TW201528342A - Method to reduce K value of dielectric layer for advanced finfet formation - Google Patents

Method to reduce K value of dielectric layer for advanced finfet formation Download PDF

Info

Publication number
TW201528342A
TW201528342A TW103141037A TW103141037A TW201528342A TW 201528342 A TW201528342 A TW 201528342A TW 103141037 A TW103141037 A TW 103141037A TW 103141037 A TW103141037 A TW 103141037A TW 201528342 A TW201528342 A TW 201528342A
Authority
TW
Taiwan
Prior art keywords
gate dielectric
ions
dielectric structure
gate
barrier layer
Prior art date
Application number
TW103141037A
Other languages
Chinese (zh)
Other versions
TWI605497B (en
Inventor
Ellie Y Yieh
Ludovic Godet
Srinivas D Nemani
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/505,167 external-priority patent/US9379021B2/en
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of TW201528342A publication Critical patent/TW201528342A/en
Application granted granted Critical
Publication of TWI605497B publication Critical patent/TWI605497B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28185Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/3115Doping the insulating layers
    • H01L21/31155Doping the insulating layers by ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/66803Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET with a step of doping the vertical sidewall, e.g. using tilted or multi-angled implants

Abstract

Embodiments described herein generally relate to methods for forming gate structures. Various processes may be performed on a gate dielectric material to reduce the K value of the dielectric material. The gate dielectric having a reduced K value may provide for reduced parasitic capacitance and an overall reduced capacitance. The gate dielectric may be modified without thermodynamic constraint.

Description

降低用於先進鰭式場效電晶體形成之介電層的K值之方法 Method for reducing the K value of a dielectric layer for advanced fin field effect transistor formation

本文描述的實施例大體上關於在半導體元件中形成閘極(gate)的方法。更詳言之,本文描述的實施例關於用於減少先進鰭式場效電晶體(FinFET)形成過程中介電層之K值的方法。 The embodiments described herein relate generally to a method of forming a gate in a semiconductor component. More particularly, the embodiments described herein relate to methods for reducing the K value of an intermediate electrical layer in an advanced fin field effect transistor (FinFET) formation process.

對具更緻密電路的更小型電子元件方面的需求增加,而為了回應此增加的需求,已開發具三維(3D)結構的元件。此類元件的範例可包括具有導電性類似鰭的結構的FinFET,該等類似鰭的結構垂直地抬升於水平延伸的基板上方。習知的FinFET可形成於基板上,所述基板諸如半導體基板或絕緣體上覆矽。該基板可包括半導體基板以及配置於該半導體基板上的氧化物層。 There is an increasing demand for smaller electronic components with denser circuits, and in response to this increased demand, components having three-dimensional (3D) structures have been developed. An example of such a component can include a FinFET having a conductive fin-like structure that rises vertically above the horizontally extending substrate. Conventional FinFETs can be formed on a substrate, such as a semiconductor substrate or an insulator overlying germanium. The substrate may include a semiconductor substrate and an oxide layer disposed on the semiconductor substrate.

根據對持續更小型化之元件的持續需求,減少的閘極節距(pitch)增加觸點至閘極與磊晶至閘極兩者的寄生電容,從而增加了整體的閘極電容。將傳統的電容元件(諸如 負重疊電容、溝道電容、接面電容、與內外邊緣電容)減至最小變得愈來愈具挑戰性。再者,閘極與觸點的臨界尺寸已以比閘極節距更慢的速度進行規模變動。於是,寄生的邊緣電容(觸點至閘極電容與磊晶至閘極電容)變成日益顯著的問題。 According to the continuing demand for components that continue to be smaller, the reduced gate pitch increases the parasitic capacitance of the contacts to the gate and the epitaxial to gate, thereby increasing the overall gate capacitance. a conventional capacitive element (such as Minimizing the overlap capacitance, channel capacitance, junction capacitance, and internal and external edge capacitance becomes increasingly challenging. Furthermore, the critical dimensions of the gate and contacts have been scaled at a slower rate than the gate pitch. Thus, parasitic edge capacitance (contact to gate capacitance and epitaxial to gate capacitance) becomes an increasingly significant problem.

因此,此技術中需要用於減少FinFET結構中之寄生電容的方法。 Therefore, there is a need in the art for a method for reducing parasitic capacitance in a FinFET structure.

一個實施例中,提供一種形成閘極的方法。該方法包括下述步驟:將一基板移送至電漿處理設備中,該基板具有3D結構,該3D結構包括閘極介電質結構,該閘極介電質結構配置成鄰近假閘極(dummy gate)結構。於該設備中,該閘極介電質結構之垂直定向部分可暴露至離子。可回應該3D結構的深寬比而選擇一或多個離子轟擊角。 In one embodiment, a method of forming a gate is provided. The method includes the steps of: transferring a substrate to a plasma processing apparatus, the substrate having a 3D structure, the 3D structure comprising a gate dielectric structure configured to be adjacent to a dummy gate (dummy Gate) structure. In the device, the vertically oriented portion of the gate dielectric structure can be exposed to ions. One or more ion bombardment angles may be selected in response to the aspect ratio of the 3D structure.

另一實施例中,提供一種形成閘極的方法。該方法包括下述步驟:將一基板移送至電漿處理設備中,該基板具有3D結構,該3D結構包括閘極介電質結構,該閘極介電質結構配置成鄰近假閘極結構。可於該閘極介電質結構上形成阻障層。該阻障層可於該設備中沿著一或多個離子轟擊角暴露至離子,該離子轟擊角是回應該3D結構的深寬比而選擇。 In another embodiment, a method of forming a gate is provided. The method includes the steps of transferring a substrate to a plasma processing apparatus having a 3D structure, the 3D structure including a gate dielectric structure configured to be adjacent to the dummy gate structure. A barrier layer can be formed on the gate dielectric structure. The barrier layer can be exposed to ions along the one or more ion bombardment angles in the device, the ion bombardment angle being selected in response to the aspect ratio of the 3D structure.

尚有另一實施例中,提供一種形成閘極的方法。該方法包括下述步驟:將一基板移送至電漿處理設備中,該基板具有3D結構,該3D結構包括閘極介電質,該閘極介電質配置於一或多個鰭結構上。該閘極介電質可於該設備中暴露 至離子,且可回應該鰭結構的深寬比而選擇一或多個離子轟擊角。 In yet another embodiment, a method of forming a gate is provided. The method includes the steps of transferring a substrate to a plasma processing apparatus having a 3D structure, the 3D structure including a gate dielectric disposed on one or more fin structures. The gate dielectric can be exposed in the device To the ions, one or more ion bombardment angles can be selected depending on the aspect ratio of the fin structure.

100‧‧‧設備 100‧‧‧ Equipment

101‧‧‧離子 101‧‧‧ ions

102‧‧‧處理腔室 102‧‧‧Processing chamber

106‧‧‧源 106‧‧‧ source

108‧‧‧修飾元件 108‧‧‧Modification components

112、114‧‧‧絕緣體 112, 114‧‧‧ insulator

113‧‧‧方向性元件 113‧‧‧ Directional components

134‧‧‧平台 134‧‧‧ platform

138‧‧‧基板 138‧‧‧Substrate

140‧‧‧電漿 140‧‧‧ Plasma

141‧‧‧邊界 141‧‧‧ border

142‧‧‧電漿鞘 142‧‧‧Electrochemical sheath

144‧‧‧溝槽 144‧‧‧ trench

147‧‧‧側壁 147‧‧‧ side wall

150、151‧‧‧平面 150, 151‧‧ plane

169‧‧‧路徑 169‧‧‧ Path

171‧‧‧路徑 171‧‧‧ Path

188‧‧‧氣源 188‧‧‧ gas source

190‧‧‧偏壓源、控制器 190‧‧‧ bias source, controller

192‧‧‧CPU 192‧‧‧CPU

194‧‧‧記憶體 194‧‧‧ memory

196‧‧‧支援電路 196‧‧‧Support circuit

200‧‧‧特徵 200‧‧‧ characteristics

201‧‧‧絕緣體材料 201‧‧‧Insulator materials

202‧‧‧基板 202‧‧‧Substrate

203‧‧‧鰭結構 203‧‧‧Fin structure

204‧‧‧閘極 204‧‧‧ gate

206‧‧‧閘極介電質 206‧‧‧gate dielectric

208‧‧‧第二區域 208‧‧‧Second area

209‧‧‧路徑 209‧‧‧ Path

210‧‧‧第一區域 210‧‧‧First area

211‧‧‧路徑 211‧‧‧ Path

212‧‧‧側壁 212‧‧‧ side wall

213‧‧‧上表面 213‧‧‧ upper surface

214‧‧‧材料 214‧‧‧Materials

216‧‧‧底部區域 216‧‧‧ bottom area

218‧‧‧頂部區域 218‧‧‧ top area

220‧‧‧節距長度 220‧‧‧pitch length

222‧‧‧高度 222‧‧‧ Height

302‧‧‧基板 302‧‧‧Substrate

310‧‧‧鰭結構 310‧‧‧Fin structure

320‧‧‧絕緣層 320‧‧‧Insulation

332‧‧‧側壁 332‧‧‧ side wall

334‧‧‧頂部區域 334‧‧‧Top area

336‧‧‧水平定向區域 336‧‧‧ horizontally oriented area

350‧‧‧介電材料層 350‧‧‧ dielectric material layer

354‧‧‧區域 354‧‧‧Area

360‧‧‧阻障層 360‧‧‧Barrier layer

362‧‧‧離子 362‧‧‧ ions

364‧‧‧入射離子 364‧‧‧ incident ions

透過參考實施例(一些實施例繪示於附圖中),可得到於上文中簡要總結的本案揭露內容之更特定的敘述,而可詳細瞭解本案揭露內容之前述特徵。然而,應注意附圖僅繪示本案揭露內容之典型實施例,因此不應被視為限制本案揭露內容之範疇,因為本案揭露內容可容許其他等效實施例。 A more specific description of the disclosure of the present invention, which is briefly summarized above, may be obtained by reference to the accompanying drawings. It is to be understood, however, that the appended claims

第1圖繪示用於執行本文揭露之實施例的電漿處理設備之概略圖。 1 is a schematic diagram of a plasma processing apparatus for performing the embodiments disclosed herein.

第2A圖至第2C圖是基板之部分剖面圖,繪示用於執行本文揭露之實施例的雙方向角離子轟擊製程。 2A through 2C are partial cross-sectional views of the substrate illustrating a bidirectional angular ion bombardment process for performing the embodiments disclosed herein.

第3A圖至第3C圖是基板之部分剖面圖,繪示根據本文揭露之一個實施例的形成3D結構的程序。 3A through 3C are partial cross-sectional views of the substrate illustrating a procedure for forming a 3D structure in accordance with one embodiment disclosed herein.

為了助於瞭解,如可能則已使用相同的元件符號指定各圖共通的相同元件。應考量一個實施例中揭露的元件可有利地併入其他實施例而無需進一步記敘。 To assist in understanding, the same component symbols have been used, if possible, to designate the same components common to the various figures. It is contemplated that elements disclosed in one embodiment may be beneficially incorporated in other embodiments without further recitation.

本文所述的實施例大體上關於用於形成閘極結構的方法,且更詳言之,關於形成具有減少之K值的閘極介電層。閘極介電材料可藉由下述方式形成:將剛沉積的介電層暴露至能量充沛的離子,而形成低介電常數材料。閘極介電質的膜性質可藉由離子轟擊而調整,以減少K值。閘極介電質的離子轟擊可修飾閘極介電質之組成及/或結構,而不會超出受 處理之材料的熱預算。具有低K值的閘極介電質可提供減少的寄生電容。 The embodiments described herein relate generally to methods for forming a gate structure, and more particularly to forming a gate dielectric layer having a reduced K value. The gate dielectric material can be formed by exposing the as-deposited dielectric layer to energetic ions to form a low dielectric constant material. The membrane properties of the gate dielectric can be adjusted by ion bombardment to reduce the K value. The gate dielectric of the gate dielectric can modify the composition and/or structure of the gate dielectric without exceeding The thermal budget of the processed material. A gate dielectric with a low K value provides reduced parasitic capacitance.

改善的閘極與閘極介電質特別有利於3D的FinFET結構,這將會於下文中更詳細地描述。可執行以減少閘極介電材料之K值的製程可包括諸如He、H、或Ne之物種的輕離子佈植、以碳及/或硼為基礎之離子的直接離子佈植、碳及/或硼膜之沉積與擊返(knock on)、以及平行執行的碳及/或硼離子的沉積、擊返、與離子佈植。上述的製程受惠於FinFET形成之各個階段的離子之角轟擊。舉例而言,在閘極介電質已經沉積後、在閘極介電質已經蝕刻後、及在假閘極移除製程後,可執行該等製程。各種FinFET形成製程可在FinFET形成的各種階段期間運用前述製程,以提供具有減少之K值的閘極介電質,而在縮減的臨界尺寸下仍維持閘極介電質的整體性。 The improved gate and gate dielectrics are particularly advantageous for 3D FinFET structures, as will be described in more detail below. Processes that can be performed to reduce the K value of the gate dielectric material can include light ion implantation of species such as He, H, or Ne, direct ion implantation of carbon and/or boron based ions, carbon and/or Or deposition and knock on of the boron film, and deposition, flashback, and ion implantation of carbon and/or boron ions performed in parallel. The above process benefits from the angular bombardment of ions at various stages of FinFET formation. For example, the processes may be performed after the gate dielectric has been deposited, after the gate dielectric has been etched, and after the dummy gate removal process. Various FinFET formation processes can be used during various stages of FinFET formation to provide a gate dielectric with a reduced K value while maintaining gate dielectric integrity at a reduced critical dimension.

第1圖繪示電漿處理設備100的概略圖,該設備100用於執行於本文揭露的製程。除了下述的設備100之外,可使用更傳統的離子佈植設備(諸如射束線離子佈植設備)以執行本文所述之方法。射束線離子佈植設備之一個範例是Varian VIISta® Trident,該設備可購自美國加州Santa Clara的應用材料公司。電漿處理設備100包括處理腔室102、平台134、源106、與修飾元件108。平台134可移送至處理腔室102中且定位於處理腔室102中,以支撐基板138。平台134可耦接致動器(圖中未示),該致動器可引發平台134以掃描運動移動。該掃描運動可為於單一平面內的往復移動,該 單一平面可實質上平行修飾元件108。源106裝設成於處理腔室102中生成電漿140。修飾元件108包括一對絕緣體112、114,該等絕緣體112、114之間可界定一縫隙,該縫隙具有水平間距(G)。絕緣體112、114可包括絕緣材料、半導體材料、或導電材料。修飾元件也包括方向性元件113,該方向性元件113配置於相對絕緣體112、114之位置,使得提供離子101朝向基板138。 1 is a diagrammatic view of a plasma processing apparatus 100 for performing the processes disclosed herein. In addition to the apparatus 100 described below, more conventional ion implantation equipment, such as beamline ion implantation equipment, can be used to perform the methods described herein. An example of a beamline ion implantation device is Varian VIISta® Trident, which is available from Applied Materials, Inc., Santa Clara, California. The plasma processing apparatus 100 includes a processing chamber 102, a platform 134, a source 106, and a conditioning element 108. The platform 134 can be transferred into the processing chamber 102 and positioned in the processing chamber 102 to support the substrate 138. The platform 134 can be coupled to an actuator (not shown) that can cause the platform 134 to move in a scanning motion. The scanning motion can be a reciprocating movement in a single plane, A single plane can modify element 108 substantially in parallel. Source 106 is mounted to generate plasma 140 in processing chamber 102. The modifying element 108 includes a pair of insulators 112, 114 that define a gap between the insulators 112, 114 that has a horizontal spacing (G). The insulators 112, 114 may comprise an insulating material, a semiconductor material, or a conductive material. The modifying element also includes a directional element 113 that is disposed at a location relative to the insulators 112, 114 such that ions 101 are provided toward the substrate 138.

操作中,氣源188可供應可離子化氣體至處理腔室102。尤其可離子化氣體的範例可包括BF3、BI3、N2、Ar、PH3、AsH3、B2H6、H2、Xe、Kr、Ne、He、CH4、CF4、AsF5、PF3與PF5。更詳言之,離子物種可包括He+、H3 +、H2 +、H+、Ne+、F+、C+、CFx +、CHx +、CxHy、N+、B+、BF2 +、B2Hx +、Xe+與分子的碳、硼、或碳化硼之離子。源106可藉由激發與離子化提供至處理腔室102的氣體而生成電漿140。離子101從電漿140受吸引越過電漿鞘142。舉例而言,裝設偏壓源190以偏壓基板138而從電漿140吸引離子101越過電漿鞘142。偏壓源190可以是DC電源供應器以提供DC電壓偏壓訊號或RF電源供應器以提供RF偏壓訊號。 In operation, gas source 188 can supply ionizable gas to processing chamber 102. Examples of particularly ionizable gases may include BF 3 , BI 3 , N 2 , Ar, PH 3 , AsH 3 , B 2 H 6 , H 2 , Xe, Kr, Ne, He, CH 4 , CF 4 , AsF 5 , PF 3 and PF 5 . More specifically, the ionic species may include He + , H 3 + , H 2 + , H + , Ne + , F + , C + , CF x + , CH x + , C x H y , N + , B + , BF 2 + , B 2 H x + , Xe + and molecular carbon, boron, or boron carbide ions. Source 106 can generate plasma 140 by exciting and ionizing the gas provided to processing chamber 102. Ion 101 is attracted from plasma 140 across plasma sheath 142. For example, bias source 190 is provided to bias substrate 138 to attract ions 101 from plasma 140 across plasma sheath 142. The bias source 190 can be a DC power supply to provide a DC voltage bias signal or an RF power supply to provide an RF bias signal.

修飾元件108修飾電漿鞘142內的電場,以控制電漿140與電漿鞘142之間的邊界141之形狀。修飾元件108包括絕緣體112、114與方向性元件113。絕緣體112、114與方向性元件113可由諸如石英、氧化鋁、氮化硼、玻璃、氮化矽、與其他適合材料之材料製造。電漿140與電漿鞘142之間的邊界141取決於方向性元件113相對於絕緣體112、114 之放置關係,因為方向性元件113可能改變電漿鞘142內的電場。 The modifying element 108 modifies the electric field within the plasma sheath 142 to control the shape of the boundary 141 between the plasma 140 and the plasma sheath 142. The modifying element 108 includes insulators 112, 114 and a directional element 113. The insulators 112, 114 and the directional element 113 may be fabricated from materials such as quartz, alumina, boron nitride, glass, tantalum nitride, and other suitable materials. The boundary 141 between the plasma 140 and the plasma sheath 142 is dependent on the directional element 113 relative to the insulator 112, 114. The placement relationship is because the directional element 113 may change the electric field within the plasma sheath 142.

依循軌道路徑171的離子可垂直(normal to)平面151以大約+θ之角度撞擊基板138。依循軌道路徑169的離子可垂直平面151以大約-θ之角度撞擊基板138。因此,垂直平面151之入射角的範圍可介於約+1°至約+65°之間且介於約-1°至約-65°之間,排除0°。例如垂直平面150的入射角的第一範圍可介於約+5°至約+65°之間,且垂直平面150的入射角的第二範圍可介於約-5°至約-65°之間。一個實施例中,相對平面151的入射角的第一範圍可介於約-10°至約-20°之間,且相對平面151的入射角的第二範圍可介於約+10°至約+20°之間。此外,一些離子軌道(諸如路徑169與171)可彼此交叉。 The ions following the track path 171 can strike the substrate 138 at an angle of about + theta to the normal to plane 151. The ions following the orbital path 169 can strike the substrate 138 at an angle of about -[theta] at a vertical plane 151. Thus, the angle of incidence of the vertical plane 151 can range from about +1° to about +65° and between about -1° to about -65°, excluding 0°. For example, the first range of incident angles of the vertical plane 150 may be between about +5° and about +65°, and the second range of incident angles of the vertical plane 150 may be between about -5° and about -65°. between. In one embodiment, the first range of incident angles relative to plane 151 may be between about -10° and about -20°, and the second range of incident angles relative to plane 151 may be between about +10° to about Between +20°. Additionally, some ion tracks, such as paths 169 and 171, may cross each other.

一個實施例中,入射角(θ)的範圍可介於約+89°至約-89°之間(排除0°),這取決於許多因子,該等因子包括(但不限於)方向性元件113的定位、絕緣體112、114之間的水平間距(G)、絕緣體112、114在平面151上方的垂直間距(Z)、方向性元件113與絕緣體112、114的介電常數、以及其他電漿處理參數。 In one embodiment, the angle of incidence (θ) may range from about +89° to about -89° (excluding 0°), depending on a number of factors including, but not limited to, directional elements Positioning of 113, horizontal spacing (G) between insulators 112, 114, vertical spacing (Z) of insulators 112, 114 above plane 151, dielectric constant of directional element 113 and insulators 112, 114, and other plasma Processing parameters.

入射角的範圍可基於基板138上3D特徵的深寬比而選擇。舉例而言,溝槽144之側壁147(為了繪示上的明確而有誇張化的尺寸)可被離子101更均勻地處理(相較於習知的電漿處理設備與程序)。深寬比可界定成「側壁147之間的節距」與「從基板138延伸的側壁147之高度」之間的關係,所述深寬比可確定提供離子101的角度,以提供側壁 147上更均勻的處理。執行離子轟擊製程前,3D結構的深寬比可由控制器190提供。或者,設備100中的感測器可確定執行離子轟擊製程前的3D結構之深寬比。任一範例中,離子轟擊角可經選擇以回應3D結構的深寬比。 The range of incident angles can be selected based on the aspect ratio of the 3D features on the substrate 138. For example, the sidewalls 147 of the trenches 144 (detailed dimensions for clarity) can be more uniformly processed by the ions 101 (compared to conventional plasma processing apparatus and programs). The aspect ratio can be defined as the relationship between "pitch between sidewalls 147" and "height of sidewalls 147 extending from substrate 138" that can determine the angle at which ions 101 are provided to provide sidewalls. More uniform processing on 147. The aspect ratio of the 3D structure can be provided by controller 190 prior to performing the ion bombardment process. Alternatively, the sensor in device 100 can determine the aspect ratio of the 3D structure prior to performing the ion bombardment process. In either example, the ion bombardment angle can be selected to respond to the aspect ratio of the 3D structure.

例如,垂直平面151且適於撞擊側壁147的入射角之第一範圍可介於約+60°至約+90°之間,而入射角之第二範圍可介於約-60°至約-90°之間。一個實施例中,垂直平面151且適於撞擊側壁147的入射角之第一範圍可介於約-70°至約-80°之間,而垂直平面151且適於撞擊側壁147的入射角之第二範圍可介於約+70°至約+80°之間。一個實施例中,提供離子101之角度可經選擇以避免與側壁147下方的材料接觸,舉例而言,該材料於一個實施例中為基板138或於另一實施例中為絕緣體。 For example, the first range of the vertical plane 151 and the angle of incidence suitable for striking the sidewall 147 may be between about +60° to about +90°, and the second range of incident angles may be between about -60° to about - Between 90°. In one embodiment, the first range of the vertical plane 151 and the angle of incidence suitable for striking the sidewall 147 may be between about -70° and about -80°, while the vertical plane 151 is adapted to strike the angle of incidence of the sidewall 147. The second range can be between about +70° to about +80°. In one embodiment, the angle at which ions 101 are provided may be selected to avoid contact with material beneath sidewall 147, which in one embodiment is substrate 138 in one embodiment or an insulator in another embodiment.

上述設備100可由以處理器為基礎的系統控制器(諸如控制器190)所控制。舉例而言,控制器190可裝設成於基板處理程序的不同階段控制來自氣源(諸如氣源188)的各種前驅物氣體與淨化氣體之流動。控制器190包括可程式化中央處理單元(CPU)192(可與記憶體194與大量儲存裝置一併操作)、輸入控制單元、及顯示單元(圖中未示),諸如電源供應器、時鐘、高速緩衝儲存器、輸入/輸出(I/O)電路、與類似物,上述元件耦接設備100之各種部件以助於控制基板處理。控制器190也包括用於透過設備100中之感測器監視基板處理的硬體,所述感測器包括監視前驅物與淨化氣體流的感測器。測量系統參數(諸如基板溫度與位置、 腔室氣氛壓力與類似參數)的其他感測器也可提供資訊給控制器190。 The device 100 described above can be controlled by a processor-based system controller, such as the controller 190. For example, controller 190 can be configured to control the flow of various precursor gases and purge gases from a gas source, such as gas source 188, at different stages of the substrate processing program. The controller 190 includes a programmable central processing unit (CPU) 192 (which can be operated in conjunction with the memory 194 and a plurality of storage devices), an input control unit, and a display unit (not shown), such as a power supply, a clock, Cache storage, input/output (I/O) circuitry, and the like, the components described above couple various components of device 100 to assist in controlling substrate processing. The controller 190 also includes hardware for monitoring substrate processing through sensors in the device 100, the sensors including sensors that monitor precursors and purge gas streams. Measuring system parameters (such as substrate temperature and position, Other sensors of chamber atmosphere pressure and similar parameters may also provide information to controller 190.

為了助於控制上述的設備100,CPU 192可以是任何形式的可用於工業設施中的通用電腦處理器之一,該處理器諸如可程式化邏輯控制器(PLC),用於控制各種腔室與子處理器。記憶體194耦接CPU 192且該記憶體194為非暫時性,且可以是容易取得之記憶體之一或多者,該容易取得之記憶體諸如為隨機存取記憶體(RAM)、唯讀記憶體(ROM)、軟碟機、硬碟、或任何其他形式的本地端或遠端數位儲存裝置。支援電路196耦接CPU 192,以用習知方式支援處理器。沉積、蝕刻、佈植、與其他製程大體上儲存於記憶體194中,一般是儲存成軟體常式。該軟體常式也可儲存在第二CPU(圖中未示)及/或由該第二CPU執行,該第二CPU位在由CPU 192控制的硬體的遠端。 To assist in controlling the apparatus 100 described above, the CPU 192 can be any form of a general purpose computer processor that can be used in an industrial facility, such as a programmable logic controller (PLC), for controlling various chambers and Subprocessor. The memory 194 is coupled to the CPU 192 and the memory 194 is non-transitory and can be one or more of the easily accessible memories, such as random access memory (RAM), read only. Memory (ROM), floppy disk, hard drive, or any other form of local or remote digital storage device. The support circuit 196 is coupled to the CPU 192 to support the processor in a conventional manner. Depositing, etching, implanting, and other processes are generally stored in memory 194, typically as a software routine. The software routine can also be stored in the second CPU (not shown) and/or executed by the second CPU, which is located at the far end of the hardware controlled by the CPU 192.

記憶體194為含有指令的電腦可讀儲存媒體之形式,當由CPU 192執行時,助於設備100之操作。記憶體194中的指令為程式產品之形式,該程式產品諸如為實施本案揭露內容之方法的程式。程式碼可順應許多不同程式語言之任一者。一個範例中,本案揭露內容可作為程式產品實施,該程式產品儲存於電腦可讀儲存媒體上以與電腦系統一併使用。程式產品的程式界定實施例(包括本文所述之方法)的功能。說明性的電腦可讀儲存媒體包括(但不限於):(i)不可寫入儲存媒體,例如電腦中的唯讀記憶體裝置,諸如可由CD-ROM驅動器所讀的CD-ROM碟、快閃記憶體、ROM 晶片、或任何類型的固態非揮發半導體記憶體,資訊永久地儲存在該不可寫入儲存媒體上;以及(ii)可寫入儲存媒體,例如軟式磁碟機中的軟碟,或硬碟機,或任何形式的固態隨機存取半導體記憶體,可變化的資訊儲存於該可寫入儲存媒體上。此類電腦可讀儲存媒體當搭載電腦可讀指令(該等指令指示本文所述之方法的功能)時,為本案揭露內容之實施例。 Memory 194 is in the form of a computer readable storage medium containing instructions that, when executed by CPU 192, facilitate operation of device 100. The instructions in memory 194 are in the form of a program product such as a program for implementing the methods disclosed herein. The code can conform to any of a number of different programming languages. In one example, the disclosure of the present disclosure can be implemented as a program product stored on a computer readable storage medium for use with a computer system. The program of the program product defines the functionality of an embodiment, including the methods described herein. Illustrative computer readable storage media include, but are not limited to: (i) non-writable storage media, such as a read-only memory device in a computer, such as a CD-ROM disc that can be read by a CD-ROM drive, flashing Memory, ROM a wafer, or any type of solid non-volatile semiconductor memory, information permanently stored on the non-writable storage medium; and (ii) a writable storage medium, such as a floppy disk in a floppy disk drive, or a hard disk drive , or any form of solid state random access semiconductor memory, the changeable information is stored on the writable storage medium. Such computer readable storage media, when piggybacked with computer readable instructions (these instructions indicate the functionality of the methods described herein), are embodiments of the present disclosure.

第2A圖至第2C圖繪示基板之一部分的剖面圖,繪示本文揭露的實施例所利用的雙方向角離子轟擊。第2A圖描繪3D特徵200,該3D特徵200包括基板202,該基板202具有形成於該基板202上的閘極204與形成於該閘極204上的閘極介電質206層。某些實施例中,閘極204可以是假閘極。其他實施例中,閘極204可代表上面配置有閘極介電質206的鰭結構。 2A through 2C are cross-sectional views of a portion of the substrate illustrating the bidirectional angular ion bombardment utilized by the embodiments disclosed herein. 2A depicts a 3D feature 200 that includes a substrate 202 having a gate 204 formed on the substrate 202 and a gate dielectric 206 layer formed on the gate 204. In some embodiments, gate 204 can be a dummy gate. In other embodiments, the gate 204 can represent a fin structure having a gate dielectric 206 disposed thereon.

雙方向角離子轟擊是以從第一區域210引導離子朝向閘極介電質206而進行。該等離子可沿著一或多個路徑211行進,該等路徑211經選擇而攻擊閘極介電質206的垂直部分212且避免離子轟擊閘極介電質206下方的材料214。類似地,離子可從第二區域208朝閘極介電質206加速。該等離子可沿著一或多個路徑209行進,而攻擊閘極介電質206的垂直部分212且避免轟擊閘極介電質206下方的材料214。 Bi-directional angular ion bombardment is performed by directing ions from the first region 210 toward the gate dielectric 206. The plasma can travel along one or more paths 211 that are selected to attack the vertical portion 212 of the gate dielectric 206 and to avoid ion bombardment of the material 214 under the gate dielectric 206. Similarly, ions can be accelerated from the second region 208 toward the gate dielectric 206. The plasma can travel along one or more paths 209, attacking the vertical portion 212 of the gate dielectric 206 and avoiding bombarding the material 214 under the gate dielectric 206.

在雙方向角離子轟擊製程中,離子被引導朝向基板202的角度或軌道是基於3D特徵200的深寬比而選擇。該深寬比可界定成「節距長度220」對「基板202上方延伸的閘極 介電質206之高度222」的比例。就此而言,沿著路徑211、209行進的離子可撞擊閘極介電質206的底部區域216與頂部區域218之間沿著垂直部分212的任何點。 In a bi-directional angular ion bombardment process, the angle or orbit at which ions are directed toward the substrate 202 is selected based on the aspect ratio of the 3D features 200. The aspect ratio can be defined as "pitch length 220" versus "gate extending above substrate 202" The ratio of the height of the dielectric 206 to 222". In this regard, ions traveling along paths 211, 209 can strike any point along the vertical portion 212 between the bottom region 216 and the top region 218 of the gate dielectric 206.

第2B圖概略繪示閘極材料204(諸如假閘極)已經移除後的第2A圖之結構。先前相鄰閘極材料204的閘極介電質206的表面暴露。雙方向角轟擊製程可在暴露表面上以針對第2A圖於上文所述的方式進行。 Figure 2B schematically illustrates the structure of Figure 2A after the gate material 204 (such as a dummy gate) has been removed. The surface of the gate dielectric 206 of the adjacent adjacent gate material 204 is exposed. The bi-directional angular bombardment process can be performed on the exposed surface in the manner described above for Figure 2A.

第2C圖概略性繪示雙方向角離子轟擊製程之另一實施例。此實施例中,鰭結構203從基板202與絕緣體材料201延伸,該絕緣體材料201配置於鄰近鰭結構203的下部處。閘極介電質沉積覆於鰭結構203上位在側壁212與上表面213上。側壁212與上表面213經受離子轟擊。如圖所繪示,雙方向離子轟擊可沿著整個側壁212與上表面213撞擊閘極介電質206。 FIG. 2C schematically illustrates another embodiment of a bidirectional angular ion bombardment process. In this embodiment, the fin structure 203 extends from the substrate 202 and the insulator material 201, which is disposed adjacent the lower portion of the fin structure 203. The gate dielectric is deposited over the fin structure 203 on the sidewall 212 and the upper surface 213. Side wall 212 and upper surface 213 are subjected to ion bombardment. As illustrated, bi-directional ion bombardment can strike the gate dielectric 206 along the entire sidewall 212 and the upper surface 213.

第3A圖至第3C圖描繪根據本文描述的一個實施例的形成3D結構的程序。可如第3A圖中所繪示般提供具有鰭結構310的基板302,該鰭結構310從基板302延伸。諸如SiO2或SiN之絕緣體320可形成於基板302上,使得鰭結構310的一部分維持延伸超出絕緣體320。 3A through 3C depict a procedure for forming a 3D structure in accordance with one embodiment described herein. A substrate 302 having a fin structure 310 extending from the substrate 302 can be provided as depicted in FIG. 3A. An insulator 320, such as SiO 2 or SiN, may be formed on the substrate 302 such that a portion of the fin structure 310 remains extended beyond the insulator 320.

接著,閘極介電層350形成於絕緣體320與鰭結構310上,如第3B圖中所繪示。閘極介電層350可作為鰭結構310與後續沉積之閘極之間的間隔物。閘極介電層350可例如為Al2O3、SiN、BN、SiCN、或SiO2、或能夠用本文揭露之製程處理的其他介電材料,以降低K值且同時維持閘極介電層 350之厚度整體性。閘極介電層350可藉由適合的製程正形地沉積覆於絕緣層320與鰭結構310上,該等適合的製程諸如CVD、ALD、PVD、或類似製程。一個範例中,氮化矽層可藉由CVD沉積,以形成閘極介電層350。矽前驅物(諸如SiH4)與氮前驅物(諸如N2或NH3)可獲能量而成為電漿,且藉由CVD製程沉積以形成閘極介電層350。 Next, a gate dielectric layer 350 is formed over the insulator 320 and the fin structure 310, as depicted in FIG. 3B. The gate dielectric layer 350 can serve as a spacer between the fin structure 310 and the subsequently deposited gate. The gate dielectric layer 350 can be, for example, Al 2 O 3 , SiN, BN, SiCN, or SiO 2 , or other dielectric material that can be processed using the processes disclosed herein to reduce the K value while maintaining the gate dielectric layer. The thickness of the 350 is integral. The gate dielectric layer 350 can be deposited over the insulating layer 320 and the fin structure 310 in a conformal manner by a suitable process such as CVD, ALD, PVD, or the like. In one example, the tantalum nitride layer can be deposited by CVD to form the gate dielectric layer 350. Silica precursor (such as SiH 4) and nitrogen precursor (such as N 2 or NH 3) becomes available energy plasma and is deposited by a CVD process to form a gate dielectric 350.

閘極介電層350已形成後,可執行一或多個離子佈植製程,以修飾閘極介電層350的K值。一個實施例中,可於閘極介電層350上執行輕離子佈植製程。於此實施例中,輕離子物種(諸如氫)或鹵素離子(例如He或Ne)可佈植至閘極介電層350中,以於介電材料內建立空穴。佈植的輕離子可在介電材料內形成氣泡或空隙,而透過改變閘極介電層350的物理結構而造成介電材料的K值降低。在輕離子佈植之後,可視情況任選地執行低溫退火,以從閘極介電層350擴散輕離子。例如,未處理的SiN閘極介電層350可顯現約7.5的K值。執行輕離子佈植製程之後的閘極介電材料350可顯現約5.1之K值。從而,可降低介電材料之K值。 After the gate dielectric layer 350 has been formed, one or more ion implantation processes may be performed to modify the K value of the gate dielectric layer 350. In one embodiment, a light ion implantation process can be performed on the gate dielectric layer 350. In this embodiment, a light ion species (such as hydrogen) or a halide ion (such as He or Ne) can be implanted into the gate dielectric layer 350 to create holes within the dielectric material. The implanted light ions can form bubbles or voids in the dielectric material, and the K value of the dielectric material is reduced by changing the physical structure of the gate dielectric layer 350. After light ion implantation, a low temperature anneal is optionally performed to diffuse light ions from the gate dielectric layer 350, as appropriate. For example, the untreated SiN gate dielectric layer 350 can exhibit a K value of about 7.5. The gate dielectric material 350 after performing the light ion implantation process can exhibit a K value of about 5.1. Thereby, the K value of the dielectric material can be lowered.

輕離子佈植製程的各種態樣可經控制而調整K值。閘極介電層350內形成的空穴的尺寸可藉由離子能量與離子通量/劑量控制。一個範例中,可用介於約1x1015(離子/cm2)至約1x1019(離子/cm2)(諸如約2x1017(離子/cm2))之劑量提供氦離子佈植。就此而言,該氦劑量的制度(regime)可維持閘極介電層350的前佈植厚度。所用的輕離子物種也可降低閘極介電材料350從鰭結構310表面的濺射。輕離子佈 植製程所執行的溫度也可能影響所得結構,這是透過將閘極介電層350內佈植的離子擴散出閘極介電層350而形成所得空隙而達成,在某些實施例中,該空隙可能是空的填充有氦氣。處理參數(尤其是諸如腔室壓力、氣體流速、與電漿源功率)可經選擇而強化輕離子佈植製程。 Various aspects of the light ion implantation process can be controlled to adjust the K value. The size of the holes formed within the gate dielectric layer 350 can be controlled by ion energy and ion flux/dose. In one example, a cesium ion implant can be provided at a dose of between about 1 x 10 15 (ions/cm 2 ) to about 1 x 10 19 (ions/cm 2 ), such as about 2 x 10 17 (ions/cm 2 ). In this regard, the sputum dose regime maintains the front implant thickness of the gate dielectric layer 350. The light ion species used can also reduce sputtering of the gate dielectric material 350 from the surface of the fin structure 310. The temperature at which the light ion implantation process is performed may also affect the resulting structure by diffusing ions implanted in the gate dielectric layer 350 out of the gate dielectric layer 350 to form the resulting voids, in some embodiments. The gap may be empty filled with helium. Processing parameters (especially such as chamber pressure, gas flow rate, and plasma source power) can be selected to enhance the light ion implantation process.

此外,輕離子物種撞擊閘極介電層的撞擊角可基於鰭結構310形成的特徵的深寬比而選擇。對於閘極介電材料350之側壁332上的轟擊而言,調整轟擊角可為選擇性的。就此而言,可避免閘極介電材料350下方的區域354上的佈植。然而,配置於鰭結構的頂部區域334上的閘極介電層350可受離子轟擊,因為頂部區域334的轟擊非由取決於深寬比的角轟擊所決定。佈植角可由特徵(可為鰭結構310)之深寬比決定。 Moreover, the impact angle of the light ion species striking the gate dielectric layer can be selected based on the aspect ratio of the features formed by the fin structure 310. For bombardment on the sidewall 332 of the gate dielectric material 350, the adjustment of the bombardment angle can be selective. In this regard, implantation on the region 354 below the gate dielectric material 350 can be avoided. However, the gate dielectric layer 350 disposed on the top region 334 of the fin structure can be bombarded by ions because the bombardment of the top region 334 is not determined by angular bombardment depending on the aspect ratio. The angle of implantation can be determined by the aspect ratio of features (which can be fin structure 310).

具有相對閘極介電層350之表面呈實質上垂直定向(90°)的轟擊角可比具實質上平行定向(0°)之佈植角將離子佈植更大深度。可利用垂直與平行極限之間的佈植角之連續域(continuum)(主要是由特徵之深寬比決定,以避免遮蔽效應),以選擇離子佈植的深度。同樣,選擇用於轟擊的離子之分子量有助於決定佈植深度。具有較小分子量的離子可佈植得比具有較大分子量之離子深。例如,假設其他佈植變數均相同,則氫離子將會比氖離子更深地穿入閘極介電層350。各種實施例中,所得的輕離子之佈植深度可介於約1nm至約8nm之間。用於佈植離子的佈植能量也影響佈植深度。舉例而言,高佈植能量將提供用於較深的佈植。 A bombardment angle having a substantially vertical orientation (90°) with respect to the surface of the gate dielectric layer 350 can implant ions of greater depth than a implant angle having a substantially parallel orientation (0°). The continuum of the implant angle between the vertical and parallel limits (mainly determined by the aspect ratio of the features to avoid shadowing effects) can be utilized to select the depth of ion implantation. Similarly, the molecular weight of the ions selected for bombardment helps determine the depth of the implant. Ions with smaller molecular weights can be implanted deeper than ions with larger molecular weights. For example, assuming that the other implant variables are the same, the hydrogen ions will penetrate the gate dielectric layer 350 deeper than the helium ions. In various embodiments, the resulting light ion implant depth can be between about 1 nm and about 8 nm. The implant energy used to implant ions also affects the depth of the implant. For example, high implant energy will be provided for deeper implants.

輕離子物種已佈植之後,可於低於約400℃的溫度(諸如約350℃)執行熱退火製程,以活化閘極介電材料內空隙之形成。 After the light ion species has been implanted, a thermal annealing process can be performed at a temperature below about 400 ° C (such as about 350 ° C) to activate the formation of voids within the gate dielectric material.

另一實施例中,可於沉積閘極介電材料350後執行含硼及/或碳離子的直接離子佈植製程。於此實施例中,可離子化各種含硼及含碳前驅物,且可將硼及/或碳離子佈植進入介電材料層350。一個範例中,可佈植僅只硼離子,且於另一範例中,可佈植僅只碳離子。某些實施例中,可佈植含硼與含碳離子。 In another embodiment, a direct ion implantation process containing boron and/or carbon ions can be performed after depositing the gate dielectric material 350. In this embodiment, various boron-containing and carbon-containing precursors can be ionized, and boron and/or carbon ions can be implanted into the dielectric material layer 350. In one example, only boron ions can be implanted, and in another example, only carbon ions can be implanted. In certain embodiments, boron and carbon containing ions can be implanted.

類似輕離子佈植製程,可由特徵之深寬比指定雙方向角離子轟擊製程。執行直接離子佈植製程所用的處理參數可經選擇以強化直接離子佈植。一個範例中,以約25sccm之速率提供離子前驅物且以約1500W的RF功率提供離子前驅物能量,該前驅物是以約5x1016離子/cm2之劑量提供,且該製程是在約350℃的溫度執行。直接離子佈植製程可視情況任選地於升高的溫度執行,該直接離子佈植製程將藉由改變材料之化學構成而在材料上改變閘極介電層350之組成。例如,硼及/或碳離子可作用為摻雜閘極介電層350且建立具有減少K值的介電材料。在硼及/或碳離子已佈植於閘極介電層350中後,也可執行熱退火製程,此熱退火製程類似針對輕離子佈植製程所述的退火製程。 Similar to the light ion implantation process, the bidirectional angular ion bombardment process can be specified by the aspect ratio of the feature. The processing parameters used to perform the direct ion implantation process can be selected to enhance direct ion implantation. In one example, the ion precursor is provided at a rate of about 25 sccm and the ion precursor energy is provided at an RF power of about 1500 W, the precursor being provided at a dose of about 5 x 10 16 ions/cm 2 and the process is at about 350 ° C. The temperature is executed. The direct ion implantation process can optionally be performed at elevated temperatures that will alter the composition of the gate dielectric layer 350 by changing the chemical composition of the material. For example, boron and/or carbon ions can act as doped gate dielectric layer 350 and establish a dielectric material with a reduced K value. After the boron and/or carbon ions have been implanted in the gate dielectric layer 350, a thermal annealing process can also be performed, which is similar to the annealing process described for the light ion implantation process.

另一實施例中,可於閘極介電材料350沉積之後執行沉積與擊返製程,如第3B’圖中所繪示。「擊返」之用語可界定為反彈(recoil)離子佈植,其中將離子佈植通過閘極介 電質上形成的表面層而將摻雜劑驅引至閘極介電質中。沉積與擊返製程可由沉積薄阻障層360覆於閘極介電層350上而開始。阻障層360可包括沉積於閘極介電層350之表面上的硼及/或碳原子。阻障層360作用可為於後續離子佈植期間提供額外保護給鰭結構310且作為佈植離子之來源。阻障層360形成之後或期間,擊返離子362可轟擊阻障層360且將存在於阻障層360中的硼及/或碳離子推進閘極介電層350中。 In another embodiment, the deposition and flyback process can be performed after deposition of the gate dielectric material 350, as depicted in Figure 3B'. The term "return" can be defined as a recoil ion implantation in which ions are implanted through a gate A surface layer formed on the electrolyte drives the dopant into the gate dielectric. The deposition and flyback process can begin by depositing a thin barrier layer 360 over the gate dielectric layer 350. The barrier layer 360 can include boron and/or carbon atoms deposited on the surface of the gate dielectric layer 350. The barrier layer 360 function can provide additional protection to the fin structure 310 during subsequent ion implantation and serve as a source of implant ions. After or during formation of the barrier layer 360, the strikeback ions 362 can bombard the barrier layer 360 and push boron and/or carbon ions present in the barrier layer 360 into the gate dielectric layer 350.

擊返離子362可為與用於形成阻障層360之離子相同的離子。就此而言,硼及/或碳離子可用於阻障層360又可作為擊返離子362。利用沉積與擊返製程也可有利地受惠於相乘效應。當單一擊返離子362撞擊阻障層360但造成多重原子佈植進入閘極介電層350時,會造成相乘效應。例如,阻障層360沉積,且提供擊返離子362轟擊阻障層。轟擊離子隨後驅引存在於阻障層360中的離子進入閘極介電層350中。由於轟擊製程之故,當單一擊返離子362接觸阻障層時,可佈植多重離子。相乘效應作用可為有效地減少閘極介電層350之K值且減少需要轟擊阻障層360的離子的量。 The strikeback ions 362 can be the same ions as the ions used to form the barrier layer 360. In this regard, boron and/or carbon ions can be used as the barrier layer 360 and as the flyback ion 362. The use of deposition and flyback processes can also advantageously benefit from the multiplication effect. When a single hitback ion 362 strikes the barrier layer 360 but causes multiple atoms to implant into the gate dielectric layer 350, a multiplication effect is created. For example, barrier layer 360 is deposited and a strikeback ion 362 is provided to bombard the barrier layer. The bombardment ions then drive ions present in the barrier layer 360 into the gate dielectric layer 350. Due to the bombardment process, multiple ions can be implanted when a single strikeback ion 362 contacts the barrier layer. The multiplying effect can be effective to reduce the K value of the gate dielectric layer 350 and reduce the amount of ions that need to bombard the barrier layer 360.

類似上述的直接離子佈植製程,硼離子、碳離子、以及硼與碳離子之組合可藉由沉積與擊返製程佈植至閘極介電層350中。佈植製程可經調整以藉由利用雙方向角離子佈植製程提供期望結果。例如,2nm的阻障層360是利用下述條件沉積:CH4/H2或B2H6/CH4/H2之混合物以約3kV之偏壓及劑量為約2x1016cm2的約+-20°的角雙方向離子佈植。雙方向角離子佈植製程可取決於裡面佈植離子的特徵的深寬比。 硼及/或碳離子已佈植於閘極介電層350之後,也可執行熱退火製程,該熱退火製程類似針對直接離子佈植製程所描述的退火製程。 Similar to the direct ion implantation process described above, boron ions, carbon ions, and combinations of boron and carbon ions can be implanted into the gate dielectric layer 350 by a deposition and flyback process. The implant process can be adjusted to provide the desired result by utilizing a bidirectional angular ion implantation process. For example, a 2 nm barrier layer 360 is deposited using a mixture of CH 4 /H 2 or B 2 H 6 /CH 4 /H 2 at a bias of about 3 kV and a dose of about 2×10 16 cm 2 . -20° angular bidirectional ion implantation. The bidirectional angular ion implantation process can depend on the aspect ratio of the characteristics of the implanted ions therein. After the boron and/or carbon ions have been implanted in the gate dielectric layer 350, a thermal annealing process can also be performed, which is similar to the annealing process described for the direct ion implantation process.

尚有另一實施例中,可在沉積閘極介電層350之後執行離子輔助沉積與摻雜(IADD)製程,如第3B”圖所繪示。用語「IADD」可指沉積膜/阻障層覆於材料表面上之製程。該製程可涉及以一範圍的角度引導離子至材料,而改變下面的材料的物理或化學結構。於IADD製程中,可同時平行地執行阻障層360之沉積、阻障層之擊返、與直接離子佈植。 In yet another embodiment, an ion assisted deposition and doping (IADD) process can be performed after depositing the gate dielectric layer 350, as depicted in Figure 3B. The term "IADD" can refer to a deposited film/barrier. A process in which a layer is applied to the surface of a material. The process may involve directing ions to the material at a range of angles while changing the physical or chemical structure of the underlying material. In the IADD process, deposition of the barrier layer 360, breakdown of the barrier layer, and direct ion implantation can be performed simultaneously in parallel.

在此,沉積製程可利用適合的硼及/或碳前驅物以形成含有硼及/或碳原子的阻障層360。擊返離子362可以是硼及/或碳離子;然而,擊返離子362也可以是除了硼及/或碳之外的離子。例如,擊返離子362可為砷。也可連同擊返離子362提供其他入射離子364(諸如氫、硼、與碳離子)。在此範例中,砷離子可濺射阻障層360且佈植於阻障層360內。擊返離子362可將阻障層360之原子(硼及/或碳)敲擊至閘極介電層350中。沉積與擊返製程可受惠於前文所述之相乘效應。雖然進行沉積與擊返製程,但入射離子364也可直接佈植進入閘極介電層350中。 Here, the deposition process may utilize a suitable boron and/or carbon precursor to form a barrier layer 360 containing boron and/or carbon atoms. The strikeback ions 362 can be boron and/or carbon ions; however, the strikeback ions 362 can also be ions other than boron and/or carbon. For example, the strikeback ions 362 can be arsenic. Other incident ions 364 (such as hydrogen, boron, and carbon ions) may also be provided in conjunction with the knockback ions 362. In this example, arsenic ions can be sputtered over the barrier layer 360 and implanted within the barrier layer 360. The strikeback ions 362 can strike atoms (boron and/or carbon) of the barrier layer 360 into the gate dielectric layer 350. The deposition and knockback process can benefit from the multiplication effects described above. Although the deposition and flyback process is performed, the incident ions 364 can also be implanted directly into the gate dielectric layer 350.

利用IADD製程可保持受處理之材料(閘極介電層350)內的離子劑量強化。舉例而言,利用AsH3作為擊返離子源與利用H2作為入射離子源的IADD製程提供介於5.0x1014(原子/cm2)至約1.5x1015(原子/cm2)之間的剛保持劑量,該劑量是針對範圍從約1.0nm至約8.0nm的沉積深 度。於此範例中,當阻障層360濺射而去時,保持劑量可飽和(saturate)該阻障層360。擊返離子沉積厚度(量)也可為控制劑量飽和的變數。 The ion dose enhancement in the material being processed (gate dielectric layer 350) is maintained by the IADD process. For example, using AsH 3 as the flyback ion source and the IADD process using H 2 as the incident ion source provides just between 5.0 x 10 14 (atoms/cm 2 ) to about 1.5 x 10 15 (atoms/cm 2 ). The dose is maintained for a deposition depth ranging from about 1.0 nm to about 8.0 nm. In this example, when the barrier layer 360 is sputtered away, the retention dose saturates the barrier layer 360. The thickness of the knockback ion deposit (amount) can also be a variable that controls the saturation of the dose.

也可藉由利用雙方向角離子佈植製程而調整IADD製程以提供期望結果。雙方向角離子佈植製程可取決於裡面佈植離子的特徵的深寬比。可於相對基板302表面的一範圍的角度提供用於直接佈植的擊返離子362與入射離子364。擊返離子362與入射離子364已佈植於閘極介電層350之後,也可執行類似上述之退火製程的熱退火製程。 The IADD process can also be adjusted to provide the desired result by utilizing a bidirectional angular ion implantation process. The bidirectional angular ion implantation process can depend on the aspect ratio of the characteristics of the implanted ions therein. The strike ions 362 and the incident ions 364 for direct implantation may be provided at a range of angles relative to the surface of the substrate 302. After the flashback ions 362 and the incident ions 364 have been implanted in the gate dielectric layer 350, a thermal annealing process similar to the annealing process described above can also be performed.

現在參考第3C圖,可移除一部分的閘極介電層350。例如,閘極介電層350之水平定向區域336可維持不被遮蔽且暴露於乾式或溼式蝕刻製程。蝕刻製程將會從水平定向區域336移除閘極介電層350。第3C圖繪示所得之基板302,該基板302具有閘極介電層350,該閘極介電層350形成覆於鰭結構310上。 Referring now to Figure 3C, a portion of the gate dielectric layer 350 can be removed. For example, the horizontally oriented region 336 of the gate dielectric layer 350 can remain unmasked and exposed to a dry or wet etch process. The etch process will remove the gate dielectric layer 350 from the horizontally oriented region 336. FIG. 3C illustrates the resulting substrate 302 having a gate dielectric layer 350 formed overlying the fin structure 310.

某些實施例中,可在已蝕刻閘極介電層350之後(而非直接在如第2C圖所繪示的閘極介電層350沉積後),可執行輕離子佈植製程、直接離子佈植製程、沉積與擊返製程、以及IADD製程(針對第3B’圖與第3B”圖於上文所述)。閘極材料(圖中未示)可接著沉積覆於基板上以形成完成的FinFET結構。 In some embodiments, the light ion implantation process, direct ionation, can be performed after the gate dielectric layer 350 has been etched (rather than directly after deposition of the gate dielectric layer 350 as depicted in FIG. 2C). The implant process, the deposition and flyback process, and the IADD process (described above for Figures 3B' and 3B). The gate material (not shown) can then be deposited over the substrate to form the finish. The FinFET structure.

本文所述的方法可藉由例如於電腦可讀儲存媒體上實際上實施指令之程式而自動化,該電腦可讀儲存媒體能夠被可執行該等指令的機器所讀。通用電腦是此類機器的一個 範例。此技術中廣為所知的適合儲存媒體之非限制性清單包括諸如下述裝置:可讀或可寫CD、快閃記憶體晶片、各種磁性儲存媒體、與類似物。 The methods described herein can be automated by, for example, a program that actually implements instructions on a computer readable storage medium that can be read by a machine that can execute the instructions. Universal computer is one of these machines example. A non-limiting list of suitable storage media known in the art includes devices such as readable or writable CDs, flash memory chips, various magnetic storage media, and the like.

總結而論,根據各種實施例,可於3D結構形成之各階段執行各種離子佈植製程,諸如輕離子佈植、直接離子佈植、沉積與擊返、與IADD。離子佈植製程可受惠於利用雙方向角佈植,以更精準地調整離子佈植製程的某些態樣。本文所述的全部製程可在室溫或升高的溫度下執行。某些製程可在室溫也可在升高的溫度執行,這取決於期望的佈植特性。離子佈植製程可有利地降低閘極介電材料之K值,同時維持閘極介電質之整體性,而不增加閘極介電材料之厚度。所得的閘極介電材料可減少整體閘極高度,同時最小化寄生電容,而可提供改良的微電子元件。 In summary, various ion implantation processes, such as light ion implantation, direct ion implantation, deposition and flyback, and IADD, can be performed at various stages of 3D structure formation, in accordance with various embodiments. The ion implantation process can benefit from the use of bidirectional angle implants to more precisely adjust certain aspects of the ion implantation process. All of the processes described herein can be performed at room temperature or elevated temperatures. Some processes can be performed at room temperature or at elevated temperatures, depending on the desired implant characteristics. The ion implantation process can advantageously reduce the K value of the gate dielectric material while maintaining the integrity of the gate dielectric without increasing the thickness of the gate dielectric material. The resulting gate dielectric material can reduce the overall gate height while minimizing parasitic capacitance, while providing improved microelectronic components.

雖然前述內容涉及本案揭露內容之實施例,但可不背離本案揭露內容之基本範疇而設計本案揭露內容之其他與進一步之實施例,且本案揭露內容之範疇由隨後的申請專利範圍所決定。 While the foregoing is directed to the embodiments of the present disclosure, other and further embodiments of the present disclosure may be devised without departing from the scope of the disclosures of the present disclosure, and the scope of the disclosure is determined by the scope of the appended claims.

200‧‧‧特徵 200‧‧‧ characteristics

202‧‧‧基板 202‧‧‧Substrate

204‧‧‧閘極 204‧‧‧ gate

206‧‧‧閘極介電質 206‧‧‧gate dielectric

208‧‧‧第二區域 208‧‧‧Second area

209‧‧‧路徑 209‧‧‧ Path

210‧‧‧第一區域 210‧‧‧First area

211‧‧‧路徑 211‧‧‧ Path

212‧‧‧側壁 212‧‧‧ side wall

214‧‧‧材料 214‧‧‧Materials

216‧‧‧底部區域 216‧‧‧ bottom area

218‧‧‧頂部區域 218‧‧‧ top area

220‧‧‧節距長度 220‧‧‧pitch length

222‧‧‧高度 222‧‧‧ Height

Claims (20)

一種形成一閘極的方法,包括下述步驟:將一基板移送至一電漿處理設備中,該基板具有一3D結構,該3D結構包括一閘極介電質結構,該閘極介電質結構配置成鄰近一假閘極(dummy gate)結構;以及以該設備將該閘極介電質結構之一垂直定向部分暴露至離子,其中一或多個離子轟擊角是回應該3D結構的一深寬比而選擇。 A method of forming a gate, comprising the steps of: transferring a substrate to a plasma processing apparatus, the substrate having a 3D structure, the 3D structure comprising a gate dielectric structure, the gate dielectric The structure is configured to be adjacent to a dummy gate structure; and the device exposes a vertically oriented portion of the gate dielectric structure to the ions, wherein the one or more ion bombardment angles are one of the 3D structures Choose from a wide aspect ratio. 如請求項1所述之方法,其中該閘極介電質結構包括一材料,該材料選自由氮化硼、氮化矽、氮化矽碳、與二氧化矽所構成之群組,且該假閘極結構包括一矽材料。 The method of claim 1, wherein the gate dielectric structure comprises a material selected from the group consisting of boron nitride, tantalum nitride, tantalum nitride carbon, and germanium dioxide, and The dummy gate structure includes a crucible material. 如請求項1所述之方法,其中暴露至該閘極介電質結構的該垂直定向部分的離子是選自由He+、H3 +、H2 +、H+、Ne+、F+、CFx +、CHx +、CHx +、B+、BF2 +、BxHy +、Xe+、CxHy +、分子碳、硼、與碳化硼所構成之群組。 The method of claim 1, wherein the ions exposed to the vertically oriented portion of the gate dielectric structure are selected from the group consisting of He + , H 3 + , H 2 + , H + , Ne + , F + , CF A group consisting of x + , CH x + , CH x + , B + , BF 2 + , B x H y + , Xe + , C x H y + , molecular carbon, boron, and boron carbide. 如請求項1所述之方法,其中該等離子在該閘極介電質結構內產生至少一個空穴。 The method of claim 1 wherein the plasma produces at least one void within the gate dielectric structure. 如請求項1所述之方法,其中一第一轟擊角介於約+10°至約+20°之間,且其中一第二轟擊角介於約-10°至約-20°之間。 The method of claim 1, wherein a first bombardment angle is between about +10° and about +20°, and wherein a second bombardment angle is between about -10° and about -20°. 如請求項1所述之方法,進一步包括下述步驟:於該設備中在低於約400℃之溫度將該閘極介電質結構暴露至離子。 The method of claim 1 further comprising the step of exposing the gate dielectric structure to ions at a temperature of less than about 400 ° C in the apparatus. 如請求項1所述之方法,進一步包括下述步驟:在將該閘極介電質結構暴露至離子之前,蝕刻該閘極介電質結構。 The method of claim 1, further comprising the step of etching the gate dielectric structure prior to exposing the gate dielectric structure to ions. 如請求項1所述之方法,進一步包括下述步驟:在將該閘極介電質結構暴露至離子之前,移除該假閘極結構。 The method of claim 1 further comprising the step of removing the dummy gate structure prior to exposing the gate dielectric structure to ions. 一種形成閘極的方法,包括下述步驟:將一基板移送至一電漿處理設備中,該基板具有一3D結構,該3D結構包括一閘極介電質結構,該閘極介電質結構配置成鄰近一假閘極結構;在該閘極介電質結構上形成一阻障層;以及於該設備中將該阻障層暴露至離子,其中一或多個離子轟擊角是回應該3D結構的一深寬比而選擇。 A method of forming a gate includes the steps of: transferring a substrate to a plasma processing apparatus, the substrate having a 3D structure, the 3D structure including a gate dielectric structure, the gate dielectric structure Arranged adjacent to a dummy gate structure; forming a barrier layer on the gate dielectric structure; and exposing the barrier layer to ions in the device, wherein one or more ion bombardment angles are 3D The aspect ratio of the structure is chosen. 如請求項9所述之方法,其中該阻障層包括碳與硼之至少一者。 The method of claim 9, wherein the barrier layer comprises at least one of carbon and boron. 如請求項9所述之方法,其中該等離子包括硼、碳、與砷之至少一者。 The method of claim 9, wherein the plasma comprises at least one of boron, carbon, and arsenic. 如請求項9所述之方法,其中形成一阻障層之該步驟與將該阻障層暴露至離子之步驟是同時執行。 The method of claim 9, wherein the step of forming a barrier layer and the step of exposing the barrier layer to ions are performed simultaneously. 如請求項9所述之方法,進一步包括下述步驟:於在該閘極介電質結構上形成一阻障層及將該阻障層暴露至離子之前,移除該假閘極結構。 The method of claim 9, further comprising the step of removing the dummy gate structure before forming a barrier layer on the gate dielectric structure and exposing the barrier layer to ions. 一種形成閘極的方法,包括下述步驟:將一基板移送至一電漿處理設備中,該基板具有一3D結構,該3D結構包括一閘極介電質結構,該閘極介電質結構配置於至少兩個鰭結構上;以該設備將該閘極介電質結構暴露至離子,其中一個或多個離子轟擊角是回應該等鰭結構的一深寬比而選擇。 A method of forming a gate includes the steps of: transferring a substrate to a plasma processing apparatus, the substrate having a 3D structure, the 3D structure including a gate dielectric structure, the gate dielectric structure Disposed on at least two fin structures; the device exposes the gate dielectric structure to ions, wherein one or more ion bombardment angles are selected in response to an aspect ratio of the fin structure. 如請求項14所述之方法,其中該閘極介電質結構包括一材料,該材料選自由氮化硼、氮化矽、氮化矽碳、與二氧化矽所構成之群組,且該至少兩個鰭結構包括一矽材料。 The method of claim 14, wherein the gate dielectric structure comprises a material selected from the group consisting of boron nitride, tantalum nitride, tantalum nitride carbon, and germanium dioxide, and The at least two fin structures comprise a stack of materials. 如請求項14所述之方法,其中暴露至該閘極介電質結構的離子是選自由He+、H3 +、H2 +、H+、Ne+、F+、CFx +、CHx +、CHx +、B+、BF2 +、BxHy +、Xe+、CxHy +、分子碳、硼、與碳化 硼所構成之群組。 The method of claim 14, wherein the ions exposed to the gate dielectric structure are selected from the group consisting of He + , H 3 + , H 2 + , H + , Ne + , F + , CF x + , CH x a group consisting of + , CH x + , B + , BF 2 + , B x H y + , Xe + , C x H y + , molecular carbon, boron, and boron carbide. 如請求項14所述之方法,其中一第一轟擊角介於約+10°至約+20°之間,且其中一第二轟擊角介於約-10°至約-20°之間。 The method of claim 14, wherein a first impact angle is between about +10° and about +20°, and wherein a second impact angle is between about -10° and about -20°. 如請求項14所述之方法,其中在低於約400℃之溫度執行將該閘極介電質結構暴露之該步驟。 The method of claim 14, wherein the step of exposing the gate dielectric structure is performed at a temperature below about 400 °C. 如請求項14所述之方法,進一步包括下述步驟:在將該閘極介電質結構暴露至離子之前,蝕刻該閘極介電質結構。 The method of claim 14, further comprising the step of etching the gate dielectric structure prior to exposing the gate dielectric structure to ions. 如請求項14所述之方法,進一步包括下述步驟:形成一阻障層覆於該閘極介電質結構上,其中該阻障層包括硼與碳之至少一者。 The method of claim 14, further comprising the step of forming a barrier layer overlying the gate dielectric structure, wherein the barrier layer comprises at least one of boron and carbon.
TW103141037A 2013-11-27 2014-11-26 Method to reduce k value of dielectric layer for advanced finfet formation TWI605497B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361909551P 2013-11-27 2013-11-27
US14/505,167 US9379021B2 (en) 2013-10-03 2014-10-02 Method to reduce K value of dielectric layer for advanced FinFET formation

Publications (2)

Publication Number Publication Date
TW201528342A true TW201528342A (en) 2015-07-16
TWI605497B TWI605497B (en) 2017-11-11

Family

ID=53199566

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103141037A TWI605497B (en) 2013-11-27 2014-11-26 Method to reduce k value of dielectric layer for advanced finfet formation

Country Status (2)

Country Link
TW (1) TWI605497B (en)
WO (1) WO2015080945A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI743083B (en) * 2016-03-30 2021-10-21 美商英特爾公司 Microelectronic transistor source/drain formation using angled etching

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3046290B1 (en) * 2015-12-23 2019-09-20 Commissariat A L'energie Atomique Et Aux Energies Alternatives METHOD FOR PRODUCING SPACERS WITH LOW PERMITTIVITY
TWI746673B (en) 2016-12-15 2021-11-21 台灣積體電路製造股份有限公司 Fin-like field effect transistor device and conformal transfer doping method for fin-like field effect transistor
US10276691B2 (en) 2016-12-15 2019-04-30 Taiwan Semiconductor Manufacturing Co., Ltd. Conformal transfer doping method for fin-like field effect transistor
US10680084B2 (en) 2017-11-10 2020-06-09 Taiwan Semiconductor Manufacturing Co., Ltd. Epitaxial structures for fin-like field effect transistors

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001217416A (en) * 2000-02-02 2001-08-10 Hitachi Ltd Method of manufacturing semiconductor integrated circuit device
US20060237801A1 (en) * 2005-04-20 2006-10-26 Jack Kavalieros Compensating for induced strain in the channels of metal gate transistors
US8318570B2 (en) * 2009-12-01 2012-11-27 International Business Machines Corporation Enhancing MOSFET performance by optimizing stress properties
DE102010028462B4 (en) * 2010-04-30 2015-06-11 Globalfoundries Dresden Module One Limited Liability Company & Co. Kg Strain memory technique with lower edge zoning capacity based on silicon nitride in MOS semiconductor devices
US8669170B2 (en) * 2012-01-16 2014-03-11 Globalfoundries Inc. Methods of reducing gate leakage

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI743083B (en) * 2016-03-30 2021-10-21 美商英特爾公司 Microelectronic transistor source/drain formation using angled etching
US11515402B2 (en) 2016-03-30 2022-11-29 Intel Corporation Microelectronic transistor source/drain formation using angled etching

Also Published As

Publication number Publication date
TWI605497B (en) 2017-11-11
WO2015080945A1 (en) 2015-06-04

Similar Documents

Publication Publication Date Title
US9379021B2 (en) Method to reduce K value of dielectric layer for advanced FinFET formation
US9773675B2 (en) 3D material modification for advanced processing
TWI605497B (en) Method to reduce k value of dielectric layer for advanced finfet formation
US9583339B2 (en) Method for forming spacers for a transistor gate
US9570317B2 (en) Microelectronic method for etching a layer
US9190498B2 (en) Technique for forming a FinFET device using selective ion implantation
US9378970B2 (en) Plasma etching process
US8992785B2 (en) Method for modifying an etch rate of a material layer using energetic charged particles
TWI696291B (en) MOTHODS OF PROCESSING THREE DIMENSIONAL DEVICE AND finFET DEVICE, AND METHOD OF FORMING finFET DEVICE
US9818621B2 (en) Cyclic oxide spacer etch process
US9947768B2 (en) Method for forming spacers for a transistor gate
CN107731753B (en) Method for forming semiconductor structure
US20150214339A1 (en) Techniques for ion implantation of narrow semiconductor structures
US10658197B2 (en) Method for producing low-permittivity spacers
US10026657B2 (en) Method for producing on the same transistors substrate having different characteristics
US9607840B2 (en) Method for forming spacers for a transistor gate
KR102170485B1 (en) Replacement metal gate transistor
TWI718495B (en) Method and apparatus of forming structures by symmetric selective physical vapor deposition
CN105097536A (en) Forming method of semiconductor structure
US11205593B2 (en) Asymmetric fin trimming for fins of FinFET device
US9337314B2 (en) Technique for selectively processing three dimensional device
US10014207B2 (en) Method of manufacturing dielectric layers of semiconductor structure
CN105655253B (en) Semiconductor structure and forming method thereof
KR20090067553A (en) Compositions incorporation apparatus of substrate using neutral beam and method thereof
CN105810636B (en) Method for manufacturing non-volatile memory

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees