TW201514839A - MEMS-based proximity sensor device and method - Google Patents

MEMS-based proximity sensor device and method Download PDF

Info

Publication number
TW201514839A
TW201514839A TW103117391A TW103117391A TW201514839A TW 201514839 A TW201514839 A TW 201514839A TW 103117391 A TW103117391 A TW 103117391A TW 103117391 A TW103117391 A TW 103117391A TW 201514839 A TW201514839 A TW 201514839A
Authority
TW
Taiwan
Prior art keywords
axis
data
parameter
thresholds
ratio
Prior art date
Application number
TW103117391A
Other languages
Chinese (zh)
Other versions
TWI509502B (en
Inventor
Kevin Cheng-Bin Huang
Cheng-Long Fu
Liang Tan
Original Assignee
Mcube Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/194,468 external-priority patent/US9696337B2/en
Application filed by Mcube Inc filed Critical Mcube Inc
Publication of TW201514839A publication Critical patent/TW201514839A/en
Application granted granted Critical
Publication of TWI509502B publication Critical patent/TWI509502B/en

Links

Landscapes

  • Telephone Function (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

A portable proximity device and method of operation thereof. The method for proximity detection implemented on a portable device can include determining an initial perturbation data, a tracking point data, and a stable position data with a physical sensor of the portable device. The initial perturbation data can include previous state data and current state data. The tracking point data can include one or more track data. An action to be performed can be determined, by a processor within the portable device, based on the initial perturbation data, the tracking point data, and the stable position data. The portable proximity device can include a physical sensor and a processor configured to perform these steps.

Description

以微機電系統(MEMS)為基的近接感測器裝置及方法 Micro-electromechanical system (MEMS) based proximity sensor device and method 相關申請案之交叉參考 Cross-reference to related applications

本申請案主張以下申請中之專利申請案之優先權:於2014年2月28日提出申請之美國臨時申請案第14/194,468號以及於2013年5月30日提出申請之美國專利申請案第61/829,115號,且該等專利申請案出於所有目的以引用之方式併入本申請案。 The present application claims priority to the patent application in the following application: U.S. Provisional Application No. 14/194,468, filed on Feb. 28, 2014, and U.S. Patent Application Serial No. No. 61/829,115, the disclosure of which is hereby incorporated by reference in its entirety in its entirety in its entirety in the the the the the the

對整合式微電子器件之研究與開發已持續在CMOS及MEMS中取得驚人進步。CMOS技術已變成用於積體電路(IC)之主要製造技術。以微機電系統(MEMS)為基的感測器可與IC技術介接在一起以實施數個進展性感測器應用。隨著整合式MEMS-CMOS裝置之日益增長之應用,用於測試此等整合式裝置之方法及系統已變得對確保產品可靠性至關重要。 Research and development of integrated microelectronic devices has continued to make amazing progress in CMOS and MEMS. CMOS technology has become the main manufacturing technology for integrated circuits (ICs). Microelectromechanical systems (MEMS) based sensors can be interfaced with IC technology to implement several progressive sensor applications. With the growing use of integrated MEMS-CMOS devices, methods and systems for testing such integrated devices have become critical to ensuring product reliability.

本發明係關於MEMS(微機電系統)裝置。 The present invention relates to MEMS (Micro Electro Mechanical Systems) devices.

在一實施例中,本發明包含一以MEMS為基的近接感測器裝置及操作方法。近接感測器常用於智慧型電話裝置(尤其係具有觸控螢幕之彼等智慧型電話裝置)中。在此一裝置中之該近接感測器之一主要功能係停用意外觸控事件。採用該近接感測器之最常見情境係耳朵接觸螢幕並在使用者接聽一呼叫時產生觸控事件。 In one embodiment, the invention includes a MEMS-based proximity sensor device and method of operation. Proximity sensors are commonly used in smart phone devices (especially those with a touch screen). One of the main functions of the proximity sensor in this device is to disable the accidental touch event. The most common scenario with this proximity sensor is the ear touch screen and generates a touch event when the user answers a call.

用於在一可攜式裝置上實施之近接偵測之方法可包含藉助該可 攜式裝置之一實體感測器判定一初始擾動資料、一追蹤點資料及一穩定位置資料。該初始擾動資料可包含先前狀態資料及當前狀態資料。該追蹤點資料可包含一或多個追蹤資料。可由該可攜式裝置內之一處理器基於該初始擾動資料、該追蹤點資料及該穩定位置資料判定待執行之一動作。該可攜式近接裝置可包含經組態以執行此等步驟之一實體感測器及一處理器。 A method for proximity detection implemented on a portable device can include A physical sensor of the portable device determines an initial disturbance data, a tracking point data, and a stable position data. The initial disturbance data may include previous status data and current status data. The tracking point data may include one or more tracking data. One of the actions to be performed may be determined by a processor in the portable device based on the initial disturbance data, the tracking point data, and the stable position data. The portable proximity device can include a physical sensor and a processor configured to perform one of these steps.

藉助本發明達成優於習用技術之諸多益處。此等益處包含一MEMS加速計,該MEMS加速計可組態為一虛擬近接感測器並與一服務常駐程式一起用作對近接感測器硬體及積體電路之一替代。此以加速計為基之近接感測器可在可攜式計算裝置(諸如,智慧型電話及平板電腦)中實施以偵測使用者手勢。特定實施方案及使用方法可取決於應用而變化。 A number of benefits over conventional techniques are achieved with the present invention. These benefits include a MEMS accelerometer that can be configured as a virtual proximity sensor and used in conjunction with a service resident program as an alternative to the proximity sensor hardware and integrated circuitry. The accelerometer-based proximity sensor can be implemented in portable computing devices, such as smart phones and tablets, to detect user gestures. Particular embodiments and methods of use may vary depending on the application.

在各項實施例中,行動裝置之移動之一或多個量變曲線可係預定的。一量變曲線之一個此實例可包含一行動裝置或諸如此類以自一水平或垂直位置向上之一弧線或曲線移動並維持在一穩定向上位置中。此一量變曲線可基於一使用者拾取其電話,朝其頭部移動電話,且然後使電話緊挨著其頭部進行通話。在各項實施例中,經由MEMS感測器或諸如此類判定之行動裝置之隨後移動與一或多個量變曲線進行比較。在某些實施例中,當存在一近似匹配時,可設定一狀態旗標或諸如此類。隨後,一作業系統程序(例如,常駐程式程序)可回應於指示符(例如,關斷一顯示器,掛斷一電話呼叫或諸如此類)而執行一動作。 In various embodiments, one or more of the magnitude changes in the movement of the mobile device may be predetermined. One such example of a variable curve can include a mobile device or the like to move and maintain in a stable upward position from one of the horizontal or vertical positions. This scalar curve can be based on a user picking up their phone, moving the phone towards its head, and then placing the call next to its head. In various embodiments, subsequent movements of the mobile device via a MEMS sensor or the like are compared to one or more quantitative curves. In some embodiments, a status flag or the like can be set when there is an approximate match. Subsequently, an operating system program (eg, a resident program) can perform an action in response to an indicator (eg, turning off a display, hanging up a phone call, or the like).

參考以下詳細說明及附圖可更完整地瞭解本發明之各個額外目標、特徵及優點。 The various additional objects, features and advantages of the present invention will be more fully understood from the description of the appended claims.

圖1圖解說明根據本發明之一實施例之用於初始移動偵測之一簡 化公式。 1 illustrates a simplified one for initial motion detection in accordance with an embodiment of the present invention. Formula.

圖2圖解說明根據本發明之一實施例之用於追蹤點偵測之一簡化公式。 2 illustrates a simplified formula for tracking point detection in accordance with an embodiment of the present invention.

圖3圖解說明根據本發明之一實施例之用於感測器資料檢查之一簡化公式。 3 illustrates a simplified formula for sensor data inspection in accordance with an embodiment of the present invention.

圖4圖解說明根據本發明之一實施例之用於感測器資料檢查之一簡化公式。 4 illustrates a simplified formula for sensor data inspection in accordance with an embodiment of the present invention.

圖5圖解說明根據本發明之一實施例之用於感測器資料檢查之一簡化公式。 Figure 5 illustrates a simplified formula for sensor data inspection in accordance with an embodiment of the present invention.

圖6圖解說明根據本發明之一實施例之用於操作一MEMS近接感測器裝置之一方法之一簡化流程圖。 6 illustrates a simplified flow diagram of one method for operating a MEMS proximity sensor device in accordance with an embodiment of the present invention.

圖7圖解說明根據本發明之一實施例之一MEMS近接感測器系統之一簡化方塊圖。 7 illustrates a simplified block diagram of a MEMS proximity sensor system in accordance with an embodiment of the present invention.

圖8圖解說明根據本發明之一實施例之一MEMS近接感測器系統之一簡化方塊圖。 8 illustrates a simplified block diagram of a MEMS proximity sensor system in accordance with an embodiment of the present invention.

圖9圖解說明根據本發明之一實施例之用於操作一MEMS近接感測器裝置之一方法之一簡化流程圖。 9 illustrates a simplified flow diagram of one method for operating a MEMS proximity sensor device in accordance with an embodiment of the present invention.

圖10圖解說明根據本發明之一實施例之用於操作一MEMS近接感測器裝置之一方法之一簡化流程圖。 10 illustrates a simplified flow diagram of one method for operating a MEMS proximity sensor device in accordance with an embodiment of the present invention.

圖11圖解說明根據本發明之一實施例之用於操作一MEMS近接感測器裝置之一方法之一簡化流程圖。 11 illustrates a simplified flow diagram of one method for operating a MEMS proximity sensor device in accordance with an embodiment of the present invention.

圖12圖解說明根據本發明之一實施例之用於操作一MEMS近接感測器裝置之一方法之一簡化流程圖。 Figure 12 illustrates a simplified flow diagram of one method for operating a MEMS proximity sensor device in accordance with an embodiment of the present invention.

本發明係關於積體電路(IC)及MEMS(微機電系統)裝置之應用。更具體而言,本發明之實施例提供用於可在行動電話、平板電腦、手 持電腦、磁場感測器及諸如此類上實施之整合式MEMS感測器裝置之方法及結構。 The present invention relates to the use of integrated circuit (IC) and MEMS (Micro Electro Mechanical Systems) devices. More specifically, embodiments of the present invention are provided for use in mobile phones, tablets, hands A method and structure for holding an integrated MEMS sensor device implemented on a computer, a magnetic field sensor, and the like.

在一實施例中,本發明包含一以MEMS為基的近接感測器裝置及操作方法。下文闡述操作以MEMS為基的近接感測器之一方法中之各個步驟之一實施例。該方法可包含在一電話呼叫期間使用一虛擬近接感測器及一服務常駐程式作為對一近接感測器硬體IC之一替代。在一實例中,此虛擬近接感測器可用於「接通」或「關斷」一行動電話之顯示器,減小一背光或諸如此類。亦可使用其他電子裝置、觸控螢幕裝置及諸如此類。在一實施例中,當一使用者在一電話呼叫期間與聽筒接近時,將關斷一行動電話之螢幕背光。另一方面,在使用者遠離之後將立即接通螢幕,且當使用者之耳朵接近時將關斷螢幕。 In one embodiment, the invention includes a MEMS-based proximity sensor device and method of operation. One embodiment of each of the steps in a method of operating a MEMS-based proximity sensor is set forth below. The method can include using a virtual proximity sensor and a service resident program during a telephone call as an alternative to a proximity sensor hardware IC. In one example, the virtual proximity sensor can be used to "turn on" or "turn off" a display of a mobile phone, reducing a backlight or the like. Other electronic devices, touch screen devices, and the like can also be used. In one embodiment, when a user approaches a handset during a phone call, the screen backlight of a mobile phone is turned off. On the other hand, the screen will be turned on immediately after the user is away, and the screen will be turned off when the user's ear approaches.

在一特定實施例中,以MEMS為基的近接感測器裝置可包含一以加速計為基的近接感測器且操作方法可包含利用加速計感測器資料以針對兩個階段偵測使用者之手勢及關於聽筒之移動,且僅在近接改變(NEAR(近)至FAR(遠)或FAR至NEAR)時獲得一近接事件。可由一服務常駐程式使用加速計資料計算與此等近接改變相關之近接值。 In a particular embodiment, the MEMS-based proximity sensor device can include an accelerometer-based proximity sensor and the method of operation can include utilizing accelerometer sensor data for two-phase detection The gesture of the person and the movement of the earpiece, and only a proximity event is obtained when the proximity change (NEAR to FAR or FAR to NEAR). Accelerometer data can be used by a service resident program to calculate the proximity values associated with such proximity changes.

步驟1:偵測在剛開始時之移動-偵測自任何處至耳朵附近之手勢,此將X、Y及Z軸值帶入手勢偵測模型。且比較X、Y及Z軸值(「CurrentX」、「CurrentY」及「CurrentZ」)與在移動之前之其初始值(「PreviousX」、「PreviousY」及「PreviousZ」)及在第一次移動處立即捕獲之值。若感測到裝置開始移動,則對在自任何處接近耳朵附近(亦即,自人體之前面接近耳朵)之移動追蹤期間之(x、y、z)軸值之兩個或兩個以上點取樣。作為一實例,該兩個或兩個以上點可包含大於2之任何整數。在一特定實施例中,該兩個或兩個以上點可包含5個連續點。熟習此項技術者將認識到,點之各種數量取決於特定實施例及應用。 Step 1: Detect movement at the beginning - detect gestures from anywhere to near the ear, which brings the X, Y, and Z axis values into the gesture detection model. And compare the X, Y, and Z axis values ("CurrentX", "CurrentY", and "CurrentZ") with their initial values before moving ("PreviousX", "PreviousY", and "PreviousZ") and at the first move The value captured immediately. If it senses that the device is beginning to move, then two or more points of the (x, y, z) axis value during the tracking of the movement near the ear from anywhere (ie, from the front of the body to the ear) sampling. As an example, the two or more points may comprise any integer greater than two. In a particular embodiment, the two or more points may comprise 5 consecutive points. Those skilled in the art will recognize that the various quantities of points depend on the particular embodiment and application.

圖1圖解說明根據本發明之一實施例之初始移動偵測之一簡化公式。「SENSITIVITY」值係MEMS裝置(諸如,一加速計、磁場感測器、陀螺儀感測器及諸如此類)之解析度。「xShakeParm」、「yshakeParm」及「zShakeParm」係在一開始搖動偵測之所指定參數。 1 illustrates a simplified formula for initial motion detection in accordance with an embodiment of the present invention. The "SENSITIVITY" value is the resolution of a MEMS device such as an accelerometer, a magnetic field sensor, a gyroscope sensor, and the like. "xShakeParm", "yshakeParm" and "zShakeParm" are the parameters specified at the beginning of the shake detection.

假定裝置在通過「CurrentX」與「PreviousX」之差的絕對值大於一特定比率(亦即,「SENSITIVITY」/「xShakeParm」)之準則時開始移動。在各項實施例中,通過準則可基於X、Y或Z軸值或其組合之差。當然,可使用其他變化、修改及替代實施方案。 It is assumed that the device starts moving when the absolute value of the difference between "CurrentX" and "PreviousX" is greater than a certain ratio (ie, "SENSITIVITY" / "xShakeParm"). In various embodiments, the pass criteria can be based on the difference in X, Y, or Z-axis values, or a combination thereof. Of course, other variations, modifications, and alternative embodiments can be used.

步驟2:偵測自任何處至耳朵附近之追蹤點-在步驟1取得成功之後,接著對(x、y、z)軸資料之兩個或兩個以上連續點取樣,以判定裝置自任何處移動至耳朵附近。將比較在追蹤期間之兩個或兩個以上取樣點中之第一點(「TrackData[1st]」)與最後一點(「TrackData[last]」)之差。在各項實施例中,估計應在X、Y或Z軸中之任何者或其組合(例如,X及Y、Y及Z、X及Z或X、Y及Z)上通過。在一特定實施例中,估計應在X軸及Z軸兩者([Xaxis]、[Zaxis])上通過。 Step 2: Detect any tracking point from anywhere to the ear - after successful in step 1, then sample two or more consecutive points of the (x, y, z) axis data to determine the device from anywhere Move to the vicinity of the ear. The difference between the first of two or more sampling points during the tracking period ("TrackData[1 st ]") and the last point ("TrackData[last]") will be compared. In various embodiments, it is estimated that it should pass on any of the X, Y, or Z axes, or a combination thereof (eg, X and Y, Y and Z, X and Z, or X, Y, and Z). In a particular embodiment, the estimate should pass on both the X and Z axes ([Xaxis], [Zaxis]).

圖2圖解說明根據本發明之一實施例之用於追蹤點偵測之一簡化公式。此公式描述數個參數。「SENSITIVITY」係裝置IC之解析度。「xMoveParm」、「yMoveParm」及「zMoveParm」係基於移動準則之參數。此處,假定裝置實際上在通過步驟1之準則時於X、Y及Z軸上移動,此導致步驟2資料檢查之兩個或兩個以上連續點之取樣。若使此資料檢查在X、Y及Z上通過(或使檢查之任何組合在X、Y及Z軸上通過),則執行步驟3以驗證裝置之最終位置。 2 illustrates a simplified formula for tracking point detection in accordance with an embodiment of the present invention. This formula describes several parameters. "SENSITIVITY" is the resolution of the device IC. "xMoveParm", "yMoveParm" and "zMoveParm" are based on the parameters of the movement criteria. Here, it is assumed that the device actually moves on the X, Y, and Z axes while passing the criteria of step 1, which results in sampling of two or more consecutive points of the data inspection of step 2. If this data check is passed on X, Y, and Z (or any combination of inspections is passed on the X, Y, and Z axes), then step 3 is performed to verify the final position of the device.

步驟3:檢查感測器資料之穩定位置-在使用者移動期間,藉由使用由步驟2保持之最後一點來檢查感測器資料之位置。圖3至圖5圖解 說明根據本發明之一實施例之用於感測器資料檢查之簡化公式。比較移動追蹤之最後一點與X、Y、Z之一試探邊界,以獲得最佳近接狀態。用於感測器資料之穩定位置檢查階段的特定參數包含「XPositionParm」、「YPositionParm」及「ZPositionParm」。此檢查步驟可包含檢查每一軸(X、Y、Z)之資料的三個步驟,分別在圖3、圖4及圖5中展示。 Step 3: Check the stable position of the sensor data - during the user's movement, check the position of the sensor data by using the last point held by step 2. 3 through 5 illustrate simplified formulas for sensor data inspection in accordance with an embodiment of the present invention. Compare the last point of the motion tracking with one of the X, Y, and Z test boundaries to get the best proximity. Specific parameters for the stable position check phase of the sensor data include "XPositionParm", "YPositionParm" and "ZPositionParm". This inspection step may include three steps of examining the data for each axis (X, Y, Z), which are shown in Figures 3, 4 and 5, respectively.

假定當通過具有所設計參數及偏移之三個準則時,X、Y、Z感測器資料之最後一點靠近耳朵附近之一範圍定位。在通過之後,服務常駐程式將立即在經計算近接感測器驅動程式下切換近接值。系統將根據該近接值(其係NEAR至FAR或FAR至NEAR)來接通或關斷。 It is assumed that the last point of the X, Y, Z sensor data is located near a range near the ear when passing three criteria with the designed parameters and offset. After passing, the service resident program will immediately switch the proximity value under the calculated proximity sensor driver. The system will turn on or off based on the proximity value (which is NEAR to FAR or FAR to NEAR).

在各項實施例中,當在步驟1及2中追蹤之點相似於自一初始位置向上之一弧線或一曲線時,此可指示使用者拾取實施本發明之實施例之一行動裝置。另外,當在步驟3中裝置之最終穩定位置係處於相對於重力之一直立及/或傾斜位置時,此可指示使用者將行動裝置固持為緊挨著其頭部。因此,在各項實施例中,基於追蹤點及最終/穩定位置,可推斷移動之特定組合表示使用者應答其行動裝置上之一電話呼叫(例如,拾取一行動裝置並將該行動裝置定位為緊挨著其面部)。在移動之此等組合中,本發明之實施例可指示行動裝置緊挨著使用者之面部之近接(例如,NEAR),此導致行動裝置切斷顯示器。 In various embodiments, when the points tracked in steps 1 and 2 are similar to an arc or a curve from an initial position, this may instruct the user to pick up a mobile device that implements an embodiment of the present invention. Additionally, when the final stable position of the device in step 3 is in an upright and/or tilted position relative to gravity, this may instruct the user to hold the mobile device next to its head. Thus, in various embodiments, based on the tracking point and the final/stable position, it can be inferred that the particular combination of movements represents the user answering a telephone call on their mobile device (eg, picking up a mobile device and positioning the mobile device as Next to its face). In such a combination of movements, embodiments of the present invention may indicate that the mobile device is in close proximity to the user's face (e.g., NEAR), which causes the mobile device to turn off the display.

在各項實施例中,雖然行動裝置處於近似穩定位置中,但行動裝置可維持NEAR近接值,且可維持顯示器關斷、低背光、背光關斷或諸如此類。隨後,當行動裝置移動遠離穩定位置時,藉由監視追蹤點,如上文所論述,本發明之實施例可將近接值切換至FAR。因此,可恢復顯示器之有效。 In various embodiments, although the mobile device is in an approximately stable position, the mobile device can maintain a NEAR proximity value and can maintain display off, low backlight, backlight off, or the like. Subsequently, embodiments of the present invention can switch the proximity value to the FAR by monitoring the tracking point as the mobile device moves away from the stable position, as discussed above. Therefore, the display can be restored.

在某些實施例中,不同MEMS感測器可用於判定運動資料。舉例而言,在一項實施例中,可使用3存取式加速計;在另一實例中,可 使用陀螺儀;在又其他實施例中,可使用諸如壓力感測器或磁力計之感測器。 In some embodiments, different MEMS sensors can be used to determine motion data. For example, in one embodiment, a 3-access accelerometer can be used; in another example, A gyroscope is used; in still other embodiments, a sensor such as a pressure sensor or a magnetometer can be used.

圖6圖解說明根據本發明之一實施例之用於操作一MEMS近接感測器裝置之一方法之一簡化流程圖。此流程圖表示實施先前針對圖1至圖5闡述之步驟1至步驟3之一方法之一特定實施例。在此情形中,步驟1之初始移動檢查與步驟2之追蹤點偵測係關於X軸與Z軸上之檢查之一組合。同時,該方法展示為對在移動追蹤期間之n個連續感測器資料取樣,其中n係大於0之一整數。 6 illustrates a simplified flow diagram of one method for operating a MEMS proximity sensor device in accordance with an embodiment of the present invention. This flowchart represents a particular embodiment of implementing one of the steps 1 through 3 previously set forth with respect to Figures 1 through 5. In this case, the initial movement check of step 1 and the tracking point detection of step 2 are combined with respect to one of the inspections on the X-axis and the Z-axis. At the same time, the method is shown as sampling n consecutive sensor data during the motion tracking, where n is an integer greater than one of zero.

在一實施例中,本發明包含一可攜式近接感測器及其操作方法。此相關裝置及方法可被稱為一「CallSense」裝置及方法或「CallSense 1.0」。用於在一可攜式裝置上實施之近接偵測之該方法可包含藉助該可攜式裝置之一實體感測器判定一初始擾動資料、一追蹤點資料及一穩定位置資料。該初始擾動資料可包含先前狀態資料及當前狀態資料。該追蹤點資料可包含一或多個追蹤資料。可由該可攜式裝置內之一處理器基於該初始擾動資料、該追蹤點資料及該穩定位置資料判定待執行之一動作。 In one embodiment, the invention includes a portable proximity sensor and method of operation thereof. This related device and method may be referred to as a "CallSense" device and method or "CallSense 1.0". The method for proximity detection implemented on a portable device can include determining an initial disturbance data, a tracking point data, and a stable position data by means of a physical sensor of the portable device. The initial disturbance data may include previous status data and current status data. The tracking point data may include one or more tracking data. One of the actions to be performed may be determined by a processor in the portable device based on the initial disturbance data, the tracking point data, and the stable position data.

在一特定實施例中,該方法亦可包含比較先前狀態資料與當前狀態資料之間之差與一或多個第一臨限值。一或多個第一臨限值中之每一者可包含一靈敏度參數與一搖動偵測參數之間之一比率,如針對圖1及圖2所闡述。初始擾動資料可包含X軸擾動資料及Z軸擾動資料,如在圖6中所展示。亦可包含一Y軸擾動資料。在此情形中,一或多個第一臨限值包含一X軸第一臨限值及一Z軸第一臨限值。該X軸第一臨限值可包含靈敏度參數與一X軸搖動偵測參數之間之一比率。該Z軸第一臨限值可包含靈敏度參數與一Z軸搖動偵測參數之間之一比率。另外,可實施一Y軸第一臨限值,該Y軸第一臨限值包含靈敏度參數與一Y軸搖動偵測參數之間之一比率。當然,可存在其他變 化、修改及替代形式。 In a particular embodiment, the method can also include comparing the difference between the previous state data and the current state data with one or more first thresholds. Each of the one or more first thresholds can include a ratio between a sensitivity parameter and a shake detection parameter, as set forth with respect to Figures 1 and 2. The initial disturbance data may include X-axis disturbance data and Z-axis disturbance data, as shown in FIG. It can also contain a Y-axis disturbance data. In this case, the one or more first thresholds include an X-axis first threshold and a Z-axis first threshold. The X-axis first threshold may include a ratio between the sensitivity parameter and an X-axis shake detection parameter. The Z-axis first threshold may include a ratio between the sensitivity parameter and a Z-axis shake detection parameter. Additionally, a Y-axis first threshold can be implemented, the Y-axis first threshold including a ratio between the sensitivity parameter and a Y-axis shake detection parameter. Of course, there may be other changes Modifications, modifications and alternative forms.

在一特定實施例中,判定追蹤點資料之方法步驟包含對(x、y、z)軸資料中之兩個或兩個以上連續點取樣。連續點之(x、y、z)軸資料中之第一點與(x、y、z)軸資料中之最後一點之間之差可與一或多個第二臨限值進行比較。該一或多個第二臨限值可包含一靈敏度參數與一移動參數之間之一比率。該一或多個第二臨限值可包含一X軸第二臨限值及一Z軸第二臨限值。該X軸第二臨限值可包含靈敏度參數與一X軸移動參數之間之一比率。該Z軸第二臨限值可包含靈敏度參數與一Z軸移動參數之間之一比率。亦可實施一Y軸第二臨限值,其中該Y軸第二臨限值包含靈敏度參數與一Y軸移動參數之間之一比率。在一特定實施例中,初始擾動資料及追蹤點資料之臨限值可包含X、Y及Z第一或第二臨限值之一組合。 In a particular embodiment, the method step of determining tracking point data includes sampling two or more consecutive points in the (x, y, z) axis data. The difference between the first point in the (x, y, z) axis data of the continuous point and the last point in the (x, y, z) axis data can be compared to one or more second threshold values. The one or more second thresholds can include a ratio between a sensitivity parameter and a movement parameter. The one or more second thresholds can include an X-axis second threshold and a Z-axis second threshold. The X-axis second threshold may include a ratio between the sensitivity parameter and an X-axis movement parameter. The Z-axis second threshold may include a ratio between the sensitivity parameter and a Z-axis movement parameter. A Y-axis second threshold can also be implemented, wherein the Y-axis second threshold includes a ratio between the sensitivity parameter and a Y-axis movement parameter. In a particular embodiment, the threshold of the initial perturbation data and the tracking point data may comprise a combination of one of the X, Y, and Z first or second thresholds.

此外,來自一或多個追蹤資料之(x、y、z)資料中之最後一點可與一或多個第三臨限值及一或多個第四臨限值進行比較。該一或多個第三臨限值可包含靈敏度參數與一位置參數之間之一比率。舉例而言,該一或多個第三臨限值可包含一X軸、Y軸及Z軸第三臨限值。此等第三臨限值中之每一者可分別包含靈敏度參數與一X軸、Y軸或Z軸位置參數之間之一比率。類似地,一或多個第四臨限值可包含一X軸、Y軸及Z軸第四臨限值,其中此等值中之每一者可分別包含靈敏度參數與一X偏移值、Y偏移值或一Z偏移值之總和與一Z軸正位置參數之間之一比率。該方法可包含基於初始擾動資料是否超過一或多個第一臨限值、追蹤點資料是否超過一或多個第二臨限值及穩定位置資料是否超過一或多個第三及第四臨限值而判定待執行之一動作。當然,可存在其他變化、修改及替代形式。 In addition, the last point in the (x, y, z) data from one or more tracking data can be compared to one or more third thresholds and one or more fourth thresholds. The one or more third thresholds can include a ratio between the sensitivity parameter and a position parameter. For example, the one or more third thresholds can include an X-axis, a Y-axis, and a Z-axis third threshold. Each of these third thresholds may each include a ratio between the sensitivity parameter and an X-axis, Y-axis, or Z-axis position parameter. Similarly, the one or more fourth thresholds may include an X-axis, a Y-axis, and a Z-axis fourth threshold, wherein each of the values may include a sensitivity parameter and an X offset value, respectively. A ratio between the sum of the Y offset value or a Z offset value and a Z-axis positive position parameter. The method can include whether the first perturbation data exceeds one or more first thresholds, whether the tracking point data exceeds one or more second thresholds, and whether the stable location data exceeds one or more third and fourth The limit value determines one of the actions to be performed. Of course, there may be other variations, modifications, and alternatives.

可攜式近接裝置可包含經組態以執行此等步驟之一實體感測器及一處理器。可攜式裝置可包含經組態以判定初始擾動資料、追蹤點 資料及穩定位置資料之一實體感測器。該實體感測器可包含一加速計、一陀螺儀感測器、一磁場感測器或其他MEMS實體感測器,或其組合。該實體感測器可耦合至一處理器,該處理器可經程式化以基於此等資料及其是否超過先前闡述之臨限值來判定待執行之一動作。 The portable proximity device can include a physical sensor and a processor configured to perform one of these steps. The portable device can include a configuration to determine initial disturbance data, tracking points One of the data and stable location data entity sensors. The physical sensor can include an accelerometer, a gyroscope sensor, a magnetic field sensor or other MEMS physical sensor, or a combination thereof. The physical sensor can be coupled to a processor that can be programmed to determine an action to perform based on such information and whether it exceeds a previously stated threshold.

圖7圖解說明根據本發明之一實施例之一MEMS近接感測器系統之一簡化方塊圖。此圖式展示在一Android作業系統上操作之一可攜式裝置之MEMS硬體與軟體介面之間之相互作用。感測器透過Linux裝置驅動程式組態且由服務常駐程式控制。感測器操作而透過Android HAL(硬體抽象層)通信至Android框架之Android原生介面。其他框架及介面可用於實施一MEMS近接感測器系統之一可攜式裝置之各項實施例中。 7 illustrates a simplified block diagram of a MEMS proximity sensor system in accordance with an embodiment of the present invention. This diagram shows the interaction between the MEMS hardware and the software interface of a portable device operating on an Android operating system. The sensor is configured through the Linux device driver and controlled by the service resident program. The sensor operates and communicates to the Android native interface of the Android framework through the Android HAL (hardware abstraction layer). Other frameworks and interfaces can be used in implementing various embodiments of a portable device of a MEMS proximity sensor system.

在一實施例中,本發明係關於係用於替換近接感測器硬體之一解決方案之一虛擬近接感測器演算法。應用為一近接感測器系統及其操作方法之此演算法可被稱為「CallSense 2.0」。根據一實施例,存在關於此演算法之兩個強調提示。第一,該演算法展現追蹤手持裝置之拾取/拿開手勢之加速計資料之高頻率且高解析度(對於具有軟體50Hz取樣率之感測器係14位元解析度及+/-8g範圍)收集。第二,使用Close(接近)/Far Away(遠離)狀態作為硬體近接感測器之函數,該演算法考量加速計及觸控面板近接信號作為近接狀態之一最終結果。 In one embodiment, the present invention is directed to a virtual proximity sensor algorithm that is one of the solutions for replacing a proximity sensor hardware. The algorithm applied as a proximity sensor system and its method of operation can be referred to as "CallSense 2.0." According to an embodiment, there are two emphasized hints about this algorithm. First, the algorithm demonstrates the high frequency and high resolution of the accelerometer data that tracks the pick-up/hand-off gesture of the handheld device (for a sensor with a software 50Hz sampling rate, 14-bit resolution and +/-8g range) )collect. Second, using the Close/Far Away state as a function of the hardware proximity sensor, the algorithm considers the end result of the accelerometer and touch panel proximity signals as one of the proximity states.

圖8圖解說明根據本發明之一實施例之一MEMS近接感測器系統之一簡化方塊圖。此圖式展示一「CallSense軟體封裝」(參考本發明之實施方案)與一電腦系統框架之間之相互作用。CallSense方法及經組態用於CallSense方法之系統之實施方案可使用「CallSense 1.0」、「CallSense 2.0」實施例,或熟習此項技術者將認可之此等實施例之其他變化。在此系統中,一可攜式裝置之MEMS硬體(展示為加速計硬體及觸控硬體)在一Android作業系統上操作。感測器、加速計及觸 控硬體透過Linux裝置驅動程式組態,該等感測器、加速計及觸控硬體可由服務常駐程式控制。如所展示,CallSense軟體封裝可與多個層級處之系統(包含Linux裝置驅動程式層級、經由一CallSense演算法之Android HAL層級以及經由一CallSense Background APK之Android應用程式層級處之裝置驅動程式(加速計及觸控))相互作用。其他框架及介面可用於實施一MEMS近接感測器系統之一可攜式裝置之各項實施例中。 8 illustrates a simplified block diagram of a MEMS proximity sensor system in accordance with an embodiment of the present invention. This diagram shows the interaction between a "CallSense software package" (referring to an embodiment of the invention) and a computer system framework. The implementation of the CallSense method and the system configured for the CallSense method may use the "CallSense 1.0", "CallSense 2.0" embodiments, or other variations of such embodiments as would be recognized by those skilled in the art. In this system, a portable device's MEMS hardware (shown as accelerometer hardware and touch hardware) operates on an Android operating system. Sensor, accelerometer and touch The control hardware is configured through a Linux device driver, and the sensors, accelerometers, and touch hardware can be controlled by a service resident program. As shown, the CallSense software package can be combined with multiple levels of systems (including the Linux device driver level, the Android HAL level via a CallSense algorithm, and the device driver at the Android application level via a CallSense Background APK). Consider touch)) interaction. Other frameworks and interfaces can be used in implementing various embodiments of a portable device of a MEMS proximity sensor system.

觸控面板及加速計偵測Close狀態偵測具有其自身弱點。觸控面板可受溫度、濕度及應力(變形)影響。加速計僅支援「拾取」及「應答呼叫」之一標準手勢(奔跑、躺下、處於搖動運輸中等將具有影響)。藉由採用感測器硬體兩者以及在本發明之方法中聯合對其進行操作受益於一雙向式優點以改良Close偵測準確性。其他益處可包含節省手持BOM清單中之硬體近接感測器成本以及改良僅有加速計(CallSense 1.0)解決方案之準確性。 Touch panel and accelerometer detection Close state detection has its own weakness. The touch panel can be affected by temperature, humidity, and stress (deformation). The accelerometer only supports one of the standard gestures of "Pickup" and "Respond to Call" (running, lying down, shaking in, etc. will have an impact). Operation by combining both the sensor hardware and the method of the present invention benefits from a two-way advantage to improve Close detection accuracy. Other benefits may include saving hardware proximity sensor cost in the handheld BOM list and improving the accuracy of the Accelerometer only (CallSense 1.0) solution.

圖9圖解說明根據本發明之一實施例之用於操作一MEMS近接感測器裝置之一方法之一簡化流程圖。此流程圖可表示用於操作一近接感測器系統之一方法之一主要流程圖。該方法開始於:初始化近接感測器系統,等待一「電話呼叫狀態」變為有效,達成一加速計常駐程式程序,以及致能一觸控面板近接偵測程序。該方法然後涉及等待請求近接狀態之一應用程式,得到一加速計常駐程式近接狀態,以及得到一觸控面板近接狀態。 9 illustrates a simplified flow diagram of one method for operating a MEMS proximity sensor device in accordance with an embodiment of the present invention. This flow chart may represent one of the main flow charts for one of the methods for operating a proximity sensor system. The method begins by initializing a proximity sensor system, waiting for a "phone call status" to become active, achieving an accelerometer resident program, and enabling a touch panel proximity detection procedure. The method then involves waiting for an application to request a proximity state, obtaining an accelerometer resident program proximity state, and obtaining a touch panel proximity state.

然後,遇到一第一詢問:一「檢查電話呼叫狀態係有效的?」程序。若電話呼叫狀態係不有效的,則該方法停用加速計常駐程式,並透過一第一迴圈返回至「等待電話呼叫狀態係有效的」之步驟。若電話呼叫狀態係有效的,則遇到一第二詢問「加速計常駐程式近接狀態係Close?」或「觸控面板近接狀態係Close?」。若任一近接狀態係 接近,則該方法傳回一「Close」值,且若兩個狀態皆不係接近,則傳回一「Away」值。在此值傳回之後,該方法透過一第二迴圈返回至等待請求近接狀態之一應用程式之方法步驟。 Then, encounter a first query: a "Check the phone call status is valid?" program. If the telephone call status is not valid, the method disables the accelerometer resident program and returns to the "waiting for the call state is valid" step through a first loop. If the phone call status is valid, a second query "Accelerator resident program close state is Close?" or "Touch panel proximity state Close?" is encountered. If any proximity state is Approaching, the method returns a "Close" value, and if both states are not close, an "Away" value is returned. After the value is passed back, the method returns to the method step of the application waiting for the requesting proximity state through a second loop.

在一實施例中,本發明可包含操作一近接感測器系統之一方法。該方法可包含:初始化近接感測器系統,等待一有效狀態,達成一第一感測器服務常駐程式,以及達成一第二感測器服務常駐程式。該近接感測器系統可包含一第一感測器裝置及一第二感測器裝置,其等可分別係一加速計及一觸控面板。該有效狀態可與一電話呼叫狀態相關聯。第一感測器服務常駐程式及第二感測器服務常駐程式可分別與第一感測器及第二感測器相關聯。該方法然後可執行三個不同程序迴圈:第一迴圈程序可包含:自一應用程式接收一狀態請求,自第一感測器服務常駐程式擷取一第一感測器狀態,自第二感測器服務常駐程式擷取一第二感測器狀態,接收一有效狀態,依據第一感測器狀態或依據第二感測器狀態來判定一接近狀態,以及傳回一接近值。 In an embodiment, the invention may include a method of operating a proximity sensor system. The method can include initializing a proximity sensor system, waiting for an active state, achieving a first sensor service resident program, and implementing a second sensor service resident program. The proximity sensor system can include a first sensor device and a second sensor device, and the like can be an accelerometer and a touch panel, respectively. The active state can be associated with a telephone call state. The first sensor service resident program and the second sensor service resident program may be associated with the first sensor and the second sensor, respectively. The method can then perform three different program loops: the first loop program can include: receiving a status request from an application, and capturing a first sensor status from the first sensor service resident program, since The second sensor service resident program captures a second sensor state, receives an active state, determines a proximity state based on the first sensor state or according to the second sensor state, and returns a proximity value.

第二迴圈程序可包含:自一應用程式接收一狀態請求,自第一感測器服務常駐程式擷取一第一感測器狀態,自第二感測器服務常駐程式擷取一第二感測器狀態,接收一有效狀態,依據第一感測器狀態及依據第二感測器狀態來判定一遠離狀態,以及傳回一遠離值。 The second loop program may include: receiving a status request from an application, capturing a first sensor status from the first sensor service resident program, and capturing a second from the second sensor service resident program The sensor state receives an active state, determines a distant state according to the first sensor state and according to the second sensor state, and returns a distant value.

第三迴圈程序可包含:自一應用程式接收一狀態請求,自第一感測器服務常駐程式擷取一第一感測器狀態,自第二感測器服務常駐程式擷取一第二感測器狀態,接收一不有效狀態,停用第一感測器服務常駐程式,等待有效狀態,達成第一感測器服務常駐程式,以及達成第二感測器服務常駐程式。 The third loop program may include: receiving a status request from an application, capturing a first sensor status from the first sensor service resident program, and capturing a second from the second sensor service resident program The sensor state, receiving an inactive state, deactivating the first sensor service resident program, waiting for an active state, reaching a first sensor service resident program, and reaching a second sensor service resident program.

圖10圖解說明根據本發明之一實施例之用於操作一MEMS近接感測器裝置之一方法之一簡化流程圖。此流程圖可表示用於操作一近接 感測器系統之一方法之一加速計追蹤偵測部分之一流程圖。該方法開始於:初始化近接感測器系統,初始化一緩衝器,將一gestCount值設定為0,以及將一近接狀態設定為「Away」。該方法可包含記錄一加速計資料以及提出關於一資料記錄是否充足且有餘(亦即,是否(gestCount>=6))之一詢問。若未滿足此詢問,則增加gestCount且該方法迴圈回至加速計資料之記錄。 10 illustrates a simplified flow diagram of one method for operating a MEMS proximity sensor device in accordance with an embodiment of the present invention. This flow chart can be used to operate a proximity One of the methods of the sensor system is one of the flowcharts of the accelerometer tracking detection section. The method begins by initializing a proximity sensor system, initializing a buffer, setting a gestCount value to zero, and setting a proximity state to "Away." The method can include recording an accelerometer data and making an inquiry as to whether a data record is sufficient and sufficient (i.e., whether (gestCount >= 6)). If the query is not met, the gestCount is incremented and the method loops back to the record of the accelerometer data.

若滿足詢問,則提出關於移動偵測之另一詢問。此詢問可涉及判定軸量測中之任何者之一標準偏差(亦即,stdevX、stdevY或stdevZ)是否超過一預定值(諸如,100)。若未滿足此詢問,則清除緩衝器並將gestCount設定為0。若滿足該詢問,則該方法可進行至增加gestCount並記錄加速計資料。 If the inquiry is satisfied, another inquiry about motion detection is made. This inquiry may involve determining whether one of the standard deviations (i.e., stdevX, stdevY or stdevZ) of any of the axial measurements exceeds a predetermined value (such as 100). If this inquiry is not met, the buffer is cleared and gestCount is set to zero. If the query is satisfied, the method can proceed to increase the gestCount and record the accelerometer data.

可提出關於資料記錄是否係充足且有餘(亦即,是否(gestCount>=15))之另一詢問。若未滿足此詢問,則該方法迴圈回至增加gestCount並記錄Accdata。若滿足該詢問,則提出關於移動偵測之另一詢問。此詢問可包含偵測自gestCount-9至gestCount之一穩定條件並判定所有軸上之量測之標準偏差是否小於另一預定值(亦即,stdev<70)。若未滿足此詢問,則該方法迴圈回至增加gestCount並記錄Accdata。 Another inquiry may be made as to whether the data record is sufficient and sufficient (i.e., whether (gestCount>=15)). If this query is not met, the method loops back to incrementing gestCount and recording Accdata. If the inquiry is satisfied, another inquiry about motion detection is made. The query may include detecting a steady condition from one of gestCount-9 to gestCount and determining whether the standard deviation of the measurements on all axes is less than another predetermined value (ie, stdev < 70). If this query is not met, the method loops back to incrementing gestCount and recording Accdata.

然後可提出另一詢問:此詢問檢查一拾取手勢分析是否登記為真。若未滿足該詢問,則該方法迴圈回至:清除緩衝器,將gestCount設定為0,以及起始於開始記錄Accdata。若滿足該詢問,則該方法進行至關於一檢查位置應答位置是否係真之另一詢問。若未滿足此詢問,則該方法亦迴圈回至:清除緩衝器,將gestCount設定為0,以及起始於開始記錄Accdata。若滿足該詢問,則該方法進行至一新狀態。 Another query can then be made: this inquiry checks if a pick gesture analysis is registered as true. If the query is not satisfied, the method loops back to: clearing the buffer, setting gestCount to 0, and starting at the beginning of recording Accdata. If the inquiry is satisfied, the method proceeds to another inquiry as to whether the check position response position is true. If the query is not satisfied, the method also loops back to: clear the buffer, set gestCount to 0, and start recording Accdata. If the inquiry is satisfied, the method proceeds to a new state.

在該新狀態中,設定一接近狀態,將一P_status值設定為1,清除緩衝器,並將gestCount設定為0。該方法進行至記錄Accdata並檢查 gestCount是否大於或等於再一值(亦即,10)。若未滿足此比較,則增加gestcount且該方法迴圈回至在此新狀態下記錄Accdata。若滿足該比較,則該方法進行至檢查位置應答位置。若此詢問傳回假,則設定一遠離狀態,將P_status設定為0,且該方法迴圈回至:清除緩衝器,將gestCount設定為0,以及自流程圖之頂部記錄Accdata。若此詢問傳回真,則提出另一移動偵測詢問。若任何軸之所量測標準偏差中之任何者超過另一值(亦即,stdev>200),則設定遠離狀態,將P_status設定為0,且該方法迴圈回至:清除緩衝器,將gestCount設定為0,以及自流程圖之頂部記錄Accdata。若該詢問傳回假,則該方法返回至:設定一接近狀態,將P_status設定為1,清除緩衝器,將gestCount設定為0,以及在下部程序迴圈中記錄Accdata。 In this new state, a close state is set, a P_status value is set to 1, the buffer is cleared, and gestCount is set to zero. The method proceeds to record Accdata and check Whether gestCount is greater than or equal to another value (ie, 10). If this comparison is not met, the gestcount is incremented and the method loops back to recording Accdata in this new state. If the comparison is satisfied, the method proceeds to check the position response position. If the query returns false, set a far away state, set P_status to 0, and the method loops back to: clear the buffer, set gestCount to 0, and record Accdata from the top of the flowchart. If the inquiry is returned to the true, another motion detection inquiry is made. If any of the measured standard deviations of any axis exceeds another value (ie, stdev>200), then set the far state, set P_status to 0, and the method loops back to: clear the buffer, The gestCount is set to 0, and the Accdata is recorded from the top of the flowchart. If the query returns false, the method returns to: setting a proximity state, setting P_status to 1, clearing the buffer, setting gestCount to 0, and recording Accdata in the lower program loop.

在一實施例中,本發明可包含操作一近接感測器系統之一方法。該方法可包含:初始化近接感測器系統,初始化一緩衝器,將一計數值設定為0,以及將一近接狀態設定為「Away」。該近接感測器系統可包含可分別係一加速計及一觸控面板之一第一感測器裝置及一第二感測器裝置。該方法可包含執行偵測手勢並記錄沿著一X、Y及Z軸之移動之一標準偏差之一記錄感測器資料程序。此程序從事增加可係一手勢計數之計數直至該計數超過一第一計數臨限值且任何軸上之標準偏差超過一第一偏差臨限值之一第一程序迴圈。 In an embodiment, the invention may include a method of operating a proximity sensor system. The method can include initializing a proximity sensor system, initializing a buffer, setting a count value to zero, and setting a proximity state to "Away." The proximity sensor system can include a first sensor device and a second sensor device that can be respectively an accelerometer and a touch panel. The method can include performing a detection gesture and recording a sensor data program that records one of standard deviations along a shift of X, Y, and Z axes. The program is engaged in increasing the count of a gesture count until the count exceeds a first count threshold and the standard deviation on any axis exceeds one of the first deviation thresholds.

該方法包含:在先前論述之程序迴圈之後係一第二程序迴圈,該第二程序迴圈包含增加計數直至計數值超過一第二計數臨限值且經由所有軸上之標準偏差小於一第二偏差值來偵測一穩定狀態。該方法接下來判定一手勢檢查係真且一位置檢查係真。 The method includes: following a previously discussed program loop, a second program loop comprising increasing the count until the count value exceeds a second count threshold and the standard deviation across all axes is less than one The second offset value detects a steady state. The method then determines that a gesture check is true and a location check is true.

該方法包含:在其次論述之程序迴圈之後係一第三程序迴圈,該第三程序迴圈包含將一偵測狀態設定為接近,清除緩衝器,以及將計數設定為0。再次執行記錄感測器資料程序且增加計數直至該計數 超過一第三臨限值。所執行記錄感測器資料程序繼續直至判定一位置檢查係真且在任何軸上所量測之標準偏差大於一第三偏差臨限值。在此之後,將偵測狀態設定為遠離。該方法可清除緩衝器並將計數設定為0,且該方法自程序流程之頂部重新開始。 The method includes a third program loop after the program loop discussed next, the third program loop includes setting a detection state to be close, clearing the buffer, and setting the count to zero. Perform the recording sensor data program again and increase the count until the count More than a third threshold. The executed record sensor data program continues until it is determined that a position check is true and the standard deviation measured on any axis is greater than a third deviation threshold. After that, set the detection status to be away. This method clears the buffer and sets the count to 0, and the method restarts from the top of the program flow.

圖11圖解說明根據本發明之一實施例之用於操作一MEMS近接感測器裝置之一方法之一簡化流程圖。此流程圖可表示用於操作一近接感測器系統之一方法之一手勢檢查之一流程圖。該方法包含涉及諸如一標準偏差值大於X、Y及Z軸中之一或多者上之一第一手勢偏差值(亦即,250)之條件之一系列詢問。該等詢問可包含檢查一最大資料與一最小資料之間之差是否小於一資料差臨限值(亦即,2.5g)。該等詢問亦可包含檢查在任何軸上所量測之一標準偏差除以一手勢計數是否小於一偏差手勢比率(亦即,30)。可包含一起始及停止位置檢查,其中檢查軸中之一或多者上之一所記錄資料小於一起止臨限值(亦即,-500mg)。可包含一完整移動循環檢查,其中檢查所量測軸中之任何者上之循環數目大於一完整循環臨限值(亦即,2)。同時,可包含一個半循環檢查,其中檢查所量測軸中之任何者上之循環數目大於一個半循環臨限值(亦即,1)。此外,可包含一能量比例檢查,其中判定一第一軸上之一所量測標準偏差與一第二軸上之一所量測標準偏差之一比率是否超過一第一能量比例比(亦即,66),或反比(2nd stdev/1st stdev)是否超過一第二能量比例比(亦即,166)。 11 illustrates a simplified flow diagram of one method for operating a MEMS proximity sensor device in accordance with an embodiment of the present invention. This flow diagram may represent one of a flow chart of one of the gesture checks for operating one of the proximity sensor systems. The method includes a series of queries relating to a condition such as a first deviation value (i.e., 250) of one or more of the X, Y, and Z axes. The queries may include checking whether the difference between a maximum data and a minimum data is less than a data difference threshold (i.e., 2.5 g). The queries may also include checking whether one of the standard deviations measured on any of the axes is divided by whether a gesture count is less than a deviation gesture ratio (i.e., 30). A start and stop position check may be included wherein the recorded data of one or more of the axes is less than a dead threshold (i.e., -500 mg). A full motion loop check can be included wherein the number of loops on any of the measured axes is greater than a full loop threshold (i.e., 2). At the same time, a half cycle check can be included in which the number of cycles on any of the measured axes is checked to be greater than one half cycle threshold (i.e., 1). In addition, an energy ratio check may be included, wherein it is determined whether a ratio of a measured standard deviation of one of the first axes to a measured standard deviation of one of the second axes exceeds a first energy ratio (ie, , 66), or inversely (2 nd stdev / 1 st stdev) whether it exceeds a second energy ratio (ie, 166).

在一特定實施例中,可以一特定方式對此等詢問進行排序。在完整移動循環檢查之情形中,一假傳回導致該方法跳至能量比例檢查。半週期檢查上之一假傳回亦可導致能量比例檢查。否則,上文列出之詢問中之每一者可接下來進行一傳回真,其中能量比例檢查之真傳回造成一總體真或是值之一傳回。關於其他詢問之所有其他假傳回可造成一總體假或否值之傳回。 In a particular embodiment, the queries can be ordered in a particular manner. In the case of a full mobile loop check, a false return causes the method to jump to the energy ratio check. One of the false returns on the half cycle check can also lead to an energy ratio check. Otherwise, each of the questions listed above can be followed by a true return, where the true return of the energy ratio check results in an overall truth or a return of one of the values. All other false returns to other inquiries may result in a general false or no return.

圖12圖解說明根據本發明之一實施例之用於操作一MEMS近接感測器裝置之一方法之一簡化流程圖。此流程圖可表示用於操作一近接感測器系統之一方法之一位置偵測程序之一流程圖。該方法藉由以下而開始:檢查一旋轉傾角是否大於一第一角度臨限值且小於一第二角度臨限值(亦即,分別係-145度與145度),以及檢查一或多個軸上之一所量測資料之絕對值小於一第一絕對值臨限值(亦即,600mg)。若該詢問傳回假,則該位置偵測程序傳回假或否(N)。 Figure 12 illustrates a simplified flow diagram of one method for operating a MEMS proximity sensor device in accordance with an embodiment of the present invention. This flow chart may represent a flow chart of one of the position detection procedures for operating one of the proximity sensor systems. The method begins by checking whether a rotational tilt angle is greater than a first angle threshold and less than a second angle threshold (ie, -145 degrees and 145 degrees, respectively), and checking one or more The absolute value of the measured data on one of the axes is less than a first absolute value threshold (i.e., 600 mg). If the inquiry returns false, the location detection procedure returns false or no (N).

在此詢問之後,該方法可檢查該系統是否處於一接近模式階段(亦即,位置狀態係接近)。若該狀態並非接近,則該方法檢查一或多個軸上之一所量測資料之絕對值是否小於一第二絕對值臨限值(亦即,500mg)。若該狀態係接近,則提出關於以下之另一詢問:旋轉傾角是否大於一第三角度臨限值(亦即,-5度)且小於一第四角度臨限值(亦即,5度),且旋轉傾角是否大於一第五角度臨限值(亦即,85度)且小於一第六角度臨限值(亦即,95度),且一或多個軸上之一所量測資料之一絕對值是否大於一第三絕對值臨限值(亦即,300mg)。若此詢問傳回真,則位置偵測程序傳回真或是(Y)。否則,該程序傳回假或否(N)。 After this inquiry, the method can check if the system is in a near mode phase (i.e., the positional state is close). If the state is not close, the method checks if the absolute value of the measured data on one or more of the axes is less than a second absolute value threshold (i.e., 500 mg). If the state is close, another query is made as to whether the rotational tilt angle is greater than a third angle threshold (ie, -5 degrees) and less than a fourth angle threshold (ie, 5 degrees). And whether the rotational tilt angle is greater than a fifth angle threshold (ie, 85 degrees) and less than a sixth angle threshold (ie, 95 degrees), and one of the one or more axes is measured Whether one of the absolute values is greater than a third absolute value threshold (ie, 300 mg). If the query returns true, the location detection procedure returns true or (Y). Otherwise, the program returns false or no (N).

在一實施例中,本發明可包含操作一近接感測器系統之一方法。取決於特定應用,可將先前闡述之方法及子方法加在一起、互換以及重排序。先前闡述之程序流程僅包含實例,取決於應用可擴展或縮減該等實例。熟習此項技術者將認識到變化、修改及替代形式。 In an embodiment, the invention may include a method of operating a proximity sensor system. The previously described methods and sub-methods can be added together, interchanged, and reordered depending on the particular application. The previously described program flow contains only examples, depending on the application, which can be extended or reduced. Those skilled in the art will recognize variations, modifications, and alternatives.

亦理解,本文所闡述之實例及實施例僅為說明性目的,且鑒於其之各種修改或改變將為熟習此項技術者所建議且欲包含在本申請案之精神及範圍內及隨附申請專利範圍之範疇內。 It is also to be understood that the examples and embodiments set forth herein are for illustrative purposes only, and that various modifications and changes may be made by those skilled in the art and are intended to be included in the spirit and scope of the application and the accompanying application Within the scope of the patent scope.

Claims (20)

一種用於在一可攜式裝置上實施之近接偵測之方法,該可攜式裝置經程式化以執行該方法,該方法包括:藉助該可攜式裝置之一實體感測器,判定包含先前狀態資料及當前狀態資料之一初始擾動資料;藉助該可攜式裝置之該實體感測器,判定包含一或多個追蹤資料之一追蹤點資料;藉助該可攜式裝置之該實體感測器,使用該追蹤點資料來判定一穩定位置資料;及藉助該可攜式裝置之一處理器,基於該初始擾動資料、該追蹤點資料及該穩定位置資料來判定待執行之一動作。 A method for proximity detection implemented on a portable device, the portable device being programmed to perform the method, the method comprising: determining, by means of a physical sensor of the portable device An initial perturbation data of one of the previous status data and the current status data; determining, by the physical sensor of the portable device, the tracking point data including one or more tracking data; the physical sense of the portable device And using the tracking point data to determine a stable position data; and determining, by the processor of the portable device, an action to be performed based on the initial disturbance data, the tracking point data, and the stable position data. 如請求項1之方法,進一步包括:由該可攜式裝置之該處理器比較該先前狀態資料與該當前狀態資料之間之差與一或多個第一臨限值;其中該一或多個第一臨限值中之每一者包括一靈敏度參數與一搖動偵測參數之間之一比率。 The method of claim 1, further comprising: comparing, by the processor of the portable device, a difference between the previous state data and the current state data with one or more first thresholds; wherein the one or more Each of the first thresholds includes a ratio between a sensitivity parameter and a shake detection parameter. 如請求項2之方法,其中初始擾動資料包含X軸擾動資料及Z軸擾動資料,且其中該一或多個第一臨限值包含:一X軸第一臨限值,其包括該靈敏度參數與一X軸搖動偵測參數之間之一比率,及一Z軸第一臨限值,其包括該靈敏度參數與一Z軸搖動偵測參數之間之一比率。 The method of claim 2, wherein the initial disturbance data comprises an X-axis disturbance data and a Z-axis disturbance data, and wherein the one or more first thresholds comprise: an X-axis first threshold, which includes the sensitivity parameter A ratio between an X-axis shake detection parameter and a Z-axis first threshold, which includes a ratio between the sensitivity parameter and a Z-axis shake detection parameter. 如請求項1之方法,其中該追蹤點資料之該判定包含:對(x、y、z)軸資料中之兩個或兩個以上連續點取樣;該方法進一步包括:由該可攜式裝置之該處理器比較(x、y、z)軸資料中之第一點與(x、y、z)軸資料中之最後一點之間之差與一或多個第二臨限 值;其中該一或多個第二臨限值中之每一者包括一靈敏度參數與一移動參數之間之一比率。 The method of claim 1, wherein the determining of the tracking point data comprises: sampling two or more consecutive points in the (x, y, z) axis data; the method further comprising: by the portable device The processor compares the difference between the first point in the (x, y, z) axis data and the last point in the (x, y, z) axis data and one or more second thresholds a value; wherein each of the one or more second thresholds comprises a ratio between a sensitivity parameter and a movement parameter. 如請求項4之方法,其中該一或多個第二臨限值包含:一X軸第二臨限值,其包括該靈敏度參數與一X軸移動參數之間之一比率,及一Z軸第二臨限值,其包括該靈敏度參數與一Z軸移動參數之間之一比率。 The method of claim 4, wherein the one or more second thresholds comprise: an X-axis second threshold, including a ratio between the sensitivity parameter and an X-axis movement parameter, and a Z-axis A second threshold that includes a ratio between the sensitivity parameter and a Z-axis movement parameter. 如請求項5之方法,進一步包括:由該可攜式裝置之該處理器比較來自該一或多個追蹤資料之(x、y、z)資料中之該最後一點與一或多個第三臨限值及一或多個第四臨限值;其中該一或多個第三臨限值中之每一者包括該靈敏度參數與一位置參數之間之一比率;其中該一或多個第四臨限值中之每一者包括該靈敏度參數與一偏移值之總和。 The method of claim 5, further comprising: comparing, by the processor of the portable device, the last point in the (x, y, z) data from the one or more tracking data with one or more third a threshold value and one or more fourth threshold values; wherein each of the one or more third threshold values includes a ratio between the sensitivity parameter and a position parameter; wherein the one or more Each of the fourth thresholds includes a sum of the sensitivity parameter and an offset value. 如請求項6之方法,其中該一或多個第三臨限值包含:一X軸第三臨限值,其包括該靈敏度參數與一X軸位置參數之間之一比率,一Y軸第三臨限值,其包括該靈敏度參數與一Y軸位置參數之間之一比率,及一Z軸第三臨限值,其包括該靈敏度參數與一Z偏移值之總和與一Z軸負位置參數之間之一比率。 The method of claim 6, wherein the one or more third thresholds comprise: an X-axis third threshold value including a ratio between the sensitivity parameter and an X-axis position parameter, a Y-axis a three-point limit value including a ratio between the sensitivity parameter and a Y-axis position parameter, and a Z-axis third threshold value including a sum of the sensitivity parameter and a Z-offset value and a Z-axis negative A ratio between positional parameters. 如請求項6之方法,其中該一或多個第四臨限值包含:一X軸第四臨限值,其包括該靈敏度參數與一X偏移值之總和,一Y軸第四臨限值,其包括該靈敏度參數與一Y偏移值之總和,及一Z軸第四臨限值,其包括該靈敏度參數與一Z偏移值之總和 與一Z軸正位置參數之間之比率。 The method of claim 6, wherein the one or more fourth thresholds comprise: an X-axis fourth threshold, comprising a sum of the sensitivity parameter and an X offset value, and a Y-axis fourth threshold a value comprising a sum of the sensitivity parameter and a Y offset value, and a Z-axis fourth threshold, including a sum of the sensitivity parameter and a Z offset value The ratio between a positive position parameter and a Z axis. 如請求項1之方法,其中待執行之該動作之該判定包含:判定該初始擾動資料是否超過一或多個第一臨限值,判定該追蹤點資料是否超過一或多個第二臨限值,及判定該穩定位置資料是否超過一或多個第三及第四臨限值。 The method of claim 1, wherein the determining of the action to be performed comprises: determining whether the initial perturbation data exceeds one or more first thresholds, and determining whether the tracking point data exceeds one or more second thresholds a value, and determining whether the stable location data exceeds one or more third and fourth thresholds. 如請求項1之方法,其中該實體感測器包括一加速計、一陀螺儀感測器、一磁場感測器或一MEMS實體感測器。 The method of claim 1, wherein the physical sensor comprises an accelerometer, a gyroscope sensor, a magnetic field sensor or a MEMS entity sensor. 一種用於判定一使用者之近接之可攜式裝置,其包括:一實體感測器,其經組態以判定包含先前狀態資料及當前狀態資料之一初始擾動資料、包含一或多個追蹤資料之一追蹤點資料及使用該追蹤點資料之一穩定位置資料;一處理器,其經耦合至該實體感測器,其中該處理器經程式化以基於該初始擾動資料、該追蹤點資料及該穩定位置資料來判定待執行之一動作。 A portable device for determining a proximity of a user, comprising: a physical sensor configured to determine an initial perturbation data including one of a previous status data and a current status data, including one or more traces Tracking point data and using one of the tracking point data to stabilize location data; a processor coupled to the physical sensor, wherein the processor is programmed to base the tracking data based on the initial disturbance data And the stable position data to determine one of the actions to be performed. 如請求項11之裝置,其中該處理器經程式化以比較該先前狀態資料與該當前狀態資料之間之差與一或多個第一臨限值;其中該一或多個第一臨限值中之每一者包括一靈敏度參數與一搖動偵測參數之間之一比率。 The device of claim 11, wherein the processor is programmed to compare a difference between the prior state data and the current state data with one or more first thresholds; wherein the one or more first thresholds Each of the values includes a ratio between a sensitivity parameter and a shake detection parameter. 如請求項12之裝置,其中初始擾動資料包含X軸擾動資料及Z軸擾動資料,且其中該一或多個第一臨限值包含:一X軸第一臨限值,其包括該靈敏度參數與一X軸搖動偵測參數之間之一比率,及一Z軸第一臨限值,其包括該靈敏度參數與一Z軸搖動偵測參數之間之一比率。 The device of claim 12, wherein the initial disturbance data comprises an X-axis disturbance data and a Z-axis disturbance data, and wherein the one or more first thresholds comprise: an X-axis first threshold, the sensitivity parameter A ratio between an X-axis shake detection parameter and a Z-axis first threshold, which includes a ratio between the sensitivity parameter and a Z-axis shake detection parameter. 如請求項11之裝置,其中該追蹤點資料之該判定包含:對(x、y、z)軸資料中之兩個或兩個以上連續點取樣;其中該處理器經 程式化以比較(x、y、z)軸資料中之第一點與(x、y、z)軸資料中之最後一點之間之差與一或多個第二臨限值;其中該一或多個第二臨限值中之每一者包括一靈敏度參數與一移動參數之間之一比率。 The device of claim 11, wherein the determination of the tracking point data comprises: sampling two or more consecutive points in the (x, y, z) axis data; wherein the processor is Stylizing to compare the difference between the first point in the (x, y, z) axis data and the last point in the (x, y, z) axis data and one or more second thresholds; Each of the plurality of second thresholds includes a ratio between a sensitivity parameter and a movement parameter. 如請求項14之裝置,其中該一或多個第二臨限值包含:一X軸第二臨限值,其包括該靈敏度參數與一X軸移動參數之間之一比率,及一Z軸第二臨限值,其包括該靈敏度參數與一Z軸移動參數之間之一比率。 The apparatus of claim 14, wherein the one or more second thresholds comprise: an X-axis second threshold value including a ratio between the sensitivity parameter and an X-axis movement parameter, and a Z-axis A second threshold that includes a ratio between the sensitivity parameter and a Z-axis movement parameter. 如請求項14之裝置,其中該處理器經程式化以比較來自該一或多個追蹤資料之(x、y、z)資料中之該最後一點與一或多個第三臨限值及一或多個第四臨限值;其中該一或多個第三臨限值中之每一者包括該靈敏度參數與一位置參數之間之一比率;其中該一或多個第四臨限值中之每一者包括該靈敏度參數與一偏移值之總和。 The device of claim 14, wherein the processor is programmed to compare the last point in the (x, y, z) data from the one or more tracking data with one or more third thresholds and one Or a plurality of fourth thresholds; wherein each of the one or more third thresholds includes a ratio between the sensitivity parameter and a position parameter; wherein the one or more fourth thresholds Each of these includes a sum of the sensitivity parameter and an offset value. 如請求項16之裝置,其中該一或多個第三臨限值包含:一X軸第三臨限值,其包括該靈敏度參數與一X軸位置參數之間之一比率,及一Y軸第三臨限值,其包括該靈敏度參數與一Y軸位置參數之間之一比率,及一Z軸第三臨限值,其包括該靈敏度參數與一Z偏移值之總和與一Z軸負位置參數之間之一比率。 The apparatus of claim 16, wherein the one or more third thresholds comprise: an X-axis third threshold value including a ratio between the sensitivity parameter and an X-axis position parameter, and a Y-axis a third threshold value including a ratio between the sensitivity parameter and a Y-axis position parameter, and a Z-axis third threshold value including a sum of the sensitivity parameter and a Z-offset value and a Z-axis One ratio between negative position parameters. 如請求項16之裝置,其中該一或多個第四臨限值包含:一X軸第四臨限值,其包括該靈敏度參數與一X偏移值之總和,一Y軸第四臨限值,其包括該靈敏度參數與一Y偏移值之總 和,及一Z軸第四臨限值,其包括該靈敏度參數與一Z偏移值之總和與一Z軸正位置參數之間之比率。 The apparatus of claim 16, wherein the one or more fourth thresholds comprise: an X-axis fourth threshold, comprising a sum of the sensitivity parameter and an X offset value, and a Y-axis fourth threshold Value, which includes the total of the sensitivity parameter and a Y offset value And, and a Z-axis fourth threshold, which includes a ratio between the sum of the sensitivity parameter and a Z-offset value and a Z-axis positive position parameter. 如請求項11之裝置,其中待執行之該動作之該判定包含:判定該初始擾動資料是否超過一或多個第一臨限值,判定該追蹤點資料是否超過一或多個第二臨限值,及判定該穩定位置資料是否超過一或多個第三及第四臨限值。 The device of claim 11, wherein the determining of the action to be performed comprises: determining whether the initial perturbation data exceeds one or more first thresholds, and determining whether the tracking point data exceeds one or more second thresholds a value, and determining whether the stable location data exceeds one or more third and fourth thresholds. 如請求項11之裝置,其中該實體感測器包括一加速計、一陀螺儀感測器、一磁場感測器或一MEMS實體感測器。 The device of claim 11, wherein the physical sensor comprises an accelerometer, a gyroscope sensor, a magnetic field sensor or a MEMS entity sensor.
TW103117391A 2013-05-30 2014-05-16 Mems-based proximity sensor device and method TWI509502B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361829115P 2013-05-30 2013-05-30
US14/194,468 US9696337B2 (en) 2013-05-30 2014-02-28 MEMS-based proximity sensor device and method

Publications (2)

Publication Number Publication Date
TW201514839A true TW201514839A (en) 2015-04-16
TWI509502B TWI509502B (en) 2015-11-21

Family

ID=52100470

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103117391A TWI509502B (en) 2013-05-30 2014-05-16 Mems-based proximity sensor device and method

Country Status (2)

Country Link
CN (1) CN104219346B (en)
TW (1) TWI509502B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9696337B2 (en) * 2013-05-30 2017-07-04 MCube Inc. MEMS-based proximity sensor device and method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080252444A1 (en) * 2007-04-12 2008-10-16 International Business Machines Corporation Portable impact detection, wireless tracking and dispatch
WO2010088011A1 (en) * 2009-01-27 2010-08-05 General Electric Company Mems devices and remote sensing systems utilizing the same
EP2290391B1 (en) * 2009-09-01 2020-12-16 G4S Monitoring Technologies Limited Proximity sensors
TWM416177U (en) * 2011-02-22 2011-11-11 Chiu-Lin Chiang Portable storage device with removal detection
TWI436620B (en) * 2011-03-31 2014-05-01 Pegatron Corp Portable electronic device and control method of the same
CN102833414B (en) * 2012-08-28 2015-02-11 惠州Tcl移动通信有限公司 Cellphone incoming call auto-receiving method and cellphone
CN102984352B (en) * 2012-11-02 2014-12-24 小米科技有限责任公司 Method and device of adjusting of screen luminance of terminal and terminal

Also Published As

Publication number Publication date
CN104219346A (en) 2014-12-17
TWI509502B (en) 2015-11-21
CN104219346B (en) 2017-12-01

Similar Documents

Publication Publication Date Title
CN106325467B (en) Method and device for controlling mobile terminal and mobile terminal
KR101608878B1 (en) Rest detection using accelerometer
JP4628483B2 (en) Portable device and position specifying method thereof
JP5937076B2 (en) Method and apparatus for gesture-based user input detection in a mobile device
US8531414B2 (en) Bump suppression
EP3306442A1 (en) Control of machines through detection of gestures by optical and muscle sensors
KR101543143B1 (en) Motion-based device operations
WO2018090538A1 (en) Method and device for recognizing action of tennis racket
WO2010045498A1 (en) Mobile devices with motion gesture recognition
US20160170490A1 (en) Gesture based power management system and method
US20140168057A1 (en) Gyro aided tap gesture detection
US9696337B2 (en) MEMS-based proximity sensor device and method
US20190108391A1 (en) Information processing device, information processing method, and program
JP2008503816A (en) Electronic device control
WO2021057654A1 (en) Screen touch management method, smart terminal, device, and readable storage medium
JP2015085030A (en) Training support device and system, form analysis device and method, and program
WO2014185009A1 (en) Offset estimation device, method, and program
CN107656682A (en) Mobile terminal and angle of bend computational methods
JP2018163558A (en) Information processor, information processing method and program
TWI509502B (en) Mems-based proximity sensor device and method
CN105988561A (en) Starting method and device of terminal application program
WO2019134305A1 (en) Method and apparatus for determining pose, smart device, storage medium, and program product
US10551195B2 (en) Portable device with improved sensor position change detection
WO2022267290A1 (en) Step counting method and apparatus, and electronic device and readable storage medium
US20120203496A1 (en) Acceleration detecting device, electronic apparatus, pedometer, and program