone systems all having ac/dc self-sustained power supply apparatus
TWI332742B (en) * 2006-04-21 2010-11-01 Delta Electronics Inc Uninterruptible power supply capable of providing sinusoidal-wave ouput ac voltage and method thereof
TWI413352B (en) * 2010-02-12 2013-10-21 Fsp Technology Inc Dc-to-dc converter
TWI420970B (en) * 2010-07-16 2013-12-21 Delta Electronics Inc Lighting devices

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI613877B (en) * 2016-08-25 2018-02-01 和碩聯合科技股份有限公司 Redundant power supply control circuit
TWI778812B (en) * 2020-09-27 2022-09-21 光興國際股份有限公司 Signal converter

Also Published As

Publication number Publication date
TWI513160B (en) 2015-12-11

Similar Documents

Publication Publication Date Title
US9024476B2 (en) Single-battery power topologies for online UPS systems
US8130524B2 (en) Bi-directional DC to DC power converter having a neutral terminal
TWI527356B (en) Power supply device and its operation method
US8723364B2 (en) Uninterruptible power supply having integrated charge/discharge circuit
US10658857B2 (en) Power management circuit and mobile terminal
US20090179494A1 (en) On-line uninterruptible power system
JP2017517239A (en) Switching power supply and method for controlling the switching power supply
WO2021115033A1 (en) Uninterrupted power supply and battery pack buck-boost circuit thereof
US9287768B2 (en) Power converter and pre-charging circuit of same
US8723363B2 (en) Uninterrupted power supply apparatus
JP6410299B2 (en) Uninterruptible power system
CN103516185B (en) A kind of BOOST converter and anti-difference mode surge protection circuit thereof
TWI513160B (en) Power supply system and its DC converter
RU2540966C1 (en) Static converter
US20150171663A1 (en) Uninterruptible power systems using current source rectifiers and methods of operating the same
US9960636B2 (en) Power supply system and direct-current converter thereof
TWI441430B (en) High step-up dc-dc converter with leakage inductance energy recycled
CN103427478A (en) Power source cross power supply system
TWI638501B (en) Redundant power supply system that extends the hold time after power failure
CN109104086B (en) DC-DC converter with power factor correction function
KR101343953B1 (en) Double conversion uninterruptible power supply of eliminated battery discharger
US20150121101A1 (en) Power supply apparatus
CN111048055A (en) Display and display standby power consumption control method
JP6444204B2 (en) Power converter
JP2014003828A (en) Charging/discharging system