TW201515153A - Static random access memory cell - Google Patents

Static random access memory cell Download PDF

Info

Publication number
TW201515153A
TW201515153A TW102136821A TW102136821A TW201515153A TW 201515153 A TW201515153 A TW 201515153A TW 102136821 A TW102136821 A TW 102136821A TW 102136821 A TW102136821 A TW 102136821A TW 201515153 A TW201515153 A TW 201515153A
Authority
TW
Taiwan
Prior art keywords
switch
type mos
mos transistor
coupled
random access
Prior art date
Application number
TW102136821A
Other languages
Chinese (zh)
Inventor
Young-Ran Chuang
Chao-Hsien Wu
Ming-Shing Chen
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW102136821A priority Critical patent/TW201515153A/en
Publication of TW201515153A publication Critical patent/TW201515153A/en

Links

Abstract

A Static Random Access Memory (SRAM) cell is a latch circuit formed with two inverters each formed with a PMOS transistor and an NMOS transistor. The latch circuit is coupled to a capacitor through a switch. When the switch is switched on, the stability of data stored in the SRAM cell will be enhanced. When the switch is switched off, data can be written to the SRAM cell quickly.

Description

靜態隨機存取記憶體單元 Static random access memory unit

本發明揭露一種靜態隨機存取記憶體單元,尤指一種於儲存節點透過輔助開關,耦接至輔助電容的靜態隨機存取記憶體單元。 The invention discloses a static random access memory unit, and more particularly to a static random access memory unit coupled to an auxiliary capacitor through an auxiliary switch at a storage node.

靜態隨機存取記憶體(Static Random Access Memory,SRAM)因存取速度快、功率消耗低、控制電路簡單、且內存資料於電源持續供應時不易消失等特性,已被廣泛應用於處理器高速快取(CPU cache)與硬碟緩衝記憶體(buffer cache)等用途。在先前技術中,無論6T或8T之靜態隨機存取記憶體單元(以下簡稱SRAM單元),其核心部位均是以二個反相器電路組成的門閂電路,當一位元(bit)之0或1被寫入後,該值即可被門閂電路鎖住。請參考第1圖,第1圖即為一先前技術中的6T SRAM單元100的示意圖,當SRAM單元100儲存1時,則儲存節點NA被閂鎖(latch)於高電位1,而儲存節點NB被閂鎖於低電位0。當SRAM單元100儲存0時則儲存節點NA被閂鎖於低電位0,而儲存節點NB被閂鎖於高電位1。儲存節點NA與儲存節點NB的電壓,係分別透過第一位元線BL與第二位元線BLB予以寫入或讀取。 Static Random Access Memory (SRAM) has been widely used in processors because of its high access speed, low power consumption, simple control circuit, and inability to disappear when memory data is continuously supplied. Take (CPU cache) and hard disk buffer memory (buffer cache) and other purposes. In the prior art, regardless of the 6T or 8T SRAM cell (hereinafter referred to as SRAM cell), the core part is a latch circuit composed of two inverter circuits, when a bit is 0. After 1 or 1 is written, the value is locked by the latch circuit. Please refer to FIG. 1. FIG. 1 is a schematic diagram of a prior art 6T SRAM cell 100. When the SRAM cell 100 stores 1, the storage node NA is latched at a high potential 1, and the storage node NB Is latched to a low potential of zero. When the SRAM cell 100 stores 0, the storage node NA is latched to a low potential of 0, and the storage node NB is latched at a high potential of one. The voltages of the storage node NA and the storage node NB are written or read through the first bit line BL and the second bit line BLB, respectively.

請參考第2圖,第2圖係為對應SRAM單元100的靜態雜訊邊界(Static Noise Margin,SNM)曲線示意圖。靜態雜訊邊界曲線係本領域用以評估SRAM單元的一種特性曲線,其解讀方式為量測圖中由蝴蝶線(butterfly curve)框出的正方形邊長,該邊長越長,即可稱為SNM越大,亦表示SRAM單元中儲存的資料(一位元之0或1)越不容易被改寫。由於SRAM單元之 讀取與寫入的動作類似,故執行讀取時,SRAM單元有被誤寫的風險,一個SNM較大的SRAM單元,即表示其儲存之資料較為穩定且不易被誤寫。由第2圖可看出,SRAM單元100對應之正方形邊長,僅有約0.2伏特。 Please refer to FIG. 2 , which is a schematic diagram of a static noise margin (SNM) curve corresponding to the SRAM cell 100 . The static noise boundary curve is a characteristic curve used in the field to evaluate the SRAM cell. The interpretation method is a square side length framed by a butterfly curve in the measurement chart. The longer the side length, the more it is called The larger the SNM, the less likely the data stored in the SRAM cell (0 or 1 of a bit) to be rewritten. Due to the SRAM unit The operation of reading and writing is similar, so the SRAM unit has the risk of being mistakenly written when reading is performed. A large SRAM unit of SNM indicates that the stored data is relatively stable and is not easily miswritten. As can be seen from Figure 2, the SRAM cell 100 corresponds to a square side length of only about 0.2 volts.

請再參考第3圖,第3圖係為對應於SRAM單元100之寫入邊界(Write Margin;WRM)曲線示意圖。寫入邊界曲線亦為本領域用以評估SRAM單元的一種特性曲線,其解讀方式可為觀察轉態點的電壓,例如第3圖中的實線部份為SRAM單元100之儲存節點NA的電壓VNA,虛線部份為SRAM單元100之儲存節點NB的電壓VNB,當透過第一位元線BL提供的電壓值VBL沿橫軸不斷下降時,由第3圖可見VBL降至約0.45伏特時,VNA才發生由原本的1.2伏特之輸出高電壓VOH(操作電壓,亦對應於邏輯1)降為小於0.2伏特之輸出低電壓VOL(對應於邏輯0)的轉態,也就是說,VNA於VBL下降至0.45伏特時會發生由邏輯1轉為邏輯0之轉態。上述之輸出高電壓VOH係為SRAM單元100之一輸出高電壓,可例如為1.2伏特並用以於輸出時表示高電位之邏輯1;且輸出低電壓VOL係為SRAM單元100之一輸出低電壓,可例如為0.2伏特並用以於輸出時表示低電位之邏輯0。寫入邊界WRM係定義為當儲存節點NA的電壓VNA等於輸出高電壓VOH與輸出低電壓VOL之平均值之時的VBL。寫入邊界WRM越低,即表示當VBL逐漸調降時,使VNA可發生轉態之VBL的電位越低。SRAM單元之WRM越低,表示其儲存之資料越穩定而不易被改寫。由第3圖可知,SRAM單元100的WRM高達0.45伏特。 Please refer to FIG. 3 again. FIG. 3 is a schematic diagram corresponding to the write boundary (Write Margin; WRM) curve of the SRAM cell 100. The write boundary curve is also used in the art to evaluate a characteristic curve of the SRAM cell, which can be interpreted by observing the voltage of the transition point. For example, the solid line part in FIG. 3 is the voltage of the storage node NA of the SRAM cell 100. V NA , the dotted line is the voltage V NB of the storage node NB of the SRAM cell 100. When the voltage value V BL supplied through the first bit line BL is continuously decreased along the horizontal axis, the V BL is reduced to about 3 by the third figure. At 0.45 volts, V NA occurs from the original 1.2 volt output high voltage VOH (operating voltage, also corresponding to logic 1) to an output low voltage VOL (corresponding to logic 0) of less than 0.2 volts, that is, say, V NA occur down to a logic 1 becomes logic 0 is transited 0.45 volts at the time of V BL. The output high voltage VOH is a high voltage output of one of the SRAM cells 100, which can be, for example, 1.2 volts and is used to represent a high potential logic 1 when outputting; and the output low voltage VOL is a low voltage output of the SRAM cell 100. It can be, for example, 0.2 volts and is used to represent a logic 0 of low potential at the time of output. The write boundary WRM is defined as V BL when the voltage V NA of the storage node NA is equal to the average of the output high voltage VOH and the output low voltage VOL. The lower the write boundary WRM, the lower the potential of V BL that causes V NA to transition when VBL is gradually lowered. The lower the WRM of the SRAM cell, the more stable the data it stores and the easier it is to be rewritten. As can be seen from FIG. 3, the WRAM of the SRAM cell 100 is as high as 0.45 volts.

請參考第4圖,第4圖係為先前技術之SRAM單元100經過高溫操作壽命(High Temperature Operating Life;HTOL)測試後最小可操作電壓(Vcc_min)之變化的示意圖。高溫操作壽命測試係為將SRAM單元置放於高溫環境下使其快速老化之可靠度測試。Vcc_min係為一SRAM單元之最小 可操作之操作電壓,其值越小,表示SRAM單元越健康與穩定。由第4圖可見,經過高溫操作壽命測試後,SRAM單元100的Vcc_min有往上偏移的現象,由此可知先前技術中的SRAM單元100抵抗高溫操作之可靠度有待改善。 Please refer to FIG. 4, which is a schematic diagram showing the change of the minimum operable voltage (Vcc_min) of the prior art SRAM cell 100 after the High Temperature Operating Life (HTOL) test. The high temperature operating life test is a reliability test for placing the SRAM unit in a high temperature environment for rapid aging. Vcc_min is the smallest of an SRAM cell The operable operating voltage, the smaller the value, indicates that the SRAM cell is healthier and more stable. As can be seen from Fig. 4, after the high-temperature operation life test, the Vcc_min of the SRAM cell 100 is shifted upward, and it is understood that the reliability of the prior art SRAM cell 100 against high temperature operation needs to be improved.

先前技術如SRAM單元100之架構雖可閂鎖住資料,但其僅依靠儲存節點NA與NB的寄生電容以儲存資料,當平日接受高速存取、置於高溫環境使穩定度下降、或長期接受宇宙射線α-particle撞擊時,儲存於SRAM單元100的0值或1值,容易產生錯誤的資料反轉現象。因此,本領域實需一解決方案,以增進先前技術之SRAM單元的穩定度與可控制度。 The prior art, such as the architecture of the SRAM cell 100, can latch data, but it only relies on the parasitic capacitance of the storage nodes NA and NB to store data, and when it is subjected to high-speed access on a daily basis, placed in a high temperature environment, the stability is lowered, or long-term acceptance is accepted. When the cosmic ray α-particle collides, the value of 0 or 1 stored in the SRAM cell 100 is prone to erroneous data inversion. Therefore, there is a need in the art for a solution to improve the stability and controllability of prior art SRAM cells.

本發明之一實施例揭露一種SRAM單元,包含一第一P型金氧半電晶體,一第一N型金氧半電晶體,一第二P型金氧半電晶體,一第二N型金氧半電晶體,一第三開關,一第四開關,一第一開關及一第一電容。該第一N型金氧半電晶體的閘極係耦接於該第一P型金氧半電晶體的閘極,該第一P型金氧半電晶體的源極係耦接於該第二P型金氧半電晶體的源極,該第二N型金氧半電晶體的閘極係耦接於該第二P型金氧半電晶體的閘極,該第一N型金氧半電晶體的源極係耦接於該第二N型金氧半電晶體的源極,該第三開關的第一端係耦接於該第一P型金氧半電晶體的汲極、該第一N型金氧半電晶體的汲極及該第二P型金氧半電晶體的閘極,該第四開關的第一端係耦接於該第二P型金氧半電晶體的汲極、該第二N型金氧半電晶體的汲極及該第一P型金氧半電晶體的閘極,該第一開關的第一端係耦接於該第一P型金氧半電晶體的汲極,該第一電容的第一端係耦接於該第一開關的第二端。 An embodiment of the invention discloses an SRAM cell comprising a first P-type MOS transistor, a first N-type MOS transistor, a second P-type MOS transistor, and a second N-type. A gold-oxide semi-transistor, a third switch, a fourth switch, a first switch and a first capacitor. The gate of the first N-type MOS transistor is coupled to the gate of the first P-type MOS transistor, and the source of the first P-type MOS transistor is coupled to the gate a source of the second P-type MOS transistor, the gate of the second N-type MOS transistor is coupled to the gate of the second P-type MOS transistor, the first N-type gold oxide The source of the second transistor is coupled to the source of the second N-type MOS transistor, and the first end of the third switch is coupled to the drain of the first P-type MOS transistor. a drain of the first N-type MOS transistor and a gate of the second P-type MOS transistor, the first end of the fourth switch being coupled to the second P-type MOS transistor a drain, a drain of the second N-type MOS transistor, and a gate of the first P-type MOS transistor, the first end of the first switch is coupled to the first P-type gold The first end of the first capacitor is coupled to the second end of the first switch.

本發明之另一實施例揭露一種操作SRAM單元之方法,該SRAM單元包含一第一反相器、與該第一反相器交互耦接之一第二反相器、一第一電容,及耦接於該第一反相器與該第一電容之間的一第一開關。該方法包含 當欲對該SRAM單元執行資料寫入時,關閉該第一開關。 Another embodiment of the present invention discloses a method for operating an SRAM cell. The SRAM cell includes a first inverter, a second inverter coupled to the first inverter, a first capacitor, and a first capacitor. The first switch is coupled between the first inverter and the first capacitor. The method includes When the data writing is to be performed on the SRAM cell, the first switch is turned off.

藉由本發明實施例揭露之SRAM單元,可同時兼顧SRAM單元之高速存取及資料穩定度,以及量產後的可控制性。 The SRAM unit disclosed in the embodiment of the present invention can simultaneously consider the high-speed access and data stability of the SRAM unit, and the controllability after mass production.

100、200、300‧‧‧SRAM單元 100, 200, 300‧‧‧ SRAM units

NA、NB‧‧‧儲存節點 NA, NB‧‧‧ storage node

210‧‧‧第一P型金氧半電晶體 210‧‧‧First P-type MOS semi-transistor

220‧‧‧第一N型金氧半電晶體 220‧‧‧First N-type gold oxide semi-transistor

230‧‧‧第二P型金氧半電晶體 230‧‧‧Second P-type gold oxide semi-transistor

240‧‧‧第二N型金氧半電晶體 240‧‧‧Second N-type oxy-oxygen semiconductor

250‧‧‧第三開關 250‧‧‧third switch

260‧‧‧第四開關 260‧‧‧fourth switch

270‧‧‧第一開關 270‧‧‧ first switch

280‧‧‧第二開關 280‧‧‧second switch

Ca‧‧‧第一電容 Ca‧‧‧first capacitor

Cb‧‧‧第二電容 Cb‧‧‧second capacitor

CNA‧‧‧寄生電容 C NA ‧‧‧Parasitic capacitance

BL‧‧‧第一位元線 BL‧‧‧first bit line

BLB‧‧‧第二位元線 BLB‧‧‧ second bit line

WL‧‧‧字元線 WL‧‧‧ character line

CL‧‧‧控制信號線 CL‧‧‧ control signal line

VBL‧‧‧第一位元線BL之電壓值 V BL ‧‧‧The voltage value of the first bit line BL

Vcc_min‧‧‧最小可操作電壓 Vcc_min‧‧‧ minimum operable voltage

Vcc‧‧‧操作電壓源 Vcc‧‧‧ operating voltage source

VNA‧‧‧儲存節點NA的電壓 V NA ‧‧‧Storage node NA voltage

VNB‧‧‧儲存節點NB的電壓 V NB ‧‧‧Storage node NB voltage

VOH‧‧‧輸出高電壓 VOH‧‧‧ output high voltage

VOL‧‧‧輸出低電壓 VOL‧‧‧ output low voltage

1110、1120、1310、1320‧‧‧步驟 1110, 1120, 1310, 1320‧‧ steps

第1圖為先前技術之SRAM單元的示意圖。 Figure 1 is a schematic diagram of a prior art SRAM cell.

第2圖為先前技術之SRAM單元之靜態雜訊邊界曲線示意圖。 Figure 2 is a schematic diagram of the static noise boundary curve of the prior art SRAM cell.

第3圖為先前技術之SRAM單元的寫入邊界曲線示意圖第4圖為先前技術之SRAM單元經過高溫操作壽命測試後最小可操作電壓之變化的示意圖。 3 is a schematic diagram of a write boundary curve of a prior art SRAM cell. FIG. 4 is a schematic diagram showing a change in minimum operable voltage of a prior art SRAM cell after a high temperature operational lifetime test.

第5圖為本發明第一實施例之SRAM單元的示意圖。 Fig. 5 is a schematic view showing an SRAM cell of the first embodiment of the present invention.

第6圖為第5圖SRAM單元之單邊等效電容的示意圖。 Figure 6 is a schematic diagram of the single-sided equivalent capacitance of the SRAM cell of Figure 5.

第7圖為第5圖SRAM單元之靜態雜訊邊界的示意圖。 Figure 7 is a schematic diagram of the static noise boundary of the SRAM cell of Figure 5.

第8圖為第5圖SRAM單元之寫入邊界曲線的示意圖。 Figure 8 is a schematic diagram of the write boundary curve of the SRAM cell of Figure 5.

第9圖為第5圖SRAM單元經過高溫操作壽命測試後之最小可操作電壓變化的示意圖。 Figure 9 is a schematic diagram of the minimum operable voltage change of the SRAM cell after the high temperature operational lifetime test in Figure 5.

第10圖為第5圖SRAM單元之字元線與控制信號線的時脈示意圖。 Figure 10 is a timing diagram of the word line and the control signal line of the SRAM cell of Figure 5.

第11圖為第5圖SRAM單元讀取與寫入的方法流程圖。 Figure 11 is a flow chart showing the method of reading and writing SRAM cells in Figure 5.

第12圖為本發明第二實施例的SRAM單元的示意圖。 Figure 12 is a schematic diagram of an SRAM cell in accordance with a second embodiment of the present invention.

第13圖為第12圖SRAM單元讀取與寫入的方法流程圖。 Figure 13 is a flow chart showing the method of reading and writing SRAM cells in Fig. 12.

請參考第5圖,第5圖為本發明第一實施例之SRAM單元200的示意圖。如第5圖所示,SRAM單元200包含第一P型金氧半電晶體210,第一N型金氧半電晶體220,第二P型金氧半電晶體230,第二N型金氧半電晶體240,第三開關250,第四開關260,第一開關270,第二開關280, 第一電容Ca及第二電容Cb。第一N型金氧半電晶體220的閘極係耦接於第一P型金氧半電晶體210的閘極,第一P型金氧半電晶體210的源極係耦接於第二P型金氧半電晶體230的源極,並耦接至操作電壓源Vcc,第二N型金氧半電晶體240的閘極係耦接於第二P型金氧半電晶體230的閘極,第一N型金氧半電晶體220的源極係耦接於第二N型金氧半電晶體240的源極,第三開關250的第一端係耦接於第一P型金氧半電晶體210的汲極、第一N型金氧半電晶體220的汲極及第二P型金氧半電晶體230的閘極,第四開關260的第一端係耦接於第二P型金氧半電晶體230的汲極、第二N型金氧半電晶體240的汲極及第一P型金氧半電晶體210的閘極。因此,第一P型金氧半電晶體210與第一N型金氧半電晶體220係形成第一反相器,第二P型金氧半電晶體230與第二N型金氧半電晶體240係形成第二反相器,第一反相器與第二反相器係交互耦接。 Please refer to FIG. 5. FIG. 5 is a schematic diagram of the SRAM unit 200 according to the first embodiment of the present invention. As shown in FIG. 5, the SRAM cell 200 includes a first P-type MOS transistor 210, a first N-type MOS transistor 220, a second P-type MOS transistor 230, and a second N-type gold oxide. a half transistor 240, a third switch 250, a fourth switch 260, a first switch 270, a second switch 280, The first capacitor Ca and the second capacitor Cb. The gate of the first N-type MOS transistor 220 is coupled to the gate of the first P-type MOS transistor 210, and the source of the first P-type MOS transistor 210 is coupled to the second The source of the P-type MOS transistor 230 is coupled to the operating voltage source Vcc, and the gate of the second N-type MOS transistor 240 is coupled to the gate of the second P-type MOS transistor 230. The first N-type MOS transistor 220 is coupled to the source of the second N-type MOS transistor 240, and the first end of the third switch 250 is coupled to the first P-type gold. The drain of the oxygen semiconductor 210, the drain of the first N-type MOS transistor 220, and the gate of the second P-type MOS transistor 230, the first end of the fourth switch 260 is coupled to the first The drain of the second P-type MOS transistor 230, the drain of the second N-type MOS transistor 240, and the gate of the first P-type MOS transistor 210. Therefore, the first P-type MOS transistor 210 and the first N-type MOS transistor 220 form a first inverter, the second P-type MOS transistor 230 and the second N-type MOS. The crystal 240 forms a second inverter, and the first inverter is coupled to the second inverter system in an alternating manner.

第一開關270的第一端係耦接於第一P型金氧半電晶體210的汲極,第一電容Ca的第一端係耦接於第一開關270的第二端,第二開關280的第一端係耦接於第二P型金氧半電晶體230的汲極,第二電容Cb的第一端係耦接於第二開關280的第二端。位於第一P型金氧半電晶體210之汲極的節點為第一儲存節點NA,而位於第二P型金氧半電晶體230之汲極的節點為第二儲存節點NB。將SRAM單元200與第1圖之先前技術中的SRAM單元100互相比較後可知,本發明揭露之SRAM單元200與先前技術之SRAM單元100的差異在於SRAM單元200於第一儲存節點NA透過第一開關270耦接至第一電容Ca,且於第二儲存節點NB透過第二開關280耦接至第二電容Cb。此外,第三開關250之第二端係耦接於一第一位元線BL,第四開關260之第二端係耦接於一第二位元線BLB。第三開關250與第四開關260皆係由一字元線WL控制其導通(on)或關閉(off),且第一開關270與第二開關280皆係由控制信號線CL控制其為導通或關閉。第一位元線BL與第二 位元線BLB係用以提供寫入SRAM單元200的資料,或讀出儲存於SRAM單元200的資料。第一電容Ca之第二端與第二電容Cb之第二端,可連接於例如接地端、系統電壓源、或另一金屬層等。 The first end of the first switch 270 is coupled to the first end of the first P-type MOS transistor 210. The first end of the first capacitor Ca is coupled to the second end of the first switch 270, and the second switch The first end of the 280 is coupled to the drain of the second P-type MOS transistor 230, and the first end of the second capacitor Cb is coupled to the second end of the second switch 280. The node at the drain of the first P-type MOS transistor 210 is the first storage node NA, and the node at the drain of the second P-type MOS transistor 230 is the second storage node NB. Comparing the SRAM unit 200 with the SRAM unit 100 of the prior art of FIG. 1 , the SRAM unit 200 disclosed in the present invention differs from the prior art SRAM unit 100 in that the SRAM unit 200 transmits the first through the first storage node NA. The switch 270 is coupled to the first capacitor Ca and coupled to the second capacitor Cb through the second switch 280 at the second storage node NB. In addition, the second end of the third switch 250 is coupled to a first bit line BL, and the second end of the fourth switch 260 is coupled to a second bit line BLB. The third switch 250 and the fourth switch 260 are controlled to be turned on or off by a word line WL, and the first switch 270 and the second switch 280 are controlled to be turned on by the control signal line CL. Or close. First bit line BL and second The bit line BLB is used to supply data written to the SRAM cell 200 or to read data stored in the SRAM cell 200. The second end of the first capacitor Ca and the second end of the second capacitor Cb may be connected to, for example, a ground terminal, a system voltage source, or another metal layer or the like.

先前技術中的SRAM單元100,在邏輯上是以兩個反向器組成之門閂電路將欲儲存之一位元的0或1閂鎖住,其係依靠儲存節點NA、NB的寄生電容以儲存該筆一位元的0或1之資料。若儲存節點NA、NB的寄生電容越大,則儲存資料的穩定度越高。請搭配第5圖一併參考第6圖,第6圖為本發明第一實施例之SRAM單元200單邊等效電容的示意圖,其中寄生電容CNA為SRAM單元200的儲存節點NA上的寄生電容。當SRAM單元200的第一開關270為導通時,第一儲存節點NA上的等效電容可視為如第6圖所示,為寄生電容CNA與第一電容Ca的並聯,第一儲存節點NA上的等效電容為:CNA(new)=CNA+Ca,也就是寄生電容CNA與第一電容Ca的和,其值大於原先儲存節點NA上的寄生電容CNAThe SRAM cell 100 of the prior art is logically a latch circuit composed of two inverters latching 0 or 1 of one bit to be stored, which relies on the parasitic capacitance of the storage nodes NA, NB for storage. The one-digit 0 or 1 data. If the parasitic capacitance of the storage nodes NA and NB is larger, the stability of the stored data is higher. Referring to FIG. 5 together with FIG. 6, FIG. 6 is a schematic diagram of a single-sided equivalent capacitance of the SRAM cell 200 according to the first embodiment of the present invention, wherein the parasitic capacitance C NA is parasitic on the storage node NA of the SRAM cell 200. capacitance. When the first switch 270 of the SRAM cell 200 is turned on, the equivalent capacitance on the first storage node NA can be regarded as shown in FIG. 6 , which is a parallel connection of the parasitic capacitance C NA and the first capacitor Ca, and the first storage node NA The equivalent capacitance is: C NA(new) = C NA + Ca, that is, the sum of the parasitic capacitance C NA and the first capacitance Ca, which is greater than the parasitic capacitance C NA on the original storage node NA .

請搭配第2圖參考第7圖,第7圖為本發明第一實施例的SRAM單元之靜態雜訊邊界的示意圖。由第7圖可看出,當第一開關270與第二開關280均為導通時,SRAM單元200之SNM曲線圖中的正方形邊長約為0.35伏特,較第2圖中SRAM單元100之SNM曲線圖中的正方形邊長為長,故SRAM單元200內儲存的資訊於第一開關270與第二開關280均為導通時,較先前技術之SRAM單元更穩定而不易被改寫。 Please refer to FIG. 7 in conjunction with FIG. 2, which is a schematic diagram of the static noise boundary of the SRAM cell according to the first embodiment of the present invention. As can be seen from FIG. 7, when the first switch 270 and the second switch 280 are both turned on, the square side length in the SNM graph of the SRAM cell 200 is about 0.35 volts, which is higher than the SNM of the SRAM cell 100 in FIG. The square side length in the graph is long, so that the information stored in the SRAM cell 200 is more stable than the prior art SRAM cell and is not easily rewritten when the first switch 270 and the second switch 280 are both turned on.

請搭配第3圖參考第8圖,第8圖係為本發明第一實施例的SRAM單元200之寫入邊界(Write Margin;WRM)曲線示意圖。第8圖中,實線部份為儲存節點NA的電壓VNA,且虛線部份為儲存節點NB的電壓VNB,當透過第一位元線BL提供之電壓值VBL沿橫軸不斷下降時,由第8圖可見VBL 降至約0.4伏特時,VNA由1.2伏特之輸出高電壓VOH(操作電壓,亦對應於邏輯1)降為小於0.2伏特之輸出低電壓VOL(對應於邏輯0)的轉態曲線才跨越高電壓VOH與低電壓VOL的平均值,也就是說,需於VBL下降至0.4伏特時,VNA由邏輯1轉為邏輯0之轉態才會成立。因此,由第8圖可知,SRAM單元200的寫入邊界WRM為0.4伏特。比較後可得知,相較於先前技術中SRAM單元100的寫入邊界WRM為0.45伏特,本發明第一實施例之SRAM單元200於第一開關270與第二開關280導通時,其寫入邊界WRM較低。故可知相較於先前技術,SRAM單元200於第一開關270與第二開關280導通時,其內部資料較不易被改寫。 Referring to FIG. 3 with reference to FIG. 8, FIG. 8 is a schematic diagram of a write boundary (Write Margin; WRM) curve of the SRAM cell 200 according to the first embodiment of the present invention. In Fig. 8, the solid line portion is the voltage V NA of the storage node NA, and the broken line portion is the voltage V NB of the storage node NB, and the voltage value V BL supplied through the first bit line BL is continuously decreased along the horizontal axis. When it is seen from Fig. 8 that V BL drops to about 0.4 volts, V NA is reduced from an output high voltage VOH of 1.2 volts (operating voltage, also corresponding to logic 1) to an output low voltage VOL of less than 0.2 volts (corresponding to logic The transition curve of 0) spans the average of the high voltage VOH and the low voltage VOL, that is, when V BL drops to 0.4 volts, the transition of V NA from logic 1 to logic 0 is valid. Therefore, as can be seen from Fig. 8, the write boundary WRM of the SRAM cell 200 is 0.4 volt. It can be seen that the SRAM cell 200 of the first embodiment of the present invention is written when the first switch 270 and the second switch 280 are turned on, compared to the write boundary WRM of the SRAM cell 100 in the prior art. The boundary WRM is lower. Therefore, compared with the prior art, when the first switch 270 and the second switch 280 are turned on, the internal data of the SRAM unit 200 is less easily rewritten.

請第4圖參考第9圖。第9圖係為本發明第一實施例的SRAM單元200經過高溫操作壽命測試後的最小可操作電壓Vcc_min之變化的示意圖。對照後可知,先前技術中的SRAM單元100經過高溫操作壽命測試後,Vcc_min為增大,也就是穩定度下降,然而本發明第一實施例之SRAM單元200經過高溫操作壽命測試後,因第一電容Ca與第二電容Cb的影響,Vcc_min呈現略微降低,故耦接第一電容Ca與第二電容Cb後,SRAM單元200的Vcc_min特性亦有改進。 Please refer to Figure 9 in Figure 4. Fig. 9 is a view showing the change of the minimum operable voltage Vcc_min of the SRAM cell 200 of the first embodiment of the present invention after the high-temperature operation life test. After the comparison, the VRAM_min is increased, that is, the stability is decreased after the high-temperature operation life test of the SRAM cell 100 in the prior art. However, after the high-temperature operation life test of the SRAM cell 200 of the first embodiment of the present invention, the first The influence of the capacitance Ca and the second capacitance Cb, Vcc_min is slightly lowered, so that the Vcc_min characteristic of the SRAM cell 200 is also improved after the first capacitance Ca and the second capacitance Cb are coupled.

對照第2至4圖,由第7至9圖可知,SRAM單元200於第一開關270與第二開關280導通時,相較於先前技術之SRAM單元100,實有儲存資料較為穩定且不易被改寫的優點。然而,因SRAM單元係為一可讀可寫之記憶體單元,故儲存資料穩定、不易改寫等特性,於讀取時為優點,但於寫入時則為缺點,因儲存資料太過穩定,亦會造成寫入速度下降。請搭配第5圖參考第10圖,第10圖為本發明第一實施例之SRAM單元200的字元線WL與控制信號線CL的時脈示意圖。本發明第一實施例揭露之SRAM單元200中,使用者可控制控制信號線CL,將第一開關270與第二開關280轉為 關閉(off),如此即可使SRAM單元200的儲存節點NA與NB處不再耦接至第一電容Ca與第二電容Cb,即可使寫入的難度降低,據以提昇對SRAM單元200寫入資料的速度。由於量產後,每一批實際生產之SRAM單元之特性皆不相同,故研發人員可於生產一批SRAM單元後,根據實測與統計,以得到為使該批SRAM單元順利寫入,最適當的控制信號線CL之時脈,並以可程式化控制電路搭配軟體,於系統中控制控制信號線CL之時脈。其中,如第10圖所示,控制信號線CL之時脈與字元線WL之時脈可互為獨立。因此之故,本發明第一實施例揭露之SRAM單元200,亦可藉由控制第一開關270與第二開關280,兼顧SRAM單元的寫入特性,以及量產後的可調性。 Referring to Figures 2 to 4, it can be seen from Figures 7 to 9 that when the first switch 270 and the second switch 280 are turned on, the SRAM cell 200 is relatively stable and difficult to be stored compared to the prior art SRAM cell 100. The advantages of rewriting. However, since the SRAM unit is a readable and writable memory unit, the storage data is stable and difficult to rewrite, and the like is an advantage in reading, but it is a disadvantage when writing, because the stored data is too stable. It also causes the write speed to drop. Referring to FIG. 5 with reference to FIG. 10, FIG. 10 is a timing diagram of the word line WL and the control signal line CL of the SRAM cell 200 according to the first embodiment of the present invention. In the SRAM unit 200 disclosed in the first embodiment of the present invention, the user can control the control signal line CL to convert the first switch 270 and the second switch 280 into Off, so that the storage nodes NA and NB of the SRAM cell 200 are no longer coupled to the first capacitor Ca and the second capacitor Cb, so that the difficulty of writing is reduced, thereby improving the pair of SRAM cells 200. The speed at which data is written. Since the characteristics of each batch of actually produced SRAM cells are different after mass production, the R&D personnel can produce a batch of SRAM cells, according to the actual measurement and statistics, in order to get the batch of SRAM cells to be successfully written, the most appropriate The clock of the signal line CL is controlled, and the programmable control circuit is matched with the software to control the clock of the control signal line CL in the system. As shown in FIG. 10, the clock of the control signal line CL and the clock of the word line WL can be independent of each other. Therefore, the SRAM unit 200 disclosed in the first embodiment of the present invention can also control the write characteristics of the SRAM unit and the adjustability after mass production by controlling the first switch 270 and the second switch 280.

請搭配第5圖之SRAM單元200,參考第11圖。第11圖為SRAM單元200的讀取與寫入方法流程圖。其方法之步驟如下,但不限於下列的順序:步驟1110:當欲經由第一位元線BL與第二位元線BLB將資料寫入SRAM單元200時,藉由控制信號線CL關閉第一開關270與第二開關280;步驟1120:當將資料寫入SRAM單元200後,藉由控制信號線CL導通第一開關270與第二開關280。 Please refer to the SRAM unit 200 of Figure 5, refer to Figure 11. Figure 11 is a flow chart of the method of reading and writing the SRAM cell 200. The steps of the method are as follows, but are not limited to the following sequence: Step 1110: When the data is to be written into the SRAM cell 200 via the first bit line BL and the second bit line BLB, the first signal is turned off by the control signal line CL. The switch 270 and the second switch 280; Step 1120: After the data is written into the SRAM unit 200, the first switch 270 and the second switch 280 are turned on by the control signal line CL.

由於當儲存節點NA與NB不耦接至輔助電容Ca與Cb時,寫入之速度快,因此步驟1110可於欲執行資料寫入時,將第一開關270與第二開關280轉為關閉。而由於當儲存節點NA與NB耦接至第一電容Ca與第二電容Cb時,儲存的穩定度高,因此步驟1120係可於將資料寫入SRAM單元200後,便導通第一開關270與第二開關280。除此之外,耦接於第一開關270與第二開關280的控制信號線CL可為兩相異的信號線,以配合操作的需求分別給予第一開關270與第二開關280相同或相異的導通時段。 Since the writing speed is fast when the storage nodes NA and NB are not coupled to the auxiliary capacitors Ca and Cb, the step 1110 can turn the first switch 270 and the second switch 280 to be off when the data writing is to be performed. Since the storage stability is high when the storage nodes NA and NB are coupled to the first capacitor Ca and the second capacitor Cb, the step 1120 can be performed after the data is written into the SRAM unit 200, and then the first switch 270 is turned on. The second switch 280. In addition, the control signal line CL coupled to the first switch 270 and the second switch 280 may be two different signal lines, which are respectively given the same or phase as the first switch 270 and the second switch 280 in accordance with the requirements of the operation. Different conduction period.

請搭配第5圖,參考第12圖。第12圖為本發明第三實施例中的SRAM單元300的示意圖。如第12圖所示,SRAM單元300與第5圖的SRAM單元200,其差異僅在於SRAM單元300並不包含第4開關280與第二電容Cb,也就是說SRAM單元300的儲存節點NB並沒有透過第4開關280耦接至第二電容Cb。因此,相較於第5圖的SRAM單元200,SRAM單元300僅有單邊的儲存節點NA透過第一開關270耦接至第一電容Ca。雖然相較於SRAM單元200,SRAM單元300僅於單邊透過第一開關370耦接至第一電容Ca,對於儲存穩定度與寫入速度等記憶體特性的改善較小,但也因此可節省記憶體的佈局(layout)面積。 Please refer to Figure 5 and refer to Figure 12. Figure 12 is a schematic diagram of an SRAM cell 300 in a third embodiment of the present invention. As shown in FIG. 12, the difference between the SRAM cell 300 and the SRAM cell 200 of FIG. 5 is that the SRAM cell 300 does not include the fourth switch 280 and the second capacitor Cb, that is, the storage node NB of the SRAM cell 300. It is not coupled to the second capacitor Cb through the fourth switch 280. Therefore, compared to the SRAM cell 200 of FIG. 5, the SRAM cell 300 has only a single-sided storage node NA coupled to the first capacitor Ca through the first switch 270. Although the SRAM cell 300 is coupled to the first capacitor Ca through the first switch 370 only on one side, compared to the SRAM cell 200, the memory characteristics such as storage stability and write speed are improved, but the saving is achieved. The layout area of the memory.

請搭配第12圖之SRAM單元300,參考第13圖。第13圖為SRAM單元300的讀取與寫入方法流程圖。其方法之步驟如下,但不限於下列的順序:步驟1310:當欲經由第一位元線BL與第二位元線BLB將資料寫入SRAM單元300時,藉由控制信號線CL關閉第一開關270;步驟1320:當將資料寫入SRAM單元300後,藉由控制信號線CL導通第一開關270。 Please refer to the SRAM unit 300 of Fig. 12, refer to Fig. 13. Figure 13 is a flow chart of the method of reading and writing the SRAM cell 300. The steps of the method are as follows, but are not limited to the following sequence: Step 1310: When the data is to be written into the SRAM cell 300 via the first bit line BL and the second bit line BLB, the first signal is turned off by the control signal line CL. Switch 270; Step 1320: After the data is written into the SRAM cell 300, the first switch 270 is turned on by the control signal line CL.

隨著SRAM記憶體之存取速度提昇,以及應用層面開發漸廣,SRAM記憶體如今常被應用於許多暴露於大氣中的電子裝備,如裝設於室外之電信設備或觀測設備等。然而,近年來常有宇宙射線α-粒子穿透系統封裝,撞擊SRAM單元中儲存節點處,造成電子電洞改變,而導致SRAM單元發生不預期之資料反轉,此即所謂的α-粒子加速軟失效率(α-particle Accelerated Soft Error Rate;α-particle ASER)問題。此種問題於高速運作之SRAM單元中更易發生,已為本領域近年來亟需解決之議題。本發明揭露之SRAM單元因不易產生非預期的資料反轉,故有助於抵抗α-粒子加速軟失效 率。 As the access speed of SRAM memory increases and the application level develops, SRAM memory is now often used in many electronic devices exposed to the atmosphere, such as telecom equipment or observation equipment installed outdoors. However, in recent years, cosmic ray α-particle penetration system packaging often hits the storage node in the SRAM cell, causing the electronic hole to change, which causes unintended data reversal in the SRAM cell. This is called α-particle acceleration. The problem of α-particle Accelerated Soft Error Rate (α-particle ASER). Such problems are more likely to occur in high-speed operation of SRAM cells, and have been an urgent issue in the field in recent years. The SRAM unit disclosed in the present invention helps to resist the α-particle acceleration soft failure because it is not easy to generate unintended data inversion. rate.

綜上所述,藉由本發明實施例揭露之SRAM單元,可同時兼顧SRAM單元之高速存取,SRAM單元內已儲存資料的穩定度,以及量產後的可調整性與可控制性,故相較於先前技術,本發明實已改善本領域待解之議題。 In summary, the SRAM unit disclosed in the embodiment of the present invention can simultaneously consider the high-speed access of the SRAM unit, the stability of the stored data in the SRAM unit, and the adjustability and controllability after mass production. In the prior art, the present invention has improved the subject matter to be solved in the art.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

200‧‧‧SRAM單元 200‧‧‧SRAM unit

NA、NB‧‧‧儲存節點 NA, NB‧‧‧ storage node

210‧‧‧第一P型金氧半電晶體 210‧‧‧First P-type MOS semi-transistor

220‧‧‧第一N型金氧半電晶體 220‧‧‧First N-type gold oxide semi-transistor

230‧‧‧第二P型金氧半電晶體 230‧‧‧Second P-type gold oxide semi-transistor

240‧‧‧第二N型金氧半電晶體 240‧‧‧Second N-type oxy-oxygen semiconductor

250‧‧‧第三開關 250‧‧‧third switch

260‧‧‧第四開關 260‧‧‧fourth switch

270‧‧‧第一開關 270‧‧‧ first switch

280‧‧‧第二開關 280‧‧‧second switch

Ca‧‧‧第一電容 Ca‧‧‧first capacitor

Cb‧‧‧第二電容 Cb‧‧‧second capacitor

BL‧‧‧第一位元線 BL‧‧‧first bit line

BLB‧‧‧第二位元線 BLB‧‧‧ second bit line

WL‧‧‧字元線 WL‧‧‧ character line

CL‧‧‧控制信號線 CL‧‧‧ control signal line

Vcc‧‧‧操作電壓 Vcc‧‧‧ operating voltage

Claims (14)

一種靜態隨機存取記憶體(Static Random Access Memory;SRAM)單元,包含:一第一P型金氧半電晶體;一第一N型金氧半電晶體,該第一N型金氧半電晶體的閘極係耦接於該第一P型金氧半電晶體的閘極;一第二P型金氧半電晶體,該第一P型金氧半電晶體的源極係耦接於該第二P型金氧半電晶體的源極;一第二N型金氧半電晶體,該第二N型金氧半電晶體的閘極係耦接於該第二P型金氧半電晶體的閘極,該第一N型金氧半電晶體的源極係耦接於該第二N型金氧半電晶體的源極;一第一開關,該第一開關的第一端係耦接於該第一P型金氧半電晶體的汲極;及一第一電容,該第一電容的第一端係耦接於該第一開關的第二端。 A static random access memory (SRAM) unit includes: a first P-type MOS transistor; a first N-type MOS transistor, the first N-type MOS a gate of the crystal is coupled to the gate of the first P-type MOS transistor; a second P-type MOS transistor, the source of the first P-type MOS transistor is coupled to a source of the second P-type MOS transistor; a second N-type MOS transistor, the gate of the second N-type MOS transistor is coupled to the second P-type MOS a gate of the transistor, a source of the first N-type MOS transistor is coupled to a source of the second N-type MOS transistor; a first switch, a first end of the first switch The first P-type MOS transistor is coupled to the first P-type MOS transistor; and a first capacitor is coupled to the second end of the first switch. 如請求項1所述之靜態隨機存取記憶體單元,另包含:一第三開關,該第三開關的第一端係耦接於該第一P型金氧半電晶體的汲極、該第一N型金氧半電晶體的汲極及該第二P型金氧半電晶體的閘極;及一第四開關,該第四開關的第一端係耦接於該第二P型金氧半電晶體的汲極、該第二N型金氧半電晶體的汲極及該第一P型金氧半電晶體的閘極。 The static random access memory unit of claim 1, further comprising: a third switch, the first end of the third switch is coupled to the drain of the first P-type MOS transistor, a drain of the first N-type MOS transistor and a gate of the second P-type MOS transistor; and a fourth switch, the first end of the fourth switch is coupled to the second P-type a drain of the MOS transistor, a drain of the second N-type MOS transistor, and a gate of the first P-type MOS transistor. 如請求項2所述之靜態隨機存取記憶體單元,其中該第三開關的控制端係耦接於一字元線(word line),該第三開關的第二端係耦接於一位元線(bit line),該第四開關的控制端係耦接於該字元線,該第四開關的第二端係耦接於一反向位元線(bit line bar)。 The static random access memory unit of claim 2, wherein the control end of the third switch is coupled to a word line, and the second end of the third switch is coupled to a bit Yuan line The control terminal of the fourth switch is coupled to the word line, and the second end of the fourth switch is coupled to a bit line bar. 如請求項3所述之靜態隨機存取記憶體單元,其中該第三開關係為一第三N型金氧半電晶體,該第三開關的控制端係為該第三N型金氧半電晶體的閘極,該第四開關係為一第四N型金氧半電晶體,該第四開關的控制端係為該第四N型金氧半電晶體的閘極。 The static random access memory cell of claim 3, wherein the third open relationship is a third N-type MOS transistor, and the control terminal of the third switch is the third N-type MOS half. The gate of the transistor, the fourth open relationship is a fourth N-type MOS transistor, and the control terminal of the fourth switch is the gate of the fourth N-type MOS transistor. 如請求項1所述之靜態隨機存取記憶體單元,其中該第一開關係為一N型金氧半電晶體或一P型金氧半電晶體。 The static random access memory cell of claim 1, wherein the first open relationship is an N-type MOS transistor or a P-type MOS transistor. 如請求項1所述之靜態隨機存取記憶體單元,其中該第一P型金氧半電晶體的源極係耦接於一電壓源,該第一N型金氧半電晶體的源極係耦接於地。 The SRAM unit of claim 1, wherein the source of the first P-type MOS transistor is coupled to a voltage source, the source of the first N-type MOS transistor The system is coupled to the ground. 如請求項6所述之靜態隨機存取記憶體單元,其中該第一電容的第二端係耦接地或該電壓源。 The SRAM cell of claim 6, wherein the second end of the first capacitor is coupled to a ground or the voltage source. 如請求項6所述之靜態隨機存取記憶體單元,另包含:一第二開關,該第二開關的第一端係耦接於該第二P型金氧半電晶體的汲極;及一第二電容,該第二電容的第一端係耦接於該第二開關的第二端。 The static random access memory unit of claim 6, further comprising: a second switch, the first end of the second switch being coupled to the drain of the second P-type MOS transistor; a second capacitor is coupled to the second end of the second switch. 如請求項8所述之靜態隨機存取記憶體單元,其中該第二電容的第二端係耦接地或該電壓源。 The static random access memory cell of claim 8, wherein the second end of the second capacitor is coupled to the ground or the voltage source. 如請求項8所述之靜態隨機存取記憶體單元,其中該第二開關係為一N型 金氧半電晶體或一P型金氧半電晶體。 The static random access memory unit of claim 8, wherein the second open relationship is an N type Gold oxide semi-transistor or a P-type gold oxide semi-transistor. 一種操作靜態隨機存取記憶體(Static Random Access Memory,SRAM)單元之方法,該靜態隨機存取記憶體單元包含一第一反相器、與該第一反相器交互耦接之一第二反相器、一第一電容,及耦接於該第一反相器與該第一電容之間的一第一開關,該方法包含:當欲對該靜態隨機存取記憶體單元執行資料寫入時,關閉該第一開關。 A method for operating a static random access memory (SRAM) unit, the static random access memory unit comprising a first inverter coupled to the first inverter and a second An inverter, a first capacitor, and a first switch coupled between the first inverter and the first capacitor, the method comprising: performing data writing on the static random access memory unit When the time is up, the first switch is turned off. 如請求項11所述之方法,另包含當完成對該靜態隨機存取記憶體單元執行資料寫入後,開啟該第一開關。 The method of claim 11, further comprising turning on the first switch after performing data writing to the static random access memory unit. 如請求項11所述之方法,其中該靜態隨機存取記憶體單元另包含一第二電容,及一第二開關,耦接於該第二反相器與該第二電容之間,該方法另包含:當欲對該靜態隨機存取記憶體單元執行資料寫入時,關閉該第二開關。 The method of claim 11, wherein the SRAM cell further includes a second capacitor, and a second switch coupled between the second inverter and the second capacitor, the method In addition, when the data writing is to be performed on the static random access memory unit, the second switch is turned off. 如請求項13所述之方法,另包含當完成對該靜態隨機存取記憶體單元執行資料寫入後,開啟該第二開關。 The method of claim 13, further comprising turning on the second switch after performing data writing to the static random access memory unit.
TW102136821A 2013-10-11 2013-10-11 Static random access memory cell TW201515153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102136821A TW201515153A (en) 2013-10-11 2013-10-11 Static random access memory cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102136821A TW201515153A (en) 2013-10-11 2013-10-11 Static random access memory cell

Publications (1)

Publication Number Publication Date
TW201515153A true TW201515153A (en) 2015-04-16

Family

ID=53437736

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102136821A TW201515153A (en) 2013-10-11 2013-10-11 Static random access memory cell

Country Status (1)

Country Link
TW (1) TW201515153A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI726869B (en) * 2016-02-24 2021-05-11 聯華電子股份有限公司 Layout structure for sram and manufacturing methods thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI726869B (en) * 2016-02-24 2021-05-11 聯華電子股份有限公司 Layout structure for sram and manufacturing methods thereof

Similar Documents

Publication Publication Date Title
US7738283B2 (en) Design structure for SRAM active write assist for improved operational margins
TWI543157B (en) Static randoom access memory and method thereof
WO2021135427A1 (en) Static random-access memory and fault detection circuit thereof
US9953698B2 (en) Overvoltage protection for a fine grained negative wordline scheme
US7890907B2 (en) Computer program product for designing memory circuits having single-ended memory cells with improved read stability
Giterman et al. Area and energy-efficient complementary dual-modular redundancy dynamic memory for space applications
KR20190024825A (en) Write assist for a memory device and methods of forming the same
Giterman et al. 4T gain-cell with internal-feedback for ultra-low retention power at scaled CMOS nodes
US8099688B2 (en) Circuit design
Kumar et al. Performance analysis of 6T SRAM cell on planar and FinFET technology
JP5408455B2 (en) Semiconductor memory device
Birla et al. Analysis of 8T SRAM Cell at Various Process Corners at 65 nm Process Technology.
US9449661B2 (en) Memory device
CN101877243A (en) Static random access memory
TW201515153A (en) Static random access memory cell
Giterman et al. Hybrid GC-eDRAM/SRAM bitcell for robust low-power operation
TWI698871B (en) Six-transistor static random access memory cell and operation method thereof
CN114999545A (en) NRHC-14T radiation-resistant SRAM memory cell, chip and module
Singh et al. Design of 6T, 5T and 4T SRAM cell on various performance metrics
Roy et al. Bit line and storage node decoupled 13T SRAM cell in 22-nm technology node
Rizvi et al. Design and analysis of a noise induced 6T SRAM cell
Pal et al. A single ended write double ended read decoupled 8-T SRAM cell with improved read stability and writability
Ding et al. Worst-case total dose radiation effect in deep-submicron SRAM circuits
Santos et al. Aging and performance sensor for SRAM
Gupta et al. Stability analysis of different dual-port SRAM cells in deep submicron region using N-Curve Method