TW201513716A - Discovery, transmit opportunity (TXOP) operation and flow control for range extension in WiFi - Google Patents

Discovery, transmit opportunity (TXOP) operation and flow control for range extension in WiFi Download PDF

Info

Publication number
TW201513716A
TW201513716A TW103115857A TW103115857A TW201513716A TW 201513716 A TW201513716 A TW 201513716A TW 103115857 A TW103115857 A TW 103115857A TW 103115857 A TW103115857 A TW 103115857A TW 201513716 A TW201513716 A TW 201513716A
Authority
TW
Taiwan
Prior art keywords
sta
link quality
relay
frame
relay node
Prior art date
Application number
TW103115857A
Other languages
Chinese (zh)
Other versions
TWI651985B (en
Inventor
Guo-Dong Zhang
Xiaofei Wang
Robert L Olesen
Original Assignee
Interdigital Patent Holdings
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Interdigital Patent Holdings filed Critical Interdigital Patent Holdings
Publication of TW201513716A publication Critical patent/TW201513716A/en
Application granted granted Critical
Publication of TWI651985B publication Critical patent/TWI651985B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)

Abstract

Systems, methods, and instrumentalities are disclosed for a station to determine a link quality. A station (STA) may determine the quality of a path that includes a relay node by determining a link quality associated with each link in the path. The STA may receive a transmission indicating that a transmitting entity is a relay node. The transmission may indicate a first link quality associated with a link between the relay node and a root access point (AP). The STA may determine a second link quality associated with a link between the (STA) and the relay node, e.g., the STA may estimate the second link quality. The STA may determine a total link quality associated with a combined link from the STA to the relay node to the root AP. The STA may select an entity to associate with based on the total link quality.

Description

WiFi範圍延伸發現、傳輸機會(TXOP)操作及流量控制WiFi range extension discovery, transmission opportunity (TXOP) operation and flow control

相關申請的交叉引用
本申請要求2013年5月2日提交的美國臨時專利申請No. 61/818,854的權益,該申請的內容以引用的方式結合於此。
CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application claims the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the disclosure.

多點跳躍WiFi系統可以被用於改善單個存取點(AP)系統上的覆蓋範圍和容量。多點跳躍WiFi系統可以使用中繼AP和/或中繼類型網站台(STA)以改善STA的通道狀況,該STA在其他方面可能遭受壞的通道狀況或覆蓋範圍。在基於中繼的WiFi系統中,從中繼AP接收管理訊框(例如,信標訊框、探測回應訊框等)的STA可以不具有整個中繼路徑的足夠資訊。例如,STA可能沒有關於根AP與中繼AP之間的鏈路的資訊。根AP可能沒有關於例如中繼AP與目的地STA之間的鏈路的資訊。Multi-point hop WiFi systems can be used to improve coverage and capacity on a single access point (AP) system. The multi-hop hop WiFi system may use a relay AP and/or a relay type website station (STA) to improve the channel condition of the STA, which may otherwise suffer from bad channel conditions or coverage. In a relay-based WiFi system, an STA that receives a management frame (eg, a beacon frame, a probe response frame, etc.) from a relay AP may not have sufficient information for the entire relay path. For example, the STA may not have information about the link between the root AP and the relay AP. The root AP may not have information about, for example, a link between the relay AP and the destination STA.

本發明內容提供了對簡化形式的概念的選擇的介紹,這些概念進一步在以下具體說明中進行描述。本發明內容不意在標識所要求保護的主題的關鍵特徵或必要特徵,也不意在用於限制所要求保護的主題的範圍。
揭露了用於站台確定鏈路品質的系統、方法和工具。例如,站台(STA)可以通過確定與路徑中的每個鏈路相關聯的鏈路品質來確定包括中繼節點的路徑的品質。STA可以接收指示傳輸實體為中繼節點的傳輸。傳輸可以是信標訊框、短信標訊框或探測回應訊框等。中繼裝置(如,WTRU)可以為專用中繼或其他裝置(如,作為中繼的站台、作為中繼的存取點(AP)或非站台,該非站台諸如作為AP的站台,該AP作為中繼)。傳輸可以指示與中繼節點和根存取點(AP)之間的鏈路相關聯的第一鏈路品質。根AP可以為與將由STA傳輸的資料相關聯的目的地節點。STA可以確定與STA和中繼節點之間的鏈路相關聯的第二鏈路品質,例如,STA可以通過測量傳輸的度量來估計第二鏈路品質。STA可以確定與從STA至中繼節點至根AP的結合的鏈路相關聯的整體鏈路品質。
STA可以基於該整體鏈路品質來選擇實體進行關聯。STA可以使用整體鏈路品質來確定是經由中繼發送資料至根AP還是直接發送資料至根AP。例如,STA可以確定整體鏈路品質是否滿足需求(例如,整體鏈路品質是否比STA和根AP之間的鏈路的品質更好,整體鏈路品質是否在諸如SNR臨界值的臨界值以上等)。STA可以選擇關聯中繼節點以為了在整體鏈路品質滿足需求時傳輸至根AP。
傳輸實體是中繼節點的指示可以是顯式的或隱式的。傳輸實體是中繼節點的示例性顯式指示可以是經由資訊元素的顯式信號。傳輸實體是中繼節點的示例性隱式指示可以是在傳輸的訊框中存在的第一鏈路品質。
The Summary of the Invention provides an introduction to the selection of concepts in a simplified form, which are further described in the following detailed description. The summary is not intended to identify key features or essential features of the claimed subject matter, and is not intended to limit the scope of the claimed subject matter.
Systems, methods and tools for determining the quality of a link for a station are disclosed. For example, a station (STA) can determine the quality of a path including a relay node by determining the link quality associated with each link in the path. The STA may receive a transmission indicating that the transport entity is a relay node. The transmission can be a beacon frame, a short message frame or a probe response frame. A relay device (e.g., a WTRU) may be a dedicated relay or other device (e.g., a station that acts as a relay, an access point (AP) that is a relay, or a non-station, such as a station that acts as an AP, the AP acts as relay). The transmission may indicate a first link quality associated with the link between the relay node and the root access point (AP). The root AP may be a destination node associated with the material to be transmitted by the STA. The STA may determine a second link quality associated with the link between the STA and the relay node, for example, the STA may estimate the second link quality by measuring the transmitted metric. The STA may determine the overall link quality associated with the link from the STA to the relay node to the root AP.
The STA may select an entity to associate based on the overall link quality. The STA can use the overall link quality to determine whether to send data to the root AP via the relay or directly to the root AP. For example, the STA may determine whether the overall link quality meets the requirements (eg, whether the overall link quality is better than the quality of the link between the STA and the root AP, and whether the overall link quality is above a critical value such as the SNR threshold) ). The STA may select the associated relay node to transmit to the root AP when the overall link quality meets the demand.
The indication that the transport entity is a relay node can be explicit or implicit. An exemplary explicit indication that the transmitting entity is a relay node may be an explicit signal via an information element. An exemplary implicit indication that the transmitting entity is a relay node may be the first link quality present in the transmitted frame.

100‧‧‧通信系統
102、102a、102b、102c、102d‧‧‧無線發射/接收單元(WTRU)/存取點(AP)
103、104、105‧‧‧無線電存取網路(RAN)
106、107、109‧‧‧核心網路/天線
108‧‧‧公共交換電話網路(PSTN)
110‧‧‧網際網路/站台(STA)
112‧‧‧其他網路/STA
114‧‧‧網路
114a、114b‧‧‧基地台
115、116、117‧‧‧空中介面/分配系統(DS)
118‧‧‧處理器/伺服器
120‧‧‧收發器
122‧‧‧發射/接收元件/基礎服務集(BSS)
124‧‧‧揚聲器/麥克風
126‧‧‧數字鍵盤
128‧‧‧顯示器/觸控板
130‧‧‧不可移除記憶體
132‧‧‧可移除記憶體
134‧‧‧電源
136‧‧‧全球定位系統(GPS)晶片組
138‧‧‧其他週邊設備
ACK‧‧‧早期應答
CF‧‧‧無爭用
CRC‧‧‧循環冗餘校驗
CTC‧‧‧清除發送
IE‧‧‧資訊元素
NAV‧‧‧網路分配向量
PHY‧‧‧實體層
R-AP‧‧‧中繼AP
R-STA‧‧‧中繼STA
RTS‧‧‧請求發送
SIFS‧‧‧短的訊框間空間
SIG‧‧‧信號
SSID‧‧‧服務設置識別符
TXOP‧‧‧傳輸機會
100‧‧‧Communication system
102, 102a, 102b, 102c, 102d‧‧‧ wireless transmit/receive unit (WTRU)/access point (AP)
103, 104, 105‧‧‧ Radio Access Network (RAN)
106, 107, 109‧‧‧ core network/antenna
108‧‧‧Public Switched Telephone Network (PSTN)
110‧‧‧Internet/Station (STA)
112‧‧‧Other networks/STAs
114‧‧‧Network
114a, 114b‧‧‧ base station
115, 116, 117‧‧‧ Air Intermediary/Distribution System (DS)
118‧‧‧Processor/Server
120‧‧‧ transceiver
122‧‧‧transmit/receive components/basic service set (BSS)
124‧‧‧Speaker/Microphone
126‧‧‧Digital keyboard
128‧‧‧Display/Touchpad
130‧‧‧Cannot remove memory
132‧‧‧Removable memory
134‧‧‧Power supply
136‧‧‧Global Positioning System (GPS) chipset
138‧‧‧Other peripheral equipment
ACK‧‧‧early response
CF‧‧‧No contention
CRC‧‧‧cyclic redundancy check
CTC‧‧‧Clear Send
IE‧‧‧Information elements
NAV‧‧‧Network Assignment Vector
PHY‧‧‧ physical layer
R-AP‧‧‧Relay AP
R-STA‧‧‧ Relay STA
RTS‧‧‧ request to send
SIFS‧‧‧ Short inter-frame space
SIG‧‧‧ signal
SSID‧‧‧Service Set Identifier
TXOP‧‧‧ transmission opportunity

更詳細的理解可以從下述結合附圖以示例的形式給出的描述中得到,其中:
第1A圖描述了示例性通信系統。
第1B圖描述了示例性無線發射/接收單元(WTRU)。
第1C圖描述了示例性無線區域網路(WLAN)裝置。
第2圖描述了IEEE 802.11ah中中繼架構的示例。
第3圖描述了利用顯式ACK的下行鏈路中繼(例如,從AP至STA)的示例。
第4圖描述了利用顯式ACK的上行鏈路中繼(例如,從STA至AP)的示例。
第5圖描述了利用隱式ACK的中繼操作的示例。
第6圖描述了傳輸的示例。
第7圖描述了在中繼節點和源節點的情況中的中繼路徑選擇的示例。
第8圖描述了在一個或多個中繼節點和源節點的情況中的中繼路徑選擇的示例。
第9圖描述了傳輸的框架格式的示例,其中訊框控制欄位位元可以指示是否存在出中繼與根AP之間的鏈路品質。
第10圖描述了傳輸的框架格式的示例,其中中繼與根AP之間的鏈路品質可以由資訊元素(IE)提供。
第11圖描述了可以信號發送中繼節點的位址的流量控制通知訊框的框架格式的示例。
第12圖描述了第11圖中示出的示例性流量控制元素的流量控制通知元素格式的框架格式的示例。
第13圖描述了簡化的流量控制通知元素格式的示例。
第14圖描述了可以信號發送目的地節點的位址的流量控制通知訊框的框架格式的示例。
第15圖描述了第14圖中示出的示例性流量控制元素的流量控制通知元素格式的框架格式的示例。
第16圖描述了利用顯式ACK的傳輸機會(TXOP)操作的示例。
第17圖描述了利用隱式ACK的TXOP操作的示例。
A more detailed understanding can be obtained from the description given below by way of example with reference to the accompanying drawings, in which:
Figure 1A depicts an exemplary communication system.
FIG. 1B depicts an exemplary wireless transmit/receive unit (WTRU).
Figure 1C depicts an exemplary wireless local area network (WLAN) device.
Figure 2 depicts an example of a relay architecture in IEEE 802.11ah.
Figure 3 depicts an example of a downlink relay (e.g., from an AP to a STA) that utilizes an explicit ACK.
Figure 4 depicts an example of an uplink relay (e.g., from STA to AP) utilizing an explicit ACK.
Figure 5 depicts an example of a relay operation using an implicit ACK.
Figure 6 depicts an example of transmission.
Figure 7 depicts an example of relay path selection in the case of a relay node and a source node.
Figure 8 depicts an example of relay path selection in the case of one or more relay nodes and source nodes.
Figure 9 depicts an example of a frame format for transmission, where the frame control field bit may indicate whether there is a link quality between the relay and the root AP.
Figure 10 depicts an example of a frame format for transmission where the link quality between the relay and the root AP can be provided by an information element (IE).
Figure 11 depicts an example of a frame format for a flow control notification frame that can signal the address of a relay node.
Figure 12 depicts an example of a frame format for the flow control notification element format of the exemplary flow control element shown in Figure 11.
Figure 13 depicts an example of a simplified flow control notification element format.
Figure 14 depicts an example of a frame format for a flow control notification frame that can signal the address of a destination node.
Figure 15 depicts an example of a frame format of the flow control notification element format of the exemplary flow control element shown in Figure 14.
Figure 16 depicts an example of a Transport Opportunity (TXOP) operation utilizing explicit ACK.
Figure 17 depicts an example of a TXOP operation that utilizes an implicit ACK.

下面參考各種附圖對示例實施方式進行詳細描述。雖然本發明提供了具體的示例實施方式,但應當理解的是這些細節意在示例性並且不以任何方式限制本發明的範圍。此外,附圖可以示出被用於示例的一個或多個訊息圖式。其他實施方式可以被使用。訊息的順序可以在適當的是後進行改變。在不需要的時候可以省略訊息,並且可以增加附加訊息。
第1A圖為可以在其中實施一個或者多個所揭露的特徵的示例通信系統100的圖例。例如,無線網路(如,包括通信系統100的一個或多個元件的無線網路)可以被配置以使得延伸到無線網路以外(如,延伸到與無線網路相關聯的防火牆以外)的承載方可以被指派QoS特性。
通信系統100可以是將諸如語音、資料、視訊、訊息、廣播等之類的內容提供給多個無線用戶的多重存取系統。通信系統100可以通過系統資源(包括無線頻寬)的共用使得多個無線用戶能夠存取這些內容。例如,通信系統100可以使用一個或多個通道存取方法,例如分碼多重存取(CDMA)、分時多重存取(TDMA)、分頻多重存取(FDMA)、正交FDMA(OFDMA)、單載波FDMA(SC-FDMA)等等。
如第1A圖所示,通信系統100可以包括至少一個無線發射/接收單元(WTRU),諸如多個WTRU,例如WTRU 102a、102b、102c和102d,無線電存取網路(RAN)103/104/105,核心網路106/107/109,公共交換電話網路(PSTN)108,網際網路110、和其他網路112,但可以理解的是所揭露的實施方式涵蓋任意數量的WTRU、基地台、網路、和/或網路元件。WTRU 102a、102b、102c、102d中的每一個可以是被配置成在無線通信中操作和/或通信的任何類型的裝置。作為示例,WTRU 102a、102b、102c、102d可以被配置成傳輸和/或接收無線信號,並且可以包括用戶設備(UE)、移動站、固定或移動訂戶單元、傳呼機、行動電話、個人數位助理(PDA)、智慧型電話、可攜式電腦、上網本、個人電腦、無線感測器、消費電子產品等等。
通信系統100還可以包括基地台114a和基地台114b。基地台114a、114b中的每一個可以是被配置成與WTRU 102a、102b、102c、102d中的至少一者有無線介面以便於存取一個或多個通信網路(例如核心網路106/107/109、網際網路110和/或網路112)的任何類型的裝置。例如,基地台114a、114b可以是基地台收發站(BTS)、節點B、e節點B、家用節點B、家用e節點B、網站控制器、存取點(AP)、無線路由器以及類似裝置。儘管基地台114a、114b每個均被描述為單個元件,但是可以理解的是基地台114a、114b可以包括任何數量的互聯基地台和/或網路元件。
基地台114a可以是RAN 103/104/105的一部分,該RAN 103/104/105還可以包括諸如網站控制器(BSC)、無線電網路控制器(RNC)、中繼節點之類的其他基地台和/或網路元件(未示出)。基地台114a和/或基地台114b可以被配置成傳輸和/或接收特定地理區域內的無線信號,該特定地理區域可以被稱作胞元(未示出)。胞元還可以被劃分成胞元扇區。例如與基地台114a相關聯的胞元可以被劃分成三個扇區。因此,在一種實施方式中,基地台114a可以包括三個收發器,即該胞元的每個扇區都有一個收發器。在另一實施方式中,基地台114a可以使用多輸入多輸出(MIMO)技術,並且由此可以使用針對胞元的每個扇區的多個收發器。
基地台114a、114b可以通過空中介面115/116/117與WTRU 102a、102b、102c、102d中的一者或多者通信,該空中介面115/116/117可以是任何合適的無線通信鏈路(例如射頻(RF)、微波、紅外(IR)、紫外(UV)、可見光等)。空中介面115/116/117可以使用任何合適的無線電存取技術(RAT)來建立。
更為具體地,如前所述,通信系統100可以是多重存取系統,並且可以使用一個或多個通道存取方案,例如CDMA、TDMA、FDMA、OFDMA、SC-FDMA以及類似的方案。例如,在RAN 103/104/105中的基地台114a和WTRU 102a、102b、102c可以實施諸如通用移動電信系統(UMTS)陸地無線電存取(UTRA)之類的無線電技術,其可以使用寬頻CDMA(WCDMA)來建立空中介面115/116/117。WCDMA可以包括諸如高速封包存取(HSPA)和/或演進型HSPA(HSPA+)。HSPA可以包括高速下行鏈路封包存取(HSDPA)和/或高速上行鏈路封包存取(HSUPA)。
在另一實施方式中,基地台114a和WTRU 102a、102b、102c可以實施諸如演進型UMTS陸地無線電存取(E-UTRA)之類的無線電技術,其可以使用長期演進(LTE)和/或高級LTE(LTE-A)來建立空中介面115/116/117。
在其它實施方式中,基地台114a和WTRU 102a、102b、102c可以實施諸如IEEE 802.16(即全球互通微波存取(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、臨時標準2000(IS-2000)、臨時標準95(IS-95)、臨時標準856(IS-856)、全球移動通信系統(GSM)、增強型資料速率GSM演進(EDGE)、GSM EDGE(GERAN)之類的無線電技術。
舉例來講,第1A圖中的基地台114b可以是無線路由器、家用節點B、家用e節點B或者存取點,並且可以使用任何合適的RAT以用於促進在諸如公司、家庭、車輛、校園之類的局部區域的通信連接。在一種實施方式中,基地台114b和WTRU 102c、102d可以實施諸如IEEE 802.11之類的無線電技術以建立無線區域網路(WLAN)。在另一種實施方式中,基地台114b和WTRU 102c、102d可以實施諸如IEEE 802.15之類的無線電技術以建立無線個人區域網路(WPAN)。在又一種實施方式中,基地台114b和WTRU 102c、102d可以使用基於蜂巢的RAT(例如WCDMA、CDMA2000、GSM、LTE、LTE-A等)以建立微微胞元(picocell)或毫微微胞元(femtocell)。如第1A圖所示,基地台114b可以具有至網際網路110的直接連接。因此,基地台114b不必經由核心網路106/107/109來存取網際網路110。
RAN 103/104/105可以與核心網路106/107/109通信,該核心網路可以是被配置成將語音、資料、應用和/或網際網路協定語音(VoIP)服務提供到WTRU 102a、102b、102c、102d中的一者或多者的任何類型的網路。例如,核心網路106/107/109可以提供呼叫控制、帳單服務、基於移動位置的服務、預付費呼叫、網際互聯、視訊分配等,和/或執行高級安全性功能,例如用戶驗證。儘管第1A圖中未示出,需要理解的是RAN 103/104/105和/或核心網路106/107/109可以直接或間接地與其他RAN進行通信,這些其他RAT可以使用與RAN 103/104/105相同的RAT或者不同的RAT。例如,除了連接到可以採用E-UTRA無線電技術的RAN 103/104/105,核心網路106/107/109也可以與使用GSM無線電技術的其他RAN(未顯示)通信。
核心網路106/107/109也可以用作WTRU 102a、102b、102c、102d存取PSTN 108、網際網路110、和/或其他網路112的閘道。PSTN 108可以包括提供普通老式電話服務(POTS)的電路交換電話網路。網際網路110可以包括使用公共通信協定的互聯電腦網路和裝置的全球系統,該公共通信協定例如傳輸控制協定(TCP)/網際網路協定(IP)網際網路協定套件中的TCP、用戶資料包通信協定(UDP)和IP。網路112可以包括由其他服務提供方擁有和/或操作的無線或有線通信網路。例如,網路112可以包括連接到一個或多個RAN的另一核心網路,這些RAN可以使用與RAN 103/104/105相同的RAT或者不同的RAT。
通信系統100中的WTRU 102a、102b、102c、102d中的一些或者全部可以包括多模式能力,即WTRU 102a、102b、102c、102d可以包括用於通過多個通信鏈路與不同的無線網路進行通信的多個收發器。例如,第1A圖中顯示的WTRU 102c可以被配置成與使用基於胞元的無線電技術的基地台114a進行通信,並且與使用IEEE 802無線電技術的基地台114b進行通信。
第1B圖描述了示例性無線發射/接收單元,WTRU 102。WTRU 102可以在於此描述的通信系統中的一者或多者中使用。如第1B圖所示,WTRU 102可以包括處理器118、收發器120、發射/接收元件122、揚聲器/麥克風124、數字鍵盤126、顯示器/觸控板128、不可移除記憶體130、可移除記憶體132、電源134、全球定位系統(GPS)晶片組136、和其他週邊設備138。應當理解的是,在保持與實施方式一致的同時,WTRU 102可以包括上述元件的任何子集。
處理器118可以是通用處理器、專用處理器、常規處理器、數位訊號處理器(DSP)、多個微處理器、與DSP核相關聯的一個或多個微處理器、控制器、微控制器、專用積體電路(ASIC)、現場可程式設計閘陣列(FPGA)電路、其他任何類型的積體電路(IC)、狀態機等。處理器118可以執行信號編碼、資料處理、功率控制、輸入/輸出處理、和/或使得WTRU 102能夠操作在無線環境中的其他任何功能性。處理器118可以耦合到收發器120,該收發器120可以耦合到發射/接收元件122。儘管第1B圖中將處理器118和收發器120描述為分別的組件,但是應當理解的是處理器118和收發器120可以被一起整合到電子封裝或者晶片中。
發射/接收元件122可以被配置成通過空中介面115/116/117將信號發送到基地台(例如基地台114a),或者從基地台(例如基地台114a)接收信號。例如,在一種實施方式中,發射/接收元件122可以是被配置成傳輸和/或接收RF信號的天線。在另一實施方式中,發射/接收元件122可以是被配置成發送和/或接收例如IR、UV或者可見光信號的發射器/檢測器。在又一實施方式中,發射/接收元件122可以被配置成傳輸和接收RF信號和光信號兩者。應當理解的是發射/接收元件122可以被配置成傳輸和/或接收無線信號的任意組合。
此外,儘管發射/接收元件122在第1B圖中被描述為單個元件,但是WTRU 102可以包括任何數量的發射/接收元件122。更特別地,WTRU 102可以使用MIMO技術。因此,在一種實施方式中,WTRU 102可以包括兩個或更多個發射/接收元件122(例如多個天線)以用於通過空中介面115/116/117發射和接收無線信號。
收發器120可以被配置成對將由發射/接收元件122發送的信號進行調變,並且被配置成對由發射/接收元件122接收的信號進行解調。如以上所述,WTRU 102可以具有多模式能力。因此,收發器120可以包括多個收發器以用於使得WTRU 102能夠經由多個RAT(例如UTRA和IEEE 802.11)進行通信。
WTRU 102的處理器118可以被耦合到揚聲器/麥克風124、數字鍵盤126、和/或顯示器/觸控板128(例如,液晶顯示(LCD)單元或者有機發光二極體(OLED)顯示單元),並且可以從上述裝置接收用戶輸入資料。處理器118還可以向揚聲器/麥克風124、數字鍵盤126、和/或顯示器/觸控板128輸出資料。此外,處理器118可以存取來自任何類型的合適的記憶體中的資訊,以及向任何類型的合適的記憶體中儲存資料,該記憶體例如可以是不可移除記憶體130和/或可移除記憶體132。不可移除記憶體130可以包括隨機存取記憶體(RAM)、可讀記憶體(ROM)、硬碟或者任何其他類型的記憶體儲存裝置。可移除記憶體132可以包括用戶身份模組(SIM)卡、記憶棒、安全數位(SD)記憶卡等類似裝置。在其它實施方式中,處理器118可以存取來自實體上未位於WTRU 102上而位於伺服器或者家用電腦(未示出)上的記憶體的資料,以及向上述記憶體中儲存資料。
處理器118可以從電源134接收電力,並且可以被配置成將電力分配給WTRU 102中的其他組件和/或對至WTRU 102中的其他元件的功率進行控制。電源134可以是任何適用於給WTRU 102供電的裝置。例如,電源134可以包括一個或多個乾電池(鎳鎘(NiCd)、鎳鋅(NiZn)、鎳氫(NiMH)、鋰離子(Li-ion)等)、太陽能電池、燃料電池等。
處理器118還可以耦合到GPS晶片組136,該GPS晶片組136可以被配置成提供關於WTRU 102的當前位置的位置資訊(例如經度和緯度)。WTRU可以通過空中介面115/116/117從基地台(例如基地台114a、114b)接收加上或取代GPS晶片組136資訊之位置資訊,和/或基於從兩個或更多個相鄰基地台接收到的信號的定時來確定其位置。應當理解的是,在保持與實施方式一致的同時,WTRU 102可以通過任何合適的位置確定方法來獲取位置資訊。
處理器118還可以耦合到其他週邊設備138,該週邊設備138可以包括提供附加特徵、功能性和/或無線或有線連接的一個或多個軟體和/或硬體模組。例如,週邊設備138可以包括加速度計、電子指南針(e-compass)、衛星收發器、數位相機(用於照片或者視訊)、通用序列匯流排(USB)埠、震動裝置、電視收發器、免持耳機、藍芽模組、調頻(FM)無線電單元、數位音樂播放機、媒體播放機、視訊遊戲播放機模組、網際網路瀏覽器等等。
第1C圖示出了示例性無線區域網路(WLAN)裝置。該裝置中的一者或多者可以被用於實施於此描述的特徵中的一者或多者。WLAN可以包括,但不限於,存取點(AP)102、站台(STA)110及STA 112。STA 110和112可以與AP 102相關聯。WLAN可以被配置為實施IEEE 802.11通信標準中的一個或多個協定,該標準可以包括通道存取方案、諸如DSSS、OFDM、OFDMA等。WLAN可以以如基礎設施(infrastructure)模式、特定(ad-hoc)模式等模式進行操作。
以基礎設施模式進行操作的WLAN可以包括與一個或多個相關聯的STA進行通信的一個或多個AP。AP和與AP相關聯的STA可以包括基礎服務集(BSS)。例如,AP 102、STA 110和STA 112可以包括BSS 122。延伸服務集(ESS)可以包括一個或多個(具有一個或多個BSS的)AP和與AP相關聯的STA。AP可以具有至分配系統(DS)116的存取和/或介面,該分配系統(DS)116可以被有線連接和/或無線連接並且可以將訊務攜帶至AP和/或攜帶來自AP的訊務。源自WLAN以外的至WLAN中的STA的訊務可以在WLAN中的AP被接收,該AP可以發送訊務至WLAN中的STA。源自WLAN中的STA至WLAN以外(如,至伺服器118)的訊務可以被發送至WLAN中的AP,該AP可以發送訊務至目的地,如經由DS 116至網路114以被發送至伺服器118。WLAN內的STA之間的訊務可以通過一個或多個AP發送。例如,源STA(如,STA 110)可以具有用於目的地STA(如,STA 112)的訊務。STA 110可以發送訊務至AP 102,以及AP 102可以發送訊務至STA 112。
WLAN可以以ad-hoc模式進行操作。該ad-hoc模式WLAN可以被稱為獨立基礎服務集(IBBS)。在ad-hoc模式WLAN中,STA可以相互直接通信(例如,STA 110可以與STA 112進行通信,而不需要此類通信通過AP進行路由)。
IEEE 802.11裝置(例如,BSS中的IEEE 802.11 AP)可以使用信標訊框來告知WLAN網路的存在。AP(諸如AP 102)可以在如固定的通道(諸如,主通道)的通道上傳輸信標。STA可以使用諸如主通道的通道來建立與AP的連接。
STA和/或AP可以使用具有衝突避免的載波偵聽多路存取(CSMA/CA)通道存取機制。在CSMA/CA中,STA和/或AP可以偵聽主通道。例如,STA有資料需要發送,則STA可以偵聽主通道。如果主通道被檢測到忙,則STA可以退後(back off)。例如,WLAN或WLAN的一部分可以被配置以使得一個STA可以在給定時間(如,在給定BSS)傳輸。通道存取可以包括RTS和/或CTS信令。例如,請求發送(RTS)訊框的交換可以通過發送裝置傳輸,以及清除發送(CTS)訊框可以通過接收裝置進行發送。例如,如果AP有資料需要發送至STA,則AP可以發送RTS訊框至STA。如果STA準備接收資料,則STA可以以CTS訊框回應。CTS訊框可以包括時間值,該時間值可以警告其他STA推遲存取媒體而發起RTS的AP可以傳輸該RTS的資料。在從STA接收CTS訊框的時候,AP可以發送資料至STA。
裝置可以保留經由網路分配向量(NAV)欄位的頻譜。例如,在IEEE 802.11訊框中,NAV欄位可以被用於保留通道一時間週期。想要傳輸資料的STA可以將NAV設定為期望使用通道的時間。在STA設定NAV時,NAV可以被設定用於相關聯的WLAN或其子集(如,BSS)。其他STA可以倒計時NAV至零。在計數器到達零值時,NAV功能可以向其他STA指示通道現在可用。
WLAN中的裝置,諸如AP或STA,可以包括以下一者或多者:處理器、記憶體、無線電接收機、和/或發射機(例如,可以結合在收發器中)、一個或多個天線(例如,第1圖中的天線106),等。處理器功能可以包括一個或多個處理器。例如,處理器可以包括以下一者或多者:通用處理器、專用處理器(如,基帶處理器、MAC處理器等)、數位訊號處理器(DSP)、特定用途積體電路(ASIC)、場可程式設計閘陣列(FPGA)電路、任何其他類型的積體電路(IC)、狀態機等。一個或多個處理器可以相互整合或不相互整合。處理器(例如,一個或多個處理器或其子集)可以與一個或多個其他功能(如,諸如記憶體的其他功能)整合在一起。處理器可以執行信號編碼、資料處理、功率控制、輸入/輸出處理、調變、解調、和/或任何其他可以使裝置在無線環境(諸如第1圖的WLAN)中進行操作的功能性。處理器可以被配置為執行處理可執行代碼(例如,指令),該代碼例如包括軟體和/或韌體指示。例如,處理可以被配置為執行包括在一個或多個處理器(如,包括記憶體和處理器的晶片組)或記憶體裡的電腦可讀指令。指令的執行可以使裝置執行於此描述的一個或多個功能。
裝置可以包括一個或多個天線。裝置可以採用多輸入多輸出(MIMO)技術。一個或多個天線可以接收無線電信號。處理器可以接收無線電信號,例如經由一個或多個天線。一個或多個天線可以傳輸無線電信號(例如,基於從處理器發送的信號)。
裝置可以具有可以包括一個或多個裝置的記憶體以用於儲存程式設計和/或資料,諸如處理器可執行代碼或指令(例如,硬體、韌體等)、電子資料、資料庫,或其他數位資訊。記憶體可以包括一個或多個記憶體單元。一個或多個記憶體單元可以與一個或多個其他功能(例如,包括在諸如處理器的裝置中的其他功能)整合在一起。記憶體可以包括唯讀記憶體(ROM)(例如,可擦除可程式設計唯讀記憶體(EPROM)、電可擦除可程式設計唯讀記憶體(EEPROM),等)、隨機存取記憶體(RAM)、磁片儲存媒體、光儲存媒體、快閃記憶體裝置,和/或其他永久的電腦唯讀媒體以用於儲存資訊。記憶體可以被耦合至處理器。處理器可以如經由系統匯流排、直接等與一個或多個記憶體實體通信。
基礎設施基本服務集(IBSS)模式中的WLAN可以具有用於基本服務集(BSS)的存取點(AP)及與AP相關聯的一個或多個站台(STA)。AP可以具有至分配系統(DS)或另一類型的可以攜帶BSS中或BSS以外的訊務的有線/無線網路的存取或介面。至STA的訊務可以源於BSS以外,可以通過AP到達並可以被傳遞至STA。源自STA到達BSS以外的目的地的訊務可以被發送至AP以被傳遞至各自目的地。BSS內STA之間的訊務可以通過AP發送,其中源STA可以發送訊務至AP且AP可以傳遞訊務至目的地STA。BSS內STA之間的訊務可以是對等訊務。這種對等訊務可以直接在源與目的地STA之間被發送,例如具有使用IEEE 802.11e直接鏈路設置(DLS)或IEEE 802.11z隧道DLS(TDLS)的DLS。使用獨立BSS(IBSS)模式的WLAN可以沒有AP,並且STA可以直接相互通信。這種模式的通信可以是ad-hoc模式。
使用IEEE 802.11基礎設施模式的操作,AP可以在固定通道(例如,主通道)上傳輸信標。該通道可以為20 MHz寬,並且可以為BSS的操作通道。該信號還可以由STA用於建立與AP的連接。IEEE 802.11系統中的通道存取可以為具有衝突避免的載波偵聽多路存取(CSMA/CA)。在基礎設施模式的操作中,每個STA可以偵聽主通道。如果STA檢測到通道忙,則STA可以退回。一個STA可以在任意給定時間在給定BSS中傳輸。
在世界不同的各個國家,專用頻譜可以被分配用於諸如WLAN的無線通信系統。分配的頻譜(如,低於1GHz)可以在大小和通道頻寬上被限制。頻譜可以被分段。可用通道可能不是鄰近的並不能被結合以用於更大的頻寬傳輸。WLAN系統(例如建立在IEEE 802.11標準上)可以被設計為在該頻譜中進行操作。考慮到這種頻譜的限制,WLAN系統與HT和/或VHT WLAN系統(例如,基於IEEE 802.11n和/或802.11ac標準)相比,可能能夠支援更小的頻寬和更低的資料率。
可以限制在一個或多個國家中的頻譜分配。例如,在中國,470-566和614-787 MHz頻帶可以允許1 MHz頻寬。除了1 MHz頻寬,2 MHz與1 MHz模式可以被支援。802.11ah實體層(PHY)可以支援1、2、4、8和16 MHz頻寬。
802.11ah PHY可以在1 GHz以下操作。802.11ah PHY可以基於802.11ac PHY。802.11ac PHY可以被向下計時(down-clock)(如,以配合802.11ah需要的窄頻寬)。802.11 ac PHY可以以因數10向下計時。2、4、8和16 MHz的支援可以以1/10向下計時獲得。1 MHz頻寬的支援可以使用PHY及大小為32的快速傅立葉變換(FFT)。
在802.11ah,一個或多個STA(如,高達6000個STA,包括類似測試儀和感測器的裝置)可以在基礎服務集(BSS)中被支援。STA可以具有不同的所支援的上行鏈路和下行鏈路訊務需求。例如,STA可以被配置為上傳(如,週期性上傳)資料至造成上行鏈路訊務的伺服器。STA可以被伺服器查詢和/或可以被伺服器進行配置。在伺服器查詢和/或配置STA時,伺服器可能期望查詢的資料在設定間隔內到達。伺服器或者伺服器上的應用可能期望(如,在特定間隔內)所執行的配置的確認。這些訊務模式與傳統WLAN系統訊務模式相比可以是不同的。在802.11ah系統中,一個或多個(例如,兩個)位元可以在訊框的PLCP標頭中使用。一個或多個位元可以向封包指示期望作為回應(例如,早期應答(ACK)指示)的應答的類型。ACK指示(例如,兩位元ACK指示)可以在信號(SIG)欄位中被信號發送。ACK指示可以是以下一者或多者:00:ACK、01:塊ACK(BA)、10:無ACK、11:不是ACK的訊框、BA或清除發送(CTS)。
中繼功能性(例如,如在IEEE 802.11ah中引入的)可以賦能更有效的功率使用。中繼功能性可以降低在STA消耗的傳輸功率。中繼功能性可以改善STA的無線鏈路狀況。雙向中繼可以包括一個或多個(例如,兩個)跳躍。一個傳輸機會(TXOP)可以被共用以用於中繼(例如,用於顯式ACK交換)。共用的TXOP可以減少通道爭用的數量。訊框控制欄位可以包括中繼的訊框位元(例如,用於TXOP操作)。鄰居發現協定(NDP)、ACK、和/或SIG欄位可以包括中繼的訊框位元(例如,用於TXOP操作)。
中繼可以接收訊框(如,有效訊框)。中繼可以以ACK回應接收的訊框(例如,在TXOP共用操作中)。如果中繼接收有效訊框,則以下一者或多者可以應用。如果中繼接收設置為1的中繼的訊框位元,則ACK在短的訊框間空間(SIFS)之後的下一跳躍傳輸中可以是隱式的。中繼可以在具有設置為1的中繼的訊框位元的SIFS之後用ACK回應並且可以在SIFS之後繼續下一跳躍資料傳輸。中繼可以在具有設置為0的中繼的訊框位元的SIFS之後用ACK回應;中繼可以不使用剩下的TXOP。
中繼可以設置中繼的訊框位元為1。例如,如果中繼接收到更多的設置為0的資料位元,則中繼可以設置中繼的訊框位元為1。
可以提供中繼的流量控制機制。可以提供對用於中繼發現的探測請求的使用的支援,該請求可以包括AP-STA鏈路預算上的資訊。STA可以啟動發現過程。STA可以基於一個或多個接收的探測回應來選擇中繼。中繼實體可以包括中繼STA(R-STA)、中繼AP(R-AP)等。R-STA可以是非AP STA。R-STA可以是作為AP的站台。R-STA可以具有一個或多個能力,該能力包括例如,4位址支持(如,能夠傳輸和/或接收至和/或來自相關聯的根AP的{至DS=1,來自DS=1}訊框)、對接收和/或轉發來自R-AP的訊框的支持等。
R-AP可以是AP。R-AP可以具有一個或多個能力,包括例如,4位址支持、對轉發和接收至/來自R-STA的訊框的支援,以及指示是R-AP的能力(例如,通過設置位元或指示信標中的根-AP位址和/或服務設置識別符(SSID))。以下一者或多者可以應用於R-AP,例如,與4位址支持有關。R-AP可以發送和/或接收至和/或來自相關聯的STA的{至DS=1,來自DS=1}訊框(例如,基於相關聯的STA的能力)。R-AP能夠接收4位址訊框。R-AP可以轉發具有3個位址的訊框至相關聯的STA。
第2圖描述了IEEE 802.11ah中繼架構的示例。中繼AP可以包括信標和/或探測回應訊框中的根AP的SSID。聚集的MAC服務資料單元(A-MSDU)格式可以在根AP與中繼AP之間使用(例如,以用於訊框傳遞)。訊息(如,可到達的位址訊息)可以被用於更新轉發的表格。
第3圖描述了通過中繼節點從AP(例如,作為源)至STA(例如,作為目的地)的下行鏈路中繼的示例。顯式ACK可以被使用。源AP可以發送具有早期ACK指示位元的下行鏈路資料訊框。下行鏈路資料訊框中的早期ACK指示位元可以被設置為00。中繼可以將具有設置為11的早期ACK指示位元的ACK發送回至源AP以用於下一輸出訊框。在SIFS時間中,中繼可以發送具有不同MCS的資料並且早期ACK指示位元可以被設置為00。中繼可以緩衝訊框(例如,資料訊框)。訊框可以被緩衝直至其訊框被傳遞(例如,成功傳遞)或達到預定數量的重試(例如,重試限制)。在SIFS時間中的目的地STA可以發送具有設置為10的早期ACK指示位元的ACK。在源AP從中繼節點接收到ACK時,源AP可以從其緩衝器移除資料訊框並且可以在下一事件之前推遲MAX_PPDU+ACK+2*SIFS。
第4圖描述了經由中繼節點從STA(例如,作為源)至AP(例如,作為目的地)的上行鏈路中繼的示例。顯式ACK可以被使用。如第4圖所描述的,STA可以向中繼發送具有早期ACK指示位元的上行鏈路資料訊框。早期ACK指示位元可以被設置為00。中繼可以發送ACK並且可以將早期ACK指示位元設置為11以用於下一輸出訊框。在SIFS時間中,中繼可以發送具有不同MCS的資料訊框並且可以將早期ACK指示位元設置為00。中繼可以緩衝訊框(例如,資料訊框)。訊框可以被緩衝直至該訊框被傳遞(例如,成功傳遞)或達到預定數量的重試(例如,重試限制)。在SIFS時間中,目的地AP可以發送具有設置為10的早期ACK指示位元的ACK。一旦從中繼節點接收到ACK訊框,STA就可以從其緩衝器移除資料訊框並且可以在下一事件之前(例如,在從目的地AP接收到ACK之後)推遲MAX_PPDU+ACK+2*SIFS。
第5圖描述了使用隱式ACK的中繼操作的示例。如第5圖所示,源節點可以發送具有設置為11的回應訊框位元的下行鏈路資料訊框。設置為11的回應訊框位元可以向STA指示另一資料訊框可能在後面。在SIFS時間內,源節點可以接收具有設置為00的回應訊框的PHY SIG欄位。源節點可以核對PHG SIG欄位中的PAID子欄位。中繼可以發送具有不同MCS的資料訊框。中繼可以設置回應訊框位元為00並且可以設置PAID子欄位為STA的子欄位。目的地節點可以發送具有設置為10的回應訊框位元的ACK。
在IEEE 802.11ah中,可以支援短的信標框架格式。可以提供訊框控制類型和/或子類型指示以用於短信標。第6圖描述了短信標框架格式的示例。短信標可以包括以下欄位中的一者或多者:壓縮的SSID、時間戳記、改變序列、下一完整信標的時間、存取網路選項、和/或包括在FC欄位中的3位元BW欄位。壓縮的SSID欄位可以被計算作為SSID的循環冗餘校驗(CRC)。CRC可以使用與可用於計算MPDU的FCS的相同函數來進行計算。時間戳記欄位可以為4位元組長。時間戳記欄位可以包含AP時間戳記的4個最低有效位(LSB)。改變序列欄位可以是1位元組長。改變序列欄位可以在關鍵網路資訊改變時而增加。下一完整信標的時間欄位可以指示下一完整信標訊框的時間。下一完整信標的時間欄位可以在下一完整信標訊框被指示作為AP時間戳記的4個LSB 之更高3位元組。如果AP週期性地傳輸完整(如,長的)信標訊框,則下一完整信標的時間欄位可以在短的信標訊框中存在。信標訊框可以包括短信標訊框中的存取網路選項欄位。
在IEEE 802.11中,面向載波的WiFi可以提供以下一者或多者:BSS中心與BSS邊緣用戶之間的公平性、改進的BSS邊緣性能、OBSS干擾協調、較高頻譜效率和利用、或蜂巢卸載。
IEEE 802.11高效率WLAN(HEW)系統可以在具有大量用戶和裝置(例如,Wi-Fi熱點、辦公大樓等)的密集網路中提供在由IEEE 802.11用戶實現的真實世界資料流通量中的增加。還可以提供增強802.11 PHY和MAC在2.4和5GHz的性能的系統和方法。增強的性能可以包括以下一者或多者:改進頻譜效率和區域流通量、改善室內和/或室外部署(例如,在干擾源之存在、中度至重度用戶負載AP中的密集異構網路)中真實世界性能。
一個或多個度量可以在選擇AP時由STA來考慮以用於關聯(例如,在基於非中繼的WiFi網路中)。度量可以包括接收的信號強度、路徑損耗、或AP的鏈路品質(例如,可以傳輸信標訊框或探測回應訊框的AP)。
中繼及相關聯的功能性可以被用於服務STA(例如,可以在直接與AP進行通信時遭受貧乏的鏈路預算的STA)。IEEE 802.11ah可以提供中繼和/或中繼類型STA(例如,在STA的巨集類型覆蓋範圍的情況下處理貧乏鏈路預算問題的可能性)。中繼還可以在其他WLAN變體中使用。
在中繼正被使用時,接收的傳輸信標訊框、探測回應訊框的中繼(如,R-AP、R-STA等)的信號強度、路徑損耗、或鏈路品質可能不能提供整個中繼路徑(如,從源節點至目的地節點)的足夠資訊。第7圖描述了由STA進行的中繼路徑選擇的示例。STA可以從中繼節點(如,經由路徑V1)接收信標或探測回應訊框。STA與中繼節點之間的鏈路品質可能比STA與根AP之間(如,經由路徑U1)的鏈路品質更好。中繼節點與根AP之間(如,經由路徑V2)的路徑品質可能比STA與根AP之間的路徑品質更好。基於接收的信標和/或探測回應訊框品質來選擇中繼節點可以得到中繼路徑,該中繼路徑可能顯示出比直接路徑更壞的路徑損耗和/或鏈路品質。
第8圖描述了利用連接至一個以上(如,兩個)中繼的根AP進行中繼路徑選擇的示例。源節點(如,STA)可以從中繼節點2(如,經由路徑V3)接收傳輸(如,信標訊框、短信標訊框、或探測回應訊框)。STA與中繼節點2之間的鏈路品質可能比STA與中繼節點1之間(如,經由路徑V1)的鏈路品質更好。AP與中繼節點2之間的路徑損耗可能比AP與中繼節點1之間的路徑損耗更大。基於接收的傳輸的鏈路品質來選擇中繼節點可以得到經由中繼節點2的中繼路徑,該中繼路徑可能顯示出比經由中繼節點1的中繼路徑更壞的路徑損耗和/或鏈路品質。有效的AP發現機制可以允許STA發現中繼路徑,該機制可以包括考慮整體鏈路品質。
在基於中繼的WLAN架構中,中繼節點可以接收來自源節點資料訊框並且可以用ACK回應源節點。中繼節點可以發送資料訊框至目的地節點。在目的地節點接收來自中繼節點的資料訊框時,目的地節點可以用ACK回應中繼節點。中繼節點與目的地節點之間的路徑可能不是可靠的(如,可能具有臨時中斷)。在中繼節點與目的地節點之間的鏈路經歷不利狀況時,來自源節點的資料訊框可以在中繼節點處進行緩衝。緩衝的資料訊框可能引起緩衝器管理問題(如,緩衝器溢出)。源節點可能不知道中繼節點與目的地節點之間的中繼路徑的鏈路品質。源節點可以繼續傳輸資料至中繼節點,這可能增加中繼節點處的壅塞。中繼節點處的流量控制機制(如,有效的流量控制機制)可以防止路徑的不可靠性。
在中繼節點被使用時,通道存取爭用可以通過共用一個用於中繼的傳輸時機(TXOP)而減少。這種TXOP的共用可以在IEEE 802.11ah中提供。通過共用TXOP,源節點(例如,TXOP保留的發起方)可以保留TXOP一時間間隔。保留的TXOP可以考慮到中繼節點與目的地節點之間的鏈路的最壞情況。保留的TXOP可以比從源節點至中繼節點以及中繼節點至目的地節點的傳輸的實際時間週期更長(例如,長很多)。共用中繼的TXOP可以在實際傳輸在中繼節點處早期結束時而被截斷(truncate)(例如,有效截斷)。
指示中繼與根AP之間的鏈路品質的資訊元素(IE)或欄位可以在由諸如R-AP的中繼所發送的傳輸中進行傳輸(如,以為了允許端STA確定中繼路徑的整體鏈路品質)。傳輸可以為信標訊框、短信標訊框、或探測回應訊框。根AP的壓縮的SSID可以在傳輸中被使用。
第9圖描述了傳輸的示例性框架格式,其中傳輸的訊框控制欄位中的一個位元可以指示發射機是中繼節點(如,代替根AP)。傳輸可以是短信標訊框。指示發射機是中繼節點的傳輸可以是信標訊框或探測回應訊框(如,短信標訊框或探測回應訊框可以包括如在短信標訊框的示例中描述的類似欄位)。在訊框控制欄位被設置為值1時,發射機可以是中繼節點。在訊框控制欄位被設置為值0時,發射機可以是非中繼節點。如第9圖所描述的,在傳輸的訊框控制欄位中的位元可以指示在傳輸中存在中繼與根AP欄位之間的鏈路品質。設置為值1的訊框控制欄位位元可能意味著欄位是存在的且值0可以意味著欄位不存在。訊框控制欄位中的保留位元可以被用於指示存在中繼與根AP欄位之間的鏈路品質。鏈路品質存在欄位或中繼指示符欄位可以被隱式信號發送(如,通過諸如CRC遮罩的方法、擾碼器初始化種子值、SIG欄位中的相對相位改變、或者PLCP標頭中的引導值或模式)。訊框控制欄位中的鏈路品質存在位元或中繼指示位元可以指示中繼與根AP之間的鏈路品質可以被包括在傳輸中。一個或多個八位元組(octet)可以被用於中繼與根AP欄位之間的鏈路品質。中繼與根AP欄位之間的鏈路品質可能表示64至4096級別的鏈路品質(以dB為單位)。中繼與根AP欄位之間鏈路品質可以指示中繼節點與根AP之間的鏈路品質(如,路徑損耗、封包誤差/損耗率、傳輸延時等)。鏈路品質(如,增量式鏈路品質)估計對於指示用於整個AP至STA鏈路品質來說可以是增量式的。
第10圖描述了傳輸的示例性框架格式,其中中繼與根AP之間的鏈路品質可以由IE(如,中繼與根AP之間的鏈路品質IE)進行信號發送(如,顯式信號發送)。傳輸可以是短信標訊框。信號發送中繼與根AP之間的鏈路品質的傳輸可以是信標訊框或探測回應訊框(如,短信標訊框或探測回應訊框可以包括如在短信標訊框的示例中描述的類似欄位)。IE可以包括在傳輸(如,信標訊框、短信標訊框、或探測回應訊框)中。鏈路品質存在位元或中繼的顯式或隱式指示可以不被使用。IE可以包括以下一者或多者:八位元組元素ID子欄位、八位元組長度子欄位、或者一個或多個可以提供中繼與根AP子欄位之間的鏈路品質的八位元組。鏈路品質可以以dB為單位表示鏈路品質的多個級別(如,64至4096級別)。
STA一旦接收到傳輸(如,信標訊框、短信標訊框、或探測回應訊框)就可以檢查傳輸中的特定欄位或IE以確定傳輸的發射機是否是中繼節點。STA可以檢查鏈路品質存在或中繼指示符欄位(如,如果鏈路品質存在位元存在)。如果鏈路品質存在或中繼指示符欄位位元被設置為1,則STA可以知道中繼與根AP欄位之間的鏈路品質可以被包括在傳輸中。
源節點(如,有訊務要傳輸的STA)可以確定一個或多個鏈路品質。例如,源節點可以確定中繼路徑中每個鏈路的品質(如,確定是否使用中繼代替直接傳輸至目的地節點、確定如果多個中繼是可用的則使用哪個中繼等)。確定一個或多個鏈路品質,諸如確定與從STA至中繼節點至根AP的結合的鏈路相關聯的整體鏈路品質,可以包括以下一者或多者。STA可以檢查中繼與根AP之間的鏈路品質IE是否被包括在傳輸中(如,STA可以在檢查或不檢查鏈路品質存在或中繼指示符欄位的情況向下執行該檢查)。如果中繼與根AP之間的鏈路品質IE被包括在傳輸中,則這種包含可以指示傳輸的發射機是中繼節點。STA可以接收傳輸(如,信標訊框、短信標訊框、或探測回應訊框),該傳輸可以指示中繼節點與根AP之間的鏈路品質,其可以被表示為QAP-Relay (QAP-中繼 )。接收的傳輸中的欄位或IE可以指示鏈路品質。STA可以確定(如,估計)中繼節點與自身的鏈路品質。STA可以基於接收的從中繼節點所傳輸的傳輸來確定可以被表示為QSTA-Relay (QAP-中繼 )的鏈路品質。STA可以確定(如,計算)間接路徑(如,STA至中繼至根AP)的整體鏈路品質,例如,QRelay path (Q中繼路徑 ),為=QSTA-Relay +QAP-Relay +。間接路徑可以為結合的鏈路。如果整體鏈路品質QRelay path 滿足需求,則STA(如,掃描STA)可以考慮中繼節點作為候選(如,用於關聯)。STA可以基於整體鏈路品質來選擇實體(如,中繼節點或根AP)進行傳輸。在整體鏈路品質滿足需求(如,高於臨界值需求,例如如果結合的鏈路的整體鏈路品質比與具有根AP的直接鏈路相關聯的鏈路更好和/或比與另一中繼節點相關聯的整體鏈路品質更好)時,所選擇的實體可以是中繼節點。
提供了方法、系統和工具來描述中繼流量控制以用於中繼功能性,該中繼功能性可應用於802.11ah和其他802.11系統(如,HEW)。動作訊框(如,流量控制通知訊框)可以被定義。中繼節點可以在源節點與中繼節點之間的鏈路上執行流量控制。如果中繼節點與目的的節點之間的鏈路變壞,則中繼節點可以執行流量控制。來自源節點的資料訊框可以在中繼節點處被緩衝並且可以導致壅塞和/或緩衝溢出(如,在鏈路變壞時,可能需要更多的緩衝)。中繼節點可以通知源節點有關流量控制。中繼節點可以通過發送流量控制通知訊框來通知源節點有關流量控制。流量控制通知訊框可以在上行鏈路和下行鏈路操作中作為單播訊框來發送。流量控制通知訊框可以在下行鏈路中作為廣播訊框來發送。流量控制節點位址可以通過流量控制通知訊框來被信號發送。流量控制通知訊框可以在中繼鏈路(如,在目的地節點與中繼節點之間)中信號發送中繼節點的位址。在流量控制通知訊框中信號發送的中繼節點可能經歷不利鏈路品質。
流量控制通知訊框可以信號發送目的地節點的位址。用於端STA(如,屬於經歷了鏈路問題的中繼鏈路的端STA)的資料訊務可能被影響。
流量控制通知訊框可以作為單播或廣播訊框被傳輸。訊框的MAC標頭中的發射機位址(TA)欄位可以被設置為中繼節點位址。流量控制通知訊框中的流量控制資訊可以指由TA位址標識的中繼節點。第11圖描述了流量控制通知訊框的示例性框架格式。分類欄位可以被設置為代表兩點跳躍中繼的值(如,可以在標準中指定)。動作(如,兩點跳躍中繼動作)欄位可以被設置為代表流量控制通知的值(如,唯一值)。動作欄位可以如在標準中所指定的而被設置。
第12圖描述了流量控制通知元素的示例。如第12圖所描述的,元素ID欄位可以被設置為可以代表流量控制通知元素的值(如,唯一值)。元素ID欄位可以如在標準中所指定的而被設置。長度欄位可以指示資訊欄位(如,緊隨元素ID和長度欄位的欄位)中的八位元組的數量。用於每個存取分類(AC)(如,背景(BK)、最大努力(BE)、視訊(VI)和聲音(VO))的流量控制持續時間欄位可以指示應用在相應AC的中繼節點的流量控制的持續時間。流量控制持續時間的時間單位可以是M μs。用於每個AC(如,BK、BE、VI和VO)的流量控制資料率欄位可以指示在相應AC的流量控制持續時間期間端STA可以傳輸至中繼節點的資料率(如,最大資料率)。
在MAC標頭中的TA位址可以指示(如,標識)接收的流量控制資訊所應用至的中繼節點。由於兩點跳躍中繼架構(如,其中在中繼節點可以與一個根AP相關聯),在MAC標頭中的TA位址可以提供足夠的資訊來標識可能經歷了針對上行鏈路情況的壅塞或不利鏈路品質的中繼鏈路。使用MAC標頭中的TA位址以標識中繼鏈路可以降低信令開銷。在多個端STA可能與一個中繼節點相關聯的下行鏈路中,MAC標頭中的TA位址可能不標識(如,唯一標識)端STA與中繼節點之間的可能經歷了壅塞或不利鏈路品質的中繼鏈路。流量控制通知訊框可以在可能(如,在上行鏈路操作中)經歷了不利鏈路品質的中繼鏈路中用信號發送中繼節點的位址。流量控制通知訊框可以信號發送目的地節點的位址(如,在下行鏈路操作中)。流量控制通知元素可以被捎帶(piggyback)在從中繼節點至源節點的資料訊框上或控制訊框上。
例如,如第13圖所描述的流量控制通知元素可以被使用。如第13圖所描述的流量控制通知元素可以針對存取分類的組合指定流量控制持續時間和資料速率限制(如,替代為AC中的每一者提供一個)。
第14圖描述了流量控制通知訊框的示例性框架格式,其中目的地節點的位址可以在流量控制通知訊框中被信號發送。如第14圖所描述的,分類欄位可以被設置為可以代表兩點跳躍中繼的值(如,在標準中指定的)。動作(如,兩點跳躍中繼動作)欄位可以被設置為代表流量控制通知的值(如,在標準中指定的)。
第15圖描述了流量控制通知元素的示例性設計。如第15圖所描述的,元素ID欄位可以被設置為可以代表流量控制通知元素的值(如,在標準中指定的)。長度欄位可以指示資訊欄位(如,緊隨元素ID和長度欄位的欄位)中的八位元組的數量。目的地節點位址(如,端STA位址)可以被設置為目的地節點(如,端STA)的6位元組MAC位址。流量控制通知訊框可以指示所接收的流量控制資訊,該流量控制資訊可以被應用於由MAC標頭中的TA位址標識的中繼節點。用於每個存取分類(AC)(如,BK、BE、VI和VO)的流量控制持續時間欄位可以指示可以應用在相應AC的中繼節點的流量控制的持續時間。流量控制持續時間的時間單位可以是M μs。用於每個AC(如,BK、BE、VI和VO)的流量控制資料率欄位可以指示在相應AC的流量控制持續時間期間端STA可以傳輸至中繼節點的資料率(如,最大資料率)。
流量控制可以包括以下一者或多者。中繼節點可以監控在中繼節點的緩衝器佔用。中繼節點可以監控中繼與目的地節點之間的鏈路品質。中繼節點可以確定流量控制應當被應用(如,用於緩和標識的壅塞)。中繼節點可以發送流量控制通知訊框至源節點。流量控制通知訊框可以包括流量控制參數,例如,如於此所描述的。源節點可以標識可以應用流量控制的節點的位址(如,在接收流量控制通知訊框時)。位址可以是(如,在上行鏈路操作中的)中繼位址。位址可以是(如,在下行鏈路中的)中繼位址和端STA位址。源節點可以獲得流量控制通知元素中的資訊。源節點可以根據流量控制通知元素中的該資訊採取動作。如果流量控制持續時間欄位被接收用於AC,則源節點可以停止(如,經由針對所接收的流量控制通知元素中的持續時間值的中繼節點)傳輸目標在於目的地位址的相應AC的資料訊框。端STA可以直接傳輸資料訊框至根AP,而不用通過中繼節點(如,如果端STA與根AP之間的鏈路品質是可接受的)。源節點可以限制(如,經由針對所接收的流量控制通知元素中的持續時間值的中繼節點)用於目標在於目的地位址的AC(如,相應AC)的資料率。如果流量控制持續時間欄位和流量控制資料率被接收以用於AC,則源節點可以限制資料率。流量控制限制可以在源節點結束(如,在流量控制持續時間期滿時)。源節點可以例如經由中繼節點恢復至目的地節點的資料訊框的傳輸(如,正常傳輸)。
資料訊框可以包括無爭用端(CF-端)(如,以允許中繼節點截斷未使用的TXOP)。以下一者或多者可以應用。SIGA欄位中保留的位元(如,一個位元)可以被用於(如,再次用於)指示CF-結束。資料訊框接收方可以在MAC標頭中指示的持續時間結束時重置網路分配向量(NAV)。資料訊框還可以指示以下一者或多者:SIFS時間、ACK時間、或短ACK_時間。MAC標頭的訊框控制欄位中的保留位元可以被用於(如,再次用於)指示CF-結束。資料訊框接收方可以在當MAC標頭中指示的持續時間結束時重置NAV。資料訊框還可以指示以下一者或多者:SIFS時間、ACK時間、或短ACK_時間。CF-結束指示可以被信號發送(如,隱式信號發送)。CF-結束指示可以使用以下一者或多者進行信號發送:CRC遮罩、擾碼器初始化種子值、SIG欄位中的相對相位改變、或者PLCP標頭中的引導值或模式。
在TXOP的情況下,發送/清除發送(RTS/CTS)的兩點跳躍請求可以建立和/或可以保留在源節點、中繼節點、和目的地節點之間的中繼訊框交換的持續時間(如,整個持續時間)的TXOP。從中繼節點傳輸資料訊框至目的地節點的持續時間可以假定是最壞情況。將資料訊框從中繼節點傳輸至目的地節點的持續時間可以被估算(如,保守估算)。源節點可以在SIFS時間(如,緊隨來自中繼節點的CTS訊框之接收)之後開始資料傳輸。
中繼節點可以處理所接收的來自源節點的資料訊框。(如,如果所接收的資料訊框被正確解碼並且顯式ACK被使用)中繼節點可以發送ACK訊框。(如,如果隱式ACK被使用)STA可能不發送ACK訊框。(如,如果顯式ACK被使用並且所接收的資料訊框未被正確解碼)在發送資料訊框之後,源節點可以不通過SIFS時間+ACK_時間的時間來接收ACK。(如,如果隱式ACK被使用並且所接收的資料訊框未被正確解碼)源節點可以不接收隱式ACK。來自中繼節點的具有設置為00的ACK指示欄位的資料訊框可以指示隱式ACK。源節點可以通過發送CE-結束訊框來釋放TXOP。源節點可以重傳該資料訊框。中繼節點和/或目的地節點可以在接收到來自源節點的CF-結束的時候發送CF-結束訊框。
中繼節點可以發送資料訊框至目的地節點。中繼節點可以將資料訊框中的CF-結束指示設置為1或者為肯定的(positive)以及可以設置該資料訊框MAC標頭中的持續時間欄位(如,如果資料訊框的持續時間加上SIFS時間和ACK_時間或短ACK_時間比TXOP剩餘的更短)。MAC標頭中的持續時間欄位可以使用資料訊框的長度和用於傳輸的資料率來確定。
目的地節點可以處理所接收的來自中繼節點的資料訊框。目的地節點可以發送ACK訊框至中繼節點(如,如果所接收的資料訊框被正確解碼)。目的地節點可以檢查所接收的資料訊框中的CF-結束指示。(如,如果CF-結束指示為肯定的)目的地節點可以釋放TXOP並且可以重置接近目的地節點的STA的NAV。目的地節點可以發送CF-結束訊框。目的地節點可以設置輸出的ACK訊框中的ACK指示欄位(如,設置為10)。在ACK指示欄位在輸出的ACK訊框中被設置為“10”時,目的地節點可以不發送CF-結束訊框。
(如,一旦在當前TXOP期滿之前從中繼節點接收到具有肯定的CF-結束指示的資料訊框)源節點可以在SIFS時間加上時間(如,必要時間)之後發送CF-結束訊框以覆蓋由目的地節點發送的訊框。由目的地節點發送的訊框可以是ACK訊框或ACK訊框加上CF-結束訊框。源節點可以緊隨在所接收的資料訊框中以信號發送的持續時間之後發送CF-結束訊框。
第16圖和第17圖描述了示例性TXOP操作。第16圖描述了利用顯式ACK的TXOP操作的示例。第17圖描述了利用隱式ACK的TXOP操作的示例。如第16圖所描述的,中繼節點可以發送ACK(如,顯式ACK)至源節點(如,在從源節點接收資料訊框之後)。在將具有CF-結束位元的資料框架轉送至目的地節點之前,中繼節點可以發送ACK至源節點。如第17圖所描述的,中繼節點可以發送具有CF-結束位元的資料訊框至目的地節點(如,在從源節點接收資料訊框之後)。中繼節點可以在不發送ACK的情況下發送資料訊框至源節點。
雖然以特定的組合方式描述了以上的特徵和元素,但是本領域普通技術人員可以理解每個特徵或元素可單獨使用或以任何組合方式與其他特徵和元素結合使用。除了於此描述的802.11協定,於此描述的特徵和元素可以應用於其他無線系統。另外,在此描述的方法可在電腦軟體、硬體或韌體中實施,電腦軟體、硬體或韌體結合在電腦或處理器執行的電腦可讀媒體中。電腦可讀媒體的示例包括電子信號(通過有線或無線連接傳輸)和電腦可讀儲存媒體。電腦可讀儲存媒體的示例包括但不限於唯讀記憶體(ROM)、隨機存取記憶體(RAM)、暫存器、快取記憶體、半導體存放裝置、如內部硬碟和可移動盤的磁性媒體、磁光媒體、如CD-ROM光碟的光媒體和數位多用途光碟(DVD)。與軟體相關聯的處理器可用於實現射頻收發器以在WTRU、WTRU、終端、基地台、RNC或任意主機電腦中使用。
Example embodiments are described in detail below with reference to the various drawings. While the present invention has been described with respect to the specific embodiments of the present invention, it is understood that the details are not intended to limit the scope of the invention. Moreover, the figures may illustrate one or more message patterns that are used in the examples. Other embodiments may be used. The order of the messages can be changed after the appropriate ones. Messages can be omitted when not needed, and additional messages can be added.
FIG. 1A is a diagram of an example communication system 100 in which one or more of the disclosed features may be implemented. For example, a wireless network (eg, a wireless network including one or more components of communication system 100) can be configured to extend beyond the wireless network (eg, extending beyond a firewall associated with the wireless network) The bearer can be assigned QoS characteristics.
Communication system 100 may be a multiple access system that provides content such as voice, material, video, messaging, broadcast, etc. to multiple wireless users. Communication system 100 can enable multiple wireless users to access such content through the sharing of system resources, including wireless bandwidth. For example, communication system 100 can use one or more channel access methods, such as code division multiple access (CDMA), time division multiple access (TDMA), frequency division multiple access (FDMA), orthogonal FDMA (OFDMA). Single carrier FDMA (SC-FDMA) and the like.
As shown in FIG. 1A, communication system 100 can include at least one wireless transmit/receive unit (WTRU), such as multiple WTRUs, such as WTRUs 102a, 102b, 102c, and 102d, Radio Access Network (RAN) 103/104/ 105, core network 106/107/109, public switched telephone network (PSTN) 108, internet 110, and other networks 112, but it will be understood that the disclosed embodiments encompass any number of WTRUs, base stations , network, and/or network components. Each of the WTRUs 102a, 102b, 102c, 102d may be any type of device configured to operate and/or communicate in wireless communication. By way of example, the WTRUs 102a, 102b, 102c, 102d may be configured to transmit and/or receive wireless signals, and may include user equipment (UE), mobile stations, fixed or mobile subscriber units, pagers, mobile phones, personal digital assistants (PDA), smart phones, portable computers, netbooks, personal computers, wireless sensors, consumer electronics, and more.
Communication system 100 can also include a base station 114a and a base station 114b. Each of the base stations 114a, 114b can be configured to have a wireless interface with at least one of the WTRUs 102a, 102b, 102c, 102d to facilitate access to one or more communication networks (eg, core network 106/107) / 109, Internet 110 and/or network 112) any type of device. For example, base stations 114a, 114b may be base station transceiver stations (BTS), node B, eNodeB, home node B, home eNodeB, website controller, access point (AP), wireless router, and the like. Although base stations 114a, 114b are each depicted as a single element, it will be understood that base stations 114a, 114b may include any number of interconnected base stations and/or network elements.
The base station 114a may be part of the RAN 103/104/105, which may also include other base stations such as a website controller (BSC), a radio network controller (RNC), a relay node, and the like. And/or network elements (not shown). Base station 114a and/or base station 114b may be configured to transmit and/or receive wireless signals within a particular geographic area, which may be referred to as cells (not shown). Cells can also be divided into cell sectors. For example, a cell associated with base station 114a can be divided into three sectors. Thus, in one embodiment, base station 114a may include three transceivers, i.e., each sector of the cell has a transceiver. In another embodiment, base station 114a may use multiple input multiple output (MIMO) technology, and thus multiple transceivers for each sector of the cell may be used.
The base stations 114a, 114b may communicate with one or more of the WTRUs 102a, 102b, 102c, 102d over the null planes 115/116/117, which may be any suitable wireless communication link ( For example, radio frequency (RF), microwave, infrared (IR), ultraviolet (UV), visible light, etc.). The null intermediaries 115/116/117 can be established using any suitable radio access technology (RAT).
More specifically, as previously discussed, communication system 100 can be a multiple access system and can utilize one or more channel access schemes such as CDMA, TDMA, FDMA, OFDMA, SC-FDMA, and the like. For example, base station 114a and WTRUs 102a, 102b, 102c in RAN 103/104/105 may implement a radio technology such as Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access (UTRA), which may use wideband CDMA ( WCDMA) to establish an empty intermediate plane 115/116/117. WCDMA may include, for example, High Speed Packet Access (HSPA) and/or Evolved HSPA (HSPA+). HSPA may include High Speed Downlink Packet Access (HSDPA) and/or High Speed Uplink Packet Access (HSUPA).
In another embodiment, base station 114a and WTRUs 102a, 102b, 102c may implement a radio technology such as Evolved UMTS Terrestrial Radio Access (E-UTRA), which may use Long Term Evolution (LTE) and/or Advanced LTE (LTE-A) to establish an empty intermediate plane 115/116/117.
In other embodiments, base station 114a and WTRUs 102a, 102b, 102c may implement such as IEEE 802.16 (ie, Worldwide Interoperability for Microwave Access (WiMAX)), CDMA2000, CDMA2000 1X, CDMA2000 EV-DO, Temporary Standard 2000 (IS-2000) Radio technology such as Interim Standard 95 (IS-95), Interim Standard 856 (IS-856), Global System for Mobile Communications (GSM), Enhanced Data Rate GSM Evolution (EDGE), GSM EDGE (GERAN).
For example, the base station 114b in FIG. 1A can be a wireless router, a home Node B, a home eNodeB, or an access point, and any suitable RAT can be used for facilitating in, for example, a company, a home, a vehicle, a campus. A local area communication connection. In one embodiment, base station 114b and WTRUs 102c, 102d may implement a radio technology such as IEEE 802.11 to establish a wireless local area network (WLAN). In another embodiment, base station 114b and WTRUs 102c, 102d may implement a radio technology such as IEEE 802.15 to establish a wireless personal area network (WPAN). In yet another embodiment, base station 114b and WTRUs 102c, 102d may use a cellular based RAT (eg, WCDMA, CDMA2000, GSM, LTE, LTE-A, etc.) to establish picocells or femtocells ( Femtocell). As shown in FIG. 1A, the base station 114b can have a direct connection to the Internet 110. Therefore, the base station 114b does not have to access the Internet 110 via the core network 106/107/109.
The RAN 103/104/105 can communicate with a core network 106/107/109, which can be configured to provide voice, data, applications, and/or Voice over Internet Protocol (VoIP) services to the WTRU 102a, Any type of network of one or more of 102b, 102c, 102d. For example, the core network 106/107/109 can provide call control, billing services, mobile location based services, prepaid calling, internetworking, video distribution, etc., and/or perform advanced security functions such as user authentication. Although not shown in FIG. 1A, it is to be understood that the RAN 103/104/105 and/or the core network 106/107/109 may communicate directly or indirectly with other RANs, which may be used with the RAN 103/ 104/105 the same RAT or a different RAT. For example, in addition to being connected to the RAN 103/104/105, which may employ E-UTRA radio technology, the core network 106/107/109 may also be in communication with other RANs (not shown) that use GSM radio technology.
The core network 106/107/109 can also be used as a gateway for the WTRUs 102a, 102b, 102c, 102d to access the PSTN 108, the Internet 110, and/or other networks 112. The PSTN 108 may include a circuit switched telephone network that provides Plain Old Telephone Service (POTS). The Internet 110 may include a global system of interconnected computer networks and devices that use public communication protocols such as TCP, users in the Transmission Control Protocol (TCP)/Internet Protocol (IP) Internet Protocol Suite. Packet Protocol (UDP) and IP. Network 112 may include a wireless or wired communication network that is owned and/or operated by other service providers. For example, network 112 may include another core network connected to one or more RANs that may use the same RAT as RAN 103/104/105 or a different RAT.
Some or all of the WTRUs 102a, 102b, 102c, 102d in the communication system 100 may include multi-mode capabilities, i.e., the WTRUs 102a, 102b, 102c, 102d may be configured to communicate with different wireless networks over multiple communication links. Multiple transceivers for communication. For example, the WTRU 102c shown in FIG. 1A can be configured to communicate with a base station 114a that uses a cell-based radio technology and with a base station 114b that uses an IEEE 802 radio technology.
FIG. 1B depicts an exemplary wireless transmit/receive unit, WTRU 102. The WTRU 102 may be utilized in one or more of the communication systems described herein. As shown in FIG. 1B, the WTRU 102 may include a processor 118, a transceiver 120, a transmit/receive element 122, a speaker/microphone 124, a numeric keypad 126, a display/touchpad 128, a non-removable memory 130, and a removable In addition to memory 132, power source 134, global positioning system (GPS) chipset 136, and other peripheral devices 138. It should be understood that the WTRU 102 may include any subset of the above-described elements while remaining consistent with the embodiments.
The processor 118 can be a general purpose processor, a special purpose processor, a conventional processor, a digital signal processor (DSP), a plurality of microprocessors, one or more microprocessors associated with the DSP core, a controller, a micro control , dedicated integrated circuit (ASIC), field programmable gate array (FPGA) circuit, any other type of integrated circuit (IC), state machine, etc. Processor 118 may perform signal coding, data processing, power control, input/output processing, and/or any other functionality that enables WTRU 102 to operate in a wireless environment. The processor 118 can be coupled to a transceiver 120 that can be coupled to the transmit/receive element 122. Although processor 118 and transceiver 120 are depicted in FIG. 1B as separate components, it should be understood that processor 118 and transceiver 120 can be integrated together into an electronic package or wafer.
Transmit/receive element 122 may be configured to transmit signals to or from a base station (e.g., base station 114a) via null intermediaries 115/116/117. For example, in one embodiment, the transmit/receive element 122 can be an antenna configured to transmit and/or receive RF signals. In another embodiment, the transmit/receive element 122 may be a transmitter/detector configured to transmit and/or receive, for example, IR, UV, or visible light signals. In yet another embodiment, the transmit/receive element 122 can be configured to transmit and receive both RF signals and optical signals. It should be understood that the transmit/receive element 122 can be configured to transmit and/or receive any combination of wireless signals.
Moreover, although the transmit/receive element 122 is depicted as a single element in FIG. 1B, the WTRU 102 may include any number of transmit/receive elements 122. More specifically, the WTRU 102 may use MIMO technology. Thus, in one embodiment, the WTRU 102 may include two or more transmit/receive elements 122 (e.g., multiple antennas) for transmitting and receiving wireless signals over the null intermediaries 115/116/117.
The transceiver 120 can be configured to modulate a signal to be transmitted by the transmit/receive element 122 and configured to demodulate a signal received by the transmit/receive element 122. As described above, the WTRU 102 may have multi-mode capabilities. Accordingly, transceiver 120 may include multiple transceivers for enabling WTRU 102 to communicate via multiple RATs, such as UTRA and IEEE 802.11.
The processor 118 of the WTRU 102 may be coupled to a speaker/microphone 124, a numeric keypad 126, and/or a display/touchpad 128 (eg, a liquid crystal display (LCD) unit or an organic light emitting diode (OLED) display unit), And the user input data can be received from the above device. The processor 118 can also output data to the speaker/microphone 124, the numeric keypad 126, and/or the display/touchpad 128. In addition, the processor 118 can access information from any type of suitable memory and store the data in any type of suitable memory, such as non-removable memory 130 and/or removable. Except memory 132. Non-removable memory 130 may include random access memory (RAM), readable memory (ROM), hard disk, or any other type of memory storage device. The removable memory 132 can include a Subscriber Identity Module (SIM) card, a memory stick, a secure digital (SD) memory card, and the like. In other embodiments, processor 118 may access data from memory that is not physically located on WTRU 102 and located on a server or home computer (not shown), and store data in the memory.
The processor 118 can receive power from the power source 134 and can be configured to distribute power to other components in the WTRU 102 and/or to control power to other elements in the WTRU 102. Power source 134 can be any device suitable for powering WTRU 102. For example, the power source 134 may include one or more dry cells (nickel cadmium (NiCd), nickel zinc (NiZn), nickel hydrogen (NiMH), lithium ion (Li-ion), etc.), solar cells, fuel cells, and the like.
The processor 118 may also be coupled to a GPS chipset 136 that may be configured to provide location information (eg, longitude and latitude) regarding the current location of the WTRU 102. The WTRU may receive location information from the base station (e.g., base station 114a, 114b) plus or in place of GPS chipset 136 information through null intermediaries 115/116/117, and/or based on two or more adjacent base stations The timing of the received signal determines its position. It should be understood that the WTRU 102 may obtain location information by any suitable location determination method while remaining consistent with the embodiments.
The processor 118 can also be coupled to other peripheral devices 138, which can include one or more software and/or hardware modules that provide additional features, functionality, and/or wireless or wired connections. For example, peripheral device 138 may include an accelerometer, an e-compass, a satellite transceiver, a digital camera (for photo or video), a universal serial bus (USB) port, a vibrating device, a television transceiver, and a hands-free Headphones, blue buds Modules, FM radio units, digital music players, media players, video game player modules, Internet browsers, and more.
Figure 1C shows an exemplary wireless local area network (WLAN) device. One or more of the devices can be used to implement one or more of the features described herein. The WLAN may include, but is not limited to, an access point (AP) 102, a station (STA) 110, and an STA 112. STAs 110 and 112 can be associated with AP 102. The WLAN may be configured to implement one or more of the IEEE 802.11 communication standards, which may include channel access schemes such as DSSS, OFDM, OFDMA, and the like. The WLAN can operate in a mode such as an infrastructure mode or an ad-hoc mode.
A WLAN operating in an infrastructure mode may include one or more APs in communication with one or more associated STAs. The AP and the STA associated with the AP may include a Basic Service Set (BSS). For example, AP 102, STA 110, and STA 112 may include BSS 122. An extended service set (ESS) may include one or more APs (with one or more BSSs) and STAs associated with the APs. The AP may have access and/or interfaces to a distribution system (DS) 116 that may be wired and/or wirelessly connected and may carry traffic to the AP and/or carry information from the AP. Business. Traffic originating from STAs in the WLAN outside the WLAN may be received by an AP in the WLAN, which may send traffic to STAs in the WLAN. Traffic originating from STAs in the WLAN to outside the WLAN (eg, to the server 118) may be sent to an AP in the WLAN, which may send traffic to the destination, such as via the DS 116 to the network 114 to be sent To the server 118. The traffic between STAs in the WLAN can be sent through one or more APs. For example, a source STA (e.g., STA 110) may have traffic for a destination STA (e.g., STA 112). The STA 110 can send traffic to the AP 102, and the AP 102 can send traffic to the STA 112.
The WLAN can operate in ad-hoc mode. The ad-hoc mode WLAN may be referred to as an Independent Basic Service Set (IBBS). In an ad-hoc mode WLAN, STAs can communicate directly with each other (e.g., STA 110 can communicate with STA 112 without requiring such communication to be routed through the AP).
An IEEE 802.11 device (eg, an IEEE 802.11 AP in a BSS) can use a beacon frame to inform the presence of a WLAN network. An AP, such as AP 102, can transmit beacons on a channel such as a fixed channel, such as a primary channel. The STA can establish a connection with the AP using a channel such as a primary channel.
The STA and/or AP may use a Carrier Sense Multiple Access (CSMA/CA) channel access mechanism with collision avoidance. In CSMA/CA, STAs and/or APs can listen to the primary channel. For example, if the STA has data to send, the STA can listen to the main channel. If the primary channel is detected to be busy, the STA can back off. For example, a portion of a WLAN or WLAN may be configured such that one STA may transmit at a given time (eg, at a given BSS). Channel access may include RTS and/or CTS signaling. For example, the exchange of request to send (RTS) frames can be transmitted by the transmitting device, and the clear to send (CTS) frame can be transmitted by the receiving device. For example, if the AP has data to send to the STA, the AP can send an RTS frame to the STA. If the STA is ready to receive data, the STA may respond with a CTS frame. The CTS frame may include a time value that may alert other STAs to defer access to the media and the AP that initiated the RTS may transmit the data of the RTS. When receiving a CTS frame from the STA, the AP can send data to the STA.
The device can preserve the spectrum of the Network Allocation Vector (NAV) field. For example, in the IEEE 802.11 frame, the NAV field can be used to reserve a channel for a period of time. The STA that wants to transmit data can set the NAV to the time when the channel is expected to be used. When the STA sets the NAV, the NAV can be set for the associated WLAN or a subset thereof (eg, BSS). Other STAs can count down NAV to zero. When the counter reaches zero, the NAV function can indicate to other STAs that the channel is now available.
A device in a WLAN, such as an AP or STA, may include one or more of: a processor, a memory, a radio receiver, and/or a transmitter (eg, may be incorporated in a transceiver), one or more antennas (for example, antenna 106 in Fig. 1), and so on. Processor functions may include one or more processors. For example, the processor may include one or more of: a general purpose processor, a special purpose processor (eg, a baseband processor, a MAC processor, etc.), a digital signal processor (DSP), an application specific integrated circuit (ASIC), Field programmable gate array (FPGA) circuits, any other type of integrated circuit (IC), state machine, etc. One or more processors may or may not be integrated with one another. A processor (eg, one or more processors or a subset thereof) can be integrated with one or more other functions, such as other functions such as memory. The processor can perform signal encoding, data processing, power control, input/output processing, modulation, demodulation, and/or any other functionality that can cause the device to operate in a wireless environment, such as the WLAN of FIG. The processor can be configured to execute processing executable code (eg, instructions) including, for example, software and/or firmware indications. For example, the processing can be configured to execute computer readable instructions embodied in one or more processors (eg, a bank of chips including memory and processors) or memory. Execution of the instructions may cause the apparatus to perform one or more of the functions described herein.
The device may include one or more antennas. The device can employ multiple input multiple output (MIMO) technology. One or more antennas can receive radio signals. The processor can receive radio signals, such as via one or more antennas. One or more antennas may transmit radio signals (eg, based on signals transmitted from the processor).
The device may have memory that may include one or more devices for storing programming and/or materials, such as processor executable code or instructions (eg, hardware, firmware, etc.), electronic materials, databases, or Other digital information. The memory can include one or more memory cells. One or more memory units may be integrated with one or more other functions (eg, including other functions in a device such as a processor). Memory can include read only memory (ROM) (eg, erasable programmable read only memory (EPROM), electrically erasable programmable read only memory (EEPROM), etc.), random access memory Body (RAM), disk storage media, optical storage media, flash memory devices, and/or other permanent computer-ready media for storing information. The memory can be coupled to the processor. The processor can communicate with one or more memory entities, such as via a system bus, directly, and the like.
A WLAN in an Infrastructure Basic Service Set (IBSS) mode may have an Access Point (AP) for a Basic Service Set (BSS) and one or more stations (STAs) associated with the AP. The AP may have access or interface to a distribution system (DS) or another type of wired/wireless network that may carry traffic outside of the BSS or outside of the BSS. The traffic to the STA can originate from outside the BSS, can be reached through the AP and can be delivered to the STA. Traffic originating from STAs arriving at destinations other than the BSS can be sent to the AP to be delivered to their respective destinations. The traffic between STAs in the BSS can be sent through the AP, where the source STA can send traffic to the AP and the AP can deliver traffic to the destination STA. The traffic between STAs in the BSS can be peer-to-peer. Such peer to peer traffic may be sent directly between the source and destination STAs, such as with a DLS using IEEE 802.11e Direct Link Setup (DLS) or IEEE 802.11z Tunnel DLS (TDLS). A WLAN using an independent BSS (IBSS) mode may have no APs, and STAs may directly communicate with each other. This mode of communication can be an ad-hoc mode.
Using the operation of the IEEE 802.11 infrastructure mode, the AP can transmit beacons on fixed channels (eg, primary channels). The channel can be 20 MHz wide and can be the operating channel of the BSS. This signal can also be used by the STA to establish a connection with the AP. Channel access in an IEEE 802.11 system may be Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA). In the operation of the infrastructure mode, each STA can listen to the primary channel. If the STA detects that the channel is busy, the STA can return. A STA can transmit in a given BSS at any given time.
In various countries of the world, dedicated spectrum can be allocated for wireless communication systems such as WLANs. The allocated spectrum (eg, below 1 GHz) can be limited in size and channel bandwidth. The spectrum can be segmented. Available channels may not be contiguous and cannot be combined for larger bandwidth transmission. A WLAN system (eg, built on the IEEE 802.11 standard) can be designed to operate in this spectrum. Given this spectrum limitation, WLAN systems may be able to support smaller bandwidths and lower data rates than HT and/or VHT WLAN systems (eg, based on IEEE 802.11n and/or 802.11ac standards).
It is possible to limit the allocation of spectrum in one or more countries. For example, in China, the 470-566 and 614-787 MHz bands can allow 1 MHz bandwidth. In addition to the 1 MHz bandwidth, 2 MHz and 1 MHz modes can be supported. The 802.11ah physical layer (PHY) can support 1, 2, 4, 8, and 16 MHz bandwidth.
The 802.11ah PHY can operate below 1 GHz. The 802.11ah PHY can be based on the 802.11ac PHY. The 802.11ac PHY can be down-clocked (eg, to match the narrow bandwidth required by 802.11ah). The 802.11 ac PHY can be clocked down by a factor of 10. Support for 2, 4, 8 and 16 MHz can be obtained with a 1/10 down time. Support for 1 MHz bandwidth can use PHY and Fast Fourier Transform (FFT) with size 32.
At 802.11ah, one or more STAs (eg, up to 6000 STAs, including devices like testers and sensors) can be supported in a Basic Service Set (BSS). STAs may have different supported uplink and downlink traffic requirements. For example, a STA may be configured to upload (eg, periodically upload) data to a server that causes uplink traffic. The STA can be queried by the server and/or can be configured by the server. When the server queries and/or configures the STA, the server may expect the queried data to arrive within the set interval. The application on the server or server may expect (eg, within a certain interval) to confirm the configuration performed. These traffic patterns can be different compared to traditional WLAN system traffic modes. In an 802.11ah system, one or more (eg, two) bits can be used in the PLCP header of the frame. One or more of the bits may indicate to the packet the type of response that is expected to be a response (eg, an early acknowledgement (ACK) indication). An ACK indication (eg, a two-ary ACK indication) may be signaled in a signal (SIG) field. The ACK indication may be one or more of the following: 00: ACK, 01: Block ACK (BA), 10: No ACK, 11: Frame not ACK, BA or Clear to Send (CTS).
Relay functionality (eg, as introduced in IEEE 802.11ah) can enable more efficient power usage. Relay functionality can reduce the transmission power consumed by the STA. Relay functionality can improve the STA's wireless link status. A two-way relay can include one or more (eg, two) hops. A transmission opportunity (TXOP) can be shared for relaying (eg, for explicit ACK exchange). The shared TXOP can reduce the number of channel contention. The frame control field can include relayed frame bits (eg, for TXOP operations). The Neighbor Discovery Protocol (NDP), ACK, and/or SIG fields may include relayed frame bits (eg, for TXOP operations).
The relay can receive frames (eg, valid frames). The relay may respond to the received frame with an ACK (eg, in a TXOP sharing operation). If the relay receives a valid frame, one or more of the following can be applied. If the relay receives a relayed frame bit set to 1, the ACK may be implicit in the next hop transmission after a short inter-frame space (SIFS). The relay may reply with an ACK after the SIFS with the trunk bit of the relay set to 1 and may continue the next hop data transmission after the SIFS. The relay may respond with an ACK after the SIFS with the trunk bit of the relay set to 0; the relay may not use the remaining TXOP.
The relay can set the trunk's frame bit to 1. For example, if the relay receives more data bits set to 0, the relay can set the relayed frame bit to 1.
A flow control mechanism for the relay can be provided. Support for the use of probe requests for relay discovery may be provided, which may include information on the AP-STA link budget. The STA can initiate the discovery process. The STA may select a relay based on one or more received probe responses. The relay entity may include a relay STA (R-STA), a relay AP (R-AP), and the like. The R-STA may be a non-AP STA. The R-STA can be a station that acts as an AP. The R-STA may have one or more capabilities including, for example, 4 address support (e.g., capable of transmitting and/or receiving and/or receiving from the associated root AP { to DS = 1, from DS = 1 } (frame), support for receiving and/or forwarding frames from R-AP, etc.
The R-AP can be an AP. The R-AP may have one or more capabilities including, for example, 4 address support, support for forwarding and receiving frames to/from the R-STA, and the ability to indicate R-AP (eg, by setting a bit) Or indicate the root-AP address and/or service setting identifier (SSID) in the beacon. One or more of the following may be applied to the R-AP, for example, related to 4-address support. The R-AP may send and/or receive to and/or from the associated STA's {to DS = 1, from DS = 1} frame (eg, based on the capabilities of the associated STA). The R-AP can receive a 4-bit address frame. The R-AP can forward a frame with 3 addresses to the associated STA.
Figure 2 depicts an example of an IEEE 802.11ah relay architecture. The relay AP may include the beacon and/or the SSID of the root AP in the probe response frame. The aggregated MAC Service Data Unit (A-MSDU) format can be used between the root AP and the relay AP (eg, for frame delivery). Messages (eg, reachable address messages) can be used to update the forwarded form.
Figure 3 depicts an example of a downlink relay from a AP (e.g., as a source) to a STA (e.g., as a destination) through a relay node. An explicit ACK can be used. The source AP may send a downlink data frame with an early ACK indicator bit. The early ACK indicator bit in the downlink data frame can be set to 00. The relay may send an ACK with an early ACK indicator bit set to 11 back to the source AP for the next output frame. In SIFS time, the relay can send data with different MCS and the early ACK indicator bit can be set to 00. The relay can buffer frames (for example, data frames). The frame can be buffered until its frame is delivered (eg, successfully delivered) or a predetermined number of retries (eg, retry limits). The destination STA in SIFS time may send an ACK with an early ACK indicator bit set to 10. When the source AP receives an ACK from the relay node, the source AP can remove the data frame from its buffer and can defer MAX_PPDU+ACK+2*SIFS before the next event.
Figure 4 depicts an example of an uplink relay from a STA (e.g., as a source) to an AP (e.g., as a destination) via a relay node. An explicit ACK can be used. As described in FIG. 4, the STA may transmit an uplink data frame with an early ACK indicator bit to the relay. The early ACK indicator bit can be set to 00. The relay can send an ACK and can set the early ACK indicator bit to 11 for the next output frame. In SIFS time, the relay can send data frames with different MCSs and can set the early ACK indicator bits to 00. The relay can buffer frames (for example, data frames). The frame can be buffered until the frame is delivered (eg, successfully delivered) or a predetermined number of retries (eg, retry limits) are reached. In SIFS time, the destination AP may send an ACK with an early ACK indicator bit set to 10. Upon receiving an ACK frame from the relay node, the STA may remove the data frame from its buffer and may defer MAX_PPDU+ACK+2*SIFS before the next event (eg, after receiving an ACK from the destination AP).
Figure 5 depicts an example of a relay operation using an implicit ACK. As shown in FIG. 5, the source node may send a downlink data frame having a response frame bit set to 11. A response frame bit set to 11 may indicate to the STA that another data frame may be behind. During SIFS time, the source node can receive the PHY SIG field with a response frame set to 00. The source node can check the PAID subfield in the PHG SIG field. The relay can send data frames with different MCSs. The relay can set the response frame bit to 00 and can set the PAID sub-field to the sub-field of the STA. The destination node may send an ACK with a response frame bit set to 10.
In IEEE 802.11ah, a short beacon frame format can be supported. A frame control type and/or subtype indication can be provided for the short beacon. Figure 6 depicts an example of a short beacon frame format. The short beacon may include one or more of the following fields: compressed SSID, timestamp, change sequence, time of the next complete beacon, access network options, and/or 3 digits included in the FC field. Yuan BW field. The compressed SSID field can be calculated as a cyclic redundancy check (CRC) for the SSID. The CRC can be calculated using the same function as the FCS that can be used to calculate the MPDU. The timestamp field can be 4 bytes long. The timestamp field can contain the 4 least significant bits (LSBs) of the AP timestamp. The change sequence field can be 1 byte long. Changing the sequence field can be increased when critical network information changes. The time field of the next complete beacon may indicate the time of the next complete beacon frame. The time field of the next complete beacon may be indicated in the next complete beacon frame as the higher 3 bytes of the 4 LSBs of the AP timestamp. If the AP periodically transmits a complete (eg, long) beacon frame, the time field of the next complete beacon may exist in the short beacon frame. The beacon frame may include an access network option field in the short message frame.
In IEEE 802.11, carrier-oriented WiFi may provide one or more of the following: fairness between BSS centers and BSS edge users, improved BSS edge performance, OBSS interference coordination, higher spectral efficiency and utilization, or cellular offloading .
The IEEE 802.11 High Efficiency WLAN (HEW) system can provide an increase in real world data traffic achieved by IEEE 802.11 users in a dense network with a large number of users and devices (eg, Wi-Fi hotspots, office buildings, etc.). Systems and methods for enhancing the performance of 802.11 PHYs and MACs at 2.4 and 5 GHz can also be provided. Enhanced performance can include one or more of the following: improved spectral efficiency and regional throughput, improved indoor and/or outdoor deployment (eg, intensive heterogeneous networks in the presence of interference sources, moderate to heavy user load APs) ) Real world performance.
One or more metrics may be considered by the STA for association when selecting an AP (eg, in a non-relay based WiFi network). The metric may include received signal strength, path loss, or link quality of the AP (eg, an AP that can transmit a beacon frame or a probe response frame).
The relay and associated functionality can be used to serve the STA (e.g., an STA that can suffer from a poor link budget when communicating directly with the AP). IEEE 802.11ah may provide relay and/or relay type STAs (eg, the possibility of handling poor link budget issues in the case of STA's macro type coverage). Relays can also be used in other WLAN variants.
When the relay is being used, the signal strength, path loss, or link quality of the received transmission beacon frame, the relay of the probe response frame (eg, R-AP, R-STA, etc.) may not provide the entire Sufficient information for the relay path (eg, from the source node to the destination node). Figure 7 depicts an example of relay path selection by the STA. The STA may receive a beacon or probe response frame from the relay node (eg, via path V1). The link quality between the STA and the relay node may be better than the link quality between the STA and the root AP (eg, via path U1). The path quality between the relay node and the root AP (eg, via path V2) may be better than the path quality between the STA and the root AP. Selecting the relay node based on the received beacon and/or the probe response frame quality may result in a relay path that may exhibit worse path loss and/or link quality than the direct path.
Figure 8 depicts an example of relay path selection using a root AP connected to more than one (e.g., two) relays. The source node (e.g., STA) may receive transmissions (e.g., via a beacon frame, a short beacon frame, or a probe response frame) from the relay node 2 (e.g., via path V3). The link quality between the STA and the relay node 2 may be better than the link quality between the STA and the relay node 1 (e.g., via path V1). The path loss between the AP and the relay node 2 may be greater than the path loss between the AP and the relay node 1. Selecting the relay node based on the link quality of the received transmission may result in a relay path via the relay node 2, which may show worse path loss and/or than the relay path via the relay node 1 Link quality. A valid AP discovery mechanism may allow the STA to discover the relay path, which may include considering the overall link quality.
In a relay-based WLAN architecture, a relay node can receive a source frame from a source node and can respond to the source node with an ACK. The relay node can send a data frame to the destination node. When the destination node receives the data frame from the relay node, the destination node can respond to the relay node with an ACK. The path between the relay node and the destination node may not be reliable (eg, may have a temporary interruption). When the link between the relay node and the destination node experiences an unfavorable condition, the data frame from the source node can be buffered at the relay node. Buffered data frames can cause buffer management issues (eg, buffer overflow). The source node may not know the link quality of the relay path between the relay node and the destination node. The source node can continue to transmit data to the relay node, which may increase congestion at the relay node. The flow control mechanism at the relay node (eg, an effective flow control mechanism) can prevent the path from being unreliable.
When a relay node is used, channel access contention can be reduced by sharing a transmission opportunity (TXOP) for relaying. This sharing of TXOPs can be provided in IEEE 802.11ah. By sharing the TXOP, the source node (eg, the initiator of the TXOP reservation) can reserve the TXOP for a time interval. The reserved TXOP can take into account the worst case of the link between the relay node and the destination node. The reserved TXOP may be longer (eg, much longer) than the actual time period of transmission from the source node to the relay node and the relay node to the destination node. The TXOP of the shared relay can be truncated (eg, effectively truncated) when the actual transmission ends early at the relay node.
An information element (IE) or field indicating the link quality between the relay and the root AP may be transmitted in a transmission sent by a relay such as an R-AP (eg, to allow the end STA to determine the relay path) Overall link quality). The transmission can be a beacon frame, a short message frame, or a probe response frame. The compressed SSID of the root AP can be used in the transmission.
Figure 9 depicts an exemplary frame format for transmission in which a bit in the transmitted frame control field may indicate that the transmitter is a relay node (e.g., in place of the root AP). The transmission can be a short message frame. The transmission indicating that the transmitter is a relay node may be a beacon frame or a probe response frame (eg, the short message frame or the probe response frame may include similar fields as described in the example of the short message frame). When the frame control field is set to a value of 1, the transmitter can be a relay node. When the frame control field is set to a value of 0, the transmitter can be a non-relay node. As depicted in Figure 9, the bits in the transmitted frame control field may indicate the link quality between the relay and the root AP field in the transmission. A frame control field bit set to a value of 1 may mean that the field is present and a value of 0 may mean that the field does not exist. The reserved bits in the frame control field can be used to indicate the link quality between the relay and the root AP field. The link quality presence field or the relay indicator field can be implicitly signaled (eg, by methods such as CRC masking, scrambler initialization seed values, relative phase changes in the SIG field, or PLCP headers) Guide value or mode). The link quality presence bit or relay indicator bit in the frame control field may indicate that the link quality between the relay and the root AP may be included in the transmission. One or more octets can be used to relay the link quality between the root AP field. The link quality between the trunk and the root AP field may indicate the link quality (in dB) from 64 to 4096 levels. The link quality between the relay and the root AP field may indicate the link quality between the relay node and the root AP (eg, path loss, packet error/loss rate, transmission delay, etc.). Link quality (e.g., incremental link quality) estimates may be incremental for indicating the entire AP to STA link quality.
Figure 10 depicts an exemplary frame format for transmission in which the link quality between the relay and the root AP can be signaled by an IE (e.g., link quality IE between the relay and the root AP) (e.g., Signal transmission). The transmission can be a short message frame. The link quality transmission between the signaling relay and the root AP may be a beacon frame or a probe response frame (eg, a short message frame or a probe response frame may be included as described in the example of the short message frame) Similar field). The IE can be included in the transmission (eg, beacon frame, short message frame, or probe response frame). The link quality may have an explicit or implicit indication of a bit or relay that may not be used. The IE may include one or more of the following: an octet element ID subfield, an octet length subfield, or one or more links that provide a link between the relay and the root AP subfield. The octet. Link quality can represent multiple levels of link quality in dB (eg, 64 to 4096 levels).
Once the STA receives the transmission (eg, beacon frame, short message frame, or probe response frame), it can check the specific field or IE in the transmission to determine if the transmitted transmitter is a relay node. The STA may check for link quality presence or a relay indicator field (eg, if a link quality exists a bit exists). If the link quality is present or the relay indicator field bit is set to 1, the STA may know that the link quality between the relay and the root AP field may be included in the transmission.
The source node (eg, the STA with traffic to transmit) can determine one or more link qualities. For example, the source node can determine the quality of each link in the relay path (eg, determine whether to use relay instead of direct transmission to the destination node, determine which relay to use if multiple relays are available, etc.). Determining one or more link qualities, such as determining an overall link quality associated with a link from a STA to a relay node to a root AP, may include one or more of the following. The STA may check whether the link quality IE between the relay and the root AP is included in the transmission (eg, the STA may perform the check downwards in the case of checking or not checking the link quality presence or relaying the indicator field) . If the link quality IE between the relay and the root AP is included in the transmission, such a transmitter that can indicate the transmission is a relay node. The STA may receive a transmission (eg, a beacon frame, a short message frame, or a probe response frame) indicating the link quality between the relay node and the root AP, which may be represented as Q AP-Relay (Q AP-relay ). The field or IE in the received transmission can indicate the link quality. The STA can determine (e.g., estimate) the link quality of the relay node with itself. The STA may determine that it may be represented as Q based on the received transmission transmitted from the relay node. STA-Relay (Q AP-relay Link quality. The STA may determine (eg, calculate) the overall link quality of the indirect path (eg, STA to relay to root AP), eg, Q Relay path (Q Relay path ),for =Q STA-Relay +Q AP-Relay +. The indirect path can be a combined link. If the overall link quality Q Relay path If the requirements are met, the STA (eg, scanning STA) may consider the relay node as a candidate (eg, for association). The STA may select an entity (eg, a relay node or a root AP) for transmission based on the overall link quality. The overall link quality meets the requirements (eg, above the threshold demand, for example if the overall link quality of the combined link is better and/or better than the link associated with the direct link with the root AP) When the overall link quality associated with the relay node is better, the selected entity may be a relay node.
Methods, systems, and tools are provided to describe relay flow control for relay functionality that can be applied to 802.11ah and other 802.11 systems (eg, HEW). Action frames (eg, flow control notification frames) can be defined. The relay node can perform flow control on the link between the source node and the relay node. If the link between the relay node and the destination node deteriorates, the relay node can perform flow control. Data frames from the source node can be buffered at the relay node and can cause congestion and/or buffer overflow (eg, more buffering may be needed when the link goes bad). The relay node can inform the source node about flow control. The relay node can notify the source node about flow control by sending a flow control notification frame. The flow control notification frame can be sent as a unicast frame in both uplink and downlink operations. The flow control notification frame can be sent as a broadcast frame in the downlink. The flow control node address can be signaled through the flow control notification frame. The flow control notification frame can signal the address of the relay node in the relay link (eg, between the destination node and the relay node). A relay node that signals in a flow control notification frame may experience unfavorable link quality.
The flow control notification frame can signal the address of the destination node. Data traffic for end STAs (eg, end STAs belonging to a relay link that has experienced a link problem) may be affected.
The flow control notification frame can be transmitted as a unicast or broadcast frame. The Transmitter Address (TA) field in the MAC header of the frame can be set to the relay node address. The flow control information in the flow control notification frame may refer to a relay node identified by the TA address. Figure 11 depicts an exemplary frame format for a flow control notification frame. The classification field can be set to represent the value of the two-point jump relay (eg, can be specified in the standard). The action (eg, two-point jump relay action) field can be set to represent the value of the flow control notification (eg, a unique value). The action field can be set as specified in the standard.
Figure 12 depicts an example of a flow control notification element. As depicted in FIG. 12, the element ID field can be set to a value (eg, a unique value) that can represent a flow control notification element. The element ID field can be set as specified in the standard. The length field can indicate the number of octets in the information field (eg, the field following the element ID and length field). The flow control duration field for each access classification (AC) (eg, background (BK), best effort (BE), video (VI), and sound (VO)) may indicate that the application is relaying on the corresponding AC The duration of the node's flow control. The time unit of the flow control duration can be M μs. The flow control data rate field for each AC (eg, BK, BE, VI, and VO) may indicate the data rate that the end STA can transmit to the relay node during the flow control duration of the corresponding AC (eg, maximum data) rate).
The TA address in the MAC header may indicate (eg, identify) the relay node to which the received flow control information is applied. Due to the two-point hopping relay architecture (eg, where the relay node can be associated with a root AP), the TA address in the MAC header can provide sufficient information to identify congestion that may have experienced an uplink condition Or a relay link of unfavorable link quality. Using the TA address in the MAC header to identify the relay link can reduce signaling overhead. In a downlink where multiple end STAs may be associated with one relay node, the TA address in the MAC header may not identify (eg, uniquely identify) that the end STA and the relay node may have experienced congestion or A relay link with unfavorable link quality. The flow control notification frame may signal the address of the relay node in a relay link that may have experienced unfavorable link quality (e.g., in uplink operation). The flow control notification frame can signal the address of the destination node (eg, in downlink operation). The flow control notification element can be piggybacked on the data frame from the relay node to the source node or on the control frame.
For example, a flow control notification element as described in FIG. 13 can be used. The flow control notification element as described in FIG. 13 may specify a flow control duration and a data rate limit for a combination of access categories (eg, instead of providing one for each of the ACs).
Figure 14 depicts an exemplary frame format for a flow control notification frame in which the address of the destination node can be signaled in a flow control notification frame. As described in FIG. 14, the classification field can be set to a value that can represent a two-point jump relay (eg, as specified in the standard). The action (eg, two-point jump relay action) field can be set to represent the value of the flow control notification (eg, as specified in the standard).
Figure 15 depicts an exemplary design of a flow control notification element. As depicted in Figure 15, the Element ID field can be set to a value that can represent a flow control notification element (eg, as specified in the standard). The length field can indicate the number of octets in the information field (eg, the field following the element ID and length field). The destination node address (eg, the end STA address) may be set to the 6-bit MAC address of the destination node (eg, the end STA). The flow control notification frame may indicate the received flow control information, which may be applied to the relay node identified by the TA address in the MAC header. The flow control duration field for each access classification (AC) (eg, BK, BE, VI, and VO) may indicate the duration of flow control that may be applied to the relay node of the corresponding AC. The time unit of the flow control duration can be M μs. The flow control data rate field for each AC (eg, BK, BE, VI, and VO) may indicate the data rate that the end STA can transmit to the relay node during the flow control duration of the corresponding AC (eg, maximum data) rate).
Flow control can include one or more of the following. The relay node can monitor the buffer occupancy at the relay node. The relay node can monitor the link quality between the relay and the destination node. The relay node can determine that flow control should be applied (eg, to ease the congestion of the identity). The relay node can send a flow control notification frame to the source node. The flow control notification frame can include flow control parameters, such as described herein. The source node can identify the address of the node to which traffic control can be applied (eg, when receiving a flow control notification frame). The address can be a relay address (e.g., in an uplink operation). The address can be (eg, in the downlink) the relay address and the end STA address. The source node can obtain information from the flow control notification element. The source node can take action based on this information in the flow control notification element. If the flow control duration field is received for AC, the source node may stop (eg, via a relay node for the duration value in the received flow control notification element) to transmit the corresponding AC targeted at the destination address. Information frame. The end STA can directly transmit the data frame to the root AP without passing through the relay node (eg, if the link quality between the end STA and the root AP is acceptable). The source node may limit (eg, via a relay node that controls the duration value in the notification element for the received traffic) to the data rate of the AC (eg, the corresponding AC) targeted at the destination address. If the flow control duration field and the flow control data rate are received for AC, the source node can limit the data rate. The flow control limit can end at the source node (eg, when the flow control duration expires). The source node may resume transmission (eg, normal transmission) of the data frame to the destination node, eg, via the relay node.
The data frame can include a contention free end (CF-end) (eg, to allow the relay node to truncate unused TXOPs). One or more of the following can be applied. Bits reserved in the SIGA field (eg, one bit) can be used (eg, again) to indicate CF-end. The data frame receiver can reset the network allocation vector (NAV) at the end of the duration indicated in the MAC header. The data frame may also indicate one or more of the following: SIFS time, ACK time, or short ACK_time. Reserved bits in the frame control field of the MAC header can be used (eg, again) to indicate CF-end. The data frame receiver can reset the NAV at the end of the duration indicated in the MAC header. The data frame may also indicate one or more of the following: SIFS time, ACK time, or short ACK_time. The CF-end indication can be signaled (eg, implicit signaling). The CF-End indication may be signaled using one or more of the following: a CRC mask, a scrambler initialization seed value, a relative phase change in the SIG field, or a pilot value or pattern in the PLCP header.
In the case of TXOP, a two-point hop request for transmit/clear transmission (RTS/CTS) may establish and/or may preserve the duration of the relay frame exchange between the source node, the relay node, and the destination node. (eg, the entire duration) of the TXOP. The duration from the relay node transmitting the data frame to the destination node can be assumed to be the worst case. The duration of transmission of the data frame from the relay node to the destination node can be estimated (eg, conservative estimation). The source node can begin data transfer after the SIFS time (eg, immediately following receipt of the CTS frame from the relay node).
The relay node can process the received data frame from the source node. (For example, if the received data frame is correctly decoded and an explicit ACK is used) the relay node can send an ACK frame. (eg, if an implicit ACK is used) the STA may not send an ACK frame. (eg, if an explicit ACK is used and the received data frame is not correctly decoded), after transmitting the data frame, the source node may not receive the ACK by the time of SIFS time + ACK_time. (eg, if an implicit ACK is used and the received data frame is not decoded correctly) the source node may not receive an implicit ACK. A data frame from the relay node with an ACK indication field set to 00 may indicate an implicit ACK. The source node can release the TXOP by sending a CE-end frame. The source node can retransmit the data frame. The relay node and/or the destination node may send a CF-end frame upon receiving a CF-end from the source node.
The relay node can send a data frame to the destination node. The relay node may set the CF-end indication in the data frame to 1 or positive and may set the duration field in the MAC header of the data frame (eg, if the duration of the data frame) Plus SIFS time and ACK_time or short ACK_time is shorter than the remaining TXOP). The duration field in the MAC header can be determined using the length of the data frame and the data rate used for transmission.
The destination node can process the received data frame from the relay node. The destination node can send an ACK frame to the relay node (eg, if the received data frame is correctly decoded). The destination node can check the CF-end indication in the received data frame. (eg, if the CF-end indication is affirmative) the destination node may release the TXOP and may reset the NAV of the STA that is close to the destination node. The destination node can send a CF-end frame. The destination node can set the ACK indicator field in the output ACK frame (for example, set to 10). When the ACK indicator field is set to "10" in the output ACK frame, the destination node may not send the CF-end frame.
(eg, once a data frame with a positive CF-end indication is received from the relay node before the current TXOP expires) the source node may send a CF-end frame after the SIFS time plus time (eg, necessary time) Covers the frame sent by the destination node. The frame sent by the destination node may be an ACK frame or an ACK frame plus a CF-end frame. The source node can send the CF-end frame immediately after the duration of the signalling in the received data frame.
Figures 16 and 17 depict exemplary TXOP operations. Figure 16 depicts an example of a TXOP operation utilizing an explicit ACK. Figure 17 depicts an example of a TXOP operation that utilizes an implicit ACK. As depicted in Figure 16, the relay node may send an ACK (e.g., an explicit ACK) to the source node (e.g., after receiving the data frame from the source node). The relay node may send an ACK to the source node before forwarding the data frame with the CF-end bit to the destination node. As depicted in Figure 17, the relay node may send a data frame with a CF-end bit to the destination node (e.g., after receiving the data frame from the source node). The relay node can send the data frame to the source node without sending an ACK.
Although the above features and elements are described in a particular combination, one of ordinary skill in the art can understand that each feature or element can be used alone or in any combination with other features and elements. In addition to the 802.11 protocols described herein, the features and elements described herein can be applied to other wireless systems. In addition, the methods described herein can be implemented in a computer software, hardware or firmware, and the computer software, hardware or firmware is incorporated into a computer readable medium executed by a computer or processor. Examples of computer readable media include electronic signals (transmitted over a wired or wireless connection) and computer readable storage media. Examples of computer readable storage media include, but are not limited to, read only memory (ROM), random access memory (RAM), scratchpad, cache memory, semiconductor storage devices, such as internal hard drives and removable disks. Magnetic media, magneto-optical media, optical media such as CD-ROM discs and digital versatile discs (DVD). A processor associated with the software can be used to implement the radio frequency transceiver for use in a WTRU, WTRU, terminal, base station, RNC, or any host computer.

 

AP‧‧‧存取點 AP‧‧‧ access point

STA‧‧‧站台 STA‧‧‧ Platform

Claims (1)

1、一種確定一鏈路品質的方法,該方法包括:
接收指示一傳輸實體為一中繼節點的一傳輸,其中該傳輸指示與在該中繼節點和一根存取點(AP)之間的一鏈路相關聯的一第一鏈路品質;
確定與在一站台(STA)和該中繼節點之間的一鏈路相關聯的一第二鏈路品質;
確定與從該STA至該中繼節點至該根AP的一結合的鏈路相關聯的一整體鏈路品質;以及
基於該整體鏈路品質來選擇一實體進行關聯。
2、如申請專利範圍第1項所述的方法,其中該傳輸是一信標訊框、一短信標訊框、或一探測回應訊框。
3、如申請專利範圍第2項所述的方法,其中確定該第二鏈路品質是由該STA基於該所接收的傳輸進行估計的。
4、如申請專利範圍第1項所述的方法,該方法還包括確定該第一鏈路品質。
5、如申請專利範圍第4項所述的方法,其中該整體鏈路品質與該第一鏈路品質和該第二鏈路品質的一結合相關聯。
6、如申請專利範圍第1項所述的方法,該方法還包括確定該整體鏈路品質是否滿足一需求。
7、如申請專利範圍第6項所述的方法,其中在該整體鏈路品質滿足該需求時所選擇的實體是該中繼節點。
8、如申請專利範圍第1項所述的方法,其中該傳輸實體為該中繼節點的該指示在一資訊元素中顯式地用信號發送。
9、如申請專利範圍第1項所述的方法,其中該傳輸實體為該中繼節點的該指示通過在該傳輸的一訊框中的該第一鏈路品質的存在進行指示。
10、如申請專利範圍第1項所述的方法,該方法還包括發送資料至該中繼節點及發送該資料將被中繼至該AP的一指示。
11、一種站台(STA),該STA包括:
一處理器,被配置為:
接收指示一傳輸實體為一中繼節點的一傳輸,其中該傳輸指示與在該中繼節點和一根存取點(AP)之間的一鏈路相關聯的一第一鏈路品質;
確定與在一站台(STA)和該中繼節點之間的一鏈路相關聯的一第二鏈路品質;
確定與從該STA至該中繼節點至該根AP的一結合的鏈路相關聯的一整體鏈路品質;以及
基於該整體鏈路品質來選擇一實體進行關聯。
12、如申請專利範圍第11項所述的STA,其中該傳輸是一信標訊框、一短信標訊框、或一探測回應訊框。
13、如申請專利範圍第12項所述的STA,其中該處理器還被配置為基於該所接收的傳輸估計該第二鏈路品質。
14、如申請專利範圍第11項所述的STA,其中該處理器還被配置為確定該第一鏈路品質。
15、如申請專利範圍第14項所述的STA,其中該整體鏈路品質與該第一鏈路品質和該第二鏈路品質的一結合相關聯。
16、如申請專利範圍第11項所述的STA,其中該處理器還被配置為確定該整體鏈路品質是否滿足一需求。
17、如申請專利範圍第16項所述的STA,其中在該整體鏈路品質滿足該需求時該所選擇的實體是該中繼節點。
18、如申請專利範圍第11項所述的STA,其中指示該傳輸實體為該中繼節點的該傳輸在一資訊元素中顯式地用信號發送。
19、如申請專利範圍第11項所述的STA,其中指示該傳輸實體為該中繼節點的該傳輸包括在該傳輸的一訊框中該第一鏈路品質之存在。
20、如申請專利範圍第11項所述的STA,其中該處理器還被配置為發送資料至該中繼節點及發送該資料將被中繼至該AP的一指示。
1. A method of determining a link quality, the method comprising:
Receiving a transmission indicating that the transport entity is a relay node, wherein the transmission indicates a first link quality associated with a link between the relay node and an access point (AP);
Determining a second link quality associated with a link between a station (STA) and the relay node;
Determining an overall link quality associated with a link from the STA to the relay node to the root AP; and selecting an entity to associate based on the overall link quality.
2. The method of claim 1, wherein the transmission is a beacon frame, a short message frame, or a probe response frame.
3. The method of claim 2, wherein determining the second link quality is estimated by the STA based on the received transmission.
4. The method of claim 1, wherein the method further comprises determining the first link quality.
5. The method of claim 4, wherein the overall link quality is associated with a combination of the first link quality and the second link quality.
6. The method of claim 1, wherein the method further comprises determining whether the overall link quality meets a requirement.
7. The method of claim 6, wherein the entity selected when the overall link quality satisfies the demand is the relay node.
8. The method of claim 1, wherein the indication that the transmitting entity is the relay node is explicitly signaled in an information element.
9. The method of claim 1, wherein the indication that the transmitting entity is the relay node is indicated by the presence of the first link quality in a frame of the transmission.
10. The method of claim 1, wherein the method further comprises transmitting data to the relay node and transmitting an indication that the data is to be relayed to the AP.
11. A station (STA), the STA comprising:
A processor configured to:
Receiving a transmission indicating that the transport entity is a relay node, wherein the transmission indicates a first link quality associated with a link between the relay node and an access point (AP);
Determining a second link quality associated with a link between a station (STA) and the relay node;
Determining an overall link quality associated with a link from the STA to the relay node to the root AP; and selecting an entity to associate based on the overall link quality.
12. The STA of claim 11, wherein the transmission is a beacon frame, a short message frame, or a probe response frame.
13. The STA of claim 12, wherein the processor is further configured to estimate the second link quality based on the received transmission.
14. The STA of claim 11, wherein the processor is further configured to determine the first link quality.
15. The STA of claim 14, wherein the overall link quality is associated with a combination of the first link quality and the second link quality.
16. The STA of claim 11, wherein the processor is further configured to determine whether the overall link quality meets a requirement.
17. The STA of claim 16, wherein the selected entity is the relay node when the overall link quality satisfies the demand.
18. The STA of claim 11, wherein the transmission indicating that the transmitting entity is the relay node is explicitly signaled in an information element.
19. The STA of claim 11, wherein the transmission indicating that the transmitting entity is the relay node comprises the presence of the first link quality in a frame of the transmission.
20. The STA of claim 11, wherein the processor is further configured to send data to the relay node and send an indication that the data will be relayed to the AP.
TW103115857A 2013-05-02 2014-05-02 Discovery, transmit opportunity (txop) operation and flow ?control for range extension in wifi TWI651985B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361818854P 2013-05-02 2013-05-02
US61/818,854 2013-05-02

Publications (2)

Publication Number Publication Date
TW201513716A true TW201513716A (en) 2015-04-01
TWI651985B TWI651985B (en) 2019-02-21

Family

ID=50884534

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103115857A TWI651985B (en) 2013-05-02 2014-05-02 Discovery, transmit opportunity (txop) operation and flow ?control for range extension in wifi

Country Status (8)

Country Link
EP (1) EP2992712A1 (en)
JP (2) JP2016523036A (en)
KR (1) KR101735031B1 (en)
CN (1) CN105165072A (en)
HK (1) HK1216123A1 (en)
RU (1) RU2625943C2 (en)
TW (1) TWI651985B (en)
WO (1) WO2014179722A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI741070B (en) * 2016-11-18 2021-10-01 美商高通公司 Techniques and apparatuses for complementary transmission relating to an interrupted traffic flow in new radio

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107079380A (en) * 2014-11-14 2017-08-18 株式会社Ntt都科摩 User's set and D2D communication means
JP6594460B2 (en) 2015-07-24 2019-10-23 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Improved relay UE discovery for proximity services
CN106604203B (en) 2015-10-20 2020-12-25 华为技术有限公司 Method and related device for direct communication between stations in wireless local area network
US9788217B2 (en) * 2015-11-13 2017-10-10 Cable Television Laboratories, Inc. Communications when encountering aggressive communication systems
CN106937382B (en) * 2015-12-29 2020-05-08 华为技术有限公司 Signaling message transmission method and device
CN109644386B (en) * 2016-09-05 2022-12-09 三菱电机株式会社 Wireless communication terminal, wireless communication system, and recording medium
CN109804693B (en) * 2017-04-06 2021-08-13 华为技术有限公司 Scheduling method, device and system
WO2018232693A1 (en) * 2017-06-22 2018-12-27 Huawei Technologies Co., Ltd. Transmission of bss load element in wireless local area network system
US11329871B2 (en) * 2018-02-28 2022-05-10 Qualcomm Incorporated Conditional inheritance in management frame for multi-link aggregation
JP7218852B2 (en) * 2018-05-02 2023-02-07 PicoCELA株式会社 Wireless path control method, wireless communication system, wireless node, and wireless path control program
RU2766428C1 (en) * 2018-08-08 2022-03-15 Телефонактиеболагет Лм Эрикссон (Пабл) Method for controlling data flows in communication networks with integrated access and backhaul connections
CN114868457A (en) * 2019-12-19 2022-08-05 瑞典爱立信有限公司 Link selection method, user equipment, network node and telecommunication system
WO2021193178A1 (en) * 2020-03-25 2021-09-30 京セラ株式会社 Communication control method and relay user device
WO2021243604A1 (en) * 2020-06-03 2021-12-09 Oppo广东移动通信有限公司 Data transmission method and device
US12096475B2 (en) 2020-08-26 2024-09-17 Samsung Electronics Co., Ltd. Apparatus and method for coordinated spatial reuse in wireless communication
CN113055969B (en) * 2021-03-23 2023-03-24 浙江大华技术股份有限公司 Node determination method and device
US20240306012A1 (en) * 2021-03-31 2024-09-12 Nec Corporation Communication device, communication system, and communication method
WO2024117661A1 (en) * 2022-11-30 2024-06-06 엘지전자 주식회사 Method and device for performing relay transmission procedure in wireless lan system
WO2024136379A1 (en) * 2022-12-19 2024-06-27 엘지전자 주식회사 Method and device for performing relay transmission during triggered transmission opportunity in wireless lan system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1185829C (en) * 2001-12-19 2005-01-19 华为技术有限公司 Method of controlling Ethernet data flow quantity on synchronous numerical system transmission net
TWI387279B (en) * 2003-10-15 2013-02-21 Qualcomm Inc High speed media access control and direct link protocol
JP4379237B2 (en) * 2004-07-14 2009-12-09 ソニー株式会社 Wireless communication system, wireless communication apparatus, wireless communication method, and computer program
CN100450281C (en) * 2005-03-31 2009-01-07 西门子(中国)有限公司 Distributed multihop wireless network access method
KR20070030059A (en) * 2005-09-12 2007-03-15 삼성전자주식회사 Apparatus and method for a packet flow control of wireless lan
US7707415B2 (en) * 2006-09-07 2010-04-27 Motorola, Inc. Tunneling security association messages through a mesh network
US8457674B2 (en) * 2006-09-29 2013-06-04 Intel Corporation Architecture, protocols and frame formats for wireless multi-hop relay networks
JP4911602B2 (en) * 2007-01-10 2012-04-04 株式会社メガチップス Security system
US8023426B2 (en) * 2007-03-01 2011-09-20 Thomson Licensing Method to select access point and relay node in multi-hop wireless networking
US8848594B2 (en) * 2008-12-10 2014-09-30 Blackberry Limited Method and apparatus for discovery of relay nodes
US8488514B2 (en) * 2009-10-02 2013-07-16 Research In Motion Limited Relay backhaul link quality considerations for mobility procedures

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI741070B (en) * 2016-11-18 2021-10-01 美商高通公司 Techniques and apparatuses for complementary transmission relating to an interrupted traffic flow in new radio

Also Published As

Publication number Publication date
TWI651985B (en) 2019-02-21
KR20160003855A (en) 2016-01-11
HK1216123A1 (en) 2016-10-14
KR101735031B1 (en) 2017-05-15
RU2015150724A (en) 2017-06-07
RU2625943C2 (en) 2017-07-19
WO2014179722A1 (en) 2014-11-06
EP2992712A1 (en) 2016-03-09
JP2016523036A (en) 2016-08-04
JP2018023147A (en) 2018-02-08
CN105165072A (en) 2015-12-16

Similar Documents

Publication Publication Date Title
TWI651985B (en) Discovery, transmit opportunity (txop) operation and flow ?control for range extension in wifi
US11943039B2 (en) Range extension in wireless local area networks
US11917671B2 (en) WiFi channel selection and subchannel selective transmissions
US20210219165A1 (en) Group transmissions in wireless local area networks
TWI701964B (en) A mulit-band member access point and a method for use thereby
JP6515203B2 (en) Triggered transmission opportunity and multi-user ACK procedure in WLAN system
JP2019502327A (en) Control and operation in wireless local area networks
JP2016524377A (en) Method for WiFi sectorized MAC enhancement
TW201445906A (en) Range extension methods and procedures for future WiFi
WO2016011337A1 (en) Methods and procedures for wifi sticky client and peer-to-peer client interference mitigation (wispim)

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees