TW201520667A - Multi-color electrophoretic displays - Google Patents

Multi-color electrophoretic displays Download PDF

Info

Publication number
TW201520667A
TW201520667A TW104101948A TW104101948A TW201520667A TW 201520667 A TW201520667 A TW 201520667A TW 104101948 A TW104101948 A TW 104101948A TW 104101948 A TW104101948 A TW 104101948A TW 201520667 A TW201520667 A TW 201520667A
Authority
TW
Taiwan
Prior art keywords
particles
electrophoretic
color
display
layer
Prior art date
Application number
TW104101948A
Other languages
Chinese (zh)
Other versions
TWI578078B (en
Inventor
Richard J Paolini
George G Harris
Stephen J Telfer
Original Assignee
E Ink Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E Ink Corp filed Critical E Ink Corp
Priority to TW104101948A priority Critical patent/TWI578078B/en
Publication of TW201520667A publication Critical patent/TW201520667A/en
Application granted granted Critical
Publication of TWI578078B publication Critical patent/TWI578078B/en

Links

Abstract

An electrophoretic display (100) has stacked first (104) and second (120) electrophoretic layers, each comprising charged particles (W, C, Y, M) in a fluid (106, 122). The first layer contains particles of white (W) and first color (M) particles and has three optical states (a) white particles adjacent a viewing surface; (b) first color particles lie adjacent the viewing surface; and (c) both types of particles shuttered to allow light to pass through the first layer. The second layer contains particles having second (C) and third (Y) colors and has three optical states (d) second particles (C) adjacent the first layer; (e) third particles (Y) adjacent the first layer; and (f) second (C) and third (Y) particles intermixed within the fluid.

Description

多色電泳顯示器 Multicolor electrophoretic display

本發明關於多色電泳介質且關於結合這種介質之顯示器。 The present invention relates to multicolor electrophoretic media and to displays incorporating such media.

多年來以粒子為基礎之電泳顯示器已是高度研究及發展之主題,在該電泳顯示器中,複數個帶電粒子在電場之作用下通過流體而移動。在與液晶顯示器比較時,電泳顯示器具有良好亮度與對比、廣視角、狀態之雙穩性(bistability)及低耗電的屬性。然而,對於此等顯示器之長期影像品質問題已妨礙到其廣泛使用。例如,構成電泳顯示器之粒子有沉殿之傾向,造成此等顯示器之不足的使用年限(service-life)。 Particle-based electrophoretic displays have been the subject of much research and development over the years in which a plurality of charged particles move through a fluid under the action of an electric field. When compared with liquid crystal displays, electrophoretic displays have good brightness and contrast, wide viewing angle, state bistability and low power consumption. However, the long-term image quality issues with such displays have hampered their widespread use. For example, the particles that make up an electrophoretic display have a tendency to sink, causing a lack of service-life for such displays.

本文中依該技藝之習知意義使用「雙穩態」(“bistable”)「雙穩性」(“bistability”)等名詞以論及包括顯示元件之顯示器,該等顯示元件具有至少一種光學特性相異之第一及第二顯示狀態,且藉由有限期間之定址脈衝,使得在已驅動任何特定元件以呈現其第一或第二顯示狀態後,於定址脈衝已終止後,該狀態將持續至少數次例如(至少四次)要變更顯示元件狀態所需之定址脈衝的最小期間。在美國專利案號7,170,670中表示具灰階 能力之某些以粒子為基礎之電泳顯示器不僅在其極度黑色與白色狀態,而且在其中間灰色狀態為穩定的,且在某些其它類型之光電顯示器同樣為真。儘管為方便起見,本文中可使用「雙穩態」一詞涵蓋雙穩態與多穩態顯示器,但此類型之顯示器適稱為「多穩態」(“multi-stable”)而非雙穩態。 In this context, the term "bistable" ("bistability") is used in the context of the art to refer to displays including display elements having at least one optical characteristic. Distinct first and second display states, and with a limited period of address pulses, such that after any particular component has been driven to assume its first or second display state, the state will continue after the address pulse has terminated The minimum period of the address pulse required to change the state of the display element, for example (at least four times) at least several times. Grayscale is indicated in U.S. Patent No. 7,170,670 Some of the ability of particle-based electrophoretic displays are not only in their extreme black and white states, but also in their gray state, and are also true in some other types of optoelectronic displays. Although for convenience, the term "bistable" is used herein to cover both bistable and multi-stable displays, this type of display is referred to as "multi-stable" rather than dual. Steady state.

如以上所提及者,電泳介質需有流體存在。在大半先前技術之電泳介質中,此流體為液體,但電泳介質可使用氣態流體製成;例如見Kitamura,T.等人之「用於像電子紙之顯示器之電色粉的移動」,IDW日本,2001,報告HCS1-1,以及Yamaguchi,Y.等人之「使用以摩擦帶電式之絕緣粒子的色粉顯示器」,IDW日本,2001,報告AMD4-4。亦見美國專利公開案號2005/0259068、2006/0087479、2006/0087489、2006/0087718、2006/0209008、2006/0214906、2006/0231401、2006/0238488、2006/0263927及美國專利案號7,321,459及7,236,291。當在允許此等沉澱之定向中使用該介質時,例如,在將介質配置成垂直平面之標記中,由於作為以液體為基礎之電泳介質的粒子沉澱,此等以氣體為基礎之電泳介質似乎易受相同類型問題之影響。的確,在以氣體為基礎之電泳介質中比在以液體為基礎之電泳介質中,粒子沉澱似乎為更嚴重之問題,因相較於液體,較低黏度之氣態懸浮流體允許使電泳粒子更快速沉澱。 As mentioned above, the electrophoretic medium requires the presence of a fluid. In most of the prior art electrophoretic media, the fluid is a liquid, but the electrophoretic medium can be made using a gaseous fluid; see, for example, Kitamura, T. et al., "Moving for Electron Powders for Displays Like Electronic Paper," IDW Japan, 2001, reports HCS1-1, and Yamaguchi, Y. et al., "Toners using triboelectrically charged insulating particles", IDW Japan, 2001, AMD 4-4. See also U.S. Patent Publication Nos. 2005/0259068, 2006/0087479, 2006/0087489, 2006/0087718, 2006/0209008, 2006/0214906, 2006/0231401, 2006/0238488, 2006/0263927, and U.S. Patent Nos. 7,321,459 and 7,236,291. . When the medium is used in an orientation that allows such precipitation, for example, in the marking of the medium in a vertical plane, these gas-based electrophoretic media appear to be due to particle precipitation as a liquid-based electrophoretic medium. Vulnerable to the same type of problem. Indeed, particle precipitation appears to be a more serious problem in gas-based electrophoretic media than in liquid-based electrophoretic media, because lower viscosity gaseous suspension fluids allow electrophoretic particles to be faster than liquids. precipitation.

讓渡給或以麻省理工學院(MIT)及E Ink公司為名義之許多專利及申請案說明使用於封裝電泳及其它光電介質的各種技術。此等封裝介質包括許多小囊(capsule),該囊本身之每一者包括在流體介質中含有電泳式遷移粒子的內相(internal phase),及圍繞內相之囊壁。向來,囊係本身容納在聚合結合劑中以形成位在兩電極之間的黏合層。此等專利及申請案中所說明之技術包含:(a)電泳粒子、流體及流體添加劑;例如見美國專利案號7,002,728及7,679,814;(b)囊、結合劑及封裝製程;例如見美國專利案號6,922,276及7,411,719;(c)包含光電材料之薄膜及子組件;例如見美國專利案號6,982,178及7,839,564;(d)底板(back plane)、接著層與其它輔助層及用於顯示之方法;例如見美國專利案號7,116,318及7,535,624;(e)顏色之形成及顏色之調整;例如見美國專利案號6,017,584、6,664,944、6,864,875、7,075,502、7,167,155、7,667,684與7,791,789;及美國專利申請公開案號2004/0263947、2007/0109219、2007/0223079、2008/0023332、2008/0043318、2008/0048970、2008/0211764、2009/0004442、2009/0225398、2009/0237776、2010/0103502、2010/0156780及2010/0225995; (f)用於驅動顯示器之方法;例如見美國專利案號7,012,600及7,453,445;以及(g)顯示器之應用;例如見美國專利案號7,312,784;以及美國專利申請公開案號2006/0279527。 Many patents and applications that are assigned to or in the name of the Massachusetts Institute of Technology (MIT) and E Ink Corporation describe various techniques used to encapsulate electrophoresis and other optoelectronic media. Such encapsulating media include a plurality of capsules, each of which itself includes an internal phase containing electrophoretic migrating particles in the fluid medium, and a wall surrounding the inner phase. Historically, the capsule itself is contained in a polymeric binder to form an adhesive layer between the two electrodes. The techniques described in these patents and applications include: (a) electrophoretic particles, fluids, and fluid additives; see, for example, U.S. Patent Nos. 7,002,728 and 7,679,814; (b) capsules, binders, and packaging processes; see, for example, U.S. Patent No. 6,922,276 and 7,411,719; (c) films and subassemblies comprising photovoltaic materials; see, for example, U.S. Patent Nos. 6,982,178 and 7,839,564; (d) back planes, adhesive layers and other auxiliary layers, and methods for display; See U.S. Patent Nos. 7,116,318 and 7,535,624; (e) color formation and color adjustment; see, for example, U.S. Patent Nos. 6,017,584, 6,664,944, 6,864,875, 7,075, 502, 7, 167, 155, 7, 667, 684 and 7, 791, 789; and U.S. Patent Application Publication No. 2004/0263947 , 2007/0109219, 2007/0223079, 2008/0023332, 2008/0043318, 2008/0048970, 2008/0211764, 2009/0004442, 2009/0225398, 2009/0237776, 2010/0103502, 2010/0156780 and 2010/0225995; (f) A method for driving a display; see, for example, U.S. Patent Nos. 7,012,600 and 7,453,445; and (g) the use of a display; see, for example, U.S. Patent No. 7,312,784; and U.S. Patent Application Publication No. 2006/0279527.

眾多前述專利及申請案認定將離散之微囊圍繞在封裝電泳介質中的壁可能為連續相所取代,由此產生所謂聚合物散佈式電泳顯示器,其中電泳介質包括複數個離散之電泳流體液滴及由聚合材料製成之連續相,且即使離散之囊薄膜與各個別液滴無相關聯,仍可將此種聚合物散佈式電泳顯示器中的離散之電泳流體液滴視為囊或微囊;例如見美國專利案號6,866,760。因此,為本申請案之目的,將此等聚合物散佈式電泳介質視為封裝電泳介質之子種類。 Numerous of the aforementioned patents and applications recognize that the walls surrounding the discrete microcapsules in the encapsulated electrophoretic medium may be replaced by a continuous phase, thereby producing a so-called polymer-dispersed electrophoretic display in which the electrophoretic medium comprises a plurality of discrete electrophoretic fluid droplets. And a continuous phase made of a polymeric material, and even if the discrete capsule film is not associated with each individual droplet, the discrete electrophoretic fluid droplets in the polymer dispersed electrophoretic display can be considered as a capsule or microcapsule; See, for example, U.S. Patent No. 6,866,760. Thus, for the purposes of this application, such polymer-dispersed electrophoretic media are considered to be sub-categories of encapsulated electrophoretic media.

相關類型之電泳顯示器係所謂的「微胞(microcell)電泳顯示器」。在微胞電泳顯示器中,帶電粒子及流體未被封裝在微囊中,而是被留置在複數個空腔中,該等空腔係形成在向來為聚合膜之載體介質中。例如,見兩者皆讓渡給Sipix Imaging公司之美國專利案號6,672,921及6,788,449。 A related type of electrophoretic display is a so-called "microcell electrophoretic display". In a microelectrophoresis display, charged particles and fluid are not encapsulated in the microcapsules, but are retained in a plurality of cavities formed in a carrier medium that is conventionally a polymeric film. See, for example, U.S. Patent Nos. 6,672,921 and 6,788,449 to Sipix Imaging.

儘管電泳介質常為不透明(例如,因在眾多電泳介質中,粒子大致阻擋可見光透過顯示器透射)且以反射模式運作,眾多電泳顯示器可以所謂的「光閘模式」運作,其中一個顯示狀態大致為不透光且一個為透光。例如,見美國專利案號5,872,552、6,130,774、6,144,361、6,172,798、6,271,823、6,225,971;以及6,184,856。類 似於電泳顯示器卻依賴電場強度變化之雙電泳顯示器可以類似模式運作;見美國專利案號4,418,346。以光閘模式運作之電泳介質在全彩顯示器之多層結構中可能是有用的;在此等結構中,鄰近顯示器觀看表面之至少一層係以光閘模式運作,以曝露或隱藏更遠離觀看表面的第二層。 Although electrophoretic media are often opaque (eg, due to the fact that in many electrophoretic media, particles substantially block visible light from transmitting through the display) and operate in a reflective mode, many electrophoretic displays can operate in a so-called "brake mode" where one display state is generally not Light and one is light. See, for example, U.S. Patent Nos. 5,872,552, 6,130,774, 6,144,361, 6,172,798, 6,271,823, 6,225,971; and 6,184,856. class A dual electrophoretic display that resembles an electrophoretic display but relies on changes in electric field strength can operate in a similar mode; see U.S. Patent No. 4,418,346. An electrophoretic medium operating in a shutter mode may be useful in a multi-layered structure of a full color display; in such structures, at least one layer adjacent the viewing surface of the display operates in a shutter mode to expose or hide further away from the viewing surface. Second floor.

如已表示者,封裝式或微胞電泳顯示器向來未遭遇習知電泳裝置之叢集及沉澱失敗模式的問題且提供進一步之優勢,如將顯示器印刷或塗布在廣泛各種撓性及剛性基板上的能力(字詞「印刷」之使用意在包含所有形式之印刷及塗布,其包含但未限於:預計量式塗布(pre-metered coating),如方框式模具塗布(patch die coating)、狹縫式或擠壓塗布(slot or extrusion coating)、斜板式(slide)或淋瀑式(cascade)塗布、淋幕式(curtain)塗布;滾輪塗布,如輪上刮刀塗布、順及逆滾輪塗布;凹版(gravure)塗布;浸漬塗布;噴塗式塗布;彎月形(meniscus)塗布;旋轉式塗布;刷塗式塗布;氣刀(air knife)塗布;絲綢網版印刷(silk screen printing)製程;靜電印刷製程;熱印刷製程;噴墨印刷製程;電泳沉積(見美國專利案號7,339,715);以及其它類似技術)。因此,所形成之顯示器可為撓性。再者,由於可印刷顯示介質(使用各種方法),可使顯示器本身不貴。 As already indicated, encapsulated or microelectrophoretic displays have not encountered the problems of conventional electrophoresis device clustering and precipitation failure modes and provide further advantages such as the ability to print or coat displays on a wide variety of flexible and rigid substrates. (The use of the word "printing" is intended to encompass all forms of printing and coating, including but not limited to: pre-metered coating, such as patch die coating, slit type Or slot or extrusion coating, slate or cascade coating, curtain coating; roller coating, such as on-roller coating, smooth reverse coating; gravure ( Gravure) coating; dip coating; spray coating; meniscus coating; rotary coating; brush coating; air knife coating; silk screen printing process; Thermal printing process; inkjet printing process; electrophoretic deposition (see U.S. Patent No. 7,339,715); and other similar techniques). Thus, the resulting display can be flexible. Furthermore, the display itself can be inexpensive due to the printable display medium (using various methods).

大半習知技藝之電泳介質基本上僅顯示兩種顏色。此等電泳介質使用單一類型之電泳粒子或第一及第二類型之電泳粒子,該單一類型之電泳粒子在具第 二、相異顏色之著色流體中具有第一顏色(在該情況下,在粒子位於鄰近顯示器之觀看表面時顯示第一顏色,且在粒子與觀看表面隔開時,顯示第二顏色),該等第一及第二類型之電泳粒子在未著色流體中具有相異之第一及第二顏色(在該情況下,在第一類型之粒子位於鄰近顯示器之觀看表面時顯示第一顏色,且第二類型之粒子置於鄰近觀看表面時,顯示第二顏色)。向來,兩種顏色為黑色與白色。若欲為全彩顯示器,可在單色(黑色與白色)顯示器之觀看表面上配置彩色濾光片陣列。此等彩色濾光片陣列向來為紅/綠/藍(“RGB”)或紅/綠/藍/白(“RGBW”)型。具彩色濾光片之顯示器依賴具有三個(為RGB顯示器之情況)或四個(為RGBW顯示器之情況)子像素一起作用為單一全彩像素的區域共享方法。不幸地,各顏色僅能以部份顯示區域顯示。例如,在RGBW顯示器中,紅、綠及藍色中之每一者僅能以部份顯示區域(四個中之一個子像素)顯示且白色可有效地以部份顯示區域(四個中之一個完整子像素,加上各著色子像素作為1/3白色用,使得三個著色子像素一起提供另一個完全白色子像素)顯示。此區域共享方法造成顏色較預期稍暗。 Most of the conventional electrophoretic media exhibit essentially only two colors. These electrophoretic media use a single type of electrophoretic particles or first and second types of electrophoretic particles, the single type of electrophoretic particles in the first Second, the color of the color of the dissimilar color has a first color (in this case, the first color is displayed when the particles are located adjacent to the viewing surface of the display, and the second color is displayed when the particles are separated from the viewing surface), The first and second types of electrophoretic particles have different first and second colors in the uncolored fluid (in this case, the first color is displayed when the first type of particles are located adjacent to the viewing surface of the display, and The second type of particles, when placed adjacent to the viewing surface, displays a second color). In the past, the two colors are black and white. For a full color display, a color filter array can be placed on the viewing surface of a monochrome (black and white) display. These color filter arrays have traditionally been of the red/green/blue ("RGB") or red/green/blue/white ("RGBW") type. A display with color filters relies on a region sharing method that acts as a single full color pixel with three (in the case of an RGB display) or four (in the case of an RGBW display) sub-pixels. Unfortunately, each color can only be displayed in a partial display area. For example, in an RGBW display, each of red, green, and blue can only be displayed in a partial display area (one of the four sub-pixels) and white can effectively display the area in part (four of them) One complete sub-pixel, plus each colored sub-pixel is used as 1/3 white, such that the three colored sub-pixels together provide another fully white sub-pixel) display. This area sharing method causes the color to be slightly darker than expected.

或者是,使用以光閘模式運作之多重變色層可建構全彩顯示器。例如,見美國專利案號6,727,873,其說明使用三個個別堆疊層之全彩電泳顯示器,各層包含吸收部分可見光譜之電泳粒子。除複雜及潛在昂貴外,此種多層顯示器需要各種不同的層之精確對準及高度透光之電極(及電晶體,若為主動式矩陣顯示器時), 因為由於電極之吸收及反射,各層造成某些光耗損,且尤其是主動式矩陣顯示器中之電晶體。因顯示器堆疊之厚度接近或超出像素之大小,多層顯示器亦遭遇視差問題。 Alternatively, a full color display can be constructed using multiple color changing layers operating in a shutter mode. See, for example, U.S. Patent No. 6,727,873, which is incorporated herein by reference in its entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire portion In addition to being complex and potentially expensive, such multi-layer displays require precise alignment of various layers and highly transparent electrodes (and transistors, if active matrix displays), Because of the absorption and reflection of the electrodes, the layers cause some loss of light, and in particular the transistors in active matrix displays. Multi-layer displays also suffer from parallax problems due to the thickness of the display stack approaching or exceeding the size of the pixels.

然而,電泳介質尚需能在各像素顯示更多顏色,使得,例如,此種介質能再生高品質彩色印刷之外觀。向來,此種高品質印刷之生效係使用至少四種墨水,青色/洋紅色/黃色/黑色(“CMYK”)。常不被察覺者為所謂的「四色」CMYK印刷系統實際上係五色系統,第五色為在未施加墨水時,由紙張(或類似)表面所提供之白色背景。因在基本上為不透光之電泳介質中,除非係在光閘模式下使用,並無可比較之背景顏色,故非光閘模式之電泳介質應能顯示五種顏色(黑色、白色及三種主色,三種主色向來為青色、洋紅色及黃色,或者紅色、綠色及藍色)。 However, electrophoretic media are still required to display more colors in each pixel, so that, for example, such media can reproduce the appearance of high quality color printing. It has always been effective to use at least four inks, cyan/magenta/yellow/black ("CMYK"). Often the undetected person is the so-called "four-color" CMYK printing system which is actually a five-color system, and the fifth color is the white background provided by the paper (or similar) surface when no ink is applied. Because in an electrophoretic medium that is substantially opaque, there is no comparable background color unless it is used in the shutter mode, so the electrophoretic medium in the non-glide mode should be able to display five colors (black, white, and three). The main color, the three main colors are always cyan, magenta and yellow, or red, green and blue).

本發明提供一種能在僅使用兩個電泳層之顯示器之主動區域的每一部位顯示所有顏色的全彩顯示器。本發明亦提供一種電極結構,及驅動電泳顯示器的方法,該電泳顯示器簡化此種全彩顯示器之底板。本發明之電極結構及驅動方法在其它類型之顯示器亦為有用。 The present invention provides a full color display capable of displaying all colors in each portion of the active area of a display using only two electrophoretic layers. The present invention also provides an electrode structure and a method of driving an electrophoretic display that simplifies the bottom plate of such a full color display. The electrode structure and driving method of the present invention are also useful in other types of displays.

在一個觀點中,此發明提供一種電泳顯示器,該電泳顯示器具有觀看表面且包括鄰近觀看表面之第一電泳層及在該第一電泳層之與該觀看表面相對的側 上的第二電泳層,該第一電泳層包括第一流體、複數個帶電之白色粒子與複數個異於白色之第一顏色之透光的帶電粒子,該等白色及第一顏色粒子係散佈在該第一流體中,該第一電泳層設有能將該等白色及第一顏色粒子驅動成三種相異光學狀態之驅動手段,亦即(a)第一光學狀態,其中該等白色粒子位於鄰近該觀看表面且該等第一顏色粒子係與該觀看表面相隔;(b)第二光學狀態,其中該等第一顏色粒子位於鄰近該觀看表面且該等白色粒子係與該觀看表面相隔;以及(c)第三光學狀態,其中該等白色及第一顏色粒子僅佔有該第一電泳層之一小部分區域,藉以允許光線經由該觀看表面進入該第一電泳層,通過該第一電泳層至該第二電泳層;以及該第二電泳層包括第二流體、複數個異於白色與第一顏色之第二顏色的帶電粒子、及複數個異於白色和第一與第二顏色之第三顏色的帶電粒子,該等第二及第三顏色粒子係散佈在該第二流體中,該第二電泳層設有能將該等第二及第三顏色粒子驅動成三種相異光學狀態之驅動手段,亦即(d)第四光學狀態,其中該等第二粒子位於鄰近該第一電泳層且該等第三顏色粒子係與此層相隔;(e)第五光學狀態,其中該等第三粒子位於鄰近該第一電泳層且該等第二顏色粒子係與此層相隔;以及(f)第六光學狀態,其中該等第二及第三顏色粒子係在該第二流體中相互混合。 In one aspect, the invention provides an electrophoretic display having a viewing surface and including a first electrophoretic layer adjacent the viewing surface and a side of the first electrophoretic layer opposite the viewing surface a second electrophoretic layer, the first electrophoretic layer comprising a first fluid, a plurality of charged white particles and a plurality of light-transmitting charged particles of a first color different from white, the white and first color particles being dispersed In the first fluid, the first electrophoretic layer is provided with a driving means capable of driving the white and first color particles into three distinct optical states, that is, (a) a first optical state, wherein the white particles Located adjacent to the viewing surface and the first color particles are separated from the viewing surface; (b) a second optical state, wherein the first color particles are located adjacent to the viewing surface and the white particles are separated from the viewing surface And (c) a third optical state, wherein the white and first color particles occupy only a small portion of the first electrophoretic layer, thereby allowing light to enter the first electrophoretic layer via the viewing surface, through the first An electrophoretic layer to the second electrophoretic layer; and the second electrophoretic layer includes a second fluid, a plurality of charged particles different from white and a second color of the first color, and a plurality of different colors and first and second a charged particle of a third color of color, wherein the second and third color particles are dispersed in the second fluid, and the second electrophoretic layer is configured to drive the second and third color particles into three different colors a driving means of an optical state, that is, (d) a fourth optical state, wherein the second particles are located adjacent to the first electrophoretic layer and the third color particle system is spaced apart from the layer; (e) a fifth optical state, Wherein the third particles are located adjacent to the first electrophoretic layer and the second color particle system is spaced apart from the layer; and (f) a sixth optical state, wherein the second and third color particles are in the second The fluids are mixed with each other.

在本發明之此種「雙層」電泳顯示器的一種形式中,第二及第三顏色粒子係反射性的。第一、第二 及第三顏色(依任一次序)可為青色、洋紅色及黃色。因具有優越顏色飽和度之反射性青色及黃色顏料可輕易獲得,因此第二及第三顏色可為青色及黃色,第一顏色為洋紅色。 In one form of the "double layer" electrophoretic display of the present invention, the second and third color particles are reflective. First second And the third color (in either order) may be cyan, magenta, and yellow. Because the reflective cyan and yellow pigments with superior color saturation are readily available, the second and third colors can be cyan and yellow, and the first color is magenta.

原則上,本發明顯示器之第一及第二電泳層可為未封裝式。然而,由於以上原因,且因為「介電泳驅動」(若使用的話,見以下)及光閘模式驅動對封裝式顯示器較有效,因此一般較佳是將本發明之雙層電泳顯示器中的第一及第二電泳層加以封裝,亦即,使粒子及流體侷限於複數個囊(capsules)或微胞中,或呈現為複數個離散液滴,該等液滴係由含有聚合材料之連續相所圍繞,使得該顯示器為如先前所討論之聚合物散佈之電泳顯示器。 In principle, the first and second electrophoretic layers of the display of the invention may be unpackaged. However, for the above reasons, and because "dielectrophoresis drive" (see below if used) and shutter mode drive are effective for packaged displays, it is generally preferred to be the first of the two-layer electrophoretic displays of the present invention. And encapsulating the second electrophoretic layer, that is, confining the particles and fluids to a plurality of capsules or micelles, or presenting a plurality of discrete droplets, the droplets being from a continuous phase containing a polymeric material Surrounding, the display is an electrophoretic display of polymer dispersion as previously discussed.

藉由施加交流電場(「AC驅動」),可將白色及第一顏色粒子驅動至其第三(光閘模式)光學狀態,其第一電泳層設有適當之電極及驅動器,使能施加此種交流電場。例如,如美國專利案號7,999,787之說明,起因於AC驅動之粒子遷移迄今一向被視為由於介電泳之故。然而,實際上不易判定起因於AC驅動之粒子遷移是否歸因於介電泳或電滲透力(例如見美國專利案號6,120,839及7,746,544),且因此以下將討論AC驅動而不嘗試描述促成相關粒子遷移之確切實體現象。AC驅動具有僅需正常提供兩個電極之優勢,在電泳介質之各側上有一個,且因此可以習知之底板達成。然而,AC驅動可能需要使用通常高達約1kHz之高頻波形,且此種高 頻波形在主動式矩陣顯示器中可能難以執行。因此,一般較佳為藉由使白色及第一顏色粒子侷限於僅佔有第一電泳層之各像素之一小部分區域的電極,來提供光閘模式之光學狀態,因此使光線自觀看表面進入第一電泳層,自由通過像素之主要部分且抵達第二電泳層;僅佔有像素之一小部分的電極習知上稱為「側」或「輔助」電極。除使用名詞「側電極」外,此等電極未必位於各像素之周邊;例如,各輔助電極可能為繞著像素周邊之環狀或部分環狀,或位於像素中之一個以上的小電極狀。 By applying an alternating electric field ("AC drive"), the white and first color particles can be driven to their third (shutter mode) optical state, and the first electrophoretic layer is provided with appropriate electrodes and drivers to enable application of this An alternating electric field. For example, as described in U.S. Patent No. 7,999,787, particle migration due to AC drive has heretofore been considered to be due to dielectrophoresis. However, it is practically difficult to determine whether the AC-driven particle migration is due to dielectrophoresis or electroosmotic force (see, for example, U.S. Patent Nos. 6,120,839 and 7,746,544), and therefore AC drive will be discussed below without attempting to describe the relevant particle migration. The exact physical phenomenon. The AC drive has the advantage of requiring only two electrodes to be provided normally, one on each side of the electrophoretic medium, and thus can be achieved with conventional substrates. However, AC drives may require the use of high frequency waveforms typically up to about 1 kHz, and such high Frequency waveforms can be difficult to perform in active matrix displays. Therefore, it is generally preferred to provide the optical state of the shutter mode by limiting the white and first color particles to electrodes occupying only a small portion of each of the pixels of the first electrophoretic layer, thereby allowing light to enter the viewing surface. The first electrophoretic layer freely passes through a major portion of the pixel and reaches the second electrophoretic layer; an electrode that occupies only a small portion of the pixel is conventionally referred to as a "side" or "auxiliary" electrode. Except for the term "side electrode", these electrodes are not necessarily located at the periphery of each pixel; for example, each auxiliary electrode may be annular or partially annular around the periphery of the pixel, or one or more small electrodes in the pixel.

在另一觀點中,此發明提供一種相互連接電泳顯示器之側或輔助電極的嶄新方式,其中各子像素在電泳介質之一側上具有一個主要及至少一個輔助電極且在電泳介質之相對側上具有第三電極。(本文中使用的名詞「像素」表示能顯示該顯示器所能顯示之所有顏色之顯示器的最小單元。本文中使用的名詞「子像素」表示能改變顏色之顯示器的最小單元。應瞭解的是,諸如在其中顯示器之所有部位能顯示所有顏色之本發明之雙層顯示器的顯示器中,子像素與像素是相等的。)電泳顯示器包括流體及散佈在該流體中之至少一種類型之帶電粒子。(此種電泳顯示器可為或可不為本發明之雙層電泳顯示器。)在此電泳顯示器中,複數個子像素之輔助電極係連接至共同驅動線。藉由首先驅動鄰近輔助電極之複數個像素中的所有帶電粒子,且接著驅動複數個子像素之至少一者至其中帶電粒子之至少某些未位於鄰近輔助電極的光學狀態,可驅動此種顯示器。 In another aspect, the invention provides a novel way of interconnecting the sides or auxiliary electrodes of an electrophoretic display, wherein each sub-pixel has a primary and at least one auxiliary electrode on one side of the electrophoretic medium and on the opposite side of the electrophoretic medium There is a third electrode. (The term "pixel" as used herein refers to the smallest unit of a display that can display all colors that can be displayed on the display. The term "sub-pixel" as used herein refers to the smallest unit of a display that can change color. It should be understood that In a display such as a two-layer display of the present invention in which all colors of the display are capable of displaying all colors, the sub-pixels are equal to the pixels.) The electrophoretic display includes a fluid and at least one type of charged particles dispersed in the fluid. (The electrophoretic display may or may not be a two-layer electrophoretic display of the present invention.) In this electrophoretic display, the auxiliary electrodes of a plurality of sub-pixels are connected to a common driving line. Such a display can be driven by first driving all of the charged particles in a plurality of pixels adjacent to the auxiliary electrode, and then driving at least one of the plurality of sub-pixels to an optical state in which at least some of the charged particles are not located adjacent to the auxiliary electrode.

在此種「相互連接之輔助電極或IAE」顯示器中,便利的是顯示器中所有子像素之輔助電極係連接至共同驅動線。各子像素之第三電極可為延伸橫跨整個顯示器之單一共同前電極的習知形式。IAE有兩個主要變種。若所有帶電粒子攜帶相同極性之電荷(由於顯示器僅使用單一類型之帶電粒子,向來在著色流體中,或由於顯示器使用兩種以上類型之帶電粒子,該帶電粒子攜帶相同極性之電荷,但具相異之電泳遷移率),各子像素只需單一輔助電極,且此種顯示器此後可稱為「單一相互連接之輔助電極或SIAE」顯示器。然而,若任何子像素包括攜帶兩種極性電荷之粒子,該子像素需兩個輔助電極,使得可將相反極性之電位(相對於第三電極之電位)施加至該兩個輔助電極,以將攜帶兩種極性電荷之粒子拉引至該兩個輔助電極,因此使得子像素區域之主要部位清澈。此種顯示器可便利地被判定為本發明之「雙相互連接之輔助電極」顯示器。 In such an "interconnected auxiliary electrode or IAE" display, it is convenient for the auxiliary electrode of all sub-pixels in the display to be connected to a common drive line. The third electrode of each sub-pixel can be a conventional form of a single common front electrode that extends across the entire display. There are two main variants of IAE. If all charged particles carry a charge of the same polarity (since the display uses only a single type of charged particle, has been in a colored fluid, or because the display uses more than two types of charged particles, the charged particles carry a charge of the same polarity, but with a phase Different electrophoretic mobility), each sub-pixel requires only a single auxiliary electrode, and such a display may hereinafter be referred to as a "single interconnected auxiliary electrode or SIAE" display. However, if any sub-pixel includes particles carrying two polar charges, the sub-pixel requires two auxiliary electrodes such that a potential of opposite polarity (potential with respect to the third electrode) can be applied to the two auxiliary electrodes to Particles carrying two polar charges are pulled to the two auxiliary electrodes, thus making the main portion of the sub-pixel region clear. Such a display can be conveniently determined to be a "dual interconnected auxiliary electrode" display of the present invention.

100‧‧‧像素 100‧‧ ‧ pixels

102‧‧‧前電極 102‧‧‧ front electrode

102A‧‧‧上表面 102A‧‧‧Upper surface

104‧‧‧第一電泳層 104‧‧‧First Electrophoresis Layer

106‧‧‧第一流體 106‧‧‧First fluid

108‧‧‧囊壁 108‧‧‧ wall

110‧‧‧主要背電極 110‧‧‧Main back electrode

112‧‧‧輔助背電極 112‧‧‧Auxiliary back electrode

114‧‧‧輔助背電極 114‧‧‧Auxiliary back electrode

118‧‧‧前電極 118‧‧‧ front electrode

120‧‧‧第二電泳層 120‧‧‧Second Electrophoresis Layer

122‧‧‧第二流體 122‧‧‧Second fluid

124‧‧‧囊壁 124‧‧‧ wall

126‧‧‧背電極 126‧‧‧ back electrode

102A‧‧‧觀看表面 102A‧‧‧View surface

100‧‧‧顯示器 100‧‧‧ display

300‧‧‧像素 300‧‧ ‧ pixels

302‧‧‧前電極 302‧‧‧ front electrode

302A‧‧‧上表面 302A‧‧‧ upper surface

306‧‧‧第一流體 306‧‧‧First fluid

304‧‧‧第一電泳層 304‧‧‧First Electrophoresis Layer

308‧‧‧囊壁 308‧‧‧ wall

312‧‧‧輔助背電極 312‧‧‧Auxiliary back electrode

314‧‧‧輔助背電極 314‧‧‧Auxiliary back electrode

318‧‧‧前電極 318‧‧‧ front electrode

320‧‧‧第二電泳層 320‧‧‧Second Electrophoresis Layer

322‧‧‧第二流體 322‧‧‧Second fluid

324‧‧‧囊壁 324‧‧‧ wall

326‧‧‧背電極 326‧‧‧Back electrode

200R‧‧‧子像素 200R‧‧‧ subpixel

200G‧‧‧子像素 200G‧‧‧ subpixel

200B‧‧‧子像素 200B‧‧‧ subpixel

202R‧‧‧著色流體 202R‧‧‧Coloring fluid

202G‧‧‧著色流體 202G‧‧‧Coloring fluid

202B‧‧‧著色流體 202B‧‧‧Coloring fluid

204‧‧‧前電極 204‧‧‧ front electrode

210R‧‧‧主要背電極 210R‧‧‧main back electrode

210G‧‧‧主要背電極 210G‧‧‧main back electrode

210B‧‧‧主要背電極 210B‧‧‧Main back electrode

212R‧‧‧輔助背電極 212R‧‧‧Auxiliary back electrode

212G‧‧‧輔助背電極 212G‧‧‧Auxiliary back electrode

212B‧‧‧輔助背電極 212B‧‧‧Auxiliary back electrode

220‧‧‧黑色背基板 220‧‧‧Black back substrate

202B‧‧‧藍色流體 202B‧‧‧Blue fluid

202R‧‧‧紅色流體 202R‧‧‧Red Fluid

230‧‧‧柵極 230‧‧‧ Grid

230A‧‧‧柵極 230A‧‧‧Gate

230B‧‧‧柵極 230B‧‧‧Gate

附圖之第1A圖係透過本發明之第一雙層電泳顯示器之一個像素的示意截面,其中本發明使用白色、青色、洋紅色及黃色粒子。第1A圖表示像素處於其白色光學狀態。 Figure 1A of the accompanying drawings is a schematic cross section through a pixel of a first two-layer electrophoretic display of the present invention, wherein the present invention uses white, cyan, magenta, and yellow particles. Figure 1A shows the pixel in its white optical state.

第1B-1H圖係類似於第1A圖之示意截面,但分別以其洋紅色、青色、黃色、紅色、藍色、綠色及黑色光學狀態表示該顯示器。 The 1B-1H diagram is similar to the schematic section of Figure 1A, but the display is represented by its magenta, cyan, yellow, red, blue, green, and black optical states, respectively.

第2A-2E圖係類似於第1A-1H圖之示意截面,透過本發明之第二雙層電泳顯示器之一個像素的示意截面,其中本發明使用白色、紅色、綠色及藍色粒子。 2A-2E is a schematic cross-section through a pixel of a second two-layer electrophoretic display of the present invention, similar to the schematic cross-section of Figures 1A-1H, wherein the present invention uses white, red, green, and blue particles.

第3A圖係透過本發明之單一相互連接之輔助電極顯示器之三個子像素的示意截面。 Figure 3A is a schematic cross section through three sub-pixels of a single interconnected auxiliary electrode display of the present invention.

第3B圖係第3A圖中所示之單一相互連接之輔助電極顯示器之修飾形式的示意上視平面圖。 Figure 3B is a schematic top plan view of a modification of the single interconnected auxiliary electrode display shown in Figure 3A.

第4圖係類似於第3B圖之示意上視平面圖,本發明之雙相互連接之輔助電極顯示器之示意上視平面圖。 Figure 4 is a schematic top plan view of a dual interconnected auxiliary electrode display of the present invention, similar to the schematic top plan view of Figure 3B.

明顯地自發明之前述摘要,此發明具兩個主要觀點,亦即,雙層電泳顯示器及相互連接之輔助電極顯示器。以下將主要個別討論這兩個觀點,但應瞭解的是可將本發的兩個觀點併入單一實體顯示器中。 Obviously from the foregoing summary of the invention, the invention has two main points of view, namely a two-layer electrophoretic display and an interconnected auxiliary electrode display. These two points of view will be discussed primarily individually below, but it should be understood that the two points of the present invention can be incorporated into a single physical display.

雙層電泳顯示器Double layer electrophoretic display

如已表示者,在本發明的一個觀點中,提供一種雙層電泳顯示器。此顯示器具有觀看表面及個別的第一與第二電泳層,第一電泳層位於鄰近觀看表面且第二電泳層係位於第一電泳層之與觀看表面相對的側上。第一電泳層包括(第一)流體,及散佈在此流體中之帶電的白色粒子及白色以外之第一顏色之透光的帶電粒子。第一電泳層可被驅動成三種相異光學狀態,亦即(a)第一光學狀態,其中該等白色粒子位於鄰近該觀看表面且該等第一顏色粒子係與該觀看表面相隔,故觀看表面顯現為白色;(b)第二光學狀態,其中該等第一顏色粒子位於 鄰近該觀看表面且該等白色粒子係與該觀看表面相隔,故觀看表面顯示第一顏色(如以下之討論,除非以第二電泳層之動作予以修飾);以及(c)第三光學狀態,其中該等白色及第一顏色粒子僅佔有該第一電泳層之一小部分區域,藉以允許光線經由該觀看表面進入該第一電泳層,通過該第一電泳層至該第二電泳層。第二電泳層包括第二流體(其可與第一流體相同或相異),及散佈在此第二流體中之異於白色與第一顏色之第二顏色的帶電粒子,及異於白色與第一及第二顏色之第三顏色的帶電粒子。第二電泳層可被驅動成三種相異光學狀態,亦即(d)第四光學狀態,其中該等第二粒子位於鄰近該第一電泳層且該等第三顏色粒子係與此層相隔;(e)第五光學狀態,其中該等第三顏色粒子位於鄰近該第一電泳層且該等第二顏色粒子係與此層相隔;以及(f)第六光學狀態,其中該等第二及第三顏色粒子係在該第二流體中相互混合。 As already indicated, in one aspect of the invention, a two-layer electrophoretic display is provided. The display has a viewing surface and individual first and second electrophoretic layers, the first electrophoretic layer being located adjacent the viewing surface and the second electrophoretic layer being located on a side of the first electrophoretic layer opposite the viewing surface. The first electrophoretic layer includes a (first) fluid, and charged white particles dispersed in the fluid and light-transmitting charged particles of a first color other than white. The first electrophoretic layer can be driven into three distinct optical states, namely (a) a first optical state, wherein the white particles are located adjacent to the viewing surface and the first color particle system is separated from the viewing surface, so The surface appears white; (b) a second optical state in which the first color particles are located Adjacent to the viewing surface and the white particles are spaced apart from the viewing surface, the viewing surface displays a first color (as discussed below, unless modified by the action of the second electrophoretic layer); and (c) a third optical state, The white and first color particles occupy only a small portion of the first electrophoretic layer, thereby allowing light to enter the first electrophoretic layer through the viewing surface, through the first electrophoretic layer to the second electrophoretic layer. The second electrophoretic layer includes a second fluid (which may be the same as or different from the first fluid), and charged particles dispersed in the second fluid different from white and the second color of the first color, and different from white and Charged particles of a third color of the first and second colors. The second electrophoretic layer can be driven into three distinct optical states, that is, (d) a fourth optical state, wherein the second particles are located adjacent to the first electrophoretic layer and the third color particle systems are separated from the layer; (e) a fifth optical state, wherein the third color particles are located adjacent to the first electrophoretic layer and the second color particle system is spaced apart from the layer; and (f) a sixth optical state, wherein the second optical state The third color particles are mixed with each other in the second fluid.

純粹基於有關適當材料之可得性的實際理由,儘管亦能使用紅色、綠色及藍色粒子,一般較佳是第一顏色係洋紅色,第二顏色係青色且第三顏色係黃色。參考第1A-1H圖,現將解釋其中使用此等顏色選擇之本發明的雙層電泳顯示器顯示白色、黑色、洋紅色、青色、黃色、紅色、綠色及藍色的方式。為了圖示起見,儘管顯然此等電荷分配之任一者或兩者可能相反,或者電泳層之一者或兩者可能使用相同電荷但相異電泳遷移率之兩種類型的粒子,但假定白色及青色粒子攜帶正電荷而洋紅色及黃色粒子攜帶負電荷。 Purely based on practical reasons for the availability of suitable materials, although red, green and blue particles can also be used, it is generally preferred that the first color is magenta, the second color is cyan and the third color is yellow. Referring to Figures 1A-1H, the manner in which the two-layer electrophoretic display of the present invention using these color choices displays white, black, magenta, cyan, yellow, red, green, and blue will now be explained. For the sake of illustration, although it is apparent that either or both of these charge distributions may be reversed, or one or both of the electrophoretic layers may use the same charge but differ in the two types of particles of electrophoretic mobility, it is assumed White and cyan particles carry a positive charge while magenta and yellow particles carry a negative charge.

第1A圖表示本發明之第一雙層電泳顯示器的單一像素(一般以100標示)。像素100包括透光之前電極102,該電極之上表面102A形成顯示器之觀看表面(實際上,前電極102向來包括氧化銦錫之薄層、碳奈米管導體或配置在透明聚合膜之下表面(如圖示)上的導電聚合物,但前電極102之內部結構對本發明之目的不重要。)。像素100更包括第一電泳層(一般以104標示),該第一電泳層在第一流體106中包括帶正電散射(亦即,反射)之白色粒子W及帶負電透光之洋紅色粒子M。第一電泳層104表示為封裝有粒子W與M及第一流體106,它們係容納在由囊壁108所拘束之單-囊中;該單-囊係僅為圖示之目的所示且在各像素中向來會存在一個以上的囊。 Figure 1A shows a single pixel (generally designated 100) of the first two-layer electrophoretic display of the present invention. The pixel 100 includes a light transmissive front electrode 102 that forms a viewing surface of the display (actually, the front electrode 102 has historically included a thin layer of indium tin oxide, a carbon nanotube conductor or a surface disposed beneath the transparent polymeric film The conductive polymer (as shown), but the internal structure of the front electrode 102 is not critical to the purpose of the present invention. The pixel 100 further includes a first electrophoretic layer (generally indicated by 104), the first electrophoretic layer including positively scattering (ie, reflecting) white particles W and negatively transmissive magenta particles in the first fluid 106 M. The first electrophoretic layer 104 is shown encapsulating particles W and M and a first fluid 106 that are contained within a single-capsule bound by the balloon wall 108; the single-capsule is shown for purposes of illustration only and There will always be more than one capsule in each pixel.

在該囊之與前電極102相對的側上,像素100更包括主要背電極110及兩個輔助背電極112與114。電極110、112及114係連接至電壓供應線(未示出),該等電壓供應線使得這三個電極之電位能彼此獨立地被控制。 On the side of the capsule opposite the front electrode 102, the pixel 100 further includes a main back electrode 110 and two auxiliary back electrodes 112 and 114. The electrodes 110, 112, and 114 are connected to voltage supply lines (not shown) that enable the potentials of the three electrodes to be controlled independently of each other.

緊隨電極110、112及114後面(亦即,在此等電極之與前電極102相對的側上)但自此絕緣為進一步電極118,其作為第二電泳層(一般以120標示)之前電極,該第二電泳層在第二流體122中包括帶正電反射之青色粒子C及帶負電反射之黃色粒子Y。第二電泳層120表示為封裝有粒子C與Y及第二流體122,它們係容納在由囊壁124所拘束之單-囊中;再者,該單-囊係僅為 圖示之目的所示且在各像素中向來會存在一個以上的囊。作為第二電泳層120之背電極的單一進一步電極126係配置在第二電泳層之與電極118對向的側上。 Immediately following the electrodes 110, 112 and 114 (i.e., on the side of the electrodes opposite the front electrode 102) but insulated from here as a further electrode 118, which acts as a second electrode (generally indicated at 120) before the electrode The second electrophoretic layer includes cyan particles C with positive electric reflection and yellow particles Y with negative electric reflection in the second fluid 122. The second electrophoretic layer 120 is shown encapsulated with particles C and Y and a second fluid 122 that are contained in a single-capsule bound by the balloon wall 124; further, the single-capsule is only One or more capsules are present in each pixel as shown for the purpose of the illustration. A single further electrode 126 as a back electrode of the second electrophoretic layer 120 is disposed on a side of the second electrophoretic layer opposite to the electrode 118.

第1A圖表示顯示器處於其白色狀態。為了驅動顯示器達到此狀態,使前電極102相對於背電極110、112及114為負的,使得白色粒子W位於鄰近前電極且洋紅色粒子M鄰近背電極110、112及114,致使在顯示器之觀看表面102A顯示白色。因在第二電泳層120中之青色粒子C及黃色粒子Y的位置不相關(洋紅色粒子M、青色粒子C及黃色粒子Y皆為白色粒子W所隠藏),電極118及126之電位不相關且便利地允許此等電極浮動。 Figure 1A shows the display in its white state. In order to drive the display to this state, the front electrode 102 is negative with respect to the back electrodes 110, 112 and 114 such that the white particles W are located adjacent to the front electrode and the magenta particles M are adjacent to the back electrodes 110, 112 and 114, resulting in a display The viewing surface 102A displays white. Since the positions of the cyan particles C and the yellow particles Y in the second electrophoretic layer 120 are irrelevant (the magenta particles M, the cyan particles C, and the yellow particles Y are all hidden by the white particles W), the potentials of the electrodes 118 and 126 are not These electrodes are allowed to float in a relevant and convenient manner.

第1B圖表示顯示器處於其洋紅色狀態。為了驅動顯示器達到此狀態,使前電極102相對於背電極110、112及114為正的,使得洋紅色粒子M位於鄰近前電極102且白色粒子W鄰近背電極110、112及114,致使經由觀看表面102A進入顯示器之光線通過透射性之洋紅色粒子M及第一流體106,自白色粒子W反射,且返回通過第一流體106及透射性之洋紅色粒子M,且因此在顯示器之觀看表面102A顯示洋紅色。再者,在第二電泳層120中之青色粒子C及黃色粒子Y的位置不相關(青色粒子C及黃色粒子Y兩者為白色粒子W所遮蔽),故電極118及126之電位不相關且便利地允許此等電極浮動。 Figure 1B shows the display in its magenta state. In order to drive the display to this state, the front electrode 102 is positive with respect to the back electrodes 110, 112 and 114 such that magenta particles M are located adjacent to the front electrode 102 and the white particles W are adjacent to the back electrodes 110, 112 and 114, such that viewing is via The light entering the display of surface 102A passes through the transmissive magenta particles M and the first fluid 106, is reflected from the white particles W, and returns through the first fluid 106 and the transmissive magenta particles M, and thus on the viewing surface 102A of the display Show magenta. Furthermore, the positions of the cyan particles C and the yellow particles Y in the second electrophoretic layer 120 are irrelevant (both the cyan particles C and the yellow particles Y are shielded by the white particles W), so the potentials of the electrodes 118 and 126 are irrelevant. These electrodes are conveniently allowed to float.

如第1C圖中所圖示,為了產生青色,相對於前電極102及主要背電極110,使輔助背電極(為方便起見,以電極112圖示)之一者為負的,且使另一輔助電極114為正的。白色粒子W遷移鄰近負輔助電極112,而洋紅色粒子遷移鄰近正輔助電極114,因此有效遮蔽白色及洋紅色粒子兩者且使第一電泳層104之主要部分區域開啟,供光線自觀看表面102A通過至第二電泳層120(在第1C圖及其它類似之下圖中由洋紅色及白色粒子所佔有之囊的截面區域部分為易於圖示而大幅誇大。事實上,可輕易使超過80%的囊為透明的。)。同時,相對於其背電極126,使第二電泳層120之前電極118為負的,使得反射性之青色粒子C位於鄰近前電極118且黃色粒子Y位於鄰近背電極126。因此,經由觀看表面102A進入顯示器100之光線通過開啟(透射性的)第一電泳層104,且自鄰近電極118之青色粒子C(此等青色粒子C用於隠藏鄰近電極126之黃色粒子Y)反射,且像素100顯示青色。 As illustrated in FIG. 1C, in order to generate cyan, one of the auxiliary back electrodes (illustrated as electrode 112 for convenience) is negative with respect to the front electrode 102 and the main back electrode 110, and another An auxiliary electrode 114 is positive. The white particles W migrate adjacent to the negative auxiliary electrode 112, and the magenta particles migrate adjacent to the positive auxiliary electrode 114, thereby effectively shielding both the white and magenta particles and opening the main portion of the first electrophoretic layer 104 for light from the viewing surface 102A. Passing to the second electrophoretic layer 120 (the portion of the cross-sectional area of the capsule occupied by the magenta and white particles in the figure 1C and the like is greatly exaggerated for ease of illustration. In fact, it is easy to make more than 80% The capsule is transparent.). At the same time, with respect to its back electrode 126, the front electrode 118 of the second electrophoretic layer 120 is made negative such that the reflective cyan particles C are located adjacent to the front electrode 118 and the yellow particles Y are located adjacent to the back electrode 126. Thus, the light entering the display 100 via the viewing surface 102A passes through the first (transmissive) first electrophoretic layer 104, and from the cyan particles C of the adjacent electrode 118 (the cyan particles C are used to occlude the yellow particles Y of the adjacent electrode 126) Reflected, and pixel 100 displays cyan.

如第1D圖中所圖示,為了產生黃色,電極102、110、112及114之電位,且因此,白色粒子W及洋紅色粒子M之位置與第1C圖中者相同。然而,相對於其背電極126,現在使第二電泳層120之前電極118為正的,使得反射性之黃色粒子Y位於鄰近前電極118且青色粒子C位於鄰近背電極126。因此,經由觀看表面102A進入顯示器100之光線通過開啟的第一電泳層104,且自鄰近電極118之黃色粒子Y(此等黃色粒子Y 用於隠藏鄰近電極126之青色粒子C)反射,且像素100顯示黃色。 As shown in FIG. 1D, in order to generate yellow, the potentials of the electrodes 102, 110, 112, and 114, and therefore, the positions of the white particles W and the magenta particles M are the same as those in the first FIG. However, with respect to its back electrode 126, the front electrode 118 of the second electrophoretic layer 120 is now made positive such that the reflective yellow particles Y are located adjacent to the front electrode 118 and the cyan particles C are located adjacent to the back electrode 126. Therefore, the light entering the display 100 via the viewing surface 102A passes through the first first electrophoretic layer 104 that is turned on, and the yellow particles Y from the adjacent electrode 118 (the yellow particles Y) The cyan particles C) for occluding the adjacent electrode 126 are reflected, and the pixel 100 displays yellow.

為了在像素100產生紅色,有必要藉由洋紅色粒子M及黃色粒子Y兩者產生光吸收。因此,如第1E圖中所示,相對於主要背電極110,使前電極102為正的,且使輔助電極112及114兩者或一者為負的(為易於圖示,使輔助電極112及114兩者表示為負的)。因此,透光之洋紅色粒子M位於鄰近前電極102,而白色粒子W位於鄰近負的輔助電極112及114,因此,遮蔽白色粒子W。同時,如第1B圖中所示,相對於其背電極126,使第二電泳層120之前電極118為正的,使得反射性之黃色粒子Y位於鄰近前電極118且青色粒子C位於鄰近背電極126。因此,經由觀看表面102A進入顯示器100之光線通過洋紅色粒子M(吸收綠色波長),且自鄰近電極118之黃色粒子Y(此等黃色粒子Y用於隠藏鄰近電極126之青色粒子C)反射,吸收藍色波長,且返回通過洋紅色粒子M,使得像素100顯示紅色。 In order to generate red color in the pixel 100, it is necessary to generate light absorption by both the magenta particle M and the yellow particle Y. Therefore, as shown in FIG. 1E, the front electrode 102 is made positive with respect to the main back electrode 110, and both or one of the auxiliary electrodes 112 and 114 is negative (for ease of illustration, the auxiliary electrode 112 is made Both and 114 are expressed as negative). Therefore, the light-transmissive magenta particles M are located adjacent to the front electrode 102, and the white particles W are located adjacent to the negative auxiliary electrodes 112 and 114, thereby shielding the white particles W. Meanwhile, as shown in FIG. 1B, the front electrode 118 of the second electrophoretic layer 120 is made positive with respect to the back electrode 126 such that the reflective yellow particles Y are located adjacent to the front electrode 118 and the cyan particles C are located adjacent to the back electrode. 126. Therefore, the light entering the display 100 via the viewing surface 102A passes through the magenta particles M (absorbs the green wavelength), and the yellow particles Y from the adjacent electrode 118 (the yellow particles Y are used to occlude the cyan particles C of the adjacent electrode 126) are reflected. The blue wavelength is absorbed and returned through the magenta particle M such that the pixel 100 displays red.

如第1F圖中所圖示,為了產生藍色,電極102、110、112及114之相對電位,且因此,白色粒子W及洋紅色粒子M之位置與第1E圖中者相同。然而,相對於其背電極126,現在使第二電泳層120之前電極118為負的,使得反射性之青色粒子C位於鄰近前電極118且黃色粒子Y位於鄰近背電極126。因此,經由觀看表面102A進入顯示器100之光線通過洋紅色粒子M(吸收綠色波長),且自鄰近電極118之青色粒子C(此等青色 粒子C用於隠藏鄰近電極126之黃色粒子Y)反射,吸收紅色波長,且返回通過洋紅色粒子M,使得像素100顯示藍色。 As shown in Fig. 1F, in order to generate blue, the relative potentials of the electrodes 102, 110, 112, and 114, and therefore, the positions of the white particles W and the magenta particles M are the same as those in Fig. 1E. However, with respect to its back electrode 126, the front electrode 118 of the second electrophoretic layer 120 is now made negative such that the reflective cyan particles C are located adjacent to the front electrode 118 and the yellow particles Y are located adjacent to the back electrode 126. Thus, light entering display 100 via viewing surface 102A passes magenta particles M (absorbs green wavelengths) and cyan particles C from adjacent electrodes 118 (such cyan Particle C is used to smear the yellow particles Y) of the adjacent electrode 126, absorb the red wavelength, and return through the magenta particle M such that the pixel 100 displays blue.

如第1G圖中所圖示,為了產生綠色,電極102、110、112及114之相對電位,且因此,白色粒子W及洋紅色粒子M之位置與第1C及1D圖中者相同,亦即,遮蔽白色粒子W及洋紅色粒子M。然而,在青色粒子C及黃色粒子Y係於第二流體122中相互混合的情況,此種相互混合可藉由以下完成:先將青色粒子C及黃色粒子Y遷移至第1E及1F圖之任一者中所示的位置,且接著倒置電極之相對電位,使得青色粒子C及黃色粒子Y成為於第二流體122中相互混合。因此,經由觀看表面102A進入顯示器100之光線通過開啟的第一電泳層104,且自流體122中之黃色粒子Y及青色粒子C兩者反射,且像素100顯示綠色。 As shown in FIG. 1G, in order to generate green, the relative potentials of the electrodes 102, 110, 112, and 114, and therefore, the positions of the white particles W and the magenta particles M are the same as those in the first and second graphs, that is, , masking white particles W and magenta particles M. However, in the case where the cyan particles C and the yellow particles Y are mixed with each other in the second fluid 122, such mutual mixing can be accomplished by first transferring the cyan particles C and the yellow particles Y to the first and first F1. The position shown in one of them, and then the relative potential of the electrode is inverted, so that the cyan particles C and the yellow particles Y are mixed with each other in the second fluid 122. Thus, light entering the display 100 via the viewing surface 102A passes through the first first electrophoretic layer 104 that is turned on, and is reflected from both the yellow particles Y and the cyan particles C in the fluid 122, and the pixel 100 displays green.

最後,如第1H圖中所圖示,為了產生黑色像素,電極102、110、112及114之相對電位,且因此,白色粒子W及洋紅色粒子M之位置與第1E圖中者相同。同時,如第1G圖中所圖示,青色粒子C及黃色粒子Y係於第二流體122中相互混合。因此,經由觀看表面102A進入顯示器100之光線通過洋紅色粒子M(吸收綠色波長),且自流體122中之黃色粒子Y(其吸收藍色波長)及青色粒子C(其吸收紅色波長)兩者反射,使得基本上無光線經由第一電泳層104返回,且像素100顯示黑色。 Finally, as shown in FIG. 1H, in order to generate black pixels, the relative potentials of the electrodes 102, 110, 112, and 114, and therefore, the positions of the white particles W and the magenta particles M are the same as those in the first FIG. Meanwhile, as illustrated in FIG. 1G, the cyan particles C and the yellow particles Y are mixed with each other in the second fluid 122. Thus, light entering display 100 via viewing surface 102A passes magenta particles M (absorbs green wavelengths), and yellow particles Y (which absorb blue wavelengths) and cyan particles C (which absorb red wavelengths) from fluid 122 are both The reflection is such that substantially no light is returned via the first electrophoretic layer 104 and the pixel 100 displays black.

自前述將看到第1A-1H圖中所圖示之顯示器能透過其整個顯示區域顯示白色、黑色、青色、洋紅色、黃色、紅色、綠色及藍色。如先前所提及者,使用RGB彩色濾光片陣列之顯示器僅能透過其顯示區域之三分之一顯示紅色、綠色及藍色,透過整個顯示區域顯示黑色且透過顯示區域之三分之一顯示對等於白色之加工處理的白色。類似地,使用RGBW彩色濾光片陣列之顯示器僅能透過其顯示區域之四分之一顯示紅色、綠色及藍色,透過整個顯示區域顯示黑色且透過顯示區域之二分之一顯示對等於白色之加工處理的白色。因此,若以高度飽和顏料好好設計,在第1A-1H圖中所圖示之本發明的雙層電泳顯示器應較以先前技術之彩色濾光片陣列為基礎的彩色顯示器產生較大之顯示色域(gamut)及對比。 From the foregoing, it will be seen that the display illustrated in Figures 1A-1H can display white, black, cyan, magenta, yellow, red, green, and blue through its entire display area. As mentioned previously, displays using RGB color filter arrays can only display red, green, and blue through one-third of their display area, black through the entire display area, and through one-third of the display area. Displays white for processing equal to white. Similarly, a display using an RGBW color filter array can only display red, green, and blue through a quarter of its display area, black through the entire display area, and display a pair of white through the display area equal to white. The processing of white. Therefore, if the design is well designed with highly saturated pigments, the two-layer electrophoretic display of the present invention illustrated in Figures 1A-1H should produce a larger display color than the color display based on the prior art color filter array. Domain (gamut) and comparison.

自以上第1C-1H圖之說明將看到顯示器100顯示各種顏色之能力係取決於藉由使電泳粒子之一者或兩者限制於像素100之一小部分主動區域,來在前電泳層104中遮蔽電泳粒子之一者或兩者的能力。如已提及者,使用輔助電極或藉由AC驅動,可達成第一電泳層之必要遮蔽;在使用微胞而非囊之顯示器的情況,可將輔助電極設置在微胞之側壁中。不管使用何種方法以遮蔽第一電泳層中之粒子,該方法應將粒子限制於儘可能在像素區域之一小部分,因此,提供儘可能為透明區域之一大部分,光線可經由該區域抵達第二電泳層。第一電泳層中之粒子遮蔽及粒子載入效率將決定在其遮蔽狀態中此層之光學透射率,其將必定小於100%。第一電泳 層中無可避免之吸光將造成減低由第二電泳層所顯示顏色之顏色飽和度。就大半使用者而言,因顯示器之白色狀態的反射率為顯示器之一項重要標準,因此有利的是要將白色粒子保留在第一電泳層中,因由於第一電泳層之不完全遮蔽所致之光耗損及配置在第一與第二電泳層之間之電極與薄膜電晶體的吸光,將無可避免減低第二電泳層中白色粒子之反射率。由於類似原因,第二電泳層中之粒子應具高度飽和之顏色,以將由於第一電泳層之不完全遮蔽所致之光耗損及配置在第一與第二電泳層之間之電極與薄膜電晶體的吸光所造成的顏色飽和度降至最低。具有優越顏色飽和度之青色及黃色顏料係可廣泛取得,且因此較佳是使用於本發明之雙層顯示器的第二電泳層中。 It will be seen from the description of Figures 1C-1H above that the ability of display 100 to display various colors depends on the front electrophoretic layer 104 by limiting one or both of the electrophoretic particles to a small portion of the active region of pixel 100. The ability to mask one or both of the electrophoretic particles. As already mentioned, the necessary shielding of the first electrophoretic layer can be achieved using an auxiliary electrode or by AC driving; in the case of a display using a microcell instead of a capsule, the auxiliary electrode can be placed in the side wall of the microcell. Regardless of the method used to mask the particles in the first electrophoretic layer, the method should limit the particles to as small as possible in one of the pixel regions, thus providing a portion of the transparent region as much as possible through which the light can pass. Arrived at the second electrophoretic layer. The particle masking and particle loading efficiency in the first electrophoretic layer will determine the optical transmittance of this layer in its masked state, which will necessarily be less than 100%. First electrophoresis The unavoidable absorption of light in the layer will result in a reduction in the color saturation of the color displayed by the second electrophoretic layer. For most users, since the reflectivity of the white state of the display is an important criterion for the display, it is advantageous to retain the white particles in the first electrophoretic layer because of the incomplete masking of the first electrophoretic layer. The light loss and the absorption of the electrodes and the thin film transistors disposed between the first and second electrophoretic layers will inevitably reduce the reflectance of the white particles in the second electrophoretic layer. For similar reasons, the particles in the second electrophoretic layer should have a highly saturated color to deplete the light due to incomplete masking of the first electrophoretic layer and the electrodes and films disposed between the first and second electrophoretic layers. The color saturation caused by the absorption of the transistor is minimized. Cyan and yellow pigments having superior color saturation are widely available and are therefore preferably used in the second electrophoretic layer of the dual layer display of the present invention.

對第1A-1H圖中所示之本發明第一實施例的一項潛在問題為:在為了遮蔽洋紅色及白色粒子而將電極112及114保持在相異電位時,在電極110中將會引發實質偶極,因此造成洋紅色及白色粒子佔有部份電極110且因此增加為洋紅色及白色粒子所遮蔽之像素區域的部分。若在任一特定顯示器中,發現此問題嚴重時,有兩種減低該問題之方法。如已討論者,第一種為靠AC驅動以達到洋紅色及白色粒子兩者之同時遮蔽(注意此種AC驅動將造成白色及洋紅色粒子於兩者被遮蔽時彼此混合的情況,對顯示器之操作無異。在第1C、1D、1G及1H圖中所示之顯示狀態中,在個別位置是否將白色及洋紅色粒子混合或遮蔽,對顯示之外觀無異。在第1E及 1H圖中所示之僅遮蔽白色粒子的顯示狀態中,當然正常上將藉由輔助電極達到此種遮蔽,雖然在電極112及114處於相同電位的兩種情況中,電極110中並無偶極,故未產生上述問題。)。第二種方法係消除電極110,因此避免在此電極中引發偶極的任何可能性。第1B圖中表示僅會顯著受消除電極110影響之顯示狀態(在第1A圖中所示之狀態中改變洋紅色粒子之位置,但這不相關,因洋紅色粒子為白色粒子所遮蓋且因此不為顯示器之觀視者所見)。在第1B圖中所示之顯示狀態中,消除電極110集中在鄰近電極112及114之白色粒子,使得白色粒子無法遍及像素100之全部區域以反射回通過洋紅色粒子層之洋紅色光線。因此,若要消除電極110,則明智的是提供鄰近或作為部分最背面電極126之白色反射器,在第1B圖中所示之顯示狀態中作為反射器,且遮蔽青色及黃色粒子以允許通過洋紅色粒子之光線自此反射器反射。 A potential problem with the first embodiment of the invention shown in Figures 1A-1H is that the electrodes 112 and 114 will be held in the electrode 110 in order to shield the magenta and white particles while maintaining the electrodes 112 and 114 at different potentials. The substantial dipole is induced, thus causing the magenta and white particles to occupy part of the electrode 110 and thus increase the portion of the pixel area that is obscured by the magenta and white particles. If this problem is found to be severe in any particular display, there are two ways to reduce the problem. As already discussed, the first one is driven by AC to achieve both shades of magenta and white particles (note that this AC drive will cause white and magenta particles to mix with each other when they are obscured, to the display The operation is the same. In the display states shown in the 1C, 1D, 1G, and 1H diagrams, whether white or magenta particles are mixed or masked at individual positions is no different from the appearance of the display. In the display state in which only the white particles are shielded as shown in Fig. 1H, of course, such shielding is normally achieved by the auxiliary electrode, although in the two cases where the electrodes 112 and 114 are at the same potential, there is no dipole in the electrode 110. Therefore, the above problems have not occurred. ). The second method eliminates electrode 110, thus avoiding any possibility of inducing a dipole in this electrode. Fig. 1B shows a display state which is only significantly affected by the erasing electrode 110 (the position of the magenta particles is changed in the state shown in Fig. 1A, but this is not relevant because the magenta particles are covered by white particles and thus Not seen by the viewer of the display). In the display state shown in FIG. 1B, the erasing electrode 110 concentrates on the white particles adjacent to the electrodes 112 and 114 so that the white particles cannot pass over the entire area of the pixel 100 to reflect back the magenta light passing through the magenta particle layer. Therefore, if the electrode 110 is to be eliminated, it is sensible to provide a white reflector adjacent or as part of the frontmost electrode 126, acting as a reflector in the display state shown in Fig. 1B, and shielding the cyan and yellow particles to allow passage. The light of the magenta particles is reflected from this reflector.

第2A-2E圖係類似於第1A-1H圖之示意截面,透過本發明之第二電泳顯示器之一個像素(一般以300標示)的示意截面。此第二電泳顯示器使用白色、紅色、綠色及藍色粒子,取代上述之第一顯示器中所使用之白色、洋紅色、青色及黃色粒子,且所有粒子係反射性的。而且,在第二顯示器中,省略第一電泳層之主要背電極(第1A圖中之110)。 The 2A-2E diagram is a schematic cross section similar to the 1A-1H diagram, through a schematic cross section of a pixel (generally indicated at 300) of the second electrophoretic display of the present invention. The second electrophoretic display uses white, red, green, and blue particles in place of the white, magenta, cyan, and yellow particles used in the first display described above, and all of the particles are reflective. Moreover, in the second display, the main back electrode of the first electrophoretic layer (110 in Fig. 1A) is omitted.

更明確地說,像素300包括透光之前電極302,其上表面302A形成顯示器之觀看表面。像素300 更包括第一電泳層(一般以304標示),該第一電泳層在第一流體306中包括帶正電之白色粒子W及帶負電之紅色粒子R。第一電泳層304係封裝有粒子W與R及第一流體306,它們係容納在由囊壁308所拘束之單-囊中;該單-囊係僅為圖示之目的所示且在各像素中向來會存在超過一個的囊。 More specifically, pixel 300 includes a light transmissive front electrode 302, the upper surface 302A of which forms the viewing surface of the display. Pixel 300 Further included is a first electrophoretic layer (generally designated 304) that includes positively charged white particles W and negatively charged red particles R in the first fluid 306. The first electrophoretic layer 304 is encapsulated with particles W and R and a first fluid 306 that are contained in a single-capsule bound by the balloon wall 308; the single-capsule is shown for purposes of illustration only and There will always be more than one pocket in the pixel.

在該囊之與前電極302相對的側上,像素300更包括兩個輔助背電極312與314。電極312及314係連接至電壓供應線(未示出),該等電壓供應線使得此等電極之電位能彼此獨立地被控制。 On the side of the capsule opposite the front electrode 302, the pixel 300 further includes two auxiliary back electrodes 312 and 314. The electrodes 312 and 314 are connected to voltage supply lines (not shown) that enable the potentials of the electrodes to be controlled independently of each other.

緊隨電極112及114後面(亦即,在此等電極之與前電極302相對的側上)但自此絕緣為進一步電極318,其作為第二電泳層(一舨以320標示)之前電極,該第二電泳層在第二流體322中包括帶正電之藍色粒子B及帶負電反射之綠色粒子G。第二電泳層320係封裝有粒子B與G及第二流體322,它們係容納在由囊壁324所拘束之單-囊中;再者,該單-囊係僅為圖示之目的所示且在各像素中向來會存在多於一個的囊。作為第二電泳層320之背電極的單一進一步電極326係配置在第二電泳層之與電極318相對的側上。 Immediately following the electrodes 112 and 114 (i.e., on the side of the electrodes opposite the front electrode 302) but insulated therefrom as a further electrode 318, which acts as the second electrode of the second electrophoretic layer (labeled 320). The second electrophoretic layer includes positively charged blue particles B and negatively reflected green particles G in the second fluid 322. The second electrophoretic layer 320 is encapsulated with particles B and G and a second fluid 322 that are contained in a single-capsule bound by the balloon wall 324; further, the single-capsule is shown for illustrative purposes only. And there will always be more than one capsule in each pixel. A single further electrode 326 as a back electrode of the second electrophoretic layer 320 is disposed on a side of the second electrophoretic layer opposite to the electrode 318.

第2A圖表示像素300處於其白色狀態。為了驅動像素達到此狀態,使前電極302相對於背電極312及314為負的,使得白色粒子W位於鄰近前電極302且紅色粒子R位於鄰近背電極312及314,致使在像素之觀看表面302A顯示白色。在第二電泳層320中之藍色B 及綠色G粒子的位置不相關(紅色粒子R、藍色粒子B及綠色粒子G皆為白色粒子W所隠藏),且為易於圖示起見,綠色粒子G係表示為鄰近電極318且藍色粒子B係鄰近電極326。 Fig. 2A shows that the pixel 300 is in its white state. In order to drive the pixel to this state, the front electrode 302 is made negative with respect to the back electrodes 312 and 314 such that the white particles W are located adjacent to the front electrode 302 and the red particles R are located adjacent to the back electrodes 312 and 314, resulting in the viewing surface 302A of the pixel. Show white. Blue B in the second electrophoretic layer 320 The position of the green G particles is irrelevant (the red particles R, the blue particles B, and the green particles G are all hidden by the white particles W), and for ease of illustration, the green particles G are represented as adjacent electrodes 318 and blue. The color particle B is adjacent to the electrode 326.

第2B圖表示像素300處於其紅色光學狀態。為了驅動像素達到此狀態,使前電極302相對於背電極312及314為正的,使得紅色粒子R位於鄰近前電極302且白色粒子W位於鄰近背電極312及314,致使在像素之觀看表面302A顯示紅色。注意到因紅色粒子R係反射性的而非透射性的,在第二電泳層320中之藍色B及綠色G粒子的位置不相關(白色粒子W、藍色粒子B及綠色粒子G皆為紅色粒子R所隠藏),且再者,為易於圖示起見,綠色粒子G係表示為鄰近電極318且藍色粒子B係鄰近電極326。 Figure 2B shows pixel 300 in its red optical state. In order to drive the pixel to this state, the front electrode 302 is positive with respect to the back electrodes 312 and 314 such that the red particles R are located adjacent to the front electrode 302 and the white particles W are located adjacent to the back electrodes 312 and 314, resulting in the viewing surface 302A of the pixel. Show red. It is noted that the position of the blue B and the green G particles in the second electrophoretic layer 320 is irrelevant because the red particles R are reflective rather than transmissive (the white particles W, the blue particles B, and the green particles G are all The red particles R are hidden, and further, for ease of illustration, the green particles G are shown as being adjacent to the electrode 318 and the blue particles B are adjacent to the electrode 326.

第2C圖表示像素300處於其藍色光學狀態。如在第1C圖中所示之青色光學狀態中,相對於前電極302,使背電極(為方便起見,圖示為電極312)之一者為負的,且使另一電極314為正的。白色粒子W遷移鄰近負的電極312,而紅色粒子R遷移鄰近正的電極314,因此有效遮蔽白色及紅色粒子兩者且使第一電泳層304之主要部分區域開啟,供光線自觀看表面302A通過至第二電泳層320(如同在第1C圖中,在第2C-2E圖中由紅色及白色粒子所佔有之像素的截面區域部分為易於圖示而大幅誇大。事實上,可輕易使超過80%的像素為透明的。)。同時,相對於其背電極326,使第二電泳層320 之前電極318為負的,使得藍色粒子B位於鄰近前電極318且綠色粒子G位於鄰近背電極326。因此,經由觀看表面302A進入像素300之光線通過開啟(透射性的)第一電泳層304,且自鄰近電極318之藍色粒子B(此等藍色粒子B用於隠藏鄰近電極326之綠色粒子G)反射,且像素300顯示藍色。 Figure 2C shows pixel 300 in its blue optical state. As in the cyan optical state shown in FIG. 1C, with respect to the front electrode 302, one of the back electrodes (illustrated as electrodes 312 for convenience) is negative, and the other electrode 314 is made positive. of. The white particles W migrate adjacent to the negative electrode 312, and the red particles R migrate adjacent to the positive electrode 314, thereby effectively shielding both the white and red particles and opening the main portion of the first electrophoretic layer 304 for light to pass through the viewing surface 302A. Up to the second electrophoretic layer 320 (as in the first C-figure, the cross-sectional area portion of the pixel occupied by the red and white particles in the second C-2E diagram is greatly exaggerated for ease of illustration. In fact, it is easy to make more than 80 % of the pixels are transparent.). At the same time, the second electrophoretic layer 320 is made opposite to the back electrode 326 thereof. The front electrode 318 is negative such that the blue particles B are located adjacent to the front electrode 318 and the green particles G are located adjacent to the back electrode 326. Thus, the light entering the pixel 300 via the viewing surface 302A passes through the first (transmissive) first electrophoretic layer 304, and the blue particles B from the adjacent electrode 318 (the blue particles B are used to occlude the green of the adjacent electrode 326) Particle G) reflects and pixel 300 displays blue.

如第2D圖中所圖示,為了產生綠色,電極302、312及314之電位,且因此,白色粒子W及紅色粒子R之位置與第2C圖中者相同。然而,相對於其背電極326,現在使第二電泳層320之前電極318為正的,使得綠色粒子G位於鄰近前電極318且藍色粒子B位於鄰近背電極326。因此,經由觀看表面302A進入像素300之光線通過開啟的第一電泳層304,且自鄰近電極318之綠色粒子G(此等綠色粒子G用於隠藏鄰近電極326之藍色粒子B)反射,且像素300顯示綠色。 As shown in FIG. 2D, in order to generate green, the potentials of the electrodes 302, 312, and 314, and therefore, the positions of the white particles W and the red particles R are the same as those in the second FIG. However, with respect to its back electrode 326, the front electrode 318 of the second electrophoretic layer 320 is now made positive such that the green particles G are located adjacent to the front electrode 318 and the blue particles B are located adjacent to the back electrode 326. Therefore, the light entering the pixel 300 via the viewing surface 302A passes through the first first electrophoretic layer 304 that is turned on, and is reflected from the green particles G of the adjacent electrode 318 (the green particles G are used to trap the blue particles B of the adjacent electrode 326). And pixel 300 displays green.

最後,如第2E圖中所圖示,為了產生黑色像素,電極302、312及314之相對電位,且因此,白色粒子W及紅色粒子R之位置與第2C及2D圖中者相同。同時,藍色粒子B及綠色粒子G係於第二流體322中相互混合。因此,經由觀看表面302A進入像素300之光線通過第一電泳層304,且自流體322中之藍色粒子B(其吸收紅色及綠色波長)及綠色粒子G(其吸收紅色及藍色波長)兩者反射,使得基本上無光線經由第一電泳層304返回,且像素300顯示黑色。 Finally, as shown in FIG. 2E, in order to generate black pixels, the relative potentials of the electrodes 302, 312, and 314, and therefore, the positions of the white particles W and the red particles R are the same as those in the 2C and 2D drawings. At the same time, the blue particles B and the green particles G are mixed with each other in the second fluid 322. Therefore, light entering the pixel 300 via the viewing surface 302A passes through the first electrophoretic layer 304, and blue particles B (which absorb red and green wavelengths) and green particles G (which absorb red and blue wavelengths) from the fluid 322 The reflection is such that substantially no light is returned via the first electrophoretic layer 304 and the pixel 300 displays black.

將觀察到的是第2A-2E圖中所示之使用紅色、綠色及藍色粒子的顯示器不能以單一像素顯示黃色、青色及洋紅色,且為了產生黃色、青色及洋紅色,有必要求助於區域性調節(areal modulation)之形式。例如,為了產生黃色,有必要顯示鄰近綠色像素之紅色像素。類似地,為了產生青色,顯示鄰近藍色像素之綠色像素;而為了產生洋紅色,顯示鄰近藍色像素之紅色像素。然而,所產生之顏色仍將優於使用彩色濾光片之先前技術之顯示器所產生者,因(例如)實際上,對照於以彩色濾光片為基礎之RGBW顯示器,仍能遍及顯示器之全部區域顯示黃色。 It will be observed that the display using red, green and blue particles shown in Figure 2A-2E cannot display yellow, cyan and magenta in a single pixel, and in order to produce yellow, cyan and magenta, it is necessary to The form of regional modulation. For example, in order to produce a yellow color, it is necessary to display red pixels adjacent to the green pixels. Similarly, to produce cyan, green pixels adjacent to the blue pixels are displayed; and to produce magenta, red pixels adjacent to the blue pixels are displayed. However, the resulting color will still be superior to that of prior art displays using color filters, for example, in fact, the RGBW display based on color filters can still be used throughout the display. The area shows yellow.

自前述將看到本發明之雙層顯示器能以每一像素顯示寬廣範圍之顏色,具優越之白色狀態,且在各層中不需具有超過兩層粒子之電泳層。因此,雙層顯示器能有較基於在單色電泳層上方之彩色濾光片陣列的區域共享之彩色電泳顯示器大之色域。 It will be seen from the foregoing that the dual layer display of the present invention can display a wide range of colors per pixel, has a superior white state, and does not require an electrophoretic layer having more than two layers of particles in each layer. Thus, a two-layer display can have a larger color gamut than a color electrophoretic display that is shared based on the area of the color filter array above the monochromatic electrophoretic layer.

相互連接之輔助電極顯示器Interconnected auxiliary electrode display

在如以上第1A-1E及第2A-2E圖中所圖示之顯示器中,其中各像素需要一個以上之輔助電極,其電位必須不會因相同像素之主要電極的電位而變化,建立對輔助電極之必要連接,尤其是在高解析度之主動式矩陣顯示器中,引起實質之問題。迄今,在主動式矩陣顯示器中,已經以確切平行於主要電極的方式正常地驅動輔助電極;輔助電極之各行係連接至與用以驅動相關聯之主要電極之行的資料線平行之資料線,且因藉由主動 式矩陣顯示器之列驅動器掃描主動式矩陣顯示器之各列,在將電位施加至相同像素之主要電極的同時,將電位施加至所選擇列中像素之輔助電極。此種配置至少使所需之資料線數目加倍,且在如第1A-1H及第2A-2E圖中所示之顯示器的情況中,其每一像素需要兩個輔助電極,使所需之資料線數目成為三倍。此資料線數目之增加大致增加底板之複雜性及費用,且在高解析度之顯示器中,需使用非常窄之資料線,其可能造成增加資料線之故障率且因此減低底板之良率。而且,資料線數目之增加使於各顯示器更新時必須傳送之資料量加倍或成為三倍,因此更增加顯示器之複雜性及成本。 In the display as illustrated in the above 1A-1E and 2A-2E, wherein each pixel requires more than one auxiliary electrode, the potential must not change due to the potential of the main electrode of the same pixel, and the auxiliary is established. The necessary connections of the electrodes, especially in high resolution active matrix displays, cause substantial problems. Heretofore, in an active matrix display, the auxiliary electrode has been normally driven in a manner exactly parallel to the main electrode; each row of the auxiliary electrode is connected to a data line parallel to the data line for driving the row of the associated main electrode, And by taking the initiative The column driver of the matrix display scans the columns of the active matrix display and applies a potential to the auxiliary electrodes of the pixels in the selected column while applying a potential to the main electrode of the same pixel. This configuration at least doubles the number of data lines required, and in the case of the display as shown in Figures 1A-1H and 2A-2E, each pixel requires two auxiliary electrodes to make the required information The number of lines is tripled. The increase in the number of data lines substantially increases the complexity and cost of the backplane, and in high resolution displays, very narrow data lines are required, which may result in increased data line failure rates and thus reduced backplane yield. Moreover, the increase in the number of data lines doubles or triples the amount of data that must be transmitted when each display is updated, thereby increasing the complexity and cost of the display.

現在已了解到藉由相互連接複數個像素行(且較佳是顯示器之所有像素)之輔助電極,可大幅簡化具有輔助電極之顯示器所使用之底板的構成。使用兩步驟之驅動方法可驅動具有經相互連接之輔助電極的顯示器,以顯示任何想要的影像,在該兩步驟之驅動方法中,使用主要電極及前電極,首先將所有像素驅動至其遮蔽狀態且接著將不需處於遮蔽狀態之像素驅動至其最終狀態。 It is now known that by arranging the auxiliary electrodes of a plurality of pixel rows (and preferably all of the pixels of the display), the configuration of the substrate used for the display having the auxiliary electrodes can be greatly simplified. A two-step driving method can be used to drive a display having interconnected auxiliary electrodes to display any desired image. In the two-step driving method, the main electrode and the front electrode are used, and all pixels are first driven to the shadow thereof. The state and then the pixels that do not need to be in the shadow state are driven to their final state.

附圖之第3A圖係透過藉由修飾已知類型之彩色封裝電泳顯示器所產生之本發明之相互連接之輔助電極之三個子像素(分別以200R、200G及200B標示)的示意截面。子像素之每一者包括著色流體202R、202G及202B中之白色帶電粒子W(為圖示起見,假定帶正電),此等流體分別被著色為紅色、綠色及藍色。該顯示 器具透光之連續共同前電極204,該前電極形成顯示器之觀看表面,且子像素之每一者具有主要背電極210R、210G或210B及單一輔助背電極212R、212G或212B。主要及輔助背電極係透光性的且配置在黑色背基板220上;或者是,主要及輔助背電極本身可能為經著色之黑色。 Figure 3A is a schematic cross section through three sub-pixels (indicated by 200R, 200G, and 200B, respectively) of the interconnected auxiliary electrodes of the present invention produced by modifying a known type of color-packaged electrophoretic display. Each of the sub-pixels includes white charged particles W (which are assumed to be positively charged for the sake of illustration) of the colored fluids 202R, 202G, and 202B, which are colored red, green, and blue, respectively. The display The device transmits a continuous common front electrode 204 that forms the viewing surface of the display, and each of the sub-pixels has a primary back electrode 210R, 210G or 210B and a single auxiliary back electrode 212R, 212G or 212B. The primary and secondary back electrodes are translucent and disposed on the black backing substrate 220; alternatively, the primary and secondary back electrodes themselves may be colored black.

如第3A圖中所圖示,各子像素具有三個相異之光學狀態。在為子像素200G所圖示之第一光學狀態中,使主要背電極210G相對於前電極204為正的,使得白色粒子W位於鄰近前電極204,且子像素呈現白色外觀。在為子像素200B所圖示之第二光學狀態中,使主要背電極210B相對於前電極204為負的,使得白色粒子W位於鄰近主要背電極210B。經由前電極204進入子像素200B之光線通過藍色流體202B,自白色粒子W反射且返回通過藍色流體202B。因此,子像素呈現流體之顏色,在此情況中為藍色。在為子像素200R所圖示之第三光學狀態中,使背輔助電極212R相對於主要背電極210R及前電極204兩者為負的,使得白色粒子W被吸引至輔助電極212R,且因此被遮蔽。經由前電極204進入子像素200R之光線通過紅色流體202R且為黑色基板220所吸收,使得子像素呈現黑色外觀。 As illustrated in Figure 3A, each sub-pixel has three distinct optical states. In the first optical state illustrated for the sub-pixel 200G, the primary back electrode 210G is made positive with respect to the front electrode 204 such that the white particles W are located adjacent to the front electrode 204, and the sub-pixels exhibit a white appearance. In the second optical state illustrated for the sub-pixel 200B, the primary back electrode 210B is made negative with respect to the front electrode 204 such that the white particles W are located adjacent to the main back electrode 210B. Light entering the sub-pixel 200B via the front electrode 204 passes through the blue fluid 202B, is reflected from the white particle W, and returns through the blue fluid 202B. Thus, the sub-pixels present the color of the fluid, in this case blue. In the third optical state illustrated for the sub-pixel 200R, the back auxiliary electrode 212R is made negative with respect to both the main back electrode 210R and the front electrode 204, so that the white particles W are attracted to the auxiliary electrode 212R, and thus are Shaded. Light entering the sub-pixel 200R via the front electrode 204 is absorbed by the red fluid 202R and is absorbed by the black substrate 220 such that the sub-pixels exhibit a black appearance.

如已提及者,在先前技術之顯示器中,藉由平行資料線驅動主要及輔助背電極,結果增加底板之成本及複雜性。第3B圖係上視平面圖,其表示如何依據本發明修飾第3A圖中所示之顯示器的底板以允許簡化之 底板。如第3B圖中所示,所有像素之背輔助電極為繞著所有主要背電極延伸之連續柵極(grid)230所取代;此連續柵極僅需以單點連接至電壓供應線。如第3A圖中對子像素200R之以上說明,為了驅動顯示器,首先將柵極230之電壓設定成低於主要背電極與前電極兩者之電壓,使得所有白色粒子W被吸引至柵極230且所有子像素呈現黑色外觀。之後,將柵極230設定與前電極204相同之電壓且調整各種子像素之主要背電極的電壓以驅動不打算在最終影像中顯示黑色外觀的那些子像素至想要的顏色狀態。例如,為了顯示影像之綠色區域,會使紅色及藍色子像素留置在其黑色狀態,而將綠色子像素切換至其綠色狀態。 As already mentioned, in prior art displays, the primary and secondary back electrodes are driven by parallel data lines, resulting in increased cost and complexity of the backplane. Figure 3B is a top plan view showing how the backplane of the display shown in Figure 3A can be modified in accordance with the present invention to allow for simplification Base plate. As shown in FIG. 3B, the back auxiliary electrodes of all of the pixels are replaced by a continuous grid 230 extending around all of the main back electrodes; this continuous gate only needs to be connected to the voltage supply line at a single point. As described above for the sub-pixel 200R in FIG. 3A, in order to drive the display, the voltage of the gate 230 is first set to be lower than the voltages of both the main back electrode and the front electrode, so that all the white particles W are attracted to the gate 230. And all subpixels have a black appearance. Thereafter, the gate 230 is set to the same voltage as the front electrode 204 and the voltages of the main back electrodes of the various sub-pixels are adjusted to drive those sub-pixels that are not intended to display a black appearance in the final image to a desired color state. For example, to display the green area of the image, the red and blue sub-pixels are left in their black state, and the green sub-pixels are switched to their green state.

附圖之第4圖係類似於第3B圖之上視平面圖,但圖示適用於電泳介質(例如,第1A-1H圖中所示之前電泳層或第2A-2E圖中所示之前電泳層)之相互連接之輔助電極的之形式,其使用具有相反極性電荷之兩種類型的電泳粒子。第4圖中所示之柵極230A、230B可被視為藉由沿子像素之各行的中線驅動柵極230而衍生自柵極230,因此,產生兩個連接至個別電壓供應線(未示出)之個別子柵極230A、230B,使得能獨立控制兩個子柵極之電位。以非常類似於第3B圖中所示之方式驅動第4圖中所示之底板;首先使兩個子柵極230A、230B相對於前及主要背電極分別為正的與負的,因此,吸引兩種類型之電泳粒子至兩個子柵極。之後,將需處於其它光學狀態中之子像素驅動至習知方式之那些狀態。 Figure 4 of the accompanying drawings is similar to the top plan view of Figure 3B, but the illustration is applicable to an electrophoretic medium (e.g., the previous electrophoretic layer shown in Figures 1A-1H or the previous electrophoretic layer shown in Figure 2A-2E). In the form of interconnected auxiliary electrodes, which use two types of electrophoretic particles having opposite polarity charges. The gates 230A, 230B shown in FIG. 4 can be considered to be derived from the gate 230 by driving the gate 230 along the center line of each row of sub-pixels, thus creating two connections to individual voltage supply lines (not The individual sub-gates 230A, 230B are shown to enable independent control of the potential of the two sub-gates. The bottom plate shown in FIG. 4 is driven in a manner very similar to that shown in FIG. 3B; first, the two sub-gates 230A, 230B are positive and negative with respect to the front and main back electrodes, respectively, and thus attract Two types of electrophoretic particles are applied to the two sub-gates. Sub-pixels that are in other optical states are then driven to those states of the conventional mode.

藉由僅使用一條或兩條電壓供應線以遮蔽整個顯示器,可以甚低成本製成底板及驅動電子設備,尤其是遮蔽用之波形需高頻或高壓。執行一個或兩個用於整個顯示器之高電流驅動器係可行的,但是執行大數目之此種驅動器,各像素一個,會是成本過高且易於故障。 By using only one or two voltage supply lines to shield the entire display, the backplane and drive electronics can be fabricated at very low cost, especially for shielding waveforms requiring high frequency or high voltage. Executing one or two high current drivers for the entire display is possible, but performing a large number of such drivers, one for each pixel, can be costly and prone to failure.

如已提及者,在用以控制本發明之雙層電泳顯示器的第一電泳層時,本發明之相互連接的輔助電極結構具顯著益處。若第一電泳層之背電極結構包含兩個連續子柵極而非個別之輔助背電極,則可消除數千條資料線,該確切數目取決於顯示器之解析度及面積,因此減低顯示器之成本。此外,如已說明者,簡化顯示器之驅動。 As already mentioned, the interconnected auxiliary electrode structures of the present invention have significant benefits when used to control the first electrophoretic layer of the two-layer electrophoretic display of the present invention. If the back electrode structure of the first electrophoretic layer comprises two consecutive sub-gates instead of individual auxiliary back electrodes, thousands of data lines can be eliminated, the exact number depending on the resolution and area of the display, thus reducing the cost of the display . Furthermore, as already explained, the drive of the display is simplified.

總之,本發明之相互連接之輔助電極的顯示器提供一種手段以遮蔽顯示器,不致對顯示器底板或控制器增加大量的複雜性或成本。遮蔽柵極僅需一個或兩個驅動器。此種驅動器相對於像素電極驅動器可能是昂貴的,但僅使用一個或兩個較高成本之驅動器能顯著減低整體之顯示器成本。此種驅動器可能甚至被設計成產生電泳遮蔽所需之較高的電壓及頻率,該電泳遮蔽非常難以利用在各像素或子像素之個別輔助電極達成。 In summary, the display of the interconnected auxiliary electrodes of the present invention provides a means to shield the display without adding significant complexity or cost to the display backplane or controller. Only one or two drivers are required to shield the gate. Such a driver can be expensive relative to a pixel electrode driver, but using only one or two higher cost drivers can significantly reduce overall display cost. Such drivers may even be designed to produce the higher voltages and frequencies required for electrophoretic masking, which is very difficult to achieve with individual auxiliary electrodes at each pixel or sub-pixel.

100‧‧‧像素 100‧‧ ‧ pixels

102‧‧‧前電極 102‧‧‧ front electrode

102A‧‧‧上表面 102A‧‧‧Upper surface

104‧‧‧第一電泳層 104‧‧‧First Electrophoresis Layer

106‧‧‧第一流體 106‧‧‧First fluid

108‧‧‧囊壁 108‧‧‧ wall

110‧‧‧主要背電極 110‧‧‧Main back electrode

112‧‧‧輔助背電極 112‧‧‧Auxiliary back electrode

114‧‧‧輔助背電極 114‧‧‧Auxiliary back electrode

118‧‧‧前電極 118‧‧‧ front electrode

120‧‧‧第二電泳層 120‧‧‧Second Electrophoresis Layer

122‧‧‧第二流體 122‧‧‧Second fluid

124‧‧‧囊壁 124‧‧‧ wall

126‧‧‧背電極 126‧‧‧ back electrode

Claims (16)

一種電泳顯示器(300),該電泳顯示器具有觀看表面(302A)且包括鄰近該觀看表面(302A)之第一電泳層(304)及在該第一電泳層(304)之與該觀看表面(302A)相對的側上的第二電泳層(320),該電泳顯示器之特徵為:該第一電泳層(304)包括第一流體(306)、複數個帶電之白色粒子(W)、及複數個異於白色之反射性帶電的第一顏色粒子(R),該等白色粒子(W)及第一顏色粒子(R)係散佈在該第一流體中,該第一電泳層(304)設有能將該等白色粒子(W)及第一顏色粒子(R)驅動成三種相異光學狀態之驅動手段,亦即(a)第一光學狀態,其中該等白色粒子(W)位於鄰近該觀看表面(302A)且該等第一顏色粒子(R)係與該觀看表面(302A)隔開;(b)第二光學狀態,其中該等第一顏色粒子(R)位於鄰近該觀看表面(302A)且該等白色粒子(W)係與該觀看表面(302A)隔開;以及(c)第三光學狀態,其中該等白色粒子(W)及第一顏色粒子(R)僅佔有該第一電泳層(304)之一小部分區域,藉以允許光線經由該觀看表面(302A)進入該第一電泳層(304),通過該第一電泳層(304)至該第二電泳層(320);以及該第二電泳層(320)包括第二流體(322)、複數個異於白色(W)與第一顏色(R)之帶電的第二顏色粒子(G)、及複數個異於白色和第一顏色(R)與第二顏色(G)之帶 電的第三顏色粒子(B),該等第二顏色粒子(G)及第三顏色粒子(B)係散佈在該第二流體(322)中,該第二電泳層(320)設有能將該等第二顏色粒子(G)及第三顏色粒子(B)驅動成三種相異光學狀態之驅動手段,亦即(d)第四光學狀態,其中該等第二顏色粒子(G)位於鄰近該第一電泳層(304)且該等第三顏色粒子(B)係與此層隔開;(e)第五光學狀態,其中該等第三顏色粒子(B)位於鄰近該第一電泳層(304)且該等第二顏色粒子(G)係與此層隔開;以及(f)第六光學狀態,其中該等第二顏色粒子(G)及第三顏色粒子(B)係在該第二流體(322)中相互混合。 An electrophoretic display (300) having a viewing surface (302A) and including a first electrophoretic layer (304) adjacent to the viewing surface (302A) and a viewing surface (302A) of the first electrophoretic layer (304) a second electrophoretic layer (320) on the opposite side, the electrophoretic display characterized in that the first electrophoretic layer (304) comprises a first fluid (306), a plurality of charged white particles (W), and a plurality of a white-reflectively charged first color particle (R), the white particle (W) and the first color particle (R) being dispersed in the first fluid, the first electrophoretic layer (304) being provided a driving means capable of driving the white particles (W) and the first color particles (R) into three distinct optical states, that is, (a) a first optical state, wherein the white particles (W) are located adjacent to the viewing a surface (302A) and the first color particles (R) are spaced apart from the viewing surface (302A); (b) a second optical state, wherein the first color particles (R) are located adjacent to the viewing surface (302A) And the white particles (W) are spaced apart from the viewing surface (302A); and (c) the third optical state, wherein the white particles (W) and the first color The particle (R) occupies only a small portion of the first electrophoretic layer (304), thereby allowing light to enter the first electrophoretic layer (304) via the viewing surface (302A), through the first electrophoretic layer (304) to The second electrophoretic layer (320); and the second electrophoretic layer (320) includes a second fluid (322), a plurality of charged second color particles different from white (W) and the first color (R) (G) ), and a plurality of bands different from white and the first color (R) and the second color (G) Electrical third color particles (B), the second color particles (G) and third color particles (B) are dispersed in the second fluid (322), and the second electrophoretic layer (320) is provided with energy Driving the second color particles (G) and the third color particles (B) into driving means of three different optical states, that is, (d) a fourth optical state, wherein the second color particles (G) are located Adjacent to the first electrophoretic layer (304) and the third color particles (B) are separated from the layer; (e) a fifth optical state, wherein the third color particles (B) are located adjacent to the first electrophoresis a layer (304) and the second color particles (G) are spaced apart from the layer; and (f) a sixth optical state, wherein the second color particles (G) and the third color particles (B) are The second fluid (322) is mixed with each other. 如申請專利範圍第1項之電泳顯示器,其中該等第二顏色粒子(G)及第三顏色粒子(B)係反射性的。 The electrophoretic display of claim 1, wherein the second color particles (G) and the third color particles (B) are reflective. 如申請專利範圍第1項之電泳顯示器,其中該等第一、第二及第三顏色係不限順序地為紅色、綠色及藍色。 The electrophoretic display of claim 1, wherein the first, second and third colors are in any order of red, green and blue. 如申請專利範圍第3項之電泳顯示器,其中該第一顏色係紅色且該等第二及第三顏色係綠色及藍色。 The electrophoretic display of claim 3, wherein the first color is red and the second and third colors are green and blue. 如申請專利範圍第1項之電泳顯示器,其中在該等第一電泳層(304)及第二電泳層(320)中,該等粒子(W、R、G、B)及該流體(306、322)被侷限於複數個囊(capsules)或微胞(microcells)中,或呈現為複數個離散液滴,該等液滴被由聚合材料製成之連續相所圍繞。 The electrophoretic display of claim 1, wherein in the first electrophoretic layer (304) and the second electrophoretic layer (320), the particles (W, R, G, B) and the fluid (306, 322) is confined to a plurality of capsules or microcells, or appears as a plurality of discrete droplets surrounded by a continuous phase of polymeric material. 如申請專利範圍第1項之電泳顯示器,其中該第一電泳層設有能對該第一電泳層施加交流電場之數個電極及數個驅動器。 The electrophoretic display of claim 1, wherein the first electrophoretic layer is provided with a plurality of electrodes and a plurality of drivers capable of applying an alternating electric field to the first electrophoretic layer. 如申請專利範圍第1項之電泳顯示器,其中該第一電泳層(304)之至少一個像素設有至少一個電極(213、314),該電極僅佔有該像素之一小部分區域。 The electrophoretic display of claim 1, wherein at least one pixel of the first electrophoretic layer (304) is provided with at least one electrode (213, 314) that occupies only a small portion of the pixel. 如申請專利範圍第7項之電泳顯示器,其中該第一電泳層(304)之該至少一個像素設有兩個電極(213、314),該等電極各僅佔有該像素之一小部分區域,此等兩個電極(213、314)之電位係可獨立控制。 The electrophoretic display of claim 7, wherein the at least one pixel of the first electrophoretic layer (304) is provided with two electrodes (213, 314), each of which occupies only a small portion of the pixel. The potentials of the two electrodes (213, 314) are independently controllable. 一種電泳顯示器,包括電泳層,該電泳層包括流體(202R、202G、202B)及複數個散佈在該流體(202R、202G、202B)中之帶電粒子(W),該顯示器具有複數個像素,各該像素包括至少一個子像素(200R、200G、200B),各子像素(200R、200G、200B)在該電泳層之一側上具有一個主要(210R、210G、210B)及至少一個輔助電極(212R、212G、212B;230)且在該電泳層之相對側上具有第三電極(204),複數個子像素之該等輔助電極(212R、212G、212B;230)係連接至共同驅動線。 An electrophoretic display comprising an electrophoretic layer comprising a fluid (202R, 202G, 202B) and a plurality of charged particles (W) dispersed in the fluid (202R, 202G, 202B), the display having a plurality of pixels, each The pixel includes at least one sub-pixel (200R, 200G, 200B), and each sub-pixel (200R, 200G, 200B) has one main (210R, 210G, 210B) and at least one auxiliary electrode (212R) on one side of the electrophoretic layer. And 212G, 212B; 230) and having a third electrode (204) on an opposite side of the electrophoretic layer, the auxiliary electrodes (212R, 212G, 212B; 230) of the plurality of sub-pixels being connected to a common driving line. 如申請專利範圍第9項之電泳顯示器,其中該顯示器之所有子像素的該等輔助電極(212R、212G、212B;230)係連接至共同驅動線。 An electrophoretic display according to claim 9 wherein the auxiliary electrodes (212R, 212G, 212B; 230) of all sub-pixels of the display are connected to a common drive line. 如申請專利範圍第9項之電泳顯示器,其中所有該等帶電粒子(W)攜帶相同極性之電荷,且各子像素包括僅有一個輔助電極(212R、212G、212B)。 An electrophoretic display according to claim 9 wherein all of said charged particles (W) carry charges of the same polarity and each sub-pixel comprises only one auxiliary electrode (212R, 212G, 212B). 如申請專利範圍第11項之電泳顯示器,其中該顯示器之所有該等輔助電極係連接至單一驅動線。 An electrophoretic display according to claim 11, wherein all of the auxiliary electrodes of the display are connected to a single drive line. 如申請專利範圍第9項之電泳顯示器,其中該電泳層包括攜帶相反極性電荷之兩種相異類型的帶電粒子,且各子像素包括兩個輔助電極(230A、230B),各子像素之該等兩個輔助電極(230A、230B)係連接至個別之驅動線。 The electrophoretic display of claim 9, wherein the electrophoretic layer comprises two different types of charged particles carrying opposite polarity charges, and each sub-pixel comprises two auxiliary electrodes (230A, 230B), each of the sub-pixels The two auxiliary electrodes (230A, 230B) are connected to individual drive lines. 如申請專利範圍第9項之電泳顯示器,其中該等帶電粒子(W)及該流體(202R、202G、202B)被侷受限於複數個囊或微胞中。 An electrophoretic display according to claim 9, wherein the charged particles (W) and the fluid (202R, 202G, 202B) are localized in a plurality of capsules or micelles. 如申請專利範圍第9項之電泳顯示器,其中該等帶電粒子及該流體呈現為複數個離散液滴,該等液滴被由聚合材料組成之連續相所圍繞。 An electrophoretic display according to claim 9 wherein said charged particles and said fluid are present as a plurality of discrete droplets surrounded by a continuous phase comprised of polymeric material. 如申請專利範圍第9項之電泳顯示器,其中該流體係氣態。 An electrophoretic display according to claim 9 wherein the flow system is in a gaseous state.
TW104101948A 2011-11-17 2011-11-17 Multi-color electrophoretic displays TWI578078B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104101948A TWI578078B (en) 2011-11-17 2011-11-17 Multi-color electrophoretic displays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104101948A TWI578078B (en) 2011-11-17 2011-11-17 Multi-color electrophoretic displays

Publications (2)

Publication Number Publication Date
TW201520667A true TW201520667A (en) 2015-06-01
TWI578078B TWI578078B (en) 2017-04-11

Family

ID=53934973

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104101948A TWI578078B (en) 2011-11-17 2011-11-17 Multi-color electrophoretic displays

Country Status (1)

Country Link
TW (1) TWI578078B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5194355B2 (en) * 2005-11-25 2013-05-08 富士ゼロックス株式会社 Display medium and display method
EP2122412A2 (en) * 2006-11-30 2009-11-25 Koninklijke Philips Electronics N.V. In-plane switching electrophoretic colour display

Also Published As

Publication number Publication date
TWI578078B (en) 2017-04-11

Similar Documents

Publication Publication Date Title
US8797634B2 (en) Multi-color electrophoretic displays
KR101431940B1 (en) Multi-color electrophoretic displays
US11402718B2 (en) Color sets for low resolution dithering in reflective color displays
US8976444B2 (en) Color display devices
TWI454756B (en) Tetrachromatic color filter array for reflective display
KR101704983B1 (en) Multi-color electro-optic displays
JP2013522676A5 (en)
JP6818915B2 (en) A driver that provides a DC balanced refresh sequence for a color electrophoresis display
TW201237529A (en) Multi-color electrophoretic displays
US20110248909A1 (en) Electrophoretic display device and electronic apparatus
KR101258466B1 (en) Multi color electrophoretic display device and method of driving the device
US11846863B2 (en) Coordinated top electrode—drive electrode voltages for switching optical state of electrophoretic displays using positive and negative voltages of different magnitudes
KR101224194B1 (en) Reflective mode multi color electrophoretic display device
TWI578078B (en) Multi-color electrophoretic displays
TWI489192B (en) Multi-color electrophoretic displays
TW202323961A (en) Improved driving voltages for advanced color electrophoretic displays and displays with improved driving voltages
TW201719260A (en) Multi-color electrophoretic displays
KR20130003134A (en) Electrophotetic display device and driving method thereof
TWI837824B (en) A system for driving an electrophoretic medium
US20230386421A1 (en) Driving sequences to remove prior state information from color electrophoretic displays
CA3231683A1 (en) Coordinated top electrode - drive electrode voltages for switching optical state of electrophoretic displays using positive and negative voltages of different magnitudes
WO2023043714A1 (en) Coordinated top electrode - drive electrode voltages for switching optical state of electrophoretic displays using positive and negative voltages of different magnitudes
KR20240043787A (en) Adjusted top electrode voltage - driving electrode voltage for switching optical states of electrophoretic displays using different magnitudes of positive and negative voltages
KR20230078806A (en) Enhanced push-pull (EPP) waveforms for achieving primary color sets in multi-color electrophoretic displays
CN117916799A (en) Coordinated top electrode-driving electrode voltages for switching optical states of an electrophoretic display using positive and negative voltages of different magnitudes