TW201526327A - Organic light-emitting device and method - Google Patents

Organic light-emitting device and method Download PDF

Info

Publication number
TW201526327A
TW201526327A TW103141072A TW103141072A TW201526327A TW 201526327 A TW201526327 A TW 201526327A TW 103141072 A TW103141072 A TW 103141072A TW 103141072 A TW103141072 A TW 103141072A TW 201526327 A TW201526327 A TW 201526327A
Authority
TW
Taiwan
Prior art keywords
light
polymer
electron
emitting
glass transition
Prior art date
Application number
TW103141072A
Other languages
Chinese (zh)
Other versions
TWI643369B (en
Inventor
伊拉利亞 葛里吉
奧斯卡 弗南德茲
彌凱爾 拉蒙
Original Assignee
劍橋顯示科技有限公司
諾瓦雷有限責任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 劍橋顯示科技有限公司, 諾瓦雷有限責任公司 filed Critical 劍橋顯示科技有限公司
Publication of TW201526327A publication Critical patent/TW201526327A/en
Application granted granted Critical
Publication of TWI643369B publication Critical patent/TWI643369B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent

Abstract

An organic light-emitting device having a light-emitting layer comprising a light-emitting polymer, and an electron-transporting layer on the light-emitting layer and comprising an electron-transporting material, wherein the glass transition temperatures, measured in degrees Celsius, of the electron-transporting material (Tg(ETM)) and the light-emitting polymer (Tg(LEP)) satisfy the following inequality: Tg(ETM)+Tg(LEP) > 270 and wherein the glass transition temperature of the electron-transporting material is greater than 140 degrees Celsius. The device may comprise a polymer light-emitting layer and a non-polymeric (small-molecule) electron-transporting layer deposited on the light-emitting layer, the electron-transporting layer comprising a blend of electron-transporting materials containing small-molecule hosts and electron-donating materials containing small-molecule dopants.

Description

有機發光裝置及方法 Organic light emitting device and method

本發明係關於有機發光裝置及其製造方法。更特定而言,本發明係關於包含聚合物發光層及非聚合物(亦稱為「小分子」)電子傳輸層之有機發光裝置。該等裝置有時稱為「混合裝置」。 The present invention relates to an organic light-emitting device and a method of fabricating the same. More particularly, the present invention relates to organic light-emitting devices comprising a polymeric light-emitting layer and a non-polymer (also referred to as "small molecule") electron transport layer. These devices are sometimes referred to as "mixing devices."

包含活性有機材料之電子裝置由於在諸如以下裝置中之用途正吸引愈來愈多的關注:有機發光二極體(OLED)、有機光響應裝置(具體而言有機光伏打裝置及有機光感測器)、有機電晶體及記憶體裝置。包含有機材料之裝置提供多種益處(例如低重量、低功率消耗及撓性),且其可用於顯示器或照明器具之製造中。使用可溶性有機材料聚合物或小分子允許在裝置層製造中使用溶液處理,例如噴墨印刷、旋轉塗佈、浸塗、狹縫型擠壓式印刷(slot die printing)、噴嘴印刷、捲對捲印刷、凹版印刷及柔性版印刷。而且,使用不溶性小分子能夠藉由真空沈積製造裝置層。真空沈積方法之實例係複數種不同小分子材料之真空昇華及共蒸發(或同時蒸發)。 Electronic devices containing active organic materials are attracting increasing attention due to their use in devices such as organic light-emitting diodes (OLEDs), organic light-responsive devices (specifically, organic photovoltaic devices and organic light sensing). , organic transistors and memory devices. Devices containing organic materials offer a variety of benefits (eg, low weight, low power consumption, and flexibility) and can be used in the manufacture of displays or lighting fixtures. The use of soluble organic material polymers or small molecules allows solution processing in the fabrication of device layers, such as inkjet printing, spin coating, dip coating, slot die printing, nozzle printing, roll-to-roll Printing, gravure and flexographic printing. Moreover, the use of insoluble small molecules enables the fabrication of device layers by vacuum deposition. Examples of vacuum deposition methods are vacuum sublimation and co-evaporation (or simultaneous evaporation) of a plurality of different small molecule materials.

OLED可包含基板,其攜載陽極、陰極、一或多個有機發光層、及在陽極與陰極之間之一或多個電荷注入及/或電荷傳輸層。 The OLED can comprise a substrate carrying an anode, a cathode, one or more organic light-emitting layers, and one or more charge injection and/or charge transport layers between the anode and the cathode.

在裝置之操作期間,電洞經由陽極注入裝置中且電子經由陰極注入。發光材料之最高佔據分子軌域(HOMO)中之電洞與最低未佔據分子軌域(LUMO)中之電子組合以在重組時形成以光釋放能量之激 子。 During operation of the device, holes are injected through the anode and electrons are injected through the cathode. The hole in the highest occupied molecular orbital (HOMO) of the luminescent material is combined with the electrons in the lowest unoccupied molecular orbital (LUMO) to form a light-releasing energy during recombination. child.

發光層係由可包括小分子、聚合物及樹枝狀聚合物材料之發光材料組成或包括該等發光材料。適宜發光聚合物包括聚(伸芳基伸乙烯基)(例如WO 90/13148中所揭示之聚(對-伸苯基伸乙烯基))及聚伸芳基(例如聚茀)。在US 4,539,507中,發光材料係(8-羥基喹啉)鋁(「Alq3」,在本文中亦稱為ET3)。WO 99/21935揭示樹枝狀聚合物發光材料。 The luminescent layer is comprised of or includes luminescent materials that can include small molecules, polymers, and dendritic polymeric materials. Suitable luminescent polymers include poly(arylene extended vinyl) (e.g., poly(p-phenylene vinyl) as disclosed in WO 90/13148) and polyaryl (e.g., polyfluorene). In US 4,539,507, the luminescent material is (8-hydroxyquinoline)aluminum ("Alq3", also referred to herein as ET3). WO 99/21935 discloses dendrimer luminescent materials.

發光層可替代地由半導體主體材料及發光摻雜劑組成或包括其,其中能量自主體材料轉移至發光摻雜劑。舉例而言,J.Appl.Phys.65,3610,1989揭示摻雜有螢光發光摻雜劑之主體材料(亦即,經由單重態激子之衰變發射光之發光材料),且Appl.Phys.Lett.,2000,77,904揭示摻雜有磷光發光摻雜劑之主體材料(亦即,經由三重態激子之衰變發射光之發光材料)。 The luminescent layer can alternatively consist of or include a semiconductor host material and an luminescent dopant, wherein energy is transferred from the host material to the luminescent dopant. For example, J. Appl. Phys. 65, 3610, 1989 discloses a host material doped with a fluorescent dopant (ie, a luminescent material that emits light via decay of singlet excitons), and Appl. Phys .Lett., 2000, 77, 904 discloses a host material doped with a phosphorescent luminescent dopant (i.e., a luminescent material that emits light via decay of triplet excitons).

電荷傳輸層係由適用於傳輸電洞及/或電子之材料組成或包括其,該等材料可包括小分子、聚合物及樹枝狀聚合物材料。適宜電子傳輸聚合物包括三嗪及嘧啶,例如彼等揭示於US8003227中者。適宜電洞傳輸聚合物包括三芳基胺,例如彼等揭示於申請人之早期申請案WO 02/066537及WO 2004/084260中者。 The charge transport layer is comprised of or includes materials suitable for transporting holes and/or electrons, which may include small molecules, polymers, and dendrimer materials. Suitable electron transport polymers include triazines and pyrimidines, such as those disclosed in U.S. Patent No. 8,003,227. Suitable hole transport polymers include triarylamines such as those disclosed in the applicant's earlier applications WO 02/066537 and WO 2004/084260.

有利地,電子傳輸層包含半導體主體材料及半導體摻雜劑材料。經摻雜電子傳輸材料之典型事例係:經吖啶橙鹼(AOB)摻雜之富勒烯(fullerene)C60;經隱色結晶紫摻雜之苝-3,4,9,10-四甲酸-3,4,9,10-二酸酐(PTCDA);經四(1,3,4,6,7,8-六氫-2H-嘧啶并[1,2-a]嘧啶根合)二鎢(II)(W2(hpp)4,(ND1))摻雜之2,9-二(菲-9-基)-4,7-二苯基-1,10-菲咯啉;經3,6-雙-(二甲基胺基)-吖啶摻雜之萘四甲酸二酸酐(NTCDA);經雙(伸乙基-二硫基)四硫雜富瓦烯(fulvalene)(BEDT-TTF)摻雜之NTCDA。 Advantageously, the electron transport layer comprises a semiconductor host material and a semiconductor dopant material. Typical examples of doped electron transport materials are: fullerene C60 doped with acridine orange base (AOB); 苝-3,4,9,10-tetracarboxylic acid doped with leuco crystal violet -3,4,9,10-dianhydride (PTCDA); tetra-tungsten by tetrakis (1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine) (II) (W 2 (hpp) 4 , (ND1)) doped 2,9-di(phenanthrene-9-yl)-4,7-diphenyl-1,10-phenanthroline; 6-bis-(dimethylamino)-acridine-doped naphthalenetetracarboxylic acid dianhydride (NTCDA); bisvalyl-dithio) tetravalefulvalene (BEDT-TTF) ) doped NTCDA.

主體及摻雜劑材料可藉由氣相沈積同時沈積以形成包含主體及摻雜劑材料之混合物或摻合物之電子傳輸層。 The host and dopant material can be simultaneously deposited by vapor deposition to form an electron transport layer comprising a mixture or blend of host and dopant materials.

在典型OLED結構中,包含主體-摻雜劑小分子材料之電子傳輸層可直接氣相沈積於包含聚合物之發光層上,且然後用熱蒸發金屬層覆蓋。金屬層通常將形成裝置之陰極金屬觸點。然而,該等裝置在烘烤之後通常遭受極差的熱穩定性,其自身體現為變差的裝置參數,例如PL(光致發光)、操作電壓及外部量子效率。該等參數通常係將裝置在預定溫度下烘烤預定時期之後在室溫下量測,且然後與在烘烤步驟之前在裝置上所量測之值比較。 In a typical OLED structure, an electron transport layer comprising a host-dopant small molecule material can be directly vapor deposited onto a light-emitting layer comprising a polymer and then covered with a layer of thermally evaporated metal. The metal layer will typically form the cathode metal contacts of the device. However, such devices typically suffer from very poor thermal stability after baking, which manifest themselves as poor device parameters such as PL (photoluminescence), operating voltage, and external quantum efficiency. These parameters are typically measured at room temperature after the device has been baked at a predetermined temperature for a predetermined period of time and then compared to the values measured on the device prior to the baking step.

OLED之熱穩定性係關於裝置性能之關鍵參數,因為在顯示器操作溫度下之加速劣化顯著降低顯示器之使用壽命。因此,業內需要提供(例如)光致發光、操作電壓及外部量子效率不因烘烤裝置而變之熱穩定有機發光裝置。 The thermal stability of an OLED is a critical parameter with respect to device performance because accelerated degradation at the operating temperature of the display significantly reduces the useful life of the display. Accordingly, there is a need in the art to provide thermally stable organic light-emitting devices that are, for example, photoluminescent, operating voltage, and external quantum efficiency that are not altered by the baking apparatus.

根據本發明之第一態樣,提供有機發光裝置,其具有包含發光聚合物之發光層及於發光層上且包含電子傳輸材料之電子傳輸層,其中電子傳輸材料(Tg(ETM))及發光聚合物(Tg(LEP))之玻璃轉化溫度(以℃量測)滿足以下不等式:Tg(ETM)+Tg(LEP)>270 According to a first aspect of the present invention, there is provided an organic light-emitting device having a light-emitting layer comprising a light-emitting polymer and an electron transport layer on the light-emitting layer and comprising an electron transport material, wherein the electron transport material (Tg(ETM)) and the light-emitting layer The glass transition temperature (measured in °C) of the polymer (Tg(LEP)) satisfies the following inequality: Tg(ETM)+Tg(LEP)>270

且其中電子傳輸材料之玻璃轉化溫度高於140℃。 And wherein the glass transition temperature of the electron transporting material is higher than 140 °C.

電子傳輸材料(亦稱為「主體」)之玻璃轉化溫度(Tg)大於140℃係此材料之較龐大性質之指示,由此減少其甚至在接近發光聚合物之Tg的溫度下至發光聚合物中之擴散。因此,電子傳輸層(ETL)之主體分子的大小在決定OLED之熱穩定性中起到重要作用。 The glass transition temperature (Tg) of an electron transporting material (also referred to as "host") is greater than 140 ° C as an indication of the relatively bulky nature of the material, thereby reducing its temperature to the luminescent polymer even at temperatures near the Tg of the luminescent polymer. The spread of it. Therefore, the size of the host molecule of the electron transport layer (ETL) plays an important role in determining the thermal stability of the OLED.

較佳地,電子傳輸材料之玻璃轉化溫度高於155℃,且更佳地高於175℃。 Preferably, the electron transporting material has a glass transition temperature of higher than 155 ° C, and more preferably higher than 175 ° C.

較佳地,電子傳輸材料係非聚合物分子主體、有利地ET1。ET1及ET2分子主體(亦稱為「小分子」主體)之化學結構顯示於以下: Preferably, the electron transporting material is a non-polymeric molecular host, advantageously ET1. The chemical structures of the ET1 and ET2 molecular entities (also known as "small molecules") are shown below:

喹啉鋯ET1可藉由(例如)Zhurnal Neorganitcheskoi Khimii 1961,第6卷,第1338-1341頁中所闡述之程序獲得,ET2可藉由(例如)CS150747中所闡述之程序獲得。 Quinolinium zirconium ET1 can be obtained, for example, by the procedure set forth in Zhurnal Neorganitcheskoi Khimii 1961, Vol. 6, pp. 1338-1341, which can be obtained by, for example, the procedure set forth in CS150747.

ET1主體之較龐大性質自Tg之差異(ET1之179℃與ET2之105℃相比)亦顯而易見。據信,由於其較大的物理尺寸,較龐大之小分子主體不太可能擴散至發光聚合物中。 The larger nature of the ET1 body is also evident from the difference in Tg (179 ° C for ET1 compared to 105 ° C for ET 2). It is believed that due to its larger physical size, larger bulky molecules are less likely to diffuse into the luminescent polymer.

電子傳輸層可進一步包含供電子材料。有利地,供電子材料係非聚合物分子(亦稱為「小分子」)摻雜劑、較佳地ND1。小分子摻雜劑係高反應性化合物,其確保生成足夠的電子用於電子傳輸層內之最佳電荷傳輸。 The electron transport layer may further comprise an electron donating material. Advantageously, the electron donating material is a non-polymeric molecule (also referred to as a "small molecule") dopant, preferably ND1. Small molecule dopants are highly reactive compounds that ensure the formation of sufficient electrons for optimal charge transport within the electron transport layer.

根據本發明之第二態樣,提供有機發光裝置,其具有包含發光聚合物之發光層及於發光層上且包含電子傳輸材料之電子傳輸層,其中電子傳輸材料(Tg(ETM))及發光聚合物(Tg(LEP))之玻璃轉化溫度滿足以下不等式:Tg(ETM)+Tg(LEP)>280 According to a second aspect of the present invention, there is provided an organic light-emitting device having a light-emitting layer comprising a light-emitting polymer and an electron transport layer on the light-emitting layer and comprising an electron transport material, wherein the electron transport material (Tg(ETM)) and the light-emitting layer The glass transition temperature of the polymer (Tg(LEP)) satisfies the following inequality: Tg(ETM)+Tg(LEP)>280

且其中發光聚合物之玻璃轉化溫度高於180℃。 And wherein the luminescent polymer has a glass transition temperature higher than 180 °C.

通常,非晶形聚合物之玻璃轉化係當加熱聚合物時自硬或固體狀態至軟化、黏性狀態之可逆轉化。此轉化包含聚合物黏性之平滑變化,而無聚合物結構之任何明顯變化。Tg係使用DSC(差示掃描量熱法)量測。 Generally, the glass transition of an amorphous polymer is a reversible conversion from a hard or solid state to a softened, viscous state when the polymer is heated. This conversion involves a smooth change in the viscosity of the polymer without any significant change in the polymer structure. The Tg was measured using DSC (differential scanning calorimetry).

本文提供之Tg值係如使用Perkin Elmer Pyris 1差示掃描量熱計所量測。在本文中所給出之Tg值係外推之半Cp(比熱容)。 The Tg values provided herein were as measured using a Perkin Elmer Pyris 1 differential scanning calorimeter. The Tg values given herein are extrapolated half-Cp (specific heat capacity).

為量測Tg值,將試樣在鋁盤中稱重並用鋁蓋密封且針對空盤及蓋實施量測,並加熱且使用氮吹掃氣體冷卻。 To measure the Tg value, the samples were weighed in an aluminum pan and sealed with an aluminum lid and measured for the empty pan and lid, and heated and cooled using a nitrogen purge gas.

將試樣以40.00℃/分鐘之速率自30.00℃加熱至300.00℃,保持1.0分鐘,以40.00℃/分鐘之速率自300.00℃冷卻至30.00℃並再保持1.0分鐘,然後將此過程重複兩次。 The sample was heated from 30.00 ° C to 300.00 ° C at a rate of 40.00 ° C / min for 1.0 min, cooled from 300.00 ° C to 30.00 ° C at a rate of 40.00 ° C / min and held for another 1.0 min, then this process was repeated twice.

Tg值係在第二次加熱之後給出,且針對來自第三次加熱之值進行驗證。 The Tg value is given after the second heating and is verified against the value from the third heating.

玻璃轉化溫度超過180℃且在約80℃至120℃下烘烤之發光聚合物可能不經歷黏度之變化。因此,直接沈積於發光層上之任何小分子(主體或摻雜劑分子)在烘烤步驟期間不會擴散至發光聚合物中,且可保存OLED之PL及操作電壓之完整性,如在烘烤步驟之後所量測。 Luminescent polymers having a glass transition temperature in excess of 180 ° C and baked at about 80 ° C to 120 ° C may not undergo a change in viscosity. Therefore, any small molecules (host or dopant molecules) deposited directly on the luminescent layer do not diffuse into the luminescent polymer during the baking step, and can preserve the integrity of the PL and operating voltage of the OLED, such as during baking. Measured after the baking step.

較佳地,發光聚合物經選擇或經調適以使Tg高於200℃、更佳地高於220℃、仍更佳地高於240℃且甚至更佳地高於260℃。 Preferably, the luminescent polymer is selected or adapted such that the Tg is above 200 °C, more preferably above 220 °C, still more preferably above 240 °C and even more preferably above 260 °C.

發光聚合物可為均聚物或包含兩個或更多個不同重複單元之共聚物。較佳地,發光聚合物係共聚物。 The luminescent polymer can be a homopolymer or a copolymer comprising two or more different repeating units. Preferably, the luminescent polymer is a copolymer.

發光聚合物可為共軛或非共軛聚合物。實例性非共軛聚合物係聚乙烯基咔唑(PVK)。 The luminescent polymer can be a conjugated or non-conjugated polymer. An exemplary non-conjugated polymer is polyvinyl carbazole (PVK).

發光聚合物較佳係具有包含共軛至毗鄰重複單元之重複單元之骨架的共軛聚合物。 The luminescent polymer preferably has a conjugated polymer comprising a backbone conjugated to repeating units adjacent to the repeating unit.

發光聚合物較佳地包含伸芳基重複單元。實例性伸芳基重複單元包括伸苯基重複單元及茀重複單元。 The luminescent polymer preferably comprises an extended aryl repeating unit. Exemplary extended aryl repeat units include a phenyl extended repeat unit and a fluorene repeat unit.

實例性伸苯基重複單元係未經取代或經一或多個取代基取代之1,4-鏈接之伸苯基重複單元。實例性取代基包括C1-20烷基,其中C1-20烷基之一或多個非毗鄰C原子可經視情況經取代之芳基或雜芳基、較 佳地未經取代之苯基或經一或多個C1-10烷基取代之苯基;O;S;經取代之N;C=O;或-COO-替代,且其中C1-20烷基之一或多個H原子可經F替代。經取代之N(在存在時)可為烴基,例如C1-10烷基、未經取代之苯基或經一或多個C1-10烷基取代之苯基。 An exemplary phenyl extended repeat unit is a 1,4-linked phenyl repeating unit which is unsubstituted or substituted with one or more substituents. Exemplary substituents include a C 1-20 alkyl group wherein one or more non-adjacent C atoms of the C 1-20 alkyl group may be optionally substituted aryl or heteroaryl, preferably unsubstituted benzene a phenyl group substituted with one or more C1-10 alkyl groups; O; S; substituted N; C=O; or -COO-substituted, and wherein one or more of C 1-20 alkyl groups Atoms can be replaced by F. The substituted N, when present, can be a hydrocarbyl group such as a C 1-10 alkyl group, an unsubstituted phenyl group or a phenyl group substituted with one or more C 1-10 alkyl groups.

實例性茀重複單元具有式(I): An exemplary 茀 repeating unit has the formula (I):

其中R8在每次出現時相同或不同且係取代基,其中兩個基團R8可鏈接以形成環;R7係取代基;且d係0、1、2或3。 Wherein R 8 is the same or different and is a substituent at each occurrence, wherein two groups R 8 may be linked to form a ring; R 7 is a substituent; and d is 0, 1, 2 or 3.

較佳地,每一d係0。 Preferably, each d is 0.

在其中至少一個基團d係1、2或3之情形中,每一R7視情況選自由以下組成之群:烷基,例如C1-20烷基,其中一或多個非毗鄰C原子可經O、S、C=O及-COO-替代;視情況經取代之芳基;及視情況經取代之雜芳基。在存在時,R7較佳選自C1-20烷基及經取代或未經取代之芳基,例如未經取代之苯基或經一或多個C1-20烷基取代之苯基。 In the case of at least one of the groups d, 1, 2 or 3, each R 7 is optionally selected from the group consisting of alkyl groups, such as C 1-20 alkyl groups, wherein one or more non-adjacent C atoms Substituting O, S, C=O and -COO-; optionally substituted aryl; and optionally substituted heteroaryl. When present, R 7 is preferably selected from C 1-20 alkyl and substituted or unsubstituted aryl such as unsubstituted phenyl or phenyl substituted by one or more C 1-20 alkyl groups. .

每一R8可獨立地選自由以下組成之群:-烷基、視情況C1-20烷基,其中一或多個非毗鄰C原子可經視情況經取代之芳基或雜芳基、O、S、C=O或-COO-替代,且一或多個H原子可經F替代;且- 式-(Ar7)r之基團,其中每一Ar7獨立地係未經取代或經取代之芳基或雜芳基、較佳未經取代或經取代之苯基,且r至少係1、視情況1、2或3。若一或多個Ar7基團經取代,則該或每一取代基可經選自由C1-20烷基組成之群之取代基R1取代,其中一或多個非毗鄰C原子可經O、S、C=O及-COO-替代。較佳地,R1係C1-10烷基、C1-10烷氧基或烷 氧基醚基團。烷氧基醚基團可具有式-O(CH2O)n-R2,其中R2係C1-5烷基且n係1、2或3。 Each R 8 may be independently selected from the group consisting of: -alkyl, optionally C 1-20 alkyl, wherein one or more non-adjacent C atoms may be optionally substituted aryl or heteroaryl, O, S, C=O or -COO-substitution, and one or more H atoms may be replaced by F; and a group of the formula -(Ar 7 ) r wherein each Ar 7 is independently unsubstituted or Substituted aryl or heteroaryl, preferably unsubstituted or substituted phenyl, and r is at least 1, optionally 1, 2 or 3. If one or more Ar 7 groups are substituted, the or each substituent may be substituted with a substituent R 1 selected from the group consisting of C 1-20 alkyl groups, wherein one or more non-adjacent C atoms may pass through O, S, C=O and -COO- substitutions. Preferably, R 1 is a C 1-10 alkyl, C 1-10 alkoxy or alkoxy ether group. The alkoxy ether group can have the formula -O(CH 2 O) n -R 2 wherein R 2 is C 1-5 alkyl and n is 1, 2 or 3.

式(I)之一或多個重複單元的一個或兩個取代基R8可經選自以提供發光聚合物之高玻璃轉化溫度,較佳地玻璃轉化溫度高於180℃。 One or both substituents R 8 of one or more repeating units of formula (I) may be selected from a high glass transition temperature selected to provide a luminescent polymer, preferably at a glass transition temperature above 180 °C.

高玻璃轉化溫度聚合物包含式(I)之重複單元,視情況至少10mol%、20mol%、30mol%、40mol%或50mol%式(I)之重複單元,其中一或兩個基團R8係選自以下之基團:- 選自下式之基團: The high glass transition temperature polymer comprises a repeating unit of formula (I), optionally at least 10 mol%, 20 mol%, 30 mol%, 40 mol% or 50 mol% of repeating units of formula (I), wherein one or two groups R 8 are A group selected from the group consisting of: - a group selected from the group consisting of:

其中*代表至式(I)茀單元之附接點,且R1係如上所述、較佳地C1-5烷基或C1-5烷氧基或烷氧基醚基團;及-C1-5烷基。 Wherein * represents an attachment point to a unit of formula (I), and R 1 is as described above, preferably a C 1-5 alkyl or C 1-5 alkoxy or alkoxy ether group; C 1-5 alkyl.

發光聚合物可包含芳基胺重複單元。較佳地,發光聚合物之重複單元包含伸芳基重複單元、更佳地茀重複單元及芳基胺重複單元。 The luminescent polymer can comprise an arylamine repeating unit. Preferably, the repeating unit of the luminescent polymer comprises an extended aryl repeating unit, more preferably a fluorene repeating unit, and an arylamine repeating unit.

視情況,聚合物之重複單元係由一或多個伸芳基重複單元、較佳地一或多個茀重複單元及一或多個芳基胺重複單元組成。 Optionally, the repeating unit of the polymer consists of one or more extended aryl repeating units, preferably one or more fluorene repeating units, and one or more arylamine repeating units.

芳基胺重複單元可具有式(II): The arylamine repeating unit may have the formula (II):

其中Ar8、Ar9及Ar10在每次出現時獨立地選自經取代或未經取代之芳基或雜芳基,g係0或整數、較佳地0或1,R13係取代基,c、d及e 各自獨立地係1、2或3、較佳地1,且直接鏈接至式(II)之同一N原子之Ar8、Ar9、Ar10及R13中之任兩者可藉由直接鍵或二價基團鏈接。 Wherein Ar 8 , Ar 9 and Ar 10 are independently selected, at each occurrence, from substituted or unsubstituted aryl or heteroaryl, g is 0 or an integer, preferably 0 or 1, R 13 substituent , c, d and e are each independently 1, 2 or 3, preferably 1, and are directly linked to either of Ar 8 , Ar 9 , Ar 10 and R 13 of the same N atom of formula (II) It can be linked by a direct bond or a divalent group.

當g至少為1時在每次出現時可相同或不同之R13較佳選自由烷基(例如C1-20烷基)、Ar11或具支鏈或直鏈Ar11基團組成之群,其中Ar11在每次出現時獨立地係視情況經取代之芳基或雜芳基。實例性基團R13係C1-20烷基、苯基及經一或多個C1-20烷基取代之苯基。 R 13 which may be the same or different at each occurrence when g is at least 1, is preferably selected from the group consisting of an alkyl group (for example, C 1-20 alkyl group), Ar 11 or a branched or linear Ar 11 group. Wherein Ar 11 independently, upon each occurrence, is optionally substituted with an aryl or heteroaryl group. Exemplary groups R 13 are C 1-20 alkyl, phenyl, and phenyl substituted with one or more C 1-20 alkyl groups.

式(II)之較佳重複單元具有子式1-3: Preferred repeating units of formula (II) have subformulas 1-3:

較佳地,Ar8、Ar9、Ar10及Ar11係芳香族基團,其每一者可未經取代或經一或多個取代基取代。 Preferably, the Ar 8 , Ar 9 , Ar 10 and Ar 11 -based aromatic groups, each of which may be unsubstituted or substituted with one or more substituents.

視情況,式1之Ar8、Ar10及Ar11係苯基,其每一者可獨立地未經取代或經一或多個取代基取代。 Depending on the case, the Ar 8 , Ar 10 and Ar 11 phenyl groups of the formula 1 may each independently be unsubstituted or substituted with one or more substituents.

視情況,式1之Ar9係未經取代或經取代之苯基或未經取代或經取代之多環芳香族基團,例如如WO 2005/049546及WO 2013/108022中所述,其內容以引用方式併入本文中。 Depending on the case, the Ar 9 of the formula 1 is an unsubstituted or substituted phenyl group or an unsubstituted or substituted polycyclic aromatic group, as described, for example, in WO 2005/049546 and WO 2013/108022. This is incorporated herein by reference.

視情況,式2及3之Ar8、Ar9及Ar11係苯基,其每一者可獨立地未經取代或經一或多個取代基取代。 Optionally, Ar 8 , Ar 9 and Ar 11 phenyl groups of the formulae 2 and 3, each of which may be independently unsubstituted or substituted with one or more substituents.

芳基胺重複單元可以約0.5mol%至高達約50mol%、視情況高達40mol%、視情況高達30mol%、視情況高達10mol%之範圍內的莫耳量提供。 The arylamine repeating unit can be provided in an amount of from about 0.5 mol% up to about 50 mol%, optionally up to 40 mol%, optionally up to 30 mol%, and optionally up to 10 mol%.

Ar8、Ar9、Ar10及Ar11之較佳取代基(若存在)係C1-20烴基、視情況C1-20烷基。 Preferred substituents (if present) of Ar 8 , Ar 9 , Ar 10 and Ar 11 are C 1-20 hydrocarbyl groups, optionally C 1-20 alkyl groups.

較佳地,電子傳輸材料係非聚合物分子主體,有利地ET1。利用Tg超過180℃之發光聚合物調整龐大分子主體可實質上降低小分子主體材料之擴散至發光層中。 Preferably, the electron transporting material is a non-polymeric molecular host, advantageously ET1. Adjusting the bulky molecular host with a luminescent polymer having a Tg in excess of 180 °C can substantially reduce the diffusion of the small molecule host material into the luminescent layer.

電子傳輸層可進一步包含供電子材料。有利地,供電子材料係非聚合物(亦稱為「小分子」)分子摻雜劑,較佳地ND1。 The electron transport layer may further comprise an electron donating material. Advantageously, the electron donating material is a non-polymeric (also referred to as "small molecule") molecular dopant, preferably ND1.

根據本發明之第三態樣,提供形成有機發光裝置之方法,該方法包含沈積包含發光聚合物之溶液以形成發光層;及藉由氣相沈積於發光層上共沈積電子傳輸材料及供電子材料以形成混合電子傳輸層。 According to a third aspect of the present invention, there is provided a method of forming an organic light-emitting device, the method comprising depositing a solution comprising a light-emitting polymer to form a light-emitting layer; and co-depositing an electron transport material and an electron supply by vapor deposition on the light-emitting layer Materials to form a hybrid electron transport layer.

使用溶液及氣相沈積方法之組合以分別沈積發光層及電子傳輸層減輕(例如)藉由使發光聚合物交聯來使發光層不可溶之需求。 The use of a combination of solution and vapor deposition methods to separately deposit the luminescent layer and the electron transport layer mitigates the need to render the luminescent layer insoluble, for example, by crosslinking the luminescent polymer.

較佳地,包含發光聚合物之溶液的沈積係藉由旋轉塗佈、噴墨印刷、浸塗、狹縫型擠壓式印刷、噴嘴印刷、捲對捲印刷、凹版印刷及柔性版印刷來實施。 Preferably, the deposition of the solution containing the luminescent polymer is carried out by spin coating, ink jet printing, dip coating, slit type extrusion printing, nozzle printing, roll-to-roll printing, gravure printing, and flexographic printing. .

10‧‧‧基板 10‧‧‧Substrate

20‧‧‧陽極電極 20‧‧‧Anode electrode

30‧‧‧電洞注入層(HIL) 30‧‧‧ Hole Injection Layer (HIL)

40‧‧‧中間層(IL) 40‧‧‧Intermediate (IL)

50‧‧‧發光聚合物(LEP)層 50‧‧‧Light Emitting Polymer (LEP) layer

52‧‧‧發光聚合物層 52‧‧‧Lighting polymer layer

60‧‧‧陰極電極 60‧‧‧Cathode electrode

60a‧‧‧NaF 60a‧‧‧NaF

60b‧‧‧Al 60b‧‧‧Al

60c‧‧‧Ag 60c‧‧‧Ag

62‧‧‧電子傳輸層(ETL) 62‧‧‧Electronic Transport Layer (ETL)

64‧‧‧Al囊封陰極層 64‧‧‧Al encapsulated cathode layer

100‧‧‧有機發光二極體 100‧‧‧Organic Luminescent Diodes

200‧‧‧有機發光二極體 200‧‧‧Organic Luminescent Diodes

300‧‧‧有機發光二極體 300‧‧‧Organic Luminescent Diodes

現將參照附圖僅以舉例說明方式闡述本發明,其中:圖1a係OLED之剖視圖,其視為本發明第一態樣之OLED的比較實例;圖1b係根據本發明第一態樣之OLED之實施例的剖視圖;圖2a至2c係在將根據本發明第一態樣之OLED在120℃下烘烤1小時之後分別量測之相對PL下降、△CIE-x及△CIE-y之圖。OLED含有一系列小分子主體材料;圖3係在將根據本發明第一態樣之OLED在85℃下烘烤之後在不同時間(時間窗超過600小時)下量測之相對PL下降之圖;圖4係在將根據本發明第一態樣之OLED在85℃下在惰性N2氣氛及空氣中烘烤之後在不同時間(時間窗超過600小時)下量測之操作電壓增加之圖; 圖5係根據本發明第二態樣之OLED之實施例的剖視圖;圖6係裝置PL之相對下降隨寬範圍發光聚合物之玻璃轉化溫度Tg與裝置烘烤溫度Tb之間之差Tg-Tb變化之圖。 The invention will now be described by way of example only with reference to the accompanying drawings in which: FIG. 1a is a cross-sectional view of an OLED as a comparative example of the OLED of the first aspect of the invention; FIG. 1b is an OLED according to a first aspect of the invention A cross-sectional view of an embodiment; FIGS. 2a to 2c are graphs of relative PL drop, ΔCIE-x, and ΔCIE-y, respectively, measured after baking the OLED according to the first aspect of the present invention at 120 ° C for 1 hour. . The OLED contains a series of small molecule host materials; Figure 3 is a plot of relative PL drop measured at different times (time window over 600 hours) after baking the OLED according to the first aspect of the invention at 85 °C; Figure 4 is a graph showing the increase in operating voltage measured at different times (time window over 600 hours) after baking the OLED according to the first aspect of the present invention at 85 ° C in an inert N 2 atmosphere and air; Figure 5 is a cross-sectional view of an embodiment of an OLED according to a second aspect of the present invention; Figure 6 is a graph showing the difference between the relative drop of the device PL and the glass transition temperature Tg of the wide range of light-emitting polymers and the device baking temperature Tb. Diagram of change.

圖1a(其未按照任何比例繪製)示意性地圖解說明OLED 100,其視為根據本發明第一態樣之OLED的比較實例。OLED 100結構係沈積於通常由玻璃製成之基板10上,且包含以以下順序提供於基板上之若干層:陽極電極20、電洞注入層(HIL)30、中間層(IL)40、發光聚合物(LEP)層50及陰極電極60。 Figure 1a (which is not drawn to any scale) schematically illustrates an OLED 100 as a comparative example of an OLED according to a first aspect of the present invention. The OLED 100 structure is deposited on a substrate 10, typically made of glass, and includes several layers provided on the substrate in the following order: anode electrode 20, hole injection layer (HIL) 30, intermediate layer (IL) 40, luminescence Polymer (LEP) layer 50 and cathode electrode 60.

通常由ITO(氧化銦錫)製成之陽極電極20係45nm厚且係藉由物理氣相沈積(例如真空或熱蒸發)來沈積。HIL 30係50nm厚且係藉由旋轉塗佈稱為Plexcore © OC AQ-1200自Plextronics公司購得之電洞注入材料之溶液來沈積。IL 40係22nm厚,且係藉由旋轉塗佈電洞傳輸聚合物P10之溶液來沈積。聚合物P10以以下重量%包含單體M11至M14:50% M11、30% M12、12.5% M13及7.5% M14。該等單體之化學結構係顯示於下文: The anode electrode 20, typically made of ITO (indium tin oxide), is 45 nm thick and is deposited by physical vapor deposition (e.g., vacuum or thermal evaporation). HIL 30 is 50 nm thick and is deposited by spin coating a solution known as Plexcore © OC AQ-1200 from Plextronics Corporation. The IL 40 is 22 nm thick and is deposited by a solution of a spin-coated hole transporting polymer P10. The polymer P10 contained the monomers M11 to M14 in the following weight %: 50% M11, 30% M12, 12.5% M13 and 7.5% M14. The chemical structure of these monomers is shown below:

LEP層50係60nm厚且係藉由旋轉塗佈Tg為約130℃之發光聚合物P20之溶液來沈積。聚合物P20以以下重量%包含單體M21至M25:36% M21(或P22)、14% M22(或F8)、45% M23(或P30)、4% M24(或A061)及1% M25(或POZ)。該等單體之化學結構係顯示如下: The LEP layer 50 is 60 nm thick and is deposited by spin coating a solution of the luminescent polymer P20 having a Tg of about 130 °C. Polymer P20 comprises monomers M21 to M25: 36% M21 (or P22), 14% M22 (or F8), 45% M23 (or P30), 4% M24 (or A061) and 1% M25 in the following wt% Or POZ). The chemical structure of these monomers is shown below:

聚合物P10及P20係使用Suzuki聚合法來合成,如此項技術中所熟知。單體M11已闡述於WO2002/092723中,M12闡述於WO2005/074329中,M13闡述於WO2002/092724中,M14闡述於WO2005/038747中,M21闡述於WO2002/092724中,M22闡述於US 6,593,450中,M23闡述於WO2009/066061中,M24闡述於 WO2010/013723中,且M25闡述於WO2004/060970中。 Polymers P10 and P20 are synthesized using Suzuki polymerization, as is well known in the art. Monomer M11 is described in WO2002/092723, M12 is described in WO2005/074329, M13 is described in WO2002/092724, M14 is described in WO2005/038747, M21 is described in WO2002/092724, and M22 is described in US 6,593,450. M23 is described in WO2009/066061, and M24 is described in WO2010/013723, and M25 is set forth in WO2004/060970.

陰極電極60係由厚度分別為5nm、20nm及200nm之NaF 60a、Al 60b及Ag 60c之三個堆疊層組成。NaF係藉由在LEP層50上熱蒸發且然後藉由熱蒸發Al及Ag之雙層堆疊囊封來沈積。 The cathode electrode 60 is composed of three stacked layers of NaF 60a, Al 60b, and Ag 60c having thicknesses of 5 nm, 20 nm, and 200 nm, respectively. The NaF is deposited by thermal evaporation on the LEP layer 50 and then by thermal evaporation of a double layer stack of Al and Ag.

在操作中,自陽極電極20注入之電洞及自陰極電極60注入之電子在LEP層50中組合以形成激子,其可在重組時輻射衰減以提供光。 不希望受限於理論,據信在鋁陰極之氣相沈積期間,在LEP P20與Al陰極間之界面處存在之NaF藉由防止形成將導致形成絕緣界面之共價碳-鋁鍵防止對LEP P20中共軛π-系統之破壞。相反,在界面處存在NaF,發生至LEP P20之電子轉移,且導致在與陰極界面處之聚合物之局部n-摻雜。其假定當OLED 100熱退火時NaF不會擴散至LEP P20中,且因此稱OLED 100係熱穩定有機發光裝置。其假定由於形成此複合物,當OLED 100熱退火時NaF不會擴散至LEP P20中。因此稱OLED 100係熱穩定有機發光裝置。 In operation, the holes injected from the anode electrode 20 and the electrons injected from the cathode electrode 60 are combined in the LEP layer 50 to form excitons that can be attenuated upon recombination to provide light upon recombination. Without wishing to be bound by theory, it is believed that the NaF present at the interface between the LEP P20 and the Al cathode during vapor deposition of the aluminum cathode prevents the formation of a covalent carbon-aluminum bond that would result in the formation of an insulating interface against LEP. Destruction of the conjugated π-system in P20. Conversely, the presence of NaF at the interface occurs with electron transfer to LEP P20 and results in local n-doping of the polymer at the interface with the cathode. It is assumed that NaF does not diffuse into the LEP P20 when the OLED 100 is thermally annealed, and thus the OLED 100 is referred to as a thermally stable organic light-emitting device. It is assumed that due to the formation of this composite, NaF does not diffuse into the LEP P20 when the OLED 100 is thermally annealed. Therefore, the OLED 100 is referred to as a thermally stable organic light-emitting device.

圖1b(其未按照任何比例繪製)示意性地圖解說明根據本發明第一態樣之OLED 200之實施例。在圖1b中,針對圖1a之相應部分使用相同參考編號。與在LEP層50上具有NaF、Al及Ag之三個堆疊陰極層相反,本發明之OLED 200包含具有電子傳輸層(ETL)62及Al囊封陰極層64之雙層。兩個層均藉由熱蒸發分別以厚度20nm及200nm沈積。 Figure 1b (which is not drawn to any scale) schematically illustrates an embodiment of an OLED 200 in accordance with a first aspect of the present invention. In Figure 1b, the same reference numerals are used for the corresponding parts of Figure 1a. In contrast to the three stacked cathode layers having NaF, Al, and Ag on the LEP layer 50, the OLED 200 of the present invention comprises a double layer having an electron transport layer (ETL) 62 and an Al encapsulated cathode layer 64. Both layers were deposited by thermal evaporation at thicknesses of 20 nm and 200 nm, respectively.

ETL 62包含含有小分子主體(例如ET1、ET2、ET3及ET4)中之任一者的電子傳輸材料。ET3及ET4之化學結構係圖解說明如下: ETL 62 comprises an electron transport material comprising any of a small molecule host (eg, ET1, ET2, ET3, and ET4). The chemical structure of ET3 and ET4 is illustrated as follows:

ET3係自市場購得,ET4可藉由(例如)WO2010/057471中所述之 程序獲得。ETL 62進一步包含由小分子摻雜劑(例如ND1)組成之供電子材料。 ET3 is commercially available, and ET4 can be as described, for example, in WO 2010/057471 The program is obtained. The ETL 62 further comprises an electron donating material consisting of a small molecule dopant (e.g., ND1).

本發明混合小分子-聚合物OLED 200之主體及摻雜劑材料已藉由熱蒸發同時蒸發(或共同蒸發)以形成包含上述主體及摻雜劑小分子材料之摻合物之電子傳輸層ETL 62。 The host and dopant material of the hybrid small molecule-polymer OLED 200 of the present invention have been simultaneously evaporated (or co-evaporated) by thermal evaporation to form an electron transport layer ETL comprising a blend of the above host and dopant small molecule materials. 62.

在實例1中,ETL 62在發光聚合物P20之頂部上包含ET2(主體)及ND1(摻雜劑)之摻合物。實例1之混合OLED 200在烘烤之後通常經歷差的熱穩定性,其自身體現為裝置PL(光致發光)中通常超過50%之下降及裝置操作電壓多於2V之增加(如在10mA/cm2下所量測)。PL及電壓上升值通常係OLED 200在120℃下烘烤1小時之後於室溫下量測,且然後與在烘烤步驟之前在裝置上所量測之值相比較。假設上述熱不穩定性係由ETL主體材料ET2擴散至發光聚合物P20中引起。 In Example 1, ETL 62 comprises a blend of ET2 (host) and ND1 (dopant) on top of luminescent polymer P20. The hybrid OLED 200 of Example 1 typically experienced poor thermal stability after baking, which manifest itself as a drop of more than 50% in the device PL (photoluminescence) and an increase in device operating voltage of more than 2V (eg, at 10 mA/ Measured under cm 2 ). The PL and voltage rise values are typically measured at room temperature after baking the OLED 200 at 120 ° C for 1 hour and then compared to the values measured on the device prior to the baking step. It is assumed that the above thermal instability is caused by the diffusion of the ETL host material ET2 into the luminescent polymer P20.

實例2證實當ET2由具有較龐大性質之替代ETL主體材料ET1代替、由此防止其擴散至聚合物P20中甚至在接近聚合物P20之Tg的烘烤溫度下時,本發明OLED 200之熱穩定性得到極大改良。主體ET1之較龐大性質自ET2(105℃之Tg)與ET1(179℃之Tg)間之玻璃轉化溫度Tg之差異顯而易見。而且,本發明實例2之熱穩定OLED 200與利用NaF/Al/Ag陰極製造之比較實例OLED 100相當或類似,如下表1中所匯總。 Example 2 demonstrates that the thermal stability of the inventive OLED 200 when ET2 is replaced by a replacement ETL host material ET1 having a relatively large nature, thereby preventing its diffusion into the polymer P20 even at a baking temperature close to the Tg of the polymer P20. Sex has been greatly improved. The bulky nature of the bulk ET1 is evident from the difference in glass transition temperature Tg between ET2 (Tg at 105 °C) and ET1 (Tg at 179 °C). Moreover, the thermally stable OLED 200 of Example 2 of the present invention is comparable or similar to the comparative example OLED 100 fabricated using a NaF/Al/Ag cathode, as summarized in Table 1 below.

實例2之主體ET1優於實例1之主體ET2的主要優點在於其允許使 用具有相對低玻璃轉化溫度之發光聚合物製造本發明之混合小分子-聚合物OLED 200。因此該等裝置將滿足市售OLED應用所需之最小熱穩定性。另外,顯示所觀察到經改良熱穩定性之OLED可利用與需要高溫製造條件之製程(例如在頂部發射裝置中熱蒸發緩衝層)相容之電子傳輸材料。而且,使用ET1作為主體材料允許直接試驗確定重要裝置性質,例如色彩、效率及在高退火及/或操作溫度下之壽命。 The main advantage of the main body ET1 of the example 2 over the main body ET2 of the example 1 is that it allows The hybrid small molecule-polymer OLED 200 of the present invention is fabricated from a luminescent polymer having a relatively low glass transition temperature. These devices will therefore meet the minimum thermal stability required for commercially available OLED applications. Additionally, OLEDs exhibiting improved thermal stability are shown to utilize electron transport materials that are compatible with processes that require high temperature manufacturing conditions, such as thermal evaporation buffer layers in top emitting devices. Moreover, the use of ET1 as the host material allows direct testing to determine important device properties such as color, efficiency, and lifetime at high annealing and/or operating temperatures.

圖2a至2c顯示針對圖1b之OLED 200所量測之相對PL下降(圖2a)及△CIE坐標(圖2b及2c)。除顯示以上實例1及2之OLED 200的PL及△CIE坐標外,圖形展示實例3(其中ETL 62包含摻合物ET4:ND1)及實例4(其中ETL 62包含摻合物ET3:ND1)之相同參數。PL、△CIE-x及△CIE-y參數係OLED 200在120℃下烘烤1小時後在室溫下量測,且然後與在烘烤步驟之前在裝置上所量測之參數相比較。 Figures 2a through 2c show the relative PL drop (Figure 2a) and ΔCIE coordinates (Figures 2b and 2c) measured for the OLED 200 of Figure 1b. In addition to the PL and ΔCIE coordinates of the OLED 200 of Examples 1 and 2 above, the graph shows Example 3 (where ETL 62 contains blend ET4: ND1) and Example 4 (where ETL 62 contains blend ET3: ND1) The same parameters. The PL, ΔCIE-x and ΔCIE-y parameters were measured at room temperature after baking at 120 ° C for 1 hour and then compared to the parameters measured on the device prior to the baking step.

不希望受限於理論,假定較龐大之小分子主體在烘烤是不太可能擴散至聚合物P20中。其亦假定小分子材料之Tg可提供彼材料之龐大性之指示且下表2匯總用於製造本發明OLED 200之ETL 62之所有主體之玻璃轉化溫度。 Without wishing to be bound by theory, it is assumed that a relatively large small molecule body is less likely to diffuse into the polymer P20 during baking. It also assumes that the Tg of the small molecule material provides an indication of the bulkiness of the material and Table 2 below summarizes the glass transition temperatures of all of the bodies of the ETL 62 used to make the OLED 200 of the present invention.

參照圖2a,當自實例1之ET2(其具有最低Tg及最高PL下降)至實例3之ET4、實例4之ET3及至實例2之ET1(其具有最高Tg及最低PL下降)時,PL下降顯示與Tg之增加成反比變化。該等結果證實裝置熱穩定性嚴格地受共同蒸發電子傳輸層ELT 62中所用主體之性質的影響且因此可藉由使用適當主體來改良。 Referring to Figure 2a, when ET2 from Example 1 (which has the lowest Tg and the highest PL drop) to ET4 of Example 3, ET3 of Example 4, and ET1 of Example 2 (which has the highest Tg and lowest PL drop), the PL drop display It is inversely proportional to the increase in Tg. These results demonstrate that the thermal stability of the device is strictly affected by the nature of the host used in the co-evaporated electron transport layer ELT 62 and can therefore be improved by the use of a suitable host.

已鑑別ET1係最合適主體,實例1之OLED 200的熱穩定性(其中ETL 62包含摻合物ET1:ND1)進一步藉由將裝置於85℃下烘烤超過600 小時來研究。此研究之結果繪製於圖3(其顯示PL下降)及圖4(其顯示裝置操作電壓△V之變化)中。 The most suitable host of the ET1 system has been identified, the thermal stability of the OLED 200 of Example 1 (where ETL 62 comprises the blend ET1: ND1) is further baked by the device at 85 ° C over 600 Hours to study. The results of this study are plotted in Figure 3 (which shows a decrease in PL) and Figure 4 (which shows the change in device operating voltage ΔV).

自圖3之結果可容易地看出,在85℃下烘烤後之裝置熱穩定性明顯超出在試驗中所用長於600小時之時間窗。實例1 OLED之該等結果與針對使用已知NaF/Al/Ag陰極而非本發明之ETL/Al/Ag結構之比較裝置試驗觀察到者相當。 As can be readily seen from the results of Figure 3, the thermal stability of the apparatus after baking at 85 °C significantly exceeded the time window of more than 600 hours used in the test. The results of Example 1 OLEDs were comparable to those observed for comparison devices using known NaF/Al/Ag cathodes rather than the ETL/Al/Ag structures of the present invention.

儘管PL下降似乎獨立於實施烘烤之環境,但僅在裝置在惰性N2氣氛(例如充氮手套箱)中烘烤時,在圖4中觀察到約0.2V(在10mA/cm2下量測)之合理電壓上升。在空氣中烘烤之裝置展示大得多之電壓上升,有時超過0.7V。 Although the PL drop appears to be independent of the baking environment, only about 0.2 V (at 10 mA/cm 2 ) is observed in Figure 4 when the device is baked in an inert N 2 atmosphere (such as a nitrogen-filled glove box). The reasonable voltage rise of the test). Devices that are baked in air exhibit much greater voltage rises, sometimes exceeding 0.7V.

根據本發明之第二態樣,使用龐大主體以改良OLED熱穩定性之替代方案係增加位於電子傳輸層下方之發光聚合物的玻璃轉化溫度Tg。 According to a second aspect of the invention, an alternative to using a bulky body to improve the thermal stability of the OLED is to increase the glass transition temperature Tg of the luminescent polymer located below the electron transport layer.

圖5(其未按照任何比例繪製)示意性地圖解說明根據本發明第二態樣之OLED 300實施例。在圖5中,針對圖1b之相應部分使用相同參考編號。圖1b之LEP層50的聚合物P20已由包含具有較高玻璃轉化溫度之聚合物P22、P24、P26及P28之LEP層52替換。該等聚合物中每一者之組成單體連同上述聚合物中每一單體之相應重量%及聚合物之玻璃轉化溫度一起顯示於下表3中。 Figure 5, which is not drawn to any scale, schematically illustrates an embodiment of an OLED 300 in accordance with a second aspect of the present invention. In Figure 5, the same reference numerals are used for the corresponding parts of Figure 1b. The polymer P20 of the LEP layer 50 of Figure 1b has been replaced by an LEP layer 52 comprising polymers P22, P24, P26 and P28 having a higher glass transition temperature. The constituent monomers of each of the polymers are shown in Table 3 below along with the corresponding weight percent of each of the above polymers and the glass transition temperature of the polymer.

單體M22及M24之化學結構已關於聚合物P20在上文進一步顯 示,且單體M26及M27之化學結構顯示如下: The chemical structures of the monomers M22 and M24 have been further shown above with respect to the polymer P20, and the chemical structures of the monomers M26 and M27 are shown below:

P22至P28之聚合物係使用Suzuki聚合法來合成,如此項技術中所熟知。單體M26係揭示於WO2002/092723中且M27揭示於WO2005/074329中。 The polymers of P22 to P28 are synthesized using Suzuki polymerization, as is well known in the art. Monomeric M26 is disclosed in WO2002/092723 and M27 is disclosed in WO2005/074329.

在包含聚合物P22、P24、P26及P28之LEP層52頂部上利用共同蒸發包含ET2(主體)及ND1(摻雜劑)之摻合物的ETL 62所製造之混合小分子-聚合物OLED 300的PL係於室溫下在烘烤之前及OLED 300在120℃下烘烤1小時之後量測。圖6顯示相對PL對聚合物P22至P28之玻璃轉化溫度Tg與烘烤溫度Tb之間之溫度差之圖。 Mixed small molecule-polymer OLED 300 fabricated on top of LEP layer 52 comprising polymers P22, P24, P26 and P28 by co-evaporation of ETL 62 comprising a blend of ET2 (host) and ND1 (dopant) The PL was measured at room temperature before baking and after OLED 300 was baked at 120 ° C for 1 hour. Figure 6 is a graph showing the temperature difference between the glass transition temperature Tg and the baking temperature Tb of the polymer P22 to P28 with respect to PL.

據信,與OLED 300之熱不穩定性相關聯之相對PL下降係由於小分子主體材料ET2擴散至位於下方之LEP層52中而引起。如自圖6可推導出,擴散過程可在遠低於(約160℃)發光聚合物之Tg之溫度下進行。換言之,PL下降之開始點低於發光聚合物P22至P28之Tg約160℃且獨立於烘烤溫度。該等結果證實改良混合小分子-聚合物OLED之熱穩定性需要使用高Tg發光聚合物,例如Tg為266℃之P28。 It is believed that the relative PL drop associated with the thermal instability of OLED 300 is due to the diffusion of small molecule host material ET2 into the underlying LEP layer 52. As can be derived from Figure 6, the diffusion process can be carried out at temperatures well below the Tg of the luminescent polymer (about 160 ° C). In other words, the starting point of the PL drop is lower than the Tg of the light-emitting polymers P22 to P28 by about 160 ° C and is independent of the baking temperature. These results demonstrate that the thermal stability of the modified hybrid small molecule-polymer OLED requires the use of a high Tg luminescent polymer, such as P28 with a Tg of 266 °C.

各種改變對於熟悉此項技術者將顯而易見。例如,基板10可由塑膠(例如聚萘二甲酸乙二酯PEN或聚對苯二甲酸乙二酯PET型)製得。HIL 30較佳可為20nm至100nm厚且更佳地40nm至60nm厚。IL 40較佳可為10nm至50nm厚且更佳地20nm至30nm厚。LEP層50較佳 可為10nm至150nm厚且更佳地50nm至70nm厚。 Various changes will be apparent to those skilled in the art. For example, the substrate 10 can be made of a plastic such as polyethylene naphthalate PEN or polyethylene terephthalate PET type. The HIL 30 may preferably be 20 nm to 100 nm thick and more preferably 40 nm to 60 nm thick. The IL 40 may preferably be 10 nm to 50 nm thick and more preferably 20 nm to 30 nm thick. LEP layer 50 is preferred It may be 10 nm to 150 nm thick and more preferably 50 nm to 70 nm thick.

參照圖1a,陰極電極60之第一層可由任何鹵代鹼金屬或鹼土金屬鹽製得,且雙層囊封可為用於電荷注入之能級與LEP之能級匹配的任何金屬對。 Referring to Figure 1a, the first layer of cathode electrode 60 can be made of any halogenated alkali or alkaline earth metal salt, and the double layer encapsulation can be any metal pair that matches the energy level of the charge injection to the energy level of the LEP.

參照圖1b,ETL 62之真空沈積電子傳輸及供電子材料可為任何氣相沈積非聚合物材料,條件係將ETL之LUMO(最低未佔用分子軌域)能級調整至LEP之LUMO能級。此能級調整對於確保電子自陰極穿過ETL並注入發光層中係至關重要的。藉由採用真空沈積方法,ETL可作為厚層提供用於改良生產良率。ETL 62較佳可為5nm至50nm厚。此外,真空沈積之ETL能夠自由選擇用於陰極層64之囊封材料,其可為能夠蒸發為厚(100nm至300nm)的無針孔層之任何金屬、導電氧化物或金屬合金,例如Ag、ITO、Au、Mg、MgAg合金等。 Referring to Figure 1b, the vacuum deposited electron transport and electron donating material of ETL 62 can be any vapor deposited non-polymeric material, with the condition that the LUMO (lowest unoccupied molecular orbital) level of the ETL is adjusted to the LUMO level of the LEP. This level adjustment is critical to ensure that electrons pass through the ETL from the cathode and into the luminescent layer. By using a vacuum deposition method, ETL can be provided as a thick layer for improving production yield. The ETL 62 preferably has a thickness of 5 nm to 50 nm. In addition, the vacuum deposited ETL can be freely selected for the encapsulating material for the cathode layer 64, which can be any metal, conductive oxide or metal alloy capable of evaporating into a pinhole free layer (100 nm to 300 nm), such as Ag, ITO, Au, Mg, MgAg alloy, and the like.

本發明提供有機發光裝置,其具有包含發光聚合物之發光層及於發光層上且包含電子傳輸材料之電子傳輸層,其中電子傳輸材料(Tg(ETM))及發光聚合物(Tg(LEP))之玻璃轉化溫度(以℃量測)滿足以下不等式:Tg(ETM)+Tg(LEP)>270 The present invention provides an organic light-emitting device having a light-emitting layer comprising a light-emitting polymer and an electron transport layer on the light-emitting layer and comprising an electron transport material, wherein the electron transport material (Tg(ETM)) and the light-emitting polymer (Tg (LEP)) The glass transition temperature (measured in °C) satisfies the following inequality: Tg(ETM)+Tg(LEP)>270

且其中電子傳輸材料之玻璃轉化溫度高於140℃。裝置可包含聚合物發光層及沈積於發光層上之非聚合物(小分子)電子傳輸層,該電子傳輸層包含含有小分子主體之電子傳輸材料及含有小分子摻雜劑之供電子材料之摻合物。 And wherein the glass transition temperature of the electron transporting material is higher than 140 °C. The device may comprise a polymer light-emitting layer and a non-polymer (small molecule) electron transport layer deposited on the light-emitting layer, the electron transport layer comprising an electron transport material containing a small molecule body and an electron donating material containing a small molecule dopant Blend.

10‧‧‧基板 10‧‧‧Substrate

20‧‧‧陽極電極 20‧‧‧Anode electrode

30‧‧‧電洞注入層(HIL) 30‧‧‧ Hole Injection Layer (HIL)

40‧‧‧中間層 40‧‧‧Intermediate

50‧‧‧發光聚合物(LEP)層 50‧‧‧Light Emitting Polymer (LEP) layer

62‧‧‧電子傳輸層(ETL) 62‧‧‧Electronic Transport Layer (ETL)

64‧‧‧Al囊封陰極層 64‧‧‧Al encapsulated cathode layer

200‧‧‧有機發光二極體 200‧‧‧Organic Luminescent Diodes

Claims (20)

一種有機發光裝置,其具有包含發光聚合物之發光層,及在該發光層上且包含電子傳輸材料之電子傳輸層,其中該電子傳輸材料(Tg(ETM))及該發光聚合物(Tg(LEP))之玻璃轉化溫度(以℃量測)滿足以下不等式:Tg(ETM)+Tg(LEP)>270且其中該電子傳輸材料之該玻璃轉化溫度高於140℃。 An organic light-emitting device having a light-emitting layer comprising a light-emitting polymer, and an electron transport layer on the light-emitting layer and comprising an electron transport material, wherein the electron transport material (Tg(ETM)) and the light-emitting polymer (Tg ( The glass transition temperature (measured in ° C) of LEP)) satisfies the following inequality: Tg(ETM) + Tg(LEP) > 270 and wherein the glass transition temperature of the electron transporting material is higher than 140 °C. 如請求項1之裝置,其中該電子傳輸材料之該玻璃轉化溫度高於155℃。 The device of claim 1, wherein the glass transition temperature of the electron transporting material is higher than 155 °C. 如請求項1之裝置,其中該電子傳輸材料之該玻璃轉化溫度高於175℃。 The device of claim 1, wherein the glass transition temperature of the electron transporting material is higher than 175 °C. 如請求項1至3中任一項之裝置,其中該電子傳輸材料係非聚合物分子主體。 The device of any one of claims 1 to 3, wherein the electron transporting material is a non-polymeric molecular host. 如請求項4之裝置,其中該分子主體係具有下式之喹啉鋯 The device of claim 4, wherein the molecular main system has a quinoline zirconium of the formula 如請求項1至3中任一項之裝置,其中該電子傳輸層進一步包含供電子材料。 The device of any one of claims 1 to 3, wherein the electron transport layer further comprises an electron donating material. 如請求項6之裝置,其中該供電子材料係非聚合物分子摻雜劑。 The device of claim 6, wherein the electron donating material is a non-polymeric molecular dopant. 如請求項7之裝置,其中該分子摻雜劑係四(1,3,4,6,7,8-六氫-2H-嘧啶并[1,2-a]嘧啶根合)二鎢(II)。 The device of claim 7, wherein the molecular dopant is tetrakis(1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidinyl)di-tungsten (II) ). 一種有機發光裝置,其具有包含發光聚合物之發光層,及 在該發光層上且包含電子傳輸材料之電子傳輸層,其中該電子傳輸材料(Tg(ETM))及該發光聚合物(Tg(LEP))之玻璃轉化溫度滿足以下不等式:Tg(ETM)+Tg(LEP)>280且其中該發光聚合物之該玻璃轉化溫度高於180℃。 An organic light-emitting device having a light-emitting layer comprising a light-emitting polymer, and An electron transport layer on the light-emitting layer and comprising an electron transporting material, wherein a glass transition temperature of the electron transporting material (Tg(ETM)) and the light-emitting polymer (Tg(LEP)) satisfies the following inequality: Tg(ETM)+ Tg(LEP) > 280 and wherein the glass transition temperature of the luminescent polymer is above 180 °C. 如請求項9之裝置,其中該發光聚合物之該玻璃轉化溫度高於200℃。 The device of claim 9, wherein the luminescent polymer has a glass transition temperature of greater than 200 °C. 如請求項9之裝置,其中該發光聚合物之該玻璃轉化溫度高於220℃。 The device of claim 9, wherein the luminescent polymer has a glass transition temperature of greater than 220 °C. 如請求項9之裝置,其中該發光聚合物之該玻璃轉化溫度高於240℃。 The device of claim 9, wherein the luminescent polymer has a glass transition temperature of greater than 240 °C. 如請求項9之裝置,其中該發光聚合物之該玻璃轉化溫度高於260℃。 The device of claim 9, wherein the luminescent polymer has a glass transition temperature of greater than 260 °C. 如請求項9至13中任一項之裝置,其中該電子傳輸材料係非聚合物分子主體。 The device of any one of claims 9 to 13, wherein the electron transporting material is a non-polymeric molecular host. 如請求項14之裝置,其中該分子主體係具有下式之喹啉鋯 The device of claim 14, wherein the molecular main system has a quinoline zirconium of the formula 如請求項9至13中任一項之裝置,其中該電子傳輸層進一步包含供電子材料。 The device of any one of claims 9 to 13, wherein the electron transport layer further comprises an electron donating material. 如請求項16之裝置,其中該供電子材料係非聚合物分子摻雜劑。 The device of claim 16, wherein the electron donating material is a non-polymeric molecular dopant. 如請求項17之裝置,其中該分子摻雜劑係四(1,3,4,6,7,8-六氫-2H-嘧啶并[1,2-a]嘧啶根合)二鎢(II)。 The device of claim 17, wherein the molecular dopant is tetrakis(1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidinyl)di-tungsten (II) ). 一種形成如請求項1至18中任一項之有機發光裝置之方法,該方法包含沈積包含發光聚合物之溶液以形成發光層;及藉由氣相沈積在該發光層上共沈積電子傳輸材料及供電子材料,以形成混合電子傳輸層。 A method of forming an organic light-emitting device according to any one of claims 1 to 18, comprising depositing a solution containing a light-emitting polymer to form a light-emitting layer; and co-depositing an electron-transport material on the light-emitting layer by vapor deposition And supplying an electronic material to form a mixed electron transport layer. 如請求項19之方法,其中沈積包含該發光聚合物之該溶液係藉由旋轉塗佈、噴墨印刷、浸塗、狹縫型擠壓式印刷(slot die printing)、噴嘴印刷、捲對捲印刷、凹版印刷及柔性版印刷實施。 The method of claim 19, wherein depositing the solution comprising the luminescent polymer is by spin coating, inkjet printing, dip coating, slot die printing, nozzle printing, roll-to-roll Printing, gravure and flexographic printing.
TW103141072A 2013-11-26 2014-11-26 Organic light-emitting device and method TWI643369B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
??1320881.4 2013-11-26
GBGB1320881.4A GB201320881D0 (en) 2013-11-26 2013-11-26 Organic light-emitting device and method
??1419787.5 2014-11-06
GB1419787.5A GB2526388B (en) 2013-11-26 2014-11-06 Organic light-emitting device and method

Publications (2)

Publication Number Publication Date
TW201526327A true TW201526327A (en) 2015-07-01
TWI643369B TWI643369B (en) 2018-12-01

Family

ID=49918247

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103141072A TWI643369B (en) 2013-11-26 2014-11-26 Organic light-emitting device and method

Country Status (6)

Country Link
JP (1) JP6605198B2 (en)
KR (1) KR102351776B1 (en)
CN (1) CN104681741B (en)
DE (1) DE102014223952A1 (en)
GB (2) GB201320881D0 (en)
TW (1) TWI643369B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9882173B2 (en) 2015-03-31 2018-01-30 Industrial Technology Research Institute Methods for fabricating an organic electro-luminescence device
US9887359B2 (en) 2015-03-31 2018-02-06 Industrial Technology Research Institute Organic electro-luminescence device and fabricating method thereof
US9991478B2 (en) 2015-03-31 2018-06-05 Industrial Technology Research Institute Methods for fabricating an organic electro-luminescence device and flexible electric device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109116885B (en) * 2018-08-24 2020-12-04 北京无线电计量测试研究所 Active balance control device and method for thermal power in quantum voltage standard device

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4539507A (en) 1983-03-25 1985-09-03 Eastman Kodak Company Organic electroluminescent devices having improved power conversion efficiencies
GB8909011D0 (en) 1989-04-20 1989-06-07 Friend Richard H Electroluminescent devices
US5708130A (en) 1995-07-28 1998-01-13 The Dow Chemical Company 2,7-aryl-9-substituted fluorenes and 9-substituted fluorene oligomers and polymers
AU9551598A (en) 1997-10-23 1999-05-17 Isis Innovation Limited Light-emitting dendrimers and devices
JP2000268969A (en) * 1999-03-17 2000-09-29 Tdk Corp Organic electroluminescent element
KR100337021B1 (en) * 1999-10-18 2002-05-16 윤덕용 Polymer electroluminescent devices using emissive polymers based on ionomers
ATE371684T1 (en) 2001-02-21 2007-09-15 Cambridge Display Tech Ltd (PARTIAL) CONJUGATED POLYMER, METHOD FOR THE PRODUCTION THEREOF AND USE IN ELECTROLUMINescent DEVICES
GB0111549D0 (en) 2001-05-11 2001-07-04 Cambridge Display Tech Ltd Polymers, their preparation and uses
US6916902B2 (en) 2002-12-19 2005-07-12 Dow Global Technologies Inc. Tricyclic arylamine containing polymers and electronic devices therefrom
GB0306409D0 (en) 2003-03-20 2003-04-23 Cambridge Display Tech Ltd Electroluminescent device
JP2004319305A (en) * 2003-04-17 2004-11-11 Dainippon Printing Co Ltd Electroluminescent element and polymer compound
DE602004032251D1 (en) 2003-10-20 2011-05-26 Yamaha Motor Co Ltd METHOD AND SYSTEM FOR SAVING DRIVING INFORMATION FOR MOTORCYCLES
WO2005049546A1 (en) 2003-11-14 2005-06-02 Sumitomo Chemical Company, Limited Halogenated bisdiarylaminopolycylic aromatic compounds and polymers thereof
DE10356099A1 (en) 2003-11-27 2005-07-07 Covion Organic Semiconductors Gmbh Organic electroluminescent element
TW200530373A (en) * 2003-12-12 2005-09-16 Sumitomo Chemical Co Polymer and light-emitting element using said polymer
US7211948B2 (en) * 2004-01-13 2007-05-01 Eastman Kodak Company Using a crystallization-inhibitor in organic electroluminescent devices
JP5092199B2 (en) 2004-02-02 2012-12-05 住友化学株式会社 Organic electroluminescence device
JP4086817B2 (en) * 2004-07-20 2008-05-14 キヤノン株式会社 Organic EL device
JP4724440B2 (en) * 2005-03-04 2011-07-13 住友化学株式会社 Polymer compound and polymer light emitting device using the same
GB0625541D0 (en) * 2006-12-22 2007-01-31 Oled T Ltd Electroluminescent devices
GB2454890B (en) 2007-11-21 2010-08-25 Limited Cambridge Display Technology Light-emitting device and materials therefor
JP5625271B2 (en) 2008-07-29 2014-11-19 住友化学株式会社 Polymer compound and light emitting device using the same
EP2206716A1 (en) * 2008-11-27 2010-07-14 Solvay S.A. Host material for light-emitting diodes
JP5785090B2 (en) * 2008-11-19 2015-09-24 ノヴァレッド・アクチエンゲゼルシャフト Quinoxaline compounds and semiconductor materials
EP2376595B1 (en) * 2008-12-22 2015-01-21 E. I. du Pont de Nemours and Company Photoactive composition and electronic device made with the composition
WO2013027711A1 (en) * 2011-08-23 2013-02-28 コニカミノルタホールディングス株式会社 Organic electroluminescent element, lighting device and display device
JP2013110262A (en) * 2011-11-21 2013-06-06 Konica Minolta Holdings Inc Organic el element and organic el module and manufacturing method therefor
GB201200619D0 (en) 2012-01-16 2012-02-29 Cambridge Display Tech Ltd Polymer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9882173B2 (en) 2015-03-31 2018-01-30 Industrial Technology Research Institute Methods for fabricating an organic electro-luminescence device
US9887359B2 (en) 2015-03-31 2018-02-06 Industrial Technology Research Institute Organic electro-luminescence device and fabricating method thereof
US9991478B2 (en) 2015-03-31 2018-06-05 Industrial Technology Research Institute Methods for fabricating an organic electro-luminescence device and flexible electric device

Also Published As

Publication number Publication date
DE102014223952A1 (en) 2015-05-28
CN104681741A (en) 2015-06-03
GB2526388A (en) 2015-11-25
JP2015103815A (en) 2015-06-04
GB2526388B (en) 2016-06-29
TWI643369B (en) 2018-12-01
GB201320881D0 (en) 2014-01-08
KR102351776B1 (en) 2022-01-18
CN104681741B (en) 2018-11-20
JP6605198B2 (en) 2019-11-13
KR20150060569A (en) 2015-06-03
GB201419787D0 (en) 2014-12-24

Similar Documents

Publication Publication Date Title
Cai et al. High‐efficiency solution‐processed small molecule electrophosphorescent organic light‐emitting diodes
Huang et al. Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices
Zhu et al. Solution-processable single-material molecular emitters for organic light-emitting devices
CN100583490C (en) Electroluminescent device
CN103943784B (en) Organic light emitting apparatus
Zhang et al. High efficiency solution processed inverted white organic light emitting diodes with a cross-linkable amino-functionalized polyfluorene as a cathode interlayer
TW201200537A (en) Doping conjugated polymers and devices
JP6636234B2 (en) Organic light emitting device
TW201206985A (en) Organic light-emitting polymer and device
TW201336968A (en) Polymer, polymer composition and organic light-emitting device
TWI643369B (en) Organic light-emitting device and method
GB2508409A (en) Organic Light-Emitting Composition, Device and Method
Lozano-Hernández et al. Structurally simple OLEDs based on a new fluorinated poly (oxindolylidenearylene)
KR101883739B1 (en) Polymer blend, organic light emitting diodes using the same and method for controlling charge mobility of the emitting layer of thereof
EP3996150A1 (en) Perovskite photoelectric element and method for manufacturing same
KR102260621B1 (en) A perovskite photoelectric device and manufacturing method thereof
Mucur et al. Thermal annealing effect on light emission profile of polyfluorenes containing double bond subunit
US20170229672A1 (en) Organic light emitting devices and methods of making them
CN115427521A (en) Preparation of organic functional material
TW201010158A (en) Organic electronic device
Zhang et al. Efficient Green Organic Light-Emitting Devices Based on a Solution-Processable Starburst Molecule
TWI835803B (en) Formulation of an organic functional material
US11555146B2 (en) Fluorescent infrared emitting composition
Leung et al. Charge balance conductive vinyl polymers for homojuncton organic light emitting diodes (OLEDs)
TWI534201B (en) Electrically conducting compositions for organic electronic devices