TW201520586A - Anti-reflection article and methods thereof - Google Patents

Anti-reflection article and methods thereof Download PDF

Info

Publication number
TW201520586A
TW201520586A TW103129982A TW103129982A TW201520586A TW 201520586 A TW201520586 A TW 201520586A TW 103129982 A TW103129982 A TW 103129982A TW 103129982 A TW103129982 A TW 103129982A TW 201520586 A TW201520586 A TW 201520586A
Authority
TW
Taiwan
Prior art keywords
nanoparticle
binder
refractive index
monolayer
substrate
Prior art date
Application number
TW103129982A
Other languages
Chinese (zh)
Inventor
Shandon Dee Hart
Kenneth Edward Hrdina
Dmitri Vladislavovi Kuksenkov
Daniel Aloysius Nolan
Ellen Marie Kosik Williams
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of TW201520586A publication Critical patent/TW201520586A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

An antireflection article including: a transparent substrate having a refractive index of from 1.48 to 1.53; a binder layer associated with the substrate, the binder having a refractive index of from 1.55 to 1.75; and a nanoparticulate monolayer or near monolayer associated with the binder layer, the nanoparticulate layer having an effective refractive index less than the refractive index of binder. Methods of making and using the article are also disclosed.

Description

抗反射物件以及製造彼之方法 Anti-reflective article and method of manufacturing the same

本申請案主張2013年8月30日申請之美國申請案第61/872037號之優先權權益,該申請案之內容以全文引用方式併入本文中。 The present application claims priority to U.S. Application Serial No. 61/872,037, filed on Aug. 30, 2013, the content of which is hereby incorporated by reference.

相關申請案之交互參照Cross-references to related applications

本揭示內容係關於共同擁有且讓渡的USSN 13/440183,申請於2012年4月5日,且公開為US2012-0281292;USSN 61/557490,現為USSN 13/668537,申請於2012年11月5日;USSN 61/731924,申請於2012年11月30日;USSN 13/090561,申請於2011年4月20日;USSN 13/662789,申請於2012年10月29日;USSN 13/900659,申請於2013年5月23日;及USSN 61/872043,申請於2013年8月30日,該等案件之全部揭示內容以引用方式併入本文中,但不對其主張優先權。 The present disclosure is related to commonly owned and assigned USSN 13/440183, filed on Apr. 5, 2012, and issued to US 2012-0281292; USSN 61/557490, now USSN 13/668537, filed November 2012 5th; USSN 61/731924, application on November 30, 2012; USSN 13/090561, application on April 20, 2011; USSN 13/662789, application on October 29, 2012; USSN 13/900659, The application is filed on May 23, 2013; and USSN 61/872043, filed on Aug. 30, 2013, the entire disclosure of each of which is hereby incorporated by reference in its entirety in its entirety herein.

本揭示內容大體上係關於抗反射(AR)表面,具有該表面之物件,及製作及使用之方法。 The present disclosure is generally directed to anti-reflective (AR) surfaces, articles having such surfaces, and methods of making and using the same.

先前技術仍存在諸多缺點。本發明旨在解決此等缺點及/或提供對先前技術的改良。 There are still many shortcomings in the prior art. The present invention is directed to solving such disadvantages and/or providing improvements over the prior art.

在實施例中,本揭示內容提供一種具有至少一個層之抗反射(AR)塗層,該至少一個層包含奈米粒子之單層或近單層。 In an embodiment, the present disclosure provides an anti-reflective (AR) coating having at least one layer comprising a single layer or a nearly monolayer of nanoparticle.

在實施例中,本揭示內容提供併入有AR塗層之物件。 In an embodiment, the present disclosure provides an article incorporating an AR coating.

在實施例中,本揭示內容提供製作物件之方法,該方法包括以下步驟:將黏合劑沈積於基板上;以及將奈米微粒單層或近單層沈積於黏合劑上。 In an embodiment, the present disclosure provides a method of making an article, the method comprising the steps of: depositing a binder on a substrate; and depositing a single layer or a near monolayer of nanoparticle on the binder.

在實施例中,本揭示內容提供例如在顯示裝置中使用物件之方法,該方法包括以下步驟:在顯示裝置中併入所揭示的物件。 In an embodiment, the present disclosure provides a method of using an article, such as in a display device, the method comprising the steps of incorporating the disclosed article in a display device.

100‧‧‧AR物件 100‧‧‧AR objects

110‧‧‧基板 110‧‧‧Substrate

120‧‧‧黏合劑層 120‧‧‧Binder layer

130‧‧‧奈米粒子單層 130‧‧‧Nano particle single layer

500‧‧‧表面 500‧‧‧ surface

510‧‧‧另一粒子塗佈表面 510‧‧‧ another particle coated surface

600‧‧‧曲線 600‧‧‧ curve

610‧‧‧曲線 610‧‧‧ Curve

800‧‧‧物件 800‧‧‧ objects

810‧‧‧玻璃基板 810‧‧‧ glass substrate

820‧‧‧高折射率層/相對高折射率黏合劑層 820‧‧‧High refractive index layer / relatively high refractive index adhesive layer

830‧‧‧奈米粒子單層 830‧‧・Nano particle single layer

D‧‧‧奈米微粒直徑/奈米微粒平均直徑/平均直徑/球直徑/直徑/奈米粒子球直徑/奈米粒子之標稱直徑 D‧‧‧Nanoparticle diameter/nanoparticle average diameter/average diameter/ball diameter/diameter/nanoparticle sphere diameter/nanoparticle nominal diameter

g‧‧‧粒子沈入黏合劑層中的距離 g‧‧‧The distance the particles sink into the adhesive layer

ng‧‧‧黏合劑層折射率/折射率 n g ‧‧‧Adhesive layer refractive index / refractive index

np‧‧‧粒子折射率/折射率 n p ‧‧‧particle refractive index / refractive index

ns‧‧‧基板折射率/折射率 n s ‧‧‧Substrate refractive index / refractive index

p‧‧‧間距/平均奈米粒子間距/平均間距 P‧‧‧pitch/average nanoparticle spacing/average spacing

在本揭示內容之實施例中:第1圖展示具有多層AR表面之AR物件,該多層AR表面具有呈緊密堆積排列的奈米粒子單層。 In an embodiment of the present disclosure: Figure 1 shows an AR article having a multi-layered AR surface having a single layer of nanoparticle particles in a closely packed arrangement.

第2A及2B圖展示具有多層AR塗層之示範性AR物件的視圖(2A為側視圖,2B為頂視圖),該多層AR塗層包括具有呈非緊密堆積六方排列的奈米粒子之奈米粒子單層。 2A and 2B show views of an exemplary AR article having a multilayer AR coating (2A is a side view, 2B is a top view), the multilayer AR coating comprising nanoparticles having nanoparticles in a non-close packed hexagonal arrangement Single layer of particles.

第3圖展示針對各種間距/直徑比率或值及高折射率層厚度的塗層效能之圖解,該高折射率層厚度係針對1.6之高折射率值正規化為粒子直徑。 Figure 3 shows a graphical representation of coating performance for various pitch/diameter ratios or values and high refractive index layer thickness normalized to a particle diameter for a high refractive index value of 1.6.

第4A及4B圖展示取自第3圖之較佳設計空間的反射性光譜之實例。 Figures 4A and 4B show examples of reflective spectra taken from the preferred design space of Figure 3.

第5圖展示提供直接沈積於基板上的100nm粒子(該等粒子具有例如1.51之折射率(np))(無第二層;500)與第4圖之較佳設計結構實例(具有100nm粒子且具有第二中間黏合劑層;510)之間比較的圖。 Figure 5 shows an example of a preferred design structure (with 100 nm particles) providing 100 nm particles deposited directly on the substrate (the particles have a refractive index (n p ) of, for example, 1.51) (no second layer; 500) and Figure 4 And having a comparison of the second intermediate binder layer; 510).

第6A及6B圖展示提供第5圖中所示的兩個實例之光譜寬度對入射角(AOI)之比較的圖。 Figures 6A and 6B show graphs providing a comparison of spectral width versus angle of incidence (AOI) for the two examples shown in Figure 5.

第7A至7E圖提供具有1.55(第7A圖)至1.75(第7E圖)之折射率的高折射率(ng)層之一些值的示範性光譜。 Figures 7A through 7E provide exemplary spectra of some values of a high refractive index ( ng ) layer having a refractive index of 1.55 (Fig. 7A) to 1.75 (Fig. 7E).

第8圖提供具有玻璃基板(810)及奈米粒子單層(830)之另一物件(800)的示意圖,該奈米粒子單層部分地沈入或浸入高折射率層(820)中。 Figure 8 provides a schematic illustration of another article (800) having a glass substrate (810) and a nanoparticle monolayer (830) partially submerged or immersed in a high refractive index layer (820).

第9A及9B圖展示設計結構之示範性光譜,其中奈米粒子單層之奈米球部分地浸入高折射率層中。 Figures 9A and 9B show exemplary spectra of the design structure in which the nanospheres of the nanoparticle single layer are partially immersed in the high refractive index layer.

將參考圖示(若存在)詳述本揭示內容之各種實施例。對各種實施例之參考不限制本發明之範疇,本發明之範疇僅受其隨附申請專利範圍之範疇限制。此外,本說明書中所闡述的任何實例不為限制性的,且僅闡述所主張發明之許多可能實施例中之一些實施例。 Various embodiments of the present disclosure are detailed with reference to the drawings, if any. The scope of the present invention is not limited by the scope of the invention, and the scope of the invention is limited only by the scope of the appended claims. In addition, any examples set forth in this specification are not limiting, and only some of the many possible embodiments of the claimed invention are set forth.

定義definition

「抗反射」及類似術語係指全反射(鏡面反射及漫反射)之減小,該減小可由塗層或表面處理來誘導。 "Anti-reflection" and like terms mean a reduction in total reflection (specular reflection and diffuse reflection) which can be induced by coating or surface treatment.

「黏合劑」、「黏合劑層」及類似術語係指可用以接合表面或強化表面之間,諸如粒子之間或粒子與玻璃表面之間的黏結的材料。 "Adhesive", "adhesive layer" and like terms mean a material that can be used to bond surfaces or between reinforcing surfaces, such as between particles or between particles and glass surfaces.

「奈米微粒單層」及類似術語係指通常與表面或基板接觸的粒子之單一層,其中粒子具有大體上為約500nm或500nm以下的平均大小或平均直徑,且大部分粒子具有小於約正或負(+/-)100%的大小變化。粒子之間的間隔較佳為實質上均勻的。 "Nanoparticle monolayer" and like terms mean a single layer of particles that are typically in contact with a surface or substrate, wherein the particles have an average or average diameter of substantially less than about 500 nm or less, and most of the particles have less than about Or negative (+/-) 100% size change. The spacing between the particles is preferably substantially uniform.

「近單層」及類似術語係指如上文所定義的奈米微粒單層,該奈米微粒單層具有一些缺陷區,諸如不完全的表面覆蓋,或粒子之雙層堆疊,或粒子之間的不規則間隔。通常此等缺陷區將佔不超過單層之總面積的50%。 "Near-monolayer" and like terms mean a nanoparticle monolayer as defined above having a plurality of defective regions, such as incomplete surface coverage, or a two-layer stack of particles, or between particles Irregular intervals. Usually such defective areas will account for no more than 50% of the total area of the single layer.

「與......結合(associate)」及類似術語係指黏合劑層相對於基板之關係、奈米粒子相對於基板之關係,或該兩種關係,其可包括例如物理接觸、諸如機械互鎖之物理相互作用、化學黏結相互作用及類似相互作用或其組合。 "Associate" and similar terms refer to the relationship of the binder layer to the substrate, the relationship of the nanoparticles to the substrate, or both, which may include, for example, physical contact, such as Physical interactions of mechanical interlocks, chemical bonding interactions, and similar interactions or combinations thereof.

「有效折射率」及類似術語係指奈米結構化材料或塗層之所量測的平均折射率,該平均折射率可使用諸如橢圓偏極術(ellipsometry)或稜鏡耦合之已知光學方法來量測,其中所量測的有效折射率為形成奈米結構之個別奈米域(nano-domain)的個別材料(諸如玻璃及空氣)之折射率的某種疊加值。因為奈米結構化材料具有小於可見光波長之特徵,所以將所量測的折射率視為有效折射率。 "Effective refractive index" and like terms mean the average refractive index measured by a nanostructured material or coating, which may be a known optical method such as ellipsometry or enthalpy coupling. To measure, the effective refractive index measured is some superposition of the refractive indices of individual materials (such as glass and air) that form the individual nano-domains of the nanostructure. Since the nanostructured material has characteristics that are smaller than the wavelength of visible light, the measured refractive index is regarded as the effective refractive index.

「反射性」及類似術語係指例如在覆蓋400nm至 700nm的可見光波長光譜之至少一部分的至少100nm之光譜寬度範圍內,就物件之單一表面或側面而言,該物件具有小於0.1%至0.2%的平均反射性。 "Reflective" and similar terms mean, for example, covering 400 nm to The object has an average reflectivity of less than 0.1% to 0.2% with respect to a single surface or side of the article over a spectral width of at least 100 nm of at least a portion of the visible wavelength spectrum of 700 nm.

「位於奈米微粒單層與黏合劑之間的第二黏合劑」及類似術語或片語係指例如用以在奈米粒子之間、奈米粒子與黏合劑層之間、奈米粒子與塗層之間、粒子與基板之間或其組合產生黏結,諸如黏著相互作用,化學相互作用或類黏結相互作用的材料。 "Second binder between the nanoparticle monolayer and the binder" and similar terms or phrase means, for example, between nanoparticles, between nanoparticles and binder layers, nanoparticles and Bonding between coatings, between particles and substrates, or combinations thereof, such as adhesive interactions, chemical interactions or bond-like interactions.

「包括(include)」、「包括(includes)」或類似術語意謂涵蓋但不限於包含且非排他。 "include", "includes" or similar terms are meant to cover, but not limited to, inclusion and non-exclusive.

「約」修飾用於描述本揭示內容之實施例的例如組合物中成分之量、濃度、體積、製程溫度、製程時間、產率、流率、壓力及類似值及其範圍,該術語係指例如可由於以下而發生的數值量之變化:典型量測及處理程序,該等程序係用於製備材料、組合物、複合物、濃縮物、或使用調配物;在此等程序中的無意誤差;用以實施該等方法的起始材料或成分之製造、來源或純度的差異;及類似考慮因素。術語「約」亦涵蓋由於具有特定初始濃度或混合物之組合物或調配物之老化而不同的量,及由於混合或處理具有特定初始濃度或混合物之組合物或調配物而不同的量。 "About" modifications are used to describe, for example, the amounts, concentrations, volumes, process temperatures, process times, yields, flow rates, pressures, and the like, and ranges thereof, in the compositions of the present disclosure. For example, variations in numerical quantities that may occur as a result of typical measurements and processing procedures for preparing materials, compositions, composites, concentrates, or using formulations; unintentional errors in such procedures Differences in the manufacture, source or purity of the starting materials or ingredients used to carry out the methods; and similar considerations. The term "about" also encompasses amounts that differ due to aging with a particular initial concentration or composition or formulation of the mixture, and that vary by mixing or treating a composition or formulation having a particular initial concentration or mixture.

實施例中的「基本上由......組成」可涉及例如:具有如本文所定義的抗反射表面之物件;製作或使用如本文所定義的抗反射物件之方法;或併入有如本文所定義的物件之顯示系統。 "Consisting essentially of" in an embodiment may relate to, for example, an article having an anti-reflective surface as defined herein; a method of making or using an anti-reflective article as defined herein; or incorporating A display system for objects as defined herein.

本揭示內容之物件、顯示系統、製作及使用之方法、組合物、調配物或任何設備可包括請求項中所列舉的組件/組分或步驟,以及不會實質地影響本揭示內容之組合物、物件、設備或製作及使用之方法的基本及新穎性質的其他組件/組分或步驟,諸如特定反應物、特定添加劑或成分、特定試劑、特定表面改質劑或條件,或所選的類似結構、材料或製程變數。可實質地影響本揭示內容之組件/組分或步驟之基本性質或可對本揭示內容賦予非所要特徵之項目包括例如具有不適宜的高反射性性質之表面,該等高反射性性質超過本文所定義及指定的值,包括中間值及範圍。 The articles, display systems, methods of making, and using, compositions, formulations, or any devices of the present disclosure may include the components/components or steps recited in the claims, and compositions that do not substantially affect the present disclosure. Other components/components or steps of the basic and novel nature of the articles, equipment, or methods of making and using, such as specific reactants, specific additives or ingredients, specific reagents, specific surface modifiers or conditions, or similar Structure, material or process variable. Items that may substantially affect the essential properties of the components/components or steps of the present disclosure or that may impart undesirable features to the present disclosure include, for example, surfaces having undesirably highly reflective properties that are beyond the scope of this document. Defined and specified values, including intermediate values and ranges.

除非另外指明,否則如本文所用的不定冠詞「一個/種(a/an)」及其對應的定冠詞「該」意謂至少一個/種,或一或多個/種。 The indefinite article "a" or "an" and "the"

可使用一般技藝人士熟知的縮寫(例如,小時或數小時的縮寫為「h」或「hr」,毫升的縮寫為「mL」,且室溫的縮寫為「rt」,奈米的縮寫為「nm」及類似縮寫)。 Abbreviations well known to those skilled in the art can be used (for example, hour or hour is abbreviated as "h" or "hr", milliliter is abbreviated as "mL", and room temperature is abbreviated as "rt", and nanometer abbreviation is " Nm" and similar abbreviations).

所揭示用於組分、成分、添加劑及類似態樣的特定及較佳值及其範圍僅出於說明目的;該等值及其範圍不排除其他所定義的值或在所定義範圍內之其他值。本揭示內容之組合物、設備及方法可包括本文所述的值、特定值、較特定值及較佳值中之任何值或任何組合。 The specific and preferred values and their ranges for the components, ingredients, additives and the like are disclosed for illustrative purposes only; the values and their ranges do not exclude other defined values or others within the defined ranges. value. The compositions, devices, and methods of the present disclosure can include any value or any combination of the values, specific values, specific values, and preferred values described herein.

抗反射(AR)塗層已獲利用數十年。最近研究工作已集中於在基板上製造由奈米粒子之單層組成的抗反射塗層。此等奈米粒子單層可具有獨特的特徵組合,諸如:低反射; 相較具有相等有效折射率之奈米多孔塗層的較高耐久性;易於對已塗佈有奈米粒子單層的玻璃基板進行離子交換強化;相較於多層高-低折射率AR塗層而言較低的有效指紋可見度;寬的反射帶寬,以及折射之低角靈敏度。此等最近的AR塗層及相關製作方法之實例描述於上述相關的共同擁有且讓渡的申請案中。 Anti-reflective (AR) coatings have been utilized for decades. Recent research efforts have focused on the fabrication of anti-reflective coatings composed of a single layer of nanoparticle on a substrate. Such nanoparticle monolayers can have unique combinations of features such as: low reflection; Higher durability compared to nanoporous coatings with equal effective refractive indices; easy ion-exchange strengthening of glass substrates coated with nanoparticle monolayers; compared to multilayer high-low refractive index AR coatings Lower effective fingerprint visibility; wide reflection bandwidth, and low angle sensitivity of refraction. Examples of such recent AR coatings and related fabrication methods are described in the above-referenced co-owned and assigned application.

對於單層中奈米粒子之給定大小及間隔而言,獲得一種減少最小反射,使AR塗層之低反射的波長帶加寬,或兩者兼有之方法總體上將為有益的。 For a given size and spacing of nanoparticles in a single layer, it would be beneficial to have a method of reducing the minimum reflection, broadening the wavelength band of the low reflection of the AR coating, or both.

在實施例中,本揭示內容提供抗反射物件,其包含:透明基板,其具有1.48至1.53之折射率(ns);與基板結合的黏合劑層(亦即塗層組合物),該黏合劑具有約1.55至約1.75之相對高折射率(ng),該黏合劑層折射率(ng)大於該透明基板之折射率(ns)(亦即ng>ns);以及與黏合劑層結合的奈米微粒單層或近單層,該奈米微粒層具有小於黏合劑層之折射率的有效折射率(np eff)(亦即ng>np eff),諸如小於1.55之np effIn an embodiment, the present disclosure provides an anti-reflective article comprising: a transparent substrate having a refractive index (n s ) of 1.48 to 1.53; a binder layer (ie, a coating composition) bonded to the substrate, the bonding agent having a relatively high refractive index of about 1.55 to about 1.75 (n g), the adhesive layer, the refractive index (n g) is greater than the refractive index of the transparent (n s) (i.e. n g> n s) of the substrate; and The binder layer is combined with a single layer or a nearly monolayer of nanoparticle, the nanoparticle layer having an effective refractive index (n p eff ) (ie, n g >n p eff ) smaller than the refractive index of the binder layer, such as less than 1.55 n p eff .

在實施例中,奈米微粒單層之有效折射率(np eff)可為例如1.1至1.5、1.15至1.3及類似值,包括中間值及範圍。 In an embodiment, the effective refractive index (n p eff ) of the nanoparticle monolayer may be, for example, 1.1 to 1.5, 1.15 to 1.3, and the like, including intermediate values and ranges.

在實施例中,在覆蓋400nm至700nm的可見光波長光譜之至少一部分的至少100nm之光譜寬度範圍內,物件之抗反射反射性可具有例如小於0.2%之平均反射性。 In an embodiment, the antireflective reflectance of the article may have an average reflectivity of, for example, less than 0.2% over a spectral width of at least 100 nm covering at least a portion of the visible wavelength spectrum of 400 nm to 700 nm.

在實施例中,奈米微粒單層可包括例如呈非緊密堆積六方幾何形狀的奈米微粒,該等奈米微粒具有1.05至 1.35,且較佳1.15至1.25(包括中間值及範圍)的間距(p)(亦即鄰近奈米微粒之中心之間的分離距離)與奈米微粒直徑(D)比率(p/D)。 In an embodiment, the nanoparticle monolayer may comprise, for example, nanoparticles in a non-close packed hexagonal geometry having 1.05 to The spacing (p) of 1.35, and preferably 1.15 to 1.25 (including intermediate values and ranges) (i.e., the separation distance between the centers of adjacent nanoparticles) and the nanoparticle diameter (D) ratio (p/D).

在實施例中,黏合劑可具有例如1xD至2xD,且較佳1.3xD至1.8xD的厚度,包括中間值及範圍,其中D為奈米微粒平均直徑(D)。 In an embodiment, the binder may have a thickness of, for example, 1 x D to 2 x D, and preferably from 1.3 x D to 1.8 x D, including intermediate values and ranges, where D is the average diameter (D) of the nanoparticle.

在實施例中,透明基板可為例如玻璃、聚合物、玻璃-陶瓷、結晶氧化物、半導體及類似材料或其組合。 In an embodiment, the transparent substrate can be, for example, glass, polymer, glass-ceramic, crystalline oxide, semiconductor, and the like, or a combination thereof.

在實施例中,抗反射物件可進一步包含例如位於奈米微粒單層與黏合劑之間的第二黏合劑。 In an embodiment, the anti-reflective article may further comprise, for example, a second binder between the nanoparticle monolayer and the binder.

在實施例中,奈米微粒單層可具有例如85%至100%、90%至93%之奈米微粒表面覆蓋率及類似表面覆蓋率,包括中間值及範圍,且奈米微粒近單層可包含實質上例如奈米微粒表面覆蓋率為50%至90%、65%至90%及類似表面覆蓋率(包括中間值及範圍)之奈米微粒之單層。此表面區覆蓋率係使用包括電子顯微術的標準顯微術,且藉由將奈米粒子之可見輪廓(profile)投影至基板表面上(例如,藉由計算粒子為可見之處(視為覆蓋區)的顯微表面影像之百分比對基板為可見之處(視為未覆蓋區)的百分比)來量測。 In an embodiment, the nanoparticle monolayer may have, for example, 85% to 100%, 90% to 93% of the nanoparticle surface coverage and similar surface coverage, including intermediate values and ranges, and the nanoparticle near monolayer A monolayer of nanoparticles substantially including, for example, nanoparticle surface coverage of 50% to 90%, 65% to 90%, and similar surface coverage (including intermediate values and ranges) may be included. This surface area coverage is performed using standard microscopy including electron microscopy and by projecting the visible profile of the nanoparticle onto the surface of the substrate (eg, by calculating the visible view of the particle (see The percentage of the microscopic surface image of the coverage area is measured by the percentage of the substrate visible as the uncovered area.

在實施例中,奈米微粒層可包含例如以下至少一者之奈米微粒:矽石、氧化鋁、氧化鋯、聚苯乙烯、乳膠及類似材料或其組合。 In an embodiment, the nanoparticulate layer may comprise, for example, at least one of the following nanoparticulates: vermiculite, alumina, zirconia, polystyrene, latex, and the like, or combinations thereof.

在實施例中,奈米微粒單層可包含例如具有50nm至300nm之平均直徑(D)且具有選自以下至少一者的幾何形 狀之奈米微粒:球體、半球體、橢球體、圓盤、錐體、圓柱體、柱及類似形狀及幾何形狀或其組合。 In an embodiment, the nanoparticle monolayer may comprise, for example, an average diameter (D) having a thickness of 50 nm to 300 nm and having a geometry selected from at least one of the following: Nanoparticles: spheres, hemispheres, ellipsoids, disks, cones, cylinders, columns and similar shapes and geometries or combinations thereof.

在實施例中,與黏合劑結合的奈米微粒單層可包含例如為以下的奈米微粒:處於黏合劑之表面上;部分地嵌入或部分地浸入黏合劑中;由黏合劑完全地覆蓋或完全地浸入黏合劑中,或其組合。 In an embodiment, the nanoparticle monolayer combined with the binder may comprise, for example, nanoparticles on the surface of the binder; partially embedded or partially immersed in the binder; completely covered by the binder or Completely immersed in the binder, or a combination thereof.

在實施例中,與黏合劑結合的奈米微粒單層可例如部分地嵌入黏合劑中達0.1xD至0.5xD,其中D為奈米微粒平均直徑(D)。 In an embodiment, the nanoparticle monolayer bonded to the binder may, for example, be partially embedded in the binder up to 0.1 x D to 0.5 x D, where D is the average diameter (D) of the nanoparticle.

在實施例中,基板上的黏合劑層可具有例如60nm至300nm之厚度,包括中間值及範圍。 In an embodiment, the adhesive layer on the substrate can have a thickness of, for example, 60 nm to 300 nm, including intermediate values and ranges.

在實施例中,黏合劑可包含例如聚合物;奈米粒子填充材料,諸如以具有10nm之直徑的矽石奈米粒子填充的聚合物或溶膠-凝膠基質;無機氧化物材料;無機氮化物材料;半導體;透明導體及類似材料或其組合。 In an embodiment, the binder may comprise, for example, a polymer; a nanoparticle filler material such as a polymer or sol-gel matrix filled with vermiculite nanoparticles having a diameter of 10 nm; an inorganic oxide material; an inorganic nitride Materials; semiconductors; transparent conductors and similar materials or combinations thereof.

在實施例中,黏合劑可進一步包含以下至少一者之粒子或鹽:銀、銅、銀或銅之化合物或其組合,該等特定粒子或鹽可提供例如抗微生物益處。 In embodiments, the binder may further comprise at least one of the following particles or salts: a compound of silver, copper, silver or copper, or a combination thereof, which may provide, for example, an antimicrobial benefit.

在實施例中,本揭示內容提供製作前述抗反射物件之方法,該方法包含以下步驟:將黏合劑層沈積於基板的至少一部分上;以及將奈米微粒單層或近單層沈積於黏合劑層上。 In an embodiment, the present disclosure provides a method of making the aforementioned anti-reflective article, the method comprising the steps of: depositing a layer of adhesive on at least a portion of a substrate; and depositing a single layer or a near monolayer of nanoparticle on the binder On the floor.

在實施例中,製作方法可進一步包含例如以下步驟:經由例如固化、交聯、熔合、燒結及類似固定方法或其 組合,將奈米微粒單層固定於黏合劑層上或中。 In an embodiment, the fabrication method may further comprise, for example, the following steps: via, for example, curing, crosslinking, fusing, sintering, and the like, or In combination, a single layer of nanoparticle is immobilized on or in the adhesive layer.

在實施例中,製作方法可進一步包含例如以下步驟:在沈積奈米粒子之前、期間、之後或其組合,固化黏合劑層。 In an embodiment, the fabrication method may further comprise, for example, the step of curing the adhesive layer before, during, after, or a combination thereof.

在實施例中,將奈米微粒單層固定或熔合於黏合劑上的步驟可包含例如以下步驟:熱燒結;將黏合劑沈積於黏合劑與所沈積奈米微粒單層之間;將第二黏合劑沈積於組合的第一黏合劑及所沈積奈米微粒單層上;或其組合。 In an embodiment, the step of immobilizing or fusing the nanoparticle monolayer on the binder may comprise, for example, the following steps: thermal sintering; depositing a binder between the binder and the deposited nanoparticle monolayer; The binder is deposited on the combined first binder and the deposited nanoparticle monolayer; or a combination thereof.

在實施例中,該方法可進一步包含例如以下步驟:藉由以下至少一者的離子交換來化學強化物件:沈積黏合劑之前基板之離子交換;基板上之黏合劑之離子交換;將奈米微粒單層固定於黏合劑上之前基板之離子交換;沈積之後或固定奈米微粒單層之後基板之離子交換,或其組合。 In an embodiment, the method may further comprise, for example, the step of: chemically strengthening the object by ion exchange of at least one of: ion exchange of the substrate before depositing the binder; ion exchange of the binder on the substrate; and nanoparticle Ion exchange of the substrate before the monolayer is fixed on the binder; ion exchange of the substrate after deposition or after fixing the monolayer of nanoparticle, or a combination thereof.

在實施例中,本揭示內容提供具有多層AR塗層之物件,其中該等層之一者由奈米粒子之單層或近單層組成。構成單層或近單層之奈米粒子可具有例如50nm至300nm的大小,包括中間值及範圍。奈米粒子之單層或近單層可包含例如奈米球、奈米半球及類似三維幾何形狀。 In an embodiment, the present disclosure provides an article having a multilayer AR coating, wherein one of the layers consists of a single layer or a nearly monolayer of nanoparticle. Nanoparticles constituting a single layer or a nearly monolayer may have a size of, for example, 50 nm to 300 nm, including intermediate values and ranges. The single or near monolayer of nanoparticles can comprise, for example, nanospheres, nanohemispheres, and similar three-dimensional geometries.

在實施例中,在奈米粒子之單層之下可安置具有相對高折射率層之至少一個黏合劑層,該相對高折射率層具有高於奈米粒子單層之有效折射率的有效折射率。奈米粒子之下的黏合劑層可用以降低反射或使由AR奈米微粒塗層產生的低反射之譜帶加寬。 In an embodiment, at least one adhesive layer having a relatively high refractive index layer having an effective refractive index higher than an effective refractive index of a single layer of nanoparticle may be disposed under a single layer of nanoparticle rate. The layer of adhesive underneath the nanoparticle can be used to reduce reflection or broaden the band of low reflection produced by the AR nanoparticle coating.

在實施例中,本揭示內容提供光學模型化結果,該 等結果可用於例如定義與不同奈米粒子單層組態組合的黏合劑層之厚度的較佳範圍及折射率範圍,且暗示出製造方法。黏合劑層可視需要實現其他功能,例如自清潔功能(例如使用TiO2材料)、疏水或拒油功能,或提供奈米粒子可黏結的黏著性、黏合性或易於燒結的表面。作為實例,可在銀、銅、銀或銅之化合物或其混合物併入黏合劑層中時獲得抗微生物益處。 In an embodiment, the present disclosure provides optical modeling results that can be used, for example, to define a preferred range of thicknesses and refractive index ranges for adhesive layers combined with different nanoparticle monolayer configurations, and to imply manufacturing method. The adhesive layer can perform other functions as needed, such as self-cleaning functions (eg, using TiO 2 materials), hydrophobic or oil repellency, or providing adhesion, adhesion, or easy to sinter surfaces of nanoparticles. As an example, antimicrobial benefits can be obtained when a compound of silver, copper, silver or copper, or a mixture thereof, is incorporated into the binder layer.

在實施例中,相較於表面上之單獨奈米粒子單層而言,所揭示的AR奈米粒子塗層可提供在特定波長下較低的反射,或低反射之較寬波長帶。 In an embodiment, the disclosed AR nanoparticle coating can provide a lower reflection at a particular wavelength, or a wider wavelength band with a lower reflection than a single nanoparticle monolayer on the surface.

在實施例中,本揭示內容提供抗反射物件,其包含:透明基板,其具有第一折射率(ns);與該基板結合的黏合劑層,該黏合劑具有大於基板折射率(ns)的第二折射率(ng);以及與黏合劑層結合的奈米微粒單層或近單層,該奈米微粒單層或近單層具有小於基板折射率(ns)的有效折射率(np eff)。 In an embodiment, the present disclosure provides an anti-reflective article comprising: a transparent substrate having a first index of refraction (n s ); a binder layer bonded to the substrate, the binder having a refractive index greater than the substrate (n s a second refractive index (n g ); and a single or near monolayer of nanoparticle bound to the binder layer, the nanoparticle monolayer or near monolayer having an effective refractive index less than the refractive index (n s ) of the substrate Rate (n p eff ).

在實施例中,在覆蓋400nm至700nm的可見光波長光譜之至少一部分的至少100nm之光譜寬度範圍內,物件之反射性具有小於0.2%之平均反射性。 In an embodiment, the reflectivity of the article has an average reflectivity of less than 0.2% over a spectral width of at least 100 nm covering at least a portion of the visible wavelength spectrum of 400 nm to 700 nm.

在實施例中,基板折射率ns為約1.4至1.55,黏合劑層折射率ng為約1.55至1.75,且奈米微粒單層或近單層有效折射率(np eff)為約1.15至1.4。 In an embodiment, the substrate refractive index n s is about 1.4 to 1.55, the adhesive layer refractive index n g is about 1.55 to 1.75, and the nanoparticle monolayer or near monolayer effective refractive index (n p eff ) is about 1.15. To 1.4.

參考圖式,第1圖展示具有多層AR塗層之AR物件(100)之示範性實施例,該物件將奈米粒子單層(130)併入塗佈 有具有相對高折射率之黏合劑層(120)的基板(110)中。 Referring to the drawings, Figure 1 shows an exemplary embodiment of an AR article (100) having a multilayer AR coating that incorporates a nanoparticle monolayer (130) into a coating. There is a substrate (110) having a relatively high refractive index adhesive layer (120).

在實施例中,單層之奈米粒子可為例如沈積於高折射率黏合劑層塗層之頂部的矽石奈米球。個別奈米球可具有接近例如1.45的折射率,但空氣之實質部分,或奈米粒子單層內或個別奈米粒子之間的存在的自由空間產生奈米粒子單層的可為例如1.15至1.30的有效折射率(np eff)。在實施例中,相對高折射率黏合劑層塗層可包含諸如玻璃之透明基板之頂部表面的至少一部分。奈米粒子可為例如具有50nm至300nm之直徑或大小,且在粒子之中心之間具有某一間距間隔的矽石奈米球。間距間隔具有為D(1 x奈米粒子之直徑)之最小值,及不受特定限制的最大值。下文進一步論述間距間隔相對於直徑的較佳值。奈米微粒奈米球之間的間隔不需要為規則的,然而間距可指定為在(10λo)2之面積範圍內奈米球之平均間隔,其中λo為達成所要AR效能的中心波長。在相同面積範圍內間距之方差應小於5%。 In an embodiment, the single layer of nanoparticle may be, for example, a vermiculite nanosphere deposited on top of a coating of a high refractive index adhesive layer. Individual nanospheres may have a refractive index close to, for example, 1.45, but a substantial portion of the air, or the free space present within the nanoparticle monolayer or between individual nanoparticles, may result in a single layer of nanoparticle that may be, for example, 1.15 to Effective refractive index of 1.30 (n p eff ). In an embodiment, the relatively high refractive index adhesive layer coating may comprise at least a portion of a top surface of a transparent substrate such as glass. The nanoparticles may be, for example, vermiculite nanoparticles having a diameter or size of 50 nm to 300 nm with a certain spacing between the centers of the particles. The spacing interval has a minimum value of D (the diameter of the 1 x nanoparticle) and a maximum value that is not specifically limited. Preferred values of the spacing spacing relative to the diameter are discussed further below. The spacing between the nanoparticle nanospheres need not be regular, however the spacing can be specified as the average spacing of the nanospheres over the area of (10λ o ) 2 , where λ o is the central wavelength at which the desired AR performance is achieved. The variance of the spacing within the same area should be less than 5%.

與奈米粒子單層接觸的黏合劑層之高折射率可大體上具有1.55至1.75之折射率(ng),且高折射率層可具有例如60nm至300nm之厚度,以提供在可見光波長中的良好AR效能。下文提供對高折射率黏合劑層厚度之較佳範圍的更詳細描述。 The high refractive index of the adhesive layer in contact with the single layer of nanoparticle particles may have a refractive index (n g ) of substantially 1.55 to 1.75, and the high refractive index layer may have a thickness of, for example, 60 nm to 300 nm to provide in the visible wavelength Good AR performance. A more detailed description of the preferred range of high refractive index adhesive layer thicknesses is provided below.

透明基板可為例如玻璃或諸如塑膠的任何其他透明基板。較佳結構之所計算的折射率範圍在外部環境介質為空氣時對於具有大致1.48至1.53之折射率(ns)的透明基板而言為大體上有效的。然而,較佳結構可經修改良好地適用於具 有在此範圍之外的折射率之基板。 The transparent substrate can be, for example, glass or any other transparent substrate such as plastic. The calculated refractive index range of the preferred structure is generally effective for a transparent substrate having a refractive index (n s ) of approximately 1.48 to 1.53 when the external ambient medium is air. However, the preferred structure can be modified to be suitable for substrates having a refractive index outside this range.

所揭示的物件之多層幾何形狀係使用有效介質理論來模型化。此模型已獲證實與浸塗奈米粒子塗層之所量測的反射具有極佳一致性。假設基板折射率(ns)為1.51且粒子折射率(np)為1.46,針對各種高折射率黏合劑層厚度(0至100xD)、折射率(1.55至1.75),及間距值(1xD至1.3xD)來模擬反射性。隨後在各厚度-折射率-間距值下,使用光譜廣度、平坦度及總反射程度之量度來評估反射性光譜。 The multilayer geometry of the disclosed objects is modeled using effective medium theory. This model has been shown to have excellent agreement with the measured reflectance of the dip coated nanoparticle coating. The substrate refractive index (n s ) is assumed to be 1.51 and the particle refractive index (n p ) is 1.46 for various high refractive index adhesive layer thicknesses (0 to 100xD), refractive index (1.55 to 1.75), and pitch values (1xD to 1.3xD) to simulate reflectivity. The reflectance spectra were then evaluated using a measure of spectral breadth, flatness, and total reflectance at each thickness-refractive-pitch value.

第2A及2B圖展示具有多層AR塗層之示範性AR物件的視圖(2A為側視圖;2B為頂視圖),該多層AR塗層包括具有呈非緊密堆積六方排列的奈米粒子之奈米粒子單層。 2A and 2B show views of an exemplary AR article having a multilayer AR coating (2A is a side view; 2B is a top view), the multilayer AR coating comprising nanoparticles having nanoparticles in a non-close packed hexagonal arrangement Single layer of particles.

第3圖展示針對各種間距/直徑值及高折射率黏合劑層厚度的塗層效能之圖解,該高折射率黏合劑層厚度係針對1.6之高黏合劑折射率值正規化為粒子直徑。陰影等高線區域展示其中反射性低於0.5%的光譜部分之平均反射性;最暗陰影指示較低值。黑色等高線對應於反射性低於0.5%的光譜之寬度範圍;此光譜寬度正規化為粒子直徑。用卵形線標記的區域指示較佳設計空間或區,其中可在約2.5xD範圍內達成小於0.5%反射性,且在此譜帶範圍內達成小於0.2%之平均反射性。反射性尺度展示於右側。 Figure 3 shows an illustration of coating performance for various pitch/diameter values and high refractive index adhesive layer thicknesses normalized to particle diameters for a high adhesion index value of 1.6. The shaded contour regions show the average reflectivity of the portion of the spectrum where the reflectivity is less than 0.5%; the darkest shading indicates a lower value. The black contour corresponds to a range of widths of the spectrum with a reflectivity below 0.5%; this spectral width is normalized to the particle diameter. The area marked with the oval line indicates a preferred design space or zone in which less than 0.5% reflectivity can be achieved in the range of about 2.5 x D and an average reflectance of less than 0.2% is achieved over this band. Reflective scales are shown on the right.

第3圖為就1.6之黏合劑層折射率而言,相對間距(p)及黏合劑層厚度(g)的反射性圖解之實例。自此圖解,技藝人士可判定本揭示內容之較佳實施例為例如約1.15至約1.25之間距/D,及1xD至2xD或1.3xD至1.8xD之層厚度(g)。 Fig. 3 is a diagram showing an example of the reflectivity of the relative pitch (p) and the thickness (g) of the adhesive layer in terms of the refractive index of the adhesive layer of 1.6. From this illustration, the skilled artisan can determine that preferred embodiments of the present disclosure are, for example, between about 1.15 and about 1.25/D, and a layer thickness (g) of 1 x D to 2 x D or 1.3 x D to 1.8 x D.

第4A及4B圖展示取自第3圖之較佳設計空間的反射性光譜之實例。第4A圖展示對於平均奈米粒子間距(p)等於1.2乘以1.2奈米之球直徑(D)且高折射率層厚度為1.6乘以D之光譜。第4B圖為相同解決方案,但針對100nm直徑奈米粒子來展示,其中D等於100奈米,此解決方案在光譜之可見光部分中產生低反射帶。 Figures 4A and 4B show examples of reflective spectra taken from the preferred design space of Figure 3. Figure 4A shows the spectrum for a sphere diameter (D) with an average nanoparticle spacing (p) equal to 1.2 times 1.2 nm and a high refractive index layer thickness of 1.6 times D. Figure 4B is the same solution, but for 100 nm diameter nanoparticles, where D is equal to 100 nm, this solution produces a low reflection band in the visible portion of the spectrum.

第4A圖的反射性光譜具有等於1.2的間距/D、等於1.6的折射率(ng)及等於1.6的厚度/D。常常希望獲得具有在可見光波長下具有良好效能的AR塗層,以使得技藝人士可選擇例如等於100nm的D、等於1.6的ng、等於160nm的厚度及等於1.2的間距/D來用於此相同設計結構,從而得到自450nm至650nm的為0.14%的平均反射性。表1列出此光譜中落在給定反射性截止點下方的寬度。 The reflectance spectrum of Fig. 4A has a pitch /D equal to 1.2, a refractive index (n g ) equal to 1.6, and a thickness /D equal to 1.6. It is often desirable to obtain an AR coating having good performance at a visible light having a wavelength of, for example, be selected so that the person skill D is equal to 100nm, is equal to n g 1.6, equal to the thickness of 160nm and is equal to the pitch of 1.2 / D to be used for this same The structure was designed such that an average reflectance of 0.14% from 450 nm to 650 nm was obtained. Table 1 lists the widths in this spectrum that fall below a given reflectance cutoff point.

對於具有1.55至1.75之高折射率的中間黏合劑層而言,矽石奈米球之單層中的平均間距(p)可例如在1xD與1.3xD之間,且較佳為1.15xD至1.25xD。高折射率層之厚度(t)可為 例如1xD至2xD,且更佳為1.3xD至1.8xD。低反射性效能可用較厚中間黏合劑層來達成,但光譜對此等較厚中間層方法而言傾向於較不平坦。然而,平坦的光譜回應通常更合乎需要。球形奈米粒子或奈米球之直徑(D)可經選擇以在所要波長範圍內達成低反射。一些高折射率黏合劑層折射率之示範性較佳參數給定於表2中。 For an intermediate binder layer having a high refractive index of 1.55 to 1.75, the average pitch (p) in a single layer of the vermiculite nanospheres may be, for example, between 1 x D and 1.3 x D, and preferably 1.15 x D to 1.25. xD. The thickness (t) of the high refractive index layer can be For example, 1xD to 2xD, and more preferably 1.3xD to 1.8xD. Low reflectivity performance can be achieved with a thicker intermediate binder layer, but the spectrum tends to be less flat for such thicker interlayer methods. However, a flat spectral response is usually more desirable. The diameter (D) of the spherical nanoparticle or nanosphere can be selected to achieve low reflection over the desired wavelength range. Exemplary preferred parameters for the refractive index of some high refractive index adhesive layers are given in Table 2.

第5圖展示比較兩個粒子塗佈表面之模型化反射性光譜的圖。一個表面(500)具有100nm奈米粒子(例如矽石粒子),該等粒子直接沈積於基板上且不具有黏合劑層。不具有黏合劑層之粒子塗佈表面具有等於1.51的基板折射率。具有100nm奈米粒子(例如與表面(500)中相同的矽石粒子)及黏合劑層(亦即具有高折射率之中間黏合劑層,SiO2-TiO2溶膠-凝膠摻合物)之另一粒子塗佈表面(510)為第4圖的較佳設計結構之實例。將奈米粒子球沈積於具有等於1.6的折射率(ng)之高折射率黏合劑層上使光譜之低反射性部分加寬且使整體反射性降低。 Figure 5 shows a graph comparing the modeled reflectance spectra of the two particle coated surfaces. One surface (500) has 100 nm nanoparticles (e.g., vermiculite particles) that are deposited directly on the substrate without a binder layer. The particle coated surface without the binder layer has a refractive index of the substrate equal to 1.51. Having 100 nm nanoparticle (for example, the same vermiculite particle as in surface (500)) and a binder layer (ie, an intermediate binder layer having a high refractive index, SiO 2 -TiO 2 sol-gel blend) Another particle coated surface (510) is an example of a preferred design of Figure 4. The deposition of nanoparticle spheres on a high refractive index adhesive layer having a refractive index ( ng ) equal to 1.6 broadens the low reflectivity portion of the spectrum and reduces overall reflectivity.

第6A及6B圖展示提供第5圖中所示的兩個實例之光譜寬度對入射角(AOI)之比較的圖。第6A圖之曲線圖展示 低於0.5%反射性的光譜寬度(以nm計),其中曲線(610)包括黏合劑層,且曲線(600)不包括黏合劑層。第6B圖之曲線圖展示針對1%寬度反射性截止點之相同結果,其中曲線(630)包括黏合劑層,且曲線(620)不包括黏合劑層。此等結果證明,藉由所揭示的物件及方法為可達成改良的角效能。 Figures 6A and 6B show graphs providing a comparison of spectral width versus angle of incidence (AOI) for the two examples shown in Figure 5. Figure 6A shows the graph A spectral width (in nm) of less than 0.5% reflectivity, wherein the curve (610) comprises a layer of adhesive and the curve (600) does not comprise a layer of adhesive. The graph of Figure 6B shows the same result for a 1% width reflective cutoff point, where curve (630) includes the adhesive layer and curve (620) does not include the adhesive layer. These results demonstrate that improved angular performance can be achieved by the disclosed objects and methods.

第7A至7E圖提供針對表3中所列出的一些中間黏合劑層值的示範性%反射性光譜,該等中間黏合劑層具有1.55(第7A圖)至1.75(第7E圖)的遞增折射率。 Figures 7A through 7E provide exemplary % reflectance spectra for some of the intermediate binder layer values listed in Table 3, with the intermediate binder layer having an increment of 1.55 (Fig. 7A) to 1.75 (Fig. 7E) Refractive index.

第8圖提供具有玻璃基板(810)、奈米粒子單層(830)之另一示範性物件(800)的示意圖,該單層部分地下沈入或浸入相對高折射率黏合劑層(820)中。為改良AR塗層之硬度,如第8圖中所示,將奈米球部分地沈入黏合劑層中可為合乎需要的。此舉可藉由例如以下步驟完成:在將球體沈積於表面上之後添加黏合劑之層,或球體可在例如熱處理步驟期間沈入層中。在奈米粒子部分地沈入黏合劑層中的情況下,可能得到寬譜帶、低反射性效能。 Figure 8 provides a schematic illustration of another exemplary article (800) having a glass substrate (810), a nanoparticle monolayer (830) that is submerged or immersed in a relatively high refractive index adhesive layer (820). in. To improve the hardness of the AR coating, as shown in Figure 8, it may be desirable to partially deposit the nanospheres into the adhesive layer. This can be accomplished, for example, by adding a layer of binder after depositing the sphere onto the surface, or the sphere can sink into the layer during, for example, a heat treatment step. In the case where the nanoparticles are partially sunk into the binder layer, it is possible to obtain a broad band and low reflectivity.

第9A及9B圖展示低反射性結構之示範性光譜,其中奈米球部分地浸入黏合劑層中。球體可藉由下沈如曲線圖圖例(右側)中所給出的直徑分數來下沈。第9A圖之曲線圖展 示下沈粒子導致低反射性區域移位至較短波長,且正規化為奈米粒子球直徑(D)的反射性帶寬亦減小。第9B圖之曲線圖展示現針對目標為可見光譜中的低反射性的奈米粒子球直徑(D)所繪製光譜的相同結果。因為下沈愈多所需直徑愈大,所以低反射性區域之實際帶寬隨奈米粒子下沈而稍微增大。所使用的直徑(以nm計)與圖例中的下沈分數(右側)一起給出。展示於第9A及9B圖中的所有模擬皆使用具有1.6之折射率的中間黏合劑層。此等光譜之其他數於表4中給出。 Figures 9A and 9B show exemplary spectra of low reflectivity structures in which the nanospheres are partially immersed in the adhesive layer. The sphere can be sunk by sinking as indicated by the diameter fraction given in the graph legend (right side). Curve diagram of Figure 9A The sinking particles are shown to cause the low reflectivity regions to shift to shorter wavelengths, and the reflective bandwidth normalized to the nanoparticle sphere diameter (D) is also reduced. The graph of Figure 9B shows the same result for the spectrum plotted for the low reflectivity nanoparticle sphere diameter (D) in the visible spectrum. Since the larger the sinking, the larger the diameter required, the actual bandwidth of the low-reflectivity region increases slightly as the nanoparticle sinks. The diameter used (in nm) is given together with the sinking fraction (right side) in the legend. All of the simulations shown in Figures 9A and 9B used an intermediate binder layer having a refractive index of 1.6. The other numbers of these spectra are given in Table 4.

特定參數係取自針對粒子下沈之各層高(level)的另一較佳設計空間:其中t/D為黏合劑層厚度(t)與粒子直徑之比率(D);g/D為諸如球體的奈米微粒以球體直徑之分數計已下沈的量,其中g為粒子沈入黏合劑層中的距離,D為奈米粒子之標稱直徑;p為間距;「0.5% wid」為其中反射性低於0.5%的光譜寬度;且「Ave Refl」係指位於0.5%反射性以下的光譜之平均反射性。 The specific parameters are taken from another preferred design space for the level of each layer of particle sinking: where t/D is the ratio of the thickness of the adhesive layer (t) to the diameter of the particles (D); g/D is such as a sphere The nanoparticle is a sinking amount of the sphere diameter, where g is the distance the particle sinks into the binder layer, D is the nominal diameter of the nanoparticle; p is the spacing; "0.5% wid" is The reflectance is less than 0.5% of the spectral width; and "Ave Refl" refers to the average reflectance of the spectrum below 0.5% reflectivity.

如藉由第9圖的光譜所示,合乎需要的AR效能可在奈米球下沈0至0.33xD,且甚至高達0.5xD的情況下達成。使粒子沈入高折射率黏合劑層中的確稍微地改變所要設計空 間,且對於給定粒子直徑而言,例如,低反射性區域由於下沈分數增大而移位至較短波長。再參考第9A圖,有必要隨下沈分數增大而增大奈米球直徑,以便維持相同波長帶中的低反射性效能。在此情況下,儘管較大下沈分數稍微傾向於較大帶寬,但光譜帶寬大部分保持不變。 As shown by the spectrum of Figure 9, the desirable AR performance can be achieved with sinking of the nanospheres from 0 to 0.33 x D, and even up to 0.5 x D. Sinking the particles into the high-refractive-index adhesive layer does slightly change the design space. In the meantime, and for a given particle diameter, for example, the low reflectivity region shifts to a shorter wavelength due to an increase in the sinking fraction. Referring again to Figure 9A, it is necessary to increase the diameter of the nanosphere as the sinking fraction increases to maintain low reflectivity in the same wavelength band. In this case, although the larger sinking score is slightly inclined to a larger bandwidth, the spectral bandwidth remains largely unchanged.

本揭示內容之製造方法不受特定限制。在實施例中,黏合劑層塗層可藉由此項技術中已知的各種薄膜塗佈方法中之任何方法來沈積於透明基板上,該等方法包括例如熱蒸發、電子束蒸發、DC濺鍍、反應性AC濺鍍、CVD、基於液體的溶膠-凝膠或聚合物塗佈、旋塗、浸塗、噴塗、狹槽/狹縫塗佈、輥塗及類似塗佈方法或其組合。作為黏合劑層塗層的黏合劑層之材料可包括例如:聚合物,諸如丙烯酸酯聚合物、聚酯、聚醯亞胺;奈米粒子填充材料;及無機物,諸如SiO2-TiO2摻合物、SiOx-SiNy摻合物(參見例如Nanoscale Research Letters,2012年2月,7:124)、Al2O3、諸如AlOxNy、SiAlxOyNz、Si3N4、TiN、TiNwOv(參見例如美國專利申請公開案第2011/0020638號)的氮化物及氮氧化物及類似材料或其組合。 The manufacturing method of the present disclosure is not particularly limited. In embodiments, the adhesive layer coating can be deposited on a transparent substrate by any of a variety of film coating methods known in the art, including, for example, thermal evaporation, electron beam evaporation, DC sputtering. Plating, reactive AC sputtering, CVD, liquid based sol-gel or polymer coating, spin coating, dip coating, spray coating, slot/slot coating, roll coating, and similar coating methods, or combinations thereof. The material of the adhesive layer as the adhesive layer coating layer may include, for example, a polymer such as an acrylate polymer, a polyester, a polyimide, a nanoparticle filling material, and an inorganic substance such as SiO 2 -TiO 2 blending. , SiOx-SiNy blend (see, for example, Nanoscale Research Letters , February 2012, 7:124), Al 2 O 3 , such as AlOxNy, SiAlxOyNz, Si3N4, TiN, TiNwOv (see, for example, US Patent Application Publication No. 2011) /0020638) nitrides and nitrogen oxides and similar materials or combinations thereof.

在實施例中,黏合劑層可由例如特製為具有1.60之折射率且具有100nm至150nm之厚度(t)的SiO2-TiO2溶膠-凝膠摻合物形成。此溶膠-凝膠黏合劑層或塗層可藉由以下方式來製備:例如浸塗、旋塗、噴塗或類似方法,且隨後在150℃至550℃下固化。隨後,可將奈米粒子單層沈積於SiO2-TiO2層之頂部上。奈米粒子單層可使用例如浸塗、旋塗、噴塗及 類似方法或其組合自水性懸浮液或基於溶劑的懸浮液沈積。奈米粒子單層可視需要藉由例如熱燒結來熔合至高折射率黏合劑層之表面。奈米粒子單層可視需要藉由例如於粒子之表面上或於黏合劑層與奈米粒子之間的界面處例如增加極薄的層來熔合至高折射率黏合劑層之表面。藉由例如浸塗或噴塗另一材料所施加的例如矽烷、聚合物、共聚物、黏著劑、矽氧烷、溶膠-凝膠SiO2材料或類似材料之極薄(諸如具有1nm至20nm之厚度)的層可充當額外或第二黏合劑層。 In an embodiment, the adhesive layer may be formed, for example, of a SiO 2 -TiO 2 sol-gel blend tailored to have a refractive index of 1.60 and a thickness (t) of from 100 nm to 150 nm. The sol-gel adhesive layer or coating can be prepared by, for example, dip coating, spin coating, spray coating or the like, and then cured at 150 ° C to 550 ° C. Subsequently, the nanoparticles can be deposited in a single layer on top of the SiO 2 -TiO 2 layer. The nanoparticle monolayer can be deposited from an aqueous suspension or a solvent based suspension using, for example, dip coating, spin coating, spray coating, and the like. The single layer of nanoparticle can be fused to the surface of the high refractive index adhesive layer by, for example, thermal sintering. The single layer of nanoparticle can be fused to the surface of the high refractive index adhesive layer by, for example, coating the surface of the particle or at the interface between the adhesive layer and the nanoparticle, for example, by adding an extremely thin layer. Very thin (such as having a thickness of 1 nm to 20 nm) such as decane, polymer, copolymer, adhesive, decane, sol-gel SiO 2 material or the like applied by, for example, dip coating or spraying another material The layer can serve as an additional or second layer of adhesive.

在實施例中,奈米粒子單層可使用例如浸塗、旋塗、噴塗及類似方法或其組合首先形成於鹼金屬矽酸鹽玻璃基板上。奈米粒子單層可視需要經由熱燒結來熔合至鹼金屬矽酸鹽玻璃之表面。鹼金屬矽酸鹽玻璃可隨後視需要予以化學強化,該化學強化係藉由例如使玻璃中之較小離子與較大天然離子進行離子交換,例如使天然鈉離子與鉀離子進行離子交換來達成。最後,奈米粒子單層下方的玻璃基板之折射率可藉由在含具有高相對電容率的例如銀粒子之金屬離子的浴中離子交換來提高。此等離子交換反應已獲證實可將鹼金屬矽酸鹽之折射率自例如1.51提高至1.61(參見例如:R.Araujo,「Colorless glasses containing ion-exchanged silver」Applied Optics,v.31,25,第5221-5224頁)。為使用離子交換方法產生高折射率材料之薄層,在低溫下進行離子交換歷時短期時間為合乎需要的,例如溫度小於450℃,或甚至小於350℃,諸如250℃至400℃,且歷時小於1小時、小於20分鐘,或甚至小於5分鐘,諸如1分鐘至60分鐘之時間間隔,包括中間 值及範圍。在一些情況下,在低溫下使用靜電驅動離子交換來形成尖銳擴散分佈可為較佳的。 In an embodiment, the nanoparticle monolayer may be first formed on an alkali metal tellurite glass substrate using, for example, dip coating, spin coating, spray coating, and the like, or a combination thereof. The single layer of nanoparticle can be fused to the surface of the alkali metal tellurite glass via thermal sintering. The alkali metal silicate glass can then be chemically strengthened as needed by, for example, ion exchange of smaller ions in the glass with larger natural ions, such as ion exchange of natural sodium ions with potassium ions. . Finally, the refractive index of the glass substrate below the single layer of nanoparticle can be improved by ion exchange in a bath containing metal ions such as silver particles having a high relative permittivity. This plasma exchange reaction has been shown to increase the refractive index of alkali metal citrate from, for example, 1.51 to 1.61 (see, for example, R. Araujo, "Colorless glasses containing ion-exchanged silver" Applied Optics , v. 31, 25, 5221-5224 pages). In order to produce a thin layer of high refractive index material using an ion exchange process, it is desirable to carry out ion exchange at low temperatures for a short period of time, such as a temperature of less than 450 ° C, or even less than 350 ° C, such as 250 ° C to 400 ° C, and a duration of less than 1 hour, less than 20 minutes, or even less than 5 minutes, such as a time interval of 1 minute to 60 minutes, including intermediate values and ranges. In some cases, it may be preferred to use electrostatically driven ion exchange at low temperatures to form a sharp diffusion profile.

在實施例中,玻璃基板或玻璃物件可包含以下一者,基本上由以下一者組成,或由以下一者組成:鈉鈣矽酸鹽玻璃、鹼土金屬鋁矽酸鹽玻璃、鹼金屬鋁矽酸鹽玻璃、鹼金屬硼矽酸鹽玻璃及其組合。在實施例中,玻璃物件可為例如具有以下組成的鹼金屬鋁矽酸玻璃:60-72mol% SiO2、9-16mol% Al2O3、5-12mol% B2O3、8-16mol% Na2O及0-4mol% K2O,其中比率 其中鹼金屬改質劑為鹼金屬氧化物。在實施例中,鹼金屬鋁矽酸鹽玻璃基板可為例如:61-75mol% SiO2、7-15mol% Al2O3、0-12mol% B2O3、9-21mol% Na2O、0-4mol% K2O、0-7mol% MgO及0-3mol% CaO。在實施例中,鹼金屬鋁矽酸鹽玻璃基板可為例如:60-70mol% SiO2、6-14mol% Al2O3、0-15mol% B2O3、0-15mol% Li2O、0-20mol% Na2O、0-10mol% K2O、0-8mol% MgO、0-10mol% CaO、0-5mol% ZrO2、0-1mol% SnO2、0-1mol% CeO2、小於50ppm As2O3及小於50ppm Sb2O3;其中12mol%Li2O+Na2O+K2O20mol%且0mol%MgO+CaO10mol%。在實施例中,鹼金屬鋁矽酸鹽玻璃基板可為例如:64-68mol% SiO2、12-16mol% Na2O、8-12mol% Al2O3、0-3mol% B2O3、2-5mol% K2O、4-6mol% MgO及0-5mol% CaO,其中:66mol%SiO2+B2O3+CaO69mol%; Na2O+K2O+B2O3+MgO+CaO+SrO>10mol%;5mol%MgO+CaO+SrO8mol%;(Na2O+B2O3)-Al2O3 2mol%;2mol%Na2O-Al2O3 6mol%;且4mol%(Na2O+K2O)-Al2O3 10mol%。在實施例中,鹼金屬鋁矽酸鹽玻璃基板可為例如:50-80wt% SiO2、2-20wt% Al2O3、0-15wt% B2O3、1-20wt% Na2O、0-10wt% Li2O、0-10wt% K2O,及0-5wt%(MgO+CaO+SrO+BaO)、0-3wt%(SrO+BaO)及0-5wt%(ZrO2+TiO2),其中0(Li2O+K2O)/Na2O0.5。在實施例中,鹼金屬鋁矽酸鹽玻璃可例如實質上不含鋰。在實施例中,鹼金屬鋁矽酸鹽玻璃可例如實質上不含以下至少一者:砷、銻、鋇或其組合。在實施例中,玻璃可視需要用0至2mol%至少一種澄清劑分批處理,該澄清劑諸如Na2SO4、NaCl、NaF、NaBr、K2SO4、KCl、KF、KBr、SnO2及類似物質或其組合。 In an embodiment, the glass substrate or the glass article may comprise one or more of or consist of one of the following: sodium calcium silicate glass, alkaline earth metal aluminosilicate glass, alkali metal aluminum bismuth Acid glass, alkali metal borosilicate glass, and combinations thereof. In an embodiment, the glass article may be, for example, an alkali metal aluminosilicate glass having the following composition: 60-72 mol% SiO 2 , 9-16 mol% Al 2 O 3 , 5-12 mol% B 2 O 3 , 8-16 mol% Na 2 O and 0-4 mol% K 2 O, of which ratio The alkali metal modifier is an alkali metal oxide. In an embodiment, the alkali metal aluminosilicate glass substrate may be, for example, 61-75 mol% SiO 2 , 7-15 mol% Al 2 O 3 , 0-12 mol% B 2 O 3 , 9-21 mol% Na 2 O, 0-4 mol% K 2 O, 0-7 mol% MgO, and 0-3 mol% CaO. In an embodiment, the alkali metal aluminosilicate glass substrate may be, for example, 60-70 mol% SiO 2 , 6-14 mol% Al 2 O 3 , 0-15 mol% B 2 O 3 , 0-15 mol% Li 2 O, 0-20 mol% Na 2 O, 0-10 mol% K 2 O, 0-8 mol% MgO, 0-10 mol% CaO, 0-5 mol% ZrO 2 , 0-1 mol% SnO 2 , 0-1 mol% CeO 2 , less than 50 ppm As 2 O 3 and less than 50 ppm Sb 2 O 3 ; 12 mol% Li 2 O+Na 2 O+K 2 O 20 mol% and 0 mol% MgO+CaO 10 mol%. In an embodiment, the alkali metal aluminosilicate glass substrate may be, for example, 64-68 mol% SiO 2 , 12-16 mol% Na 2 O, 8-12 mol% Al 2 O 3 , 0-3 mol% B 2 O 3 , 2-5 mol% K 2 O, 4-6 mol% MgO, and 0-5 mol% CaO, of which: 66 mol% SiO 2 +B 2 O 3 +CaO 69 mol%; Na 2 O+K 2 O+B 2 O 3 +MgO+CaO+SrO>10 mol%; 5 mol% MgO+CaO+SrO 8mol%; (Na 2 O + B 2 O 3) -Al 2 O 3 2 mol%; 2 mol% Na 2 O-Al 2 O 3 6 mol%; and 4 mol% (Na 2 O+K 2 O)-Al 2 O 3 10 mol%. In an embodiment, the alkali metal aluminosilicate glass substrate may be, for example, 50-80 wt% SiO 2 , 2-20 wt% Al 2 O 3 , 0-15 wt% B 2 O 3 , 1-20 wt% Na 2 O, 0-10wt% Li 2 O, 0-10wt% K 2 O, and 0-5wt% (MgO+CaO+SrO+BaO), 0-3wt% (SrO+BaO), and 0-5wt% (ZrO 2 +TiO 2 ), where 0 (Li 2 O+K 2 O)/Na 2 O 0.5. In an embodiment, the alkali metal aluminosilicate glass may, for example, be substantially free of lithium. In embodiments, the alkali aluminosilicate glass may, for example, be substantially free of at least one of: arsenic, antimony, bismuth, or combinations thereof. In an embodiment, the glass may optionally be treated in batches with 0 to 2 mol% of at least one fining agent such as Na 2 SO 4 , NaCl, NaF, NaBr, K 2 SO 4 , KCl, KF, KBr, SnO 2 and Similar substances or combinations thereof.

在實施例中,所選擇的玻璃可為例如可下拉的,亦即可藉由諸如此項技術中已知的狹槽拉伸或熔合拉伸製程的方法形成。在此等情況下,玻璃可具有至少130千泊之液相黏度。鹼金屬矽鋁玻璃之實例描述於以下各者中:Ellison等人於2007年7月31日申請的共同擁有且讓渡的美國專利申請案第11/888,213號,標題為「Down-Drawable,Chemically Strengthened Glass for Cover Plate」,該案主張2007年5月22日申請的美國臨時申請案60/930,808之優先權;Dejneka等人於2008年11月25日申請的美國專利申請案12/277,573,標題為「Glasses Having Improved Toughness and Scratch Resistance」,該案主張2007年11月29日申請的美國臨時申請案61/004,677之優先權;Dejneka等人於2009年2月25日申請的美國專利申請案12/392,577,標題為「Fining Agents for Silicate Glasses」,該案主張2008年2月26日申請的美國臨時申請案第61/067,130號之優先權;Dejneka等人於2009年2月26日申請的美國專利申請案第12/393,241號,標題為「Ion-Exchanged,Fast Cooled Glasses」,該案主張2008年2月29日申請的美國臨時申請案第61/067,732號之優先權;Barefoot等人於2009年8月7日申請的美國專利申請案第12/537,393號,標題為「Strengthened Glass Articles and Methods of Making」,該案主張2008年8月8日申請的標題為「Chemically Tempered Cover Glass」的美國臨時申請案第61/087,324號之優先權;Barefoot等人於2009年8月21日申請的美國臨時專利申請案第61/235,767號,標題為「Crack and Scratch Resistant Glass and Enclosures Made Therefrom」;及Dejneka等人於2009年8月21日申請的美國臨時專利申請案第61/235,762號,標題為「Zircon Compatible Glasses for Down Draw」。 In an embodiment, the selected glass can be, for example, pullable, or formed by a slot stretching or fusion stretching process such as is known in the art. In such cases, the glass can have a liquid phase viscosity of at least 130 kilopoise. An example of an alkali metal bismuth aluminide glass is described in the following: U.S. Patent Application Serial No. 11/888,213, filed on Jul. 31, 2007. </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; "Glasses Having Improved Toughness and "Scratch Resistance", which claims the priority of U.S. Provisional Application No. 61/004,677, filed on November 29, 2007, which is incorporated herein by reference. Agents for Silicate Glasses, which claims priority to U.S. Provisional Application No. 61/067,130, filed on Feb. 26, 2008; U.S. Patent Application Serial No. 12/393,241, filed on Feb. 26, 2009. No., entitled "Ion-Exchanged, Fast Cooled Glasses", which claims priority to US Provisional Application No. 61/067,732, filed on February 29, 2008; Barefoot et al., filed on August 7, 2009 US Patent Application Serial No. 12/537,393, entitled "Strengthened Glass Articles and Methods of Making", which claims U.S. Provisional Application No. 61/087,324, entitled "Chemically Tempered Cover Glass", filed on August 8, 2008. Priority No. 61/235,767 to Barrefoot et al., filed on August 21, 2009, entitled "Crack and Scratch Resistant Glass and Enclosures Made Therefrom"; US Provisional Patent Application Dejneka et al., August 21, 2009 Application No. 61 / 235,762, titled "Zircon Compatible Glasses for Down Draw."

以下實例中所述的玻璃表面及玻璃片可使用任何適合的粒子可塗佈玻璃基板或類似基板,且可包括例如表5中所列的玻璃組合物1至11或其組合。 The glass surfaces and glass sheets described in the following examples can be coated with a glass substrate or the like using any suitable particles, and can include, for example, the glass compositions 1 to 11 listed in Table 5, or a combination thereof.

實例Instance

以下實例用於更全面地描述使用上述揭示內容之方式,且進一步闡述預期用於實施本揭示內容之各種態樣的最佳方式。應理解,此等實例不限制本揭示內容之範疇,而是出於說明目的來呈現。工作實例進一步描述如何製備本揭示內容之物件。 The following examples are provided to more fully describe the manner in which the above disclosure is used, and further illustrate the best mode contemplated for implementing various aspects of the present disclosure. It should be understood that these examples do not limit the scope of the disclosure, but are presented for illustrative purposes. Working examples further describe how to make the articles of the present disclosure.

粒子塗佈表面之製備Preparation of particle coated surface 實例1(預示例)Example 1 (pre-example)

高折射率黏合劑層之製備。將200mL甲醇與25mL TEOS(正矽酸四乙酯或四乙氧基矽烷,Aldrich)及25mL 0.01M HCl於水中混合,得到具有約3之pH的溶液。將此混合物在回流加熱下、在約65℃下攪拌2小時,形成溶液「A」。單獨地,將126.5mL 2-乙氧基乙醇與2.86mL DI水、0.64mL 69% HNO3及18.18mL異丙氧化Ti(IV)以彼順序混合同時攪拌,且將完全混合物在環境條件下攪拌1小時,形成溶液「B」。接著,將1.6mL溶液「B」與1.8mL溶液「A」及2.0mL 2-丙醇混合以形成塗層溶液「C」。將塗層溶液「C」以約575rpm旋塗至玻璃基板(諸如Corning GorillaTM或 Corning EagleXGTM玻璃)上歷時60秒,隨後在410℃下、於空氣中固化1小時15分鐘,由此形成具有約1.67之相對高折射率(ng)及約75nm之厚度(t)的黏合劑層塗層。此黏合劑塗佈程序可重複第二次以形成約150nm之塗層厚度。可利用對濃度及塗佈條件的稍微修改來製備其他黏合劑層塗層厚度。 Preparation of a high refractive index binder layer. 200 mL of methanol was mixed with 25 mL of TEOS (tetraethyl ortho-decanoate or tetraethoxydecane, Aldrich) and 25 mL of 0.01 M HCl in water to give a solution having a pH of about 3. The mixture was stirred under reflux at about 65 ° C for 2 hours to form a solution "A". Separately, 126.5 mL of 2-ethoxyethanol was mixed with 2.86 mL of DI water, 0.64 mL of 69% HNO 3 and 18.18 mL of Ti(IV) isopropoxide, while stirring, and the complete mixture was stirred under ambient conditions. The solution "B" was formed in 1 hour. Next, 1.6 mL of the solution "B" was mixed with 1.8 mL of the solution "A" and 2.0 mL of 2-propanol to form a coating solution "C". The coating solution "C" about 575rpm spin-coated onto a glass substrate (such as Corning Gorilla TM glass or Corning EagleXG TM) on for 60 seconds, followed by curing at 410 deg.] C in air for 1 hour and 15 minutes, thereby forming a relatively high refractive index of approximately 1.67 (n g) and thickness (t) of the adhesive layer of the coating of about 75nm. This adhesive coating procedure can be repeated a second time to form a coating thickness of about 150 nm. Other adhesive layer coating thicknesses can be prepared with slight modifications to the concentration and coating conditions.

實例2(預示例)Example 2 (pre-example)

奈米微粒塗層之製備。將直徑大致為100nm之矽石奈米球分散於2-丙醇中以形成約1.5%固體含量之懸浮液。將懸浮液之pH藉由添加HCl調整至約3.5。若需要,則可將溶液超聲處理,以促成良好的粒子分散。玻璃試件樣品可使用30mm/min至35mm/min之抽出速度於奈米粒子懸浮液中浸塗,以於玻璃表面上形成100nm SiO2奈米粒子之實質上單層。此程序可在需要時藉由調整pH、固體含量、溫度、濕度及浸塗速度來修改,以於上文所述的第一黏合劑層之頂部上形成類似塗層,且可藉由在400℃至600℃下熱處理1小時或1小時以上來將粒子燒結或部分燒結至相對高折射率黏合劑層。 Preparation of nanoparticle coatings. A vermiculite nanosphere having a diameter of approximately 100 nm was dispersed in 2-propanol to form a suspension of about 1.5% solids. The pH of the suspension was adjusted to about 3.5 by the addition of HCl. If desired, the solution can be sonicated to promote good particle dispersion. The glass test piece sample can be dip coated in a nanoparticle suspension using an extraction speed of 30 mm/min to 35 mm/min to form a substantially single layer of 100 nm SiO 2 nanoparticle on the glass surface. This procedure can be modified as needed by adjusting pH, solids content, temperature, humidity, and dip speed to form a similar coating on top of the first adhesive layer described above, and can be used at 400 The particles are sintered or partially sintered to a relatively high refractive index adhesive layer by heat treatment at ° C to 600 ° C for 1 hour or more.

實例3(預示例)Example 3 (pre-example)

微粒化表面之製備,該等微粒化表面具有鄰近粒子之間的實質上均勻間隔或離距,例如,鄰近粒子之均勻間隔及非緊密堆積六方幾何形狀。已證明最近的數種方法可用於在各種基板上製造具有粒子之間的受控間隔的非緊密堆積奈米粒子單層,包括對抗反射效應之證明。此等方法包括:平版圖案上的對流組裝(convective assembly)(參見Hoogenboom等人,「Template-Induced Growth of Close-Packed and Non-Close-Packed Colloidal Crystals during Solvent Evaporation」,Nano Letters,4,2,第205頁,2004.);水凝膠球之浸塗,可使該等水凝膠球在沈積之後的乾燥或加熱期間收縮(參見Zhang等人,「Two-Dimensional Non-Close-Packing Arrays Derived from Self-Assembly of Biomineralized Hydrogel Spheres and Their Patterning Applications」,Chem.Mater.17,第5268頁,2005,以及第3圖及相關聯的文本);SiO2奈米球之旋塗及剪切對準,視需要將另一材料添加至此模板(參見Venkatesh等人,「Generalized Fabrication of Two-Dimensional Non-Close-Packed Colloidal Crystals」,Langmuir,23,第8231頁,2007,以及第5圖及相關聯的文本);及在空氣-水或烷烴-水界面處靜電受控自組裝同時轉移至基板,視需要使用極薄(約17nm)的黏著劑層(參見Ray等人,「Submicrometer Surface Patterning Using Interfacial Colloidal Particle Self-Assembly」,Langmuir,25,第7265頁,2009,以及第8圖及相關聯的文本;Bhawalkar等人,「Development of a Colloidal Lithography Method for Patterning Nonplanar Surfaces」,Langmuir,26,第16662頁,2010)。然而,此等先前的工作未指明例如粒徑、粒子間隔、沈入基板或黏合劑層中的粒子及高折射率黏合劑層之間所要關係。本揭示內容中指明此等關係,且達成可見光之極佳低反射效能,連同歸因於可選粒子下沈或燒結的增強耐久性。 The preparation of micronized surfaces having substantially uniform spacing or separation between adjacent particles, for example, uniform spacing of adjacent particles and non-close packed hexagonal geometry. Several recent methods have proven useful for fabricating non-closely packed nanoparticle monolayers with controlled spacing between particles on a variety of substrates, including proof of anti-reflective effects. These methods include: convective assembly on lithographic patterns (see Hoogenboom et al., "Template-Induced Growth of Close-Packed and Non-Close-Packed Colloidal Crystals during Solvent Evaporation", Nano Letters , 4, 2, Page 205, 2004.); dip coating of hydrogel spheres allows the hydrogel spheres to shrink during drying or heating after deposition (see Zhang et al., "Two-Dimensional Non-Close-Packing Arrays Derived From Self-Assembly of Biomineralized Hydrogel Spheres and Their Patterning Applications", Chem. Mater. 17, page 5268, 2005, and Figure 3 and associated text); spin coating and shear alignment of SiO 2 nanospheres Add another material to this template as needed (see Venkatesh et al., "Generalized Fabrication of Two-Dimensional Non-Close-Packed Colloidal Crystals", Langmuir , 23, pp. 8231, 2007, and Figure 5 and associated Text); and electrostatically controlled self-assembly at the air-water or alkane-water interface while transferring to the substrate, using an extremely thin (about 17 nm) adhesive layer as needed (see Ray et al. "Submicrometer Surface Patterning Using Interfacial Colloidal Particle Self-Assembly", Langmuir, 25, p. 7265, 2009, and Fig. 8 and associated text; Bhawalkar et al., "Development of a Colloidal Lithography Method for Patterning Nonplanar Surfaces", Langmuir, 26, p. 16662, 2010). However, such prior work does not specify the desired relationship between particle size, particle spacing, particles sinking into the substrate or binder layer, and high refractive index binder layers. These relationships are indicated in the present disclosure and achieve excellent low reflection performance of visible light, along with enhanced durability due to optional particle sinking or sintering.

100‧‧‧AR物件 100‧‧‧AR objects

110‧‧‧基板 110‧‧‧Substrate

120‧‧‧黏合劑層 120‧‧‧Binder layer

130‧‧‧奈米粒子單層 130‧‧‧Nano particle single layer

Claims (9)

一種抗反射物件,其包含:一透明基板,其具有1.48至1.53之一折射率(ns);與該基板結合的一黏合劑層,該黏合劑具有1.55至1.75之一折射率(ng);以及與該黏合劑層結合的一奈米微粒單層或近單層,該奈米微粒單層或近單層具有小於該黏合劑層之該折射率的一有效折射率(np eff)。 An antireflection article comprising: a transparent substrate having a refractive index (n s ) of 1.48 to 1.53; an adhesive layer bonded to the substrate, the adhesive having a refractive index of 1.55 to 1.75 (n g And a single or near monolayer of a nanoparticle combined with the binder layer, the nanoparticle monolayer or near monolayer having an effective refractive index (n p eff less than the refractive index of the binder layer) ). 如請求項1所述之抗反射物件,其中該奈米微粒單層之該有效折射率(np eff)為1.15至1.3。 The antireflection article of claim 1, wherein the effective refractive index (n p eff ) of the nanoparticle monolayer is from 1.15 to 1.3. 如請求項1所述之抗反射物件,其中在覆蓋400nm至700nm的可見光波長光譜之至少一部分的至少100nm之一光譜寬度範圍內,該物件之該反射性具有小於0.2%之一平均反射性。 The antireflection article of claim 1, wherein the reflectivity of the article has an average reflectance of less than 0.2% over a spectral width of at least 100 nm covering at least a portion of the visible wavelength spectrum of 400 nm to 700 nm. 如請求項1所述之抗反射物件,其中該奈米微粒單層包含呈一非緊密堆積六方幾何形狀的奈米微粒,該等奈米微粒具有1.15至1.25之一間距(p)與奈米微粒直徑(D)比率(p/D)。 The anti-reflection article of claim 1, wherein the nanoparticle monolayer comprises nanoparticles in a non-close packed hexagonal geometry having a pitch of 1.15 to 1.25 (p) and nano Particle diameter (D) ratio (p/D). 如請求項1所述之抗反射物件,其中該黏合劑具有1xD至2xD的一厚度(g),其中D為該奈米微粒平均直徑(D)。 The antireflection article of claim 1, wherein the binder has a thickness (g) of from 1 x D to 2 x D, wherein D is the average diameter (D) of the nanoparticle. 如請求項1所述之抗反射物件,其中該透明基板為一玻璃、一聚合物、一玻璃-陶瓷、一結晶氧化物、一半導體或前述物質的組合。 The antireflection article of claim 1, wherein the transparent substrate is a glass, a polymer, a glass-ceramic, a crystalline oxide, a semiconductor or a combination of the foregoing. 一種製作如請求項1所述之該抗反射物件之方法,該方法包含以下步驟:將黏合劑沈積於該基板上;沈積奈米粒子以於該黏合劑上形成該奈米微粒單層或近單層;以及將該奈米微粒單層或近單層之該等奈米粒子固定於該黏合劑層上。 A method for producing the anti-reflection article according to claim 1, the method comprising the steps of: depositing a binder on the substrate; depositing nanoparticles to form a single layer of the nanoparticle on or near the binder a single layer; and the nanoparticles of the nanoparticle monolayer or the near monolayer are immobilized on the binder layer. 如請求項7所述之方法,其中將該奈米微粒單層固定於該黏合劑層上的步驟包含:熱燒結;將一第二黏合劑沈積於該黏合劑與該所沈積奈米微粒單層之間;將一第二黏合劑沈積於該組合的黏合劑及所沈積的奈米微粒單層上;將一第二黏合劑沈積於該所沈積的奈米微粒單層之鄰近奈米微粒之間,或前述步驟的組合。 The method of claim 7, wherein the step of fixing the nanoparticle monolayer to the adhesive layer comprises: thermally sintering; depositing a second adhesive on the adhesive and the deposited nanoparticle single Between the layers; depositing a second binder on the combined binder and the deposited nanoparticle monolayer; depositing a second binder on the deposited nanoparticle monolayer adjacent to the nanoparticle Between, or a combination of the foregoing steps. 如請求項7所述之方法,該方法進一步包含以下步驟:藉由以下至少一者的離子交換來化學強化該物件:沈積該黏合劑之前該基板;該基板上之該黏合劑;將該奈米微粒單層固定於該黏合劑上之前該基板;沈積之後或固定該奈米微粒單層之後該基板,或前述的組合。 The method of claim 7, the method further comprising the step of: chemically strengthening the article by ion exchange of at least one of: the substrate before depositing the binder; the binder on the substrate; The substrate is fixed to the binder before the substrate is fixed to the binder; the substrate after deposition or after fixing the nanoparticle monolayer, or a combination of the foregoing.
TW103129982A 2013-08-30 2014-08-29 Anti-reflection article and methods thereof TW201520586A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201361872037P 2013-08-30 2013-08-30

Publications (1)

Publication Number Publication Date
TW201520586A true TW201520586A (en) 2015-06-01

Family

ID=51542460

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103129982A TW201520586A (en) 2013-08-30 2014-08-29 Anti-reflection article and methods thereof

Country Status (3)

Country Link
CN (1) CN105722923A (en)
TW (1) TW201520586A (en)
WO (1) WO2015031603A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170014755A (en) * 2015-07-31 2017-02-08 삼성전자주식회사 Display panel and display apparutus having the same
KR20180098283A (en) * 2015-12-28 2018-09-03 헨켈 아게 운트 코. 카게아아 Nano-composite anti-fingerprint coating
CN112776426B (en) * 2019-11-07 2024-06-21 埃米尔·夏伊·卢蒂安 Underground windowless side waterproof sheet film and manufacturing and using methods thereof
CN115584145A (en) * 2022-11-02 2023-01-10 合肥昊泰新材料科技有限责任公司 Preparation method of low-emissivity colored composite pigment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060074172A1 (en) * 2002-09-19 2006-04-06 Optimax Technology Corporation Antiglare and antireflection coatings of surface active nanoparticles
JP2004264327A (en) * 2003-01-22 2004-09-24 Fuji Photo Film Co Ltd Antireflection film, polarizing plate, and display device
KR20100074024A (en) * 2008-12-22 2010-07-01 니치유 가부시키가이샤 Reflection preventing film
JP2011122005A (en) * 2009-12-08 2011-06-23 Sony Corp Anti-reflection film, method for producing the same, and coating liquid of ultraviolet-curable resin material composition
AU2011298373A1 (en) * 2010-09-01 2013-04-11 Agc Flat Glass North America, Inc. Glass substrate coated with an anti-reflective layer
JP5881096B2 (en) * 2011-03-30 2016-03-09 株式会社タムロン Antireflection film and optical element
US9272947B2 (en) * 2011-05-02 2016-03-01 Corning Incorporated Glass article having antireflective layer and method of making

Also Published As

Publication number Publication date
CN105722923A (en) 2016-06-29
WO2015031603A1 (en) 2015-03-05

Similar Documents

Publication Publication Date Title
US20150062713A1 (en) Anti-reflection article and methods thereof
KR101945067B1 (en) Glass article having antireflective layer and method of making
US10358383B2 (en) Wear-resistant liquid-based coatings for glass
JP5814346B2 (en) Anti-glare surface treatment method and article thereof
TWI642705B (en) Methods and formulations for spray coating sol-gel thin films on substrates
US20150174625A1 (en) Articles with monolithic, structured surfaces and methods for making and using same
US20130133739A1 (en) Process for particle doping of scattering superstrates
CN102105540A (en) Coating formulation affording antireflection effects on transparent substrate and method for manufacturing transparent substrate with antireflection function using said coating formulation
CN108706887A (en) Anti reflection glass product and its preparation and application
TW201411227A (en) Display element having buried scattering anti-glare layer
TW201335090A (en) Reflection-resistant glass articles and methods for making and using same
TW201520586A (en) Anti-reflection article and methods thereof
FI101532B (en) Structure with a coarse transparent coating and process for its manufacture
TWI646061B (en) Low reflectivity articles and making methods thereof
JP2007241177A (en) Antireflection structure and structure
JP2004352524A (en) Low reflective article and manufacturing method therefor
CN108732655A (en) Optical module and manufacturing method, photovoltaic device
KR100517096B1 (en) Low Reflective Films and Articles Including the Same
CN116444173A (en) Glass stack, method of making the same, and window assembly including the same
TW202409609A (en) Low-reflection member, and coating liquid for low-reflection film
TWI413667B (en) Coating solution for manufacturing optical film with adjustable refractiveindex