TW201518722A - Chemical sensors with consistent sensor surface areas - Google Patents

Chemical sensors with consistent sensor surface areas Download PDF

Info

Publication number
TW201518722A
TW201518722A TW103130474A TW103130474A TW201518722A TW 201518722 A TW201518722 A TW 201518722A TW 103130474 A TW103130474 A TW 103130474A TW 103130474 A TW103130474 A TW 103130474A TW 201518722 A TW201518722 A TW 201518722A
Authority
TW
Taiwan
Prior art keywords
dielectric
opening
conductive element
chemical sensor
floating gate
Prior art date
Application number
TW103130474A
Other languages
Chinese (zh)
Other versions
TWI655429B (en
Inventor
Keith G Fife
Jordan Owens
shi-feng Li
James Bustillo
Original Assignee
Life Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Life Technologies Corp filed Critical Life Technologies Corp
Publication of TW201518722A publication Critical patent/TW201518722A/en
Application granted granted Critical
Publication of TWI655429B publication Critical patent/TWI655429B/en

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

In one embodiment, a chemical sensor is described. The chemical sensor includes a chemically-sensitive field effect transistor including a floating gate conductor having an upper surface. A material defines an opening extending to the upper surface of the floating gate conductor, the material comprising a first dielectric underlying a second dielectric. A conductive element contacts the upper surface of the floating gate conductor and extending a distance along a sidewall of the opening.

Description

具固定感測器表面積之化學感測器 Chemical sensor with fixed sensor surface area

本發明係關於用於化學分析的感測器,以及製造前述感測器之方法。 The present invention relates to a sensor for chemical analysis, and a method of manufacturing the aforementioned sensor.

有多種類型的化學感測器已用於化學過程之檢測。一種類型係化學敏感場效電晶體(chemFET)。化學敏感場效電晶體包含被通道區分隔開地源極和汲極,以及耦合至該通道區之化學敏感區域。化學敏感場效電晶體之作用係基於通道導電性的調節,其係由在敏感區域附近發生之化學反應所導致的在該敏感區域之電荷變化所引起的。前述通道導電性之調節會改變化學敏感場效電晶體之臨界電壓(threshold voltage),其可被測量並用以檢測及/或確定前述化學反應之特性。臨界電壓的測量,可例如透過施加適當之偏壓(bias voltages)於源極及汲極,然後測量通過所述化學敏感場效電晶體所產生之電流。又例如,透過驅動一已知電流通過所述化學敏感場效電晶體,然後測量在源極或汲極所產生之電壓。 There are many types of chemical sensors that have been used for the detection of chemical processes. One type is a chemically sensitive field effect transistor (chemFET). The chemically sensitive field effect transistor comprises a source and a drain separated by a channel, and a chemically sensitive region coupled to the channel region. The role of chemically sensitive field effect transistors is based on the regulation of channel conductivity caused by changes in charge in the sensitive region caused by chemical reactions occurring in the vicinity of sensitive regions. The adjustment of the conductivity of the aforementioned channel changes the threshold voltage of the chemically sensitive field effect transistor, which can be measured and used to detect and/or determine the characteristics of the aforementioned chemical reaction. The measurement of the threshold voltage can be performed, for example, by applying appropriate bias voltages to the source and drain electrodes, and then measuring the current generated by the chemically sensitive field effect transistor. For another example, by driving a known current through the chemically sensitive field effect transistor, the voltage generated at the source or drain is then measured.

離子敏感場效電晶體(ISFET)係一種類型之化學敏感場效電晶體,其在敏感區域包含一離子敏感層。分析物溶液中離子之存在會改變離子敏感層及分析物溶液間界面之表面電位,其係由於分析物溶液中離子的存在會引起表面電荷群的質子化或去質子化。在離子敏感場 效電晶體之敏感區域之表面電位改變會影響該裝置之臨界電壓,其可被測量用以指出該溶液中離子的存在及/或離子的濃度。根據檢測反應過程中離子之存在、產生或使用,離子敏感場效電晶體陣列可用以監測化學反應,例如DNA定序反應。舉例而言,參見羅斯伯格等人(Rothberg et al.)在西元2009年12月14日申請之美國專利,其申請號為12/002,291(現為美國專利號7,948,015),且其係基於西元2007年8月16日申請之美國臨時案專利申請號60/956,324、西元2007年7月10日申請之美國臨時案專利申請號60/968,748及西元2006年12月14日申請之美國臨時案專利申請號60/870,073,其通過引用的方式將全文併入本文中。更一般地,化學敏感場效電晶體或其他類型之化學感測器之大型陣列可用於在各種過程中檢測及測量各種分析物(例如,氫離子、其它離子、化合物等)之靜態及/或動態之量或濃度。該過程例如為生物或化學反應、細胞或組織培養或監測神經活性、核酸定序等。 An ion-sensitive field effect transistor (ISFET) is a type of chemically sensitive field effect transistor that contains an ion sensitive layer in a sensitive region. The presence of ions in the analyte solution changes the surface potential of the interface between the ion sensitive layer and the analyte solution due to the presence of ions in the analyte solution that can cause protonation or deprotonation of the surface charge group. Ion sensitive field The change in surface potential of the sensitive region of the effector crystal affects the threshold voltage of the device, which can be measured to indicate the presence of ions and/or the concentration of ions in the solution. An ion sensitive field effect transistor array can be used to monitor chemical reactions, such as DNA sequencing reactions, depending on the presence, generation, or use of ions during the detection reaction. For example, see Rosberg et al. (Rothberg et al.) U.S. Patent Application No. 12/002,291 (now U.S. Patent No. 7,948,015) filed on Dec. 14, 2009, and which is based on U.S. Provisional Patent Application No. 60/956,324, filed on August 16, 2007, U.S. Provisional Patent Application No. 60/968,748, filed on July 10, 2007, and U.S. Provisional Patent Application, filed on December 14, 2006 Application No. 60/870,073, which is incorporated herein in its entirety by reference. More generally, large arrays of chemically sensitive field effect transistors or other types of chemical sensors can be used to detect and measure the statics of various analytes (eg, hydrogen ions, other ions, compounds, etc.) in various processes and/or Dynamic amount or concentration. The process is, for example, biological or chemical reaction, cell or tissue culture or monitoring of neural activity, nucleic acid sequencing, and the like.

在操作大規模之化學感測器陣列時,會出現感測器輸出訊號對雜訊具有易感性之問題。具體而言,該雜訊影響下游訊號(downstream signal)處理之正確性,其係用於確定感測器所檢測之化學及/或生物過程之特性。此外,化學感測器在陣列中之性能差異導致感測器輸出訊號中不希望得到之差異,這進一步複雜化下游訊號之處理。因此,本發明希望提供一種裝置,其包含低雜訊之化學感測器,以及用於製造前述裝置之方法。 When operating a large-scale array of chemical sensors, there is a problem that the sensor output signal is susceptible to noise. Specifically, the noise affects the correctness of the downstream signal processing, which is used to determine the characteristics of the chemical and/or biological processes detected by the sensor. In addition, the difference in performance of the chemical sensor in the array results in undesirable differences in the sensor output signal, which further complicates the processing of downstream signals. Accordingly, the present invention contemplates providing an apparatus comprising a low noise chemical sensor and a method for fabricating the foregoing apparatus.

本發明之一實施例係揭露一種化學感測器,該化學感測器包含一化學敏感場效電晶體,其包含一浮動閘極導體,該浮動閘極導體具有一上表面;一材料,其定義延伸至該浮動閘極導體之該上表面之一開口,該材料包含一第一介電質,其係位於一第二介電質下方;以及一導電元件,其係接觸該浮動閘極導體之該上表面,並沿著該開口之一 側壁延伸一距離。在一示例性實施例中,該化學感測器之該開口包含位於該第一介電質中的一下部,以及位於該第二介電質中的一上部。在另一實施例中,該開口之該下部之一寬度係實質上與該上部之一寬度相同。在另一實施例中,該導電元件係共同形成該開口之一形狀。在一實施例中,該導電元件係延伸至該第二介電質之一上表面。在一示例性實施例中,該導電元件包含定義該化學感測器之一反應區域之一下部的一內表面,且該第二介電質包含定義該開口之一上部的一內表面。在一示例性實施例中,該導電元件包含一導電材料,且該導電元件之一內表面係包含該導電材料之一氧化物。在另一實施例中,該化學感測器之一感測表面包含該導電元件之一內表面。在另一實施例中,該化學敏感場效電晶體係對應在靠近該導電元件處發生一化學反應時,產生一感測器訊號。在一實施例中,該浮動閘極導體包含複數個導體,其係互相電性連接並藉由介電層而互相分離,且該浮動閘極導體係為該複數個導體中的最上層之該導體。 An embodiment of the invention discloses a chemical sensor comprising a chemically sensitive field effect transistor comprising a floating gate conductor having an upper surface; a material Defining an opening extending to the upper surface of the floating gate conductor, the material comprising a first dielectric underlying a second dielectric; and a conductive element contacting the floating gate conductor The upper surface and along one of the openings The side walls extend a distance. In an exemplary embodiment, the opening of the chemical sensor includes a lower portion in the first dielectric and an upper portion in the second dielectric. In another embodiment, one of the lower portions of the opening is substantially the same width as one of the upper portions. In another embodiment, the electrically conductive elements together form one of the shapes of the opening. In an embodiment, the conductive element extends to an upper surface of the second dielectric. In an exemplary embodiment, the electrically conductive element includes an inner surface defining a lower portion of one of the reaction regions of the chemical sensor, and the second dielectric includes an inner surface defining an upper portion of the opening. In an exemplary embodiment, the conductive element comprises a conductive material, and an inner surface of the conductive element comprises an oxide of the conductive material. In another embodiment, one of the sensing surfaces of the chemical sensor includes an inner surface of the electrically conductive element. In another embodiment, the chemically sensitive field effect crystal system produces a sensor signal corresponding to a chemical reaction occurring near the conductive element. In one embodiment, the floating gate conductor includes a plurality of conductors electrically connected to each other and separated from each other by a dielectric layer, and the floating gate conduction system is the uppermost layer of the plurality of conductors. conductor.

本發明之另一實施例係揭露一種方法,用以製造一化學感測器,該方法包含:形成一化學敏感場效電晶體,其包含一浮動閘極導體,該浮動閘極導體具有一上表面;形成一材料,其定義延伸至該浮動閘極導體之該上表面之一開口,該材料包含一第一介電質,其係位於一第二介電質下方;以及形成一導電元件,其係接觸該浮動閘極導體之該上表面,並沿著該開口之一側壁延伸一距離。在一示例性實施例中,形成該材料與形成該導電元件之步驟包含:形成該第一介電質於該浮動閘極導體上,其中該第一介電質係定義延伸至該浮動閘極導體之該上表面之一凹口;形成該第二介電質於其上;蝕刻該第二介電質以暴露出該導電元件,藉以定義依開口;以及形成該導電元件於該開口中。在另一實施例中,形成該導電元件於該開口 中之步驟包含:沉積一導電材料於該開口中及該第一介電質之一上表面上;以及從該第二介電質之該上表面移除該導電材料之至少一部分。在另一實施例中,移除該導電材料之至少一部分之步驟包含:沉積一層光阻於該開口中;以及從該第二介電質之該上表面將該導電材料之一部分連同該光阻一起移除。在一實施例中,該導電材料包含鈦。在一示例性實施例中,該開口係為一奈米井。在一示例性實施例中,形成一導電元件之步驟包含共形地沉積一導電材料於該開口中。在另一實施例中,該導電元件包含定義該化學感測器之一反應區域之一下部的一內表面,且該第二介電質包含定義該開口之一上部的一內表面。 Another embodiment of the invention discloses a method for fabricating a chemical sensor, the method comprising: forming a chemically sensitive field effect transistor comprising a floating gate conductor, the floating gate conductor having an upper Forming a material extending to an opening of the upper surface of the floating gate conductor, the material comprising a first dielectric underlying a second dielectric; and forming a conductive element, It contacts the upper surface of the floating gate conductor and extends a distance along a sidewall of the opening. In an exemplary embodiment, the step of forming the material and forming the conductive element includes: forming the first dielectric on the floating gate conductor, wherein the first dielectric system definition extends to the floating gate a recess of the upper surface of the conductor; forming the second dielectric thereon; etching the second dielectric to expose the conductive element, thereby defining an opening; and forming the conductive element in the opening. In another embodiment, the conductive element is formed in the opening The step of: depositing a conductive material in the opening and an upper surface of the first dielectric; and removing at least a portion of the conductive material from the upper surface of the second dielectric. In another embodiment, the step of removing at least a portion of the conductive material includes: depositing a layer of photoresist in the opening; and extracting a portion of the conductive material from the upper surface of the second dielectric together with the photoresist Remove together. In an embodiment, the electrically conductive material comprises titanium. In an exemplary embodiment, the opening is a nanowell. In an exemplary embodiment, the step of forming a conductive element includes conformally depositing a conductive material into the opening. In another embodiment, the electrically conductive element includes an inner surface defining a lower portion of one of the reaction regions of the chemical sensor, and the second dielectric includes an inner surface defining an upper portion of the opening.

本發明之一個以上之實施態樣係詳細敘述於本說明書與圖式中,且本發明之其他特徵、實施態樣及優點皆詳述於說明書、圖式及申請專利範圍中。 The embodiments of the present invention are described in detail in the specification and drawings, and other features, embodiments, and advantages of the present invention are described in the specification, drawings, and claims.

100‧‧‧積體電路裝置 100‧‧‧Integrated circuit device

101‧‧‧流動槽 101‧‧‧ flow cell

102‧‧‧入口 102‧‧‧ entrance

103‧‧‧出口 103‧‧‧Export

104、109、111‧‧‧通道 104, 109, 111‧‧‧ channels

105‧‧‧流動室 105‧‧‧Mobile room

106‧‧‧廢物容器 106‧‧‧Waste container

107‧‧‧微井陣列 107‧‧‧Microwell array

108‧‧‧參考電極 108‧‧‧ reference electrode

110‧‧‧洗滌溶液 110‧‧‧ washing solution

112‧‧‧閥 112‧‧‧Valves

114‧‧‧試劑 114‧‧‧Reagents

116‧‧‧閥塊 116‧‧‧Valve block

118‧‧‧流體控制器 118‧‧‧ Fluid Controller

120、122、126‧‧‧線 Lines 120, 122, 126‧‧

124‧‧‧陣列控制器 124‧‧‧Array controller

127‧‧‧匯流排線 127‧‧‧ bus bar

128‧‧‧使用者界面 128‧‧‧User Interface

205‧‧‧感測器陣列 205‧‧‧Sensor array

208‧‧‧試劑流 208‧‧‧reagent flow

301、302‧‧‧反應區域 301, 302‧‧‧Reaction area

303、1303‧‧‧側壁 303, 1303‧‧‧ side wall

308、310、319、1503、2006‧‧‧介電材料 308, 310, 319, 1503, 2006‧‧‧ dielectric materials

309、1309、1630‧‧‧距離 309, 1309, 1630‧‧‧ distance

312‧‧‧固相支持物 312‧‧‧ Solid support

314‧‧‧下部 Lower part of 314‧‧

315‧‧‧上部 315‧‧‧ upper

318‧‧‧浮動閘極結構 318‧‧‧Floating gate structure

320‧‧‧感測器板 320‧‧‧Sensor board

321‧‧‧源極區域 321‧‧‧ source area

322‧‧‧汲極區域 322‧‧‧Bungee area

323‧‧‧通道區域 323‧‧‧Channel area

324‧‧‧電荷 324‧‧‧Charge

340‧‧‧擴散機制 340‧‧‧Diffusion mechanism

350、351‧‧‧化學感測器 350, 351‧ ‧ chemical sensors

352‧‧‧閘極介電層 352‧‧‧ gate dielectric layer

354‧‧‧半導體基板 354‧‧‧Semiconductor substrate

370‧‧‧導電元件 370‧‧‧Conductive components

371‧‧‧內表面 371‧‧‧ inner surface

400、1400、1500、1600、1700、1800、1900‧‧‧結構 400, 1400, 1500, 1600, 1700, 1800, 1900‧‧‧ structures

600、602‧‧‧凹口 600, 602‧‧ ‧ notches

1618、1620‧‧‧開口 Opening of 1618, 1620‧‧

900、1704、1805、2200‧‧‧導電材料 900, 1704, 1805, 2200‧‧‧ conductive materials

1000、2300‧‧‧材料 1000, 2300‧‧‧ materials

圖1為依據一示例性實施例之一核酸定序系統的元件之一方塊示意圖。 1 is a block diagram of one of the components of a nucleic acid sequencing system in accordance with an exemplary embodiment.

圖2為依據一示例性實施例之一積體電路裝置與流動槽之一局部剖面圖。 2 is a partial cross-sectional view of an integrated circuit device and a flow cell in accordance with an exemplary embodiment.

圖3為依據一第一實施例之兩個代表性化學感測器與對應之反應區域的剖面圖。 3 is a cross-sectional view of two representative chemical sensors and corresponding reaction regions in accordance with a first embodiment.

圖4至圖12為形成依據一第一實施例之化學感測器之一陣列及其對應反應區域的製造過程的各階段之示意圖。 4 to 12 are schematic views showing stages of a manufacturing process for forming an array of chemical sensors according to a first embodiment and corresponding reaction regions thereof.

圖13至圖25為形成依據第一實施例之化學感測器及相應反應區域之陣列的製造過程中各階段之示意圖。 13 to 25 are schematic views of stages in a manufacturing process for forming an array of chemical sensors and corresponding reaction regions according to the first embodiment.

本發明所述之化學裝置包括低雜訊化學裝置,如化學敏感場效應 電晶體(chemically-sensitive field effect transistor(chemFET)),用於檢測其表層內的化學反應,可操作地配合其反應區域。藉由減少個別化學感測器之平面及上視面積及重疊的反應區域,可以形成高密度裝置,然而,隨著化學感測器之尺寸的縮小,申請人已經發現,相應減少了感測器的感測表面積可以顯著影響性能,例如,對於具有定義於反應區域之底部之感測表面的化學感測器而言,減少反應區域的平面尺寸(例如寬度或直徑)會導致類似減少感測表面積的情況。申請人已經發現,當感測表面積減小到技術極限時,在感測表面之電荷的隨機波動所導致的流體雜訊對於在感測表面電位的總變化的貢獻比例越來越大,這將會明顯地減小感測器輸出訊號的訊號雜訊比(SNR),因此會影響下游訊號處理的正確性,如利用感測器偵測後,用以判斷化學或生物特性之程序的下游訊號。 The chemical device of the present invention includes a low noise chemical device such as a chemically sensitive field effect A chemically-sensitive field effect transistor (chemFET) is used to detect a chemical reaction in its surface layer and operatively cooperate with its reaction region. High-density devices can be formed by reducing the planar and top-view areas of individual chemical sensors and overlapping reaction regions. However, as the size of chemical sensors has shrunk, Applicants have discovered that sensors have been correspondingly reduced. The sensing surface area can significantly affect performance, for example, for a chemical sensor having a sensing surface defined at the bottom of the reaction zone, reducing the planar size (eg, width or diameter) of the reaction zone results in a similar reduction in sensing surface area. Case. Applicants have discovered that when the sensing surface area is reduced to the technical limit, the contribution of fluid noise caused by random fluctuations in the charge of the sensing surface to the total change in the sensing surface potential is increasing, which will It will significantly reduce the signal-to-noise ratio (SNR) of the sensor output signal, thus affecting the correctness of downstream signal processing, such as the downstream signal of the program used to determine chemical or biological characteristics after being detected by the sensor. .

本文所述之化學感測器具有複數感測表面區域,其不限於在反應區域之底部的一個二維區域;在本文所述的實施例中,化學感測器的感測表面包括沿所述反應區域的下表面大致水平的部分,以及沿著包含反應區域之開口的側壁延伸的大致垂直的部分,該大致垂直的部分沿著側壁延伸的距離是由形成開口之下部的介電材料的厚度所界定。該介電材料可利用一製程(如薄膜沉積製程)來沉積形成,藉以使得整個陣列的厚度變化非常小;依據上述方法,化學感測器的感測器表面區域可以被很好地控制,致使整個陣列具有均勻的化學感測器性能,從而簡化下游的訊號處理。通過將感測表面沿著大致垂直的方向延伸,所述化學感測器可以具有佔用空間小的優點,同時還具有足夠大的感測表面面積,以避免與小型感應表面相關聯的雜訊的問題。一化學感測器的佔用面積可以部分依據所覆蓋之反應區域的寬度(例如直徑)而定,且其可以被縮小,從而允許形成高密度陣列。另外,由於感測表面面積可延伸至一控制距離,其可以到達側壁,所以所述感 測表面面積可以相對較大,結果能夠以高密度陣列來提供低雜訊的化學感測器,使得可以精確地檢測反應的特性。 The chemical sensor described herein has a plurality of sensing surface regions that are not limited to a two-dimensional region at the bottom of the reaction region; in the embodiments described herein, the sensing surface of the chemical sensor includes a substantially horizontal portion of the lower surface of the reaction zone, and a substantially vertical portion extending along a sidewall of the opening containing the reaction zone, the substantially vertical portion extending along the sidewall being a thickness of the dielectric material forming the lower portion of the opening Defined. The dielectric material can be deposited by a process (such as a thin film deposition process), so that the thickness variation of the entire array is very small; according to the above method, the sensor surface area of the chemical sensor can be well controlled, resulting in The entire array has uniform chemical sensor performance, simplifying downstream signal processing. By extending the sensing surface in a generally vertical direction, the chemical sensor can have the advantage of having a small footprint while still having a sufficiently large sensing surface area to avoid noise associated with the small sensing surface. problem. The footprint of a chemical sensor can depend in part on the width (e.g., diameter) of the reaction zone being covered, and it can be shrunk to allow for the formation of a high density array. In addition, since the sensing surface area can extend to a control distance, which can reach the side wall, the feeling The measured surface area can be relatively large, and as a result, a low-noise chemical sensor can be provided in a high-density array, so that the characteristics of the reaction can be accurately detected.

圖1為依據一示例性實施例之一核酸定序系統的元件之一方塊示意圖,該等元件包括一積體電路裝置100上的流動槽101、一參考電極108、用於定序的複數個試劑114、一閥塊116、一洗滌溶液110、一閥112、一流體控制器118、線120/122/126、通道104/109/111、一廢物容器106、一陣列控制器124、以及一使用者界面128。積體電路裝置100包括一微井陣列107,用以覆蓋一感測器陣列,其包括如本文所述之化學裝置。流動槽101包括一入口102、一出口103以及一流動室105,其係用以定義試劑114在微井陣列107中的流動路徑。參考電極108可以是任何適當的類型或形狀,包括具有流體通道的同心圓筒或插入通道111之內腔的導線。試劑114可利用泵、氣壓、真空或其它適當的方法而被驅動通過流體通道、閥及流動槽101,並且在離開流動槽101的出口103之後可以被丟棄到廢物容器106。流體控制器118可利用適當軟體以控制試劑114的驅動力以及閥112與閥塊116的運行。 1 is a block diagram of an element of a nucleic acid sequencing system including a flow cell 101 on an integrated circuit device 100, a reference electrode 108, and a plurality of sequences for sequencing, in accordance with an exemplary embodiment. Reagent 114, a valve block 116, a wash solution 110, a valve 112, a fluid controller 118, a line 120/122/126, a channel 104/109/111, a waste container 106, an array controller 124, and a User interface 128. The integrated circuit device 100 includes a microwell array 107 for covering a sensor array including a chemical device as described herein. The flow cell 101 includes an inlet 102, an outlet 103, and a flow chamber 105 for defining the flow path of the reagent 114 in the microwell array 107. The reference electrode 108 can be of any suitable type or shape, including a concentric cylinder having a fluid passage or a wire inserted into the lumen of the passage 111. The reagent 114 can be driven through the fluid passage, valve, and flow cell 101 using a pump, air pressure, vacuum, or other suitable method, and can be disposed of to the waste container 106 after exiting the outlet 103 of the flow cell 101. Fluid controller 118 may utilize appropriate software to control the driving force of reagent 114 and the operation of valve 112 and valve block 116.

微井陣列107包括反應區域,在此也稱為作為微井,其可操作地與相應的感測器陣列中的化學裝置相配合。例如,各反應區域可以被耦合到一化學感測器,以適用於檢測該反應區域內之感興趣的分析物或反應特性。微井陣列107可以被整合於積體電路裝置100中,從而使微井陣列107與感測器陣列成為單一個裝置或晶片的一部分。流動槽101可以具有多種構型,用於控制試劑114在微井陣列107上的路徑和流速。陣列控制器124提供偏壓及時序控制訊號到積體電路裝置100,用於讀取感測器陣列之化學感測器。陣列控制器124還提供了一個施加到參考電極108之參考偏壓,以偏壓流過微井陣列107之試劑114。 The microwell array 107 includes reaction zones, also referred to herein as microwells, that operatively cooperate with chemical devices in respective sensor arrays. For example, each reaction zone can be coupled to a chemical sensor adapted to detect analytes of interest or reaction characteristics within the reaction zone. The microwell array 107 can be integrated into the integrated circuit device 100 such that the microwell array 107 and the sensor array are part of a single device or wafer. The flow cell 101 can have a variety of configurations for controlling the path and flow rate of the reagent 114 on the microwell array 107. The array controller 124 provides bias and timing control signals to the integrated circuit device 100 for reading the chemical sensors of the sensor array. Array controller 124 also provides a reference bias applied to reference electrode 108 to bias reagent 114 flowing through microwell array 107.

在一實驗例中,陣列控制器124通過匯流排線127收集經由積體電路裝置100的輸出端口並從感測器陣列的化學感測器輸出的訊號,並處 理此訊號,陣列控制器124可以是一電腦或其他計算裝置。陣列控制器124可包括用於儲存資料和軟體應用程式之記憶體、用於存取資料並執行應用程式的處理器、以及協助進行如圖1所示之系統的各元件之間的通訊的元件。在本實施例中,陣列控制器124係設置於積體電路裝置100之外;在部分實施例中,陣列控制器124所執行之部分或所有的功能可以由積體電路裝置100上的一控制器或其他資料處理器來實現。化學感測器的輸出訊號的值表示一個或多個發生在相應的微井陣列107中的反應區域中的反應的物理及/或化學參數,例如,在一示例性實施例中,輸出訊號的值可以使用Rearick等人所揭露的技術(2011年12月29日申請之美國專利申請案第13/339,846號,其主張2010年12月30日申請之美國專利臨時申請案第61/428,743號以及2011年1月3日申請之美國專利臨時申請案第61/429,328號的優先權)及Hubbell所揭露的技術(2011年12月29日申請之美國專利申請案第13/339,753號,其主張2010年12月29日申請之美國專利臨時申請案第61/428,097號的優先權)進行處理,其係以全文納入本說明書中。使用者界面128可顯示關於流動槽101與從積體電路裝置100的感測器陣列中的化學感測器所接收到的輸出訊號,使用者界面128還可以顯示儀器的設定與控制,並允許使用者輸入或設定儀器設定與控制。 In an experimental example, the array controller 124 collects signals output through the output port of the integrated circuit device 100 and from the chemical sensor of the sensor array through the bus bar 127, and In response to this signal, array controller 124 can be a computer or other computing device. The array controller 124 can include memory for storing data and software applications, a processor for accessing data and executing applications, and components for facilitating communication between components of the system as shown in FIG. . In the present embodiment, the array controller 124 is disposed outside of the integrated circuit device 100; in some embodiments, some or all of the functions performed by the array controller 124 may be controlled by a control on the integrated circuit device 100. Or other data processor to implement. The value of the output signal of the chemical sensor represents one or more physical and/or chemical parameters of the reaction occurring in the reaction zone in the corresponding microwell array 107, for example, in an exemplary embodiment, the output signal The value disclosed in Rearick et al., U.S. Patent Application Serial No. 13/339,846, filed on Dec. U.S. Patent Application Serial No. 61/429,328, filed on Jan. 3, 2011, and the disclosure of the disclosure of U.S. Patent Application Serial No. 13/339,753, filed on Dec. 29, 2011 The processing of the priority of U.S. Patent Application Serial No. 61/428,097, filed on Dec. 29, the entire entire entire entire entire entire entire entire entire entire content The user interface 128 can display output signals received about the flow cell 101 and the chemical sensors in the sensor array of the integrated circuit device 100. The user interface 128 can also display instrument settings and controls and allow The user enters or sets the instrument settings and controls.

流體控制器118可以控制輸送個別試劑114至流動槽101及積體電路裝置100,其可以依據預定的順序、預定的持續時間、預定的流速進行輸送。接著,陣列控制器124可以收集和分析化學感測器的輸出信號,其係表明對應所輸送之試劑114而發生的化學反應,在此實驗過程中,該系統還可以監測和控制該積體電路裝置100的溫度,使該反應可以在一個已知的預定溫度下進行及測量。 The fluid controller 118 can control the delivery of the individual reagents 114 to the flow cell 101 and the integrated circuit device 100, which can be delivered in accordance with a predetermined sequence, a predetermined duration, a predetermined flow rate. Next, the array controller 124 can collect and analyze the output signal of the chemical sensor, which indicates the chemical reaction corresponding to the delivered reagent 114. During the experiment, the system can also monitor and control the integrated circuit. The temperature of the apparatus 100 allows the reaction to be carried out and measured at a known predetermined temperature.

該系統可以被配置為允許一個單一流體或試劑在操作過程中的整個多步驟反應過程中接觸參考電極108。閥112可以被關閉,以便在 試劑114流動時,能夠防止任何洗滌溶液110流入通道109。儘管可以停止洗滌溶液的流動,但是在參考電極108、通道109及微井陣列107之間仍然還有無法中斷的流體和電連通,參考電極108與通道109和111之間的連接點之間的距離可以被選擇,使得很少或沒有試劑流過通道109,且可能擴散到通道111並到達參考電極108。在一個示例性實施例中,所述洗滌溶液110可以被選擇為與所述參考電極108連續接觸,此方法特別有用於使用頻繁洗滌步驟之多步驟反應中。 The system can be configured to allow a single fluid or reagent to contact the reference electrode 108 during the entire multi-step reaction process during operation. Valve 112 can be closed to When the reagent 114 flows, it is possible to prevent any of the washing solution 110 from flowing into the passage 109. Although the flow of the wash solution can be stopped, there is still uninterrupted fluid and electrical communication between the reference electrode 108, the channel 109, and the microwell array 107, between the reference electrode 108 and the junction between the channels 109 and 111. The distance can be selected such that little or no reagent flows through the channel 109 and may diffuse into the channel 111 and reach the reference electrode 108. In an exemplary embodiment, the wash solution 110 can be selected to be in continuous contact with the reference electrode 108, a method particularly useful in multi-step reactions using frequent wash steps.

圖2為積體電路裝置100與流動槽101之一局部剖面圖。積體電路裝置100包括反應區域之微井陣列107,其可選擇性配合感測器陣列205。在操作過程中,流動槽101的流動腔室105可界定待傳送試劑的試劑流208,以穿過微井陣列107中的反應區域的開口端,反應區域的體積、形狀、長寬比(如基底寬度對井深度的比值)、以及其它尺寸特性,可以依據發生反應的性質以及試劑、副產物、或使用之標記技術(如果有的話)進行選擇。感測器陣列205的化學感測器是對應於(並產生輸出訊號)微井陣列107中相關的反應區域內的化學反應,以檢測所關注的分析物或反應特性。感測器陣列205的化學感測器可以例如是化學敏感場效電晶體,如離子敏感場效電晶體(ISFET)。可以在本實施例中使用的化學裝置及陣列結構的實例係詳述於Schultz等人的美國專利申請案第12/785,667號(現為美國專利第8,546,128號,2010年5月24日申請,題目為用以連續輸送試劑之流體系統)、Rotherberg等人的美國專利申請案第12/721,458號(現為美國專利第8,306,757號,2010年3月10日申請,題目為利用大型場效電晶體陣列測量分析物之方法與裝置)、Rotherberg等人的美國專利申請案第12/475,311號(2009年5月29日申請,題目為測量分析物之方法與裝置)、Rotherberg等人的美國專利申請案第12/474,897號(2009年5月29日申請,題目為測量分析物之方法與裝置)、Rotherberg等人的美國專利申請案第12/002,781號(2007 年12月17日申請,題目為利用大型場效電晶體陣列測量分析物之方法與裝置)、以及美國專利申請案第12/474,897號(現為美國專利第7,575,865號,2005年8月1日申請,題目為核酸之放大及定序方法),其中每一個文獻皆以全文納入本說明書中。 2 is a partial cross-sectional view showing the integrated circuit device 100 and the flow cell 101. The integrated circuit device 100 includes a microwell array 107 of reactive regions that can selectively mate with the sensor array 205. During operation, the flow chamber 105 of the flow cell 101 can define a reagent stream 208 of reagent to be delivered to pass through the open end of the reaction zone in the microwell array 107, the volume, shape, aspect ratio of the reaction zone (eg, The ratio of substrate width to well depth), as well as other dimensional characteristics, can be selected based on the nature of the reaction and the reagents, by-products, or labeling techniques used, if any. The chemical sensor of sensor array 205 corresponds to (and produces an output signal) a chemical reaction within the associated reaction region in microwell array 107 to detect the analyte or reaction characteristic of interest. The chemical sensor of sensor array 205 can be, for example, a chemically sensitive field effect transistor, such as an ion sensitive field effect transistor (ISFET). Examples of chemical devices and array structures that can be used in this embodiment are described in detail in U.S. Patent Application Serial No. 12/785,667, the entire disclosure of U.S. Patent No. 4,546,128, filed on May 24, 2010. U.S. Patent Application Serial No. 12/721,458, to Rotherberg et al., which is hereby incorporated by reference to U.S. Pat. Method and apparatus for measuring analytes, U.S. Patent Application Serial No. 12/475,311 to Rotherberg et al., filed on May 29, 2009, the disclosure of which is incorporated herein by reference. U.S. Patent Application Serial No. 12/474,897, filed on May 29, 2009, the disclosure of which is incorporated herein by reference to U.S. Pat. Application on December 17, the title of a method and apparatus for the measurement of an analyte using a large field effect transistor array, and U.S. Patent Application Serial No. 12/474,897 (now U.S. Patent No. 7,575,865, August 1, 2005) The application, titled Methods for Amplification and Sequencing of Nucleic Acids, each of which is incorporated herein by reference in its entirety.

圖3為依據一示例性實施例之兩個代表性化學感測器與對應之反應區域的剖面圖。圖3顯示兩個化學感測器350及351,其表示一感測器陣列的一小部分可以包括數百萬個化學感測器。化學感測器350被耦合到相應的反應區域301,而化學感測器351被耦合到相應的反應區域302。化學感測器350代表感測器陣列中的化學感測器,在本示例中,化學感測器350是一化學敏感場效電晶體,更具體地說是一種離子敏感場效電晶體(ISFET)。化學感測器350包括一浮動閘極結構318,其具有通過導電元件370耦合至反應區域301之一感測器板320。如圖3所示,感測器板320是在浮動閘極結構318中最上層的浮動閘極導體,在本示例中,浮動閘極結構318包括位於數層介電材料319中的複數個圖案化層之導電材料。 3 is a cross-sectional view of two representative chemical sensors and corresponding reaction regions in accordance with an exemplary embodiment. FIG. 3 shows two chemical sensors 350 and 351 that indicate that a small portion of a sensor array can include millions of chemical sensors. Chemical sensor 350 is coupled to respective reaction zone 301 and chemical sensor 351 is coupled to corresponding reaction zone 302. The chemical sensor 350 represents a chemical sensor in the sensor array. In this example, the chemical sensor 350 is a chemically sensitive field effect transistor, more specifically an ion sensitive field effect transistor (ISFET). ). The chemical sensor 350 includes a floating gate structure 318 having a sensor plate 320 coupled to the reaction region 301 by a conductive element 370. As shown in FIG. 3, the sensor plate 320 is the uppermost floating gate conductor in the floating gate structure 318. In this example, the floating gate structure 318 includes a plurality of patterns in the plurality of layers of dielectric material 319. Conductive material of the layer.

化學感測器350還包括位於一半導體基板354中的一源極區域321及一汲極區域322,源極區域321及汲極區域322包括摻雜半導體材料,其導電類型係與基板354的導電類型不同,例如,源極區域321與汲極區域322可包括P型摻雜半導體材料,而基板可以包括N型摻雜半導體材料。通道區域323係分開源極區域321與汲極區域322,浮動閘極結構318覆蓋於通道區域323上,並通過閘極介電層352與基板354分離,此閘極介電層352可以例如是二氧化矽;或者,亦可採用其他介電材料來形成閘極介電層352。 The chemical sensor 350 further includes a source region 321 and a drain region 322 in a semiconductor substrate 354. The source region 321 and the drain region 322 comprise a doped semiconductor material, the conductivity type of which is electrically conductive with the substrate 354. Different types, for example, the source region 321 and the drain region 322 may include a P-type doped semiconductor material, and the substrate may include an N-type doped semiconductor material. The channel region 323 separates the source region 321 from the drain region 322. The floating gate structure 318 covers the channel region 323 and is separated from the substrate 354 by a gate dielectric layer 352. The gate dielectric layer 352 can be, for example, Cerium oxide; alternatively, other dielectric materials may be used to form the gate dielectric layer 352.

如圖3所示,反應區域301係位於一開口中,該開口具有延伸穿過介電材料310、308並到達感測器板320之上表面的一側壁303,介電材料310、308各別可以包含一層或多層材料,如二氧化矽或氮化矽。該 開口包含位於介電材料308中並接近感測器板320之一下部314,該開口還包含位於該介電材料310中之一上部315,該上部315係從下部314延伸至介電材料310之上表面。在所述實施例中,開口之上部315的寬度係實質上與開口之下部314的寬度相同;然而,依據用來形成開口之材料及/或蝕刻製程,開口之上部315的寬度亦可以大於開口之下部314的寬度,反之亦然。開口可例如具有一圓形剖面,另外,開口亦可以是非圓形,例如,其剖面可以是正方形、長方形、六角形或不規則形。開口的尺寸及其間距可以依據實施而變化。在部分實施例中,開口可具有一特定的直徑,其係定義為平面圖剖面面積(A)的4倍除以π的平方根(例如,sqrt(4*A/π)),此直徑係不大於5微米,例如不大於3.5微米、不大於2.0微米、不大於1.6微米、不大於1.0微米、不大於0.8微米、不大於0.6微米、不大於0.4微米、不大於0.2微米或不大於0.1微米。 As shown in FIG. 3, the reaction region 301 is located in an opening having a sidewall 303 extending through the dielectric material 310, 308 and reaching the upper surface of the sensor panel 320. The dielectric materials 310, 308 are respectively different. It may comprise one or more layers of material such as hafnium oxide or tantalum nitride. The The opening includes a lower portion 314 in the dielectric material 308 and adjacent one of the sensor plates 320, the opening further including an upper portion 315 of the dielectric material 310 extending from the lower portion 314 to the dielectric material 310 Upper surface. In the illustrated embodiment, the width of the upper portion 315 of the opening is substantially the same as the width of the lower portion 314 of the opening; however, depending on the material used to form the opening and/or the etching process, the width of the upper portion 315 of the opening may be greater than the opening. The width of the lower portion 314 and vice versa. The opening may, for example, have a circular cross section, and the opening may also be non-circular, for example, the cross section may be square, rectangular, hexagonal or irregular. The size of the opening and its spacing can vary depending on the implementation. In some embodiments, the opening may have a specific diameter defined as 4 times the cross-sectional area (A) of the plan view divided by the square root of π (eg, sqrt(4*A/π)), which is not greater than 5 microns, such as no greater than 3.5 microns, no greater than 2.0 microns, no greater than 1.6 microns, no greater than 1.0 microns, no greater than 0.8 microns, no greater than 0.6 microns, no greater than 0.4 microns, no greater than 0.2 microns, or no greater than 0.1 microns.

所述開口的下部314包括在介電材料310之側壁303上的導電元件370,在所述實施例中,導電元件370的內表面371係定義反應區域301的下片段,亦即,在導電元件370的內表面371與化學感測器350的反應區域301之間未設置有中間沉積材料層,因此,導電元件370的內表面371與該開口是共形的,並可作為化學感測器350的感測表面。本領域技術人員應當瞭解,導電元件370的精確形狀和尺寸,與圖中所示的所有其他的材料,皆與製程有關。 The lower portion 314 of the opening includes a conductive element 370 on the sidewall 303 of the dielectric material 310. In the illustrated embodiment, the inner surface 371 of the conductive element 370 defines a lower segment of the reaction region 301, that is, at the conductive member. An intermediate deposition material layer is not disposed between the inner surface 371 of the 370 and the reaction region 301 of the chemical sensor 350. Therefore, the inner surface 371 of the conductive member 370 is conformal to the opening and can serve as the chemical sensor 350. Sensing surface. Those skilled in the art will appreciate that the precise shape and size of conductive element 370, as well as all other materials shown in the figures, are related to the process.

在所述實施例中,導電元件370係為開口的下部314內的材料的共形層,使得該導電元件370在感測器板320的上表面延伸;在所述實施例中,導電元件370延伸超過開口的下部314並進入開口的上部315。介電材料310的內表面定義反應區域301的上片段,導電元件370可以例如沿著側壁303的至少5%、至少10%、至少25%、至少50%、至少75%,或至少85%延伸,或者甚至沿著99%的側壁303延伸。導電元件370的共形之內表面371允許化學感測器350具有小的平面圖面積同時,同時 具有足夠大的表面積,以避免與小型感應表面相關聯的雜訊問題。化學感測器350的平面圖面積可利用反應區域301的寬度(或直徑)進行部分判斷,並且可以縮小,從而允許形成高密度陣列。另外,由於感測表面係延伸至側壁303之上,所述感測表面面積取決於所述延伸距離以及反應區域301的周長,且其可以是比較大的,結果能夠以高密度陣列來提供低雜訊的化學感測器350、351,使得可以精確地檢測反應的特性。 In the illustrated embodiment, the conductive element 370 is a conformal layer of material within the open lower portion 314 such that the conductive element 370 extends over the upper surface of the sensor plate 320; in the illustrated embodiment, the conductive element 370 Extending beyond the lower portion 314 of the opening and into the upper portion 315 of the opening. The inner surface of the dielectric material 310 defines an upper segment of the reaction region 301, which may extend, for example, along at least 5%, at least 10%, at least 25%, at least 50%, at least 75%, or at least 85% of the sidewall 303 Or even along 99% of the side walls 303. The conformal inner surface 371 of the conductive element 370 allows the chemical sensor 350 to have a small plan view area while simultaneously It has a large enough surface area to avoid the noise problems associated with small sensing surfaces. The plan view area of the chemical sensor 350 can be partially judged by the width (or diameter) of the reaction region 301, and can be reduced to allow formation of a high density array. Additionally, since the sensing surface extends over the sidewall 303, the sensing surface area is dependent on the extent of the extension and the perimeter of the reaction zone 301, and it can be relatively large, with the result that it can be provided in a high density array The low noise chemical sensors 350, 351 make it possible to accurately detect the characteristics of the reaction.

在該裝置的製造及/或操作過程中,可以生長形成導電元件370之材料的薄氧化物,其係充當化學感測器350的感測材料(例如離子敏感感測材料),此氧化物的形成與否係取決於導電材料、執行之製程及裝置操作時的條件而定。例如,在一實施例中,導電元件370可以是氮化鈦,其可以在製造過程中或在使用時將其暴露於溶液中,以便在導電元件370之表面371上生長形成氧化鈦或氮氧化鈦。在所述實例中,導電元件370係顯示為一單層之材料,更一般地,導電元件370依據實際實施需要可包括一層或多層之多種導電材料,如金屬或陶瓷,該導電材料可以例如是金屬材料或其合金,或者可以是陶瓷材料、或其組合;一種示例性的金屬材料包括鋁、銅、鎳、鈦、銀、金、鉑、鉿、鑭、鉭、鎢、銥、鋯、鈀、或其組合的其中之一;一種示例性的陶瓷材料包括氮化鈦、氮化鋁鈦、氮氧化鈦、氮化鉭、或其組合的其中之一。在一些替代實施例中,另一個共形感測材料(圖未示)可被沉積在導電元件370上並設於該開口中,感測材料可以包括一個或多個各種不同的材料,以提高對特定離子的靈敏度,例如,氮化矽或氮氧化矽以及金屬氧化物(如氧化矽、氧化鋁或氧化鉭)通常可以提供對氫離子之靈敏度,而包含有纈氨霉素之聚氯乙烯感測材料可以提供對鉀離子之靈敏度。依據實際需要,亦可以使用對其他離子如鈉、銀、鐵、溴、碘、鈣及硝酸鹽敏感之材料。 During the fabrication and/or operation of the device, a thin oxide of material forming the conductive element 370 can be grown, which serves as a sensing material for the chemical sensor 350 (eg, an ion sensitive sensing material), the oxide The formation depends on the conductive material, the process being performed, and the conditions at which the device is operated. For example, in one embodiment, conductive element 370 can be titanium nitride that can be exposed to solution during fabrication or during use to grow on surface 371 of conductive element 370 to form titanium oxide or nitrogen oxides. titanium. In the example, the conductive element 370 is shown as a single layer of material. More generally, the conductive element 370 may include one or more layers of conductive materials, such as metal or ceramic, depending on the actual implementation. The conductive material may be, for example, The metal material or alloy thereof, or may be a ceramic material, or a combination thereof; an exemplary metal material includes aluminum, copper, nickel, titanium, silver, gold, platinum, rhodium, ruthenium, iridium, tungsten, osmium, zirconium, palladium. Or one of the combinations; an exemplary ceramic material comprising one of titanium nitride, titanium aluminum nitride, titanium oxynitride, tantalum nitride, or combinations thereof. In some alternative embodiments, another conformal sensing material (not shown) may be deposited on the conductive element 370 and disposed in the opening, and the sensing material may include one or more different materials to enhance Sensitivity to specific ions, such as tantalum nitride or hafnium oxynitride, and metal oxides such as antimony oxide, aluminum oxide or antimony oxide, generally provide sensitivity to hydrogen ions, while polyvinyl chloride containing valinomycin The sensing material can provide sensitivity to potassium ions. Materials sensitive to other ions such as sodium, silver, iron, bromine, iodine, calcium and nitrate may also be used depending on actual needs.

在操作過程中,反應物、洗滌溶液及其他試劑可以通過擴散機制340移入或移出反應區域301,化學感測器350係對應於(並產生相關的輸出訊號)鄰近所述導電元件370的電荷324的量,於分析物溶液中存在的電荷324可以改變反應區域301中的分析物溶液與導電元件370之間的界面上的表面電位。電荷324的變化會導致浮動閘極結構318之電壓的變化,其係在電晶體的臨限電壓依序變化,可以利用測量源極區域321與汲極區域322之間的通道區域323的電流,來測量此臨限電壓的變化。結果顯示,化學感測器350可直接使用,以提供連接到源極區域321或汲極區域322之陣列線的基於電流的輸出訊號,或間接地應用於另一電路,以提供基於電壓的輸出訊號。由於電荷324在反應區域301的底部可以具有更高的濃縮,使得導電元件370向上延伸至開口303之側壁的距離需要在對應電荷324所偵測之預期訊號的振幅與導電元件370和分析物溶液間的電荷隨機波動所造成之流體雜訊之間取得平衡;增加導電元件370向上延伸至側壁303的距離可以增加化學感測器350的流體界面區域,其作用是減小流體雜訊。然而,由於電荷324會擴散到反應區域301之外,所以電荷324的濃度隨著與反應區域301之底部的距離而減少,結果當導電元件370的上側壁片段檢測部分訊號時,其具有較低的電荷濃度,因此會減少由感測器350所偵測之所需的訊號的總振幅。相反地,當減少導電元件370向上延伸至側壁303的距離時,可以減少感測表面面積,從而增大由感測器350所偵測之所需的訊號的總振幅。 During operation, reactants, wash solutions, and other reagents can be moved into or out of reaction zone 301 by diffusion mechanism 340, which corresponds to (and produces an associated output signal) charge 324 adjacent to conductive element 370. The amount of charge 324 present in the analyte solution can alter the surface potential at the interface between the analyte solution in reaction zone 301 and conductive element 370. The change in the charge 324 causes a change in the voltage of the floating gate structure 318, which varies sequentially in the threshold voltage of the transistor, and can measure the current in the channel region 323 between the source region 321 and the drain region 322. To measure this change in threshold voltage. The results show that the chemical sensor 350 can be used directly to provide a current based output signal connected to the array line of the source region 321 or the drain region 322, or indirectly to another circuit to provide a voltage based output. Signal. Since the charge 324 can have a higher concentration at the bottom of the reaction zone 301, the distance that the conductive element 370 extends up to the sidewall of the opening 303 requires the amplitude of the expected signal detected by the corresponding charge 324 with the conductive element 370 and the analyte solution. A balance is achieved between the fluid noise caused by random fluctuations in charge; increasing the distance that the conductive element 370 extends up to the sidewall 303 can increase the fluid interface area of the chemical sensor 350, which acts to reduce fluid noise. However, since the charge 324 will diffuse out of the reaction region 301, the concentration of the charge 324 decreases with distance from the bottom of the reaction region 301, with the result that when the upper sidewall segment of the conductive member 370 detects a portion of the signal, it has a lower The charge concentration thus reduces the total amplitude of the desired signal detected by sensor 350. Conversely, when reducing the distance that the conductive element 370 extends up to the sidewall 303, the sensing surface area can be reduced, thereby increasing the total amplitude of the desired signal detected by the sensor 350.

對於一個非常小的感測表面面積而言,申請人已發現,流體雜訊的變化可以視為感測表面面積的一個函數而非為所期望的訊號之振幅的一個函數。由於感測器的輸出訊號的訊號雜訊比(SNR)是這兩個量之比,故存在一個導電元件370沿著側壁303延伸的最佳距離,可使得訊號雜訊比為最大。此最佳距離依據不同實施例而變化,其係取決 於導電元件370和介電材料310的材料特性、反應區域之體積、形狀、長寬比(如基底寬度對井深度的比值)、以及其它尺寸特性、發生反應的性質、以及所用試劑、副產物、或所使用的標記技術(如果有的話)。此最佳距離可以例如根據經驗而定。 For a very small sensing surface area, Applicants have discovered that changes in fluid noise can be considered as a function of the sensing surface area rather than a function of the amplitude of the desired signal. Since the signal-to-noise ratio (SNR) of the output signal of the sensor is the ratio of the two quantities, there is an optimum distance that the conductive element 370 extends along the sidewall 303, so that the signal-to-noise ratio is maximized. This optimal distance varies according to different embodiments, and it depends on Material properties of conductive element 370 and dielectric material 310, volume, shape, aspect ratio (e.g., ratio of substrate width to well depth), and other dimensional characteristics, nature of reaction, and reagents, by-products used , or the marking technique used (if any). This optimal distance can be determined, for example, based on experience.

以下將參照圖4至圖12以詳細說明本發明。導電元件370沿著側壁303延伸的距離可例如利用控制沉積層的蝕刻時間而定,介電材料310與導電元件370可以例如利用一定時蝕刻製程來進行蝕刻動作,介以選擇性形成距離309(例如介電材料310延伸超過導電元件370的距離),利用上述做法,可以控制化學感測器之感測器表面面積,進而統一整個陣列之化學感測器的效能,並簡化下游訊號處理。 The present invention will be described in detail below with reference to FIGS. 4 to 12. The distance that the conductive element 370 extends along the sidewall 303 can be determined, for example, by controlling the etching time of the deposited layer. The dielectric material 310 and the conductive element 370 can be etched, for example, by a time etching process, to selectively form a distance 309 ( For example, the dielectric material 310 extends beyond the distance of the conductive element 370. By using the above method, the sensor surface area of the chemical sensor can be controlled, thereby unifying the performance of the entire array of chemical sensors and simplifying downstream signal processing.

在一實施例中,在反應區域301內進行的反應可以是用來識別或判斷所關注之分析物的特徵或特性的分析反應,這樣的反應可以生成直接或間接的副產物,其會影響導電元件370周圍的電荷的數量;若此種副產物僅產生少量、或迅速減少、或與其他成分發生反應,便可以同時利用反應區域301對相同分析物的多個樣品進行分析,以便增加所產生之輸出訊號。在一實施例中,一分析物的多個樣本可以在沉積於反應區域301之前或之後,附著到固相支持物312上(如圖3所示),此固相支持物312可以是微顆粒、奈米顆粒、珠粒、實心的或多孔膠體等。為了簡單和便於說明,固相支持物312在本文中也稱為顆粒。針對核酸分析而言,多個連接的樣品可以通過滾動循環擴增(RCA)、指數RCA、聚合酶鏈反應(PCR)或類似的技術而製成,以便產生擴增產物而不需要固體支持物。 In one embodiment, the reaction carried out in reaction zone 301 can be an analytical reaction used to identify or determine the characteristics or characteristics of the analyte of interest, such reaction can produce direct or indirect by-products that can affect electrical conduction. The amount of charge around element 370; if such by-products produce only a small amount, or rapidly decrease, or react with other components, multiple samples of the same analyte can be simultaneously analyzed using reaction zone 301 to increase the yield The output signal. In one embodiment, a plurality of samples of an analyte may be attached to the solid support 312 (as shown in FIG. 3) before or after deposition in the reaction zone 301, and the solid support 312 may be microparticles. , nano particles, beads, solid or porous colloids. For simplicity and ease of illustration, the solid support 312 is also referred to herein as a particle. For nucleic acid analysis, multiple linked samples can be made by rolling cycle amplification (RCA), exponential RCA, polymerase chain reaction (PCR) or similar techniques to produce amplification products without the need for a solid support. .

在各種示例性實施例中,所述之方法、系統及電腦可讀取之媒體可以有利於應用在處理及/或分析來自電子或帶電基的核酸定序所獲得的資料及訊號,在電子或帶電基的定序中(如基於pH值的定序),核苷酸摻入事件可以通過檢測離子(例如氫離子)而測定,此離子為 進行聚合酶催化核苷酸延伸反應時天然產生的副產物;這可以被用於定序一樣品或模板核酸,其可以例如是所感興趣的核酸序列的片段,且可以如同一克隆群體而直接或間接地附著到固體支持物,如顆粒、微粒、珠粒等。樣品或模板核酸可以可操作地關聯到一個引子和聚合酶,並可以經受反覆循環或添加脫氧核苷三磷酸(“dNTP”)的“流動”(其可以在本文中稱作的“核苷酸流”,其可能會導致伴隨核苷酸)和洗滌。引子可被退火到樣品或模板,因此當加入與模板中下一個鹼基互補的dNTPs時,可利用聚合酶來擴展引子的3'端。然後,可以基於核苷酸流的已知序列以及化學感測器之已測量輸出訊號,其係指出各核苷酸流的離子濃度,以判斷偶合至化學感測器之反應區域中的樣品核酸對應之核苷酸的類型識別、序列及數量。 In various exemplary embodiments, the methods, systems, and computer readable media may be advantageous for use in processing and/or analyzing data and signals obtained from nucleic acid sequencing of electronic or charged radicals, in electronic or In the sequencing of charged groups (eg, pH-based sequencing), nucleotide incorporation events can be determined by detecting ions (eg, hydrogen ions), which are Performing a naturally occurring by-product of a polymerase-catalyzed nucleotide extension reaction; this can be used to sequence a sample or template nucleic acid, which can be, for example, a fragment of a nucleic acid sequence of interest, and can be directly or as a clonal population Intermittently attached to solid supports such as particles, particles, beads, and the like. The sample or template nucleic acid can be operably associated to a primer and a polymerase and can be subjected to a repetitive cycle or to the addition of a "flow" of deoxynucleoside triphosphates ("dNTPs") (which can be referred to herein as "nucleotides" Streams, which may result in concomitant nucleotides) and washing. The primer can be annealed to the sample or template, so when adding dNTPs that are complementary to the next base in the template, the polymerase can be used to extend the 3' end of the primer. The ionized concentration of each nucleotide stream can then be determined based on the known sequence of nucleotide flows and the measured output signal of the chemical sensor to determine the sample nucleic acid coupled into the reaction zone of the chemical sensor. The type identification, sequence and number of corresponding nucleotides.

圖4至圖12為形成依據一第一實施例之化學感測器之一陣列及其對應反應區域的製造過程的各階段之示意圖。圖4顯示於一第一階段形成之一結構400,其包括化學感測器350、351之浮動閘極結構(如浮動閘極結構318),可以通過在半導體基板354上沉積一層閘極介電材料,並於該層閘極介電材料上沉積一層多晶矽(或其它導電材料),以形成上述結構400,接著利用蝕刻遮罩對多晶矽層與閘極介電材料層進行蝕刻,以形成閘極介電元件(例如,閘極介電層352)以及浮動閘極結構中最下層的導電材料元件。然後形成離子植入遮罩以進行離子植入,藉以形成化學測器的源極區域與汲極區域(例如源極區域321與汲極區域322)。該介電材料319的第一層可以被沉積在最下層的導電材料元件之上。接著可以在蝕刻介電材料319之第一層所形成之通孔中形成導電柱,用以接觸浮動閘極結構的最下層之導電材料元件。然後,可以在介電材料319的第一層上沉積一層導電材料,並將其圖案化以形成電性連接於該導電柱的第二導電材料元件。這個程序可以被重複多次,以形成圖4所示的完成的浮動閘極結構318。另外,亦可以進行其他及/ 或另外的技術以形成所述結構。形成如圖4所示之結構400的方法還可以包括形成其他元件,如用於存取該化學感測器之陣列線(如列線、行線等)、該基板354的其他摻雜區域、及用於操作該化學感測器的其他電路(如選擇開關、存取電路、偏壓電路等),其係根據本文中所述的化學感測器中的元件及陣列配置之實施而定。在一些實施例中,該結構的元件可以例如是利用下列文獻所述之技術進行製造,如Sehultz等人的美國專利申請案第12/785,667號(現為美國專利第8,546,128號,2010年5月24日申請,題目為用以連續輸送試劑之流體系統)、Rotherberg等人的美國專利申請案第12/721,458號(現為美國專利第8,306,757號,2010年3月10日申請,題目為利用大型場效電晶體陣列測量分析物之方法與裝置)、Rotherberg等人的美國專利申請案第12/475,311號(2009年5月29日申請,題目為測量分析物之方法與裝置)、Rotherberg等人的美國專利申請案第12/474,897號(2009年5月29日申請,題目為測量分析物之方法與裝置)、Rotherberg等人的美國專利申請案第12/002,781號(2007年12月17日申請,題目為利用大型場效電晶體陣列測量分析物之方法與裝置)、以及美國專利申請案第12/474,897號(現為美國專利第7,575,865號,2005年8月1日申請,題目為核酸之放大及定序方法),其中每一個文獻皆以全文納入本說明書中。 4 to 12 are schematic views showing stages of a manufacturing process for forming an array of chemical sensors according to a first embodiment and corresponding reaction regions thereof. 4 shows a structure 400 formed in a first stage that includes a floating gate structure (eg, floating gate structure 318) of chemical sensors 350, 351 that can be deposited by depositing a gate dielectric on semiconductor substrate 354. Material, and depositing a polysilicon layer (or other conductive material) on the gate dielectric material to form the structure 400, and then etching the polysilicon layer and the gate dielectric material layer by using an etch mask to form a gate A dielectric element (eg, gate dielectric layer 352) and a lowermost conductive material element in the floating gate structure. An ion implantation mask is then formed for ion implantation to form a source region and a drain region (eg, source region 321 and drain region 322) of the chemist. The first layer of dielectric material 319 can be deposited over the underlying conductive material component. A conductive post can then be formed in the via formed in the first layer of the etch dielectric material 319 for contacting the lowermost conductive material component of the floating gate structure. A layer of electrically conductive material can then be deposited over the first layer of dielectric material 319 and patterned to form a second electrically conductive material element that is electrically coupled to the electrically conductive pillar. This process can be repeated multiple times to form the completed floating gate structure 318 shown in FIG. In addition, other and / can also be carried out Or another technique to form the structure. The method of forming the structure 400 as shown in FIG. 4 may also include forming other components, such as array lines (such as column lines, row lines, etc.) for accessing the chemical sensor, other doped regions of the substrate 354, And other circuitry for operating the chemical sensor (eg, select switch, access circuit, bias circuit, etc.), depending on the implementation of the components and array configurations in the chemical sensors described herein . In some embodiments, the elements of the structure can be manufactured, for example, using techniques described in the following documents, such as U.S. Patent Application Serial No. 12/785,667 to Sehultz et al. (now U.S. Patent No. 8,546,128, May 2010). U.S. Patent Application Serial No. 12/721,458, issued to Rotherberg et al. Field effect transistor array method and apparatus for measuring analytes, U.S. Patent Application Serial No. 12/475,311, to Rotherberg et al., filed on May 29, 2009, entitled, U.S. Patent Application Serial No. 12/474,897, filed on May 29, 2009, entitled,,,,,,,,,,,,,,,,,,,,,,,,,,,, Application, titled Method and Apparatus for Measuring Analytes Using Large Field Effect Transistor Arrays, and US Patent Application No. 12/474,897 (now U.S. Patent No. 7,575,865, filed on August 1, 2005, titled For amplification and sequencing of nucleic acids, each of which is incorporated herein by reference in its entirety.

然後,將具有一給定厚度之一介電材料308沉積於如圖4所示之結構400上,以形成如圖5所示之結構;其中,介電材料308包含一層或多層之介電層,沉積該介電材料308的製程可以使得整個陣列之厚度具有極小的變化,例如介電材料308可以包含氧化矽,並可利用高密度電漿(HDP)沉積製程進行其沉積,當然亦可以使用各種技術進行沉積,例如濺鍍、反應濺鍍、原子層沉積(ALD)、低壓化學汽相沉積(LPCVD)、電漿增強化學氣相沉積(PECVD)、金屬有機化學氣相沉積(MOCVD) 等。接著,對如圖5所示之結構的介電材料308進行蝕刻,以形成凹口600、602,其係延伸到化學感測器350、351之浮動閘極結構的上表面,進而形成如圖6所示之結構,其中,形成凹口600、602的方法可以例如是利用微影製程來圖案化介電材料308上的一光阻層,藉以定義出凹口600、602的位置,然後利用上述圖案化光阻層做為遮罩對介電材料308進行非等向性蝕刻,對介電材料308進行之非等向性蝕刻可以例如是利用一乾式蝕刻製程進行,如氟基反應離子蝕刻(RIE)製程。接著,在如圖6所示之結構上形成一層導電材料310,藉以形成如圖7所示的結構,其中導電材料310可包括一層或多層之導電材料,例如二氧化矽或氮化矽。 Then, a dielectric material 308 having a given thickness is deposited on the structure 400 as shown in FIG. 4 to form a structure as shown in FIG. 5; wherein the dielectric material 308 comprises one or more dielectric layers. The process of depositing the dielectric material 308 can have minimal variations in the thickness of the entire array. For example, the dielectric material 308 can comprise yttrium oxide and can be deposited using a high density plasma (HDP) deposition process, although it can be used. Various techniques for deposition, such as sputtering, reactive sputtering, atomic layer deposition (ALD), low pressure chemical vapor deposition (LPCVD), plasma enhanced chemical vapor deposition (PECVD), metal organic chemical vapor deposition (MOCVD) Wait. Next, the dielectric material 308 of the structure shown in FIG. 5 is etched to form recesses 600, 602 that extend to the upper surface of the floating gate structure of the chemical sensors 350, 351 to form a pattern. The structure shown in FIG. 6 wherein the method of forming the recesses 600, 602 may, for example, use a lithography process to pattern a photoresist layer on the dielectric material 308 to define the locations of the recesses 600, 602 and then utilize The patterned photoresist layer is used as a mask to anisotropically etch the dielectric material 308, and the anisotropic etching of the dielectric material 308 can be performed, for example, by a dry etching process, such as fluorine-based reactive ion etching. (RIE) Process. Next, a layer of conductive material 310 is formed on the structure as shown in FIG. 6, thereby forming a structure as shown in FIG. 7, wherein the conductive material 310 may include one or more layers of a conductive material such as hafnium oxide or tantalum nitride.

接著,對介電材料310進行蝕刻以形成定義反應區域301、302之開口,其係延伸至感測器板320,藉以形成如圖8所示之結構。其中,將導電材料900之一共形層沉積於如圖8所示之結構,藉以形成如圖9所示之結構。導電材料900可包含一層或多層之導電材料,例如,導電材料900可以是氮化鈦層或鈦層。此外,亦可以使用其它及/或另外的導電材料,諸如參考上述導電元件370所述的材料;另外,亦可以沉積一層以上的導電材料。導電材料900可以使用各種技術進行沉積,例如濺鍍、反應濺鍍、原子層沉積(ALD)、低壓化學汽相沉積(LPCVD)、電漿增強化學氣相沉積(PECVD)、金屬有機化學氣相沉積(MOCVD)等。 Next, the dielectric material 310 is etched to form openings defining the reaction regions 301, 302 that extend to the sensor plate 320 to form a structure as shown in FIG. Wherein, a conformal layer of conductive material 900 is deposited on the structure as shown in FIG. 8 to form a structure as shown in FIG. The electrically conductive material 900 can comprise one or more layers of electrically conductive material. For example, the electrically conductive material 900 can be a titanium nitride layer or a titanium layer. In addition, other and/or additional conductive materials may be used, such as those described with reference to conductive element 370 described above; in addition, more than one layer of conductive material may be deposited. The conductive material 900 can be deposited using various techniques such as sputtering, reactive sputtering, atomic layer deposition (ALD), low pressure chemical vapor deposition (LPCVD), plasma enhanced chemical vapor deposition (PECVD), metal organic chemical vapor phase. Deposition (MOCVD), etc.

接著,將材料1000形成於如圖9所示之結構上,藉以形成如圖10所示之結構;材料1000可包含一層或多層之沉積介電材料,如二氧化矽或氮化矽;此外,材料1000可包含一光阻,在一實施例中,當材料1000可包含光阻時,可以進行材料1000與導電材料900的局部蝕刻,藉以定出介電材料310之距離309,亦即露出側壁303之距離309,進而形成如圖11所示之結構。依據所使用之製程及/或材料,材料1000與導電 材料900可以同時或分開進行蝕刻,例如,可以利用氧氣光阻蝕刻、氬氣濺鍍突破蝕刻或鈦溴化氫蝕刻等其中之一進行局部蝕刻。接著,對材料1000進行蝕刻以形成定義反應區域301、302之開口,其係延伸至導電元件370、900,藉以形成如圖12所示之結構。在一實施例中,殘留之光阻必須從開口中清除,其可以利用該技術領域中所熟知的技術進行,如氧氣電漿灰。 Next, a material 1000 is formed on the structure as shown in FIG. 9 to form a structure as shown in FIG. 10; the material 1000 may comprise one or more layers of deposited dielectric material such as hafnium oxide or tantalum nitride; The material 1000 can include a photoresist. In an embodiment, when the material 1000 can include a photoresist, local etching of the material 1000 and the conductive material 900 can be performed to define a distance 309 of the dielectric material 310, that is, to expose the sidewall. A distance 309 of 303, which in turn forms a structure as shown in FIG. Material 1000 and conductive depending on the process and/or materials used The material 900 may be etched simultaneously or separately, for example, by local etching using one of oxygen photoresist etching, argon sputtering breakthrough etching, or titanium hydrogen bromide etching. Next, material 1000 is etched to form openings defining reaction regions 301, 302 that extend to conductive elements 370, 900 to form a structure as shown in FIG. In one embodiment, the residual photoresist must be removed from the opening, which can be performed using techniques well known in the art, such as oxygen plasma ash.

圖13為依據一第二實施例之兩個代表性化學感測器與對應之反應區域的剖面圖。於圖13中所顯示之兩個代表性化學感測器係不同於如圖3中所顯示之兩個代表性化學感測器,其差異處在圖13所示者包括通過感測器板320之通孔,其上方係設置有微井/奈米井,因此如圖3所示之結構的製造方法與如圖13所示之結構的製造方法並不相同,其詳述如下。 Figure 13 is a cross-sectional view of two representative chemical sensors and corresponding reaction regions in accordance with a second embodiment. The two representative chemical sensors shown in FIG. 13 are different from the two representative chemical sensors shown in FIG. 3, the differences being shown in FIG. 13 including passing through the sensor plate 320. The through hole is provided with a microwell/nano well above, and therefore the manufacturing method of the structure shown in FIG. 3 is different from the manufacturing method of the structure shown in FIG. 13, and the details are as follows.

圖14至圖25為形成依據一示例性實施例之化學感測器之一陣列及其對應井結構的製造過程的各階段之示意圖。如圖14所示之一結構1400包括化學裝置350、351之複數浮動閘極結構(如浮動閘極結構318),形成結構1400的方法可以形成參照如圖4所示之結構400的方法。如圖15所示之結構1500,可將一介電材料1503形成於化學裝置350之場效電晶體之感測器板320上,接著,如圖16所示,對如圖15所示之結構1500之介電材料1503進行蝕刻,以形成開口1618、1620(作為通孔),其係延伸至化學裝置350、351之複數浮動閘極結構的上表面,藉以形成如圖16所示之結構1600,其中,形成開口1618、1620的方法可以例如是,利用微影製程來圖案化介電材料1503上的一層光阻層,藉以定義出開口1618、1620的位置,然後利用圖案化之光阻層做為遮罩,對介電材料1503進行非等向性蝕刻。介電材料1503的非等向性蝕刻可以例如是利用一乾式蝕刻製程進行,如氟基反應離子蝕刻(RIE)製程。在本實施例中,開口1618、1620以距離1630分隔開,且開口1618、1620 係為應用為通孔的適當尺寸,例如,此分隔之距離1630可以是用來形成開口1618、1620之製程(如微影製程)的最小特徵尺寸;其中,距離1630可以遠大於寬度1620。接著,在如圖16所示之結構1600上沉積一層導電材料1704,藉以形成如圖17所示的結構1700,其中導電材料1704亦可被稱為導電襯墊;導電材料1704可包括一層或多層之導電材料,例如,導電材料1704可以是氮化鈦層或鈦層。此外,亦可以使用其它及/或另外的導電材料,諸如參考上述導電元件所述的材料;另外,亦可以沉積一層以上的導電材料。導電材料1704可以使用各種技術進行沉積,例如濺鍍、反應濺鍍、原子層沉積(ALD)、低壓化學汽相沉積(LPCVD)、電漿增強化學氣相沉積(PECVD)、金屬有機化學氣相沉積(MOCVD)等。 14 through 25 are schematic diagrams of various stages of a fabrication process for forming an array of chemical sensors and their corresponding well structures in accordance with an exemplary embodiment. One of the structures 1400 shown in FIG. 14 includes a plurality of floating gate structures (eg, floating gate structures 318) of chemical devices 350, 351. The method of forming structure 1400 can form a method that refers to structure 400 as shown in FIG. As shown in FIG. 15, a dielectric material 1503 can be formed on the sensor plate 320 of the field effect transistor of the chemical device 350. Next, as shown in FIG. 16, the structure shown in FIG. A dielectric material 1503 of 1500 is etched to form openings 1618, 1620 (as vias) that extend to the upper surface of the plurality of floating gate structures of chemical devices 350, 351 to form structure 1600 as shown in FIG. The method of forming the openings 1618, 1620 may, for example, use a lithography process to pattern a layer of photoresist on the dielectric material 1503 to define the locations of the openings 1618, 1620, and then utilize the patterned photoresist layer. As a mask, the dielectric material 1503 is anisotropically etched. The anisotropic etch of dielectric material 1503 can be performed, for example, using a dry etch process, such as a fluorine based reactive ion etch (RIE) process. In the present embodiment, the openings 1618, 1620 are separated by a distance 1630, and the openings 1618, 1620 The appropriate size is applied as a via, for example, the separation distance 1630 can be the minimum feature size of the process used to form the openings 1618, 1620 (eg, lithography); wherein the distance 1630 can be much larger than the width 1620. Next, a layer of conductive material 1704 is deposited over structure 1600 as shown in FIG. 16 to form structure 1700 as shown in FIG. 17, wherein conductive material 1704 can also be referred to as a conductive pad; conductive material 1704 can include one or more layers. The electrically conductive material, for example, the electrically conductive material 1704 can be a titanium nitride layer or a titanium layer. In addition, other and/or additional conductive materials may be used, such as those described with reference to the conductive elements described above; in addition, more than one layer of conductive material may be deposited. Conductive material 1704 can be deposited using a variety of techniques such as sputtering, reactive sputtering, atomic layer deposition (ALD), low pressure chemical vapor deposition (LPCVD), plasma enhanced chemical vapor deposition (PECVD), metal organic chemical vapor phase. Deposition (MOCVD), etc.

接著,可例如將一層導電材料1805(如鎢)沉積在如圖17所示的結構1700上,藉以形成圖18所示之結構1800。其中,導電材料1805可使用各種技術進行沉積,例如濺鍍、反應濺鍍、原子層沉積(ALD)、低壓化學汽相沉積(LPCVD)、電漿增強化學氣相沉積(PECVD)、金屬有機化學氣相沉積(MOCVD)等,或任何其它適當的技術。然後,可使用例如化學機械研磨(CMP)製程對導電材料1704及導電材料1805進行平坦化,藉以形成如圖19所示的結構1900。可選擇性的進行一額外的步驟以便在平坦化之導電材料1704及導電材料1805上形成一通孔阻障襯墊(圖未示),例如,通孔阻障襯墊的材料可以包含氮化鈦。 Next, a layer of conductive material 1805 (e.g., tungsten) can be deposited, for example, on structure 1700 as shown in FIG. 17, thereby forming structure 1800 of FIG. Among them, conductive material 1805 can be deposited using various techniques such as sputtering, reactive sputtering, atomic layer deposition (ALD), low pressure chemical vapor deposition (LPCVD), plasma enhanced chemical vapor deposition (PECVD), metal organic chemistry. Vapor deposition (MOCVD), etc., or any other suitable technique. Conductive material 1704 and conductive material 1805 can then be planarized using, for example, a chemical mechanical polishing (CMP) process to form structure 1900 as shown in FIG. An additional step may be optionally performed to form a via barrier liner (not shown) on the planarized conductive material 1704 and the conductive material 1805. For example, the material of the via barrier liner may comprise titanium nitride. .

接著,將介電材料2006形成於如圖19所示之結構上,藉以形成如圖20所示之結構。介電材料2006可包含一層或多層之沉積介電材料,如二氧化矽或氮化矽。然後對介電材料2006進行蝕刻以形成開口,其係延伸至介電材料1503及平坦化之導電材料1704與導電材料1805,藉以形成如圖21所示之結構。當形成開口後,可以對介電材料1503進行局部蝕刻,如本實施例所示,因此導電材料1704與導電材料1805會高 於介電材料1503,並凸出至開口中。接著,在如圖21所示之結構上沉積一共形層之導電材料2200,藉以形成如圖22所示之結構。導電材料2200可包含一層或多層之導電材料,例如,導電材料2200可為一氮化鈦層或一鈦層。此外,亦可以使用其它及/或另外的導電材料,諸如參考上述導電元件370所述的材料;另外,亦可以沉積一層以上的導電材料。導電材料2200可以使用各種技術進行沉積,例如濺鍍、反應濺鍍、原子層沉積(ALD)、低壓化學汽相沉積(LPCVD)、電漿增強化學氣相沉積(PECVD)、金屬有機化學氣相沉積(MOCVD)等。 Next, a dielectric material 2006 is formed on the structure as shown in FIG. 19, thereby forming a structure as shown in FIG. The dielectric material 2006 can comprise one or more layers of deposited dielectric material such as hafnium oxide or tantalum nitride. Dielectric material 2006 is then etched to form openings that extend to dielectric material 1503 and planarized conductive material 1704 and conductive material 1805, thereby forming a structure as shown in FIG. After the opening is formed, the dielectric material 1503 can be locally etched, as shown in this embodiment, so that the conductive material 1704 and the conductive material 1805 are high. The dielectric material 1503 is protruded into the opening. Next, a conformal layer of conductive material 2200 is deposited on the structure shown in FIG. 21 to form a structure as shown in FIG. The conductive material 2200 may comprise one or more layers of conductive material. For example, the conductive material 2200 may be a titanium nitride layer or a titanium layer. In addition, other and/or additional conductive materials may be used, such as those described with reference to conductive element 370 described above; in addition, more than one layer of conductive material may be deposited. Conductive material 2200 can be deposited using various techniques such as sputtering, reactive sputtering, atomic layer deposition (ALD), low pressure chemical vapor deposition (LPCVD), plasma enhanced chemical vapor deposition (PECVD), metal organic chemical vapor phase. Deposition (MOCVD), etc.

接著,將材料2300形成於如圖22所示之結構上,藉以形成如圖23所示之結構;材料2300可包含一層或多層之沉積介電材料,如二氧化矽或氮化矽;此外,材料2300可包含一光阻,在一實施例中,當材料2300可包含光阻時,可以進行材料2300與導電材料2200的局部蝕刻,藉以定出介電材料310之距離1309,亦即露出側壁1303之距離309,進而形成如圖24所示之結構。依據所使用之製程及/或材料,材料2300與導電材料2200可以同時或分開進行蝕刻,例如,可以利用氧氣光阻蝕刻、氬氣濺鍍突破蝕刻或鈦溴化氫蝕刻等其中之一進行局部蝕刻。接著,對材料2300進行蝕刻以形成定義反應區域301、302之開口,其係延伸至導電元件370、2200,藉以形成如圖25所示之結構。在一實施例中,殘留之光阻必須從開口中清除,其可以利用該技術領域中所熟知的技術進行,如氧氣電漿灰。 Next, the material 2300 is formed on the structure as shown in FIG. 22 to form a structure as shown in FIG. 23; the material 2300 may comprise one or more layers of deposited dielectric material such as hafnium oxide or tantalum nitride; The material 2300 can include a photoresist. In an embodiment, when the material 2300 can include a photoresist, local etching of the material 2300 and the conductive material 2200 can be performed to define a distance 1309 of the dielectric material 310, that is, to expose the sidewall. A distance 309 of 1303, which in turn forms a structure as shown in FIG. Depending on the process and/or materials used, the material 2300 and the conductive material 2200 may be etched simultaneously or separately, for example, by one of oxygen photoresist etching, argon sputtering breakthrough etching, or titanium hydrogen bromide etching. Etching. Next, material 2300 is etched to form openings defining reaction regions 301, 302 that extend to conductive elements 370, 2200 to form a structure as shown in FIG. In one embodiment, the residual photoresist must be removed from the opening, which can be performed using techniques well known in the art, such as oxygen plasma ash.

雖然本發明之內容係參照上述之較佳實施例及實例,但是應當理解,這些實例係作為說明性的而非為限制性的。可以設想的,本領域技術人員可據以實施並進行適當之改良及組合,這些改良及組合仍落在本發明的精神與下列申請專利範圍內。 While the present invention has been described with reference to the preferred embodiments and examples, It is contemplated that those skilled in the art can implement and make appropriate modifications and combinations, which are still within the spirit of the invention and the scope of the following claims.

301、302‧‧‧反應區域 301, 302‧‧‧Reaction area

303‧‧‧側壁 303‧‧‧ side wall

308、310、319‧‧‧介電材料 308, 310, 319‧‧‧ dielectric materials

309‧‧‧距離 309‧‧‧ distance

312‧‧‧固相支持物 312‧‧‧ Solid support

314‧‧‧下部 Lower part of 314‧‧

315‧‧‧上部 315‧‧‧ upper

318‧‧‧浮動閘極結構 318‧‧‧Floating gate structure

320‧‧‧感測器板 320‧‧‧Sensor board

321‧‧‧源極區域 321‧‧‧ source area

322‧‧‧汲極區域 322‧‧‧Bungee area

323‧‧‧通道區域 323‧‧‧Channel area

340‧‧‧擴散機制 340‧‧‧Diffusion mechanism

350、351‧‧‧化學感測器 350, 351‧ ‧ chemical sensors

352‧‧‧閘極介電層 352‧‧‧ gate dielectric layer

354‧‧‧半導體基板 354‧‧‧Semiconductor substrate

370‧‧‧導電元件 370‧‧‧Conductive components

371‧‧‧內表面 371‧‧‧ inner surface

Claims (19)

一種化學感測器,包含:一化學敏感場效電晶體,其包含一浮動閘極導體,該浮動閘極導體具有一上表面;一材料,其定義延伸至該浮動閘極導體之該上表面之一開口,該材料包含一第一介電質,其係位於一第二介電質下方;以及一導電元件,其係接觸該浮動閘極導體之該上表面,並沿著該開口之一側壁延伸一距離。 A chemical sensor comprising: a chemically sensitive field effect transistor comprising a floating gate conductor having an upper surface; a material extending to the upper surface of the floating gate conductor An opening, the material comprising a first dielectric underlying a second dielectric; and a conductive element contacting the upper surface of the floating gate conductor and along one of the openings The side walls extend a distance. 如請求項1之化學感測器,其中該開口包含位於該第一介電質中的一下部,以及位於該第二介電質中的一上部。 The chemical sensor of claim 1, wherein the opening comprises a lower portion in the first dielectric and an upper portion in the second dielectric. 如請求項2之化學感測器,其中該開口之該下部之一寬度係實質上與該上部之一寬度相同。 A chemical sensor according to claim 2, wherein one of the lower portions of the opening has a width substantially the same as a width of one of the upper portions. 如請求項2之化學感測器,其中該導電元件係共同形成該開口之一形狀。 The chemical sensor of claim 2, wherein the conductive elements collectively form one of the openings. 如請求項1之化學感測器,其中該導電元件係延伸至該第二介電質之一上表面。 The chemical sensor of claim 1, wherein the conductive element extends to an upper surface of the second dielectric. 如請求項1之化學感測器,其中該導電元件包含定義該化學感測器之一反應區域之一下部的一內表面,且該第二介電質包含定義該開口之一上部的一內表面。 The chemical sensor of claim 1, wherein the conductive element comprises an inner surface defining a lower portion of one of the reaction regions of the chemical sensor, and the second dielectric comprises an inner portion defining an upper portion of the opening surface. 如請求項1之化學感測器,其中該導電元件包含一導電材料,且該導電元件之一內表面係包含該導電材料之一氧化物。 The chemical sensor of claim 1, wherein the conductive element comprises a conductive material, and an inner surface of the conductive element comprises an oxide of the conductive material. 如請求項1之化學感測器,其中該化學感測器之一感測表面包含該導電元件之一內表面。 A chemical sensor according to claim 1, wherein one of the sensing surfaces of the chemical sensor comprises an inner surface of the conductive element. 如請求項1之化學感測器,其中該化學敏感場效電晶體係對應在靠近該導電元件處發生一化學反應時,產生一感測器訊號。 The chemical sensor of claim 1, wherein the chemically sensitive field effect crystal system generates a sensor signal corresponding to a chemical reaction occurring near the conductive element. 如請求項1之化學感測器,其中該浮動閘極導體包含複數個導體,其係互相電性連接並藉由介電層而互相分離,且該浮動閘極導體係為該複數個導體中的最上層之該導體。 The chemical sensor of claim 1, wherein the floating gate conductor comprises a plurality of conductors electrically connected to each other and separated from each other by a dielectric layer, and the floating gate conducting system is among the plurality of conductors The uppermost layer of the conductor. 一種方法,用以製造一化學感測器,該方法包含:形成一化學敏感場效電晶體,其包含一浮動閘極導體,該浮動閘極導體具有一上表面;形成一材料,其定義延伸至該浮動閘極導體之該上表面之一開口,該材料包含一第一介電質,其係位於一第二介電質下方;以及形成一導電元件,其係接觸該浮動閘極導體之該上表面,並沿著該開口之一側壁延伸一距離。 A method for fabricating a chemical sensor, the method comprising: forming a chemically sensitive field effect transistor comprising a floating gate conductor having an upper surface; forming a material defining an extension Opening to one of the upper surfaces of the floating gate conductor, the material comprising a first dielectric underlying a second dielectric; and forming a conductive element contacting the floating gate conductor The upper surface extends a distance along a side wall of the opening. 如請求項11之方法,其中形成該材料與形成該導電元件之步驟包含:形成該第一介電質於該浮動閘極導體上,其中該第一介電質係定義延伸至該浮動閘極導體之該上表面之一凹口;形成該第二介電質於其上;蝕刻該第二介電質以暴露出該導電元件,藉以定義依開口;以及形成該導電元件於該開口中。 The method of claim 11, wherein the forming the material and forming the conductive element comprises: forming the first dielectric on the floating gate conductor, wherein the first dielectric system definition extends to the floating gate a recess of the upper surface of the conductor; forming the second dielectric thereon; etching the second dielectric to expose the conductive element, thereby defining an opening; and forming the conductive element in the opening. 如請求項12之方法,其中形成該導電元件於該開口中之步驟包含:沉積一導電材料於該開口中及該第一介電質之一上表面上;以及從該第二介電質之該上表面移除該導電材料之至少一部分。 The method of claim 12, wherein the step of forming the conductive element in the opening comprises: depositing a conductive material in the opening and on an upper surface of the first dielectric; and from the second dielectric The upper surface removes at least a portion of the electrically conductive material. 如請求項13之方法,其中移除該導電材料之至少一部分之步驟包含:沉積一層光阻於該開口中;以及從該第二介電質之該上表面將該導電材料之一部分連同該光阻一起移除。 The method of claim 13, wherein the removing at least a portion of the electrically conductive material comprises: depositing a layer of photoresist in the opening; and extracting a portion of the electrically conductive material from the upper surface of the second dielectric together with the light The resistance is removed together. 如請求項14之方法,更包含移除殘留之該光阻。 The method of claim 14, further comprising removing the residual photoresist. 如請求項11之方法,其中該導電材料包含鈦。 The method of claim 11, wherein the electrically conductive material comprises titanium. 如請求項11之方法,其中該開口係為一奈米井。 The method of claim 11, wherein the opening is a nanowell. 如請求項11之方法,其中形成一導電元件之步驟包含共形地沉積一導電材料於該開口中。 The method of claim 11, wherein the step of forming a conductive element comprises conformally depositing a conductive material in the opening. 如請求項11之方法,其中該導電元件包含定義該化學感測器之一反應區域之一下部的一內表面,且該第二介電質包含定義該開口之一上部的一內表面。 The method of claim 11, wherein the conductive element comprises an inner surface defining a lower portion of one of the reaction regions of the chemical sensor, and the second dielectric comprises an inner surface defining an upper portion of the opening.
TW103130474A 2013-11-06 2014-09-03 Chemical sensors with consistent sensor surface areas and method manufacturing the same TWI655429B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361900907P 2013-11-06 2013-11-06
US61/900,907 2013-11-06

Publications (2)

Publication Number Publication Date
TW201518722A true TW201518722A (en) 2015-05-16
TWI655429B TWI655429B (en) 2019-04-01

Family

ID=53720870

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103130474A TWI655429B (en) 2013-11-06 2014-09-03 Chemical sensors with consistent sensor surface areas and method manufacturing the same

Country Status (1)

Country Link
TW (1) TWI655429B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI745786B (en) * 2018-11-30 2021-11-11 台灣積體電路製造股份有限公司 Sensor and manufactering method and operating method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4065855B2 (en) * 2004-01-21 2008-03-26 株式会社日立製作所 Biological and chemical sample inspection equipment
US7361946B2 (en) * 2004-06-28 2008-04-22 Nitronex Corporation Semiconductor device-based sensors
US9018684B2 (en) * 2009-11-23 2015-04-28 California Institute Of Technology Chemical sensing and/or measuring devices and methods
US8227877B2 (en) * 2010-07-14 2012-07-24 Macronix International Co., Ltd. Semiconductor bio-sensors and methods of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI745786B (en) * 2018-11-30 2021-11-11 台灣積體電路製造股份有限公司 Sensor and manufactering method and operating method thereof
US11293897B2 (en) 2018-11-30 2022-04-05 Taiwan Semiconductor Manufacturing Company, Ltd. High sensitivity ISFET sensor

Also Published As

Publication number Publication date
TWI655429B (en) 2019-04-01

Similar Documents

Publication Publication Date Title
US10422767B2 (en) Chemical sensor with consistent sensor surface areas
US9995708B2 (en) Chemical sensor with sidewall spacer sensor surface
JP2020042034A6 (en) Chemical sensor with consistent sensor surface area
US8841217B1 (en) Chemical sensor with protruded sensor surface
US8962366B2 (en) Self-aligned well structures for low-noise chemical sensors
US10481124B2 (en) Chemical device with thin conductive element
CN105452856B (en) Chemical sensor array with multiple sensors per well
US9116117B2 (en) Chemical sensor with sidewall sensor surface
EP2972279B1 (en) Chemical sensors with consistent sensor surface areas
US9835585B2 (en) Chemical sensor with protruded sensor surface
US20140264465A1 (en) Chemical sensors with partially extended sensor surfaces
TWI655429B (en) Chemical sensors with consistent sensor surface areas and method manufacturing the same
TWI647842B (en) Chemical device with thin conductive element
US20140273324A1 (en) Methods for manufacturing chemical sensors with extended sensor surfaces
TW201518721A (en) Chemical sensors with consistent sensor surface areas