TW201513351A - Three-dimensional structure of MOSFET and manufacturing method thereof - Google Patents

Three-dimensional structure of MOSFET and manufacturing method thereof Download PDF

Info

Publication number
TW201513351A
TW201513351A TW102135319A TW102135319A TW201513351A TW 201513351 A TW201513351 A TW 201513351A TW 102135319 A TW102135319 A TW 102135319A TW 102135319 A TW102135319 A TW 102135319A TW 201513351 A TW201513351 A TW 201513351A
Authority
TW
Taiwan
Prior art keywords
region
telluride
layer
basic electronic
channel region
Prior art date
Application number
TW102135319A
Other languages
Chinese (zh)
Inventor
Tomoyuki Suwa
Hiroaki Tanaka
Tadahiro Ohmi
Original Assignee
Univ Tohoku
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Tohoku filed Critical Univ Tohoku
Priority to TW102135319A priority Critical patent/TW201513351A/en
Publication of TW201513351A publication Critical patent/TW201513351A/en

Links

Abstract

To provide a basic electronic device having a substantially device performance and an integrated semiconductor device having the integration of the basic electronic component, which can be designed according to a specific size even if the size is extremely small. A MOSFET of a three-dimensional structure comprises a channel region having a plurality of different crystalline faces, a gate electrode facing the plurality of crystalline faces of the channel region, a gate insulating film disposed between the gate electrode and the channel region, and a first and a second silicide regions disposed in such a way that they face toward the direction of current flowing through the channel region and isolated by the channel region.

Description

3維構造之MOSFET及其製造方法 Three-dimensional structure MOSFET and manufacturing method thereof

本發明是有關3維構造之MOSFET及其製造方法。 The present invention relates to a three-dimensional structure MOSFET and a method of fabricating the same.

就像IC(集體電路)和LSI(大規模集體電路)的半導體裝置的開發歷史幾乎是因微細化和高集成化而進展。 The development history of semiconductor devices such as IC (collective circuit) and LSI (large-scale collective circuit) has progressed almost due to miniaturization and high integration.

半導體裝置的構成要素之一,例如:像是MOSFET(Metal Oxide Semiconductor Field Effect Transistor)的基本電子元件的尺寸(特別是閘極長)隨著縮小一途,基本電子元件的微細化則以按照所謂比例定律的形式演進。而且,也可達到因比例的高性能化之維持。 One of the constituent elements of the semiconductor device, for example, the size of a basic electronic component such as a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) (especially the gate length) is reduced as a whole, and the miniaturization of the basic electronic component is in accordance with the so-called ratio. The evolution of the law of the law. Moreover, the maintenance of the high performance due to the ratio can also be achieved.

但是,每當基本電子元件的微細化世代向前邁進就會產生各種的課題,此情況雖有解決措施,但一方面確保基本電子元件的原本特性、一方面達到微細化提高集成度,但在基本電子元件的2維構造(平面構造)、2維排列中,感受到它的極限。 However, every time the micro-generation of basic electronic components moves forward, various problems arise. Although there are solutions to this problem, on the one hand, the original characteristics of basic electronic components are ensured, and on the other hand, micro-leveling is improved to improve integration. The two-dimensional structure (planar structure) of the basic electronic component and the two-dimensional array are perceived as limits.

最近利用藉由多層配線技術的多層化的3維 排到構造進一步提高集成度,或者利用如代表FinFET的立體構造的基本電子元件,達到因微細化的元件之耐特性下降,更進一步達到的微細化、高集成化。 Recently used multi-layered 3D with multilayer wiring technology In order to further improve the degree of integration, or to use a basic electronic component such as a three-dimensional structure representing a FinFET, the resistance characteristics of the element due to the miniaturization are reduced, and further miniaturization and integration are achieved.

另一方面,如電晶體的基本電子元件,例如若為MOS電晶體的情形下,與源極、汲極區域和對應的各電極之間的電性接觸理想上為歐姆接觸。因此,一般採用矽化物化的技術。 On the other hand, if the basic electronic component of the transistor, for example in the case of a MOS transistor, the electrical contact with the source, the drain region and the corresponding electrode is ideally an ohmic contact. Therefore, the technique of deuteration is generally employed.

一面更進一步微細化、一面避開因微細化的元件特性下降,可達成高功能之例如:如FinFET的基本電子元件的情形下,源極、汲極區域的構造為多結晶面構成,以複數個不同的結晶面構成。雖在該不同的結晶面的各個附設電極,但在與該電極和源極、汲極區域之間設有矽化物區域。 Further, while further miniaturizing, it is possible to achieve a high function due to a decrease in the characteristics of the device due to miniaturization. For example, in the case of a basic electronic component of a FinFET, the structure of the source and the drain region is composed of a polycrystalline face, in plural. A different crystal face is formed. Although electrodes are attached to each of the different crystal faces, a telluride region is provided between the electrodes and the source and drain regions.

在各個不同的結晶設置的矽化物區域,儘可能減小流經電極、矽化物區域、源極區域及電極、矽化物區域、汲極區域的電流的路徑的電阻,以提高所形成的電晶體之特性的目標。 In each of the different crystallized telluride regions, the resistance of the path of the current flowing through the electrode, the germanide region, the source region, and the electrode, the germanide region, and the drain region is minimized to increase the formed transistor The goal of the characteristics.

基本電子元件的尺寸如目前般具有某種程度大小的情形下,前述電流路徑的電阻雖不必在意那程問題,但隨著提高微細化的集成度之提升,基本電子元件的尺寸縮小,前述電流路徑的電阻問題明顯化。 In the case where the size of the basic electronic component is as large as the current size, the resistance of the current path does not have to care about the problem of the process, but as the integration of the miniaturization increases, the size of the basic electronic component is reduced, and the current is The resistance problem of the path is obvious.

電流路徑的電阻,大致區分為:電極與矽化物區域之間、矽化物區域與源極區域、汲極區域之間的接觸電阻、和矽化物區域及源極區域、汲極區域的內部電 阻。 The resistance of the current path is roughly divided into: contact resistance between the electrode and the germanide region, between the germanide region and the source region, and the drain region, and internalization of the germanide region and the source region and the drain region. Resistance.

在半導體基板利用矽晶圓或SOI基板的情形下,源極、汲極區域是例如:將硼(B)或磷(P)等的雜質,以高濃度滲雜形成在Si層的高濃度區域,矽化物區域是該高濃度區域和適當的金屬產生矽化物化反應所形成的區域。減低源極區域、汲極區域的內部電阻,係適當選擇所滲雜的雜質的材料,將滲雜量做最佳化所完成。減低接觸電阻,係藉由選擇適當的金屬和適當的矽化物化處理所實現。 In the case where the semiconductor substrate uses a germanium wafer or an SOI substrate, the source and drain regions are, for example, impurities such as boron (B) or phosphorus (P) are formed at a high concentration to form a high concentration region of the Si layer. The telluride region is a region formed by the high concentration region and a suitable metal to produce a ruthenium formation reaction. Reducing the internal resistance of the source region and the drain region is accomplished by appropriately selecting the material of the impurity to be infiltrated and optimizing the amount of the dopant. Reducing the contact resistance is achieved by selecting the appropriate metal and appropriate deuteration treatment.

該元件設計協定,也適用於以利用像是FinFET的複數個不同的結晶面構成之具有源極區域、汲極區域的基本電子元件群構成的半導體裝置的情形。 This device design protocol is also applicable to a semiconductor device including a basic electronic component group having a source region and a drain region, which is composed of a plurality of different crystal faces of a FinFET.

而且,直至現今,即使在以像是FinFET的複數個不同的結晶面構成之具有源極區域、汲極區域的基本電子元件的情形,也與源極區域、汲極區域形成在一個結晶面的2維構造的基本電子元件的情形相同,不按照結晶面一樣地形成矽化物區域。 Moreover, up to now, even in the case of a basic electronic component having a source region or a drain region formed of a plurality of different crystal faces such as a FinFET, a source region and a drain region are formed on one crystal face. In the case of the basic electronic component of the two-dimensional structure, the telluride region is not formed in the same manner as the crystal face.

但是,經本發明者等專心一意研究的結果,若基本電子元件的尺寸為某種程度以下,在矽化物區域結晶面依存性明顯化,且連帶提高基本電子元件的微細化,其結晶面依存性也跟著提高,微細化更為提高,得知在如 上述的習知法或其延長的方法中,基本電子元件的性能提升,欲獲得如集成多數個基本電子元件構成的高集成化半導體裝置的高性能化是困難的。 However, as a result of intensive research by the inventors of the present invention, if the size of the basic electronic component is a certain level or less, the crystal surface dependency in the telluride region is conspicuous, and the basic electronic component is increased in refinement, and the crystal plane dependency is obtained. Also improve, the micro-refinement is improved, and it is known that In the above-described conventional method or the method of extending the same, the performance of the basic electronic component is improved, and it is difficult to obtain high performance of a highly integrated semiconductor device including a plurality of basic electronic components.

本發明欲解決的課題之一是在於提供一種即使尺寸更小仍可根據該尺寸設計,本質上具有元件性能的基本電子元件及集成該基本電子元件構成的集成化半導體裝置。 One of the problems to be solved by the present invention is to provide a basic electronic component which is designed according to the size even if the size is smaller, and which has essentially the component performance and an integrated semiconductor device which is integrated with the basic electronic component.

本發明另一課題是在於提供一種即使尺寸更小仍可根據該尺寸設計,本質上具有元件性能的基本電子元件及集成該基本電子元件構成的集成化半導體裝置之製造方法。 Another object of the present invention is to provide a basic electronic component which can be designed according to the size even if the size is smaller, and a method of manufacturing the integrated semiconductor device including the basic electronic component.

本發明又另一課題是在於提供一種具有以複數個不同的結晶面構成的源極區域、汲極區域的構造的基本電子元件及集成該基本電子元件所構成的集成化半導體裝置。 Still another object of the present invention is to provide a basic electronic component having a structure of a source region and a drain region composed of a plurality of different crystal faces, and an integrated semiconductor device including the basic electronic component.

該些課題是藉由在每個結晶面形成最適當的矽化物區域而達成。 These problems are achieved by forming the most appropriate telluride region on each crystal plane.

本發明之半導體裝置之一方面,其特徵為:基本電子元件為3維構造之MOS-FET,分別具有電極和矽化物區域,且具備:具有以不同的複數個結晶面構成源極區域、汲極區域的構造,該源極區域、汲極區域的矽化物區域的層厚,因不同的結晶面而異(本發明之「第一半 導體裝置」)。 In one aspect of the semiconductor device of the present invention, the basic electronic component is a three-dimensional MOS-FET having electrodes and a germanide region, and having a source region formed by a plurality of different crystal faces. The structure of the polar region, the layer thickness of the germanium region of the source region and the drain region varies depending on different crystal faces (the first half of the present invention) Conductor device").

本發明之半導體裝置之另一方面,其特徵為:基本電子元件為3維構造之MOS-FET,具備:具有不同的複數個結晶面的通道區域、面對該通道區域的複數個結晶面而設的閘極電極、設置在該閘極電極與前述通道區域之間的閘極絕緣膜、和設置成面對流經前述通道區域之電流的方向且隔著該通道區域的第一、第二半導體雜質的高濃度區域,各高濃度區域,具有不同的複數個結晶面同時具有直接設置在各結晶面上的矽化物區域,該矽化物區域的層厚因不同的結晶面而異(本發明之「第二半導體裝置」)。 Another aspect of the semiconductor device of the present invention is characterized in that the basic electronic component is a three-dimensional MOS-FET having a channel region having a plurality of different crystal faces and a plurality of crystal faces facing the channel region. a gate electrode, a gate insulating film disposed between the gate electrode and the channel region, and first and second regions disposed to face a direction of current flowing through the channel region and interposed between the channel regions a high concentration region of semiconductor impurities, each high concentration region having a plurality of different crystal faces and a telluride region directly disposed on each crystal face, the layer thickness of the germanide region being different depending on different crystal faces (The present invention "Second semiconductor device").

以後,在本案中,若為特別限定,否則「半導體裝置」一詞,就是指上述基本電子元件及集成該基本電子元件構成的集成化半導體裝置之兩者或任一者的意思。 Hereinafter, in the present invention, the term "semiconductor device" means both or both of the basic electronic component and the integrated semiconductor device including the basic electronic component.

若藉由本發明,欲解決的課題之一是在於提供一種即使尺寸更小仍可根據該尺寸設計,本質上具有元件性能的基本電子元件及集成該基本電子元件構成的集成化半導體裝置。 According to the present invention, one of the problems to be solved is to provide a basic electronic component which is designed according to the size even if the size is smaller, and which has essentially the component performance and an integrated semiconductor device which is integrated with the basic electronic component.

本發明之其他特徵及優點,參照所附圖面根據以下的說明即可明白。再者,有關所附圖面中,在相同或同樣的構成,附上相同的參考符號。 Other features and advantages of the present invention will be apparent from the description and appended claims. In the drawings, the same or similar components are denoted by the same reference numerals.

100‧‧‧FET 100‧‧‧FET

101‧‧‧矽基板 101‧‧‧矽 substrate

102‧‧‧BOX層 102‧‧‧BOX layer

201‧‧‧SOI層區域 201‧‧‧SOI layer area

202‧‧‧源極區域 202‧‧‧ source area

203‧‧‧汲極區域 203‧‧‧Bungee area

204‧‧‧矽化物區域 204‧‧‧ Telluride area

205‧‧‧源極電極 205‧‧‧ source electrode

206‧‧‧汲極電極 206‧‧‧汲electrode

207‧‧‧閘極絕緣膜區域 207‧‧‧ gate insulating film area

208‧‧‧閘極電極層區域 208‧‧‧ gate electrode layer area

209‧‧‧側壁 209‧‧‧ side wall

400‧‧‧基體 400‧‧‧ base

401‧‧‧SOI層 401‧‧‧SOI layer

402‧‧‧SOI層區域a 402‧‧‧SOI layer area a

403‧‧‧閘極絕緣膜區域a 403‧‧‧ gate insulating film area a

404‧‧‧閘極電極層 404‧‧‧gate electrode layer

405‧‧‧源極區域層 405‧‧‧Source area layer

406‧‧‧汲極區域層 406‧‧ ‧ bungee zone

407‧‧‧上面壁 407‧‧‧Top wall

701‧‧‧(551)面 701‧‧‧(551)

702‧‧‧(100)面 702‧‧‧(100)

703‧‧‧光阻膜 703‧‧‧Photoresist film

704‧‧‧金屬層a(矽化物形成用的金屬層) 704‧‧‧metal layer a (metal layer for telluride formation)

705‧‧‧金屬層b(矽化物形成用的金屬層) 705‧‧‧metal layer b (metal layer for telluride formation)

706‧‧‧矽化物化區域 706‧‧‧Deuterated area

707‧‧‧不要(未反應)金屬層 707‧‧‧Do not (unreacted) metal layer

708‧‧‧矽化物區域a 708‧‧‧ Telluride area a

709‧‧‧矽化物區域 709‧‧‧ Telluride area

801‧‧‧(551)面 801‧‧‧(551)

802‧‧‧(100)面 802‧‧‧(100)

803‧‧‧矽化物化區域 803‧‧‧Deuterated area

804‧‧‧矽化物區域a 804‧‧‧ Telluride area a

805‧‧‧矽化物區域 805‧‧‧ Telluride area

806‧‧‧不要(未反應)金屬層 806‧‧‧Do not (unreacted) metal layer

901‧‧‧矽化物領域 901‧‧‧ Telluride field

所附圖面包含在說明書中,構成其一部分,表示本發明之實施形態,應用於與其記述一同來說明本發明的原理。 The accompanying drawings, which are incorporated in the claims

第1圖是表示本發明之3維構造之MOSFET之典型例之一的模式立體圖。 Fig. 1 is a schematic perspective view showing one of typical examples of a three-dimensional structure MOSFET of the present invention.

第2圖是以第1圖所示的線AA之模式剖面圖。 Fig. 2 is a schematic cross-sectional view taken along line AA shown in Fig. 1.

第3圖是以第2圖所示的線BB之模式剖面圖。 Fig. 3 is a schematic cross-sectional view taken along line BB shown in Fig. 2.

第4圖是表示本發明之3維構造之MOS-FET之一例的具體製法的工程例之前工程的第一模式工程概略說明圖。 Fig. 4 is a schematic view showing the first mode of the project before the construction example of the specific example of the MOS-FET of the three-dimensional structure of the present invention.

第5圖是表示本發明之3維構造之MOS-FET之一例的具體製法的工程例之後工程的第二模式工程概略說明圖。 Fig. 5 is a schematic view showing the second mode of the project after the engineering example of the specific example of the MOS-FET of the three-dimensional structure of the present invention.

第6圖是表示本發明之3維構造之MOS-FET之一例的具體製法的工程例之後工程的第三模式工程概略說明圖。 Fig. 6 is a schematic view showing a third mode of engineering after the engineering example of a specific example of the MOS-FET of the three-dimensional structure of the present invention.

第7圖是表示模式說明形成有關本發明之矽化物區域的典型例之一的工程圖。 Fig. 7 is a view showing a mode for explaining one of typical examples of forming a telluride region according to the present invention.

第8圖是表示模式說明形成有關本發明之矽化物區域的另一典型例的工程圖。 Fig. 8 is a view showing a pattern for explaining another typical example of forming a telluride region according to the present invention.

第9圖是說明本發明之3維構造之MOSFET之另一典型例的模式剖面圖。 Fig. 9 is a schematic cross-sectional view showing another typical example of the MOSFET of the three-dimensional structure of the present invention.

以下,雖是具體說明本發明,但本發明並不限於該些例示。 Hereinafter, the present invention will be specifically described, but the present invention is not limited to the examples.

於第1、2、3圖表示本發明之3維構造之MOSFET100之典型例之一的。第1圖是其模式立體圖,第2圖是以第1圖所示的線AA之模式剖面圖,第3圖是以第2圖所以之線BB的模式剖面圖。 One of the typical examples of the three-dimensional structure MOSFET 100 of the present invention is shown in Figs. 1, 2, and 3. Fig. 1 is a perspective view of a mode, Fig. 2 is a schematic cross-sectional view taken along line AA shown in Fig. 1, and Fig. 3 is a schematic cross-sectional view taken along line BB of Fig. 2.

MOSFET100是在形成有通道區域(未圖表示)的SOI層區域201、該SOI層區域201的外側矽化物,分別設有源極區域(n+區域)202、汲極區域(n+區域)203。 The MOSFET 100 is an SOI layer region 201 in which a channel region (not shown) is formed, and an outer germanide of the SOI layer region 201, and a source region (n + region) 202 and a drain region (n + region) 203 are respectively provided. .

在前述SOI層區域201的上面分別設有閘極絕緣膜區域207、閘極電極層區域208。 A gate insulating film region 207 and a gate electrode layer region 208 are provided on the upper surface of the SOI layer region 201, respectively.

在前述源極區域202、前述汲極區域203的各個外側,分別設有矽化物區域204a、204b。 Telluride regions 204a and 204b are provided on the respective outer sides of the source region 202 and the drain region 203, respectively.

分別以電性直接接觸的狀態在前述矽化物區域204a設有源極電極205,在前述汲極區域204b設有汲極電極206。 A source electrode 205 is provided in the telluride region 204a in a state of direct electrical contact, and a drain electrode 206 is provided in the drain region 204b.

各個前述閘極絕緣膜區域207、前述閘極電極層區域208,不光是前述SOI層區域201的上面,也延長設置在沿著流經形成在前述SOI層區域201的通道區域內的電流流動方向的前述SOI層區域201的側面。亦即,各個前述閘極絕緣膜區域207、前述閘極電極層區域208,是設置成將前述SOI層區域201圍繞在沿著流經前述SOI層區域201內的電流流動方向的前述SOI層區域201的外 面之中的三面。 Each of the gate insulating film region 207 and the gate electrode layer region 208 is not only the upper surface of the SOI layer region 201 but also extends in a flow direction of current flowing in a channel region formed in the SOI layer region 201. The side of the aforementioned SOI layer region 201. That is, each of the foregoing gate insulating film regions 207 and the gate electrode layer region 208 is disposed to surround the SOI layer region 201 in the SOI layer region along a current flowing direction flowing through the SOI layer region 201. Outside of 201 Three sides in the face.

前述矽化物區域204a、204b分別在前述SOI層區域201的側面,以電性直接接觸的狀態設置在對流經前述SOI層區域201內的電流流動方向呈垂直或略垂直的兩個側面之中所對應的側面的全區或實質上的全區。 The telluride regions 204a and 204b are respectively disposed on the side faces of the SOI layer region 201 in a state of electrical direct contact between two sides perpendicular or slightly perpendicular to a flow direction of a current flowing through the SOI layer region 201. The entire area of the corresponding side or the entire area.

像這樣,就能藉由設置前述矽化物區域204a、204b,將形成在前述SOI層區域201的通道區域形成在前述SOI層區域201的約略或實質上的全區。 Thus, the channel region formed in the SOI layer region 201 can be formed in the approximate or substantially entire region of the SOI layer region 201 by providing the germanide regions 204a and 204b.

[實施例1] [Example 1]

第4圖是表示本發明之3維構造之MOS-FET之一例的具體製法的工程例之前段工程的第一模式工程概略說明圖,第5圖是表示其中間段工程的第二模式工程概略說明圖,第5圖是表示其後段工程的第三模式工程概略說明圖。第4、5、6圖是說明直至形成矽化物區域204之前的工程。而且,於各既定的結晶面形成矽化物區域204的最佳例,於第7、8圖示之。 Fig. 4 is a schematic view showing a first mode of the first stage of the engineering example of the specific example of the MOS-FET of the three-dimensional structure of the present invention, and Fig. 5 is a schematic view showing the second mode of the middle section engineering. The explanatory diagram, Fig. 5 is a schematic explanatory diagram showing the third mode engineering of the subsequent stage engineering. Figures 4, 5, and 6 illustrate the work up to the formation of the telluride region 204. Further, a preferred example of forming the telluride region 204 on each predetermined crystal plane is shown in Figs.

先準備用來形成本發明的3維構造之MOS-FET的基體400,在其上形成SOI層401(第4圖之「工程(4a)」)。基體400是以矽基板101和設置在其上的BOX層102構成。 First, a base 400 for forming a three-dimensional structure MOS-FET of the present invention is prepared, and an SOI layer 401 is formed thereon ("Project (4a)" in Fig. 4). The base 400 is constituted by a ruthenium substrate 101 and a BOX layer 102 provided thereon.

其次,利用乾式蝕刻等來蝕刻SOI層401的去除部分,以形成SOI層區域a402(第4圖之「工程(4b)」)。 Next, the removed portion of the SOI layer 401 is etched by dry etching or the like to form an SOI layer region a402 ("Project (4b)" in Fig. 4).

然後,藉由利用濺鍍法的成膜和一般的圖案化,在前述SOI層區域a402上利用SiO2等的絕緣材料來形成閘極絕緣膜(圖未表示)和閘極電極層404。閘極電極層404,例如:以Poly-Si等構成(第5圖之「工程(5c)」)。 Then, a gate insulating film (not shown) and a gate electrode layer 404 are formed on the SOI layer region a402 by an insulating material such as SiO2 by film formation by sputtering and general patterning. The gate electrode layer 404 is made of, for example, Poly-Si or the like ("Project (5c)" in Fig. 5).

然後,施行光阻劑塗佈、圖案曝光、蝕刻、洗淨等以進行圖案化,形成閘極絕緣膜區域403、閘極電極層區域208(第5圖之「工程(5d)」)。 Then, photoresist coating, pattern exposure, etching, cleaning, or the like is performed to perform patterning, thereby forming a gate insulating film region 403 and a gate electrode layer region 208 ("Project (5d)" in Fig. 5).

在SOI層區域a402的源極、汲極的形成區域,以高濃度離子注入硼(B)等的雜質,形成高濃度的n+區域的源極區域層405、汲極區域層406(第6圖之「工程(6e)」)。 In the source and drain formation regions of the SOI layer region a402, impurities such as boron (B) are ion-implanted at a high concentration to form a source region layer 405 and a drain region layer 406 of a high concentration n + region (6th) Figure "Engineering (6e)").

其次,利用濺鍍法等堆積SiO2等之絕緣材料之後,利用乾式蝕刻法進行非等向性蝕刻,分別如圖所示的形成側壁209a、209b(第6圖之「工程(6f)」)。 Then, an insulating material such as SiO2 is deposited by a sputtering method or the like, and then anisotropic etching is performed by a dry etching method, and sidewalls 209a and 209b are formed as shown in the figure ("Project (6f)" in Fig. 6).

於以下整理記載以上說明的工程(第4圖至第5圖)的要點。 The points of the above-described project (Figs. 4 to 5) are described below.

準備工程(4a)SOI晶圓 Prepare Engineering (4a) SOI Wafer

.按既定來調整SOI層的膜厚。 . The film thickness of the SOI layer is adjusted as intended.

工程(4b)SOI層元件分離 Engineering (4b) SOI layer component separation

.利用乾式蝕刻形成元件分離部的圖案 . Forming the pattern of the element separation portion by dry etching

工程(5c)閘極絕緣膜的形成、閘極電極的成膜 Engineering (5c) formation of gate insulating film, film formation of gate electrode

.利用SiO2等的絕緣材料來形成閘極絕緣膜。 . A gate insulating film is formed using an insulating material such as SiO 2 .

.閘極電極用Poly-Si的沉積 . Deposition of Poly-Si for Gate Electrode

工程(5d)閘極電極的蝕刻、閘極絕緣膜的蝕刻 Engineering (5d) etching of gate electrode and etching of gate insulating film

.將閘極電極用Poly-Si(閘極電極層404)進行乾式蝕刻處理,以形成閘極電極層區域208。 . The gate electrode is dry etched with Poly-Si (gate electrode layer 404) to form a gate electrode layer region 208.

.將閘極絕緣膜進行蝕刻(乾刻或濕刻)處理,以形成閘極絕緣膜區域a403。 . The gate insulating film is subjected to etching (dry etching or wet etching) treatment to form a gate insulating film region a403.

工程(6e)離子注入源極、汲極區域層 Engineering (6e) ion implantation source and drain region layer

.對源極、汲極區域層離子注入硼(B)或磷(P)等的半導體雜質,以形成雜質的高濃度區域層(源極區域層405、汲極區域層406)。 . A semiconductor impurity such as boron (B) or phosphorus (P) is ion-implanted into the source and drain regions to form a high-concentration region layer (source region layer 405 and drain region layer 406) of impurities.

工程(6f)形成側壁209 Engineering (6f) forms sidewall 209

.側壁形成用薄膜的沉積 . Deposition of a film for sidewall formation

.乾式蝕刻(非等向性蝕刻)處理側壁形成用薄膜 . Dry etching (non-isotropic etching) processing film for sidewall formation

[矽化物區域的形成例1] [Formation Example 1 of Telluride Region]

其次,根據第7圖說明設置矽化物區域之例示。在第7圖的工程(7c)或(7e)中,將矽化物形成用的金屬(metal)層b705分兩次利用蒸鍍法如圖所示的設置。此時,將蒸鍍條件選擇成最佳的矽化物區域的層厚蒸鍍在各結晶面。 Next, an illustration of setting a telluride region will be described based on Fig. 7. In the work (7c) or (7e) of Fig. 7, the metal layer b705 for forming a telluride is placed twice by a vapor deposition method as shown in the figure. At this time, the vapor deposition conditions were selected so that the layer thickness of the optimum telluride region was vapor-deposited on each crystal face.

圖例的情形,與(551)面701上的金屬層b705的層厚相比,(100)面702上的金屬層b705的層厚比較厚。因而,藉由後面適用的矽化物化處理形成的矽化物區域的層厚,也是(100)面702上的比較厚。 In the case of the legend, the layer thickness of the metal layer b705 on the (100) plane 702 is relatively thicker than the layer thickness of the metal layer b705 on the (551) plane 701. Therefore, the layer thickness of the germanide region formed by the subsequent bismuth chemical treatment is also relatively thick on the (100) plane 702.

於本發明中,形成在(551)面701上的矽化物區域a708的層厚,雖是利用矽化物化使用的金屬,但希望例如為銪(Er)的情形下,理想為4nm以下。 In the present invention, the layer thickness of the telluride region a708 formed on the (551) plane 701 is a metal used for bismuthation, but in the case of, for example, erbium (Er), it is preferably 4 nm or less.

然後進行熱處理,在金屬層705和源極區域層a501以及汲極區域層a502的各界面區域,分別形成矽化物區域204a、708b(第7圖之「工程(7i)」)。同時分別形成源極區域202、汲極區域203(參照第2圖)。 Then, heat treatment is performed to form the telluride regions 204a and 708b in the respective interface regions of the metal layer 705 and the source region layer a501 and the drain region layer a502 ("engineering (7i)" in Fig. 7). At the same time, the source region 202 and the drain region 203 are formed separately (see FIG. 2).

其次,利用上述的矽化物化處理,來去除未矽化物的不要金屬層707a、707b(未反應金屬層)(第7圖的「工程(7g)」。 Next, the undeposited metal layers 707a and 707b (unreacted metal layers) of the undeuterated material are removed by the above-described bismuth chemical treatment ("engineering (7g)" in Fig. 7).

然後,蒸鍍電性連接形成用的金屬,形成連接形成用的金屬層,接著藉由圖案化除去該金屬層之不要的部分,形成源極電極205、汲極電極206(參照第2圖)。 Then, a metal for forming an electrical connection is formed by vapor deposition to form a metal layer for connection formation, and then unnecessary portions of the metal layer are removed by patterning to form a source electrode 205 and a drain electrode 206 (see FIG. 2). .

於以下整理記載,以上說明的工程中,形成矽化物區域之要點的形成條件之一例。 In the following description, an example of the formation conditions of the points of the telluride region is formed in the above-described process.

(a)形成3維構造之源極、汲極區域(第7圖的工程7a)。 (a) Forming a source and a drain region of a three-dimensional structure (item 7a of Fig. 7).

(b)以旋塗法來塗佈光阻劑(第7圖的工程7b)。 (b) The photoresist is applied by a spin coating method (Item 7b of Fig. 7).

(c)進行金屬成膜以形成金屬層a704(第7圖的工程7c)。 (c) Metal film formation is performed to form the metal layer a704 (item 7c of Fig. 7).

.利用濺鍍法來成膜Er(銪)。 . The sputtering method is used to form Er (铕).

.濺鍍條件:Ar氣體流量...20sccm,壓力...133Pa(1Torr),膜厚...8nm . Sputtering conditions: Ar gas flow. . . 20sccm, pressure. . . 133Pa (1 Torr), film thickness. . . 8nm

(d)去除光阻劑及光阻劑上的金屬層(第7圖的工程7d)。 (d) Removal of the photoresist and the metal layer on the photoresist (Work 7d of Figure 7).

例如:一面利用有機溶劑剝離光阻劑、一面剝離金屬層。 For example, the metal layer is peeled off while the photoresist is removed by an organic solvent.

(e)進行金屬成膜以形成金屬層b704(第7圖的工程7e)。 (e) Metal film formation is performed to form metal layer b704 (Project 7e of Fig. 7).

.利用濺鍍法來成膜Er(銪)。 . The sputtering method is used to form Er (铕).

.濺鍍條件:Ar氣體流量...20sccm,壓力...133Pa(1Torr),膜厚...2nm . Sputtering conditions: Ar gas flow. . . 20sccm, pressure. . . 133Pa (1 Torr), film thickness. . . 2nm

(f)矽化物化處理(第7圖的工程7f)。 (f) Deuteration treatment (Project 7f of Fig. 7).

以600℃、2min時間進行燈退火。 The lamp was annealed at 600 ° C for 2 min.

(g)去除未反應金屬(第7圖的工程7g)。 (g) Removal of unreacted metal (engineer 7g of Fig. 7).

SPM(H2SO4:H2O2=4:1)使用30sec時間。 SPM (H2SO4: H2O2 = 4:1) uses 30sec time.

[矽化物區域的形成例2] [Formation Example 2 of Telluride Region]

其次,根據第8圖說明設置矽化物區域之另一例示。為避免複雜度,於以下整理記載。 Next, another example of setting the telluride region will be described based on Fig. 8. In order to avoid complexity, the following is recorded.

(a)形成3維構造之源極、汲極區域(第8圖的工程7a)。 (a) Forming a source and a drain region of a three-dimensional structure (item 7a of Fig. 8).

(b)在以下條件中,傾斜基體,且進行非等向性的成膜,進行金屬成膜,與第7圖情形相同,形成金屬層(第8圖的工程8b)。 (b) Under the following conditions, the substrate was tilted, and an anisotropic film formation was performed to form a metal film, and a metal layer was formed as in the case of Fig. 7 (item 8b of Fig. 8).

.利用濺鍍法形成Er膜。 . The Er film was formed by sputtering.

.濺鍍條件:Ar氣體流量...20sccm,壓力...0.67Pa(5mTorr), . Sputtering conditions: Ar gas flow. . . 20sccm, pressure. . . 0.67Pa (5mTorr),

.在(100)面上為5nm、在(551)面上為1nm,形成Er膜。 . An Er film was formed by having 5 nm on the (100) plane and 1 nm on the (551) plane.

(c)在以下條件中,傾斜基體,且進行非等向性的成膜,進行金屬成膜,與第7圖情形相同,形成金屬層(第8圖的工程8c)。 (c) Under the following conditions, the substrate was tilted, and an anisotropic film formation was performed to form a metal film, and a metal layer was formed as in the case of Fig. 7 (item 8c of Fig. 8).

.濺鍍條件:Ar氣體流量...20sccm,壓力...0.67Pa(5mTorr), . Sputtering conditions: Ar gas flow. . . 20sccm, pressure. . . 0.67Pa (5mTorr),

.在(100)面上為5nm、在(551)面上為1nm,形成Er膜。 . An Er film was formed by having 5 nm on the (100) plane and 1 nm on the (551) plane.

利用此兩次的成膜,在(100)面上為10nm、在(551)面上為2nm,形成Er膜。 With this two-time film formation, an Er film was formed by 10 nm on the (100) plane and 2 nm on the (551) plane.

(d)矽化物化處理 (d) Deuteration treatment

以600℃、2min時間進行燈退火。 The lamp was annealed at 600 ° C for 2 min.

(e)去除未反應金屬 (e) removal of unreacted metal

SPM(H2SO4:H2O2=4:1)使用30sec時間。 SPM (H2SO4: H2O2 = 4:1) uses 30sec time.

於以下記載形成源極電極205、汲極電極206的情形之一例。 An example of the case where the source electrode 205 and the drain electrode 206 are formed will be described below.

(1)形成連接形成用的金屬(鎢:W)層。 (1) A metal (tungsten: W) layer for forming a connection is formed.

.依濺鍍法形成鎢(W)膜。 . A tungsten (W) film is formed by sputtering.

.濺鍍條件:Ar氣體的流量....20sccm,壓力....1.33Pa(10mTorr),膜厚....100nm . Sputtering conditions: flow of Ar gas. . . . 20sccm, pressure. . . . 1.33Pa (10mTorr), film thickness. . . . 100nm

(2)以乾式蝕刻去除連接形成用的金屬(鎢:W)層的不要部分。 (2) The unnecessary portion of the metal (tungsten: W) layer for connection formation is removed by dry etching.

.W的乾刻條件:Ar氣體流量....100sccm,SF6氣體流量....20sccm,壓力....1.33Pa(10mTorr),RF功率....30W . Dry etching conditions of W: Ar gas flow. . . . 100sccm, SF6 gas flow. . . . 20sccm, pressure. . . . 1.33Pa (10mTorr), RF power. . . . 30W

於第9圖表示將矽化物區域設於立體構造的源極、汲極區域的四個面之例示。第9圖的例示是第2圖之例示的變形例。亦即,第2圖例示的情形,雖是在三個面設置矽化物區域,但第9圖例示的情形,除此之外,分別設有矽化物區域901a、901b。作為此種構造,電流路的確保更為確實。 Fig. 9 shows an example in which the germanide region is provided on the four faces of the source and drain regions of the three-dimensional structure. The illustration of Fig. 9 is an example of the modification of Fig. 2 . That is, in the case illustrated in Fig. 2, the telluride regions are provided on three faces, but in the case of the exemplified in Fig. 9, the telluride regions 901a and 901b are provided, respectively. As such a structure, the securing of the current path is more reliable.

本發明並不限於上述實施形態,不脫離本發明之精神及範圍可做各種變更及變形。 The present invention is not limited to the embodiments described above, and various changes and modifications may be made without departing from the spirit and scope of the invention.

101‧‧‧矽基板 101‧‧‧矽 substrate

102‧‧‧BOX層 102‧‧‧BOX layer

201‧‧‧SOI層區域 201‧‧‧SOI layer area

202‧‧‧源極區域 202‧‧‧ source area

203‧‧‧汲極區域 203‧‧‧Bungee area

204a、204b‧‧‧矽化物區域 204a, 204b‧‧‧ Telluride area

205‧‧‧源極電極 205‧‧‧ source electrode

206‧‧‧汲極電極 206‧‧‧汲electrode

207‧‧‧閘極絕緣膜區域 207‧‧‧ gate insulating film area

208‧‧‧閘極電極層區域 208‧‧‧ gate electrode layer area

209a、209b‧‧‧側壁 209a, 209b‧‧‧ side wall

Claims (2)

一種半導體裝置,屬於基本電子元件為3維構造之MOS-FET,其特徵為:分別具有電極和矽化物區域,且具備:具有以不同的複數個結晶面構成源極區域、汲極區域的構造,該源極區域、汲極區域的矽化物區域的層厚,因不同的結晶面而異。 A semiconductor device is a MOS-FET having a three-dimensional structure in which a basic electronic component has an electrode and a germanide region, and has a structure in which a source region and a drain region are formed by a plurality of different crystal faces. The layer thickness of the telluride region in the source region and the drain region varies depending on different crystal faces. 一種半導體裝置,屬於基本電子元件為3維構造之MOS-FET,其特徵為:具備:具有不同的複數個結晶面的通道區域、面對該通道區域的複數個結晶面而設的閘極電極、設置在該閘極電極與前述通道區域之間的閘極絕緣膜、和設置成面對流經前述通道區域之電流的方向且隔著該通道區域的第一、第二半導體雜質的高濃度區域,各高濃度區域,具有不同的複數個結晶面同時具有直接設置在各結晶面上的矽化物區域,該矽化物區域的層厚因不同的結晶面而異。 A semiconductor device belonging to a MOS-FET having a three-dimensional structure of basic electronic components, comprising: a channel region having a plurality of different crystal faces; and a gate electrode provided to face a plurality of crystal faces of the channel region a gate insulating film disposed between the gate electrode and the channel region, and a high concentration of first and second semiconductor impurities disposed in a direction facing a current flowing through the channel region and interposed between the channel regions The region, each of the high concentration regions, has a plurality of different crystal faces and has a telluride region directly disposed on each crystal face, and the layer thickness of the telluride region varies depending on different crystal faces.
TW102135319A 2013-09-30 2013-09-30 Three-dimensional structure of MOSFET and manufacturing method thereof TW201513351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102135319A TW201513351A (en) 2013-09-30 2013-09-30 Three-dimensional structure of MOSFET and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102135319A TW201513351A (en) 2013-09-30 2013-09-30 Three-dimensional structure of MOSFET and manufacturing method thereof

Publications (1)

Publication Number Publication Date
TW201513351A true TW201513351A (en) 2015-04-01

Family

ID=53437251

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102135319A TW201513351A (en) 2013-09-30 2013-09-30 Three-dimensional structure of MOSFET and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TW201513351A (en)

Similar Documents

Publication Publication Date Title
JP6788672B2 (en) Vertical field effect transistor and its manufacturing method
TWI622129B (en) Semiconductor structure and manufacturing method thereof
TWI527237B (en) Semiconductor devices and methods of manufacture the same
TWI745375B (en) Method of fabricating contact structure and semiconductor device
TWI485848B (en) Semiconductor device and method for fabricating the same
TWI423345B (en) Method of producing semiconductor device
US8304842B2 (en) Interconnection structure for N/P metal gates
US8912056B2 (en) Dual epitaxial integration for FinFETS
TW201719769A (en) Fabricating method of fin field effect transistor
JP2006294995A (en) Field-effect transistor and its manufacturing method
TW201822263A (en) Semiconductor device and method for fabricating the same
US9853128B2 (en) Devices and methods of forming unmerged epitaxy for FinFET device
KR20130091625A (en) A semiconductor device and method of forming the same
TW201724281A (en) Fabricating method of fin field effect transistor
TWI711179B (en) Fin-type field effect transistor structure and manufacturing method thereof
TW201913751A (en) Semiconductor device and method of forming the same
JP2006351975A (en) Semiconductor device and its manufacturing method
JP5654184B1 (en) Semiconductor device manufacturing method and semiconductor device
TWI670770B (en) Enlarged sacrificial gate caps for forming self-aligned contacts
TWI576959B (en) Method of forming semiconductor structure having contact plug
JP5553256B2 (en) MOSFET having three-dimensional structure and manufacturing method thereof
US9490265B2 (en) Semiconductor device and method for fabricating the same
TW201803016A (en) Method of fabricating semiconductor device
TW201513351A (en) Three-dimensional structure of MOSFET and manufacturing method thereof
JP2003298050A (en) Manufacturing method for semiconductor device