TW201522368A - Pro-drug antibodies against tissue factor pathway inhibitor - Google Patents

Pro-drug antibodies against tissue factor pathway inhibitor Download PDF

Info

Publication number
TW201522368A
TW201522368A TW103109453A TW103109453A TW201522368A TW 201522368 A TW201522368 A TW 201522368A TW 103109453 A TW103109453 A TW 103109453A TW 103109453 A TW103109453 A TW 103109453A TW 201522368 A TW201522368 A TW 201522368A
Authority
TW
Taiwan
Prior art keywords
antibody
prt
artificial sequence
tfpi
masking
Prior art date
Application number
TW103109453A
Other languages
Chinese (zh)
Inventor
Zhuo-Zhi Wang
John Murphy
Terry Hermiston
Ying Zhu
Ruth Winter
Original Assignee
Bayer Healthcare Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Healthcare Llc filed Critical Bayer Healthcare Llc
Publication of TW201522368A publication Critical patent/TW201522368A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/36Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against blood coagulation factors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/38Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against protease inhibitors of peptide structure
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/35Valency
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/50Fusion polypeptide containing protease site

Abstract

This disclosure provides pro-drug antibodies which specifically bind to tissue factor pathway inhibitor (TFPI) only after exposure to proteases from the coagulation cascade. The pro-drug antibodies described are useful for treating bleeding disorders such as hemophilia. When used in such treatments, these pro-drug antibodies show increased half-life relative to other anti-TFPI antibodies, while mitigating the potential for side effects such as thrombosis.

Description

抗組織因子路徑抑制劑之前藥抗體 Anti-tissue factor pathway inhibitor prodrug antibody

依據37 C.F.R.1.821(c),本文以符合ASCII文字檔案的形式呈交一份在2013年3月15日創建的序列表,名為「BAYRP0004USP1_ST25.txt」且具有~71千位元的大小。前述檔案的內容以其整體併入做為參考。 According to 37 C.F.R.1.821(c), this paper submits a sequence listing created on March 15, 2013 in the form of an ASCII text file named "BAYRP0004USP1_ST25.txt" and has a size of ~71 kilobits. The contents of the aforementioned archives are incorporated by reference in their entirety.

技術領域是有關於治療血友病以及其他凝血障礙。 The technical field is related to the treatment of hemophilia and other coagulopathy.

血液凝固是血液形成穩定血塊而停止出血的一個過程。這個過程涉及一些在血液中循環的酶原以及輔因子原(procofactor)(或「凝血因子」)。彼等酶原以及輔因子原透過數個路徑交互作用,它們藉著該等路徑依序或同時轉換成活化形式。最後,該過程使得凝血酶原因為活化因子X(FXa)在因子Va、離子性鈣與血小板存在下而活化成凝血酶。活化的凝血酶又引起血小板聚集並且將血纖維蛋白原轉換成血纖維蛋白,而血纖維蛋白被活化因子XIII(FXIIIa)交叉連結而形成血塊。 Blood coagulation is a process in which blood forms a stable blood clot and stops bleeding. This process involves some zymogens circulating in the blood as well as procofactors (or "coagulation factors"). These zymogens and cofactors interact through several pathways through which they are sequentially or simultaneously converted into an activated form. Finally, this process causes thrombin to be activated by thrombin by activation factor X (FXa) in the presence of factor Va, ionic calcium and platelets. Activated thrombin in turn causes platelet aggregation and converts fibrinogen to fibrin, while fibrin is cross-linked by activated factor XIII (FXIIIa) to form a blood clot.

活化因子X的過程可以透過兩個不同路徑發生:接觸活化路徑(先前已知為內在路徑)以及組織因子路徑(先前已知為外在路徑)。先前認為凝血級聯由兩個連結至一個共同路徑之具有相等重要性的路徑所組成。現在知道血液凝固起始的主要路徑為組織因子路徑。因子X可以被組織因子(TF)組合活化因子VII(FVIIa)所活化。因子VIIa與其主要輔因子(TF)的複合體是凝血級聯的有效引發劑。 The process of activating Factor X can occur through two different pathways: a contact activation pathway (previously known as an intrinsic pathway) and a tissue factor pathway (previously known as an extrinsic pathway). The coagulation cascade was previously thought to consist of two equally important pathways linked to a common pathway. It is now known that the primary pathway for the initiation of blood coagulation is the tissue factor pathway. Factor X can be activated by tissue factor (TF) in combination with activating factor VII (FVIIa). The complex of factor VIIa with its major cofactor (TF) is an effective initiator for the coagulation cascade.

凝血的組織因子路徑受到組織因子路徑抑制劑(「TFPI」)負向地調控。TFPI是一種FVIIa/TF複合體的天然FXa依賴性回饋抑制劑。其為多價Kunitz型絲胺酸蛋白酶抑制劑的一個成員。在生理學上,TFPI結合至活化的因子X(FXa)而形成異型二聚體複合體,其接而與FVIIa/TF複合體交互作用而抑制其活性,因此關閉了凝血的組織因子路徑。原則上,阻斷TFPI活性可回復FXa以及FVIIa/TF活性,因而延長組織因子路徑的作用持續時間並放大FXa的生成,而FXa是A型血友病與B型血友病的共有缺陷。 The tissue factor pathway of coagulation is negatively regulated by tissue factor pathway inhibitors ("TFPI"). TFPI is a natural FXa-dependent feedback inhibitor of the FVIIa/TF complex. It is a member of the multivalent Kunitz-type serine protease inhibitor. Physiologically, TFPI binds to activated Factor X (FXa) to form a heterodimeric complex, which in turn interacts with the FVIIa/TF complex to inhibit its activity, thus shutting down the tissue factor pathway of coagulation. In principle, blocking TFPI activity restores FXa and FVIIa/TF activity, thereby prolonging the duration of action of the tissue factor pathway and amplifying the production of FXa, which is a common defect in hemophilia A and hemophilia B.

當然,一些初步實驗證據指出,藉由抗TFPI的抗體阻斷TFPI活性可使得延長的凝血時間常規化或縮短出血時間。例如,Nordfang等人證明在以針對TFPI的抗體處理血漿之後,血友病血漿的延長稀釋凝血酶原時間常規化(Thromb.Haemost.,1991,66(4):464-467)。同樣地,Erhardtsen等人證明,A型血友病兔模型中的出血時間會因為抗TFPI抗體而明顯縮短(Blood Coagulation and Fibrinolysis,1995,6:388-394)。這些研究暗示,透過抗TFPI抗體抑制TFPI對於治療A型或B型血友病可能是有用的。在這些研究中只有使用多株抗TFPI抗體。 Of course, some preliminary experimental evidence indicates that blocking TFPI activity by antibodies against TFPI can result in prolonged prolonged clotting time or shortened bleeding time. For example, Nordfang et al. demonstrated that prolonged prothrombin time of hemophilic plasma was routinely normalized after plasma treatment with antibodies against TFPI (Thromb. Haemost., 1991, 66(4): 464-467). Similarly, Erhardtsen et al. demonstrated that bleeding time in a rabbit model of hemophilia A is significantly shortened by anti-TFPI antibodies (Blood Coagulation and Fibrinolysis, 1995, 6: 388-394). These studies suggest that inhibition of TFPI by anti-TFPI antibodies may be useful for the treatment of hemophilia A or B. Only a few anti-TFPI antibodies were used in these studies.

使用融合瘤技術,可以製備並且鑑別出抗重組人類TFPI(rhTFPI)的單株抗體。參見Yang et al.,Chin.Med.J.,1998,111(8):718-721。測試單株抗體對於稀釋凝血酶原時間(PT)及活化部分凝血活酶時間(APTT)的影響。實驗顯示,抗TFPI單株抗體縮短因子IX缺陷型血漿的稀釋凝血酶原凝固時間。暗示著組織因子路徑不僅在生理學凝血,還有在血友病的出血中也扮演重要的角色(Yang et al.,Hunan Yi Ke Da Xue Xue Bao,1997,22(4):297-300)。 Monoclonal antibodies against recombinant human TFPI (rhTFPI) can be prepared and identified using fusion tumor technology. See Yang et al. , Chin . Med. J., 1998, 111(8): 718-721. The effect of individual antibodies on dilution of prothrombin time (PT) and activated partial thromboplastin time (APTT) was tested. Experiments have shown that anti-TFPI monoclonal antibodies shorten the digested prothrombin clotting time of Factor IX deficient plasma. It suggests that the tissue factor pathway plays an important role not only in physiological coagulation but also in hemorrhagic hemophilia (Yang et al. , Hunan Yi Ke Da Xue Xue Bao, 1997, 22(4): 297-300). .

授予Kjalke等人的美國專利第7,015,194號揭示包含FVIIa以及TFPI抑制劑的組合物,其包括多株或單株抗體或其片段,該組合物用以治療或預防出血事件或凝血治療。亦揭示在正常哺乳動物血漿中使用該組合物減少凝血時間。進一步暗示因子VIII或其變體可被納入所揭示的FVIIa與TFPI抑制劑的組合物中。並未暗示FVIII或因子IX與TFPI單株抗體的組 合。除了治療血友病以外,其亦暗示TFPI抑制劑(包括多株抗體或單株抗體)可用來治療癌症(參見授予Hung的美國專利第5,902,582號)。 U.S. Patent No. 7,015,194 to Kjalke et al. discloses a composition comprising FVIIa and a TFPI inhibitor comprising a plurality of strains or monoclonal antibodies or fragments thereof for use in treating or preventing a bleeding event or coagulation therapy. It is also disclosed that the use of the composition in normal mammalian plasma reduces clotting time. It is further suggested that Factor VIII or a variant thereof can be incorporated into the disclosed compositions of FVIIa and TFPI inhibitors. Groups that do not suggest FVIII or Factor IX and TFPI monoclonal antibodies Hehe. In addition to the treatment of hemophilia, it also suggests that TFPI inhibitors (including multi-drug antibodies or monoclonal antibodies) can be used to treat cancer (see U.S. Patent No. 5,902,582 to Hung).

因此,需要一種對TFPI具有特異性之改良抗體供治療血液學疾病與癌症。 Therefore, there is a need for an improved antibody specific for TFPI for the treatment of hematological diseases and cancer.

因此,依據本發明提供一種抗體,其包含(a)第一可變域,包括第一輕鏈與第一重鏈可變區,該第一可變域在免疫學上結合至組織因子路徑抑制劑(TFPI);(b)連接到第一輕鏈及/或第一重鏈可變區的胺基末端的掩蔽域(masking domains);及(c)蛋白酶可切割連接子,插入第一輕鏈及/或第一重鏈可變區和掩蔽域之間。蛋白酶可切割域可以是凝血酶、血纖維蛋白溶解酶、因子VIIa或因子Xa切割位點。掩蔽域可以包含第二可變域,該第二可變域包括第二輕鏈與第二重鏈可變區。該抗體可以是IgG1、IgG2、IgG3、IgG4、IgM、IgA1、IgA2、分泌型IgA、IgD以及IgE抗體。該抗體可以是人類或人類化抗體,及/或單鏈抗體。該抗體可以是二價並且包含兩個掩蔽域,一個連結到各個第一輕鏈可變區的胺基末端,或二價並且包含兩個掩蔽域,一個連結到各個第一重鏈可變區的胺基末端,或二價並且包括四個掩蔽域,一個連結到各個第一輕鏈可變區和各個第一重鏈可變區的胺基末端,例如,其中兩個掩蔽域是第二個輕鏈可變區,而兩個掩蔽域是第二重鏈可變區,其中該第二輕鏈和重鏈可變區形成第二可變域。第二可變域可以結合至組織因子(TF)、紅血球或白蛋白。掩蔽域可以是白蛋白結合蛋白。該抗體可結合至人類組織因子路徑抑制劑的Kunitz域2。 Thus, according to the present invention, there is provided an antibody comprising (a) a first variable domain comprising a first light chain and a first heavy chain variable region, the first variable domain being immunologically bound to tissue factor pathway inhibition a reagent (TFPI); (b) masking domains attached to the amine end of the first light chain and/or the first heavy chain variable region; and (c) a protease cleavable linker inserted into the first light Between the strand and/or the first heavy chain variable region and the masking domain. The protease cleavable domain can be a thrombin, plasmin, Factor Vila or Factor Xa cleavage site. The masking domain can comprise a second variable domain comprising a second light chain and a second heavy chain variable region. The antibody may be IgG1, IgG2, IgG3, IgG4, IgM, IgA1, IgA2, secretory IgA, IgD, and IgE antibodies. The antibody can be a human or humanized antibody, and/or a single chain antibody. The antibody may be bivalent and comprise two masking domains, one linked to the amine terminus of each first light chain variable region, or bivalent and comprising two masking domains, one linked to each first heavy chain variable region Amino terminus, or bivalent and comprising four masking domains, one linked to the respective first light chain variable region and the amine terminal of each first heavy chain variable region, for example, wherein the two masking domains are second One light chain variable region and the two mask domains are a second heavy chain variable region, wherein the second light chain and heavy chain variable regions form a second variable domain. The second variable domain can bind to tissue factor (TF), red blood cells, or albumin. The masking domain can be an albumin binding protein. This antibody binds to the Kunitz domain 2 of the human tissue factor pathway inhibitor.

亦提供一種表現載體,其包含如上所述抗體且受到啟動子控制的編碼區,以及包含該一表現載體的細胞。亦提供一種醫藥調配物,其包含如上所述抗體與醫藥上可接受緩衝劑、載劑或稀釋劑一起調配。 Also provided is a performance vector comprising a coding region as described above and which is under the control of a promoter, and a cell comprising the expression vector. Also provided is a pharmaceutical formulation comprising an antibody as described above formulated with a pharmaceutically acceptable buffer, carrier or diluent.

在另一個具體例中,提供一種在個體中治療凝血障礙的方法,包含向該個體投與數量足以在該個體中促進凝血的抗體,該抗體包含(a)第一可變域,包括第一輕鏈與第一重鏈可變區,該第一可變域在免疫學上 結合至組織因子路徑抑制劑(TFPI);(b)連接到第一輕鏈及/或第一重鏈可變區的胺基末端的掩蔽域;及(c)蛋白酶可切割連接子,插入第一輕鏈及/或第一重鏈可變區和掩蔽域之間。蛋白酶可切割域可以是凝血酶、血纖維蛋白溶解酶、因子VIIa或因子Xa切割位點。掩蔽域可以包含第二可變域,該第二可變域包括第二輕鏈與第二重鏈可變區。該抗體可以是IgG1、IgG2、IgG3、IgG4、IgM、IgA1、IgA2、分泌型IgA、IgD以及IgE抗體。該抗體可以是人類或人類化抗體,及/或單鏈抗體。該抗體可以是二價並且包含兩個掩蔽域,一個連結到各個第一輕鏈可變區的胺基末端,或二價並且包含兩個掩蔽域,一個連結到各個第一重鏈可變區的胺基末端,或二價並且包括四個掩蔽域,一個連結到各個第一輕鏈可變區和各個第一重鏈可變區的胺基末端,例如,其中兩個掩蔽域是第二個輕鏈可變區,而兩個掩蔽域是第二重鏈可變區,其中該第二輕鏈和重鏈可變區形成第二可變域。第二可變域可以結合至組織因子(TF)、紅血球或白蛋白。掩蔽域可以是白蛋白結合蛋白。該個體可以是人類或非人類哺乳動物。該個體可能患有外傷、血友病(例如A型或B型)或癌症。該抗體可全身性地投與,或者局部或區域性地投與至出血位點。該抗體可以皮下、靜脈內或動脈內投與。該抗體可結合至人類組織因子路徑抑制劑的Kunitz域2。 In another embodiment, a method of treating a blood coagulation disorder in an individual comprising administering to the individual an amount of an antibody sufficient to promote coagulation in the individual, the antibody comprising (a) a first variable domain, including the first a light chain and a first heavy chain variable region, the first variable domain being immunologically Binding to a tissue factor pathway inhibitor (TFPI); (b) a masking domain linked to the amine-terminal end of the first light chain and/or the first heavy chain variable region; and (c) a protease cleavable linker, inserted A light chain and/or a first heavy chain variable region and a masking domain. The protease cleavable domain can be a thrombin, plasmin, Factor Vila or Factor Xa cleavage site. The masking domain can comprise a second variable domain comprising a second light chain and a second heavy chain variable region. The antibody may be IgG1, IgG2, IgG3, IgG4, IgM, IgA1, IgA2, secretory IgA, IgD, and IgE antibodies. The antibody can be a human or humanized antibody, and/or a single chain antibody. The antibody may be bivalent and comprise two masking domains, one linked to the amine terminus of each first light chain variable region, or bivalent and comprising two masking domains, one linked to each first heavy chain variable region Amino terminus, or bivalent and comprising four masking domains, one linked to the respective first light chain variable region and the amine terminal of each first heavy chain variable region, for example, wherein the two masking domains are second One light chain variable region and the two mask domains are a second heavy chain variable region, wherein the second light chain and heavy chain variable regions form a second variable domain. The second variable domain can bind to tissue factor (TF), red blood cells, or albumin. The masking domain can be an albumin binding protein. The individual can be a human or a non-human mammal. The individual may have trauma, hemophilia (eg, type A or type B) or cancer. The antibody can be administered systemically or locally or regionally to the site of bleeding. The antibody can be administered subcutaneously, intravenously or intraarterially. This antibody binds to the Kunitz domain 2 of the human tissue factor pathway inhibitor.

預期本文所述任一方法或組合物可以利用本文所述任一其他方法或組合物來加以實施。 It is contemplated that any of the methods or compositions described herein can be practiced using any of the other methods or compositions described herein.

當與術語「包含」一起在申請專利範圍及/或說明書中使用單字「一或一種」時,可表示「一」,但其亦與「一或多」、「至少一」以及「一或一個以上」的意思一致。 When the word "one or one" is used in the scope of the patent application and/or the description, it may mean "one", but it is also associated with "one or more", "at least one" and "one or one" The meaning of the above is the same.

預期本說明書中論及的任一具體例可利用本發明任一方法或組合物加以實施,且反之亦然。此外,本發明之組合物與套組可用以達到本發明之方法。 It is contemplated that any of the specific examples discussed in this specification can be practiced using any of the methods or compositions of the invention, and vice versa. Additionally, the compositions and kits of the present invention can be used to achieve the methods of the present invention.

在本申請案通篇中,術語「約」用來指明該數值包括用來測定數值之裝置、方法的誤差的固有變異性,或存在於研究主體的變異性。 Throughout this application, the term "about" is used to indicate that the value includes the inherent variability of the error of the device or method used to determine the value, or the variability present in the subject.

下列圖式構成本說明書的一部分且被納入以進一步顯示本發明的特定態樣。本發明可藉由參照此等圖式的一或多者與本文提供之特定具體例的詳細說明組合而更為容易理解。 The following drawings form a part of this specification and are included to further illustrate particular aspects of the invention. The invention may be more readily understood by reference to one or more of the drawings.

圖1. 抗TFPI前藥抗體的一個具體例及其如何在活體內發揮作用的例示說明。 Figure 1. A specific example of an anti-TFPI prodrug antibody and an illustration of how it functions in vivo.

圖2. 抗TFPI前藥抗體的有效掩蔽策略的例示說明。 Figure 2. Illustrative illustration of an effective masking strategy for anti-TFPI prodrug antibodies.

圖3A-B. TF結合前藥的載體圖譜,其中抗TFPI以及TF的可變區前後地連結。(圖3A)HC1-pTTF5 gA200抗TFPI前藥抗體片段的載體圖譜。(圖3B)LC1-pTTF 641抗TFPI前藥抗體片段的載體圖譜。 Figure 3A-B. Vector map of TF-bound prodrugs in which the anti-TFPI and the variable regions of TF are linked back and forth. (Fig. 3A) Vector map of the HC1-pTTF5 gA200 anti-TFPI prodrug antibody fragment. (Fig. 3B) Vector map of LC1-pTTF 641 anti-TFPI prodrug antibody fragment.

圖4A-C. TF結合前藥與RBC結合前藥的載體圖譜,其中抗TF或RBC的scFV連結至抗TFPI抗體重鏈的胺基末端。(圖4A)pQM1-3E10sc-gA200HC抗TFPI前藥抗體片段的載體圖譜。(圖4B)pQM1-T119sc-gA200HC抗-TFPI前藥抗體片段的載體圖譜。(圖4C)pQM1/gA200LC抗-TFPI前藥抗體片段的載體圖譜。 4A-C. Vector map of a TF-binding prodrug to RBC-bound prodrug, wherein the anti-TF or RBC scFV is linked to the amine terminus of the anti-TFPI antibody heavy chain. (FIG. 4A) Vector map of pQM1-3E10sc-gA200HC anti-TFPI prodrug antibody fragment. (Fig. 4B) Vector map of pQM1-T119sc-gA200HC anti-TFPI prodrug antibody fragment. (Fig. 4C) Vector map of pQM1/gA200LC anti-TFPI prodrug antibody fragment.

圖5A-B. 白蛋白-結合前藥的載體圖譜。(圖5A)pQM1-56E4-gA200H抗TFPI前藥抗體片段的載體圖譜。(圖5B)pQM1-56E4-gA200L抗TFPI前藥抗體片段的載體圖譜。 Figure 5A-B. Vector map of albumin-bound prodrugs. (FIG. 5A) Vector map of pQM1-56E4-gA200H anti-TFPI prodrug antibody fragment. (FIG. 5B) Vector map of pQM1-56E4-gA200L anti-TFPI prodrug antibody fragment.

圖6. 3E10-scFv-gA200以及Ter119-scFv-gA200抗TFPI IgG使用考馬斯染色並且在非還原條件下不使用二硫蘇糖醇(DTT)以及在還原條件下使用DTT的SDS-PAGE。 Figure 6. 3E10-scFv-gA200 and Ter119-scFv-gA200 anti-TFPI IgG were stained with Coomassie and did not use dithiothreitol (DTT) under non-reducing conditions and SDS-PAGE using DTT under reducing conditions.

圖7. 測定56E4-gA200相對於天然gA200之結合親和力的TFPI結合ELISA圖。 Figure 7. TFPI binding ELISA map to determine the binding affinity of 56E4-gA200 relative to native gA200.

圖8. Ter119sc-gA200結合至RBC作為抗體濃度之函數的圖。 Figure 8. Diagram of binding of Ter119sc-gA200 to RBC as a function of antibody concentration.

圖9. 不同抗TFPI前藥抗體以及未修飾的抗TFPI抗體gA200相對於TFPI在人類血清白蛋白(HSA)存在或不存在下之結合百分比的BIACORETM測量結果圖。 9. FIG prodrugs different anti-TFPI antibodies and unmodified anti-TFPI antibodies in humans gA200 respect TFPI serum albumin (HSA) or presence BIACORE TM measurements of the percentage of the binding of FIG absence.

圖10A-G. (圖10A)峰凝血酶作為針對抗TFPI前藥抗體56E4-gA200,和抗TFPI抗體gA200之抗體濃度的函數之圖。(圖10B)凝血酶生成作為不同濃度的抗TFPI前藥抗體56E4-hA200,和抗TFPI抗體gA200的函數的圖,顯示出在各個抗體濃度下所生成的凝血酶濃度。(圖10C)前藥TPP-2654與其親本抗體gA200的凝血酶生成型態比較,前藥TPP-2654可以由凝血酶和FXa活化所活化。凝血酶活化TPP-2654的能力是透過加入外源性凝血酶接著水蛭素,然後不活化所添加之凝血酶來進行評估。對照包括其中添加緩衝液代替凝血酶的反應。(圖10D)顯示活化前藥TPP-2654所需的凝血酶滴定濃度測試。測試的凝血酶濃度在生理學可能達到的範圍內。(圖10E)間接評估FXa活化前藥TPP-2654的能力。FXa和凝血酶水平是透過增加用於起始TGA反應的TF濃度而增加。藉由比較外源性凝血酶提升TPP-2654反應的能力與因為FXa和凝血酶活化所達致者,可衡量FXa活化前藥的相對貢獻。(圖10F)顯示前藥TPP-2652的凝血酶生成,其受單獨凝血酶所活化。在此滴定研究指出,前藥TPP-2652需要~2.5U/mL凝血酶來轉換成活性TFPIAb。(圖10G)TPP-2652對FXa的相對不敏感性可在TF滴定實驗的結果中觀察到。相對於被設計成受到FXa與凝血酶活化而被活化的TPP-2654,TPP-2652顯示在凝血酶生成上以更高的TF使用劑量價產生一個較小的增長(圖10G與圖10E進行比較)。圖11.不同濃度的白蛋白對抗TFPI前藥的抗體和未修飾抗TFPI抗體的影響的圖。 Figure 10A-G. (Figure 10A) A plot of peak thrombin as a function of antibody concentration against anti-TFPI prodrug antibody 56E4-gA200, and anti-TFPI antibody gA200. (FIG. 10B) A graph of thrombin generation as a function of different concentrations of anti-TFPI prodrug antibody 56E4-hA200, and anti-TFPI antibody gA200, showing thrombin concentrations generated at various antibody concentrations. (Fig. 10C) The prodrug TPP-2654 was activated by thrombin and FXa activation as compared to the thrombin generation profile of its parent antibody gA200. The ability of thrombin to activate TPP-2654 is assessed by the addition of exogenous thrombin followed by hirudin and subsequent activation of the added thrombin. The control includes a reaction in which a buffer is added instead of thrombin. (Fig. 10D) shows the thrombin titration concentration test required to activate the prodrug TPP-2654. The thrombin concentration tested is within the range that physiology is likely to reach. (Fig. 10E) Indirect assessment of the ability of FXa to activate the prodrug TPP-2654. FXa and thrombin levels are increased by increasing the concentration of TF used to initiate the TGA response. The relative contribution of FXa-activated prodrugs can be measured by comparing the ability of exogenous thrombin to enhance the TPP-2654 response with those achieved by FXa and thrombin activation. (Fig. 10F) shows thrombin generation of the prodrug TPP-2652, which is activated by thrombin alone. In this titration study, the prodrug TPP-2652 requires ~2.5 U/mL thrombin to convert to active TFPIAb. (Fig. 10G) The relative insensitivity of TPP-2652 to FXa can be observed in the results of the TF titration experiments. TPP-2652 showed a small increase in thrombin generation with higher TF dose rates relative to TPP-2654, which was designed to be activated by FXa and thrombin activation (Figure 10G compared to Figure 10E) ). Figure 11. A graph of the effect of different concentrations of albumin against antibodies to TFPI prodrugs and unmodified anti-TFPI antibodies.

圖12. 可組合以製備本發明之抗TFPI前藥抗體的重鏈與輕鏈序列。 Figure 12. Heavy and light chain sequences that can be combined to make an anti-TFPI prodrug antibody of the invention.

圖13. 本發明之抗TFPI前藥抗體之重鏈與輕鏈序列。 Figure 13. Heavy and light chain sequences of anti-TFPI prodrug antibodies of the invention.

圖14. 依據本發明之抗TFPI前藥抗體之選定重鏈與輕鏈的胺基末端序列。 Figure 14. Amino terminal sequence of selected heavy and light chains of an anti-TFPI prodrug antibody in accordance with the present invention.

圖15a. 在人類或猴白蛋白不存在或存在下,白蛋白結合抗TFPI前藥的TFPI結合(表面電漿共振-Biacore數據);圖15b. 在人類/猴白蛋白不存在或存在下,以或不以凝血酶或FXa處理之後,白蛋白結合抗TFPI前藥的TFPI結合(表面電漿共振)。 Figure 15a. TFPI binding of albumin-binding anti-TFPI prodrugs (surface plasmon resonance-Biacore data) in the absence or presence of human or monkey albumin; Figure 15b. In the absence or presence of human/monkey albumin, Albumin binds to TFPI binding (surface plasma resonance) of anti-TFPI prodrugs after treatment with or without thrombin or FXa.

圖16. 抗TFPI前藥TPP-2652與TPP-2654在蛋白酶切割後的質譜。 Figure 16. Mass spectrum of anti-TFPI prodrug TPP-2652 and TPP-2654 after protease cleavage.

本揭示內容說明抗組織因子路徑抑制劑(TFPI)用於血友病及其他療法的安全和長效抗體。目前,抗TFPI抗體在分別臨床前和臨床開發中,但抗TFPI抗體的活體內半衰期比其他IgG抗體的半衰期相對還短。這可能是由於目標媒介的清除。此外,也已提出抗TFPI抗體在帶有發炎或以FVIIa治療的患者體內可能會引起副作用的問題。 The present disclosure describes anti-tissue factor pathway inhibitors (TFPI) for safe and long-acting antibodies for hemophilia and other therapies. Currently, anti-TFPI antibodies are in preclinical and clinical development, respectively, but the in vivo half-life of anti-TFPI antibodies is relatively shorter than the half-life of other IgG antibodies. This may be due to the removal of the target medium. In addition, anti-TFPI antibodies have also been proposed to cause side effects in patients with inflammation or treatment with FVIIa.

為了解決這些問題,已開發出本發明中所描述的抗TFPI前藥抗體。這些抗體在它們暴露於從凝血級聯產生的蛋白酶之前,顯著減少對TFPI的結合。一旦凝血開始且蛋白酶產生了,蛋白酶藉由切割掩蔽域而活化了抗TFPI抗體,從而增加其對TFPI的結合。這些前藥抗體可用於治療出血障礙(如血友病),同時比先前描述過的抗TFPI抗體提供更佳的安全性和藥動學型態。 In order to solve these problems, the anti-TFPI prodrug antibody described in the present invention has been developed. These antibodies significantly reduce binding to TFPI before they are exposed to proteases produced from the coagulation cascade. Once coagulation begins and proteases are produced, the protease activates the anti-TFPI antibody by cleavage of the masking domain, thereby increasing its binding to TFPI. These prodrug antibodies can be used to treat bleeding disorders such as hemophilia while providing better safety and pharmacokinetic profiles than the previously described anti-TFPI antibodies.

1. 抗TFPI前藥抗體 1. Anti-TFPI prodrug antibody

本文揭示的抗體特異性地結合至TFPI;亦即,彼等以其對不相干抗原(例如BSA、酪蛋白)的結合親和力還高的親和力(例如至少兩倍高)結合到TFPI。如本文所用術語「組織因子路徑抑制劑」或「TFPI」意指由細胞天然表現的人類TFPI的任何變體、同型異構體和物種同源物。 The antibodies disclosed herein specifically bind to TFPI; that is, they bind to TFPI with a high affinity (e.g., at least twice as high) as their binding affinity for an incoherent antigen (e.g., BSA, casein). The term "tissue factor pathway inhibitor" or "TFPI" as used herein means any variant, isoform and species homolog of human TFPI which is naturally expressed by a cell.

在一些具體例中,前藥抗體以至少約105M-1至約1012M-1(例如105M-1、105.5M-1、106M-1、106.5M-1、107M-1、107.5M-1、108M-1、108.5M-1、109M-1、109.5M-1、1010M-1、1010.5M-1、1011M-1、1011.5M-1、1012M-1)的親和力結合至TFPI。可以使用技藝中已知的任何方法來分析抗體結合至抗原的親和力(Kd),技藝中已知的任何方法包括例如免疫分析(諸如酶聯免疫特異性分析(ELISA))、雙分子交互作用分析(BIA)(例如,Sjolander & Urbaniczky;Anal.Chem.63:2338-2345,1991;Szabo,et al.,Curr.Opin.Struct. Biol.5:699-705,199,在此併入作為參考),以及螢光活化細胞分選(FACS)用以量化結合至表現抗原之細胞的抗體。BIA是一種在沒有標記任何交互作用物的情況下即時分析生物特異性交互作用的技術(例如,BIACORETM)。光學現象表面電漿共振(SPR)的變化可以用作生物分子之間的即時反應的指標。 In some embodiments, the prodrug antibodies of at least about 10 5 M -1 to about 10 12 M -1 (e.g. 105M -1, 10 5.5 M -1, 10 6 M -1, 10 6.5 M -1, 10 7 M -1 , 10 7.5 M -1 , 10 8 M -1 , 10 8.5 M -1 , 10 9 M -1 , 10 9.5 M -1 , 10 10 M -1 , 10 10.5 M -1 , 10 11 M - The affinity of 1 , 10 11.5 M -1 , 10 12 M -1 ) is bound to TFPI. Any method known in the art to analyze the antibody binds to an antigen affinity (K d), by any method known in the art including, for example, immunoassays (such as a specific enzyme-linked immunosorbent analysis (ELISA)), bimolecular interactions Analysis (BIA) (for example, Sjolander &Urbaniczky; Anal . Chem. 63: 2338-2345, 1991; Szabo, et al. , Curr. Opin. Struct . Biol. 5: 699-705, 199, incorporated herein by reference) , and fluorescence activated cell sorting (FACS) to quantify antibodies that bind to cells expressing antigen. Now biospecific interaction analysis technique (e.g., BIACORE TM) BIA is a case where the marker without any interaction thereof. Optical phenomena Surface plasma resonance (SPR) changes can be used as an indicator of immediate response between biomolecules.

抗TFPI前藥抗體可以使用一個基本上全長免疫球蛋白分子(例如,IgG1、IgG2a、IgG2b、IgG3、IgG4、IgM、IgD、IgE、IgA)、其抗原結合片段(諸如Fab或F(ab’)2),或包含抗原結合位點(如scFv、Fv或雙抗體)的構築體來建構,其能夠特異性地結合至TFPI。術語「抗體」還包括其他蛋白支架,能夠定向抗體互補決定區(CDR)插入在天然抗體中所發現的相同活性結合構型中,使得在此等嵌合蛋白所觀察到對TFPI的結合維持在從中衍生CDR的天然抗體的TFPI結合活性。 Anti-TFPI prodrug antibodies can use a substantially full length immunoglobulin molecule (eg, IgG1, IgG2a, IgG2b, IgG3, IgG4, IgM, IgD, IgE, IgA), antigen binding fragments thereof (such as Fab or F(ab') 2 ), or a construct comprising an antigen binding site (such as scFv, Fv or diabody), which is capable of specifically binding to TFPI. The term "antibody" also includes other protein scaffolds capable of directing the insertion of antibody complementarity determining regions (CDRs) into the same active binding configuration found in native antibodies such that binding to TFPI is observed in such chimeric proteins. The TFPI-binding activity of the native antibody from which the CDRs are derived.

如本文所用「經單離的抗體」是一種抗體,它基本上無具有不同抗原特異性的其他抗體(例如,結合至TFPI的經單離抗體基本上無結合至TFPI以外之抗原的抗體)。但是,結合人類TFPI的表位、同型異構體或變體之經單離抗體可對其他相關抗原具有交叉反應性,其他相關抗原為例如來自其它物種(例如,TFPI物種同源物)。經單離抗體基本上可能無其他細胞材料和/或化學物質。 As used herein, an "isolated antibody" is an antibody that is substantially free of other antibodies having different antigenic specificities (eg, a single antibody that binds to TFPI is substantially free of antibodies that bind to an antigen other than TFPI). However, an isolated antibody that binds to an epitope, isoform or variant of human TFPI may be cross-reactive with other related antigens, such as from other species (eg, TFPI species homologs). The isolated antibody may be substantially free of other cellular material and/or chemicals.

特定抗TFPI抗體揭示於美國專利公開案US2012/20268917、US2012/0108796、US2011/0229476及國際專利公開案WO2012/135671中,這些文件中每一者的全部內容併入本文做為參考。 Specific anti-TFPI antibodies are disclosed in U.S. Patent Publication Nos. US2012/20268917, US 2012/0108796, US 2011/0229476, and International Patent Publication No. WO 2012/135671, the entire disclosure of each of each of

A. 掩蔽抗體(Masked Antibodies) A. Masked Antibodies

在一些具體例中,本文揭示的前藥抗體經工程改造成具有掩蔽域,其降低抗體結合至TFPI的能力。這些掩蔽域可以識別凝血級聯的要素或其他相關標記。在一些具體例中,該掩蔽域包括辨識下列生物分子的要素,諸如組織因子(TF)、紅血球(RBC)及/或白蛋白。這些掩蔽域如圖1中所示透過蛋白酶切割位點附接至該抗體的可變區。這些掩蔽域可以是抗 體、肽、蛋白質,或另一種支架。無論如何,掩蔽域防止抗體透過其可變區結合至TFPI,直至掩蔽域被除去。 In some embodiments, the prodrug antibodies disclosed herein are engineered to have a masking domain that reduces the ability of the antibody to bind to TFPI. These masking domains can identify elements of the coagulation cascade or other related markers. In some embodiments, the masking domain includes elements that recognize the following biomolecules, such as tissue factor (TF), red blood cells (RBC), and/or albumin. These masking domains are attached to the variable region of the antibody via a protease cleavage site as shown in Figure 1. These masking domains can be resistant Body, peptide, protein, or another scaffold. In any event, the masking domain prevents the antibody from binding to the TFPI through its variable region until the masking domain is removed.

本文揭示的前藥的抗體經工程改造成包括被一或多個蛋白酶所辨識的蛋白酶切割位點,其切割會釋放掩蔽域並允許該抗體結合至TFPI。如本文所用,「蛋白酶切割位點」意指被蛋白酶識別和切割的胺基酸序列。在一些具體例中,蛋白酶切割位點被定位以掩蔽抗TFPI抗體的可變區並顯示於圖1中。在一些具體例中,抗TFPI前藥抗體包括一或多個蛋白酶切割位點,其可被凝血酶、血纖維蛋白溶解酶及/或因子Xa所切割。還能預想到,可使用因凝血級聯而被活化或上調之蛋白酶的其他蛋白酶切割位點。在一些具體例中,掩蔽抗TFPI前藥抗體之可變區的胺基酸序列除了蛋白酶切割位點及/或抗體、肽、蛋白質,或其它支架以外還包含多肽連接子(如圖所示,例如在圖1中),其結合TF、RBC,或白蛋白。連接子可以是單一個胺基酸或多肽序列(例如,至多100個胺基酸)。例如,連接子可以是GGGGS(SEQ ID NO:149)。其它可供使用的連接子包括那些於SEQ ID NO:151-176中所示者。在其它具體例中沒有連接子存在,而切割位點自身以與結合至TF、RBC或白蛋白的抗體、肽、蛋白質,或另一種支架如圖1中所示掩蔽其結合至TFPI的方式被插入到可變區上。 The antibodies of the prodrugs disclosed herein are engineered to include a protease cleavage site that is recognized by one or more proteases, the cleavage of which releases the masking domain and allows the antibody to bind to the TFPI. As used herein, "protease cleavage site" means an amino acid sequence that is recognized and cleaved by a protease. In some embodiments, a protease cleavage site is positioned to mask the variable region of an anti-TFPI antibody and is shown in Figure 1. In some embodiments, the anti-TFPI prodrug antibody comprises one or more protease cleavage sites that can be cleaved by thrombin, fibrinolytic enzyme, and/or factor Xa. It is also envisioned that other protease cleavage sites for proteases that are activated or upregulated by the coagulation cascade can be used. In some embodiments, the amino acid sequence that masks the variable region of the anti-TFPI prodrug antibody comprises a polypeptide linker in addition to a protease cleavage site and/or antibody, peptide, protein, or other scaffold (as shown, For example, in Figure 1), it binds to TF, RBC, or albumin. The linker can be a single amino acid or polypeptide sequence (e.g., up to 100 amino acids). For example, the linker can be GGGGS (SEQ ID NO: 149). Other linkers that are available include those shown in SEQ ID NOs: 151-176. In other embodiments, no linker is present, and the cleavage site itself is masked by binding to TF, RBC or albumin antibodies, peptides, proteins, or another scaffold as shown in Figure 1 to bind to TFPI. Insert into the variable area.

已確定至少兩個凝血酶的最佳切割位點:(1)X1-X2-P-R-X3-X4(SEQ ID NO:147),其中X1和X2是疏水性胺基酸和X3和X4都是非酸性胺基酸;和(2)GRG。在精胺酸殘基之後特異地切割凝血酶。血纖維蛋白溶解酶也可切割上述兩個切割位點,但具有比凝血酶還低的特異性。其他可供使用的凝血酶切割位點提供如SEQ ID NO:1-60。其他可供使用的血纖維蛋白溶解酶切割位點提供如SEQ ID NO:12、47、48、53,和61-130。在一些具體例中,切割位點是LVPRGS(SEQ ID NO:137)。 The optimal cleavage site for at least two thrombin has been determined: (1) X 1 -X 2 -PRX 3 -X 4 (SEQ ID NO: 147), wherein X 1 and X 2 are hydrophobic amino acids and X Both 3 and X 4 are non-acidic amino acids; and (2) GRG. The thrombin is specifically cleaved after the arginine residue. The plasmin also cleaves the above two cleavage sites, but has a lower specificity than thrombin. Other thrombin cleavage sites available for use are provided as SEQ ID NOs: 1-60. Other available fibrinolytic enzyme cleavage sites are provided as SEQ ID NOs: 12, 47, 48, 53, and 61-130. In some embodiments, the cleavage site is LVPRGS (SEQ ID NO: 137).

在一些具體例中,使用因子Xa切割位點,諸如I-(E或D)-G-R(SEQ ID NO:148)。其他可供使用的因子Xa切割位點提供如SEQ ID NO:29、59,及61-69。 In some embodiments, a Factor Xa cleavage site is used, such as I-(E or D)-G-R (SEQ ID NO: 148). Other Factor Xa cleavage sites available for use are provided as SEQ ID NOs: 29, 59, and 61-69.

除了切割位點以外,可以將蛋白酶的第二個結合位點(所謂外結合位點)引入抗TFPI前藥以製造出更有效率的切割。凝血酶的外結合位點可以來自蛋白酶受質或抑制劑(諸如PAR1、血纖維蛋白原以及水蛭素)的天然外結合位點。外結合位點也可以是其他蛋白質外結合位點的衍生物。 In addition to the cleavage site, a second binding site for the protease (a so-called outer binding site) can be introduced into the anti-TFPI prodrug to create a more efficient cleavage. The outer binding site of thrombin may be derived from a natural outer binding site of a protease receptor or inhibitor such as PAR1, fibrinogen, and hirudin. The outer binding site may also be a derivative of other extracellular binding sites.

B. 抗體合成 B. Antibody synthesis

抗TFPI前藥抗體可以合成或重組的方式生產。一些技術可供用於生產抗體。例如,噬菌體-抗體技術可用於生成抗體(Knappik et al.,J.Mol.Biol.296:57-86,2000,其併入本文做為參考)。用於獲得抗體的另一種方法是,如在WO 91/17271與WO 92/01047(兩者均併入本文做為參考)中所述從B細胞中篩選DNA庫。在這些方法中產生噬菌體庫,其中成員在其外表面上展示不同的抗體。抗體通常展示為Fv或Fab片段。噬菌體展示抗體透過結合至選定蛋白質的親和力集富而被篩選。抗體還可以使用三源雜交瘤方法學製備(例如Oestberg et al.,Hybridoma 2:361-367,1983;U.S.專利第4,634,664號;美國專利第4,634,666號,全都併入本文做為參考)。 Anti-TFPI prodrug antibodies can be produced synthetically or recombinantly. Some techniques are available for the production of antibodies. For example, phage-antibody techniques can be used to generate antibodies (Knappik et al., J. Mol. Biol. 296: 57-86, 2000, which is incorporated herein by reference). Another method for obtaining antibodies is to screen DNA libraries from B cells as described in WO 91/17271 and WO 92/01047, both incorporated herein by reference. Phage libraries are produced in these methods in which members display different antibodies on their outer surface. Antibodies are typically displayed as Fv or Fab fragments. Phage display antibodies are screened for affinity enrichment by binding to selected proteins. Antibodies can also be prepared using a three-source hybridoma methodology (e.g., Oestberg et al., Hybridoma 2 : 361-367, 1983; U.S. Patent No. 4,634,664; U.S. Patent No. 4,634,666, the entire disclosure of which is incorporated herein by reference.

抗體也可以從表現該等抗體的任何細胞純化,任何細胞包括已轉染了編碼抗體之表現構築體的宿主細胞。宿主細胞可在使抗體表現的條件下進行培養。經純化抗體可從可與抗體在細胞中相締合的其他細胞組分(如某些蛋白質、碳水化合物,或脂質),使用本技藝中熟知的方法進行分離。這些方法包括,但不限於尺寸篩除層析、硫酸銨區分、離子交換層析、親和力層析,和製備型凝膠電泳。製劑的純度可以透過本技藝中已知的任何方法(例如SDS-聚丙烯醯胺凝膠電泳)來評估。製備經純化的抗體可以包含超過一種類型的抗體。 Antibodies can also be purified from any cell that exhibits such antibodies, including any host cell that has been transfected with a display construct encoding the antibody. The host cell can be cultured under conditions such that the antibody is expressed. Purified antibodies can be isolated from other cellular components (e.g., certain proteins, carbohydrates, or lipids) that can associate with the antibody in the cells using methods well known in the art. These methods include, but are not limited to, size screening chromatography, ammonium sulfate discrimination, ion exchange chromatography, affinity chromatography, and preparative gel electrophoresis. The purity of the formulation can be assessed by any method known in the art, such as SDS-polyacrylamide gel electrophoresis. Preparation of purified antibodies can comprise more than one type of antibody.

或者,抗TFPI前藥抗體可使用化學方法合成其胺基酸序列(諸如藉由使用固相技術的直接肽合成)(例如Merrifield,J.Am.Chem.Soc.85:2149-2154,1963;Roberge et al.,Science 269:202-204,1995,兩者均併入本文做為參考)來製造。蛋白質的合成可以使用手動技術或透過自動化來進行。視情況,抗體的片段可以分別合成並使用化學方法予以合併而產生全長分子。 Alternatively, an anti-TFPI prodrug antibody can be chemically synthesized using its amino acid sequence (such as by direct peptide synthesis using solid phase techniques) (eg, Merrifield, J. Am . Chem . Soc . 85 : 2149-2154, 1963; Roberge et al., Science 269 : 202-204, 1995, both incorporated herein by reference. Protein synthesis can be carried out using manual techniques or by automation. Depending on the case, fragments of the antibody can be separately synthesized and chemically combined to produce a full length molecule.

在一些具體例中,抗TFPI前藥抗體也可以被構成呈「單鏈Fv(scFv)格式」,其中一個蛋白酶切割位點以掩蔽其識別TFPI的能力這樣的方式被插入或圍繞一個肽連接子、抗體、肽、蛋白質,或另一個支架。因為肽連接子對於將scFv的兩個可變區維持在一起以供抗原結合是必要的,故肽連接子或側翼區的切割允許感興趣的蛋白酶不活化或下調scFv對其抗原的結合。 In some embodiments, an anti-TFPI prodrug antibody can also be constructed in a "single-chain Fv (scFv) format" in which a protease cleavage site is inserted or surrounded by a peptide linker in a manner that masks its ability to recognize TFPI. , antibody, peptide, protein, or another scaffold. Because peptide linkers are necessary to maintain the two variable regions of the scFv together for antigen binding, cleavage of the peptide linker or flanking region allows the protease of interest to not activate or down-regulate the binding of the scFv to its antigen.

在一些具體例中,抗TFPI前藥抗體被構築呈「IgG形式」,其具有兩個結合位點,並且可以掩蔽其識別的TFPI的能力這樣的方式包括一個、兩個、三個或四個介於可變區和抗體、肽、蛋白質或另一個支架之間的蛋白酶切割位點。在每種情況下,蛋白酶切割位點在一側或兩側可以是連接子。此外,在每種情況下,切割位點可以是相同的或不同的。 In some embodiments, an anti-TFPI prodrug antibody is constructed in an "IgG format" having two binding sites and capable of masking its ability to recognize TFPI in such a manner as to include one, two, three or four A protease cleavage site between the variable region and an antibody, peptide, protein or another scaffold. In each case, the protease cleavage site can be a linker on one or both sides. Furthermore, in each case the cleavage sites may be the same or different.

2. 多核苷酸 2. Polynucleotide

本發明亦提供編碼前藥抗體的多核苷酸。此等多核苷酸可用來例如生產大量抗體供治療使用。 The invention also provides polynucleotides encoding prodrug antibodies. Such polynucleotides can be used, for example, to produce large quantities of antibodies for therapeutic use.

編碼抗體的cDNA分子可以利用標準分子生物技術使用mRNA作為模板來製造。之後,cDNA分子可以使用技藝中已知並且揭示於諸如Sambrook,et al.,(Molecular Cloning:A Laboratory Manual(Second Edition,Cold Spring Harbor Laboratory Press;Cold Spring Harbor,N.Y.;1989)Vol.1-3,併入本文做為參考)的手冊中的分子生物技術來複製。諸如PCR的擴增技術可用來獲得多核苷酸的額外複本。或者,可使用合成化學技術來合成編碼抗TFPI前藥抗體的多核苷酸。 The cDNA molecule encoding the antibody can be produced using standard molecular biotechnology using mRNA as a template. Thereafter, cDNA molecules can be used in the art and are disclosed, for example, in Sambrook, et al. , (Molecular Cloning: A Laboratory Manual (Second Edition, Cold Spring Harbor Laboratory Press; Cold Spring Harbor, NY; 1989) Vol. 1-3. Molecular biotechnology in the manual, incorporated herein by reference), is reproduced. Amplification techniques such as PCR can be used to obtain additional copies of the polynucleotide. Alternatively, synthetic chemistry techniques can be used to synthesize polynucleotides encoding anti-TFPI prodrug antibodies.

為了要表現編碼抗體的多核苷酸,該多核苷酸可以被插入到含有被插入編碼序列的轉錄和轉譯所必需的要素的表現載體中。可使用習於技藝者所熟知的方法來構築含有編碼抗體和合適的轉錄和轉譯控制要素之序列的表現載體。這些方法包括活體外重組DNA技術、合成技術和活體內遺傳重組。此等技術描述於例如Sambrook,et al.(1989)與Ausubel,et al., (Current Protocols in Molecular Biology,John Wiley & Sons,New York,N.Y.,1995)中,均併入本文做為參考。 In order to present a polynucleotide encoding an antibody, the polynucleotide can be inserted into a expression vector containing elements necessary for transcription and translation of the inserted coding sequence. Expression vectors containing sequences encoding the antibody and appropriate transcriptional and translational control elements can be constructed using methods well known to those skilled in the art. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. Such techniques are described, for example, in Sambrook, et al. (1989) and Ausubel, et al. , (Current Protocols in Molecular Biology, John Wiley & Sons, New York, NY, 1995), each incorporated herein by reference.

各種表現載體/宿主系統可用於包含和表現編碼抗體的序列。這些包括,但不限於微生物,如經重組噬菌體,質體或黏粒DNA表現載體轉形的細菌;經酵母菌表現載體轉形的酵母菌;感染病毒表現載體(如桿狀病毒)的昆蟲細胞系統;經病毒表現載體(例如花椰菜鑲嵌病毒,CaMV;菸草鑲嵌病毒,TMV)轉形的植物細胞系統;或細菌表現載體(例如,Ti或pBR322質體),或動物細胞系統。 A variety of expression vector/host systems are available for inclusion and expression of the sequences encoding the antibodies. These include, but are not limited to, microorganisms, such as recombinant phage, plastid or cosmid DNA expressing vector-transformed bacteria; yeast transformed by yeast expression vectors; insect cells infected with viral expression vectors (eg, baculovirus) System; a plant cell system transformed with a viral expression vector (eg, broccoli mosaic virus, CaMV; tobacco mosaic virus, TMV); or a bacterial expression vector (eg, Ti or pBR322 plastid), or an animal cell system.

控制要素或調控序列為載體的那些非轉譯區(增強子、啟動子、5'和3'未轉譯區),其與宿主細胞蛋白交互作用以執行轉錄和轉譯。這樣的要素在強度和特異性方面可能有所不同。根據載體系統和宿主,可以使用任何數量的合適轉錄和轉譯要素,包括組成型和誘導型啟動子。例如,當在細菌系統中進行選殖時,可以使用誘導型啟動子。桿狀病毒多角體啟動子可用於昆蟲細胞中。衍生自植物細胞基因體的啟動子或增強子(例如,熱休克,RUBISCO和貯藏蛋白基因),或來自植物病毒的啟動子或增強子(例如,病毒啟動子或前導序列)可以被選殖到載體中。在哺乳動物細胞系統中,可以使用來自哺乳動物基因或來自哺乳動物病毒的啟動子。如果有必要產生包含編碼抗體之核苷酸序列的多複本的細胞株時,可使用帶有適當可篩選標記之以SV40或EBV為主的載體。 Control elements or regulatory sequences are those non-translated regions of the vector (enhancer, promoter, 5' and 3' untranslated regions) that interact with host cell proteins to perform transcription and translation. Such elements may differ in strength and specificity. Depending on the vector system and host, any number of suitable transcriptional and translational elements can be used, including constitutive and inducible promoters. For example, an inducible promoter can be used when colonizing in a bacterial system. The baculovirus polyhedrin promoter can be used in insect cells. Promoters or enhancers derived from plant cell genomes (eg, heat shock, RUBISCO and storage protein genes), or promoters or enhancers (eg, viral promoters or leader sequences) from plant viruses can be selected for In the carrier. In mammalian cell systems, promoters derived from mammalian genes or from mammalian viruses can be used. If it is necessary to produce a cell line comprising multiple copies of the nucleotide sequence encoding the antibody, a SV40 or EBV-based vector with appropriate selectable markers can be used.

3. 製備TFPI抗體的方法 3. Method for preparing TFPI antibody

說明其他可用分子生物技術(包括製備抗體)的一般性文章為Berger and Kimmel(Guide to Molecular Cloning Techniques,Methods in Enzymology,Vol.152,Academic Press,Inc.);Sambrook,et al.,(Molecular Cloning:A Laboratory Manual,(Second Edition,Cold Spring Harbor Laboratory Press;Cold Spring Harbor,N.Y.;1989)Vol.1-3);Current Protocols in Molecular Biology,(F.M.Ausabel et al.[Eds.],Current Protocols,a joint venture between Green Publishing Associates,Inc.and John Wiley & Sons,Inc. (supplemented through 2000));Harlow et al.,(Monoclonal Antibodies:A Laboratory Manual,Cold Spring Harbor Laboratory Press(1988),Paul[Ed.]);Fundamental Immunology,(Lippincott Williams & Wilkins(1998));以及Harlow,et al.(Using Antibodies:A Laboratory Manual,Cold Spring Harbor Laboratory Press(1998)),全部併入本文做為參考。 A general article describing other available molecular biotechnologies, including the preparation of antibodies, is Berger and Kimmel (Guide to Molecular Cloning Techniques, Methods in Enzymology, Vol. 152, Academic Press, Inc.); Sambrook, et al. , (Molecular Cloning). : A Laboratory Manual, (Second Edition, Cold Spring Harbor Laboratory Press; Cold Spring Harbor, NY; 1989) Vol. 1-3); Current Protocols in Molecular Biology, (FMAusabel et al. [Eds.], Current Protocols, a Joint venture between Green Publishing Associates, Inc. and John Wiley & Sons, Inc. (supplemented through 2000); Harlow et al., (Monoclonal Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press (1988), Paul [Ed. ]); Fundamental Immunology, (Lippincott Williams & Wilkins (1998)); and Harlow, et al. (Using Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press (1998)), all incorporated herein by reference.

已使用遺傳工程來產生鼠、嵌合、人類化或完全人類抗,以生成用於人類疾病的治療性抗體。鼠單株抗體顯示作為治療劑會因為血清半衰期短、無法引起人類效應子功能以及產生人類抗小鼠抗體而具有限制性用途。Brekke and Sandlie,"Therapeutic Antibodies for Human Diseases at the Dawn of the Twenty-first Century," Nature 2,53,52-62(January 2003)。嵌合抗體已顯示會引起人類抗嵌合抗體反應。人類化抗體進一步將抗體的小鼠組分減至最低。但是,完全人類抗體完全避免了與鼠要素有關的免疫原性。具體而言,若使用帶有鼠組分或鼠源的抗體,例如使用抗TFPI單株抗體治療血友病的慢性預防性治療,具有對療法產生免疫反應的高度風險,因為需要頻繁給藥且治療持續時間長。例如,A型血友病的抗體療法可能需要每週給藥持續患者終身。這對於免疫系統來說是持續的刺激。因此,對用於血友病與遺傳性和後天性凝血缺乏症或缺陷之抗體療法的完全人類抗體存在有需要。 Genetic engineering has been used to generate murine, chimeric, humanized or fully human antibodies to generate therapeutic antibodies for human disease. Murine monoclonal antibodies have been shown to have therapeutic applications because of their short serum half-life, inability to cause human effector functions, and the production of human anti-mouse antibodies. Brekke and Sandlie, "Therapeutic Antibodies for Human Diseases at the Dawn of the Twenty-first Century," Nature 2, 53, 52-62 (January 2003). Chimeric antibodies have been shown to cause human anti-chimeric antibody responses. The humanized antibody further minimizes the mouse component of the antibody. However, fully human antibodies completely avoid the immunogenicity associated with murine elements. In particular, the use of antibodies with murine components or murine sources, such as the use of anti-TFPI monoclonal antibodies to treat chronic prophylactic treatment of hemophilia, has a high risk of developing an immune response to the therapy, as frequent administration is required and The treatment lasts for a long time. For example, antibody therapy for hemophilia A may require weekly dosing for a patient's lifetime. This is a constant stimulus for the immune system. Therefore, there is a need for fully human antibodies for antibody therapy for hemophilia and hereditary and acquired coagulopathy or defects.

已透過Koehler and Milstein在"Continuous Cultures of Fused Cells Secreting Antibody of Predefined Specificity," Nature 256,495-497(1975)中所述融合瘤技術製造治療性抗體。完全人類抗體也可以在原核生物及真核生物中以重組方式製造。對於治療性抗體來說,偏好在宿主細胞中重組生產抗體而不是融合瘤製造。重組製造具有產品一致性更高、生產量可能更高,以及控制生產而減低或消除動物衍生蛋白質存在的益處。由於這些緣故,希望以重組方式生產單株抗TFPI抗體。 Therapeutic antibodies have been made by the fusion tumor technique described by Koehler and Milstein in "Continuous Cultures of Fused Cells Secreting Antibody of Predefined Specificity," Nature 256, 495-497 (1975). Fully human antibodies can also be produced recombinantly in prokaryotes and eukaryotes. For therapeutic antibodies, it is preferred to recombinantly produce antibodies in host cells rather than fusion tumors. Recombinant manufacturing has the benefit of higher product consistency, higher production throughput, and controlled production to reduce or eliminate the presence of animal derived proteins. For these reasons, it is desirable to produce a monoclonal anti-TFPI antibody in a recombinant manner.

單株抗體可藉由在宿主細胞中表現根據本發明具體例之編碼單株抗體可變區的核苷酸序列來生產。在表現載體的幫助下,含有核苷酸序列的核酸可以被轉染和在適合生產的宿主細胞中被表現。因此,亦提 供了一種用於生產與人類TFPI結合之單株抗體的方法,包含:(1)將編碼本發明單株抗體的核酸分子轉染入宿主細胞中、(b)培養宿主細胞,以在宿主細胞中表現單株抗體,並且視情況(c)分離和純化生產的單株抗體,其中該核酸分子包含編碼本發明單株抗體的核苷酸序列。 A monoclonal antibody can be produced by expressing in a host cell a nucleotide sequence encoding a variable region of a monoclonal antibody according to a specific example of the present invention. A nucleic acid containing a nucleotide sequence can be transfected and expressed in a host cell suitable for production with the aid of a performance vector. Therefore, it is also mentioned Provided is a method for producing a monoclonal antibody that binds to human TFPI, comprising: (1) transfecting a nucleic acid molecule encoding a monoclonal antibody of the present invention into a host cell, and (b) cultivating the host cell to be in the host cell A monoclonal antibody is expressed in the middle, and the produced monoclonal antibody is isolated and purified as appropriate (c), wherein the nucleic acid molecule comprises a nucleotide sequence encoding the monoclonal antibody of the present invention.

在一個實例中,為了表現抗體或其抗體片段,將透過標準分子生物學技術獲得的編碼部分或全長輕鏈與重鏈的DNA插入表現載體中,使得該等基因可操作地連接到轉錄和轉譯控制序列。在上下文中,術語「可操作地連接」旨在表示抗體基因連接到載體,使得該載體內的轉錄和轉譯控制序列發揮其調控抗體基因的轉錄和轉譯的預期功能。表現載體和表現控制序列被選擇為與所使用的表現宿主細胞相容。抗體輕鏈基因和抗體重鏈基因可以插入個別載體,或者更典型地,將兩個基因插入同一表現載體中。透過標準方法將抗體基因插入到表現載體(例如,在抗體基因片段和載體上互補限制位點的接合,或若沒有限制位點的話鈍端接合)。本文所述抗體的輕鏈和重鏈可變區可以用於藉由將它們插入已經編碼所要同型之重鏈恆定區和輕鏈的表現載體,使得VH段在載體內可操作地連接到CH段而VL段在載體內可操作地連接到CL段,來建立任一抗體同型的全長抗體基因。此外或或者,重組表現載體可以編碼促進抗體鏈自宿主細胞分泌的信號肽。抗體鏈基因可被選殖到載體中,使得信號肽符合讀框地連接到抗體鏈基因的胺基末端。該信號肽可以是免疫球蛋白信號肽或異源信號肽(即來自非免疫球蛋白蛋白質的信號肽)。 In one embodiment, in order to represent an antibody or antibody fragment thereof, a DNA encoding a partial or full-length light chain and heavy chain obtained by standard molecular biology techniques is inserted into an expression vector such that the genes are operably linked to transcription and translation. Control sequence. In this context, the term "operably linked" is intended to mean that an antibody gene is ligated into a vector such that transcriptional and translational control sequences within the vector function as intended to regulate the transcription and translation of the antibody gene. The expression vector and the expression control sequence are selected to be compatible with the expression host cell used. The antibody light chain gene and the antibody heavy chain gene can be inserted into an individual vector or, more typically, two genes can be inserted into the same expression vector. The antibody gene is inserted into the expression vector by standard methods (e.g., ligation at complementary restriction sites on the antibody gene fragment and vector, or blunt-end ligation if there is no restriction site). The light and heavy chain variable regions of the antibodies described herein can be used to operably link the VH segment to the C by inserting them into an expression vector that has encoded the heavy chain constant region and the light chain of the desired isotype. H and V L segment within the vector segment is operatively linked to the C L segment, either antibody to create full-length antibody genes isotype. Additionally or alternatively, the recombinant expression vector can encode a signal peptide that facilitates secretion of the antibody chain from the host cell. The antibody chain gene can be cloned into a vector such that the signal peptide is ligated in-frame to the amine terminus of the antibody chain gene. The signal peptide can be an immunoglobulin signal peptide or a heterologous signal peptide (ie, a signal peptide from a non-immunoglobulin protein).

除了抗體鏈編碼基因以外,本發明的重組表現載體還帶有控制抗體鏈基因在宿主細胞中表現的調控序列。術語「調控序列」旨在包括啟動子、增強子和其他控制抗體鏈基因轉錄或轉譯的表現控制要素(例如聚腺苷酸化信號)。此類調控序列描述於例如Goeddel;Gene Expression Technology.Methods in Enzymology 185,Academic Press,San Diego,Calif.(1990)。習於技藝者應當理解,表現載體(包括調控序列的選擇)的設計可以取決於下列因素,如待轉形宿主細胞的選擇、所需蛋白質的表現水平等。用於哺乳動物宿主細胞表現之調控序列的實例包括在哺乳動物細胞中指揮 高水平蛋白表現的病毒要素,例如源自巨大細胞病毒(CMV)、猿猴病毒40(SV40)、腺病毒(例如,腺病毒主要晚期啟動子(AdMLP))和多瘤病毒的啟動子及/或增強子。或者可使用非病毒調控序列,如泛素啟動子或β-球蛋白啟動子。 In addition to the antibody chain encoding gene, the recombinant expression vector of the present invention also has regulatory sequences that control the expression of the antibody chain gene in the host cell. The term "regulatory sequence" is intended to include promoters, enhancers, and other expression control elements (eg, polyadenylation signals) that control the transcription or translation of antibody chain genes. Such regulatory sequences are described, for example, in Goeddel; Gene Expression Technology. Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990). It will be understood by those skilled in the art that the design of the expression vector (including selection of regulatory sequences) can depend on factors such as the choice of host cell to be transformed, the level of expression of the desired protein, and the like. Examples of regulatory sequences for mammalian host cell expression include directing in mammalian cells High-level protein-expressing viral elements, such as those derived from giant cell virus (CMV), simian virus 40 (SV40), adenovirus (eg, adenovirus major late promoter (AdMLP)), and polyomavirus promoters and/or Enhancer. Alternatively, non-viral regulatory sequences such as the ubiquitin promoter or the beta-globin promoter can be used.

除了抗體鏈基因和調控序列,重組表現載體可以帶有其他序列,諸如調節載體在宿主細胞中複製的序列(例如,複製源點)和可篩選標記基因。可篩選標記基因有助於篩選已引入載體的宿主細胞(參見,例如美國專利第4,399,216號、第4,634,665號和第5,179,017號,所有均為Axel等人)中。例如,通常可篩選標記基因賦予已引入載體的宿主細胞對藥物(例如G418、潮黴素或甲胺喋呤)的抗性。可篩選標記基因的實例包括二氫葉酸還原酶(DHFR)基因(在使用甲胺喋呤選擇/擴增的情況下用於dhfr-宿主細胞中)和neo基因(用於G418篩選)。 In addition to antibody chain genes and regulatory sequences, recombinant expression vectors can carry additional sequences, such as sequences that regulate replication of the vector in a host cell (eg, a source of replication) and a selectable marker gene. The selectable marker genes are useful for screening host cells into which the vector has been introduced (see, for example, U.S. Patent Nos. 4,399,216, 4,634,665 and 5,179,017, all to Axel et al.). For example, a marker gene can generally be screened for conferring resistance to a drug (eg, G418, hygromycin or methotrexate) to a host cell into which the vector has been introduced. Examples of selectable marker genes include the dihydrofolate reductase (DHFR) gene (for use in dhfr-host cells in the case of methotrexate selection/amplification) and the neo gene (for G418 screening).

對於輕鏈和重鏈的表現來說,編碼重鏈和輕鏈的表現載體是透過標準技術被轉染到宿主細胞中。各種形式的術語「轉染」意在涵括各種通常用於將外源性DNA引入原核或真核宿主細胞的技術,例如電穿孔、磷酸鈣沉澱、DEAE-葡聚醣轉染及類似技術。儘管在理論上可以在原核或真核宿主細胞中表現本發明的抗體,但在真核細胞中表現抗體為較佳,在哺乳動物宿主細胞中表現抗體最佳,因為這樣的真核細胞(尤其是哺乳動物細胞)比原核細胞更可以裝配和分泌正確折疊且具有免疫學活性的抗體。 For the expression of light and heavy chains, expression vectors encoding heavy and light chains are transfected into host cells by standard techniques. The various forms of the term "transfection" are intended to encompass a variety of techniques commonly used to introduce exogenous DNA into prokaryotic or eukaryotic host cells, such as electroporation, calcium phosphate precipitation, DEAE-dextran transfection, and the like. Although it is theoretically possible to express an antibody of the present invention in a prokaryotic or eukaryotic host cell, it is preferred to express the antibody in eukaryotic cells and to express the antibody optimally in a mammalian host cell because of such eukaryotic cells (especially It is a mammalian cell that assembles and secretes correctly folded and immunologically active antibodies more than prokaryotic cells.

用以表現重組抗體的哺乳動物宿主細胞的實例包括中國倉鼠卵巢(CHO細胞)(包括dhfr-CHO細胞,描述於Urlaub and Chasin,(1980)Proc.Natl.Acad.Sci.USA 77:4216-4220中,與DHFR可篩選標記一起使用,例如描述於R.J.Kaufman and P.A.Sharp(1982)Mol.Biol.159:601-621中)、NSO骨髓瘤細胞、COS細胞、HKB11細胞及SP2細胞。當編碼抗體基因的重組表現載體被引入哺乳動物宿主細胞中時,該等抗體是透過將宿主細胞培養一段時間足以允許抗體在宿主細胞中表現或抗體分泌至宿主細胞生長其中的培養基中來生產。抗體可以使用標準蛋白質純化方法(諸如超過濾、尺寸篩除層析、離子交換色譜和離心)從培養基中回收。 Examples of mammalian host cells for expressing recombinant antibodies include Chinese hamster ovary (CHO cells) (including dhfr-CHO cells, described in Urlaub and Chasin, (1980) Proc. Natl. Acad. Sci. USA 77: 4216-4220 In combination with DHFR selectable markers, for example as described in RJ Kaufman and PA Sharp (1982) Mol. Biol. 159:601-621), NSO myeloma cells, COS cells, HKB11 cells and SP2 cells. When a recombinant expression vector encoding an antibody gene is introduced into a mammalian host cell, the antibodies are produced by culturing the host cell for a period of time sufficient to allow expression of the antibody in the host cell or secretion of the antibody into the culture medium in which the host cell is grown. Antibodies can be recovered from the culture medium using standard protein purification methods such as ultrafiltration, size screening chromatography, ion exchange chromatography, and centrifugation.

4. 使用部分抗體序列表現完整抗體 4. Use partial antibody sequences to represent intact antibodies

抗體與目標抗原主要是透過位在六個重鏈與輕鏈CDR上的胺基酸殘基交互作用。為此,個別抗體之間於CDR內的胺基酸序列比CDR外的序列更加多樣化。因為CDR序列負責大多數抗體-抗原交互作用,有可能藉由構築包括來自不同特異性天然抗體之CDR序列被移植到具有不同特性之不同抗體的骨架序列的表現載體來表現模擬特異性天然抗體的重組載體(參見,例如Riechmann,L.et al.,1998,Nature 332:323-327;Jones,P.et al.,1986,Nature 321:522-525;及Queen,C.et al.,1989,Proc.Natl.Acad.Sci.U.S.A.86:10029-10033)。此類框架序列可以從公共DNA資料庫(包括生殖系抗體基因序列)來獲得。這些生殖系序列將不同於成熟抗體基因序列,因為它們將不包括完全組裝的可變區基因,這是在B細胞成熟期間由V(D)J接合所形成。不須要獲得特定抗體的完整DNA序列,以重現具有類似於原有抗體的結合性質的完整重組抗體(參見WO 99/45962)。跨越CDR區的部分重鏈和輕鏈序列通常就足夠用於這一目的。部分序列被用來確定哪些生殖系可變和接合基因段促成了重組抗體可變基因。然後將生殖系序列用來填補在可變區的缺失部分。重鏈和輕鏈前導序列在蛋白質成熟期間被切割且對最終抗體的性質沒有貢獻。出於這個原因,必須使用用於表現構築體的對應生殖系前導序列。對了要添加缺失的序列,經選殖的cDNA序列可以與合成寡核苷酸透過接合或PCR擴增予以合併。或者,整個可變區可以被合成為一套短的,重疊寡核苷酸,並透過PCR擴增合併以創建一個完全合成可變區選殖株。這個過程有一定的優勢,如消除或納入或特定限制位點,或特定的密碼子最佳化。 The antibody interacts with the target antigen primarily through amino acid residues located on the six heavy and light chain CDRs. To this end, the amino acid sequences within the CDRs between individual antibodies are more diverse than sequences outside the CDRs. Since CDR sequences are responsible for most antibody-antigen interactions, it is possible to express mimetic-specific natural antibodies by constructing expression vectors that are ligated into skeletal sequences of different antibodies with different properties from CDR sequences from different specific natural antibodies. Recombinant vectors (see, for example, Riechmann, L. et al. , 1998, Nature 332: 323-327; Jones, P. et al. , 1986, Nature 321:522-525; and Queen, C. et al. , 1989 , Proc. Natl. Acad. Sci. USA 86: 10029-10033). Such framework sequences can be obtained from public DNA databases, including germline antibody gene sequences. These germline sequences will differ from the mature antibody gene sequences as they will not include fully assembled variable region genes, which are formed by V(D)J junction during B cell maturation. It is not necessary to obtain the complete DNA sequence of a particular antibody to reproduce an intact recombinant antibody having binding properties similar to those of the original antibody (see WO 99/45962). Part of the heavy and light chain sequences spanning the CDR regions are generally sufficient for this purpose. Partial sequences were used to determine which germline variable and zygote segments contributed to the recombinant antibody variable gene. The germline sequence is then used to fill the missing portion of the variable region. The heavy and light chain leader sequences are cleaved during protein maturation and do not contribute to the properties of the final antibody. For this reason, the corresponding germline leader sequence used to represent the construct must be used. For the sequence to which the deletion is to be added, the selected cDNA sequence can be combined with the synthetic oligonucleotide by ligation or PCR amplification. Alternatively, the entire variable region can be synthesized into a set of short, overlapping oligonucleotides that are combined by PCR amplification to create a fully synthetic variable region selection strain. This process has certain advantages, such as elimination or inclusion or specific restriction sites, or specific codon optimization.

重鏈和輕鏈轉錄本的核苷酸序列被用來設計一組重疊的合成寡核苷酸,以創建與天然序列具有相同的胺基酸編碼能力的合成V序列。合成重鏈和κ鏈序列可能在三個方面不同於天然序列:重複核苷酸鹼基串被打斷,以促進寡核苷酸合成和PCR擴增;最佳化轉譯起始位點是根據Kozak規則(Kozak,1991,J.Biol.Chem.266:19867-19870)併入;以及HindIII位點工程改造在轉譯起始位點上游。 The nucleotide sequences of the heavy and light chain transcripts are used to design a set of overlapping synthetic oligonucleotides to create a synthetic V sequence that has the same amino acid coding ability as the native sequence. The synthetic heavy chain and kappa chain sequences may differ from the native sequence in three respects: the repeated nucleotide base strings are interrupted to facilitate oligonucleotide synthesis and PCR amplification; the optimal translation initiation site is based on The Kozak rule (Kozak, 1991, J. Biol. Chem. 266:19867-19870) was incorporated; and the HindIII site was engineered upstream of the translation initiation site.

兩個重鏈和輕鏈可變區、最佳化編碼,和對應的非編碼鏈序列在對應非編碼寡核苷酸的大約中點處瓦解為30-50個核苷酸的部分。因此,對於每條鏈,寡核苷酸可被組裝成橫跨150-400個核苷酸段的重疊雙鏈組。該等池然後用作模板以產生150-400個核苷酸的PCR擴增產物。通常,單個可變區寡核苷酸組將瓦解成兩個池而分別擴增,以產生兩個重疊的PCR產物。這些重疊產物然後透過PCR擴增合併以形成完整的可變區。它也可能在PCR擴增時納入包括重鏈或輕鏈恆定區的重疊片段,以產生可容易地選殖至表現載體構築體中的片段。 The two heavy and light chain variable regions, the optimized coding, and the corresponding non-coding strand sequences are disrupted to a portion of 30-50 nucleotides at approximately the midpoint of the corresponding non-coding oligonucleotide. Thus, for each strand, the oligonucleotides can be assembled into overlapping double strands spanning 150-400 nucleotide segments. These pools are then used as templates to generate PCR amplification products of 150-400 nucleotides. Typically, a single variable region oligonucleotide set will be disrupted into two pools and separately amplified to produce two overlapping PCR products. These overlapping products are then combined by PCR amplification to form a complete variable region. It is also possible to incorporate overlapping fragments comprising heavy or light chain constant regions upon PCR amplification to generate fragments that can be readily cloned into expression vector constructs.

經重新構築的重鏈和輕鏈可變區接著與經選殖的啟動子、轉譯起始、恆定區、3'非轉譯、聚腺苷酸化和轉錄終止序列,合併而以形成表現載體構築體。重鏈和輕鏈表現構築體可以被合併成單個載體,共轉染、連續轉染或分別轉染至宿主細胞中,然後融合形成表現兩條鏈的宿主細胞。 The reconstituted heavy and light chain variable regions are then combined with the selected promoter, translation initiation, constant region, 3' non-translated, polyadenylation, and transcription termination sequences to form an expression vector construct . The heavy and light chain expression constructs can be combined into a single vector, co-transfected, continuously transfected or separately transfected into a host cell and then fused to form a host cell that expresses both strands.

因此,在另一個態樣中,人類抗TFPI抗體(例如TP2A8、TP2G6、TP2G7、TP4B7等)的結構特徵被用於創建該保留結合至TFPI的功能之結構上相近的人類抗TFPI抗體。更具體而言,本發明單株抗體的經特異性鑑別重鏈和輕鏈區的一或多個CDR可與已知人類骨架區和CDR以重組方式合併以創建額外經重組工程化的本發明人類抗TFPI抗體。 Thus, in another aspect, structural features of human anti-TFPI antibodies (e.g., TP2A8, TP2G6, TP2G7, TP4B7, etc.) are used to create a structurally similar human anti-TFPI antibody that retains the function of binding to TFPI. More specifically, one or more CDRs of a monoclonal antibody of the invention that specifically recognize the heavy and light chain regions can be recombinantly combined with known human framework regions and CDRs to create additional recombinantly engineered inventions. Human anti-TFPI antibody.

因此,在另一個具體例中提供一種用於製備抗TFPI抗體的方法,包含:製備一種抗體,其包含(1)人類重鏈骨架區和人類重鏈CDR,其中該人類重鏈CDR3包含選自胺基酸序列SEQ ID NO:388-430的胺基酸序列,及/或(2)人類輕鏈骨架區和人類輕鏈CDR,其中該輕鏈CDR3包含選自胺基酸序列SEQ ID NO:259-301的胺基酸序列;其中該抗體保留結合至TFPI的能力。在其它具體例中,該方法使用本發明的其它CDR來實施。 Accordingly, in another embodiment, a method for producing an anti-TFPI antibody, comprising: preparing an antibody comprising: (1) a human heavy chain framework region and a human heavy chain CDR, wherein the human heavy chain CDR3 comprises a selected from the group consisting of Amino acid sequence SEQ ID NO: 388-430 amino acid sequence, and/or (2) human light chain backbone region and human light chain CDR, wherein the light chain CDR3 comprises an amino acid sequence selected from the group consisting of SEQ ID NO: The amino acid sequence of 259-301; wherein the antibody retains the ability to bind to TFPI. In other embodiments, the method is practiced using other CDRs of the invention.

5. 醫藥組合物 5. Pharmaceutical composition

抗TFPI前藥抗體可以呈藥物組合物提供,醫藥組合物包含醫藥上可接受的載體。醫藥上可接受的載體較佳是無熱原的。包含抗TFPI前藥抗體的醫藥組合物可以單獨投與或與至少一種其他藥劑組合投與,其 他藥劑為如穩定性化合物,它可以呈任何無菌,生物可相容的醫藥載體來投與,包括但不限於食鹽水、緩衝食鹽水、葡萄糖和水。可採用多種水性載體,例如0.4%食鹽水、0.3%甘胺酸及類似物。這些溶液是無菌的,且通常不含顆粒物質。這些溶液可以透過習用已知的滅菌技術(例如,過濾)來滅菌。該等組合物可視需要含有醫藥上可接受的輔助物質以接近生理條件,如pH調節劑和緩衝劑等。醫藥組合物中的抗TFPI前藥抗體濃度可以廣泛變化,即少於約0.5%,通常在或至少於1%到至高15%或20%(以重量計),且主要是基於流體體積、黏度等,按照所選特定投與模式來選擇。例如參見美國專利第5,851,525號,其併入本文作為參考。如果需要的話,一個以上的不同抗TFPI前藥抗體可以被納入醫藥組合物中。 The anti-TFPI prodrug antibody can be provided in a pharmaceutical composition comprising a pharmaceutically acceptable carrier. The pharmaceutically acceptable carrier is preferably pyrogen free. A pharmaceutical composition comprising an anti-TFPI prodrug antibody can be administered alone or in combination with at least one other agent, The agent is, for example, a stable compound which can be administered in any sterile, biocompatible pharmaceutical carrier including, but not limited to, saline, buffered saline, dextrose and water. A variety of aqueous carriers can be employed, such as 0.4% saline, 0.3% glycine, and the like. These solutions are sterile and generally free of particulate matter. These solutions can be sterilized by conventional sterilization techniques known (e.g., filtration). The compositions may optionally contain pharmaceutically acceptable auxiliary substances to approximate physiological conditions such as pH adjusting agents and buffers. The concentration of the anti-TFPI prodrug antibody in the pharmaceutical composition can vary widely, ie, less than about 0.5%, usually at or at least 1% to as high as 15% or 20% by weight, and is primarily based on fluid volume, viscosity. Etc., select according to the specific investment mode selected. See, for example, U.S. Patent No. 5,851,525, incorporated herein by reference. More than one different anti-TFPI prodrug antibody can be incorporated into the pharmaceutical composition if desired.

除了活性成分以外,藥物組合物可含有合適的醫藥上可接受的載劑,包括賦形劑和在醫藥上使用於促進組合物加工成製劑的助劑。藥物組合物可透過任何數量的路徑來投與,包括但不限於經口、靜脈內、肌肉內、動脈內、髓內、鞘內、心室內、穿皮、皮下、腹膜內、鼻內、非經腸、局部、舌下或直腸方式。 In addition to the active ingredient, the pharmaceutical compositions may contain suitable pharmaceutically acceptable carriers including excipients and auxiliaries for use in the pharmaceutical compositions to facilitate the processing of compositions into preparations. The pharmaceutical composition can be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intraarterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, non- Intestinal, topical, sublingual or rectal.

在已製備醫藥組合物之後,它們可以被放置在適當容器中,並標記為治療指定的病況。這種標籤將包括數量、給藥頻率和方法。組合物還可進一步封裝在包含被適當包裝材料(包括泡沫聚苯乙烯與塑膠吹塑成型容器)限制在一起的一或多個容器的套組中,視情況包括關於儲存和使用的說明。 After the pharmaceutical compositions have been prepared, they can be placed in a suitable container and labeled for treatment of the indicated condition. Such labels will include the quantity, frequency of administration, and method. The composition may also be further encapsulated in a kit comprising one or more containers that are constrained together by a suitable packaging material, including styrofoam and a plastic blow molded container, including instructions for storage and use, as appropriate.

6. 治療出血障礙的方法 6. Methods for treating bleeding disorders A. 病症 A. Illness

血友病是一群損害身體在血管受損時用來停止出血以控制凝血或凝固的能力的遺傳性病症。A型血友病(凝血因子VIII缺乏症)是這種病症的最常見形式,每約5,000-10,000名男嬰中有1名。B型血友病(凝血因子IX缺乏症)在每約20,000-34,000名男嬰中有1名。 Hemophilia is a hereditary condition that impairs the body's ability to stop bleeding to control blood clotting or coagulation when the blood vessels are damaged. Hemophilia A (factor VIII deficiency) is the most common form of this condition, with one in every 5,000-10,000 male infants. Hemophilia B (coagulation factor IX deficiency) is one in every 20,000-34,000 male infants.

如同大多數隱性性聯X染色體病症,血友病更可能發生在男性甚於女性。這是因為女性有兩條X染色體,而男性只有一條,所以有缺陷的基因絕對會在帶有它的男性中表現。因為女性有兩條X染色體,血友病是罕見的,具有兩個缺陷副本的女性的機率很低,所以女性是幾乎病症的完全無症狀帶原者。女性帶原者可以從他們的母親或父親遺傳了有缺陷的基因,也可能是一個新的突變。雖然女性不是不可能患有血友病,但這不常見:帶有A型或B型血友病的女性就一定是一名血友病男性和一名女性帶原者的女兒,而因為凝血因子XI缺乏症,非性聯C型血友病對兩性都會有影響,於阿什肯納茲猶太人(東歐人)後代中更為常見,但少見於其他族群。 Like most recessive X-chromosome disorders, hemophilia is more likely to occur in men than in women. This is because women have two X chromosomes, and there is only one male, so a defective gene will definitely be expressed in the male with it. Because women have two X chromosomes, hemophilia is rare, and women with two defective copies are at a low rate, so women are almost asymptomatic carriers of almost the condition. Female takers can inherit a defective gene from their mother or father, or they may be a new mutation. Although women are not unlikely to have hemophilia, this is not common: a woman with hemophilia A or B must be a hemophilia male and a female daughter with the original, and because of coagulation Factor XI deficiency, non-sex hemophilia C has an effect on both sexes, more common in the Ashkenazi Jewish (East European) offspring, but less common in other ethnic groups.

血友病降低正常凝血過程所需凝血因子的血漿凝血因子水平。因此,當血管受傷時會形成暫時的痂,但缺少的凝血因子防止血纖維蛋白形成,而血纖維蛋白形成對於維持血塊是必要的。血友病患者不會比沒有血友病的人出血地更厲害,但會出血持續更長的時間。在嚴重的血友病患者中,即使是輕微的損傷可導致失血持續幾天或數週,甚至永遠無法癒合完全。在如腦或關節內的區域,這可能是致命的或永久衰弱。 Hemophilia reduces plasma coagulation factor levels of coagulation factors required for normal coagulation processes. Therefore, temporary sputum is formed when the blood vessel is injured, but the lack of clotting factors prevents fibrin formation, and fibrin formation is necessary to maintain blood clots. Hemophilia patients will not bleed more than people without hemophilia, but will continue to bleed for a longer period of time. In severe hemophilia patients, even minor injuries can result in blood loss for a few days or weeks, or even complete healing. In areas such as the brain or joints, this can be fatal or permanently debilitating.

可以使用本發明抗體治療的其它出血病症包括後天血小板功能缺陷、先天性血小板功能缺陷、先天性蛋白C或S缺乏症、彌漫性血管內凝血(DIC)、因子II缺乏症、因子V缺乏症、因子VII缺乏症、因子X缺乏症、因子XII缺乏症、特發性血小板減少性紫癜(ITP)和溫偉伯氏病。 Other bleeding disorders that can be treated with the antibodies of the invention include acquired platelet function defects, congenital platelet function defects, congenital protein C or S deficiency, disseminated intravascular coagulation (DIC), factor II deficiency, factor V deficiency, Factor VII deficiency, factor X deficiency, factor XII deficiency, idiopathic thrombocytopenic purpura (ITP), and Wilberg's disease.

B. 醫藥組合物、路徑及劑量 B. Pharmaceutical compositions, routes and dosages

包含一或多個抗TFPI前藥抗體的醫藥組合物可以單獨或與其他藥劑、藥物或凝血因子組合投與給患者以治療血友病或其它凝血障礙。「治療有效劑量」的抗TFPI前藥抗體意指抗TFPI前藥抗體能促進凝血或減少出血時間的數量。治療有效劑量的確定是在習於技藝者的能力範圍內。 Pharmaceutical compositions comprising one or more anti-TFPI prodrug antibodies can be administered to a patient alone or in combination with other agents, drugs or clotting factors to treat hemophilia or other coagulopathy. A "therapeutically effective dose" of an anti-TFPI prodrug antibody means that the anti-TFPI prodrug antibody promotes coagulation or reduces the amount of bleeding time. Determination of a therapeutically effective dose is within the skill of the artisan.

治療有效劑量最初可以在細胞培養分析中或在動物模型(通常是大鼠、小鼠、兔,狗或豬)中估算。動物模型也可以用來確定適當的濃度範圍和給藥路徑。這樣的資訊隨後可用於確定在人類體內投與時的可用劑量和路徑。 The therapeutically effective dose can be estimated initially in cell culture assays or in animal models (usually rats, mice, rabbits, dogs or pigs). Animal models can also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine the available dose and route when administered in a human body.

治療效果和毒性,例如抗TFPI前藥抗體的ED50(在50%的群體中治療有效的劑量)和LD50(造成50%群體致死的劑量)可以透過標準醫藥程序在細胞培養物或實驗動物中確定。毒性對治療效果的劑量比為治療指數,並且它可以表示為比率,LD50/ED50Therapeutic efficacy and toxicity, eg ED anti-TFPI prodrug antibody 50 (the dose therapeutically effective in 50% of the population) and the LD 50 (resulting dose lethal to 50% of the population) can be through standard pharmaceutical procedures in cell cultures or experimental animals, Determined in. The dose ratio of toxicity to therapeutic effect is the therapeutic index and it can be expressed as the ratio, LD 50 /ED 50 .

展現大治療指數的醫藥組合物是較佳的。從細胞培養分析和動物研究獲得的數據被用於調配一系列供人類使用的劑量。包含在該組合物中的劑量較佳在循環濃度的範圍內,包括具有很少或沒有毒性的ED50。劑量是根據所採用的劑型,患者的敏感性和投與路徑在此範圍內變化。 Pharmaceutical compositions exhibiting a large therapeutic index are preferred. Data obtained from cell culture assays and animal studies were used to formulate a range of doses for human use. Doses contained in the composition is preferably within a range of circulating concentrations that include an ED 50 with little or no toxicity. The dosage is based on the dosage form employed, and the patient's sensitivity and route of administration vary within this range.

精確的劑量將基於與需要治療的患者相關之因素由臨床醫生決定。調整劑量和投與以提供足夠含量的抗TFPI前藥抗體或維持期望的效果。可納入考量的因素包括疾病狀態的嚴重性、個體的一般健康狀況、個體的年齡、體重和性別、飲食、投與時間和頻率、藥物組合、反應敏感性,及對治療的耐受性/反應。可以每3至4天、每週,或每兩週一次投與長效醫藥組合物,取決於特定調配物的半衰期和清除率。 The precise dose will be determined by the clinician based on factors associated with the patient in need of treatment. The dosage and administration are adjusted to provide a sufficient amount of anti-TFPI prodrug antibody or to maintain the desired effect. Factors that can be taken into account include the severity of the disease state, the general health of the individual, the age, weight and sex of the individual, the diet, the time and frequency of administration, the combination of drugs, the sensitivity of the response, and the tolerance/response to the treatment. . The long acting pharmaceutical composition can be administered every 3 to 4 days, every week, or every two weeks, depending on the half-life and clearance rate of the particular formulation.

在一些具體例中,抗TFPI前藥抗體的活體內治療有效劑量是在約5μg至約100mg/kg、約1mg到約50mg/kg、約10mg至約50mg/kg患者體重的範圍內。 In some embodiments, the in vivo therapeutically effective dose of the anti-TFPI prodrug antibody is in the range of from about 5 [mu]g to about 100 mg/kg, from about 1 mg to about 50 mg/kg, from about 10 mg to about 50 mg/kg of patient body weight.

包含抗TFPI前藥抗體之醫藥組合物的投與模式可以是將抗體遞送給宿主的任何適宜路徑(例如皮下、肌肉內、靜脈內或鼻內投與)。 The mode of administration of a pharmaceutical composition comprising an anti-TFPI prodrug antibody can be any suitable route for delivery of the antibody to the host (e.g., subcutaneous, intramuscular, intravenous or intranasal administration).

在一些具體例中,抗TFPI前藥抗體在沒有其他治療劑的情況下被投與。在一些具體例中,抗TFPI前藥抗體在與其他藥劑組合的情況下被投與,其他藥劑為例如藥物或凝血因子,俾以提高凝血酶的初始生產,同時確保凝血酶水平保持在低於可能在某些帶有凝血障礙的人體內引起血栓的範圍。抗TFPI前藥抗體可以在投與其他藥劑之前、之後,或在基本上同時投與。 In some embodiments, the anti-TFPI prodrug antibody is administered without additional therapeutic agents. In some embodiments, the anti-TFPI prodrug antibody is administered in combination with other agents, such as drugs or clotting factors, to increase the initial production of thrombin while ensuring that thrombin levels are kept below It may cause a range of thrombosis in some people with coagulopathy. The anti-TFPI prodrug antibody can be administered before, after, or at substantially the same time as other agents are administered.

實例 Instance

納入下列實施例以進一步說明本發明的各個態樣。應為習於技藝者所理解,下列實例中所揭示的技術容許代表發明人所發現在實施特定具體例時充分發揮功用的技術及/或組合物,並且因此被視為對其實施來說構成較佳模式。然而,依據本發明,習於技藝者應理解,可在所揭示的特定具體例中做出許多變化並仍然獲得相同或類似的結果而不脫離本發明的精神和範圍。 The following examples are included to further illustrate various aspects of the invention. It will be appreciated by those skilled in the art that the techniques disclosed in the examples which follow represent techniques and/or compositions that the inventors have found to be effective in the practice of the particular embodiments and are therefore considered to be Preferred mode. However, it is to be understood by those skilled in the art that the invention may be <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt;

實例1-抗TRPI前藥抗體設計策略 Example 1 - Anti-TRPI Prodrug Antibody Design Strategy

為了掩蔽抗TFPI活性,已想出至少三個策略,但是預期還有其他的策略。抗組織因子抗體域、抗紅血球抗體域或白蛋白結合肽可以用作掩蔽域。掩蔽功能可涉及前藥抗體結合至第一目標(諸如組織因子、紅血球或白蛋白)。當抗TFPI前藥抗體是呈其潛在形式,則對TFPI沒有結合或結合顯著減少,直到掩蔽區被由凝血級聯產生的蛋白酶所切割,如圖1中所示。已設計出不同形式的前藥抗體。雖然所有形式包括Fc區(其容許FcRn結合,以提供較長的半衰期),可變區可以進行修改,包括串聯連接的可變區、scFv-可變區融合、肽可變區融合等。這些前藥抗體的代表圖顯示於圖2中。目前預想的前藥抗體的親本抗體是從人類抗體庫所發現。這些抗體已被廣泛地最佳化,以提高他們的親和力和功能性。親本抗體,gA200和gB9.7,對人類TFPI具有高親和力和特異性,促進組織因子(TF)啟動凝血。 At least three strategies have been devised to mask anti-TFPI activity, but other strategies are expected. An anti-tissue factor antibody domain, an anti-erythrocyte antibody domain or an albumin binding peptide can be used as a masking domain. The masking function can involve binding of the prodrug antibody to a first target (such as tissue factor, red blood cells or albumin). When the anti-TFPI prodrug antibody is in its potential form, there is no significant reduction in binding or binding to TFPI until the masking region is cleaved by a protease produced by the coagulation cascade, as shown in FIG. Different forms of prodrug antibodies have been designed. While all forms include the Fc region (which allows for FcRn binding to provide a longer half-life), the variable regions can be modified, including tandemly linked variable regions, scFv-variable region fusions, peptide variable region fusions, and the like. Representative images of these prodrug antibodies are shown in Figure 2. The parent antibody to the prodrug antibody currently envisioned is found in the human antibody library. These antibodies have been extensively optimized to increase their affinity and functionality. The parental antibodies, gA200 and gB9.7, have high affinity and specificity for human TFPI and promote tissue factor (TF) to initiate coagulation.

掩蔽方法學 Masking methodology A. 組織因子結合 A. Tissue factor binding

組織因子(TF)是存在於內皮下組織與白血球的蛋白質,對於引發從酶原凝血酶原形成凝血酶是必要的。組織因子僅在發生損傷時暴露於血流中從而啟動凝血。因此,靶定TF允許在損傷部位的抗TFPI前藥抗體活化。併入抗TFPI前藥抗體之TF結合掩蔽域可以是不阻斷TF功能的TF結合抗體、肽或另一種支架。 Tissue factor (TF) is a protein present in the subendothelial tissue and white blood cells and is necessary for eliciting thrombin formation from the zymogen prothrombin. Tissue factor is exposed to the bloodstream only when damage occurs to initiate coagulation. Thus, targeting TF allows activation of anti-TFPI prodrug antibodies at the site of injury. The TF binding masking domain incorporated into the anti-TFPI prodrug antibody can be a TF binding antibody, peptide or another scaffold that does not block TF function.

B. 抗紅血球結合 B. Anti-erythrocyte binding

RBC(紅血球)已被用來作為遞送藥物或酶的載體或貯器。RBC是生物可相容的、生物可分解,具有長循環半衰期,並可以加載多種生物活性物質。使用抗體的表面修飾已被證實可以改善它們的目標特異性和增加其循環半衰期。在本發明中,抗RBC抗體被用作融合至抗TFPI抗體的N-末端的掩蔽域。此抗TFPI前藥抗體產生具有比未修飾親本抗TFPI抗體的潛伏循環時間更長的前藥。前藥對RBC的結合將進一步降低其結合TFPI的能力直到掩蔽域被切割。 RBC (red blood cells) has been used as a carrier or reservoir for the delivery of drugs or enzymes. RBC is biocompatible, biodegradable, has a long circulating half-life, and can be loaded with a variety of biologically active substances. Surface modification using antibodies has been shown to improve their target specificity and increase their circulating half-life. In the present invention, an anti-RBC antibody is used as a masking domain fused to the N-terminus of an anti-TFPI antibody. This anti-TFPI prodrug antibody produces a prodrug that has a longer latency than the unmodified parental anti-TFPI antibody. The binding of the prodrug to RBC will further reduce its ability to bind TFPI until the masking domain is cleaved.

C. 白蛋白結合肽 C. Albumin binding peptide

白蛋白已經成為一種用於治療和診斷劑的通用載體,主要用於診斷和治療糖尿病、癌症、類風濕性關節炎和感染性疾病。人類血清白蛋白在體內是最豐富的蛋白質,在循環中具有約40mg/mL的濃度。白蛋白具有67kDa的分子量。白蛋白結合部分可以用作融合至抗TFPI抗體的N-末端的掩蔽域,從而產生具有比親本抗TFPI抗體的與潛伏循環時間更長的抗TFPI前藥抗體。雖然有白蛋白結合肽用於前藥構築體,但白蛋白結合部分可以是肽、天然白蛋白結合域、支架、抗體或抗體片段(諸如Fab、scFv、域抗體和其他衍生物)。 Albumin has become a universal carrier for therapeutic and diagnostic agents, primarily for the diagnosis and treatment of diabetes, cancer, rheumatoid arthritis and infectious diseases. Human serum albumin is the most abundant protein in the body and has a concentration of about 40 mg/mL in the circulation. Albumin has a molecular weight of 67 kDa. The albumin binding moiety can be used as a masking domain fused to the N-terminus of the anti-TFPI antibody, resulting in an anti-TFPI prodrug antibody having a longer latency than the parental anti-TFPI antibody. While albumin-binding peptides are used in prodrug constructs, the albumin binding moiety can be a peptide, a native albumin binding domain, a scaffold, an antibody, or an antibody fragment (such as a Fab, scFv, domain antibody, and other derivatives).

D. 蛋白酶的篩選及切割位點的設計 D. Protease screening and design of cleavage sites

當損傷發生時,組織因子(TF)變成暴露於血流並活化因VII以形成TF/FVIIa複合體。TF/FVIIa複合體從而活化因子X和FXa,將凝血酶原活化為凝血酶,導致纖維蛋白形成且血液凝固。組織因子路徑的主要作用是產生一個「凝血酶爆發(thrombin burst)」,其中凝血酶(凝血級聯中因為它的回饋活化作用而為最重要的組成)瞬間釋放的一個過程。此外,一系列其他凝血因子在凝血級聯中被活化: When damage occurs, tissue factor (TF) becomes exposed to the bloodstream and activates Factor VII to form a TF/FVIIa complex. The TF/FVIIa complex thereby activates factor X and FXa, which activates prothrombin to thrombin, resulting in fibrin formation and blood coagulation. The primary role of the tissue factor pathway is to produce a "thrombin burst" in which thrombin (a most important component of the coagulation cascade due to its feedback activation) is instantaneously released. In addition, a range of other coagulation factors are activated in the coagulation cascade:

˙TF-FVIIa活化FIX與FX。 ̇TF-FVIIa activates FIX and FX.

˙FVII本身被凝血酶、FXIa、FXII及FXa所活化。 ̇FVII itself is activated by thrombin, FXIa, FXII and FXa.

˙FXa及其輔因子FVa形成凝血酶原(prothrombinase)複合物,其將凝血酶原活化成凝血酶。 ̇FXa and its cofactor FVa form a prothrombinase complex that activates prothrombin to thrombin.

˙凝血酶接著活化凝血級聯的其他組分(包括FV與FVIII),活化將結合至vWF的FVIII釋放。最後,凝血酶活化FXI,其又活化FIX。 Thallium thrombin then activates other components of the coagulation cascade, including FV and FVIII, which activate FVIII release that binds to vWF. Finally, thrombin activates FXI, which in turn activates FIX.

˙FVIIIa是FIXa的輔因子,且它們一起形成活化FX的「X酶(tenase)」複合體;且因此持續循環。(「X酶」是用於酶之「十」與後綴「-酶」的縮寫)。 ̇FVIIIa is a cofactor for FIXa, and together they form a "tenase" complex that activates FX; and thus continues to circulate. ("X enzyme" is an abbreviation for the "ten" and suffix "-enzyme" of the enzyme).

許多前述蛋白酶(諸如FVIIa、FXa及凝血酶)可用於活化抗TFPI前藥抗體。在本發明中,FXa和凝血酶的切割位點被設計成掩蔽域,但是可以預想的是,任何提及的其他蛋白酶也可併入抗TFPI前藥抗體中。 Many of the aforementioned proteases, such as FVIIa, FXa, and thrombin, can be used to activate anti-TFPI prodrug antibodies. In the present invention, the cleavage sites of FXa and thrombin are designed as masking domains, but it is envisioned that any of the other proteases mentioned may also be incorporated into the anti-TFPI prodrug antibody.

實例2.前藥抗體的載體圖譜 Example 2. Vector map of prodrug antibodies

九個gA200-前藥重鏈(HC)和六個gA200輕鏈變體(LC)是使用Infusion cloning(Clontech)構築至表現質體pTTF5中。所有變體包含FXa的六個胺基酸切割位點EGRTAT。突變蛋白在切割位點兩側含有各種N-末端和C-末端缺失。HC1突變蛋白和LC1突變蛋白的代表性質體圖譜顯示於圖3A-B中。15個輕鏈和重鏈變體的DNA序列分別顯示於圖12中。HC突變蛋白被命名為HC1至HC9,LC突變蛋白被命名為LC1至LC6。與抗TFPI融合之scFV(抗RBC或抗TF)的代表性質體載體圖譜顯示於圖4A-4C中,而與抗TFPI稠合之白蛋白結合肽的代表性質體載體圖譜顯示於圖5A-B中。圖13-14提供包含帶有經工程化切割位點的各種輕鏈和重鏈組合之構築體的序列。 Nine gA200-prodrug heavy chain (HC) and six gA200 light chain variants (LC) were constructed using Infusion cloning (Clontech) into the expression plasmid pTTF5. All variants contained the six amino acid cleavage sites EGRTAT of FXa. Mutant proteins contain various N-terminal and C-terminal deletions on either side of the cleavage site. Representative profiling maps of the HC1 mutein and the LC1 mutein are shown in Figures 3A-B. The DNA sequences of the 15 light and heavy chain variants are shown in Figure 12, respectively. The HC muteins were named HC1 to HC9, and the LC muteins were named LC1 to LC6. A representative vector map of scFV (anti-RBC or anti-TF) fused to anti-TFPI is shown in Figures 4A-4C, and a representative vector map of the albumin-binding peptide fused to anti-TFPI is shown in Figure 5A-B. in. Figures 13-14 provide sequences comprising constructs of various light and heavy chain combinations with engineered cleavage sites.

實例3-表現與生產前藥抗體 Example 3 - Performance and Production of Prodrug Antibodies

當中國倉鼠卵巢細胞用作為宿主細胞時,使用Amaxa的核轉染(Neucleofection)技術進行轉染。簡言之,將每個反應2×106個細胞以1000rpm離心5分鐘成丸粒。細胞丸粒再懸浮於每個反應100μl的Nucleofector溶液V中。分別將2μg的pQM1-3E10sc-gA200HC與pQM1-gA200LC、pQM1-Ter119sc-gA200HC與pQM1-gA200LC,或pQM1-56E4-gA200HC與pQM1-56E4-gA200LC加入到細胞中。然後將溶液V中的DNA/細胞轉移到Nucleocuvette容器。在Nucleofector®中使用程式U024進行電穿孔。電穿孔 之後,立刻將0.5mL溫熱培養基加入到細胞中,然後轉移至含有每孔4.5mL預熱的Qmix1培養基(無抗生素)的6孔盤,並放回37℃培養箱的震動器上。在轉染後3-4天測定前藥抗體的表現。對於陽性表現細胞,生成穩定的池。將細胞稀釋至0.5×106/mL,並添加G418達0.7mg/mL。一旦細胞密度達到3-4 x 106/mL,將細胞再次稀釋至0.4x106/mL並全時維持在含有0.7mg/mL的G418的Qmix1中。在篩選了大約兩週之後是生產階段。當細胞生存力恢復至>95%,且細胞密度達到3.5-4 x 106/mL,將培養溫度轉換至30℃。溫度轉換後4-7天收取條件培養基。透過在5000rpm下離心30分鐘來移除細胞。使用Millipore濃縮器將條件培養基濃縮5倍,接著在9000rpm下額外離心40分鐘。 When Chinese hamster ovary cells were used as host cells, Amaxa's nuclear transfection (Neucleofection) technique was used for transfection. Briefly, 2 x 10 6 cells per reaction were centrifuged at 1000 rpm for 5 minutes into pellets. The cell pellet was resuspended in 100 μl of Nucleofector solution V per reaction. 2 μg of pQM1-3E10sc-gA200HC and pQM1-gA200LC, pQM1-Ter119sc-gA200HC and pQM1-gA200LC, or pQM1-56E4-gA200HC and pQM1-56E4-gA200LC, respectively, were added to the cells. The DNA/cells in solution V were then transferred to a Nucleocuvette container. Electroporation was performed using the program U024 in Nucleofector®. Immediately after electroporation, 0.5 mL of warm medium was added to the cells, and then transferred to a 6-well plate containing 4.5 mL of pre-warmed Qmix 1 medium (without antibiotics) per well and placed back on a shaker at 37 ° C incubator. The performance of the prodrug antibody was determined 3-4 days after transfection. For positively expressing cells, a stable pool is generated. The cells were diluted to 0.5 x 10 6 /mL and G418 was added up to 0.7 mg/mL. Once the cell density reached 3-4 x 10 6 /mL, the cells were again diluted to 0.4 x 10 6 /mL and maintained in Qmix 1 containing 0.7 mg/mL of G418. After about two weeks of screening, it is the production phase. When the cell viability was restored to >95% and the cell density reached 3.5-4 x 10 6 /mL, the culture temperature was switched to 30 °C. Conditioned medium was collected 4-7 days after temperature conversion. Cells were removed by centrifugation at 5000 rpm for 30 minutes. The conditioned medium was concentrated 5 times using a Millipore concentrator, followed by additional centrifugation at 9000 rpm for 40 minutes.

當HEK293-6E細胞作為宿主細胞時,它們被保持在補充有4mM L-麩醯胺酸、0.1% Pluronic F68,和25mg/L G418的F17培養基中作為懸浮培養物。使用聚乙烯亞胺(PEI,25KD,線性)進行轉染。簡言之,在轉染前一天接種1×106細胞/ml。於轉染當天,調整細胞密度至1.7×106/ml。為了轉染1L細胞,0.5mg的每個VEC-4581和VEC-4568(用於TPP2652),或VEC-4583和4568(用於TPP2654)稀釋於500ml的F17培養基中,而2ml的PEI(PEI原液為1mg/ml)稀釋於500ml的F17中。合併稀釋的DNA和PEI,且在於室溫下10'培育之後添加至細胞。然後將細胞放回至37℃培養箱的125rpm震動器上。轉染後24小時,用1%超低IgG FBS以及0.5mM丙戊酸餵養細胞。轉染後3-4天測定前藥抗體的表現,並且在細胞活力下降到70%時終止表現。透過在2000rpm下離心十分鐘收取條件培養基以移除細胞,並隨後在9000rpm下額外離心40分鐘。 When HEK293-6E cells were used as host cells, they were maintained as suspension cultures in F17 medium supplemented with 4 mM L-glutamic acid, 0.1% Pluronic F68, and 25 mg/L G418. Transfection was carried out using polyethyleneimine (PEI, 25 KD, linear). Briefly, 1 x 10 6 cells/ml was inoculated one day prior to transfection. On the day of transfection, the cell density was adjusted to 1.7 x 10 6 /ml. For transfection of 1 L cells, 0.5 mg of each VEC-4581 and VEC-4568 (for TPP2652), or VEC-4583 and 4568 (for TPP2654) were diluted in 500 ml of F17 medium, while 2 ml of PEI (PEI stock solution) It was diluted to 500 ml of F17 at 1 mg/ml. The diluted DNA and PEI were pooled and added to the cells after 10' incubation at room temperature. The cells were then returned to a 125 rpm shaker in a 37 °C incubator. Twenty four hours after transfection, cells were fed with 1% ultra low IgG FBS and 0.5 mM valproic acid. The performance of the prodrug antibody was measured 3-4 days after transfection, and the performance was terminated when the cell viability was reduced to 70%. The conditioned medium was removed by centrifugation at 2000 rpm for ten minutes to remove the cells, followed by additional centrifugation at 9000 rpm for 40 minutes.

實例4-純化抗TFPI前藥抗體 Example 4 - Purification of anti-TFPI prodrug antibodies

使用MabSelect蛋白A管柱(5mL HiTrap,GE HealthCare,# 28-4082-55)從CHO細胞條件培養基中純化前藥蛋白。培養基藉由超過濾被濃縮5至10倍,或不經濃縮就使用。以1-1.5mL/分的流速將培養基泵送到管柱之前,將管柱以「平衡緩衝液」(50mM Tris-HCl,150mM NaCl,pH 7.0) 進行平衡。加載之後,用5到10倍管柱體積(CV)的平衡緩衝液以4mL/分的流速洗滌管柱。然後以「醋酸洗滌緩衝液」(50mM醋酸鈉,150mM NaCl,pH 5.4)進行再平衡。 Prodrug proteins were purified from CHO cell conditioned medium using a MabSelect Protein A column (5 mL HiTrap, GE HealthCare, #28-4082-55). The medium is concentrated 5 to 10 times by ultrafiltration or used without concentration. Before pumping the medium to the column at a flow rate of 1-1.5 mL/min, the column was "equilibrated buffer" (50 mM Tris-HCl, 150 mM NaCl, pH 7.0). Balance. After loading, the column was washed with 5 to 10 column volumes (CV) of equilibration buffer at a flow rate of 4 mL/min. It was then re-equilibrated with "Acetate Wash Buffer" (50 mM sodium acetate, 150 mM NaCl, pH 5.4).

使用三個步驟溶離以1mL/分的流速從管柱溶離出結合的蛋白:(1)50mM醋酸鈉,150mM NaCl,pH 3.4;(2)50mM醋酸鈉,150mM NaCl,pH 3.2;以及(3)100mM甘胺酸-HCl,pH 3.0。將溶離份(1mL/溶離份)收集到含有1ml「調配緩衝液」(50mM醋酸鈉,50mM NaCl,pH 5.4)的小管中以提高pH。用100mM甘胺酸,pH 2.8再生管柱,然後用dH2O洗滌並保存於20%乙醇中。 The bound protein was eluted from the column using a three-step dissolving at a flow rate of 1 mL/min: (1) 50 mM sodium acetate, 150 mM NaCl, pH 3.4; (2) 50 mM sodium acetate, 150 mM NaCl, pH 3.2; and (3) 100 mM glycine-HCl, pH 3.0. The fraction (1 mL/dissolved) was collected into a vial containing 1 ml of "mixing buffer" (50 mM sodium acetate, 50 mM NaCl, pH 5.4) to increase the pH. With 100mM glycine, pH 2.8 regeneration column, and then washed with 2 O dH and stored in 20% ethanol.

含有蛋白質的溶離份(如透過在280nm下的吸光度監測來確定)被集中且緩衝液藉由在4℃下過夜透析或通過旋轉去鹽管柱交換到調配緩衝液中。最終蛋白質溶液的濃度是藉由使用10kDa濃縮器的超過濾來達致。在濃縮或透析期間可能形成任何的沉澱物是透過在2000xg下離心30分鐘而去除。最終樣本是使用0.22mm匣予以無菌過濾。 The fractions containing the protein (as determined by absorbance monitoring at 280 nm) were pooled and the buffer was exchanged into the formulation buffer by overnight dialysis at 4 °C or by rotary desalting column. The final concentration of the protein solution was achieved by ultrafiltration using a 10 kDa concentrator. Any precipitate that may form during concentration or dialysis is removed by centrifugation at 2000 xg for 30 minutes. The final sample was sterile filtered using 0.22 mm 匣.

經純化蛋白質是藉由SDS-PAGE、分析型尺寸篩除層析(aSEC)以及西方墨點來進行特徵鑑定。亦測量內毒素含量。依據aSEC以及SDS-PAGE的純度通常大於90%。SDS-PAGE顯示於圖6中。 The purified protein was characterized by SDS-PAGE, analytical size screening chromatography (aSEC), and Western blotting. Endotoxin levels were also measured. The purity according to aSEC and SDS-PAGE is usually greater than 90%. SDS-PAGE is shown in Figure 6.

實例5-GA200及56E4-GA200活體外TFPI結合ELISA Example 5-GA200 and 56E4-GA200 in vitro TFPI binding ELISA

在4℃下將Maxisorb 96孔盤(Nunc)上塗覆1μg/mL於PBS中之TFPI過夜。在室溫下將該盤於5%無脂奶粉PBS/0.5%Tween-20中阻斷歷時1小時。未經消化抗體和經消化抗體的連續3倍稀釋液加入各孔中(100μL/孔)並在室溫下培育歷時1小時。以PBS-T將盤洗滌5次。添加偵測用二級抗Fab-HRP結合抗體(100μL的1:10,000稀釋)與Amplex Red(Invitrogen)溶液。HSA結合前藥抗體比其親本抗TFPI抗體gA200略微減少對TFPI的結合,可在圖7中看出。 Maxisorb 96-well plates (Nunc) were coated with 1 μg/mL TFPI in PBS overnight at 4 °C. The plate was blocked in 5% non-fat dry milk PBS/0.5% Tween-20 for 1 hour at room temperature. Serial 3-fold dilutions of undigested and digested antibodies were added to each well (100 [mu]L/well) and incubated for 1 hour at room temperature. The plate was washed 5 times with PBS-T. A secondary anti-Fab-HRP binding antibody (100 μL of 1:10,000 dilution) and Amplex Red (Invitrogen) solution were added for detection. The HSA-bound prodrug antibody slightly reduced binding to TFPI compared to its parent anti-TFPI antibody gA200, as seen in Figure 7.

實例6-TER119SC-GA200前藥抗體的RBC結合ELISA Example 6 - RBC Binding ELISA of TER119SC-GA200 Prodrug Antibody

ELISA被用來測試前藥抗體對RBC的結合。透明96孔Maxisorp微量滴定盤的孔中以107/mL的濃度塗覆100μL再懸浮於DPBS中的鼠鬼RBC(不含Ca或Mg)。用膠帶密封盤,並在4℃下培育過夜。用DPBST(DPBS+0.05% Tween 20)洗滌孔一次,然後在室溫下以5%牛奶/DPBST阻斷歷時1小時。阻斷緩衝液被丟棄且每孔添加50μL的經稀釋樣品。樣品在PBS中連續地1:3稀釋。在室溫下培育盤歷時1小時,然後用DPBST快速洗滌5x。每孔加入1:5000稀釋於PBST中的100μL二級抗體(HRP-山羊抗hFAB,Jackson ImmunoResearch,cat # 109-035-097)。在室溫下培育盤歷時1小時,然後用DPBST洗滌5X。添加HRP受質(Amplex Red,Invitrogen A22177),並於SpectraMax M2e(Molecular Devices)上在485nM的激發波長和595nM的發射波長處取得螢光讀值。可以在圖8中看到結合到RBC的前藥抗體濃度超過10nM。 ELISA was used to test the binding of prodrug antibodies to RBC. 100 μL of murine RBC (without Ca or Mg) resuspended in DPBS was applied to the wells of a clear 96-well Maxisorp microtiter plate at a concentration of 10 7 /mL. The plate was sealed with tape and incubated overnight at 4 °C. Wells were washed once with DPBST (DPBS + 0.05% Tween 20) and then blocked with 5% milk/DPBST for 1 hour at room temperature. The blocking buffer was discarded and 50 μL of the diluted sample was added to each well. Samples were serially diluted 1:3 in PBS. The plates were incubated for 1 hour at room temperature and then quickly washed 5x with DPBST. 100 μL of secondary antibody (HRP-goat anti-hFAB, Jackson ImmunoResearch, cat # 109-035-097) diluted 1:5000 in PBST was added to each well. The plates were incubated for 1 hour at room temperature and then washed 5X with DPBST. HRP substrate (Amplex Red, Invitrogen A22177) was added and fluorescence readings were taken on an SpectraMax M2e (Molecular Devices) at an excitation wavelength of 485 nM and an emission wavelength of 595 nM. The concentration of prodrug antibody bound to RBC can be seen in Figure 8 over 10 nM.

實例7-抗TFPI前藥抗體的BIACORETM分析 Examples of anti-TFPI 7- BIACORE TM Analysis prodrug antibody

方法.使用胺偶合套組依據製造商說明將人類TFPI固定在CM4或CM5晶片上。在有或沒有15μg/mL人類血清白蛋白(HSA)的情況下,以10μg/mL抗體使抗TFPI前藥抗體或親本抗TFPI抗體通過該系統。在每次注射完成後,以2秒測量結合水平。在動力學分析中,以一系列濃度注射抗體,隨後為30-分解離時間。抗體的解離與締合速率是採用BiaEvaluation軟體來建立模型。 Method. Human TFPI was immobilized on a CM4 or CM5 wafer using an amine coupling kit according to the manufacturer's instructions. Anti-TFPI prodrug antibodies or parental anti-TFPI antibodies were passed through the system with or without 15 [mu]g/mL human serum albumin (HSA) at 10 [mu]g/mL antibody. The binding level was measured in 2 seconds after each injection was completed. In the kinetic analysis, antibodies were injected at a range of concentrations followed by a 30-resolution time. The dissociation and association rates of antibodies were modeled using the BiaEvaluation software.

結果. 圖9顯示結合至人類TFPI的不同前藥抗體。如圖9中所示,在HSA不存在的情況下,ABP-gA200前藥抗體以179反射單位(RU)結合至TFPI,而在HSA存在的情況下,訊號降低80%達36RU。相反地,人類白蛋白不會明顯影響親本抗體gA200結合至TFPI。 Results. Figure 9 shows different prodrug antibodies that bind to human TFPI. As shown in Figure 9, in the absence of HSA, the ABP-gA200 prodrug antibody binds to TFPI in 179 reflectance units (RU), while in the presence of HSA, the signal is reduced by 80% up to 36 RU. In contrast, human albumin did not significantly affect the binding of the parent antibody gA200 to TFPI.

RBC結合前藥抗體Ter119scFv-gA200以與gA200相同的水平結合至TFPI,而TF結合前藥抗體3E10scFv-gA200以22%的殘留水平結合至TFPI。 The RBC binding prodrug antibody Ter119scFv-gA200 binds to TFPI at the same level as gA200, while the TF-bound prodrug antibody 3E10 scFv-gA200 binds to TFPI at a residual level of 22%.

為了進一步測量彼等前藥抗體的結合,進行動力學分析以測量親和力。如表1a中所示,抗TF前藥抗體3E10scFv-gA200以及抗RBC前藥抗體Ter119scFv-gA200分別以29.71倍與14.66倍降低對TFPI的結合。白蛋白結合前藥抗體ABP-gA200不會降低對TFPI的結合,但在與HSA混合並培育之後,其對TFPI的結合也降低15.34倍。 To further measure the binding of their prodrug antibodies, a kinetic analysis was performed to measure the affinity. As shown in Table 1a, the anti-TF prodrug antibody 3E10scFv-gA200 and the anti-RBC prodrug antibody Ter119scFv-gA200 reduced binding to TFPI by 29.71 fold and 14.66 fold, respectively. The albumin-binding prodrug antibody ABP-gA200 did not reduce binding to TFPI, but its binding to TFPI was also reduced by 15.34-fold after mixing with HSA and culturing.

為了進一步最佳化ABP-gA200的切割,修飾ABP-gA200的切割位點。不同的切割位點被插入白蛋白結合肽和重鏈可變區之間。如圖14a-b中所示,間隔子GGGGS被插入至切割位點周圍。而TPP-2651、TPP-2652、TPP-2653和TPP2655含有凝血酶切割位點,TPP-2654包含可被FXa和凝血酶所切割的連接子。如表1b中所示,在人類或猴白蛋白存在的情況下,這些抗體降低它們對TFPI的結合至高達28.6倍(TPP-2654)和39.6倍(TPP-2652),而親本抗體gA200在白蛋白不存在或存在的情況下具有類似的TFPI結合親和力。沒有顯示TPP-2653的數據。純化前藥抗體並藉由蛋白酶予以消化(無論是凝血酶或因子Xa)。移除這些蛋白酶之後,使用LC-MS分析抗體。結果指明,蛋白酶切割白蛋白結合肽。TPP-2652和TPP-2654的代表性數據顯示於圖16a-C中。 To further optimize cleavage of ABP-gA200, the cleavage site of ABP-gA200 was modified. Different cleavage sites are inserted between the albumin binding peptide and the heavy chain variable region. As shown in Figures 14a-b, the spacer GGGGS is inserted around the cleavage site. While TPP-2651, TPP-2652, TPP-2653, and TPP2655 contain a thrombin cleavage site, TPP-2654 contains a linker that can be cleaved by FXa and thrombin. As shown in Table 1b, in the presence of human or monkey albumin, these antibodies reduced their binding to TFPI by up to 28.6-fold (TPP-2654) and 39.6-fold (TPP-2652), while the parent antibody gA200 was Albumin has similar TFPI binding affinity in the absence or presence of albumin. Data for TPP-2653 is not displayed. The prodrug antibody is purified and digested by protease (whether thrombin or factor Xa). After removal of these proteases, the antibodies were analyzed using LC-MS. The results indicated that the protease cleaves the albumin binding peptide. Representative data for TPP-2652 and TPP-2654 are shown in Figures 16a-C.

為了進一步平衡抗TFPI前藥的切割效率以及掩蔽功能,吾人改變連接子長度並截短抗體gA200的FR1域。帶有ABP的前藥的胺基末端序列顯示於圖14中。 To further balance the cleavage efficiency of the anti-TFPI prodrug and the masking function, we altered the linker length and truncated the FR1 domain of antibody gA200. The amino terminal sequence of the prodrug with ABP is shown in Figure 14.

實例8-抗TFPI前藥抗體的凝血酶生成分析 Example 8 - Analysis of thrombin generation by anti-TFPI prodrug antibody

TFPI前藥抗體的凝血酶生成分析(TGA)是利用人類HemA血漿來進行。缺乏血小板血漿(PPP)試劑和校準品是以1mL蒸餾水還原。1:2連續稀釋的抗TFPI前藥抗體(從100nM的最終濃度至1.56nM)被添加至HemA人類血漿。只有血漿的樣品用作為對照。在96-孔TGA盤中,加入20μL的PPP試劑或校準品至各孔中,然後加入80μL含有不同濃度抗TFPI前藥抗體的血漿樣品。該盤置於TGA儀器中,然後儀器自動在每個孔中分配20μL的FluCa(Fluo受質+CaCl2)。測定凝血酶生成歷時60分鐘。當Ter119scFv-gA200在TGA中測試時,HemA血漿中摻入小鼠RBC血影(RBC ghost)。Ter119scFv-gA200在室溫下與RBC-GOLD一起培育歷時15分鐘。 Thrombin generation assay (TGA) of TFPI prodrug antibodies was performed using human HemA plasma. The platelet-poor plasma (PPP) reagent and calibrator were reduced in 1 mL of distilled water. A 1:2 serial dilution of the anti-TFPI prodrug antibody (from a final concentration of 100 nM to 1.56 nM) was added to HemA human plasma. Only plasma samples were used as controls. In a 96-well TGA pan, 20 μL of PPP reagent or calibrator was added to each well, followed by 80 μL of plasma samples containing different concentrations of anti-TFPI prodrug antibodies. The tray is placed in the TGA instrument, and the instrument automatically assigned FluCa 20μL of each well (by mass Fluo + CaCl 2). Thrombin generation was measured for 60 minutes. When Ter119scFv-gA200 was tested in TGA, mouse RBC ghosts (RBC ghost) were incorporated into HemA plasma. Ter119scFv-gA200 was incubated with RBC-GOLD for 15 minutes at room temperature.

如圖10A-B中所示,56E4-gA200產生比其親本抗體gA200還低的凝血酶峰,指明血漿中的人類白蛋白可能會降低抗TFPI的活性。由56E4gA200產生的凝血酶形狀是低的且寬峰也指明該抗體是在時間為零時的活性較低,並且可能因為所生成的FXa或凝血酶而變得活化。 As shown in Figures 10A-B, 56E4-gA200 produced a thrombin peak that was lower than its parent antibody gA200, indicating that human albumin in plasma may reduce anti-TFPI activity. The thrombin shape produced by 56E4gA200 is low and the broad peak also indicates that the antibody is less active at time zero and may become activated by the FXa or thrombin produced.

在生理條件下,前藥TFPI抗體轉化為更具有活性的TFPI抗體的可行性是藉由下列來建立:1)外源性凝血酶(生理水平)增加TFPI Ab媒介的TGA反應的能力,以及2)在TGA反應中產生FXa和凝血酶並監控隨後在TFPI抗體引起之反應中的增加。 The feasibility of converting a prodrug TFPI antibody to a more active TFPI antibody under physiological conditions is established by: 1) the ability of exogenous thrombin (physiological level) to increase the TGA response of the TFPI Ab vector, and 2 FXa and thrombin are produced in the TGA reaction and monitored for subsequent increase in the response caused by the TFPI antibody.

在生理學可達到的水平下,外源性凝血酶添加直接評估前藥TFPI抗體對酶的易感性,並且是將1200nM Ab與0.5至2.5U/mL凝血酶一起預先培育歷時1小時,接著是使用0.5至2.5U/mL凝血酶特異性不可逆抑制劑水蛭素來不活化凝血酶歷時1小時。為了衡量在TGA反應中水蛭素殘留的影響,用緩衝液取代凝血酶來評估水蛭素殘留對TGA反應的影響。在一些情況下,不相關Ab或親本抗體gA200(無白蛋白掩蔽序列或蛋白酶敏感性位點)用來代替原TFPI Ab作為對照。抗體-凝血酶-水蛭素混合物連續稀釋至10至100nM的Ab濃度,並且在TGA反應中將混合物額外1:10稀釋。如上所述進行TGA反應,不同之處在於所用的引發劑是PPP-Low,其含有1pM TF-4μM血小板。那些使用前藥TFPI抗體的TGA結果要減去使用不相干抗體的TGA結果。 At physiologically achievable levels, exogenous thrombin addition directly assesses the susceptibility of the prodrug TFPI antibody to the enzyme and pre-incubated with 1200 nM Ab with 0.5 to 2.5 U/mL thrombin for 1 hour, followed by The thrombin was not activated for 1 hour using 0.5 to 2.5 U/mL thrombin-specific irreversible inhibitor hirudin. To measure the effect of hirudin residues in the TGA reaction, buffer was used instead of thrombin to assess the effect of hirudin residues on the TGA response. In some cases, an unrelated Ab or parental antibody gA200 (no albumin masking or protease sensitive site) was used in place of the original TFPI Ab as a control. The antibody-thrombin- hirudin mixture was serially diluted to an Ab concentration of 10 to 100 nM, and the mixture was additionally diluted 1:10 in a TGA reaction. The TGA reaction was carried out as described above, except that the initiator used was PPP-Low, which contained 1 pM TF-4 μM platelets. TGA results using prodrug TFPI antibodies were subtracted from TGA results using incoherent antibodies.

前TFPI Ab TPP-2654在蛋白酶切割之前和之後的TGA概況顯示於圖10C中。親本gA200的TGA反應是不因凝血酶培育而改變,而TPP-2654(其中含有凝血酶和FXa敏感性切割位點)顯示與凝血酶一起預先培育時增加反應。然而,峰TGA反應是小於使用gA200,指明TFPI Ab活性的完整揭露可能需要更高水平的凝血酶存在或最佳化的蛋白酶敏感性位點,以增加蛋白酶切割的效率。 The TGA profile of pre-TFPI Ab TPP-2654 before and after protease cleavage is shown in Figure 10C. The TGA response of the parental gA200 was not altered by thrombin incubation, while TPP-2654 (which contains thrombin and FXa sensitive cleavage sites) showed increased response when pre-incubated with thrombin. However, the peak TGA response is less than the use of gA200, indicating that complete disclosure of TFPI Ab activity may require higher levels of thrombin present or optimized protease sensitive sites to increase the efficiency of protease cleavage.

使用某個範圍的凝血酶濃度(0.5至2.5U/mL)的濃度滴定實驗確定,在1U/mL凝血酶下,前藥TFPI抗體轉換成更具活性的TFPI抗體可以達致最高,在活體內可達到的水平(圖10D)。 Concentration titration experiments using a range of thrombin concentrations (0.5 to 2.5 U/mL) have determined that the conversion of prodrug TFPI antibodies to more active TFPI antibodies can be achieved at 1 U/mL thrombin, in vivo. The achievable level (Fig. 10D).

為了評估FXa或凝血酶能否更有效率地將前藥抗體轉化為活性TFPI抗體,特別是在含有蛋白酶敏感性位點的前藥抗體中,評估原位增加FXa和凝血酶的影響。FXa原位生成是透過增加用作引發劑之TF的濃度而增加。在這些實驗中,TF濃度藉由使用PPP-Low(1pM TF-4μM PL)或PPP試劑(5pM TF-4μM PL)作為引發劑在TGA反應中從1pM改變至5pM。增加TF將透過TF-FVIIa的直接作用而增加FXa,然後增加凝血酶生成。如上所述實施TGA反應,且藉由比較使用1pM與5pM TF的TGA反應之間的反應差異來分析結果。 To assess whether FXa or thrombin can more efficiently convert prodrug antibodies to active TFPI antibodies, particularly in prodrug antibodies containing protease sensitive sites, assess the effect of increasing FXa and thrombin in situ. In situ generation of FXa is increased by increasing the concentration of TF used as an initiator. In these experiments, the TF concentration was changed from 1 pM to 5 pM in the TGA reaction by using PPP-Low (1 pM TF-4 μM PL) or PPP reagent (5 pM TF-4 μM PL) as an initiator. Increasing TF will increase FXa through the direct action of TF-FVIIa and then increase thrombin generation. The TGA reaction was carried out as described above, and the results were analyzed by comparing the difference in reaction between the TGA reactions using 1 pM and 5 pM TF.

TPP-2654的FXa和凝血酶易感性在1pM和5pM TF引發劑之間的峰凝血酶反應差異(△峰)有明顯增加(圖10E),尤其是前藥TFPI抗體與2.5U/mL一起預先培育的情況下。前TFPI Ab TPP-2654增加峰凝血酶反應的能力更超出初始凝血酶預先培育所達到的反應,指明FXa切割可進一步促進白蛋白結合肽完整揭露。 The FXa and thrombin susceptibility of TPP-2654 showed a significant increase in the peak thrombin response (Δ peak) between the 1 pM and 5 pM TF initiators (Fig. 10E), especially the prodrug TFPI antibody was pre-extended with 2.5 U/mL. In the case of cultivation. The ability of the pre-TFPI Ab TPP-2654 to increase the peak thrombin response exceeds the response achieved by the initial thrombin pre-incubation, indicating that FXa cleavage further promotes complete disclosure of the albumin-binding peptide.

原TFPI Ab(TPP-2652)(其中掩蔽白蛋白結合肽因為凝血酶切割而移除)的TGA反應顯示於圖10F和10G中。TPP-2652的凝血酶敏感性如圖10F中所示,指明在測試凝血酶的最大濃度(2.5U/mL)下,在測試抗體的最高水平下於TGA反應中偵測到僅有少量增加。藉由增加用於啟動TGA之TF濃度來增加的FXa(和凝血酶)僅略微增加TPP-2652的TGA反應(圖10F)。這與在經凝血酶預先處理的TPP-2654進一步暴露於使用5pM TF所生成的FXa時,TPP-2654的凝血酶反應大幅增加呈對比(比較圖10E與圖10G)。 The TGA response of the original TFPI Ab (TPP-2652), in which the albumin-binding peptide was masked for removal by thrombin cleavage, is shown in Figures 10F and 10G. The thrombin sensitivity of TPP-2652 is shown in Figure 10F, indicating that only a small increase in TGA response was detected at the highest level of test antibody at the maximum concentration of test thrombin (2.5 U/mL). FXa (and thrombin) increased by increasing the TF concentration used to initiate TGA only slightly increased the TGA response of TPP-2652 (Fig. 10F). This is in contrast to a significant increase in the thrombin response of TPP-2654 when TDP-2654 pretreated with thrombin was further exposed to FXa produced using 5 pM TF (compare Figure 10E with Figure 10G).

這些結果暗示,不同的蛋白酶敏感性位點可能影響前藥TFPI抗體轉換成活性TFPI Ab。 These results suggest that different protease sensitive sites may affect the conversion of prodrug TFPI antibodies to active TFPI Ab.

實例9-抗TFPI前藥抗體的FXA分析 Example 9 - FXA Analysis of Anti-TFPI Prodrug Antibodies 材料與方法 Materials and Methods

下列試劑用於FXa分析: The following reagents were used for FXa analysis:

分析緩衝液:1X緩衝液為25mM Hepes 7.4、100mM NaCl、5mM CaCl2、0.1% BSA。 Assay buffer: 1X buffer was 25 mM Hepes 7.4, 100 mM NaCl, 5 mM CaCl 2 , 0.1% BSA.

TFPI-R&D(Cat# 2974-PI,MW~35kDa)。TFPI是依照產品插頁說明藉由添加10μL的25mM Tris與150mM NaCl,pH 7.5還原成100μg/mL(2.86μM)。2.86μM原液1/143稀釋而生成20nM工作原液。 TFPI-R&D (Cat# 2974-PI, MW~35kDa). TFPI was reduced to 100 μg/mL (2.86 μM) by adding 10 μL of 25 mM Tris and 150 mM NaCl, pH 7.5 according to the product insert instructions. The 2.86 μM stock solution was diluted 1/143 to produce a 20 nM working stock solution.

FXa-Haematologic Technologies(Cat# HCX-0060,MW-58.9kDa)預先在分析緩衝液中製作原液2μM等分式樣並儲存在-80℃下。2μM原液1/1000稀釋作為2nM工作原液。 FXa-Haematologic Technologies (Cat# HCX-0060, MW-58.9 kDa) was pre-formed in assay buffer in 2 μM aliquots and stored at -80 °C. A 2 μM stock solution was diluted 1/1000 as a 2 nM working stock solution.

S-2765-Chromogenix(Cat # S-2765,MW-714.6Da)藉由將25mg凍乾材料溶解於7mL蒸餾水中而生成5mM工作原液。直接將5mM工作原液添加至分析孔中。 S-2765-Chromogenix (Cat # S-2765, MW-714.6Da) produced a 5 mM working stock solution by dissolving 25 mg of lyophilized material in 7 mL of distilled water. A 5 mM working stock was added directly to the assay wells.

在分析緩衝液中產生抗TFPI抗體的4X劑量曲線。60μL的每種抗體的濃度與4X(20nM)濃度的TFPI合併。在室溫下培育抗體/TFPI混合物歷時30分鐘。120μL的2X(2nM)濃度的FXa被添加至Ab/TFPI混合物,並在室溫下培育歷時30分鐘。Ab/TFPI/FXa混合物然後以二重複的方式以每孔100μL轉移至分析盤,隨後為20μL的5mM受質。立刻在Molecular Devices Spectramax盤讀取儀中在405nm下以動力學的方式讀取盤歷時3分鐘。當結合白蛋白的抗TFPI前藥抗體56E4-gA200進行測試時,34μL的8X抗TFPI抗體在96孔圓底聚丙烯盤中組合不同濃度的34μL白蛋白。然後在室溫下培育該溶液歷時15分鐘並將68μL的20nM(4X)TFPI添加至α-TFPI Ab/白蛋白。 A 4X dose curve for anti-TFPI antibodies was generated in assay buffer. 60 μL of each antibody was combined with a 4X (20 nM) concentration of TFPI. The antibody/TFPI mixture was incubated for 30 minutes at room temperature. 120 μL of 2X (2 nM) concentration of FXa was added to the Ab/TFPI mixture and incubated at room temperature for 30 minutes. The Ab/TFPI/FXa mixture was then transferred to the assay plate in 100 [mu]L per well in a two-fold format followed by 20 [mu]L of 5 mM substrate. The disk was read in a dynamic manner at 405 nm for 3 minutes in a Molecular Devices Spectramax disk reader. When tested with albumin-conjugated anti-TFPI prodrug antibody 56E4-gA200, 34 [mu]L of 8X anti-TFPI antibody combined different concentrations of 34 [mu]L albumin in 96 well round bottom polypropylene disks. The solution was then incubated at room temperature for 15 minutes and 68 μL of 20 nM (4X) TFPI was added to α-TFPI Ab/albumin.

如圖11中所示,gA200的Vmax未受到人類或猴白蛋白影響。結合白蛋白的前藥抗體56E4-gA200隨著白蛋白濃度增加而降低Vmax。當人類或猴白蛋白濃度達到5μM時,前藥抗體的抗TFPI活性有90%受到抑制。 As shown in FIG. 11, gA200 V max is not subject to influence human albumin or monkey. Albumin binding antibody 56E4-gA200 prodrug albumin concentration decreased with increasing V max. When the human or monkey albumin concentration reached 5 μM, the anti-TFPI activity of the prodrug antibody was inhibited by 90%.

實例10-抗TFPI前藥抗體的蛋白酶消化 Example 10 - Protease digestion of anti-TFPI prodrug antibodies

針對前藥的蛋白酶切割以及蛋白酶耗盡使用Novagen凝血酶切割捕獲套組(69022-3)以及Novagen因子Xa套組(69037-3)。 Protease cleavage of the prodrug and protease depletion were performed using the Novagen thrombin cleavage capture kit (69022-3) and the Novagen Factor Xa kit (69037-3).

如下簡述般將生物素化凝血酶用於前藥切割。 Biotinylated thrombin was used for prodrug cleavage as outlined below.

各個前藥的50uL反應含有5μg前藥、5μL 10x套組凝血酶切割/捕獲緩衝液、1單位凝血酶,去離子水補至50μL。在37℃下培育反應歷 時1小時。切割反應後,將生物素化凝血酶用為每單位酵素16ml靜置樹脂(50%漿液的32ml)的比率以卵白素瓊脂糖(套組中提供)予以移除。瓊脂糖加入到反應管中之後,在室溫下培育管歷時30分鐘並輕輕搖動。整個反應轉移至套組提供的樣品杯與旋轉過濾器。然後在500×g下離心管歷時5分鐘。收集管中的濾液含有被切割的前藥,無生物素化凝血酶。 The 50 uL reaction of each prodrug contained 5 μg of prodrug, 5 μL of 10 x set of thrombin cleavage/capture buffer, 1 unit of thrombin, and 50 μL of deionized water. Incubate the reaction calendar at 37 ° C 1 hour. After the cleavage reaction, biotinylated thrombin was removed as a ratio of 16 ml of static resin per unit of enzyme (32 ml of 50% syrup) to avidin agarose (provided in the kit). After the agarose was added to the reaction tube, the tube was incubated at room temperature for 30 minutes and gently shaken. The entire reaction was transferred to the sample cup and spin filter provided by the kit. The tube was then centrifuged at 500 xg for 5 minutes. The filtrate in the collection tube contains the cleaved prodrug, without biotinylated thrombin.

當因子Xa用於前藥切割時,每個前藥的50μL反應含有5μg前藥、5μL 10x套組因子Xa切割/捕獲緩衝液、1單位因子Xa和去離子水補至50μL總體積。在37℃下培育反應歷時1小時。在切割反應後,以XarrestTM瓊脂糖(套組內提供)移除因子Xa。Xarrest瓊脂糖先藉由每靜置樹脂體積的Xarrest瓊脂糖加入11倍體積的1x因子Xa切割/捕獲緩衝液予以平衡。Xarrest瓊脂糖在1000×g下離心歷時5分鐘。移除上清液並丟棄。將瓊脂糖再懸浮於10倍體積的1X因子Xa切割/捕獲緩衝液,並在1000×g下離心歷時5分鐘。移除上清液並丟棄。一個靜置樹脂體積的1X Xa因子切割/捕獲緩衝液被添加至管且將樹脂充分再懸浮。所製備的Xarrest瓊脂糖被轉移到具有2ml旋轉過濾器的樣品杯(包含在套組內)。前藥切割反應的總體積加入到所製備的Xarrest瓊脂糖。在室溫下培育管歷時5分鐘,並在1000×g下離心歷時5分鐘以除去Xarrest瓊脂糖。結合的因子Xa被保留在樣品杯中,並切割的前藥在離心期間流入濾液管中。 When Factor Xa was used for prodrug cleavage, 50 μL of each prodrug contained 5 μg of prodrug, 5 μL of 10x kit of Factor Xa cleavage/capture buffer, 1 unit of Factor Xa, and deionized water to 50 μL of total volume. The reaction was incubated at 37 ° C for 1 hour. After the cleavage reaction, to Xarrest TM agarose (provided within the kit) to remove Factor Xa. Xarrest agarose was first equilibrated by adding 11 volumes of 1x Factor Xa cutting/capture buffer to each resting resin volume of Xarrest agarose. Xarrest agarose was centrifuged at 1000 xg for 5 minutes. Remove the supernatant and discard. The agarose was resuspended in 10 volumes of 1X Factor Xa cleavage/capture buffer and centrifuged at 1000 xg for 5 minutes. Remove the supernatant and discard. A static resin volume of 1X Xa factor cutting/capture buffer was added to the tube and the resin was fully resuspended. The prepared Xarrest agarose was transferred to a sample cup (contained in the kit) with a 2 ml spin filter. The total volume of the prodrug cleavage reaction was added to the prepared Xarrest agarose. The tube was incubated at room temperature for 5 minutes and centrifuged at 1000 xg for 5 minutes to remove the Xarrest agarose. The bound factor Xa is retained in the sample cup and the cleaved prodrug flows into the filtrate tube during centrifugation.

實例11-抗TRPI前藥抗體的LC-MS Example 11 - LC-MS of anti-TRPI prodrug antibodies

在完整或還原條件下進行抗TFPI前藥抗體TPP-2652與TPP-2654的LC-MS分析。就完整蛋白質而言,直接加載2μg至PLRP管柱。關於還原樣品而言,在加載至PLRP管柱之前,測試樣品已在37℃下使用10mM DTT處理歷時30分。 LC-MS analysis of anti-TFPI prodrug antibodies TPP-2652 and TPP-2654 was performed under intact or reducing conditions. For intact proteins, 2 μg was loaded directly onto the PLRP column. Regarding the reduction of the sample, the test sample was treated with 10 mM DTT at 37 ° C for 30 minutes before loading onto the PLRP column.

使用Agilent 1200 Capillary LC System與PLRP-S(8μm 4000A,0.3x150mm)在70℃下進行LC分離。LC的緩衝系統為A:水加0.1%甲酸+0.01%TFA,B:乙腈加0.1%甲酸+0.01%TFA,流速10μL/min。梯度:2分內10% B,15分內90%B,90%B歷時5分,10%B平衡歷時10分。 LC separation was performed using an Agilent 1200 Capillary LC System with PLRP-S (8 μm 4000A, 0.3 x 150 mm) at 70 °C. The buffer system for LC was A: water plus 0.1% formic acid + 0.01% TFA, B: acetonitrile plus 0.1% formic acid + 0.01% TFA, flow rate 10 μL/min. Gradient: 10% B within 2 minutes, 90% B within 15 minutes, 90% B for 5 minutes, 10% B balance for 10 minutes.

使用Agilent 6520 Q-TOF系統施行MS分析。條件為DualEsi源,氣體溫度:350℃,乾燥氣體:7psi,噴霧器:10psi,掃瞄範圍:500-3000amu,1譜/s。每個循環兩個實驗:還原形式為3500v,175v切割電壓,65v錐孔電壓,而完整蛋白質為4000v、350v切割電壓,100v錐孔電壓。參考離子:1221.990637與2421.91399amu,50ppm窗,Min 1000純化前藥抗體並藉由蛋白酶(凝血酶或因子Xa)消化。移除這些蛋白酶之後,使用LC-MS分析抗體。結果指明,蛋白酶切割白蛋白結合肽。TPP-2652與TPP-2654的代表性數據顯示於圖16a-c中。 MS analysis was performed using an Agilent 6520 Q-TOF system. The conditions were DualEsi source, gas temperature: 350 ° C, dry gas: 7 psi, nebulizer: 10 psi, scanning range: 500-3000 amu, 1 spectrum / s. Two experiments per cycle: reduction form of 3500v, 175v cutting voltage, 65v cone voltage, and intact protein of 4000v, 350v cutting voltage, 100v cone voltage. Reference ions: 1221.990637 and 2421.91399 amu, 50 ppm window, Min 1000 purified prodrug antibody and digested with protease (thrombin or factor Xa). After removal of these proteases, the antibodies were analyzed using LC-MS. The results indicated that the protease cleaves the albumin binding peptide. Representative data for TPP-2652 and TPP-2654 are shown in Figures 16a-c.

所有本文揭示和請求的組合物和方法可以在根據本揭示內容來做出與進行而無須過度實驗。儘管本發明的組合物和方法已說明了較佳具體例,對於習於技藝者來說各種變化可以應用於所述組合物和方法中,以及在本文所述方法的步驟或步驟順序中而不脫離本發明的概念、精神和範疇。更具體而言,某些在化學和生理學上相關的試劑明顯可置換本文所述試劑而達到相同或相似的結果。所有這些類似的替代和修改對於習於技藝者來說顯然被認為是落在隨附申請專利範圍所定義之本發明的精神、範疇與概念內。 All of the compositions and methods disclosed and claimed herein can be made and carried out in accordance with the present disclosure without undue experimentation. Although the compositions and methods of the present invention have illustrated preferred embodiments, various variations may be applied to the compositions and methods, as well as to the steps or sequence of steps of the methods described herein, without Without departing from the spirit, spirit and scope of the invention. More specifically, certain chemically and physiologically relevant agents are apparently capable of replacing the agents described herein to achieve the same or similar results. All such similar substitutes and modifications are obvious to those skilled in the art, which are within the spirit, scope and concept of the invention as defined by the appended claims.

<110> 拜耳保健有限責任公司 <110> Bayer Health Care Co., Ltd.

<120> 抗組織因子路徑抑制劑之前藥抗體PRO-DRUG ANTIBODIES AGAINST TISSUE FACTOR PATHWAY INHIBITOR <120> Anti-tissue factor pathway inhibitor prodrug antibody PRO-DRUG ANTIBODIES AGAINST TISSUE FACTOR PATHWAY INHIBITOR

<130> BAYR.P0004WO <130> BAYR.P0004WO

<150> 61/794,024 <150> 61/794,024

<151> 2013-03-15 <151> 2013-03-15

<160> 256 <160> 256

<170> PatentIn version 3.5 <170> PatentIn version 3.5

<210> 1 <210> 1

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 1 <400> 1

<210> 2 <210> 2

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 2 <400> 2

<210> 3 <210> 3

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 3 <400> 3

<210> 4 <210> 4

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 4 <400> 4

<210> 5 <210> 5

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 5 <400> 5

<210> 6 <210> 6

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 6 <400> 6

<210> 7 <210> 7

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 7 <400> 7

<210> 8 <210> 8

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 8 <400> 8

<210> 9 <210> 9

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 9 <400> 9

<210> 10 <210> 10

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 10 <400> 10

<210> 11 <210> 11

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 11 <400> 11

<210> 12 <210> 12

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 12 <400> 12

<210> 13 <210> 13

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 13 <400> 13

<210> 14 <210> 14

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 14 <400> 14

<210> 15 <210> 15

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 15 <400> 15

<210> 16 <210> 16

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 16 <400> 16

<210> 17 <210> 17

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 17 <400> 17

<210> 18 <210> 18

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 18 <400> 18

<210> 19 <210> 19

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 19 <400> 19

<210> 20 <210> 20

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 20 <400> 20

<210> 21 <210> 21

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 21 <400> 21

<210> 22 <210> 22

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 22 <400> 22

<210> 23 <210> 23

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 23 <400> 23

<210> 24 <210> 24

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 24 <400> 24

<210> 25 <210> 25

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 25 <400> 25

<210> 26 <210> 26

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 26 <400> 26

<210> 27 <210> 27

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 27 <400> 27

<210> 28 <210> 28

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 28 <400> 28

<210> 29 <210> 29

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 29 <400> 29

<210> 30 <210> 30

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 30 <400> 30

<210> 31 <210> 31

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 31 <400> 31

<210> 32 <210> 32

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 32 <400> 32

<210> 33 <210> 33

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 33 <400> 33

<210> 34 <210> 34

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 34 <400> 34

<210> 35 <210> 35

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 35 <400> 35

<210> 36 <210> 36

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 36 <400> 36

<210> 37 <210> 37

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 37 <400> 37

<210> 38 <210> 38

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 38 <400> 38

<210> 39 <210> 39

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 39 <400> 39

<210> 40 <210> 40

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 40 <400> 40

<210> 41 <210> 41

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 41 <400> 41

<210> 42 <210> 42

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 42 <400> 42

<210> 43 <210> 43

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 43 <400> 43

<210> 44 <210> 44

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 44 <400> 44

<210> 45 <210> 45

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 45 <400> 45

<210> 46 <210> 46

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 46 <400> 46

<210> 47 <210> 47

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 47 <400> 47

<210> 48 <210> 48

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 48 <400> 48

<210> 49 <210> 49

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 49 <400> 49

<210> 50 <210> 50

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 50 <400> 50

<210> 51 <210> 51

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 51 <400> 51

<210> 52 <210> 52

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 52 <400> 52

<210> 53 <210> 53

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 53 <400> 53

<210> 54 <210> 54

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 54 <400> 54

<210> 55 <210> 55

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 55 <400> 55

<210> 56 <210> 56

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 56 <400> 56

<210> 57 <210> 57

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 57 <400> 57

<210> 58 <210> 58

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 58 <400> 58

<210> 59 <210> 59

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 59 <400> 59

<210> 60 <210> 60

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 60 <400> 60

<210> 61 <210> 61

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 61 <400> 61

<210> 62 <210> 62

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 62 <400> 62

<210> 63 <210> 63

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 63 <400> 63

<210> 64 <210> 64

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 64 <400> 64

<210> 65 <210> 65

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 65 <400> 65

<210> 66 <210> 66

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 66 <400> 66

<210> 67 <210> 67

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 67 <400> 67

<210> 68 <210> 68

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 68 <400> 68

<210> 69 <210> 69

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 69 <400> 69

<210> 70 <210> 70

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 70 <400> 70

<210> 71 <210> 71

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 71 <400> 71

<210> 72 <210> 72

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 72 <400> 72

<210> 73 <210> 73

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 73 <400> 73

<210> 74 <210> 74

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 74 <400> 74

<210> 75 <210> 75

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 75 <400> 75

<210> 76 <210> 76

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 76 <400> 76

<210> 77 <210> 77

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 77 <400> 77

<210> 78 <210> 78

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 78 <400> 78

<210> 79 <210> 79

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 79 <400> 79

<210> 80 <210> 80

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 80 <400> 80

<210> 81 <210> 81

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 81 <400> 81

<210> 82 <210> 82

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 82 <400> 82

<210> 83 <210> 83

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 83 <400> 83

<210> 84 <210> 84

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 84 <400> 84

<210> 85 <210> 85

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 85 <400> 85

<210> 86 <210> 86

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 86 <400> 86

<210> 87 <210> 87

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 87 <400> 87

<210> 88 <210> 88

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 88 <400> 88

<210> 89 <210> 89

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 89 <400> 89

<210> 90 <210> 90

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 90 <400> 90

<210> 91 <210> 91

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 91 <400> 91

<210> 92 <210> 92

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 92 <400> 92

<210> 93 <210> 93

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 93 <400> 93

<210> 94 <210> 94

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 94 <400> 94

<210> 95 <210> 95

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 95 <400> 95

<210> 96 <210> 96

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 96 <400> 96

<210> 97 <210> 97

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 97 <400> 97

<210> 98 <210> 98

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 98 <400> 98

<210> 99 <210> 99

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 99 <400> 99

<210> 100 <210> 100

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 100 <400> 100

<210> 101 <210> 101

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 101 <400> 101

<210> 102 <210> 102

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 102 <400> 102

<210> 103 <210> 103

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 103 <400> 103

<210> 104 <210> 104

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 104 <400> 104

<210> 105 <210> 105

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 105 <400> 105

<210> 106 <210> 106

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 106 <400> 106

<210> 107 <210> 107

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 107 <400> 107

<210> 108 <210> 108

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 108 <400> 108

<210> 109 <210> 109

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 109 <400> 109

<210> 110 <210> 110

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 110 <400> 110

<210> 111 <210> 111

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 111 <400> 111

<210> 112 <210> 112

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 112 <400> 112

<210> 113 <210> 113

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 113 <400> 113

<210> 114 <210> 114

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 114 <400> 114

<210> 115 <210> 115

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 115 <400> 115

<210> 116 <210> 116

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 116 <400> 116

<210> 117 <210> 117

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 117 <400> 117

<210> 118 <210> 118

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 118 <400> 118

<210> 119 <210> 119

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 119 <400> 119

<210> 120 <210> 120

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 120 <400> 120

<210> 121 <210> 121

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 121 <400> 121

<210> 122 <210> 122

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 122 <400> 122

<210> 123 <210> 123

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 123 <400> 123

<210> 124 <210> 124

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 124 <400> 124

<210> 125 <210> 125

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 125 <400> 125

<210> 126 <210> 126

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 126 <400> 126

<210> 127 <210> 127

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 127 <400> 127

<210> 128 <210> 128

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 128 <400> 128

<210> 129 <210> 129

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 129 <400> 129

<210> 130 <210> 130

<211> 8 <211> 8

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 130 <400> 130

<210> 131 <210> 131

<211> 228 <211> 228

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> Fab-1輕鏈 <223> Fab-1 light chain

<400> 131 <400> 131

<210> 132 <210> 132

<211> 16 <211> 16

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點及連接子 <223> Protease cleavage sites and linkers

<400> 132 <400> 132

<210> 133 <210> 133

<211> 245 <211> 245

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> Fab-1重鏈 <223> Fab-1 heavy chain

<400> 133 <400> 133

<210> 134 <210> 134

<211> 1590 <211> 1590

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 編碼Fab-1的序列 <223> Sequence encoding Fab-1

<400> 134 <400> 134

<210> 135 <210> 135

<211> 218 <211> 218

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> Fab-2輕鏈 <223> Fab-2 light chain

<400> 135 <400> 135

<210> 136 <210> 136

<211> 235 <211> 235

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> Fab-2重鏈 <223> Fab-2 heavy chain

<400> 136 <400> 136

<210> 137 <210> 137

<211> 6 <211> 6

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶切割位點 <223> Protease cleavage site

<400> 137 <400> 137

<210> 138 <210> 138

<211> 1530 <211> 1530

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> Fab-2編碼序列 <223> Fab-2 coding sequence

<400> 138 <400> 138

<210> 139 <210> 139

<211> 228 <211> 228

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> IgG2-連接子1,輕鏈胺基酸序列 <223> IgG2-linker 1, light chain amino acid sequence

<400> 139 <400> 139

<210> 140 <210> 140

<211> 458 <211> 458

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> IgG2-連接子1,重鏈胺基酸序列 <223> IgG2-linker 1, heavy chain amino acid sequence

<400> 140 <400> 140

<210> 141 <210> 141

<211> 684 <211> 684

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> IgG2-連接子1,輕鏈DNA序列 <223> IgG2-linker 1, light chain DNA sequence

<400> 141 <400> 141

<210> 142 <210> 142

<211> 1374 <211> 1374

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> IgG2-連接子1,重鏈DNA序列 <223> IgG2-linker 1, heavy chain DNA sequence

<400> 142 <400> 142

<210> 143 <210> 143

<211> 218 <211> 218

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> IgG2-連接子2,輕鏈胺基酸序列 <223> IgG2-linker 2, light chain amino acid sequence

<400> 143 <400> 143

<210> 144 <210> 144

<211> 448 <211> 448

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> IgG2-連接子2,重鏈胺基酸序列 <223> IgG2-linker 2, heavy chain amino acid sequence

<400> 144 <400> 144

<210> 145 <210> 145

<211> 654 <211> 654

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> IgG2-連接子2,輕鏈DNA序列 <223> IgG2-linker 2, light chain DNA sequence

<400> 145 <400> 145

<210> 146 <210> 146

<211> 1344 <211> 1344

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> IgG2-連接子2,重鏈DNA序列 <223> IgG2-linker 2, heavy chain DNA sequence

<400> 146 <400> 146

<210> 147 <210> 147

<211> 6 <211> 6

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 凝血酶切割位點 <223> Thrombin cleavage site

<220> <220>

<221> 變體 <221> variant

<222> (1)..(2) <222> (1)..(2)

<223> Xaa=疏水性胺基酸 <223> Xaa=hydrophobic amino acid

<220> <220>

<221> 變體 <221> variant

<222> (5)..(6) <222> (5)..(6)

<223> Xaa=非酸性胺基酸 <223> Xaa = non-acidic amino acid

<400> 147 <400> 147

<210> 148 <210> 148

<211> 4 <211> 4

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 因子Xa切割位點 <223> Factor Xa cleavage site

<220> <220>

<221> 變體 <221> variant

<222> (2)..(2) <222> (2)..(2)

<223> Xaa=Glu或Asp <223> Xaa=Glu or Asp

<400> 148 <400> 148

<210> 149 <210> 149

<211> 5 <211> 5

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸連接子 <223> Amino acid linker

<400> 149 <400> 149

<210> 150 <210> 150

<211> 58 <211> 58

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> SEQ ID NO:133的胺基酸95-152 <223> Amino acid 95-152 of SEQ ID NO: 133

<400> 150 <400> 150

<210> 151 <210> 151

<211> 16 <211> 16

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸連接子 <223> Amino acid linker

<400> 151 <400> 151

<210> 152 <210> 152

<211> 17 <211> 17

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸連接子 <223> Amino acid linker

<400> 152 <400> 152

<210> 153 <210> 153

<211> 9 <211> 9

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸連接子 <223> Amino acid linker

<400> 153 <400> 153

<210> 154 <210> 154

<211> 10 <211> 10

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸連接子 <223> Amino acid linker

<400> 154 <400> 154

<210> 155 <210> 155

<211> 6 <211> 6

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸連接子 <223> Amino acid linker

<400> 155 <400> 155

<210> 156 <210> 156

<211> 6 <211> 6

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸連接子 <223> Amino acid linker

<400> 156 <400> 156

<210> 157 <210> 157

<211> 9 <211> 9

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸連接子 <223> Amino acid linker

<400> 157 <400> 157

<210> 158 <210> 158

<211> 12 <211> 12

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸連接子 <223> Amino acid linker

<400> 158 <400> 158

<210> 159 <210> 159

<211> 27 <211> 27

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸連接子 <223> Amino acid linker

<400> 159 <400> 159

<210> 160 <210> 160

<211> 18 <211> 18

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸連接子 <223> Amino acid linker

<400> 160 <400> 160

<210> 161 <210> 161

<211> 5 <211> 5

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸連接子 <223> Amino acid linker

<400> 161 <400> 161

<210> 162 <210> 162

<211> 12 <211> 12

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸連接子 <223> Amino acid linker

<400> 162 <400> 162

<210> 163 <210> 163

<211> 5 <211> 5

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸連接子 <223> Amino acid linker

<400> 163 <400> 163

<210> 164 <210> 164

<211> 12 <211> 12

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸連接子 <223> Amino acid linker

<400> 164 <400> 164

<210> 165 <210> 165

<211> 6 <211> 6

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸連接子 <223> Amino acid linker

<400> 165 <400> 165

<210> 166 <210> 166

<211> 13 <211> 13

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸連接子 <223> Amino acid linker

<400> 166 <400> 166

<210> 167 <210> 167

<211> 6 <211> 6

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸連接子 <223> Amino acid linker

<400> 167 <400> 167

<210> 168 <210> 168

<211> 13 <211> 13

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸連接子 <223> Amino acid linker

<400> 168 <400> 168

<210> 169 <210> 169

<211> 6 <211> 6

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸連接子 <223> Amino acid linker

<400> 169 <400> 169

<210> 170 <210> 170

<211> 13 <211> 13

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸連接子 <223> Amino acid linker

<400> 170 <400> 170

<210> 171 <210> 171

<211> 6 <211> 6

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸連接子 <223> Amino acid linker

<400> 171 <400> 171

<210> 172 <210> 172

<211> 13 <211> 13

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸連接子 <223> Amino acid linker

<400> 172 <400> 172

<210> 173 <210> 173

<211> 15 <211> 15

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸連接子 <223> Amino acid linker

<400> 173 <400> 173

<210> 174 <210> 174

<211> 15 <211> 15

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸連接子 <223> Amino acid linker

<400> 174 <400> 174

<210> 175 <210> 175

<211> 15 <211> 15

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸連接子 <223> Amino acid linker

<400> 175 <400> 175

<210> 176 <210> 176

<211> 15 <211> 15

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 胺基酸連接子 <223> Amino acid linker

<400> 176 <400> 176

<210> 177 <210> 177

<211> 442 <211> 442

<212> PRT <212> PRT

<213> 智人 <213> Homo sapiens

<400> 177 <400> 177

<210> 178 <210> 178

<211> 212 <211> 212

<212> PRT <212> PRT

<213> 智人 <213> Homo sapiens

<400> 178 <400> 178

<210> 179 <210> 179

<211> 239 <211> 239

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶可切割抗-TFPI scFv抗體 <223> Protease can cleave anti-TFPI scFv antibody

<400> 179 <400> 179

<210> 180 <210> 180

<211> 717 <211> 717

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 蛋白酶可切割抗-TFPI scFv抗體編碼序列 <223> Protease cleavage anti-TFPI scFv antibody coding sequence

<400> 180 <400> 180

<210> 181 <210> 181

<211> 569 <211> 569

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 181 <400> 181

<210> 182 <210> 182

<211> 565 <211> 565

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 182 <400> 182

<210> 183 <210> 183

<211> 561 <211> 561

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 183 <400> 183

<210> 184 <210> 184

<211> 566 <211> 566

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 184 <400> 184

<210> 185 <210> 185

<211> 562 <211> 562

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 185 <400> 185

<210> 186 <210> 186

<211> 558 <211> 558

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 186 <400> 186

<210> 187 <210> 187

<211> 563 <211> 563

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 187 <400> 187

<210> 188 <210> 188

<211> 559 <211> 559

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 188 <400> 188

<210> 189 <210> 189

<211> 555 <211> 555

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 189 <400> 189

<210> 190 <210> 190

<211> 331 <211> 331

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 190 <400> 190

<210> 191 <210> 191

<211> 327 <211> 327

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 191 <400> 191

<210> 192 <210> 192

<211> 323 <211> 323

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 192 <400> 192

<210> 193 <210> 193

<211> 329 <211> 329

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 193 <400> 193

<210> 194 <210> 194

<211> 325 <211> 325

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 194 <400> 194

<210> 195 <210> 195

<211> 321 <211> 321

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 195 <400> 195

<210> 196 <210> 196

<211> 690 <211> 690

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 196 <400> 196

<210> 197 <210> 197

<211> 683 <211> 683

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 197 <400> 197

<210> 198 <210> 198

<211> 212 <211> 212

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 198 <400> 198

<210> 199 <210> 199

<211> 463 <211> 463

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 199 <400> 199

<210> 200 <210> 200

<211> 705 <211> 705

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 200 <400> 200

<210> 201 <210> 201

<211> 219 <211> 219

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 201 <400> 201

<210> 202 <210> 202

<211> 699 <211> 699

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 202 <400> 202

<210> 203 <210> 203

<211> 700 <211> 700

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 203 <400> 203

<210> 204 <210> 204

<211> 717 <211> 717

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 204 <400> 204

<210> 205 <210> 205

<211> 705 <211> 705

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 205 <400> 205

<210> 206 <210> 206

<211> 710 <211> 710

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 206 <400> 206

<210> 207 <210> 207

<211> 578 <211> 578

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 207 <400> 207

<210> 208 <210> 208

<211> 334 <211> 334

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 208 <400> 208

<210> 209 <210> 209

<211> 565 <211> 565

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 209 <400> 209

<210> 210 <210> 210

<211> 322 <211> 322

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 210 <400> 210

<210> 211 <210> 211

<211> 568 <211> 568

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 211 <400> 211

<210> 212 <210> 212

<211> 330 <211> 330

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 212 <400> 212

<210> 213 <210> 213

<211> 482 <211> 482

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 213 <400> 213

<210> 214 <210> 214

<211> 476 <211> 476

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 214 <400> 214

<210> 215 <210> 215

<211> 494 <211> 494

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 215 <400> 215

<210> 216 <210> 216

<211> 482 <211> 482

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 216 <400> 216

<210> 217 <210> 217

<211> 472 <211> 472

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 217 <400> 217

<210> 218 <210> 218

<211> 463 <211> 463

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 218 <400> 218

<210> 219 <210> 219

<211> 482 <211> 482

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 219 <400> 219

<210> 220 <210> 220

<211> 219 <211> 219

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 220 <400> 220

<210> 221 <210> 221

<211> 476 <211> 476

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 221 <400> 221

<210> 222 <210> 222

<211> 494 <211> 494

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 222 <400> 222

<210> 223 <210> 223

<211> 482 <211> 482

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 223 <400> 223

<210> 224 <210> 224

<211> 472 <211> 472

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 224 <400> 224

<210> 225 <210> 225

<211> 228 <211> 228

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 225 <400> 225

<210> 226 <210> 226

<211> 476 <211> 476

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 226 <400> 226

<210> 227 <210> 227

<211> 473 <211> 473

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 227 <400> 227

<210> 228 <210> 228

<211> 472 <211> 472

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 228 <400> 228

<210> 229 <210> 229

<211> 470 <211> 470

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 229 <400> 229

<210> 230 <210> 230

<211> 468 <211> 468

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 230 <400> 230

<210> 231 <210> 231

<211> 468 <211> 468

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 231 <400> 231

<210> 232 <210> 232

<211> 482 <211> 482

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 232 <400> 232

<210> 233 <210> 233

<211> 479 <211> 479

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 233 <400> 233

<210> 234 <210> 234

<211> 442 <211> 442

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 234 <400> 234

<210> 235 <210> 235

<211> 246 <211> 246

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 235 <400> 235

<210> 236 <210> 236

<211> 240 <211> 240

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 236 <400> 236

<210> 237 <210> 237

<211> 240 <211> 240

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 237 <400> 237

<210> 238 <210> 238

<211> 54 <211> 54

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 238 <400> 238

<210> 239 <210> 239

<211> 63 <211> 63

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 239 <400> 239

<210> 240 <210> 240

<211> 63 <211> 63

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 240 <400> 240

<210> 241 <210> 241

<211> 82 <211> 82

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 241 <400> 241

<210> 242 <210> 242

<211> 69 <211> 69

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 242 <400> 242

<210> 243 <210> 243

<211> 63 <211> 63

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 243 <400> 243

<210> 244 <210> 244

<211> 73 <211> 73

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 244 <400> 244

<210> 245 <210> 245

<211> 67 <211> 67

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 245 <400> 245

<210> 246 <210> 246

<211> 64 <211> 64

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 246 <400> 246

<210> 247 <210> 247

<211> 63 <211> 63

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 247 <400> 247

<210> 248 <210> 248

<211> 61 <211> 61

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 248 <400> 248

<210> 249 <210> 249

<211> 59 <211> 59

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 249 <400> 249

<210> 250 <210> 250

<211> 59 <211> 59

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 250 <400> 250

<210> 251 <210> 251

<211> 73 <211> 73

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 251 <400> 251

<210> 252 <210> 252

<211> 70 <211> 70

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 252 <400> 252

<210> 253 <210> 253

<211> 30 <211> 30

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 253 <400> 253

<210> 254 <210> 254

<211> 64 <211> 64

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 254 <400> 254

<210> 255 <210> 255

<211> 58 <211> 58

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 255 <400> 255

<210> 256 <210> 256

<211> 58 <211> 58

<212> PRT <212> PRT

<213> 人工序列 <213> Artificial sequence

<220> <220>

<223> 合成多肽 <223> Synthetic polypeptide

<400> 256 <400> 256

Claims (35)

一種抗體,包含:(a)第一可變域,包括第一輕鏈與第一重鏈可變區,該第一可變域結合至組織因子路徑抑制劑(TFPI);(b)連接到該第一輕鏈及/或第一重鏈可變區的胺基末端的掩蔽域;及(c)蛋白酶可切割連接子,其插入該第一輕鏈及/或第一重鏈可變區和該掩蔽域(masking domain)之間。 An antibody comprising: (a) a first variable domain comprising a first light chain and a first heavy chain variable region, the first variable domain binding to a tissue factor pathway inhibitor (TFPI); (b) linked to a masking domain of the first light chain and/or the amine-terminal end of the first heavy chain variable region; and (c) a protease cleavable linker inserted into the first light chain and/or the first heavy chain variable region And between the masking domain. 如請求項1之抗體,其中該蛋白酶可切割域是凝血酶、血纖維蛋白溶解酶、因子VIIa或因子Xa切割位點。 The antibody of claim 1, wherein the protease cleavable domain is a thrombin, plasmin, factor VIIa or factor Xa cleavage site. 如請求項1之抗體,其中該掩蔽域包含第二可變域,該第二可變域包括第二輕鏈與第二重鏈可變區。 The antibody of claim 1, wherein the masking domain comprises a second variable domain comprising a second light chain and a second heavy chain variable region. 如請求項1之抗體,其中該抗體是IgG1、IgG2、IgG3、IgG4、IgM、IgA1、IgA2、分泌型IgA、IgD以及IgE抗體。 The antibody of claim 1, wherein the antibody is IgG1, IgG2, IgG3, IgG4, IgM, IgA1, IgA2, secretory IgA, IgD, and IgE antibodies. 如請求項1之抗體,其中該抗體是人類或人類化抗體。 The antibody of claim 1, wherein the antibody is a human or a humanized antibody. 如請求項1之抗體,其中該抗體是單鏈抗體。 The antibody of claim 1, wherein the antibody is a single chain antibody. 如請求項1之抗體,其中該抗體為二價並且包含兩個掩蔽域,一個連結到各個第一輕鏈可變區的胺基末端。 The antibody of claim 1, wherein the antibody is bivalent and comprises two masking domains, one linked to the amine terminus of each of the first light chain variable regions. 如請求項1之抗體,其中該抗體為二價並且包含兩個掩蔽域,一個連結到各個第一重鏈可變區的胺基末端。 The antibody of claim 1, wherein the antibody is bivalent and comprises two masking domains, one linked to the amine terminus of each of the first heavy chain variable regions. 如請求項1之抗體,其中該抗體為二價並且包括四個掩蔽域,一個連結到各個第一輕鏈可變區和各個第一重鏈可變區的胺基末端。 The antibody of claim 1, wherein the antibody is bivalent and comprises four masking domains, one linked to each of the first light chain variable region and the amine terminal of each of the first heavy chain variable regions. 如請求項9之抗體,其中兩個掩蔽域是第二個輕鏈可變區,而兩個掩蔽域是第二重鏈可變區,其中該第二輕鏈和重鏈可變區形成第二可變域。 The antibody of claim 9, wherein the two masking domains are a second light chain variable region and the two masking domains are a second heavy chain variable region, wherein the second light chain and heavy chain variable regions form a Two variable domains. 如請求項3或10之抗體,其中該第二可變域結合至組織因子(TF)、紅血球或白蛋白。 The antibody of claim 3 or 10, wherein the second variable domain binds to tissue factor (TF), red blood cells or albumin. 如請求項1、7或8之抗體,其中該掩蔽域是白蛋白結合肽或蛋白。 The antibody of claim 1, 7 or 8, wherein the masking domain is an albumin binding peptide or protein. 一種表現載體,包含如請求項1至12中之抗體之受啟動子控制的編碼區。 A performance vector comprising a coding region controlled by a promoter as claimed in claims 1 to 12. 一種細胞,包含如請求項13之表現載體。 A cell comprising the expression vector of claim 13. 一種醫藥組合物,包含如請求項1至12中之抗體與醫藥上可接受緩衝劑、載劑或稀釋劑一起調配。 A pharmaceutical composition comprising the antibody of claims 1 to 12 formulated with a pharmaceutically acceptable buffer, carrier or diluent. 一種在個體中治療凝血障礙的方法,包含向該個體投與數量足以在該個體中促進凝血的抗體,該抗體包含:(a)第一可變域,包括第一輕鏈與第一重鏈可變區,該第一可變域結合至組織因子路徑抑制劑(TFPI);(b)連接到該第一輕鏈及/或第一重鏈可變區的胺基末端的掩蔽域;及(c)蛋白酶可切割連接子,其插入該第一輕鏈及/或第一重鏈可變區和該掩蔽域之間。 A method of treating a blood coagulation disorder in an individual comprising administering to the individual an amount of an antibody sufficient to promote coagulation in the individual, the antibody comprising: (a) a first variable domain comprising a first light chain and a first heavy chain a variable region, the first variable domain binding to a tissue factor pathway inhibitor (TFPI); (b) a masking domain linked to an amine-based end of the first light chain and/or the first heavy chain variable region; (c) a protease cleavable linker inserted between the first light chain and/or the first heavy chain variable region and the masking domain. 如請求項16之方法,其中該蛋白酶可切割域是凝血酶、血纖維蛋白溶解酶、因子VIIa或因子Xa切割位點。 The method of claim 16, wherein the protease cleavable domain is a thrombin, plasmin, factor VIIa or factor Xa cleavage site. 如請求項16之方法,其中該掩蔽域包含第二可變域,該第二可變域包括第二輕鏈與第二重鏈可變區。 The method of claim 16, wherein the masking domain comprises a second variable domain comprising a second light chain and a second heavy chain variable region. 如請求項16之方法,其中該個體為人類。 The method of claim 16, wherein the individual is a human. 如請求項16之方法,其中該個體為非人類哺乳動物。 The method of claim 16, wherein the individual is a non-human mammal. 如請求項16之方法,其中該抗體為單鏈抗體。 The method of claim 16, wherein the antibody is a single chain antibody. 如請求項16之方法,其中該抗體為二價並且包含兩個掩蔽域,一個連結到各個第一輕鏈可變區的胺基末端。 The method of claim 16, wherein the antibody is bivalent and comprises two masking domains, one linked to the amine terminus of each of the first light chain variable regions. 如請求項16之方法,其中該抗體為二價並且包含兩個掩蔽域,一個連結到各個第一重鏈可變區的胺基末端。 The method of claim 16, wherein the antibody is bivalent and comprises two masking domains, one linked to the amine terminus of each of the first heavy chain variable regions. 如請求項16之方法,其中該抗體為二價並且包括四個掩蔽域,一個連結到各個第一輕鏈可變區和各個第一重鏈可變區的胺基末端。 The method of claim 16, wherein the antibody is bivalent and comprises four masking domains, one linked to each of the first light chain variable region and the amine terminal of each of the first heavy chain variable regions. 如請求項24之方法,其中兩個掩蔽域是第二個輕鏈可變區,而兩個掩蔽域是第二重鏈可變區,其中該第二輕鏈和重鏈可變區形成第二可變域。 The method of claim 24, wherein the two masking domains are a second light chain variable region and the two masking domains are a second heavy chain variable region, wherein the second light chain and heavy chain variable regions form a Two variable domains. 如請求項18或25之方法,其中該第二可變域結合至組織因子(TF)、紅血球或白蛋白。 The method of claim 18 or 25, wherein the second variable domain binds to tissue factor (TF), red blood cells or albumin. 如請求項16、22或23中任一項之方法,其中該掩蔽域是白蛋白結合蛋白。 The method of any one of claims 16, 22 or 23, wherein the masking domain is an albumin binding protein. 如請求項16之方法,其中該個體患有外傷、血友病或癌症。 The method of claim 16, wherein the individual has a trauma, hemophilia or cancer. 如請求項16之方法,其中該個體患有A型或B型血友病。 The method of claim 16, wherein the individual has type A or type B hemophilia. 如請求項16之方法,其中該抗體被全身性地投與。 The method of claim 16, wherein the antibody is administered systemically. 如請求項16之方法,其中該抗體被局部或區域性地投與至出血位點。 The method of claim 16, wherein the antibody is administered topically or regionally to the site of bleeding. 如請求項16之方法,其中該抗體被皮下、靜脈內或動脈內投與。 The method of claim 16, wherein the antibody is administered subcutaneously, intravenously or intraarterially. 如請求項16之方法,其中該抗體為IgG1、IgG2、IgG3、IgG4、IgM、IgA1、IgA2、分泌型IgA、IgD以及IgE抗體。 The method of claim 16, wherein the antibody is IgG1, IgG2, IgG3, IgG4, IgM, IgA1, IgA2, secretory IgA, IgD, and IgE antibodies. 如請求項16之方法,其中該抗體為人類或人類化抗體。 The method of claim 16, wherein the antibody is a human or a humanized antibody. 如請求項16之方法,其中該抗體結合至人類組織因子路徑抑制劑的Kunitz域2。 The method of claim 16, wherein the antibody binds to Kunitz domain 2 of a human tissue factor pathway inhibitor.
TW103109453A 2013-03-15 2014-03-14 Pro-drug antibodies against tissue factor pathway inhibitor TW201522368A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201361794024P 2013-03-15 2013-03-15

Publications (1)

Publication Number Publication Date
TW201522368A true TW201522368A (en) 2015-06-16

Family

ID=51537758

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103109453A TW201522368A (en) 2013-03-15 2014-03-14 Pro-drug antibodies against tissue factor pathway inhibitor

Country Status (10)

Country Link
US (1) US20160009817A1 (en)
EP (1) EP2970498A4 (en)
JP (1) JP2016514687A (en)
CN (1) CN105209496A (en)
AR (1) AR095502A1 (en)
CA (1) CA2906095A1 (en)
HK (1) HK1215262A1 (en)
TW (1) TW201522368A (en)
UY (1) UY35459A (en)
WO (1) WO2014144689A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201203442D0 (en) 2012-02-28 2012-04-11 Univ Birmingham Immunotherapeutic molecules and uses
AU2014274215B2 (en) 2013-05-28 2019-02-28 Dcb-Usa Llc Antibody locker for the inactivation of protein drug
IL302353A (en) 2015-08-19 2023-06-01 Pfizer Tissue factor pathway inhibitor antibodies and uses thereof
PL3377103T3 (en) 2015-11-19 2021-10-04 Revitope Limited Functional antibody fragment complementation for a two-components system for redirected killing of unwanted cells
US11623958B2 (en) 2016-05-20 2023-04-11 Harpoon Therapeutics, Inc. Single chain variable fragment CD3 binding proteins
WO2017201488A1 (en) 2016-05-20 2017-11-23 Harpoon Therapeutics, Inc. Single domain serum albumin binding protein
CA3042276A1 (en) 2016-12-09 2018-06-14 Seattle Genetics, Inc. Bivalent antibodies masked by coiled coils
WO2018160754A2 (en) 2017-02-28 2018-09-07 Harpoon Therapeutics, Inc. Inducible monovalent antigen binding protein
US20200115461A1 (en) * 2017-05-03 2020-04-16 Harpoon Therapeutics, Inc. Compositions and methods for adoptive cell therapies
KR102376863B1 (en) 2017-05-12 2022-03-21 하푼 테라퓨틱스, 인크. mesothelin binding protein
CN111278461A (en) 2017-08-16 2020-06-12 百时美施贵宝公司 Prodrugs of antibodies
KR102337683B1 (en) * 2018-09-21 2021-12-13 주식회사 녹십자 Highly efficient anti-TFPI antibody composition
SG11202103022WA (en) 2018-09-25 2021-04-29 Harpoon Therapeutics Inc Dll3 binding proteins and methods of use
US20220251206A1 (en) 2019-06-11 2022-08-11 Bristol-Myers Squibb Company Anti-ctla4 antibody prodruggable (probody) at a cdr position
US11180563B2 (en) 2020-02-21 2021-11-23 Harpoon Therapeutics, Inc. FLT3 binding proteins and methods of use
CN113354715B (en) * 2021-05-07 2023-03-17 暨南大学 Engineered binding proteins for EGFR and uses thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5902582A (en) * 1995-09-05 1999-05-11 Chiron Corporation Use of TFPI inhibitor for treatment of cancer
US7015194B2 (en) * 2000-05-10 2006-03-21 Novo Nordisk A/S Pharmaceutical composition comprising factor VIIa and anti-TFPI
CN101031588A (en) * 2004-06-01 2007-09-05 多曼蒂斯有限公司 Drug compositions, fusions and conjugates
US9624309B2 (en) * 2007-08-15 2017-04-18 Bayer Intellectual Property Gmbh Monospecific and multispecific antibodies and method of use
AU2008289441A1 (en) * 2007-08-22 2009-02-26 Cytomx Therapeutics, Inc. Activatable binding polypeptides and methods of identification and use thereof
US8450275B2 (en) * 2010-03-19 2013-05-28 Baxter International Inc. TFPI inhibitors and methods of use
PT2379600E (en) * 2008-12-22 2014-04-29 Novo Nordisk As Antibodies against tissue factor pathway inhibitor
CN106995495A (en) * 2009-01-12 2017-08-01 希托马克斯医疗有限责任公司 Modified antibodies composition and its preparation and application
KR20120123299A (en) * 2009-12-04 2012-11-08 제넨테크, 인크. Multispecific antibodies, antibody analogs, compositions, and methods
WO2011101435A1 (en) * 2010-02-19 2011-08-25 Novo Nordisk A/S Activatable constructs
SI2542257T1 (en) * 2010-03-01 2018-01-31 Bayer Healthcare Llc Optimized monoclonal antibodies against tissue factor pathway inhibitor (tfpi)
CN103080135B (en) * 2010-06-30 2017-06-13 诺沃—诺迪斯克有限公司 The antibody of tissue factor approach restrainer can be specifically bound

Also Published As

Publication number Publication date
CA2906095A1 (en) 2014-09-18
US20160009817A1 (en) 2016-01-14
EP2970498A1 (en) 2016-01-20
WO2014144689A1 (en) 2014-09-18
CN105209496A (en) 2015-12-30
UY35459A (en) 2014-10-31
HK1215262A1 (en) 2016-08-19
AR095502A1 (en) 2015-10-21
EP2970498A4 (en) 2016-11-23
JP2016514687A (en) 2016-05-23

Similar Documents

Publication Publication Date Title
TW201522368A (en) Pro-drug antibodies against tissue factor pathway inhibitor
JP6684369B2 (en) Optimized monoclonal antibody against tissue factor pathway inhibitor (TFPI)
CA2733075C (en) Monoclonal antibodies against tissue factor pathway inhibitor (tfpi)
TW201429992A (en) Monoclonal antibodies against activated protein C (aPC)
WO2023241389A1 (en) Monoclonal antibody against tfpi and use thereof
AU2018271420B2 (en) Optimized monoclonal antibodies against tissue factor pathway inhibitor (TFPI)
JP6848016B2 (en) Monoclonal antibody against tissue factor pathway inhibitor (TFPI)
JP6419664B2 (en) Monoclonal antibody against tissue factor pathway inhibitor (TFPI)
AU2013202752B2 (en) Monoclonal antibodies against tissue factor pathway inhibitor (TFPI)
JP2021091720A (en) Monoclonal antibodies against tissue factor pathway inhibitor (tfpi)
JP2018108089A (en) Monoclonal antibody to tissue factor pathway inhibitor (tfpi)