TW201511334A - Nanowire LED structure with decreased leakage and method of making same - Google Patents

Nanowire LED structure with decreased leakage and method of making same Download PDF

Info

Publication number
TW201511334A
TW201511334A TW103119947A TW103119947A TW201511334A TW 201511334 A TW201511334 A TW 201511334A TW 103119947 A TW103119947 A TW 103119947A TW 103119947 A TW103119947 A TW 103119947A TW 201511334 A TW201511334 A TW 201511334A
Authority
TW
Taiwan
Prior art keywords
layer
semiconductor
shell
algan
conductivity type
Prior art date
Application number
TW103119947A
Other languages
Chinese (zh)
Inventor
Carl Patrik Theodor Svensson
Linda Romano
Scott Brad Herner
Cynthia Lemay
Original Assignee
Glo Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glo Ab filed Critical Glo Ab
Publication of TW201511334A publication Critical patent/TW201511334A/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

A semiconductor device includes a plurality of first conductivity type semiconductor nanowire cores extending from portions of a surface of a support exposed through openings in a mask layer, and a plurality of semiconductor shells extending over the nanowire cores. Each semiconductor shell includes at least one semiconductor interior shell extending around the respective nanowire cores, and a second conductivity type semiconductor outer shell extending around the interior shell. A first electrode layer contacts the second conductivity type semiconductor outer shell and extends into spaces between the semiconductor shells. The semiconductor interior shell includes a semiconductor foot portion which extends under the first electrode and under the respective second conductivity type semiconductor outer shell on the insulating masking layer in the spaces between the semiconductor shells. Semiconductor devices and methods including an insulating layer located between an insulating mask layer and a first electrode in the spaces between semiconductor shells.

Description

具有經減低漏電之奈米線發光二極體結構及其製造方法 Nanowire light-emitting diode structure with reduced leakage and manufacturing method thereof 相關申請案 Related application

此申請案主張於2013年6月7日提出申請之美國臨時申請案第61/832,309號及於2013年6月7日提出申請之美國臨時申請案第61/832,350號之優先權之權益。所有此等申請案之整體內容皆以引用方式併入本文中。 This application claims the benefit of priority to U.S. Provisional Application No. 61/832,309, filed on Jun. 7, 2013, and U.S. Provisional Application No. 61/832,350, filed on Jun. 7, 2013. The entire contents of all of these applications are hereby incorporated by reference.

本發明之實施例一般而言係關於半導體裝置,諸如奈米線發光二極體(LED),且特定而言係關於在奈米線之基底處具有用以減低漏電電流之一額外絕緣層之奈米線LED。 Embodiments of the present invention generally relate to semiconductor devices, such as nanowire light emitting diodes (LEDs), and in particular to an additional insulating layer at the base of the nanowire for reducing leakage current. Nano line LED.

奈米線發光二極體(LED)作為平面LED之一替代方案愈來愈受關注。與藉助習用平面技術所產生之LED相比,奈米線LED由於奈米線之一維本質而提供獨特性質、由於較少晶格匹配限制而提供材料組合之經改良靈活性及提供用於在較大基板上進行處理之機會。 Nanowire light-emitting diodes (LEDs) are becoming more and more attractive as an alternative to planar LEDs. Compared to LEDs produced by conventional planar technology, nanowire LEDs offer unique properties due to one-dimensional nature of the nanowires, provide improved flexibility of material combinations due to fewer lattice matching limitations, and are provided for use in The opportunity to process on a larger substrate.

在一項態樣中,一種半導體裝置包含:複數個第一導電性類型半導體奈米線芯,其位於一支撐件上方且自該支撐件之一半導體表面透過絕緣遮罩層中之開口而曝露之部分延伸;及複數個半導體殼層,其在該等各別奈米線芯上方延伸。該複數個半導體殼層中之每一者包 含:至少一個半導體內部殼層,其圍繞該複數個奈米線芯中之各別者而延伸;及一第二導電性類型半導體外殼層,其圍繞該至少一個半導體內部殼層而延伸。一第一電極層接觸該複數個半導體殼層中之該第二導電性類型半導體外殼層且延伸至該等半導體殼層之間的空間中。 該半導體內部殼層包含一半導體底腳部分,該半導體底腳部分在該第一電極及該各別第二導電性類型半導體外殼層下方在該絕緣遮罩層上於該複數個半導體殼層之間的該等空間中延伸。 In one aspect, a semiconductor device includes: a plurality of first conductivity type semiconductor nanowire cores positioned over a support member and exposed from an opening of one of the support members through an opening in the insulating mask layer a portion of the extension; and a plurality of semiconductor shells extending over the respective nanowire cores. Each of the plurality of semiconductor shell layers And comprising: at least one semiconductor inner shell extending around each of the plurality of nanowire cores; and a second conductivity type semiconductor outer layer extending around the at least one semiconductor inner shell. A first electrode layer contacts the second conductivity type semiconductor outer casing layer of the plurality of semiconductor shell layers and extends into a space between the semiconductor shell layers. The semiconductor inner casing layer includes a semiconductor foot portion on the insulating mask layer over the plurality of semiconductor shell layers under the first electrode and the respective second conductivity type semiconductor shell layers The space between them extends.

在一進一步態樣中,一種半導體裝置包含:複數個第一導電性類型半導體奈米線芯,其位於一支撐件上方;一絕緣遮罩層,其位於該支撐件上方,其中該等奈米線芯包括自該支撐件之一半導體表面透過該絕緣遮罩層中之開口而曝露之部分磊晶延伸之半導體奈米線;複數個第二導電性類型半導體殼層,其在該等各別奈米線芯上方且圍繞該等各別奈米線芯延伸;一第一電極層,其接觸該等第二導電性類型半導體殼層並延伸至該等半導體殼層之間的空間中;及一絕緣層,其位於該絕緣遮罩層與該第一電極之間在該等半導體殼層之間的該等空間中。 In a further aspect, a semiconductor device includes: a plurality of first conductivity type semiconductor nanowire cores over a support member; an insulating mask layer over the support member, wherein the nanometers The wire core includes a portion of the epitaxially extending semiconductor nanowire exposed from the semiconductor surface of the support member through the opening in the insulating mask layer; and a plurality of second conductive type semiconductor shell layers in the respective a nanowire core extending over and surrounding the respective nanowire cores; a first electrode layer contacting the second conductivity type semiconductor shell layers and extending into a space between the semiconductor shell layers; An insulating layer between the insulating mask layer and the first electrode in the spaces between the semiconductor shell layers.

1‧‧‧奈米線發光二極體/其餘奈米線發光二極體結構/奈米線 發光二極體結構/奈米線 1‧‧‧Nano-line light-emitting diode/other nanowire light-emitting diode structure/nano line Light-emitting diode structure / nanowire

2‧‧‧n型奈米線芯/奈米線芯/芯/n型芯/第一導電性類型芯/第一導電性類型(例如,n型)半導體奈米線芯/第一導電性類型半導體奈米線芯 2‧‧‧n type nanowire core/nano core/core/n core/first conductivity type core/first conductivity type (for example, n type) semiconductor nanowire core/first conductivity Type semiconductor nanowire core

2A‧‧‧根 2A‧‧‧ root

3‧‧‧p型殼層/殼層/外殼層/半導體殼層/第二導電性類型半導體殼層/半導體殼層側壁 3‧‧‧p-type shell/shell/shell/semiconductor shell/second conductivity type semiconductor shell/semiconductor shell sidewall

3A‧‧‧內殼層/殼層子層/殼層/內AlGaN殼層/第一p-AlGaN內殼層/p-AlGaN內殼層/AlGaN殼層/層/p-AlGaN殼層/第二導電性類型殼層/結晶部分/底腳阻擋層/結晶AlGaN/半導體殼層/實質上單晶AlGaN內部殼層/實質上單晶p-AlGaN內殼層/實質上單晶內殼層 3A‧‧‧Inner/Shell Sublayer/Shell/Inner AlGaN Shell/First p-AlGaN Inner Shell/p-AlGaN Inner Shell/AlGaN Shell/Layer/p-AlGaN Shell/No Two Conductive Type Shell/Crystal Part/Bottom Barrier Layer/Crystalline AlGaN/Semiconductor Shell/Substantial Single Crystal AlGaN Inner Shell/Substantial Single Crystal p-AlGaN Inner Shell/Substantial Single Crystal Inner Shell

3B‧‧‧外殼層/殼層子層/外GaN殼層/外p-GaN殼層/殼層/p-GaN殼層/實質上單晶p-GaN外殼層/p-GaN外殼層 3B‧‧‧Sheath/shell sublayer/outer GaN shell/outer p-GaN shell/shell/p-GaN shell/substantial single crystal p-GaN shell/p-GaN shell

3C‧‧‧中間殼層/p-AlGaN中間殼層/AlGaN殼層/殼層/第二導電性類型殼層/底腳阻擋層/結晶AlGaN/半導體殼層/實質上單晶AlGaN內部殼層 3C‧‧‧Intermediate Shell/p-AlGaN Intermediate Shell/AlGaN Shell/Shell/Second Conductive Type Shell/Bottom Barrier/Crystal AlGaN/Semiconductor Shell/Substantial Single Crystal AlGaN Inner Shell

4‧‧‧中間作用區域/作用區域/作用區域殼層/量子井殼層/量子井/半導體作用區域 4‧‧‧Intermediate zone/action zone/action zone shell/quantum well shell/quantum well/semiconductor active zone

5‧‧‧生長基板/基板/Si基板 5‧‧‧Growth substrate/substrate/Si substrate

6‧‧‧生長遮罩/介電遮罩層/遮罩/遮罩層/氮化矽遮罩層/氮化矽遮罩/絕緣遮罩層 6‧‧‧Growth mask/dielectric mask layer/mask/mask layer/tantalum nitride mask layer/tantalum nitride mask/insulation mask layer

7‧‧‧半導體緩衝層/GaN及/或AlGaN緩衝層/緩衝層/n型半導體緩衝層 7‧‧‧Semiconductor buffer layer/GaN and/or AlGaN buffer layer/buffer layer/n-type semiconductor buffer layer

8‧‧‧開口 8‧‧‧ openings

9‧‧‧電極/第一電極/p側電極/上部電極/頂部電極/頂部(例 如,p側)電極層 9‧‧‧electrode/first electrode/p-side electrode/upper electrode/top electrode/top (example) For example, p side) electrode layer

10‧‧‧底腳區域/基底區域 10‧‧‧foot area/base area

11‧‧‧空間 11‧‧‧ Space

13‧‧‧半導體底腳/底腳/多晶p-AlGaN底腳/AlGaN底腳/底腳部分/n-AlGaN底腳/底腳阻擋層/多晶AlGaN底腳/相對高電阻率半導體AlGaN底腳/半導體底腳部分/多晶p-AlGaN底腳部分/多晶半導體底腳部分/p-AlGaN底腳部分/多晶半導體底腳 13‧‧‧Semiconductor Foot/Bottom/Polycrystalline p-AlGaN Foot/AlGaN Foot/Foot Part/n-AlGaN Foot/Bottom Barrier/Polycrystalline AlGaN Foot/ Relative High Resistivity Semiconductor AlGaN Foot/semiconductor foot portion/polycrystalline p-AlGaN foot portion/polycrystalline semiconductor foot portion/p-AlGaN foot portion/polycrystalline semiconductor foot

13A‧‧‧底腳/多晶底腳/p-n二極體底腳/底腳阻擋層 13A‧‧‧foot/polycrystalline foot/p-n diode foot/foot barrier

13B‧‧‧底腳/多晶底腳/p-n二極體底腳/底腳阻擋層 13B‧‧‧foot/polycrystalline foot/p-n diode foot/foot barrier

15‧‧‧絕緣層/層/旋塗式介電層/旋塗式絕緣層/經緻密旋塗式玻璃層/旋塗式玻璃絕緣層 15‧‧‧Insulation/Layer/Spin-on Dielectric/Spin-on Insulation/Dense-Spin-On Glass/Spin-On Glass Insulation

15A‧‧‧較厚部分/厚部分/旋塗式玻璃層較厚部分 15A‧‧‧Thicker part/thick part/thick-coated glass layer thicker part

15B‧‧‧較薄部分 15B‧‧‧ thinner part

15C‧‧‧中厚度部分/較薄部分 15C‧‧‧Medium thickness/thinner part

17‧‧‧第二電極層/電極/第二電極 17‧‧‧Second electrode layer/electrode/second electrode

23‧‧‧純質或n型摻雜之AlGaN殼層/AlGaN殼層/第一導電性類型(例如,n型)AlGaN殼層/殼層/結晶部分/底腳阻擋層/結晶AlGaN/半導體殼層/n型殼層/實質上單晶AlGaN內部殼層/內n-AlGaN殼層 23‧‧‧Pure or n-doped AlGaN shell/AlGaN shell/first conductivity type (eg n-type) AlGaN shell/shell/crystal part/foot barrier/crystalline AlGaN/semiconductor Shell/n-type shell/substantially single crystal AlGaN inner shell/inner n-AlGaN shell

25‧‧‧n-GaN殼層/殼層 25‧‧‧n-GaN shell/shell

313‧‧‧底腳阻擋層/層/阻擋層 313‧‧‧Bottom barrier/layer/barrier

313C‧‧‧部分 Section 313C‧‧‧

圖1示意性地圖解說明根據本發明之實施例之一奈米線LED之一基礎之一側視剖面圖。 BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic cross-sectional view showing one of the foundations of one of the nanowire LEDs according to an embodiment of the present invention.

圖2示意性地圖解說明根據本發明之實施例之一緩衝層上之一奈米線LED結構之一側視剖面圖。 Figure 2 is a schematic cross-sectional view showing one of the nanowire LED structures on a buffer layer in accordance with an embodiment of the present invention.

圖3A、圖3B、圖3C、圖3D、圖4A及圖4B示意性地圖解說明根據本發明之實施例之一奈米線LED之側視剖面圖。 3A, 3B, 3C, 3D, 4A, and 4B schematically illustrate side cross-sectional views of a nanowire LED in accordance with an embodiment of the present invention.

圖3E、圖3F、圖3G及圖3H示意性地圖解說明根據本發明之實施例之製造一奈米線LED之一方法之步驟之側視剖面圖。 3E, 3F, 3G, and 3H schematically illustrate side cross-sectional views of the steps of a method of fabricating a nanowire LED in accordance with an embodiment of the present invention.

圖5A、圖5B、圖5C及圖5D示意性地圖解說明根據本發明之實施 例之一奈米線LED之側視剖面圖。 5A, 5B, 5C, and 5D schematically illustrate the implementation in accordance with the present invention A side cross-sectional view of one of the nanowire LEDs.

圖6A、圖6B、圖6C及圖6D係根據本發明之實施例之展示製造一奈米線LED之一方法之步驟之SEM顯微圖。圖6A及圖6B係分別展示圖3A及圖3B之基底區域成型之顯微圖。圖6C係SOG層沈積、亁燥及退火之後的一顯微圖。圖6D係藉由氫氟酸(HF)溶液而部分蝕刻SOG層之後的一顯微圖。 6A, 6B, 6C, and 6D are SEM micrographs showing the steps of a method of fabricating a nanowire LED in accordance with an embodiment of the present invention. 6A and 6B are micrographs showing the formation of the base regions of Figs. 3A and 3B, respectively. Figure 6C is a micrograph of the SOG layer after deposition, drying and annealing. Figure 6D is a micrograph after partially etching the SOG layer by hydrofluoric acid (HF) solution.

圖7係在具有及不具有SOG層之情況下之針對約500個由奈米線LED構成之裝置之在+2V下之電流之一概率圖。 Figure 7 is a plot of the probability of current at +2V for about 500 devices consisting of nanowire LEDs with and without the SOG layer.

在奈米技術之技術領域中,奈米線通常解釋為具有奈米尺度或奈米尺寸之一橫向大小(例如,圓柱形奈米線之直徑或者金字塔或六邊形奈米線之寬度)之奈米結構,而其縱向大小係不受限的。此等奈米結構通常亦稱為奈米鬚、一維奈米元件、奈米棒、奈米管等。奈米線可具有至多約2微米之一直徑或寬度。奈米線之小大小提供獨特物理、光學及電子性質。舉例而言,此等性質可用於利用量子機械效應(例如,使用量子線)來形成裝置或用於形成通常因大晶格不匹配而無法組合之組成上不同材料之異質結構。如術語奈米線暗示,一維本質可與一伸長形狀相關聯。由於奈米線可具有各種剖面形狀,因此直徑意欲係指有效直徑。提及有效直徑,其意指結構之剖面之長短軸之平均值。 In the technical field of nanotechnology, the nanowire is usually interpreted as having a lateral dimension of one of the nanometer or nanometer dimensions (eg, the diameter of a cylindrical nanowire or the width of a pyramid or hexagonal nanowire). Nanostructure, while its longitudinal size is not limited. These nanostructures are also commonly referred to as nanobes, one-dimensional nanocomponents, nanorods, nanotubes, and the like. The nanowires can have a diameter or width of up to about 2 microns. The small size of the nanowire provides unique physical, optical and electronic properties. For example, such properties can be used to form devices using quantum mechanical effects (eg, using quantum wires) or to form heterostructures of different materials that are typically not combined due to large lattice mismatches. As the term nanowire implies, a one-dimensional nature can be associated with an elongated shape. Since the nanowires can have various cross-sectional shapes, the diameter is intended to mean the effective diameter. Reference is made to the effective diameter, which means the average of the long and short axes of the profile of the structure.

對上部、頂部、下部、向下等之所有提及皆係將基板視為處於底部處及將奈米線視為自基板向上延伸而做出。垂直係指垂直於由基板形成之平面之一方向,且水平係指平行於由基板形成之平面之一方向。此命名僅出於方便理解目的而引入,且不應視為限制於特定總成定向等。 All references to upper, top, lower, downward, etc. are made by considering the substrate as being at the bottom and the nanowire as extending upward from the substrate. Vertical means a direction perpendicular to one of the planes formed by the substrate, and horizontal means a direction parallel to one of the planes formed by the substrate. This nomenclature was introduced for ease of understanding only and should not be considered as limiting to a particular assembly orientation or the like.

本發明之方法中可使用如此項技術中已知之任何適合奈米線LED 結構。奈米線LED通常係基於一或多個pn接面或p-i-n接面。一pn接面與一p-i-n接面之間的差異在於p-i-n接面具有一較寬作用區域。較寬作用區域允許i區域中之重組之一較高可能性。每一奈米線包括用於形成在操作中提供用於光產生之一作用區域之一pn或pin接面之一第一導電性類型(例如,n型)奈米線芯及一包封第二導電性類型(例如,p型)殼層。雖然芯之第一導電性類型在本文中闡述為一n型半導體芯,且第二導電性類型殼層在本文中闡述為一p型半導體殼層,但應理解,可顛倒其導電性類型。 Any suitable nanowire LED known in the art can be used in the method of the present invention. structure. Nanowire LEDs are typically based on one or more pn junctions or p-i-n junctions. The difference between a pn junction and a p-i-n junction is that the p-i-n mask has a wider area of action. A wider area of action allows for a higher probability of one of the reorganizations in the i-area. Each nanowire includes a first conductivity type (eg, n-type) nanowire core and a packaged portion for forming one of pn or pin junctions for operation of light generation A two conductivity type (eg, p-type) shell layer. While the first conductivity type of the core is described herein as an n-type semiconductor core and the second conductivity type shell is described herein as a p-type semiconductor shell, it should be understood that the conductivity type can be reversed.

圖1示意性地圖解說明根據本發明之實施例之經修改之一奈米線LED結構之基礎。原則上,一單個奈米線足以形成一奈米線LED,但由於小大小,因此奈米線較佳地配置成包括用以形成LED結構之數百、數千、數萬或更多並排奈米線之陣列。出於說明性目的,個別奈米線LED裝置在本文中將闡述為由具有一n型奈米線芯2及至少部分地包封奈米線芯2及一中間作用區域4之一p型殼層3之奈米線LED 1構成,所述中間作用區域可包括一單個純質或輕摻雜(例如,摻雜位準低於1016cm-3)半導體層或者包括不同帶隙之複數個半導體層之一或多個量子井,諸如3至10個量子井。然而,出於本發明之實施例之目的,奈米線LED不限於此。舉例而言,奈米線芯2、作用區域4及p型殼層3可由眾多層或區段構成。在替代實施例中,僅芯2可藉由具有低於2微米之一寬度或直徑而包括一奈米結構或奈米線,而殼層3可具有高於一微米之一寬度或直徑。 BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic illustration of the basis of a modified nanowire LED structure in accordance with an embodiment of the present invention. In principle, a single nanowire is sufficient to form a nanowire LED, but due to its small size, the nanowire is preferably configured to include hundreds, thousands, tens of thousands or more of side-by-side layers used to form the LED structure. An array of rice noodles. For illustrative purposes, individual nanowire LED devices are described herein as having a p-shell having an n-type nanowire core 2 and at least partially encapsulating the nanowire core 2 and an intermediate active region 4. Forming the nanowire LED 1 of layer 3, the intermediate active region may comprise a single pure or lightly doped (eg, doped level below 10 16 cm -3 ) semiconductor layer or a plurality of different band gaps One or more quantum wells of the semiconductor layer, such as 3 to 10 quantum wells. However, for the purpose of embodiments of the present invention, the nanowire LED is not limited thereto. For example, the nanowire core 2, the active region 4, and the p-type shell layer 3 may be composed of a plurality of layers or segments. In an alternate embodiment, only the core 2 may comprise a nanostructure or a nanowire by having a width or diameter less than 2 microns, and the shell 3 may have a width or diameter greater than one micron.

III-V半導體因其促進高速且低功率電子器件及光電子裝置(諸如雷射及LED)之性質而特別受關注。奈米線可包括任何半導體材料,且用於奈米線之適合材料包含但不限於:GaAs(p)、InAs、Ge、ZnO、InN、GaInN、GaN、AlGaInN、BN、InP、InAsP、GaInP、InGaP:Si、InGaP:Zn、GaInAs、AlInP、GaAlInP、GaAlInAsP、 GaInSb、InSb、Si。用於(例如)GaP之可能施體摻雜劑為Si、Sn、Te、Se、S等,且用於相同材料之受體摻雜劑為Zn、Fe、Mg、Be、Cd等。應注意,奈米線技術使得使用諸如GaN、InN及AlN之氮化物成為可能,此促進發射藉由習用技術不可容易地獲得之波長區域中之光之LED之製作。特別受商業關注之其他組合包含但不限於GaAs、GaInP、GaAlInP、GaP系統。典型摻雜位準介於自1018cm-3至1020cm-3之範圍內。熟習此項技術者通曉此等及其他材料且認識到其他材料及材料組合係可能的。 III-V semiconductors are of particular interest for their ability to promote high speed and low power electronic devices and optoelectronic devices such as lasers and LEDs. The nanowires may include any semiconductor material, and suitable materials for the nanowires include, but are not limited to, GaAs (p), InAs, Ge, ZnO, InN, GaInN, GaN, AlGaInN, BN, InP, InAsP, GaInP, InGaP: Si, InGaP: Zn, GaInAs, AlInP, GaAlInP, GaAlInAsP, GaInSb, InSb, Si. Possible donor dopants for, for example, GaP are Si, Sn, Te, Se, S, etc., and acceptor dopants for the same material are Zn, Fe, Mg, Be, Cd, and the like. It should be noted that the nanowire technology makes it possible to use nitrides such as GaN, InN, and AlN, which facilitates the fabrication of LEDs that emit light in wavelength regions that are not readily available by conventional techniques. Other combinations of particular commercial interest include, but are not limited to, GaAs, GaInP, GaAlInP, GaP systems. Typical doping levels range from 10 18 cm -3 to 10 20 cm -3 . Those skilled in the art are familiar with these and other materials and recognize that other materials and combinations of materials are possible.

用於奈米線LED之較佳材料為諸如一III族氮化物半導體(例如,GaN、AlInGaN、AlGaN及InGaN等)之III-V半導體或其他半導體(例如,InP、GaAs)。為充當一LED,不得不接觸每一奈米線LED 1之n側及p側,且本發明提供與接觸一LED結構中之奈米線之n側及p側有關之方法及組合物。 Preferred materials for the nanowire LED are III-V semiconductors such as a Group III nitride semiconductor (e.g., GaN, AlInGaN, AlGaN, InGaN, etc.) or other semiconductors (e.g., InP, GaAs). To act as an LED, the n-side and p-side of each nanowire LED 1 have to be contacted, and the present invention provides methods and compositions relating to contacting the n-side and the p-side of the nanowire in an LED structure.

儘管本文中所闡述之例示性製作方法較佳地利用一奈米線芯來在芯上生長半導體殼層以形成一芯殼層奈米線,如(舉例而言)針對奈米線製作方法之教示以引用方式併入本文中之頒予Seifert等人之美國專利第7,829,443號中所闡述,但應注意,本發明不限於此。舉例而言,在替代實施例中,僅芯亦可構成奈米結構(例如,奈米線),而殼層可視情況具有大於典型奈米線殼層之尺寸。此外,裝置可經定形狀以包含諸多端面,且可控制不同類型之端面之間的面積比。此由「金字塔」端面及垂直側壁端面例示。LED可經製作以使得發射層形成於具有支配性金字塔端面或側壁端面之模板上。除發射層之形狀外,對於接觸層同樣如此。 Although the exemplary fabrication method set forth herein preferably utilizes a nanowire core to grow a semiconductor shell on the core to form a core shell nanowire, such as, for example, for a nanowire fabrication process. The teachings are set forth in U.S. Patent No. 7,829,443, the disclosure of which is incorporated herein by reference. For example, in an alternate embodiment, only the core may also constitute a nanostructure (eg, a nanowire), and the shell may optionally be larger than the size of a typical nanowire shell. In addition, the device can be shaped to include a plurality of end faces and control the area ratio between different types of end faces. This is illustrated by the "pyramid" end face and the vertical side wall end face. The LED can be fabricated such that the emissive layer is formed on a template having a dominant pyramid end face or sidewall end face. The same is true for the contact layer except for the shape of the emissive layer.

圖2圖解說明提供用於奈米線之一支撐件之一例示性結構。藉由視情況使用一生長遮罩或介電遮罩層6(例如,一氮化物層,諸如氮化矽介電遮罩層)來界定位置及判定奈米線之底部界面區而在一生長 基板5上生長奈米線,基板5至少在處理期間充當用於自基板5突出之奈米線之一載體。奈米線之底部界面區包括在介電遮罩層6中之每一開口內側之芯2之根區。基板5可包括不同材料,諸如III-V或II-VI半導體、Si、Ge、Al2O3、SiC、石英、玻璃等,如瑞典專利申請案SE 1050700-2(受讓於GLO AB)中所論述,所述瑞典專利申請案以其全文引用方式併入本文中。用於基板之其他適合材料包含但不限於:GaAs、GaP、GaP:Zn、GaAs、InAs、InP、GaN、GaSb、ZnO、InSb、SOI(絕緣體上矽)、CdS、ZnSe、CdTe。在一實施例中,奈米線芯2直接生長於生長基板5上。 Figure 2 illustrates an exemplary structure for providing one of the supports for a nanowire. By using a growth mask or dielectric mask layer 6 (eg, a nitride layer, such as a tantalum nitride dielectric mask layer) as appropriate to define the position and determine the bottom interface region of the nanowires in a growth A nanowire is grown on the substrate 5, and the substrate 5 serves as a carrier for the nanowire protruding from the substrate 5 at least during processing. The bottom interface region of the nanowire includes a root region of the core 2 inside each opening in the dielectric mask layer 6. Substrate 5 may comprise different materials such as III-V or II-VI semiconductors, Si, Ge, Al 2 O 3 , SiC, quartz, glass, etc., as in Swedish patent application SE 1050700-2 (assigned to GLO AB) The Swedish patent application is hereby incorporated by reference in its entirety. Other suitable materials for the substrate include, but are not limited to, GaAs, GaP, GaP: Zn, GaAs, InAs, InP, GaN, GaSb, ZnO, InSb, SOI (on-insulator), CdS, ZnSe, CdTe. In one embodiment, the nanowire core 2 is grown directly on the growth substrate 5.

較佳地,基板5亦適於充當連接至每一奈米線LED 1之n側之一電流輸送層。此可藉由具有一基板5而達成,基板5包括配置於基板5面向奈米線LED 1之表面上之一半導體緩衝層7,如圖2中所展示,以實例方式,一III族氮化物層,諸如一Si基板5上之一GaN及/或AlGaN緩衝層7。緩衝層7通常匹配至期望奈米線材料,且因此在製作程序中充當一生長模板。對於一n型芯2,緩衝層7較佳地亦為經摻雜n型。緩衝層7可包括一單個層(例如,GaN)、數個子層(例如,GaN及AlGaN)或自高Al含量之AlGaN遞變至一較低Al含量之AlGaN或GaN之一遞變層。奈米線之生長可藉由利用美國專利第7,396,696號、第7,335,908號及第7,829,443號以及WO201014032、WO2008048704及WO 2007102781中所闡述之方法而實現,所有專利皆以其全文引用方式併入本文中。 Preferably, the substrate 5 is also adapted to act as a current transport layer connected to the n-side of each nanowire LED 1. This can be achieved by having a substrate 5 comprising a semiconductor buffer layer 7 disposed on the surface of the substrate 5 facing the nanowire LED 1, as shown in FIG. 2, by way of example, a III-nitride A layer such as a GaN and/or AlGaN buffer layer 7 on a Si substrate 5. The buffer layer 7 is typically matched to the desired nanowire material and thus acts as a growth template in the fabrication process. For an n-type core 2, the buffer layer 7 is preferably also doped n-type. The buffer layer 7 may include a single layer (eg, GaN), a plurality of sub-layers (eg, GaN and AlGaN), or a graded layer of AlGaN or GaN that is tapered from a high Al content of AlGaN to a lower Al content. The growth of the nanowires can be achieved by the methods described in U.S. Patent Nos. 7,396,696, 7,335,908 and 7,829,443, and WO201014032, WO2008048704, and WO 2007102781, all of which are incorporated herein by reference.

應注意,奈米線LED 1可包括數種不同材料(例如,GaN芯、GaN/InGaN多個量子井作用區域及具有與作用區域不同之一In對Ga比率之AlGaN殼層)。一般而言,基板5及/或緩衝層7在本文中稱為用於奈米線之一支撐件或一支撐層。在某些實施例中,代替基板5及/或緩衝層7或除基板5及/或緩衝層7之外,一導電層(例如,一鏡或透明觸 點)可用作一支撐件。因此,術語「支撐層」或「支撐件」可包含此等元件中之任何一或多者。 It should be noted that the nanowire LED 1 may include several different materials (eg, a GaN core, a plurality of quantum well active regions of GaN/InGaN, and an AlGaN shell layer having an In to Ga ratio different from the active region). In general, substrate 5 and/or buffer layer 7 are referred to herein as one of the support members or a support layer for the nanowire. In some embodiments, instead of or in addition to the substrate 5 and/or the buffer layer 7, a conductive layer (eg, a mirror or transparent contact) Point) can be used as a support. Thus, the term "support layer" or "support" can encompass any one or more of these elements.

順序(例如,殼層)層之使用給出:最終個別裝置(例如,一pn或pin裝置)可具有介於一金字塔或錐形形狀(亦即,在頂部或尖端處較窄且在基底處較寬)與柱形(例如,在尖端及基底處約相同寬度)之間的一形狀,其中具有垂直於裝置之長軸之圓形或六邊形或者其他多邊形剖面。因此,具有完整殼層之個別裝置可具有各種大小。舉例而言,大小可變化,其中基底寬度介於100nm至數(例如,5)μm之範圍內,諸如100nm至低於2微米,且高度介於幾百nm至數(例如,10)μm之範圍內。 The use of a sequential (eg, shell) layer gives that the final individual device (eg, a pn or pin device) can have a pyramid or tapered shape (ie, narrower at the top or tip and at the base) A shape that is wider than a cylinder (e.g., about the same width at the tip and base) with a circular or hexagonal or other polygonal cross-section perpendicular to the long axis of the device. Thus, individual devices having a complete shell can have a variety of sizes. For example, the size can vary, wherein the substrate width is in the range of 100 nm to several (eg, 5) μm, such as 100 nm to less than 2 microns, and the height is between several hundred nm to several (eg, 10) μm. Within the scope.

一LED結構之一例示性實施例之上述說明將充當本發明之方法及組合物之說明之一基礎;然而,將瞭解,該等方法及組合物中亦可使用任何適合奈米線LED結構或其他適合奈米線結構,其中在不背離本發明之情況下,熟習此項技術者將明瞭任何必要修改。 The above description of one exemplary embodiment of an LED structure will serve as a basis for the description of the methods and compositions of the present invention; however, it will be appreciated that any suitable nanowire LED structure or Others are suitable for the nanowire structure, and any modifications will be apparent to those skilled in the art without departing from the invention.

LED輻射(例如,可見光、UV或IR)發射可因二極體中之電流之無意漏電而減少。一個漏電源已藉由其實體位置而識別為在奈米線LED之「底腳」或基底區域10處,如圖3A中所展示。底腳或基底區域10位於遮罩6上方在殼層3與奈米線芯2之間。此基底漏電表現為在<2V下之相對高電流,其低於二極體在2.5伏至3.5伏下之「接通」。 LED radiation (eg, visible, UV, or IR) emissions can be reduced by unintentional leakage of current in the diode. A leaky power source has been identified by its physical location as being at the "foot" or base region 10 of the nanowire LED, as shown in Figure 3A. The foot or base region 10 is located above the mask 6 between the shell 3 and the nanowire core 2. This substrate leakage exhibits a relatively high current at <2V, which is lower than the "on" of the diode at 2.5 volts to 3.5 volts.

本發明之第一實施例提供用以藉由在III族氮化物半導體層生長期間減低遮罩層6之污染而減少此漏電電流之一結構及方法。 The first embodiment of the present invention provides a structure and method for reducing this leakage current by reducing contamination of the mask layer 6 during growth of the group III nitride semiconductor layer.

在不希望受一特定理論約束之情況下,據信,在二元、三元、四元III族氮化物半導體層(諸如(Al)(In)GaN層(亦即,AlGaN、InGaN及/或InAlGaN作用及/或殼層))之高溫生長(例如,處於至少850℃之一溫度)期間可發生氮化矽遮罩層6之分解。在(Al)(In)GaN層之生長期間持續曝露遮罩層6,此乃因(Al)(In)GaN在高溫下易於自氮化矽遮罩層6 表面釋出。氮化矽遮罩層之來自III族氮化物半導體生長之污染可能形成裝置之一漏電電流或使漏電電流變得更糟。 Without wishing to be bound by a particular theory, it is believed that in a binary, ternary, quaternary III-nitride semiconductor layer (such as an (Al)(In)GaN layer (ie, AlGaN, InGaN, and/or Decomposition of the tantalum nitride mask layer 6 may occur during high temperature growth of the InAlGaN action and/or the shell layer (e.g., at a temperature of at least 850 °C). The mask layer 6 is continuously exposed during the growth of the (Al)(In)GaN layer because the (Al)(In)GaN is easily nitrided from the tantalum nitride layer 6 at a high temperature. The surface is released. Contamination from the growth of the Group III nitride semiconductor of the tantalum nitride mask layer may result in leakage currents of one of the devices or worsening leakage currents.

在第一實施例之一項態樣中,本發明人發現,此基底漏電可藉由殼層3之一半導體底腳13部分之形成而減少,半導體底腳13部分在遮罩6曝露於奈米線芯2之間的表面上遠離殼層而延伸,如圖3A、圖3B、圖4A及圖4B中所展示。底腳13保護遮罩層6在其他III族氮化物層之生長期間免受污染且因此可減少漏電電流。 In one aspect of the first embodiment, the inventors have discovered that the substrate leakage can be reduced by the formation of a portion of the semiconductor leg 13 of the shell 3, and the portion of the semiconductor leg 13 is exposed to the mask 6 The surface between the rice cores 2 extends away from the shell, as shown in Figures 3A, 3B, 4A and 4B. The foot 13 protects the mask layer 6 from contamination during the growth of other Group III nitride layers and thus can reduce leakage current.

特定而言,殼層3可包括多個子層,諸如作用區域4上方之一內殼層3A及內殼層上方之一外殼層3B。若奈米線芯2包括一n型III族氮化物半導體,諸如n型GaN,則殼層子層3A、3B可包括具有一不同組合物之p型III族氮化物半導體子層。舉例而言,內殼層3A可包括p-AlGaN,且外殼層3B可包括p-GaN。 In particular, the shell layer 3 may comprise a plurality of sub-layers, such as an inner shell layer 3A above the active region 4 and one outer shell layer 3B above the inner shell layer. If the nanowire core 2 comprises an n-type Group III nitride semiconductor, such as n-type GaN, the shell sub-layers 3A, 3B may comprise a p-type Group III nitride semiconductor sub-layer having a different composition. For example, the inner shell layer 3A may include p-AlGaN, and the outer shell layer 3B may include p-GaN.

在本發明之一實施例中,內殼層3A之一多晶p-AlGaN底腳13部分可在內殼層3A之生長期間形成於氮化矽遮罩6在奈米線芯2與殼層3之間的所曝露部分上方。底腳13部分可(舉例而言)藉由選擇導致多晶p-AlGaN底腳13部分之形成之一生長溫度(舉例而言,低於850℃之一生長溫度)及/或CVD前體氣流比率(舉例而言,含Al氣體與氨氣體之一比率及/或氮與氨之一比率)而形成。亦可使用其他生長條件或參數。 In an embodiment of the present invention, a portion of the polycrystalline p-AlGaN foot 13 of the inner shell layer 3A may be formed in the inner layer 3A during growth of the tantalum nitride mask 6 at the nanowire core 2 and the shell layer. 3 above the exposed part. The foot 13 portion can, for example, be selected to result in a growth temperature (for example, a growth temperature of less than 850 ° C) and/or a CVD precursor gas flow that results in the formation of the polycrystalline p-AlGaN foot 13 portion. The ratio (for example, a ratio of one of Al gas to ammonia gas and/or a ratio of nitrogen to ammonia) is formed. Other growth conditions or parameters can also be used.

AlGaN層之電阻率隨增加Al濃度而增加。因此,含有至少5原子百分比鋁之AlGaN底腳13部分具有一相對高電阻率以減少漏電電流。底腳13部分亦提供一耐化學層以在裝置處理期間保護遮罩層6且亦可由於氧與Al之強原子鍵而表現為用於氧雜質之一吸氣劑。 The resistivity of the AlGaN layer increases as the Al concentration increases. Thus, the AlGaN foot 13 portion containing at least 5 atomic percent aluminum has a relatively high resistivity to reduce leakage current. The foot 13 portion also provides a chemical resistant layer to protect the mask layer 6 during processing of the device and may also behave as a getter for oxygen impurities due to strong atomic bonding of oxygen to Al.

特定而言,AlGaN底腳13部分可直接沈積於氮化矽遮罩層6上。可在裝置生長期間之任何時間沈積AlGaN層。舉例而言,AlGaN層可包括在生長期間在遮罩層6上形成底腳13部分之內殼層3A,如圖3A中所展示。含有一底腳部分13之殼層3A之組合亦可稱為一底腳阻擋 層。 In particular, portions of the AlGaN foot 13 can be deposited directly on the tantalum nitride mask layer 6. The AlGaN layer can be deposited at any time during the growth of the device. For example, the AlGaN layer can include an inner shell layer 3A that forms a portion of the foot 13 on the mask layer 6 during growth, as shown in Figure 3A. The combination of the shell layer 3A containing a foot portion 13 can also be referred to as a foot block Floor.

另一選擇為,AlGaN層可包括位於內AlGaN殼層3A與外GaN殼層3B之間的一中間殼層3C,如圖3B中所展示。因此,一第一p-AlGaN內殼層3A可在作用區域4量子井生長之後生長為一電子障壁。在一實施例中,p-AlGaN內殼層3A可含有少於10原子% Al(諸如2原子%至5原子% Al)以提供一較高導電性。 Alternatively, the AlGaN layer can include an intermediate shell 3C between the inner AlGaN shell 3A and the outer GaN shell 3B, as shown in Figure 3B. Therefore, a first p-AlGaN inner shell layer 3A can be grown as an electron barrier after the growth of the quantum well in the active region 4. In an embodiment, the p-AlGaN inner shell layer 3A may contain less than 10 atom% Al (such as 2 atom% to 5 atom% Al) to provide a higher conductivity.

此內殼層3A不形成底腳13部分。然後,p-AlGaN中間殼層3C生長於內殼層3A上,其中具有大於5原子% Al,諸如至少10原子% Al。中間殼層3C在遮罩層6上形成底腳13部分,如圖3B中所展示。外p-GaN殼層3B生長於中間殼層3C上及底腳13部分上。 This inner shell layer 3A does not form a portion of the foot portion 13. Then, the p-AlGaN intermediate shell layer 3C is grown on the inner shell layer 3A having more than 5 at% Al, such as at least 10 at% Al. The intermediate shell 3C forms a portion of the foot 13 on the mask layer 6, as shown in Figure 3B. The outer p-GaN shell layer 3B is grown on the intermediate shell layer 3C and on the leg portion 13.

另一選擇為,AlGaN殼層3C可在AlGaN殼層3A生長之前生長於作用區域4上方。在此情形中,在AlGaN殼層生長之前形成底腳13部分。 Alternatively, the AlGaN shell layer 3C may be grown over the active region 4 prior to growth of the AlGaN shell layer 3A. In this case, the portion of the foot 13 is formed before the growth of the AlGaN shell layer.

較佳地,殼層3A、3B及視情況3C藉由MOCVD而以前體流中所包含之p型摻雜劑源(例如,含Mg之金屬有機氣體,諸如(Cp)2Mg)生長。然而,AlGaN殼層(例如,圖3A中之殼層3A或圖3B中之殼層3C)亦可在不進行有意摻雜之情況下生長。以此方式,AlGaN殼層及底腳區域係純質的而非p型摻雜的。 Preferably, the shell layers 3A, 3B and optionally 3C are grown by MOCVD with a p-type dopant source (eg, a Mg-containing metal organic gas such as (Cp) 2 Mg) contained in the precursor stream. However, the AlGaN shell layer (for example, the shell layer 3A in FIG. 3A or the shell layer 3C in FIG. 3B) can also be grown without intentional doping. In this way, the AlGaN shell and foot regions are pure rather than p-doped.

在第一實施例之另一替代態樣中,在作用區域4形成之前形成底腳13區域。在圖3C中所展示之此態樣中,圍繞奈米線芯2形成一選用n-GaN殼層25。然後,一純質或n型摻雜之AlGaN殼層23(例如,Si摻雜之n-AlGaN)經形成具有超過5原子百分比之Al。AlGaN殼層23生長步驟亦在遮罩層6上形成一n-AlGaN底腳13部分。然後在底腳13區域上形成作用區域4(例如,GaN/InGaN量子井)及外殼層3(其可包括p-AlGaN殼層3A及p-GaN殼層3B)。 In another alternative of the first embodiment, the foot 13 region is formed prior to the formation of the active region 4. In this aspect as shown in FIG. 3C, an optional n-GaN shell layer 25 is formed around the nanowire core 2. Then, a pure or n-doped AlGaN shell layer 23 (for example, Si-doped n-AlGaN) is formed to have Al of more than 5 atomic percent. The AlGaN shell layer 23 growth step also forms an n-AlGaN foot 13 portion on the mask layer 6. An active region 4 (for example, a GaN/InGaN quantum well) and an outer shell layer 3 (which may include a p-AlGaN shell layer 3A and a p-GaN shell layer 3B) are then formed on the region of the foot 13.

在另一實施例中,兩個底腳13A、13B部分安置於介電遮罩層6 上,如圖3D中所展示。圖3D之結構係圖3C與圖3A之結構之一組合。如圖3D中所展示,具有一底腳13A部分之一第一導電性類型(例如,n型)AlGaN殼層23形成於第一導電性類型芯2上方及視情況第一導電性類型之至少一個殼層25上。形成於殼層25上之第一導電性類型底腳阻擋層之殼層23部分具有一單晶結構,且第一導電性類型阻擋層之底腳13A部分具有形成於介電遮罩層6上之一多晶結構。第一導電性類型底腳阻擋層包括一摻雜劑,該摻雜劑提供一III族氮化物半導體(諸如用於n型半導體之Si)中之一第一導電性類型,使得該第一底腳阻擋層之結晶部分23之導電性類型具有與芯2及殼層25之第一導電性類型相同之導電性類型。 In another embodiment, the two legs 13A, 13B are partially disposed on the dielectric mask layer 6 Above, as shown in Figure 3D. The structure of Fig. 3D is combined with one of the structures of Fig. 3C and Fig. 3A. As shown in FIG. 3D, a first conductivity type (eg, n-type) AlGaN shell layer 23 having a portion of the foot 13A is formed over the first conductivity type core 2 and optionally at least one of the first conductivity types. On one shell 25. The portion of the shell layer 23 of the first conductivity type foot barrier layer formed on the shell layer 25 has a single crystal structure, and the portion of the foot 13A of the first conductivity type barrier layer is formed on the dielectric mask layer 6. One of the polycrystalline structures. The first conductivity type foot barrier layer includes a dopant that provides a first conductivity type of a group III nitride semiconductor (such as Si for an n-type semiconductor) such that the first bottom The conductivity type of the crystal portion 23 of the foot barrier layer has the same conductivity type as the first conductivity type of the core 2 and the shell layer 25.

然後在形成作用區域4之後形成一第二導電性類型(例如,p型)AlGaN底腳阻擋層,如圖3D中所展示。第二導電性類型(例如,p型)AlGaN底腳阻擋層可包括具有第二導電性類型之一底腳13B部分之第二導電性類型殼層3A,類似於圖3A中所展示之底腳阻擋層。另一選擇為,第二導電性類型(例如,p型)AlGaN底腳阻擋層可包括具有第二導電性類型之一底腳13B部分之第二導電性類型殼層3C,類似於圖3B中所展示之底腳阻擋層。 A second conductivity type (e.g., p-type) AlGaN foot barrier layer is then formed after formation of the active region 4, as shown in Figure 3D. The second conductivity type (eg, p-type) AlGaN foot barrier layer can include a second conductivity type shell layer 3A having a portion of the second conductivity type foot 13B, similar to the foot shown in FIG. 3A Barrier layer. Alternatively, the second conductivity type (eg, p-type) AlGaN foot barrier layer can include a second conductivity type shell layer 3C having a portion of the second conductivity type foot 13B, similar to that in FIG. 3B The foot barrier shown.

形成於作用區域4上(或另一殼層上,諸如3C)之第二導電性類型底腳阻擋層之殼層3A部分具有一單晶結構,且第二導電性類型阻擋層之底腳13B部分具有形成於第一導電性類型阻擋層之多晶底腳13A部分上之一多晶結構。第二導電性類型底腳阻擋層包括提供一III族氮化物半導體(諸如用於p型半導體之Mg)中之一第二導電性類型之一摻雜劑,使得該第二底腳阻擋層之結晶部分3A之導電性類型具有與外殼層3B(例如,p-GaN殼層)相同之導電性類型。因此,圖3D中所展示之裝置含有將一個定位於另一個上方之相反導電性類型之兩個多晶底腳(例如,13A、13B)部分。此形成一p-n二極體底腳13A/13B部分,此 進一步減少或防止遮罩層6之污染並防止或減低自圖4A及圖4B中所展示之電極9至芯2中之漏電電流。 The portion of the shell layer 3A of the second conductivity type foot barrier layer formed on the active region 4 (or another shell layer such as 3C) has a single crystal structure, and the bottom portion 13B of the second conductivity type barrier layer A portion has a polycrystalline structure formed on a portion of the polycrystalline foot 13A of the first conductivity type barrier layer. The second conductivity type foot barrier layer includes one of a second conductivity type one of a group III nitride semiconductor (such as Mg for a p-type semiconductor) such that the second foot barrier layer The conductivity type of the crystal portion 3A has the same conductivity type as the outer shell layer 3B (for example, a p-GaN shell layer). Thus, the device shown in Figure 3D contains two polycrystalline foot (e.g., 13A, 13B) portions of opposite conductivity types that are positioned one above the other. This forms a p-n diode foot 13A/13B portion, this The contamination of the mask layer 6 is further reduced or prevented and the leakage current from the electrodes 9 to 2 shown in Figures 4A and 4B is prevented or reduced.

在圖3E及圖3F中所展示之另一替代實施例中,底腳阻擋層313在於遮罩層6中形成開口8之前沈積於介電遮罩層6上。如圖3E中所展示,底腳阻擋層313沈積於遮罩層6上。底腳阻擋層313可包括上文所闡述之一p型或n型AlGaN層。較佳地,層313具有與芯2導電性類型(例如,n型)相反之導電性類型(例如,p型)以減少漏電電流。然後,如圖3F中所展示,使用任何適合微影及蝕刻程序穿過底腳阻擋層313及遮罩層6而形成開口8以曝露緩衝層7(或支撐件之另一部分)。然後形成芯2及包括一芯及殼層之其餘奈米線LED結構1,如上文關於圖1及圖2所闡述。 In another alternative embodiment shown in FIGS. 3E and 3F, the foot barrier layer 313 is deposited on the dielectric mask layer 6 prior to the formation of the opening 8 in the mask layer 6. As shown in FIG. 3E, a foot barrier layer 313 is deposited on the mask layer 6. The foot barrier layer 313 can include one of the p-type or n-type AlGaN layers described above. Preferably, layer 313 has a conductivity type (e.g., p-type) that is opposite to the conductivity type (e.g., n-type) of core 2 to reduce leakage current. Then, as shown in FIG. 3F, an opening 8 is formed through the foot barrier layer 313 and the mask layer 6 using any suitable lithography and etching process to expose the buffer layer 7 (or another portion of the support). The core 2 and the remaining nanowire LED structures 1 comprising a core and a shell are then formed, as set forth above with respect to Figures 1 and 2.

在圖3G及圖3H中所展示之另一實施例中,底腳阻擋層313在已於遮罩層中形成開口8之後沈積於介電遮罩層6上。如圖3G中所展示,首先使用任何適合微影及蝕刻程序在遮罩層6中形成開口8以曝露緩衝層7(或支撐件之另一部分)。然後,如圖3H中所展示,然後在遮罩層6上方形成底腳阻擋層313。底腳阻擋層313可包括上文所闡釋之p型或n型AlGaN層。因此,底腳阻擋層313之一部分313C將形成於開口8中在緩衝層7上(或支撐件曝露於開口8中之另一部分上)。在形成芯2之前可藉由另一蝕刻步驟自開口8移除底腳阻擋層313之部分313C。另一選擇為,芯2可直接形成於阻擋層之部分313C上,在此情形中,芯2及阻擋層313較佳地具有相同導電性類型(例如,n型)。然後在芯2上方形成包括殼層之奈米線LED結構1。額外底腳13部分可形成於底腳阻擋層313上,如上文所闡述且如圖3A至圖3D中所展示。 In another embodiment, shown in Figures 3G and 3H, the foot barrier layer 313 is deposited on the dielectric mask layer 6 after the opening 8 has been formed in the mask layer. As shown in Figure 3G, an opening 8 is first formed in the mask layer 6 using any suitable lithography and etching process to expose the buffer layer 7 (or another portion of the support). Then, as shown in FIG. 3H, a foot barrier layer 313 is then formed over the mask layer 6. The foot barrier layer 313 can include the p-type or n-type AlGaN layer as explained above. Thus, a portion 313C of the foot barrier layer 313 will be formed in the opening 8 on the buffer layer 7 (or the support member exposed to another portion of the opening 8). Portion 313C of foot barrier layer 313 can be removed from opening 8 by another etching step prior to forming core 2. Alternatively, the core 2 can be formed directly on the portion 313C of the barrier layer, in which case the core 2 and the barrier layer 313 preferably have the same conductivity type (e.g., n-type). A nanowire LED structure 1 comprising a shell layer is then formed over the core 2. Additional foot 13 portions may be formed on the foot barrier layer 313, as set forth above and as shown in Figures 3A-3D.

總之,底腳阻擋層(例如,整個層313或其底腳13部分)可在形成芯2之前及/或之後形成於遮罩層6上,如圖3E至圖3H及圖3A至圖3D中分別所展示。底腳阻擋層23/13可在形成作用區域4之前形成於芯2上 方及至少一個殼層25上方,如圖3C中所展示。另一選擇為,底腳阻擋層3A/13或3C/13可在形成作用區域4之後形成於作用區域4上方,如圖3A及圖3B中所展示。另一選擇為,LED裝置可包括在形成作用區域之前及/或之後形成之具有相同或相反導電性類型之多個底腳阻擋層(例如,23/13A及3A/13B),如圖3D中所展示。 In summary, the foot barrier layer (eg, the entire layer 313 or portions thereof) can be formed on the mask layer 6 before and/or after forming the core 2, as in Figures 3E-3H and 3A-3D. Shown separately. The foot barrier layer 23/13 may be formed on the core 2 before forming the active region 4. Above the square and at least one of the shell layers 25, as shown in Figure 3C. Alternatively, the foot barrier layer 3A/13 or 3C/13 may be formed over the active area 4 after forming the active area 4, as shown in Figures 3A and 3B. Alternatively, the LED device can include a plurality of foot barrier layers (eg, 23/13A and 3A/13B) of the same or opposite conductivity type formed before and/or after forming the active region, as in FIG. 3D. Shown.

底腳阻擋層較佳地包括Al、Ga、In、B、Si、Mg、N中之一或多者,諸如一III族氮化物半導體,其中Si及/或Mg作為n型及p型摻雜劑而添加。在一實施例中,底腳阻擋層包括AlGaN且在形成於介電遮罩層6上之區域(例如,13、313)中具有一多晶結構。形成於一單晶層上之區域(例如,殼層3A、3C、23)、芯或殼層可具有一單晶結構。底腳阻擋層可藉由數種方法中之任一者而沈積,諸如金屬有機化學汽相沈積(MOCVD)、分子束磊晶(MBE)、電漿增強型化學汽相沈積(PECVD)、電漿輔助型分子束磊晶(PAMBE)或反應性濺鍍沈積。亦可使用其他方法。在一較佳實施例中,底腳阻擋層包括介電遮罩層6上之多晶AlGaN底腳13部分及一單晶半導體奈米線殼層上方之一結晶AlGaN 3A、3C或23殼層,且藉由MOCVD而形成。 The foot barrier layer preferably includes one or more of Al, Ga, In, B, Si, Mg, N, such as a Group III nitride semiconductor, wherein Si and/or Mg are doped as n-type and p-type Add as a dose. In an embodiment, the foot barrier layer comprises AlGaN and has a polycrystalline structure in a region (eg, 13, 313) formed on the dielectric mask layer 6. The region (for example, the shell layer 3A, 3C, 23), the core or the shell layer formed on a single crystal layer may have a single crystal structure. The foot barrier layer can be deposited by any of several methods, such as metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), plasma enhanced chemical vapor deposition (PECVD), electricity. Pulp-assisted molecular beam epitaxy (PAMBE) or reactive sputtering deposition. Other methods can also be used. In a preferred embodiment, the foot barrier layer comprises a polycrystalline AlGaN foot 13 portion on the dielectric mask layer 6 and a crystalline AlGaN 3A, 3C or 23 shell layer over a single crystal semiconductor nanowire shell layer. And formed by MOCVD.

位於遮罩層6上方之多晶底腳阻擋層(例如,底腳部分13)之厚度可跨越毗鄰芯2之間的區域變化,使得厚度在最接近芯處最小且在兩個毗鄰芯之間的中點處最大,如圖3A至圖3D中所展示。另一選擇為,底腳阻擋層313可具有一均勻厚度,如圖3E、圖3F及圖3H中所展示。氮化矽遮罩層6上之AlGaN底腳13部分之厚度較佳地大於10nm以達成良好表面覆蓋,但小於100nm以不幹涉外殼層3B生長。舉例而言,AlGaN底腳13部分或層313可為20nm至80nm厚且含有至少10原子百分比Al,諸如10至15原子百分比。然而,可使用其他厚度。 The thickness of the polycrystalline foot barrier layer (e.g., foot portion 13) above the mask layer 6 can vary across the area between adjacent cores 2 such that the thickness is minimal closest to the core and between two adjacent cores The midpoint is the largest, as shown in Figures 3A through 3D. Alternatively, the foot barrier layer 313 can have a uniform thickness as shown in Figures 3E, 3F, and 3H. The thickness of the portion of the AlGaN foot 13 on the tantalum nitride mask layer 6 is preferably greater than 10 nm to achieve good surface coverage, but less than 100 nm so as not to interfere with the growth of the outer shell layer 3B. For example, the AlGaN foot 13 portion or layer 313 can be 20 nm to 80 nm thick and contain at least 10 atomic percent Al, such as 10 to 15 atomic percent. However, other thicknesses can be used.

如圖4A及圖4B中所展示,然後在LED之外殼層3B上方及在LED之間的空間11中形成第一(例如,頂部或p側)電極9。p側電極9接觸遠 離基底區域10而提升電極9之圖3A至圖3C中所展示之相對高電阻率半導體AlGaN底腳13,此可減低至奈米線芯2之不期望電流漏電路徑。 As shown in Figures 4A and 4B, a first (e.g., top or p-side) electrode 9 is then formed over the outer shell layer 3B of the LED and in the space 11 between the LEDs. The p-side electrode 9 contacts the far The relatively high resistivity semiconductor AlGaN foot 13 shown in FIGS. 3A through 3C of the lift electrode 9 is lifted away from the base region 10, which can be reduced to the undesired current leakage path of the nanowire core 2.

本發明之第二實施例提供用以藉由電隔離漏電電流之基底區域10與上部電極9及裝置之其餘部分而減少漏電電流之一結構及方法。 A second embodiment of the present invention provides a structure and method for reducing leakage current by electrically isolating leakage current from the base region 10 and the upper electrode 9 and the remainder of the device.

特定而言,如圖5A及圖5B中所展示,一絕緣層15形成於絕緣遮罩層6與頂部電極9之間在半導體殼層3之間的空間11中以防止或減少基底區域10中之漏電電流。圖5A圖解說明含有位於一支撐件上方之複數個第一導電性類型(例如,n型)半導體奈米線芯2之一半導體裝置,諸如一LED裝置。絕緣遮罩層6位於支撐件上方。如上文所闡述,奈米線芯2包括自支撐件之一半導體表面(例如,緩衝層7表面)透過絕緣遮罩層6中之開口而曝露之部分磊晶延伸之半導體奈米線。複數個第二導電性類型半導體殼層3在各別奈米線芯2上方且圍繞各別奈米線芯2延伸。頂部(例如,p側)電極層9接觸第二導電性類型半導體殼層3並延伸至半導體殼層之間的空間11中。 Specifically, as shown in FIGS. 5A and 5B, an insulating layer 15 is formed between the insulating mask layer 6 and the top electrode 9 in the space 11 between the semiconductor shell layers 3 to prevent or reduce the substrate region 10 Leakage current. Figure 5A illustrates a semiconductor device, such as an LED device, comprising a plurality of first conductivity type (e.g., n-type) semiconductor nanowire cores 2 over a support. The insulating mask layer 6 is located above the support. As explained above, the nanowire core 2 includes a portion of the epitaxially-extending semiconductor nanowire that is exposed through the opening in the insulating mask layer 6 from one of the semiconductor surfaces of the support (e.g., the surface of the buffer layer 7). A plurality of second conductivity type semiconductor shell layers 3 extend over the respective nanowire cores 2 and around the respective nanowire cores 2. The top (e.g., p-side) electrode layer 9 contacts the second conductive type semiconductor shell layer 3 and extends into the space 11 between the semiconductor shell layers.

較佳地,如上文所闡述,LED裝置亦含有圍繞複數個奈米線芯2中之每一者之一作用區域殼層4。在一實施例中,作用區域殼層包括至少一個量子井,且第二導電性類型半導體殼層3環繞至少一個量子井以在由至少一個量子井殼層4環繞之每一奈米線芯2處形成一發光p-i-n接面。 Preferably, as set forth above, the LED device also includes an active region shell 4 surrounding each of the plurality of nanowire cores 2. In one embodiment, the active region shell layer includes at least one quantum well, and the second conductivity type semiconductor shell layer 3 surrounds at least one quantum well to surround each nanowire core 2 surrounded by at least one quantum well shell layer 4. A luminescent pin junction is formed at the location.

如上文所闡述,半導體殼層3A、3C或23視情況包括第一實施例中之一半導體底腳13部分,半導體底腳13部分在絕緣遮罩層6上在半導體殼層之間的空間11中延伸。如圖5B及圖5C中所展示,絕緣層15位於半導體底腳13部分上使得頂部電極9接觸絕緣層15且不接觸空間11中之底腳部分13。圖5B中之底腳13部分形成為p型殼層3(例如,圖3A或圖3B之殼層3A或3C)之部分,而圖5C中之底腳部分形成為圖3C之n型殼層23之部分。因此,絕緣層防止或減少流動穿過頂部電極9與 奈米線芯2之間的底腳部分13之漏電電流。 As explained above, the semiconductor shell layer 3A, 3C or 23 optionally includes a portion of the semiconductor foot 13 of the first embodiment, and a portion of the semiconductor foot 13 portion on the insulating mask layer 6 between the semiconductor shell layers 11 Extended in the middle. As shown in FIGS. 5B and 5C, the insulating layer 15 is located on the portion of the semiconductor leg 13 such that the top electrode 9 contacts the insulating layer 15 and does not contact the foot portion 13 in the space 11. The portion of the foot 13 in Fig. 5B is formed as part of the p-type shell layer 3 (e.g., the shell layer 3A or 3C of Fig. 3A or Fig. 3B), and the foot portion of Fig. 5C is formed as the n type shell layer of Fig. 3C. Part of 23. Therefore, the insulating layer prevents or reduces the flow through the top electrode 9 and The leakage current of the foot portion 13 between the nanowire cores 2.

亦如上文所闡述,第二導電性類型半導體殼層3較佳地包括具有大於5原子%鋁之一實質上單晶AlGaN內部殼層3A、3C或23及一實質上單晶p-GaN外殼層3B。半導體底腳部分13包括AlGaN內部殼層之一多晶AlGaN底腳部分。多晶p-AlGaN底腳部分13在p-GaN外殼層3B下方連接至實質上單晶AlGaN內部殼層3A、3C或23。如本文中所使用,實質上單晶意指可具有某些缺陷(諸如差排及/或堆疊錯誤)及/或數個晶粒邊界(但缺乏通常存在於多晶材料殼層及層中之超過十個晶粒)之一單晶半導體。特定而言,在圖5C中所展示之實施例中,絕緣層15防止n-AlGaN底腳13部分與p型殼層3(例如,p-GaN殼層3B)之間的一p-n接面之形成。 As also explained above, the second conductivity type semiconductor shell layer 3 preferably comprises one of substantially single crystal AlGaN inner shell layers 3A, 3C or 23 having greater than 5 atomic percent aluminum and a substantially single crystal p-GaN outer shell. Layer 3B. The semiconductor foot portion 13 includes a polycrystalline AlGaN foot portion of one of the inner shell layers of AlGaN. The polycrystalline p-AlGaN foot portion 13 is connected under the p-GaN outer layer 3B to the substantially single crystal AlGaN inner shell layer 3A, 3C or 23. As used herein, substantially single crystal means that it may have certain defects (such as poor row and/or stacking errors) and/or several grain boundaries (but lacking in the layers and layers of polycrystalline materials). One of more than ten crystal grains). In particular, in the embodiment shown in FIG. 5C, the insulating layer 15 prevents a pn junction between the n-AlGaN foot 13 portion and the p-type shell layer 3 (eg, the p-GaN shell layer 3B). form.

在圖5D中所展示之第二實施例之另一態樣中,絕緣層15用於缺少底腳13部分之一裝置中。在此裝置中,絕緣層15位於遮罩層6上方。因此,層15保護遮罩層6且遠離其中發生漏電電流之裝置之基底部分10而升高電極9。 In another aspect of the second embodiment shown in Figure 5D, the insulating layer 15 is used in a device that lacks one of the legs 13 portions. In this device, the insulating layer 15 is located above the mask layer 6. Thus, layer 15 protects mask layer 6 and raises electrode 9 away from substrate portion 10 of the device in which leakage current occurs.

絕緣層15可包括任何適合絕緣層,諸如氧化矽、氮化矽、高k值介電質(例如,礬土、氧化鉿、有機介電質等)。較佳地,絕緣層15包括一旋塗式介電質、諸如旋塗式玻璃或另一適合旋塗式介電質。 The insulating layer 15 may comprise any suitable insulating layer such as hafnium oxide, tantalum nitride, high-k dielectric (eg, alumina, hafnium oxide, organic dielectric, etc.). Preferably, the insulating layer 15 comprises a spin-on dielectric, such as a spin-on glass or another suitable spin-on dielectric.

圖5A中所展示之一第二電極層17(例如,n側電極)電連接至n型奈米線芯2。若基板5係一半導體(例如,矽或GaN)或導電基板,則電極17可形成於基板5之底部上。另一選擇為,第二電極17可在其中已移除奈米線1及頂部電極9之一區域中自頂部側接觸基板5上之n型半導體緩衝層7。 One of the second electrode layers 17 (for example, the n-side electrode) shown in FIG. 5A is electrically connected to the n-type nanowire core 2. If the substrate 5 is a semiconductor (for example, germanium or GaN) or a conductive substrate, the electrode 17 may be formed on the bottom of the substrate 5. Alternatively, the second electrode 17 may contact the n-type semiconductor buffer layer 7 on the substrate 5 from the top side in a region in which the nanowire 1 and the top electrode 9 have been removed.

如上文所闡述,在一較佳實施例中,緩衝層7包括一n-GaN或n-AlGaN層,奈米線芯2包括n-GaN奈米線,至少一個量子井4包括多個InGaN/GaN量子井,且頂部電極9包括一透明導電氧化物(TCO),諸如 氧化銦錫或氧化鋁鋅。電極17可包括任何適合電導體,諸如一金屬。 As explained above, in a preferred embodiment, the buffer layer 7 comprises an n-GaN or n-AlGaN layer, the nanowire core 2 comprises n-GaN nanowires, and at least one quantum well 4 comprises a plurality of InGaN/ a GaN quantum well, and the top electrode 9 comprises a transparent conductive oxide (TCO), such as Indium tin oxide or aluminum zinc oxide. Electrode 17 can comprise any suitable electrical conductor, such as a metal.

圖6A、圖6B、圖6C及圖6D係圖解說明製造圖5A及圖5B之裝置之一種方法之SEM顯微圖。首先,如上文所闡述,複數個第一導電性類型半導體奈米線芯2自一支撐件之一半導體表面(例如,緩衝層7)透過該支撐件上之一絕緣遮罩層6中之開口而曝露之部分磊晶生長。然後,環繞芯2而形成圖3C之選用殼層23、25及作用區域(例如,量子井)4。然後形成在各別奈米線芯2上方且圍繞各別奈米線芯2延伸之複數個第二導電性類型半導體殼層3。 6A, 6B, 6C, and 6D are SEM micrographs illustrating one method of fabricating the apparatus of Figs. 5A and 5B. First, as explained above, a plurality of first conductivity type semiconductor nanowire cores 2 are passed through a semiconductor surface (for example, buffer layer 7) of a support member through an opening in one of the insulating mask layers 6 on the support member. The exposed part of the epitaxial growth. The core layers 23, 25 and the active regions (e.g., quantum wells) 4 of Figure 3C are then formed around the core 2. A plurality of second conductivity type semiconductor shell layers 3 extending over the respective nanowire cores 2 and extending around the respective nanowire cores 2 are then formed.

如上文所闡述,形成半導體殼層3之步驟包括在相同CVD生長步驟期間形成(例如,藉由CVD而磊晶生長)在各別奈米線芯2上方且圍繞各別奈米線芯2延伸之實質上單晶半導體殼層部分(例如,內殼層3A、外殼層3B及選用中間殼層3C)及視情況在絕緣遮罩層6上在半導體殼層3之間的空間11中水平延伸之多晶半導體底腳部分13。舉例而言,藉由CVD而在半導體作用區域4(例如,量子井)上方磊晶生長實質上單晶p-AlGaN內殼層3A或具有5%以上鋁之中間殼層3C,同時在氮化矽遮罩層6上生長選用多晶p-AlGaN底腳部分13。然後,實質上單晶p-GaN外殼層3B磊晶生長於實質上單晶內殼層3A(或中間殼層3C)上而非底腳部分13上。 As explained above, the step of forming the semiconductor shell layer 3 includes forming (eg, epitaxial growth by CVD) during the same CVD growth step over the respective nanowire cores 2 and extending around the respective nanowire cores 2 The substantially single crystal semiconductor shell portion (for example, inner shell layer 3A, outer shell layer 3B, and intermediate shell layer 3C) and, as the case may be, horizontally extend in space 11 between semiconductor shell layers 3 on insulating mask layer 6. The polycrystalline semiconductor foot portion 13. For example, a substantially single crystal p-AlGaN inner shell layer 3A or an intermediate shell layer 3C having 5% or more aluminum is epitaxially grown by CVD over a semiconductor active region 4 (for example, a quantum well) while being nitrided. A polycrystalline p-AlGaN foot portion 13 is selected for growth on the germanium mask layer 6. Then, substantially, the single crystal p-GaN outer shell layer 3B is epitaxially grown on the substantially single crystal inner shell layer 3A (or the intermediate shell layer 3C) instead of the foot portion 13.

在不受一特定理論約束之情況下,據信,外殼層3B在底腳部分13上不水平生長(亦即,沿垂直方向具有比沿水平平面之長度及寬度小之一厚度)。因此,如圖6A中所展示,p-AlGaN底腳部分13可在p-GaN外殼層3B下方連接至p-AlGaN內殼層3A。另一選擇為,如圖6B中所展示,p-AlGaN底腳部分13可在p-GaN外殼層3B下方連接至p-AlGaN中間殼層3C(或連接至圖3C中所展示之內n-AlGaN殼層23)。另一選擇為,底腳部分13可不實體連接至任何殼層。 Without being bound by a particular theory, it is believed that the outer shell layer 3B does not grow horizontally on the foot portion 13 (i.e., has a thickness that is less than one of the length and width along the horizontal plane in the vertical direction). Therefore, as shown in FIG. 6A, the p-AlGaN foot portion 13 can be connected to the p-AlGaN inner shell layer 3A under the p-GaN outer shell layer 3B. Alternatively, as shown in Figure 6B, the p-AlGaN foot portion 13 can be attached to the p-AlGaN intermediate shell 3C under the p-GaN outer shell layer 3B (or to the n- shown in Figure 3C). AlGaN shell layer 23). Alternatively, the foot portion 13 may not be physically connected to any of the shell layers.

然後,如圖6C中所展示,一絕緣層15形成於絕緣遮罩層6上方在 半導體殼層3之間的空間11中,使得半導體殼層3之尖端及側壁曝露於絕緣層15中。若底腳部分13存在,則絕緣層15形成於底腳部分13上在空間11中。絕緣層15防止或減少外殼層3B與奈米線芯2之根2A之間的基底區域10中之電流漏電路徑。 Then, as shown in FIG. 6C, an insulating layer 15 is formed over the insulating mask layer 6 at In the space 11 between the semiconductor shell layers 3, the tips and sidewalls of the semiconductor shell layer 3 are exposed in the insulating layer 15. If the foot portion 13 is present, the insulating layer 15 is formed on the foot portion 13 in the space 11. The insulating layer 15 prevents or reduces the current leakage path in the base region 10 between the outer shell layer 3B and the root 2A of the nanowire core 2.

較佳地,形成絕緣層15之步驟包括旋塗一旋塗式介電層。旋塗程序形成絕緣層15,該絕緣層具有在絕緣遮罩層6上在半導體殼層之間的空間11中之一較厚部分15A及半導體殼層3之上部側壁上之較薄部分15B,如圖6C中所展示。絕緣層之上面係彎曲的,其中厚部分15A毗鄰於空間11中之殼層且空間11中之中厚度部分15C遠離殼層3。 Preferably, the step of forming the insulating layer 15 comprises spin coating a spin-on dielectric layer. The spin coating process forms an insulating layer 15 having a thicker portion 15A in the space 11 between the semiconductor shell layers on the insulating mask layer 6 and a thinner portion 15B on the upper sidewall of the semiconductor shell layer 3, As shown in Figure 6C. The upper surface of the insulating layer is curved, wherein the thick portion 15A is adjacent to the shell layer in the space 11 and the thickness portion 15C of the space 11 is away from the shell layer 3.

在一非限制性實例中,旋塗式介電層15係一旋塗式玻璃(SOG)。SOG藉由提供在一溶劑中溶解或懸浮之一矽酸鹽而形成。此溶液沈積於奈米線之頂部及含有基板之殼層上,此係以每分鐘高轉數而旋塗。旋塗動作將SOG均勻地分配於殼層3上方及基板上之空間11中。在沈積之後,SOG緩慢地變亁。舉例而言,SOG可首先在75℃之一溫度下、然後在150℃下及最後在250℃下變亁。亁燥程序移除溶劑,留下矽酸鹽。在亁燥之後,具有旋塗式矽酸鹽之基板在較高溫度(通常400℃至700℃)下退火,此使矽酸鹽緻密化為一SiO2網。經緻密SiO2為具有低漏電之一介電膜。 In one non-limiting example, the spin-on dielectric layer 15 is a spin on glass (SOG). SOG is formed by providing a solution of a citrate dissolved or suspended in a solvent. This solution is deposited on top of the nanowire and on the shell containing the substrate, which is spin coated at high revolutions per minute. The spin coating action uniformly distributes the SOG above the shell layer 3 and into the space 11 on the substrate. After the deposition, the SOG slowly changes. For example, the SOG can first be enthalpy at one of 75 ° C, then at 150 ° C and finally at 250 ° C. The drying procedure removes the solvent leaving the phthalate. After drying, the substrate with spin-on tantalate is annealed at a higher temperature (typically 400 ° C to 700 ° C), which densifies the niobate to a SiO 2 web. The dense SiO 2 is a dielectric film having low leakage.

然後,如圖6D中所展示,各向同性地部分蝕刻絕緣層15。此蝕刻步驟自半導體殼層3側壁之至少上部部分移除絕緣層15之較薄部分15B且曝露半導體殼層側壁3之至少上部部分。然而,在部分蝕刻之後在半導體殼層3之間的空間11中保留旋塗式絕緣層15之較厚部分15A,但總絕緣層厚度在空間11中減低。彎曲上面仍保留有毗鄰於殼層之較厚部分15A及遠離殼層之較薄部分15C。 Then, as shown in FIG. 6D, the insulating layer 15 is isotropically partially etched. This etching step removes the thinner portion 15B of the insulating layer 15 from at least the upper portion of the sidewall of the semiconductor shell 3 and exposes at least the upper portion of the sidewall 3 of the semiconductor shell. However, the thick portion 15A of the spin-on insulating layer 15 remains in the space 11 between the semiconductor shell layers 3 after the partial etching, but the total insulating layer thickness is reduced in the space 11. The thicker portion 15A adjacent to the shell layer and the thinner portion 15C remote from the shell layer remain on the curved surface.

舉例而言,蝕刻可包括任何適合SOG濕式蝕刻,諸如經緻密SOG層15之藉由稀氫氟酸(HF)之一各向同性濕式蝕刻。此蝕刻可自殼層3 之側壁及尖端移除層之較薄部分15B以達成至殼層3之側壁之一電接觸,而在基底區域10中其提供電絕緣之處留下SOG層較厚部分15A。 For example, the etch can include any suitable wet etching of SOG, such as isotropic wet etching by dilute hydrofluoric acid (HF) via dense SOG layer 15. This etching can be from the shell layer 3 The sidewalls and the thinner portion 15B of the tip removal layer are in electrical contact to one of the sidewalls of the shell layer 3, while leaving a thicker portion 15A of the SOG layer where it provides electrical insulation in the substrate region 10.

如圖5A至圖5D中所展示,然後在圖6D中所展示之裝置上方形成頂部電極層9。頂部電極層9接觸半導體殼層3之所曝露尖端及側壁。頂部電極層9亦接觸半導體殼層3之間的空間11中之絕緣層15。較佳地,頂部電極層9係形成於半導體殼層3之所曝露尖端及側壁之至少上部部分上(例如,外殼層3B上)及半導體殼層3之間的空間11中之絕緣層15上之一連續層,使得頂部電極層不接觸多晶半導體底腳13部分(若其存在的話)。 As shown in Figures 5A-5D, a top electrode layer 9 is then formed over the device shown in Figure 6D. The top electrode layer 9 contacts the exposed tip and sidewall of the semiconductor shell 3. The top electrode layer 9 also contacts the insulating layer 15 in the space 11 between the semiconductor shell layers 3. Preferably, the top electrode layer 9 is formed on the exposed top end of the semiconductor shell layer 3 and on at least the upper portion of the sidewall (for example, on the outer shell layer 3B) and the insulating layer 15 in the space 11 between the semiconductor shell layers 3. One of the continuous layers is such that the top electrode layer does not contact the portion of the polycrystalline semiconductor foot 13 if it is present.

圖7係在基底或底腳區域10處具有及不具有SOG絕緣層15之情況下之針對約500個由奈米線LED構成之裝置之在+2V下之電流之一概率圖。如自此圖可見,與在不具有SOG層之情況下相比,對於具有SOG層之LED,電流分佈緊密得多且漏電電流較低。 Figure 7 is a plot of the probability of current at +2V for about 500 devices consisting of nanowire LEDs with and without the SOG insulating layer 15 at the substrate or foot region 10. As can be seen from this figure, for LEDs with SOG layers, the current distribution is much tighter and the leakage current is lower compared to without the SOG layer.

儘管就奈米線LED之接觸闡述了本發明,但應瞭解,基於其他奈米線之半導體裝置(諸如場效電晶體、二極體及尤其涉及光吸收或光產生之裝置(諸如光偵測器、太陽能電池、雷射等))可實施於任何奈米線結構上。 Although the invention has been described in terms of contact with a nanowire LED, it should be understood that semiconductor devices based on other nanowires (such as field effect transistors, diodes, and especially those involving light absorption or light generation (such as light detection) , solar cells, lasers, etc.) can be implemented on any nanowire structure.

本說明書中引用之所有公開案及專利皆以引用方式併入本文中,猶如每一個別公開案或專利特別地且個別地指明為將以引用方式併入一般,且為了連同公開案引用之方法及/或材料一起揭示並闡述該等方法及/或材料而以引用方式併入本文中。任何公開案之引用係針對其在申請日期之前的揭示內容,且不應解釋為本發明無權憑藉先前發明先於此類公開案之一許可。此外,所提供之公開案之日期可不同於實際公開案日期,此可需要獨立確認。 All publications and patents cited in the specification are hereby incorporated by reference in their entirety as if the disclosure The methods and/or materials are disclosed and described herein together and incorporated by reference. The disclosure of any publication is for its disclosure prior to the filing date and is not to be construed as an admission that the invention is not limited by the prior invention. In addition, the date of the publication provided may be different from the actual publication date, which may require independent confirmation.

2‧‧‧n型奈米線芯/奈米線芯/芯/n型芯/第一導電性類型芯/第一導電性類型(例如,n型)半導體奈米線芯/第一導電性類型半導體奈米線芯 2‧‧‧n type nanowire core/nano core/core/n core/first conductivity type core/first conductivity type (for example, n type) semiconductor nanowire core/first conductivity Type semiconductor nanowire core

3‧‧‧p型殼層/殼層/外殼層/半導體殼層/第二導電性類型半導體殼層/半導體殼層側壁 3‧‧‧p-type shell/shell/shell/semiconductor shell/second conductivity type semiconductor shell/semiconductor shell sidewall

3A‧‧‧內殼層/殼層子層/殼層/內AlGaN殼層/第一p-AlGaN內殼層/p-AlGaN內殼層/AlGaN殼層/層/p-AlGaN殼層/第二導電性類型殼層/結晶部分/底腳阻擋層/結晶AlGaN/半導體殼層/實質上單晶AlGaN內部殼層/實質上單晶p-AlGaN內殼層/實質上單晶內殼層 3A‧‧‧Inner/Shell Sublayer/Shell/Inner AlGaN Shell/First p-AlGaN Inner Shell/p-AlGaN Inner Shell/AlGaN Shell/Layer/p-AlGaN Shell/No Two Conductive Type Shell/Crystal Part/Bottom Barrier Layer/Crystalline AlGaN/Semiconductor Shell/Substantial Single Crystal AlGaN Inner Shell/Substantial Single Crystal p-AlGaN Inner Shell/Substantial Single Crystal Inner Shell

3B‧‧‧外殼層/殼層子層/外GaN殼層/外p-GaN殼層/殼層/p-GaN殼層/實質上單晶p-GaN外殼層/p-GaN外殼層 3B‧‧‧Sheath/shell sublayer/outer GaN shell/outer p-GaN shell/shell/p-GaN shell/substantial single crystal p-GaN shell/p-GaN shell

4‧‧‧中間作用區域/作用區域/作用區域殼層/量子井殼層/量子井/半導體作用區域 4‧‧‧Intermediate zone/action zone/action zone shell/quantum well shell/quantum well/semiconductor active zone

6‧‧‧生長遮罩/介電遮罩層/遮罩/遮罩層/氮化矽遮罩層/氮化矽遮罩/絕緣遮罩層 6‧‧‧Growth mask/dielectric mask layer/mask/mask layer/tantalum nitride mask layer/tantalum nitride mask/insulation mask layer

7‧‧‧半導體緩衝層/GaN及/或AlGaN緩衝層/緩衝層/n型半導體緩衝層 7‧‧‧Semiconductor buffer layer/GaN and/or AlGaN buffer layer/buffer layer/n-type semiconductor buffer layer

10‧‧‧底腳區域/基底區域 10‧‧‧foot area/base area

13‧‧‧半導體底腳/底腳/多晶p-AlGaN底腳/AlGaN底腳/底腳部分/n-AlGaN底腳/底腳阻擋層/多晶AlGaN底腳/相對高電阻率半導體AlGaN底腳/半導體底腳部分/多晶p-AlGaN底腳部分/多晶半導體底腳部分/p-AlGaN底腳部分/多晶半導體底腳 13‧‧‧Semiconductor Foot/Bottom/Polycrystalline p-AlGaN Foot/AlGaN Foot/Foot Part/n-AlGaN Foot/Bottom Barrier/Polycrystalline AlGaN Foot/ Relative High Resistivity Semiconductor AlGaN Foot/semiconductor foot portion/polycrystalline p-AlGaN foot portion/polycrystalline semiconductor foot portion/p-AlGaN foot portion/polycrystalline semiconductor foot

Claims (58)

一種半導體裝置,其包括:複數個第一導電性類型半導體奈米線芯,其位於一支撐件上方;一絕緣遮罩層,其位於該支撐件上方,其中該等奈米線芯包括自該支撐件之一半導體表面透過該絕緣遮罩層中之開口而曝露之部分磊晶延伸之半導體奈米線;複數個半導體殼層,其在該等各別奈米線芯上方延伸,其中該複數個半導體殼層中之每一者包括圍繞該複數個第一導電性類型奈米線芯中之各別者延伸之至少一個半導體內部殼層及圍繞該至少一個半導體內部殼層延伸之一第二導電性類型半導體外殼層;一第一電極層,其接觸該複數個半導體殼層之該第二導電性類型半導體外殼層且延伸至該等半導體殼層之間的空間中;及該至少一個半導體內部殼層及一半導體底腳部分,該半導體底腳部分在該第一電極及該各別第二導電性類型半導體外殼層下方在該絕緣遮罩層上於該複數個半導體殼層之間的該等空間中延伸。 A semiconductor device comprising: a plurality of first conductivity type semiconductor nanowire cores over a support member; an insulating mask layer over the support member, wherein the nanowire cores comprise a portion of the epitaxially extending semiconductor nanowire exposed by the semiconductor surface of the support member through the opening in the insulating mask layer; a plurality of semiconductor shell layers extending over the respective nanowire cores, wherein the plurality Each of the plurality of semiconductor shell layers includes at least one semiconductor inner shell layer extending around each of the plurality of first conductivity type nanowire cores and a second one extending around the at least one semiconductor inner shell layer a conductive type semiconductor outer casing layer; a first electrode layer contacting the second conductive type semiconductor outer casing layer of the plurality of semiconductor shell layers and extending into a space between the semiconductor shell layers; and the at least one semiconductor An inner shell layer and a semiconductor foot portion, the semiconductor foot portion being under the first electrode and the respective second conductivity type semiconductor shell layer Upper layer extends to the spaces between the plurality of semiconductor shell layer. 如請求項1之裝置,其中該裝置包括一發光二極體(LED)裝置。 A device as claimed in claim 1, wherein the device comprises a light emitting diode (LED) device. 如請求項2之裝置,其進一步包括圍繞該複數個奈米線芯中之每一者之一作用區域殼層。 The device of claim 2, further comprising a zone shell surrounding each of the plurality of nanowire cores. 如請求項3之裝置,其中該作用區域殼層包括至少一個量子井,且該第二導電性類型半導體外殼層環繞該至少一個量子井以在由至少一個量子井殼層環繞之每一奈米線芯處形成一發光p-i-n接面。 The device of claim 3, wherein the active region shell comprises at least one quantum well, and the second conductivity type semiconductor outer layer surrounds the at least one quantum well to surround each nanometer surrounded by at least one quantum well shell layer A luminescent pin junction is formed at the core. 如請求項4之裝置,其進一步包括位於該絕緣遮罩層與該第一電極之間在該複數個半導體殼層之間的該等空間中之一絕緣層,其中該絕緣層位於該等半導體殼層之該等半導體底腳部分上,使得該第一電極接觸該絕緣層且不接觸該半導體底腳部分。 The device of claim 4, further comprising an insulating layer between the insulating mask layer and the first electrode between the plurality of semiconductor shell layers, wherein the insulating layer is located in the semiconductor The semiconductor foot portions of the shell layer are such that the first electrode contacts the insulating layer and does not contact the semiconductor foot portion. 如請求項5之裝置,其中該絕緣層包括一旋塗式介電質。 The device of claim 5, wherein the insulating layer comprises a spin-on dielectric. 如請求項6之裝置,其中該旋塗式介電質包括具有一彎曲上面之一旋塗式玻璃層。 The device of claim 6 wherein the spin-on dielectric comprises a spin-on glass layer having a curved upper surface. 如請求項3之裝置,其中每一半導體內部殼層包括位於該作用區域殼層與該第二導電性類型外殼層之間的一第二導電性類型半導體內部殼層,且該至少一個半導體內部殼層連接至該半導體底腳部分。 The device of claim 3, wherein each of the semiconductor inner shell layers comprises a second conductivity type semiconductor inner shell layer between the active region shell layer and the second conductive type outer shell layer, and the at least one semiconductor interior A shell layer is attached to the semiconductor foot portion. 如請求項8之裝置,其中:每一第二導電性類型半導體內部殼層包括具有大於5%鋁之一p-AlGaN內殼層;每一第二導電性類型半導體外殼層包括一p-GaN外殼層;該半導體底腳部分包括該p-AlGaN內殼層之一p-AlGaN底腳部分;且該p-AlGaN底腳部分在該p-GaN外殼層下方連接至該p-AlGaN內殼層。 The device of claim 8, wherein: each of the second conductivity type semiconductor inner shell layers comprises one p-AlGaN inner shell layer having more than 5% aluminum; each second conductivity type semiconductor outer shell layer comprises a p-GaN layer a semiconductor layer portion including a p-AlGaN foot portion of the p-AlGaN inner shell layer; and the p-AlGaN foot portion is connected to the p-AlGaN inner shell layer under the p-GaN outer shell layer . 如請求項8之裝置,其中:每一第二導電性類型半導體內部殼層包括具有5%或少於5%鋁之一p-AlGaN內殼層及具有大於5%鋁之一p-AlGaN中間殼層;每一第二導電性類型半導體外殼層包括一p-GaN外殼層;每一p-AlGaN中間殼層位於該p-GaN外殼層與該p-AlGaN內殼層或該作用區域殼層中之一者之間;該半導體底腳部分包括該p-AlGaN中間殼層之一p-AlGaN底腳 部分;且該p-AlGaN底腳部分在該p-GaN外殼層下方連接至該p-AlGaN中間殼層。 The device of claim 8, wherein: each of the second conductivity type semiconductor inner shell layers comprises a p-AlGaN inner shell layer having 5% or less aluminum and one p-AlGaN inner layer having more than 5% aluminum a shell layer; each second conductivity type semiconductor shell layer comprises a p-GaN outer shell layer; each p-AlGaN intermediate shell layer is located on the p-GaN outer shell layer and the p-AlGaN inner shell layer or the active region shell layer Between one of the semiconductor legs; the semiconductor foot portion includes one of the p-AlGaN intermediate shell p-AlGaN feet a portion; and the p-AlGaN foot portion is connected to the p-AlGaN intermediate layer under the p-GaN outer layer. 如請求項3之裝置,其中每一半導體內部殼層包括位於該作用區域殼層與該複數個第一導電性類型半導體奈米線芯中之一各別者之間的一第一導電性類型半導體內部殼層。 The device of claim 3, wherein each of the semiconductor inner shell layers comprises a first conductivity type between the active region shell layer and one of the plurality of first conductivity type semiconductor nanowire cores The inner shell of the semiconductor. 如請求項11之裝置,其中:每一第一導電性類型半導體內部殼層包括具有大於5%鋁之一n-AlGaN殼層;該半導體底腳部分包括該n-AlGaN殼層之一n-AlGaN底腳部分;每一第二導電性類型半導體外殼層包括一p-GaN外殼層;且該n-AlGaN底腳部分在該p-GaN外殼層及該作用區域殼層下方連接至該n-AlGaN殼層。 The device of claim 11, wherein: each first conductivity type semiconductor inner shell layer comprises one n-AlGaN shell layer having more than 5% aluminum; and the semiconductor foot portion includes one of the n-AlGaN shell layers n- An AlGaN foot portion; each second conductivity type semiconductor outer layer includes a p-GaN outer layer; and the n-AlGaN foot portion is connected to the n- under the p-GaN outer layer and the active region shell AlGaN shell layer. 如請求項4之裝置,其中該第一導電性類型包括n型,該第二導電性類型包括p型,且該第一電極層包括一p電極層。 The device of claim 4, wherein the first conductivity type comprises an n-type, the second conductivity type comprises a p-type, and the first electrode layer comprises a p-electrode layer. 如請求項13之裝置,其進一步包括電連接至該等n型奈米線芯之一第二電極層。 The device of claim 13, further comprising a second electrode layer electrically connected to one of the n-type nanowire cores. 如請求項14之裝置,其中該支撐件包括一基板上之一n型半導體緩衝層。 The device of claim 14, wherein the support comprises an n-type semiconductor buffer layer on a substrate. 如請求項15之裝置,其中該緩衝層包括一n-GaN或n-AlGaN層,該等奈米線芯包括n-GaN奈米線,該至少一個量子井包括一InGaN/GaN量子井,且該第一電極包括一透明導電氧化物(TCO)。 The device of claim 15, wherein the buffer layer comprises an n-GaN or n-AlGaN layer, the nanowire core comprises an n-GaN nanowire, the at least one quantum well comprises an InGaN/GaN quantum well, and The first electrode includes a transparent conductive oxide (TCO). 一種製造一半導體裝置之方法,其包括:自一支撐件之一半導體表面透過該支撐件上之一絕緣遮罩層 中之開口而曝露之部分磊晶生長複數個第一導電性類型半導體奈米線芯;形成圍繞該等各別奈米線芯延伸之複數個半導體殼層,其中形成該複數個半導體殼層中之每一者包括:形成至少一個半導體內部殼層及在該絕緣遮罩層上在該複數個半導體殼層之間的空間中延伸之一半導體底腳部分;及形成圍繞該至少一個半導體內部殼層延伸之一第二導電性類型半導體外殼層;及形成一第一電極層,其中該第一電極層接觸該等第二導電性類型半導體外殼層之所曝露尖端及側壁之至少上部部分,且該第一電極層在該複數個半導體殼層之間的該等空間中在每一半導體內部殼層之該底腳部分上方延伸。 A method of fabricating a semiconductor device, comprising: transmitting an insulating mask layer from a semiconductor surface of a support member through the support member a portion of the epitaxially exposed portion of the epitaxially grown plurality of first conductivity type semiconductor nanowire cores; forming a plurality of semiconductor shell layers extending around the respective nanowire cores, wherein the plurality of semiconductor shell layers are formed Each of the plurality of semiconductor inner shell layers and a semiconductor foot portion extending over the insulating mask layer in a space between the plurality of semiconductor shell layers; and forming around the at least one semiconductor inner shell a layer extending a second conductivity type semiconductor outer casing layer; and forming a first electrode layer, wherein the first electrode layer contacts at least an upper portion of the exposed tip and sidewall of the second conductivity type semiconductor outer casing layer, and The first electrode layer extends over the foot portion of each of the semiconductor inner shell layers in the spaces between the plurality of semiconductor shell layers. 如請求項17之方法,其中形成該至少一個半導體內部殼層包括於相同CVD生長步驟中形成具有該半導體底腳部分之至少一個實質上單晶半導體內部殼層。 The method of claim 17, wherein forming the at least one semiconductor inner shell layer comprises forming at least one substantially single crystal semiconductor inner shell layer having the semiconductor foot portion in the same CVD growth step. 如請求項18之方法,其進一步包括在該絕緣遮罩層上方在該複數個半導體殼層之間的該等空間中形成一絕緣層,使得該等第二導電性類型半導體外殼層之該等尖端及側壁之該等至少上部部分曝露於該絕緣層中。 The method of claim 18, further comprising forming an insulating layer over the insulating mask layer in the spaces between the plurality of semiconductor shell layers such that the second conductive type semiconductor shell layers At least the upper portion of the tip and the sidewall are exposed to the insulating layer. 如請求項19之方法,其中形成該絕緣層之該步驟包括旋塗一旋塗式介電層。 The method of claim 19, wherein the step of forming the insulating layer comprises spin coating a spin-on dielectric layer. 如請求項20之方法,其中該旋塗式介電層厚度在該絕緣遮罩層上方在該等第二導電性類型半導體外殼層之間的該等空間中比在該等第二導電性類型半導體外殼層之該等側壁上大。 The method of claim 20, wherein the spin-on dielectric layer thickness is above the insulating mask layer in the spaces between the second conductive type semiconductor outer skin layers than in the second conductive types The sidewalls of the semiconductor outer layer are large. 如請求項21之方法,其進一步包括各向同性地部分蝕刻該旋塗式介電層以自該等第二導電性類型半導體外殼層之該等至少上 部部分移除該旋塗式介電質且曝露該等第二導電性類型半導體外殼層側壁之該等至少上部部分,而在該等第二導電性類型半導體外殼層之間的該等空間中保留該旋塗式介電層。 The method of claim 21, further comprising isotropically partially etching the spin-on dielectric layer from the at least one of the second conductivity type semiconductor outer skin layers Portion partially removing the spin-on dielectric and exposing at least the upper portions of the sidewalls of the second conductivity type semiconductor cap layers, and in the spaces between the second conductivity type semiconductor cap layers The spin-on dielectric layer is retained. 如請求項19之方法,其中第一電極層接觸該絕緣層且不接觸每一半導體內部殼層之該多晶半導體底腳部分。 The method of claim 19, wherein the first electrode layer contacts the insulating layer and does not contact the polycrystalline semiconductor foot portion of each of the semiconductor inner shell layers. 如請求項18之方法,其中第一電極層接觸每一半導體內部殼層之該多晶半導體底腳部分。 The method of claim 18, wherein the first electrode layer contacts the polycrystalline semiconductor foot portion of each of the semiconductor inner shell layers. 如請求項18之方法,其進一步包括圍繞該複數個奈米線芯中之每一者形成一作用區域殼層,其中該裝置包括一發光二極體(LED)裝置。 The method of claim 18, further comprising forming an active region shell surrounding each of the plurality of nanowire cores, wherein the device comprises a light emitting diode (LED) device. 如請求項25之方法,其中該第一導電性類型包括n型,該第二導電性類型包括p型,且該第一電極層包括一p電極層。 The method of claim 25, wherein the first conductivity type comprises an n-type, the second conductivity type comprises a p-type, and the first electrode layer comprises a p-electrode layer. 如請求項26之方法,其進一步包括電連接至該等n型奈米線芯之一第二電極層。 The method of claim 26, further comprising electrically connecting to one of the second electrode layers of the n-type nanowire core. 如請求項27之方法,其中該支撐件包括一基板上之一n型半導體緩衝層,該緩衝層包括一n-GaN或n-AlGaN層,該等奈米線芯包括n-GaN奈米線,該作用區域殼層包括一InGaN/GaN量子井,且該第一電極包括一透明導電氧化物(TCO)。 The method of claim 27, wherein the support comprises an n-type semiconductor buffer layer on the substrate, the buffer layer comprising an n-GaN or n-AlGaN layer, the nanowire core comprising an n-GaN nanowire The active region shell layer includes an InGaN/GaN quantum well, and the first electrode includes a transparent conductive oxide (TCO). 如請求項25之方法,其中每一半導體內部殼層包括位於該作用區域殼層與該第二導電性類型半導體外殼層之間的一第二導電性類型半導體內部殼層。 The method of claim 25, wherein each of the semiconductor inner shell layers comprises a second conductivity type semiconductor inner shell layer between the active region shell layer and the second conductivity type semiconductor outer shell layer. 如請求項29之方法,其中:形成每一第二導電性類型半導體內部殼層包括在低於850℃之一溫度下形成具有大於5%鋁之一p-AlGaN內殼層;形成每一第二導電性類型半導體外殼層包括在高於850℃之一溫度下形成一p-GaN外殼層; 形成該半導體底腳部分包括形成該p-AlGaN內殼層之一p-AlGaN底腳部分;且該p-AlGaN底腳部分在該p-GaN外殼層下方連接至該p-AlGaN內殼層。 The method of claim 29, wherein: forming each of the second conductivity type semiconductor inner shell layers comprises forming a p-AlGaN inner shell layer having one greater than 5% aluminum at a temperature lower than 850 ° C; forming each The second conductive type semiconductor outer layer includes a p-GaN outer layer formed at a temperature higher than 850 ° C; Forming the semiconductor foot portion includes forming a p-AlGaN foot portion of the p-AlGaN inner shell layer; and the p-AlGaN foot portion is connected to the p-AlGaN inner shell layer below the p-GaN outer shell layer. 如請求項29之方法,其中:形成每一第二導電性類型半導體內部殼層包括在低於850℃之一溫度下形成具有5%或少於5%鋁之一p-AlGaN內殼層,及在高於850℃之一溫度下形成具有大於5%鋁之一p-AlGaN中間殼層;形成每一第二導電性類型半導體外殼層包括形成一p-GaN外殼層;每一p-AlGaN中間殼層位於該p-GaN外殼層與該p-AlGaN內殼層或該作用區域殼層中之一者之間;形成該半導體底腳部分包括形成該p-AlGaN中間殼層之一p-AlGaN底腳部分;且該p-AlGaN底腳部分在該p-GaN外殼層下方連接至該p-AlGaN中間殼層。 The method of claim 29, wherein: forming each of the second conductivity type semiconductor inner shell layers comprises forming a p-AlGaN inner shell layer having 5% or less of aluminum at a temperature lower than 850 ° C, And forming a p-AlGaN intermediate shell layer having more than 5% aluminum at a temperature higher than 850 ° C; forming each second conductivity type semiconductor outer shell layer includes forming a p-GaN outer shell layer; each p-AlGaN An intermediate shell layer is located between the p-GaN outer shell layer and one of the p-AlGaN inner shell layer or the active region shell layer; forming the semiconductor foot portion includes forming one of the p-AlGaN intermediate shell layers p- An AlGaN foot portion; and the p-AlGaN foot portion is connected to the p-AlGaN intermediate layer under the p-GaN outer layer. 如請求項25之方法,其中每一半導體內部殼層包括位於該作用區域殼層與該第一導電性類型半導體芯之間的一第一導電性類型半導體內部殼層。 The method of claim 25, wherein each of the semiconductor inner shell layers comprises a first conductivity type semiconductor inner shell layer between the active region shell layer and the first conductivity type semiconductor core. 如請求項32之方法,其中:形成每一第一導電性類型半導體內部殼層包括在低於850℃之一溫度下形成具有大於5%鋁之一n-AlGaN殼層;形成該半導體底腳部分包括形成該n-AlGaN殼層之一n-AlGaN底腳部分;形成每一第二導電性類型半導體外殼層包括形成一p-GaN外殼層;且 該n-AlGaN底腳部分在該p-GaN外殼層及該作用區域殼層下方連接至該n-AlGaN殼層。 The method of claim 32, wherein: forming each of the first conductivity type semiconductor inner shell layers comprises forming an n-AlGaN shell layer having one of greater than 5% aluminum at a temperature lower than 850 ° C; forming the semiconductor foot Part comprising forming an n-AlGaN foot portion of the n-AlGaN shell layer; forming each second conductivity type semiconductor shell layer comprises forming a p-GaN shell layer; The n-AlGaN foot portion is connected to the n-AlGaN shell layer under the p-GaN outer shell layer and the active region shell layer. 一種半導體裝置,其包括:複數個第一導電性類型半導體奈米線芯,其位於一支撐件上方;一絕緣遮罩層,其位於該支撐件上方,其中該等奈米線芯包括自該支撐件之一半導體表面透過該絕緣遮罩層中之開口而曝露之部分磊晶延伸之半導體奈米線;複數個第二導電性類型半導體殼層,其在該等各別奈米線芯上方且圍繞該等各別奈米線芯延伸;一第一電極層,其接觸該等第二導電性類型半導體殼層且延伸至該等半導體殼層之間的空間中;及一絕緣層,其位於該絕緣遮罩層與該第一電極之間在該等半導體殼層之間的該等空間中。 A semiconductor device comprising: a plurality of first conductivity type semiconductor nanowire cores over a support member; an insulating mask layer over the support member, wherein the nanowire cores comprise a portion of the epitaxially extending semiconductor nanowire exposed by the semiconductor surface of the support member through the opening in the insulating mask layer; a plurality of second conductivity type semiconductor shell layers above the respective nanowire cores And extending around the respective nanowire cores; a first electrode layer contacting the second conductivity type semiconductor shell layers and extending into a space between the semiconductor shell layers; and an insulating layer Located between the insulating mask layer and the first electrode in the spaces between the semiconductor shell layers. 如請求項34之裝置,其中該裝置包括一發光二極體(LED)裝置。 The device of claim 34, wherein the device comprises a light emitting diode (LED) device. 如請求項35之裝置,其進一步包括圍繞該複數個奈米線芯中之每一者之一作用區域殼層。 The device of claim 35, further comprising a zone shell surrounding each of the plurality of nanowire cores. 如請求項36之裝置,其中該作用區域殼層包括至少一個量子井,且該第二導電性類型半導體殼層環繞該至少一個量子井以在由至少一個量子井殼層環繞之每一奈米線芯處形成一發光p-i-n接面。 The device of claim 36, wherein the active region shell comprises at least one quantum well, and the second conductivity type semiconductor shell surrounds the at least one quantum well to surround each nanometer surrounded by at least one quantum well shell layer A luminescent pin junction is formed at the core. 如請求項37之裝置,其中:該等半導體殼層中之每一者包括在該絕緣遮罩層上在該等半導體殼層之間的該等空間中延伸之一半導體底腳部分;且該絕緣層位於該半導體底腳部分上,使得該第一電極接觸該絕緣層且不接觸該底腳部分。 The device of claim 37, wherein: each of the semiconductor shell layers comprises a semiconductor foot portion extending over the insulating mask layer in the spaces between the semiconductor shell layers; An insulating layer is on the semiconductor foot portion such that the first electrode contacts the insulating layer and does not contact the foot portion. 如請求項38之裝置,其中:該第二導電性類型半導體殼層包括具有大於5%鋁之一p-AlGaN內殼層,及p-GaN外殼層;該半導體底腳部分包括該p-AlGaN內殼層之一p-AlGaN底腳部分;且該p-AlGaN底腳部分在該p-GaN外殼層下方連接至該p-AlGaN內殼層。 The device of claim 38, wherein: the second conductivity type semiconductor shell layer comprises a p-AlGaN inner shell layer having more than 5% aluminum, and a p-GaN outer shell layer; the semiconductor foot portion including the p-AlGaN layer One p-AlGaN foot portion of the inner shell layer; and the p-AlGaN foot portion is connected to the p-AlGaN inner shell layer below the p-GaN outer shell layer. 如請求項37之裝置,其進一步包括具有大於5%鋁之一第一導電性類型AlGaN殼層,其中:該第一導電性類型AlGaN殼層位於該作用區域殼層與該複數個奈米線芯中之一各別者之間;該第一導電性類型AlGaN殼層包括在該絕緣遮罩層上在該等第二導電性類型半導體殼層之間的該等空間中延伸之一第一導電性類型AlGaN底腳部分;該絕緣層位於該第一導電性類型AlGaN底腳部分上,使得該第一電極接觸該絕緣層且不接觸該第一導電性類型AlGaN底腳部分;該第二導電性類型半導體殼層包括一第二導電性類型GaN外殼層;且該第一導電性類型AlGaN底腳部分在該第二導電性類型GaN外殼層及該作用區域殼層下方連接至該第一導電性類型AlGaN殼層。 The device of claim 37, further comprising a first conductivity type AlGaN shell layer having greater than 5% aluminum, wherein: the first conductivity type AlGaN shell layer is located in the active region shell layer and the plurality of nanowire lines Between each of the cores; the first conductivity type AlGaN shell layer includes one of the first in the space between the second conductivity type semiconductor shell layers on the insulating mask layer a conductive type AlGaN foot portion; the insulating layer is on the first conductive type AlGaN foot portion such that the first electrode contacts the insulating layer and does not contact the first conductive type AlGaN foot portion; the second The conductive type semiconductor shell layer includes a second conductive type GaN outer shell layer; and the first conductive type AlGaN foot portion is connected to the first under the second conductive type GaN outer shell layer and the active region shell layer Conductive type AlGaN shell layer. 如請求項34之裝置,其中該絕緣層包括一旋塗式介電質。 The device of claim 34, wherein the insulating layer comprises a spin-on dielectric. 如請求項41之裝置,其中該旋塗式介電質包括具有一彎曲上面之一旋塗式玻璃層。 The device of claim 41, wherein the spin-on dielectric comprises a spin-on glass layer having a curved upper surface. 如請求項40之裝置,其中該第一導電性類型包括n型,該第二導 電性類型包括p型,且該第一電極層包括一p電極層。 The device of claim 40, wherein the first conductivity type comprises an n-type, the second guide The electrical type includes a p-type, and the first electrode layer includes a p-electrode layer. 如請求項43之裝置,其進一步包括電連接至該等n型奈米線芯之一第二電極層。 The device of claim 43, further comprising a second electrode layer electrically coupled to one of the n-type nanowire cores. 如請求項44之裝置,其中該支撐件包括一基板上之一n型半導體緩衝層。 The device of claim 44, wherein the support comprises an n-type semiconductor buffer layer on a substrate. 如請求項45之裝置,其中該緩衝層包括一n-GaN或n-AlGaN層,該等奈米線芯包括n-GaN奈米線,該至少一個量子井包括一InGaN/GaN量子井,且該第一電極包括一透明導電氧化物(TCO)。 The device of claim 45, wherein the buffer layer comprises an n-GaN or n-AlGaN layer, the nanowire core comprises an n-GaN nanowire, the at least one quantum well comprising an InGaN/GaN quantum well, and The first electrode includes a transparent conductive oxide (TCO). 一種製造一半導體裝置之方法,其包括:自一支撐件之一半導體表面透過該支撐件上之一絕緣遮罩層中之開口而曝露之部分磊晶生長複數個第一導電性類型半導體奈米線芯;形成在該等各別奈米線芯上方且圍繞該等各別奈米線芯延伸之複數個第二導電性類型半導體殼層;在該絕緣遮罩層上方在該等半導體殼層之間的空間中形成一絕緣層,使得該等半導體殼層之尖端及側壁之至少上部部分曝露於該絕緣層中;及形成一第一電極層,其中該第一電極層接觸半導體殼層之該等所曝露尖端及側壁之該等至少上部部分,且該第一電極層接觸該等半導體殼層之間的該等空間中之該絕緣層。 A method of fabricating a semiconductor device, comprising: partially epitaxially growing a plurality of first conductivity type semiconductor nanoparticles from a semiconductor surface of a support member through an opening in an insulating mask layer of the support member a core; a plurality of second conductivity type semiconductor shells formed over the individual nanowire cores and extending around the respective nanowire cores; the semiconductor shell layers over the insulating mask layer Forming an insulating layer in a space between the tips and sidewalls of the semiconductor shells exposed to the insulating layer; and forming a first electrode layer, wherein the first electrode layer contacts the semiconductor shell layer The at least upper portions of the tips and sidewalls are exposed, and the first electrode layer contacts the insulating layer in the spaces between the semiconductor shell layers. 如請求項47之方法,其中形成該絕緣層之該步驟包括旋塗一旋塗式介電層。 The method of claim 47, wherein the step of forming the insulating layer comprises spin coating a spin-on dielectric layer. 如請求項48之方法,其中該旋塗式介電層厚度在該絕緣遮罩層上方在該等半導體殼層之間的該等空間中比在該等半導體殼層之該等側壁上大。 The method of claim 48, wherein the thickness of the spin-on dielectric layer is greater above the insulating mask layer in the spaces between the semiconductor shell layers than on the sidewalls of the semiconductor shell layers. 如請求項49之方法,其進一步包括各向同性地部分蝕刻該旋塗式介電層以自該等半導體殼層側壁之該等至少上部部分移除該旋塗式介電質且曝露該等半導體殼層側壁之該等至少上部部分,而在該等半導體殼層之間的該等空間中保留該旋塗式介電層。 The method of claim 49, further comprising isotropically partially etching the spin-on dielectric layer to remove the spin-on dielectric from the at least upper portions of the sidewalls of the semiconductor shells and exposing the same The at least upper portions of the sidewalls of the semiconductor shell retain the spin-on dielectric layer in the spaces between the semiconductor shell layers. 如請求項50之方法,其中:形成該複數個第二導電性類型半導體殼層之該步驟包括形成在該等各別奈米線芯上方且圍繞該等各別奈米線芯延伸之實質上單晶半導體殼層部分及在該絕緣遮罩層上在該等半導體殼層之間的該等空間中延伸之多晶半導體底腳部分;且形成該第一電極層之該步驟包括在該等半導體殼層之該等所曝露尖端及該等側壁之該等至少上部部分上以及在該等半導體殼層之間的該等空間中之該絕緣層上形成一連續第一電極層,使得該第一電極層不接觸該等多晶半導體底腳部分。 The method of claim 50, wherein the step of forming the plurality of second conductivity type semiconductor shell layers comprises forming substantially over the respective nanowire cores and extending around the respective nanowire cores a single crystal semiconductor shell portion and a polycrystalline semiconductor foot portion extending over the insulating mask layer in the spaces between the semiconductor shell layers; and the step of forming the first electrode layer includes Forming a continuous first electrode layer on the exposed tip of the semiconductor shell and at least the upper portion of the sidewalls and the insulating layer in the spaces between the semiconductor shells such that the first An electrode layer does not contact the polycrystalline semiconductor foot portions. 如請求項51之方法,其中:形成該複數個第二導電性類型半導體殼層之該步驟各自包括在低於850℃之一溫度下形成具有大於5%鋁之內p-AlGaN內殼層及在高於850℃之一溫度下形成p-GaN外殼層;該等多晶半導體底腳部分包括該等p-AlGaN內殼層之一多晶p-AlGaN底腳部分;且該等p-GaN外殼層形成於該等p-AlGaN內殼層及該等p-AlGaN底腳部分上方,使得該等p-AlGaN底腳部分在該等各別p-GaN外殼層下方連接至該等各別p-AlGaN內殼層。 The method of claim 51, wherein the step of forming the plurality of second conductivity type semiconductor shell layers each comprises forming a p-AlGaN inner shell layer having greater than 5% aluminum at a temperature lower than 850 ° C and Forming a p-GaN outer shell layer at a temperature higher than 850 ° C; the polycrystalline semiconductor foot portions including one of the p-AlGaN inner shell layers of polycrystalline p-AlGaN foot portions; and the p-GaN A cap layer is formed over the p-AlGaN inner cap layer and the p-AlGaN leg portions such that the p-AlGaN leg portions are connected to the respective p under the respective p-GaN cap layers -AlGaN inner shell layer. 如請求項50之方法,其進一步包括在低於850℃之一溫度下在各別作用區域殼層與該等奈米線芯之間形成具有大於5%鋁之第一導電性類型AlGaN殼層,其中: 形成該等第一導電性類型AlGaN殼層之該步驟包括形成在該等各別奈米線芯上方且圍繞該等各別奈米線芯延伸之實質上單晶AlGaN殼層部分及在該絕緣遮罩層上在該等第二導電性類型半導體殼層之間的該等空間中延伸之第一導電性類型多晶AlGaN底腳部分;且形成該第一電極層之該步驟包括在該等第二導電性類型半導體殼層之該等所曝露尖端及該等側壁之該等至少上部部分上以及在該等第二導電性類型半導體殼層之間的該等空間中之該絕緣層上形成一連續第一電極層,使得該第一電極層不接觸該等多晶AlGaN底腳部分;且該等第一導電性類型多晶AlGaN底腳部分在該等各別第二導電性類型殼層及該等各別作用區域殼層下方連接至該等各別第一導電性類型AlGaN殼層。 The method of claim 50, further comprising forming a first conductivity type AlGaN shell layer having greater than 5% aluminum between the shell layers of the respective active regions and the nanowire cores at a temperature lower than 850 °C. ,among them: The step of forming the first conductivity type AlGaN shell layer includes forming a portion of the substantially single crystal AlGaN shell layer over the respective nanowire cores and extending around the respective nanowire cores and at the insulation a first conductivity type polycrystalline AlGaN foot portion extending over the spaces between the second conductivity type semiconductor shell layers on the mask layer; and the step of forming the first electrode layer is included in the Forming the exposed tips of the second conductive type semiconductor shell layer and the at least upper portions of the sidewalls and the insulating layer in the spaces between the second conductive type semiconductor shell layers a continuous first electrode layer such that the first electrode layer does not contact the polycrystalline AlGaN foot portions; and the first conductive type polycrystalline AlGaN foot portions are in the respective second conductivity type shell layers And below the shell layers of the respective active regions are connected to the respective first conductive type AlGaN shell layers. 如請求項50之方法,其中該絕緣層包括具有一彎曲上面之一旋塗式玻璃層。 The method of claim 50, wherein the insulating layer comprises a spin-on glass layer having a curved upper surface. 如請求項54之方法,其進一步包括圍繞該複數個奈米線芯中之每一者形成一作用區域殼層,其中該裝置包括一發光二極體(LED)裝置。 The method of claim 54, further comprising forming an active region shell around each of the plurality of nanowire cores, wherein the device comprises a light emitting diode (LED) device. 如請求項55之方法,其中該第一導電性類型包括n型,該第二導電性類型包括p型,且該第一電極層包括一p電極層。 The method of claim 55, wherein the first conductivity type comprises an n-type, the second conductivity type comprises a p-type, and the first electrode layer comprises a p-electrode layer. 如請求項56之方法,其進一步包括電連接至該等n型奈米線芯之一第二電極層。 The method of claim 56, further comprising electrically connecting to one of the second electrode layers of the n-type nanowire core. 如請求項57之方法,其中該支撐件包括一基板上之一n型半導體緩衝層,該緩衝層包括一n-GaN或n-AlGaN層,該等奈米線芯包括n-GaN奈米線,該至少作用區域殼層包括一InGaN/GaN量子井,且該第一電極包括一透明導電氧化物(TCO)。 The method of claim 57, wherein the support comprises an n-type semiconductor buffer layer on the substrate, the buffer layer comprising an n-GaN or n-AlGaN layer, the nanowire core comprising an n-GaN nanowire The at least active region shell layer includes an InGaN/GaN quantum well, and the first electrode includes a transparent conductive oxide (TCO).
TW103119947A 2013-06-07 2014-06-09 Nanowire LED structure with decreased leakage and method of making same TW201511334A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361832309P 2013-06-07 2013-06-07
US201361832350P 2013-06-07 2013-06-07

Publications (1)

Publication Number Publication Date
TW201511334A true TW201511334A (en) 2015-03-16

Family

ID=53186844

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103119947A TW201511334A (en) 2013-06-07 2014-06-09 Nanowire LED structure with decreased leakage and method of making same

Country Status (1)

Country Link
TW (1) TW201511334A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10088424B2 (en) 2016-08-24 2018-10-02 Industrial Technology Research Institute Tapered optical needle
TWI638991B (en) 2016-08-24 2018-10-21 財團法人工業技術研究院 Tapered optical needle
TWI758392B (en) * 2016-12-29 2022-03-21 法商艾勒迪亞公司 Optoelectronic device with light-emitting diodes and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10088424B2 (en) 2016-08-24 2018-10-02 Industrial Technology Research Institute Tapered optical needle
TWI638991B (en) 2016-08-24 2018-10-21 財團法人工業技術研究院 Tapered optical needle
TWI758392B (en) * 2016-12-29 2022-03-21 法商艾勒迪亞公司 Optoelectronic device with light-emitting diodes and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP6486519B2 (en) Nanowire-sized photoelectric structure and method for modifying selected portions thereof
TWI621278B (en) Iii-nitride nanowire led with strain modified surface active region and method of making thereof
US9799796B2 (en) Nanowire sized opto-electronic structure and method for modifying selected portions of same
JP2015532014A (en) Nanopyramid size photoelectric structure and method for manufacturing the same
US9640723B2 (en) Insulating layer for planarization and definition of the active region of a nanowire device
US20160020364A1 (en) Two step transparent conductive film deposition method and gan nanowire devices made by the method
JP2016519421A (en) High dielectric film for improving the extraction efficiency of nanowire LEDs
US9196787B2 (en) Nanowire LED structure with decreased leakage and method of making same
US9196792B2 (en) Nanowire LED structure with decreased leakage and method of making same
US9059355B2 (en) Stopping an etch in a planar layer after etching a 3D structure
TW201511334A (en) Nanowire LED structure with decreased leakage and method of making same