TW201510688A - 程序監控系統及方法 - Google Patents

程序監控系統及方法 Download PDF

Info

Publication number
TW201510688A
TW201510688A TW103119571A TW103119571A TW201510688A TW 201510688 A TW201510688 A TW 201510688A TW 103119571 A TW103119571 A TW 103119571A TW 103119571 A TW103119571 A TW 103119571A TW 201510688 A TW201510688 A TW 201510688A
Authority
TW
Taiwan
Prior art keywords
program
data
data set
model data
model
Prior art date
Application number
TW103119571A
Other languages
English (en)
Other versions
TWI648609B (zh
Inventor
Sandip K Lahiri
Mansoor Husain
Original Assignee
Scient Design Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scient Design Co filed Critical Scient Design Co
Publication of TW201510688A publication Critical patent/TW201510688A/zh
Application granted granted Critical
Publication of TWI648609B publication Critical patent/TWI648609B/zh

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/70Machine learning, data mining or chemometrics
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/024Quantitative history assessment, e.g. mathematical relationships between available data; Functions therefor; Principal component analysis [PCA]; Partial least square [PLS]; Statistical classifiers, e.g. Bayesian networks, linear regression or correlation analysis; Neural networks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0243Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
    • G05B23/0254Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model based on a quantitative model, e.g. mathematical relationships between inputs and outputs; functions: observer, Kalman filter, residual calculation, Neural Networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/10Analysis or design of chemical reactions, syntheses or processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/04Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
    • C07D301/08Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase
    • C07D301/10Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase with catalysts containing silver or gold
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32201Build statistical model of past normal proces, compare with actual process
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0208Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the configuration of the monitoring system
    • G05B23/0216Human interface functionality, e.g. monitoring system providing help to the user in the selection of tests or in its configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Computing Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computational Linguistics (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Databases & Information Systems (AREA)
  • Medical Informatics (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Human Computer Interaction (AREA)

Abstract

一種程序監控系統,程序由與程序輸入輸出資料有關的多維程序資料域中的程序資料集決定,系統包括:擷取機構,用於擷取眾多歷史程序資料集;轉換取得機構,藉由執行多變數資料分析,取得從多維程序資料域至較低維度的模型資料域的轉換;以及,轉換機構,將目前的程序資料集轉換至模型資料集以監視程序。

Description

程序監控系統及方法
本發明係關於程序監控系統及方法。特別地,本發明關於診斷程序的操作條件之新穎系統及方法。
US 2010/0036529關於使用多變數統計方法以偵測程序中不正常事件之技術。
早期偵測及診斷操作工廠中不正常事件的發生對於確保工廠安全及維持產品品質是非常重要的。先進儀器領域的進步能夠每少數秒測量與程序有關的數佰個變數。這些測量產生與工廠操作的狀態有關之有用的訊跡。
文獻已提出用於偵測故障的多種技術。這些技術廣義地分成模型為基礎的方法及歷史資料為基礎的統計方法。雖然模型為基礎的方法可以用以偵測及隔離表示不正常操作的訊號,但是,對於大型複合化學系統,此定性或定量因果模型難以一開始就開發。
人工神經網路(ANN)
神經網路是由神經系統中處理的路徑資訊所啟發的電腦演繹法。
人工神經網路(ANN)已顯現成為非線性模型化的有用工具,特別是在開發現象或慣用迴歸模型變得不實際或麻煩的情形中。ANN是電腦模型化方式,其經由迭代而從實例中學習,不要求先知道程序參數的關係。結果,ANN能夠適應變化的環境。也能夠處理不確定性、雜訊資料、及非線性關係。
ANN模型化方法稱為「不費力計算」且由於它們複合決策處理的免模型近似能力而被快速廣泛使用。
ANN為基礎的模型的優點如下:(i)其可單獨地從歷史程序輸入輸出資料(實例集)建立,(ii)模型開發不需要詳細知道程序現象,(iii)由於其準確地預測用於新的輸入資料集的輸出之能力,而容易將適當訓練的模型歸納,以及(iv)甚至多輸入-多輸出(MIMO)非線性關係都能被同時地及容易地近似。
歸功於它們吸引人的特性,ANN已廣泛地用於化學工程應用,例如穩態及動態程序模型化、程序識別、產量最大化、非線性控制、及故障偵測和診斷,舉例而言,請參見Lahiri,S.K.and Ghanta K.C,2008,Lahiri,S.K.and Khalfe N,2010,Tambe et.al.1996,Bulsari 1994,Huang 2003 and Stephanopoulos and Han 1996。
最廣泛使用的ANN範例是多層感知器(MLP),其將資料輸入集(獨立程序變數)及對應的輸出資料集(相依變數)之間的非線性關係近似化。設有容納足夠大的數目的節點(也稱為神經元或處理元)之單一中間(隱藏)層的三層MLP能以高準確度近似化或映射任何非線性可計算的函數。經由稱為「網路訓練」的數值程序而取得或「教導」近似化,其中,重複地調整網路參數或權重,以致於網路準確地再生對應的輸出以回應實例集中的輸出樣式。
存在有眾多演繹法-均具有某些有利特點-以訓練MLP網路,舉例而言,最受歡迎的是誤差倒傳遞(EBP)、快速傳遞及彈性倒傳遞(RPROP)(Reidmiller,1993)。
ANN的訓練涉及具有數個局部最小值之非線性誤差函數(例如,均方根誤差,RMSE)最小化。因此,變成需要採用試探程序,試探程序涉及多次訓練回合以取得最佳的ANN模型,最佳的ANN模型之參數及權重對應於誤差函數之全面的或最深的局部最小值。
網路架構
模型開發中使用的MLP網路顯示於圖1中:前饋神經元網路架構。如同所示,網路通常由三層節點組成。稱為輸入層、隱藏層及輸出層之這些層分別包括R、S及K數目的處理節點。輸入層中的各節點鏈結至隱藏層中的所有節點,隱藏層中的各節點使用加權連接而鏈結至輸出層中的所有節點。除了R及S數目的輸入隱藏節點之外, MLP架構也在其輸入及隱藏層中提供偏差節點(分別具有R+1、S+1的固定輸出)(未顯示)。偏差節點也連接至後續層中的所有節點以及提供增加的可調參數或是權重以用於模型適配。在MLP網路輸入層中的節點R的數目等於程序中的輸入數目,而輸出節點K的數目等於程序輸出的數目。但是,隱藏節點的數目S是可調參數,其量值由各種因素決定,例如希望的網路模型之近似及歸納能力。
網路訓練
訓練網路是由迭代處理組成,其中,網路被授予希望的輸入與用於這些輸入的對應輸出。其接著尋找改變其權重以嘗試及產生正確的輸出(在合理的誤差寬容度之內)。假使其成功時,則其學習到訓練集及準備好依據先前未見過的資料執行。假使其未成功產生正確的輸出,則其重讀輸入及再度嘗試產生對應的輸出。在經過被稱為訓練循環的訓練集直至建立適當權重為止之各迭代期間,稍微調整權重。取決於要學習的工作的複雜度,對於網路,需要數以千計的訓練循環以正確地識別訓練集。一旦輸出是正確的,則在未見過的資料上權重用於相同的網路,以評估其會表現多好。
倒傳遞演繹法(BPA)
在倒傳遞演繹網路中,權重被修改以使希望的輸出與 網路的真正輸出之間的均方根誤差最小化。倒傳遞用受監督的學習,其中,使用知道輸入資料與希望的輸出資料之資料,訓練網路。一旦被訓練時,網路權重被維持或冷凍以及被用以計算用於新的輸入取樣之輸出值。前饋處理涉及遞交輸入資料給輸入層神經元,輸入層神經元使輸入值進入第一隱藏層。計算加權的輸入總合之隱藏層節點中的各節點使總合通過其致動函數及將結果呈交給輸出層。目的是找到使均方根誤差最小的權重集。典型的倒傳遞演繹法如下所述:MLP網路是決定K維非線性函數向量f的非線性映射裝置,其中,f:X-→Y。其中,X是N維輸入向量(X={xp};p=1,2,...,P及x=[x1,x2,...,xn,...,xN] T ),以及,Y是對應的K維輸出向量(Y={yp};p=1,2,...,P,其中,y=[y1,y2,...,yk,...,yK] T )。映射f由下述決定:(i)網路拓蹼,(ii)用於計算隱藏及輸出節點的致動函數的選擇,以及(iii)分別與輸入節點及隱藏節點之間的權重、以及隱藏節點與輸出節點有關之網路權重矩陣WH及WO。因此,非線性映射f表示如下:(iv)f:y=y(x;W) (1)(v)其中,W={WH,WO}。
此等式顯示y是x的函數,由W參數化。現在能夠 將由三層MLP近似的輸入-輸出關係的封閉形式寫成如下:
注意,在等式2中,偏差節點在各別層中索引化為第0節點。
為了MLP網路將存在於程序輸入及輸出之間的非線性關係近似化,其需要以預指定的誤差函數最小化之方式被訓練。基本上,MLP訓練程序目標在於取得網路權重矩陣WH及WO的最佳集W。通常使用的誤差函數是定義如下的相對誤差絕對值平均(AARE):
最廣泛使用的AARE最小化的形式是誤差倒傳遞(EBP)演繹法,其利用稱為歸納差量規則(GDR)的梯度下降技術。在EBP方法中,權重矩陣集W最初是隨機的。之後,來自訓練集的輸入向量應用至網路的輸入節點,以及,計算隱藏節點的輸出及輸出節點。
如下所述地計算輸出。首先,評估所有節點特定輸入的加權總合,接著,使用例如邏輯非線性致動函數以轉換加權總合,例如邏輯S形函數。來自輸出節點的輸出接著與它們的目標值比較,以及,差值用於計算等式3中界定 的AARE。一旦AARE構成時,使用GDR架構,更新權重矩陣WH及WO。對訓練集中餘留的輸入樣式重複程序,而完成一網路訓練迭代。對於AARE最小化,數個訓練迭代通常是必需的。
歸納性
僅在系統對系統尚未受訓的測試資料良好地執行時,神經訓練才會被視為是成功的。網路的此能力稱為歸納力。假定大網路時,例如藉由「記憶」訓練取樣,重複訓練迭代成功地增進網路對訓練資料的表現,但是,結果的網路對測試資料,亦即,未見過的資料,表現不佳。此現象稱為「過度訓練」。提出的解決之道是固定地監控網路對測試資料的表現。
Hecht-Nielsen(1990)提出應僅根據訓練集來調整權重,但是,應僅對測試集監控誤差。此處,我們應用相同的策略:只要對測試集的誤差持續降低則訓練繼續,以及,假使對測試集的誤差增加則訓練結束。即使對訓練集的網路性能繼續增進,訓練仍然可因此中止。
主成分分析(PCA)
由於有大量的儀器以在非常少的秒數中測量數以千計的程序變數,所以,在現代複雜程序工業中,監視工廠條件通常是耗時的。這造成「資料過載」,並因為缺乏適當的分析,目前很少使用此資訊財。在現代的化工廠 中目前的程序控制電腦系統中(DCS,線上分析器及自動品質控制實驗室),通常要每數秒或數分鐘測量數以佰計的線上程序變數,以及每數分鐘或數小時測量數十個產品變數。
雖然可以測量大量的變數,但是,它們幾乎絕不是獨立的;相反地,它們通常是非常高度相關連的。程序移動之空間的真正維度總是遠低於測量的數目。幸運地,在具有很多變數的資料集中,由於一個以上的變數正測量控制系統表現之相同的驅動原理,所以,複數變數組通常一起移動。在很多石化系統中,僅有很少的此驅動力。但是,大量的儀器允許我們測量數打的系統變數。
當此發生時,可以利用此資訊冗餘的優點。舉例而言,藉由以單一新變數取代變數組,可以簡化問題。對於取得此簡化,PCA是定量上嚴格的方法。例如PCA(主成分分析)等多變數統計法能夠將資訊向下壓縮成固持大部份資訊的低維度空間。方法產生新的變數集,稱為主成分。各主成分是原始變數的線性組合。所有主成分彼此正交,以致於僅有些微或没有冗餘資訊。
主成分分析包括取出正交的、獨立軸或是主成分的集合,集合是資料集變數的線性結合,以及被取出或計算以致於在資料內的變異數的最大範圍由儘可能少的主成分包圍。計算第一主成分以考慮資料中最大的變異數;然後,計算第二主成分以考慮與第一主成分正交的資料中的最大變異數,計算第三主成分以考慮與前二個主成分正交的資 料中的最大變異數、等等。對於各取出的主成分,愈來愈少的變異數被考慮。最後,其它主成分的取出不再考慮資料內顯著的額外變異數。藉由此手段,多維或多變數資料集縮減至更少的維度或是主成分,而在結果資料內仍然固持儘可能多的有用資訊,這大幅簡化程序資料的分析。
延著給定的主成分之資料的位置稱為其「評分」。用於給定的主成分之變數加權稱為其「負擔」。
本發明的目的是提供機構,使用即時程序資料以監控程序以及根據隨著時間之程序資料中波動出現的監控而偵測程序的不正常表性。
根據本發明的一態樣,系統用於監控由與程序輸入輸出資料有關的多維程序資料域中的程序資料集決定的程序,系統包含:擷取機構,用於擷取眾多歷史程序資料集;轉換取得機構,藉由執行多變數資料分析,取得從多維程序資料域至較低維度的模型資料域的轉換;以及,轉換機構,用於將目前的程序資料集轉換至模型資料集以監視程序。
根據本發明的一態樣,電腦程式產品包括非暫時的電腦可讀取媒體,具體實施程式指令使得系統執行下述步驟:擷取眾多歷史程序資料集;藉由執行多變數資料分析,取得從多維程序資料域至較低維度的模型資料域的轉 換;以及,將目前的程序資料集轉換至模型資料集以監視程序。
1‧‧‧反應器
2‧‧‧氣體冷卻器
3‧‧‧氣體對氣體交換器
4‧‧‧蒸汽鼓
5‧‧‧洗滌器
6‧‧‧接觸器
7‧‧‧清洗區
8‧‧‧分離鼓
9‧‧‧壓縮機
11‧‧‧甲烷
13‧‧‧氧
14‧‧‧乙烯
15‧‧‧資料歷史伺服器
16‧‧‧循環氣體流量
17‧‧‧線上分析器
18‧‧‧冷媒溫度
19‧‧‧壓力
20‧‧‧分析器
21‧‧‧觸媒的選擇性
22‧‧‧蒸汽鼓
23‧‧‧甲烷流量
24‧‧‧乙烯流量
25‧‧‧氧流量
29‧‧‧線上氯化物分析器
30‧‧‧電腦
圖1顯示前饋人工神經網路架構。
圖2顯示隨著氯化物濃度的作用之觸媒選取性的圖形。
圖3顯示環氧乙烷反應器。
圖4顯示連接至載有PCA及ANN軟體之專用個人電腦的資料歷史伺服器。
圖5a顯示分別相對於主成分軸PC1及PC2之PCA評分圖。
圖5b及5c分別顯示T2作圖及餘數作圖。
圖6繪出對於選取的評分資料點之PCA輸入變數相對於第一主成分的貢獻。
圖7顯示舉例說明的PCA評分圖,表示代表正常工廠操作及的區域及代表不正常工廠操作的多個區域。
圖8a至8f顯示表示在不同的操作條件下取得的評分點之PCA評分圖。
圖9顯示隨著時間之真實的程序輸出與ANN模型預測輸出的圖形。
圖10顯示根據本發明之ANN及PCA故障診斷系統的架構。
受監控之程序實例
舉例而言,乙烯氧化以產生環氧乙烷或EO是化工產業中乙二醇合成的重要反應。商業上,EO產生於在殼及管式EO反應器中,在高溫及高壓下,在銀為基礎的觸媒存在下,使氧與乙烯反應。乙烯的氧化涉及產生EO的主反應及產生二氧化碳或CO2的非所需之副反應。
要求的主反應
乙烯+氧→環氧乙烷
非所需的副反應
乙烯+氧→二氧化碳+水
藉由用以產生EO的乙烯與用以產生EO及CO2的總乙烯之百分比來計算選擇性,以測量反應的表現。間接地,選擇性測量第一反應相對於第二反應的程度。選擇性對效率具有深遠的影響,因而對乙二醇廠的整體經濟性有深遠影響。
EO反應器可以建立成如殼及管式熱交換器。銀觸媒放置作為管側中的固定床。由於二反應都是放熱的,所以,水流通經過殼側以移除反應的熱。乙烯對EO的轉換很低,因此,如圖3所示,回收乙烯及氧。
圖3:EO反應器及相關單元的概圖顯示典型的環氧乙烷反應器與下游環氧乙烷洗滌器、二氧化碳接觸器、及 清洗區。如圖3所示,氧體混合物,亦即循環氣體從頂部饋送至環氧乙烷反應器(1),以及,連續的純氧(13)、乙烯(14)及甲烷(11)饋送至循環氣體系統。反應器可以建立成如殼及管式熱交換器,其中,高選擇性觸媒丸載作而在管側作為填充床。冷媒循環流經殼側以移除反應熱並因而在蒸汽鼓(4)中產生蒸汽。乙烯及氧在的觸媒床中部份地反應,產生環氧乙烷(EO)、二氧化碳及水。反應器出口氣體在氣體冷卻器(2)及氣體對氣體交換器(3)中被進一步冷卻以及被饋送至環氧乙烷洗滌器(5)以由水吸收EO。來自EO洗滌器頂部的循環氣體饋送至CO2接觸器(6)以由碳酸鹽溶液吸收二氧化碳,最後饋送至清洗區(7)以清洗任何餘留的碳酸鹽粒子。來自清洗區的頂部之循環氣體饋送至分離鼓(8),以移除任何液體,最後經過循環氣體壓縮機(9)而循環回至EO反應器。氯化物活化劑(14),較佳地為二氯化乙烯EDC或是氯乙烷EC,小量地連續饋送至循環氣體,在EO反應系統中作為活化劑及選擇性促進劑。來自活化劑的小量氯化物(ppm等級)足夠增加觸媒的選擇性及活性。EDC或EC禁止燃燒反應,亦即,比環氧化(亦即第一反應)更大程度的第二反應。依此方式,EDC或EC促進EO的選擇性。小於抑制劑的最佳數量會降低選擇性以及產生更多的二氧化碳。因此,在反應器入口的抑制劑濃度的最佳值對於EO產量最大化是重要的。劑量過多及劑量不足的活性劑會大幅地降低觸媒選擇性以及導致不正常的情形。活性劑的最佳劑量因而對於一直維 持最高選擇性是必要的。但是,最佳劑量比例不是固定的,可以隨著例如觸媒年齡、自系統損失的氯化物以及反應器溫度而變。
由於程序的複雜動態,所以,非常難以理論地計算氯化物劑量比例。高選擇性觸媒對於氯化物劑量比例是非常敏感的,以及,與最佳劑量的偏離對於選擇性及程序的整體經濟性具有不利影響。
典型地,有與此程序相關連之20個獨立及35個相依的變數之區域,並非它們全部顯示於本實例中。測得的獨立變數包含例如由線上分析器(17)測得的氧、乙烯、甲烷、乙烷、二氧化碳、水、環氧乙烷、氮及氬等循環進氣口組成9成分、循環氣體流量(16)、壓力(19)、冷媒溫度(18)、在反應器入氣口處的氯化物濃度(亦即,不同的氯化物種,例如,由線上氯上化分析器(29)測得的二氯乙烷、氯乙烷、氯乙烯、氯甲烷、氯丙烯)、甲烷流量(23)、乙烯流量(24)、氧流量(25)、EDC流量(26)、EO洗滌器頂部溫度(28)、清洗塔頂部溫度(28)、等等。獨立變數的實例包含循環出氣口組成(由分析器(20)測量之如上所述的9成分)、觸媒的選擇性(21)、EOE產量(計算的)、蒸汽鼓(22)中的蒸汽產生、等等。如圖3所示,所有的感測器及量測儀都與線上即時資料歷史伺服器(15)相介接。
擷取歷史程序資料以建立ANN模型 資料收集
由於神經元學習主要根據這些資料,所以,資料的品質及數量在ANN模型化中是重要的。在監控程序的實例中,在穩態下約六個月地收集真實工廠操作資料的每小時平均值。一般而言,在現代乙二醇廠中,所有的即時程序資料從各式各樣的感測器及傳送器連續地送至控制電腦系統或DCS操作台。而且,工廠DCS可以將所有即時資料收集及儲存在歷史記錄設備中(例如,PI系統、IP21或Exaquantum等等商業上可取得的資料記錄設備實例),以致於這些資料在往後的日期中可以與其上的時戳一起被取出。這些資料歷史設備用以下載任何歷史日期及時間之試算表中的所有程序資料。此特點可以用以收集工廠的穩態資料。
在實例中,資料被檢查及被清除顯著的不準確,以及,保留代表穩定狀態及平順的工廠操作之資料。最後,約4000筆記錄合格用於神經元模型化。收集的資料範圍包含從80%容量開始到110%設計容量(亦即,工廠容量如設計般)的各種容量之工廠操作資料。而且,這些資料包括在不同的觸媒壽命年齡之工廠操作期間收集的資料。
輸入及輸出參數的選取準則
為了選擇適當的輸入及輸出參數以用於神經元模型化,進行下述觀察。舉例說明的神經元模型可以服務至少 下述目的:監控反應器條件及快速診斷任何不正常。
確保氯化物添加率是最佳的及使選擇性最大化。
監控觸媒選擇性及活性。
根據上述準則,根據一實施例,選擇輸出參數以監控反應器性能及包括下述組成的族群中之一或更多或是由下述組成的族群中之一或更多組成:如表1中所示的氧轉換、觸媒饋送選擇性(饋送選擇性)及反應器冷媒溫度。這些輸出參數可以視工廠配置而變。可以根據本發明的一態樣而選擇額外的參數。根據本發明的一實施例,輸出參數包括也在表1中示出的上述參數或是由其組成。
根據EO反應區的操作經驗及試驗工廠研究經驗,選擇輸出參數。這三個參數可以代表EO反應的效率。第一參數是氧轉換,代表發生在EO反應器中的反應量(需要的及不需要的都有)並因而間接地代表多廣泛地使用觸媒。第二參數是饋送選取性,代表觸媒效率,亦即,相較於不需要的反應,觸媒多有效率地促進所需反應。第三參數是反應器冷媒溫度,亦即,反應器溫度,代表觸媒活性。對於給定的EO生產率而言,愈高的溫度意指觸媒較不活躍,反之亦然。
根據乙二醇廠的操作經驗,影響氧轉換、饋送選擇性及反應器溫度之所有的實體參數被置於所謂的「希望清單」中以進一步考慮。
在「希望清單」中登錄的數目之外,執行大規模的試驗工廠研究及微型反應器測試,以將影響模型輸出參數的輸入參數列入候選清單。
接著,ANN迴歸可以用以建立最佳的選取輸入集,其說明反應行為。下述準則導引輸入集的選擇。
輸入的數目應儘可能低。
各輸入應與輸出參數高度交互關連。
輸入之間應彼此弱交互關連。
選取的輸入集應給予最佳的輸出預測,藉由使用統計分析,例如,相對誤差絕對值平均(AARE)、標準偏差、交互關連係數。
在神經元網路架構中,應有低複雜度,亦即,低數目的隱藏層。
上述準則接著用以識別最恰當的輸入參數集。根據上述分析,如表1所示,識別出十個輸入參數以預測輸出參數氧轉換、饋送選擇性及反應器溫度。根據本發明的一實施例,輸入參數包括下述組成的群組中之一或更多或由下述組成的群組中之一或更多所組成:如表1所示之反應器入口O2濃度(入口氧濃度)、C2H4入口濃度(乙烯入口濃度)、CO2入口濃度(二氧化碳入口濃度)、氣體每小時空間速度、EO差量(遍及反應器)、工作率、累積的EO產量(每m3的觸媒)、總氯化物濃度、洗滌器頂部溫度(EO洗滌器頂部溫度)及清洗塔頂部溫度。這些輸入參數視工廠配置而變。根據本發明的一態樣,可以選擇額外的參數。根據本發明的一實施例,輸入參數包括如表1所示之上述參數或是由如表1所示之上述參數所組成。
建立ANN為基礎的EO反應器模型。
EO反應器模型化的複雜度
迄今為止,在先前技術中尚未發現能準確地預測工業EO反應器的輸出之主模型。特別是,對於工業情形中EO反應時氯化物相互反應效果的研究是很有限的。
因此,需要建立將下述複雜度列入考慮之可靠的主模型以用於工業EO反應器:
EO反應器模型是高度非線性的
觸媒選擇性及活性隨著觸媒的年齡而變。
反應輸入參數的靈敏度(例如氯化物濃度、氧、乙烯濃度、等等)至觸媒選擇性及觸媒活性隨著時間而變。此改變在高選擇性及中度選擇性觸媒中是更加強調的。舉例而言,一單位的氯化物改變將不同地改變觸媒壽命的不同年齡之觸媒選擇性。
模型等式及/或模型共同係數可以隨著觸媒特徵改變而改變。
任何靜態模型,例如為了一次資料而建立的DMC模型,對於整個觸媒壽命可能不是有效或成功的。其需要週期地重建或保留。
模型建立
參考用於模型化目的之表1,反應操作條件輸入參數可以視為尺寸(4000*10)的輸入矩陣X實例,以及,對應的反應操作條件輸出資料為(4000*3)的輸出矩陣Y實例。為了ANN訓練,X的各列代表十維輸入向量x=[x1,x2,...,x10],以及,矩陣Y的對應列代表三維所需的或目標輸出向量y=[y1,y2,y3]。由於輸入及輸出的量值彼此大幅地不同,所以,它們以0-1比例歸一化。為了避免上述「過度訓練」現象,隨機地選取80%的總資料集以用於訓練,慮及驗證及測試,選取餘留的20%的總資料集。
在實例中,識別出十個參數作為用於ANN的輸入參數,以及,氧轉換、饋送選擇性及反應器溫度被指定為輸出參數或目標。如上所述地,這些資料接著用以建立ANN模型。
ANN為基礎的模型化之優點在於可以對所有的程序輸出,亦即氧轉換(y1)、觸媒選擇性(y2)及反應器溫度(y3),建立廣博的多輸入多輸出(MIMO)模型。
雖然在網路權重的EBP為基礎的迭代更新之實例中使用訓練集,但是,相同的測試集用於MLP模型的同時監控歸納。MLP架構包括十個輸入(N=10)及三個輸出(K=3)節點。
在開發最佳MLP模型的實例中,系統地改變其結構參數,亦即,隱藏節點(L)的數目、輸入層及輸出層中的致動函數、學習率及ANN演繹法。為了選擇整體最佳的網路模型,選取具有最低AARE的模型以用於測試集(請參見下述)。
ANN模型的表現評估
有不同的方式評估ANN表現,驗證及漏一誤差評估是最常使用的,可以將全部可取得的資料分成訓練資料(80%的資料)以及測試資料(隨機選取20%的資料)。以訓練資料訓練ANN演繹法,但是,以測試資料評估ANN表現。
ANN預測的統計分析根據下述表現準則:
1.依測試資料之相對誤差絕對值平均(AARE)應是最小的
2.依測試資料之誤差的標準偏差應是最小的
3.在輸入與輸出之間的交互關連共同係數(R)應幾乎等於一。
假使系統對系統未被訓練過的測試資料表現良好,則ANN學習被視為是成功的。
在ANN模型調諧參數的最佳化之後,取得的模型輸出總述於表2中。在所有的可能之外,馬夸特-李文柏格演繹法(Gill,1981)在隱藏層中有十個數目的節點及在輸入層和輸出層有雙曲正切及線性函數,此演繹法被選為用 於本情形之較佳的解決之道(具有最低的AARE)。氧轉換、選擇性及反應器溫度的低AARE分別為0.4、0.05及0.48%,以及,被視為是考慮EO反應現象的不佳瞭解之優良預測以及包括各種生產容量及不同觸媒年齡之用於訓練的大資料庫。
以ANN模型用於故障偵測
一旦開發離線ANN模型時,其可被用以根據工廠的即時輸入來預測即時輸出。模型預測輸出接著與真實的輸出相比較。由於在訓練階段期間,在真實輸出與模型預測輸出之間的誤差%是非常較小的,所以,在正常操作 期間,也預測線上ANN模型產生非常較小的誤差%(通常是小於1%)。但是,假使在程序中發生任何不正常事件時,此預測誤差%將很急遽地上升並因而產生故障訊號。依此方式,使用ANN模型以即時地偵測程序中的故障。
一旦已建立令人滿意的稱為離線模型之ANN EO反應器模型時,此模型接著用於離線即時系統。參見圖2,在離線即時系統中,即時ANN輸入資料從資料歷史設備饋送至載有ANN軟體的電腦。圖2顯示對於高度及中度選擇性觸媒之選擇性相對於氯化物濃度的圖形。ANN模型可以立即計算3個ANN輸出參數以及立即借助於ANN模型的誤差百分比。
如圖9所示,以即時為基礎地繪出真實輸出與預測的輸出參數值。圖9:即時的ANN預測表現,顯示依真實工廠資料之ANN模型預測的良好性。只要3輸出的預測誤差百分比是在臨界值之內(在此情形中為3%),則程序被視為是正常的。假使在任何時間點,預測誤差百分比增加至它們的最大極限之外,產生故障訊號以及作出發生不正常事件的結論。
在EO反應系統中觀察到的不正常事件
從全世界過去20年各種EO/EG工廠的經驗,取得EO反應系統中可能的不正常事件。EO反應系統中某些但非全部的主要不正常事件包含: 觸媒過度氯化以及觸媒選擇性接著損失。
觸媒氯化不足以及損失選擇性。
觸媒活性的損失。
導因於增加的氯化物饋送或是從系統損失之氯化物下降之反應器氣體入口處總氯化物的突然增加。
從對觸媒選擇性及活性具有不利影響的環氧乙烷洗滌器頂板之高EO突破點。
從對觸媒選擇性具有負面影響的清洗塔頂部之高濕氣滯留。
導因於CO2移除單元中的問題之反應器氣體入口處的高CO2濃度。
在反應器管內部的熱點或任何燃燒反應的形成。
反應器容量的突然增加或降低。
任何其它不正常事件,包含但不限於反應器迴路中任何的流量傳送器故障、氯化物分析器或質譜儀(或氣體層析儀)故障、等等。
用於PCA的輸入參數之選取準則
為了建立可靠的PCA模型,選擇適當的輸入參數是重要的。輸入的參數可以選擇成捕捉EO反應系統中所有潛在的不正常事件。
參考圖2,對於高選擇性及中度選擇性觸媒,非常重要的是在最佳的氯化物區中操作氯化物程度。如圖2所示,此最佳區是非常窄的,以及,在此區之外的氯化物的 任何偏差將造成選擇性急遽下降。
通常,期望觸媒在工廠中的最佳區中執行或操作。觸媒操作與最佳區之任何偏離難以由面板操作員偵測,以及,假使其維持未被偵測,則選擇性將急遽地下降。輸入參數被選擇成快速地捕捉氯化物之下及氯化物之上的區域。
在觀察之後,可以用以選取用於PCA模型建立的輸入參數: 使用程序知識及工廠操作經驗以將徵兆及根本原因參數列入候選清單: 起初,一個接一個地選擇不正常事件以用於進一步研究。舉例而言,選擇上述列出的第一不正常事件,亦即「觸媒過度氯化及觸媒選擇性接著損失」,以用於進一步分析。工廠操作經驗,EO反應系統的領域知識現在應用至識別能捕捉不正常事件的發生之所有相關的輸入參數。辨識出可以被視為不正常事件的徵兆之某些參數。辨識出不正常事件的根本原因之某些其它參數。進行邏輯推理以瞭解觸媒過度氯化期間可能發生什麼事。根據經驗及程序知識,識別所有徵兆及根本原因參數。舉例而言,選擇性將急遽下降以及出口的氧濃度在過度氯化事件期間也將下降。所以,這二個參數可以被選擇成徵兆參數。EDC流量增加以及後續的總氯化物增加被視為用於過度氯化現象的根本原因參數。根本原因參數並非總是如此顯著。類似的例子,EDC流量不會增加,但是來自系統的氯化物損失降 低並因而增加反應器入口處的總氯化物。沒有直接標示來自系統的氯化物損失,所以,也包含例如洗滌器溫度、清洗塔頂部溫度等間接參數作為根本原因參數。
使用真實的操作資料以增加更多參數:在工廠的壽命中,偶爾發生這些型式的不正常事件。當這些型式的不正常事件發生於工廠中時,操作人通常在他們的每日日誌中寫下有關發生的細節。這些日誌及工廠歷史程序資料被研究以辨識以前真正地發生這些不正常事件之時間週期。在此時間週期期間所有有關的參數被詳細地研究以辨識更多的徵兆及根本原因參數。使用統計方法以找出觸媒選擇性與其它參數之間的關連係數。更緊密地觀察及包含具有在0.5-1(高度正相關連)以及-0.5至-1(高度負相關連)之關連性係數的參數作為PCA的輸入。
研究不正常事件期間快速改變的參數:相對於改變很慢(可以在數小時之後)的某些參數,有某些參數是當不正常事件發生時(可以在任何不正常事件發生後的數分鐘之內)改變很快。
舉例而言,對於過氯化現象,相對於選擇性改變(耗費4-6小時以回應),出口氧濃度改變很快(例如在數分鐘之內)。快速變化參數比緩慢變化的參數被給予更多優先權,以致於程序中的任何不正常可以被快速地偵測。上述在步驟2中被列在候選清單中的各及每一參數的趨勢被詳細地研究,以及快速改變的參數在候選清單中被給予優先權。在不正常事件期間,選擇輸入參數的專家知識必須 快速地捕捉系統的變化。
輸入參數的數目應是最小的:輸入參數的數目應儘可能的小以偵測如上列出的不正常事件的所有特點。最簡單的故障診斷PCA模型將避免導因於雜訊及大數目的用於輸入參數的傳送器故障之不必要的故障偵測。而且,避免冗餘的程序參數。舉例而言,反應器蒸汽鼓壓力及反應器冷媒溫度因蒸汽表關係相關連並因而代表冗餘資訊。所以,充份包含它們中的任一者作為輸入參數。
表3列出被選取用於舉例說明的EO/EG工廠中PCA模型建立的輸入參數清單。
如何即時捕捉PCA輸入資料
在PCA模型化為最終模型中,資料的品質及數量主要根據這些資料。在舉例說明的真實工廠中,收集將近六個月之穩定狀態的每2分鐘的操作資料。如早先所述般,使用工廠歷史設備(例如,PI系統、IP21或Exaquantum等等商業上可取得的資料歷史系統),以收集所有歷史資 料。
在PCA中有二種型式的資料。第一型式的資料稱為正常工廠資料,它們是工廠正常及平順地運轉時的資料。
藉由小心讀取控制室內操作人員所維持的每日日誌,可以發現平利運轉的工廠之證據及時段長度。第二型式的資料是當工廠中發生任何不正常事件時的輸入參數資料。再度地,從每日日誌中取出不正常事件的時刻及本質。這些資料保存在標有對應的不正常事件之分別檔案中。
PCA輸入資料與ANN輸入/輸出資料如何相關?
因為它們偵測及/或診斷故障的方式不同,所以,雖然某些參數是共同的,但是,PCA輸入資料與ANN輸入/輸出資料不相同。雖然PCA及ANN都為了不正常性而監控類似的程序,但是它們的目的不同。藉由施加PCA,多維或多變數資料集可以縮減至較少的維度,亦即主成分,並將儘可能多的有用資訊仍然保留在資料內,這大幅地減化程序資料的分析、以及任何不正常事件的偵測。另一方面,ANN使用反應器模型以根據從其輸入參數收到的資訊而預測觸媒的關鍵表現參數。以工廠正常及平順地運轉時穩定狀態的每小時平均資料,訓練ANN模型。只要ANN模型能準確地預測表現參數,則其表示操作是穩定的及正常的。當真實的表現參數顯著不同於ANN預測時,其表示程序中發生某些不正常的事,以致於程序不再依其受訓的模型表現。
下表顯示PCA輸入參數與ANN參數之間的某些關鍵差異。
在Landells等的(US patent 2010/0036529)中;為提煉程序而初始地建立MPC模型。此模型根據某些獨立的程序參數而預測某些相依值。將預測模型計算的相依變數值從真正測得的相依變數中減掉,以計算餘數。在Landells等的專利中,對一或更多相依變數的餘數值執行 PCA。
與根據本發明的方式相對地,對原程序參數而不是對任何餘數執行PCA。
對原值施加PCA的理由如下所述:EO觸媒特徵不是靜態的而是隨時間改變。觸媒選擇性及活性隨著觸媒的年齡(通常是2-3年)而變。對於觸媒選擇性及觸媒活性之反應輸入參數的靈敏度(例如氯化物濃度、氧、乙烯濃度、等等)會隨時間而變。在高度及中度選擇性觸媒中,此變化是更顯著的。舉例而言,一單位的氯化物變化對於不同年齡的觸媒壽命會不同地改變觸媒選擇性。
所以,預測的模型等式及/或模型共同係數需要因而隨著觸媒特徵的改變而變。
所以,例如為了一時間資料而建立的MPC或DMC模型等任何靜態模型(例如Landells等中所使用的)對於整體觸媒壽命不是有效或成功的。其需要被週期地重建或再訓練。
換言之,由於觸媒特徵隨著時間而變,所以,今日產生優良的預測之任何EO反應器模型從現在開始有六個月不會產生準確的預測。所以在未來其將產生大餘數。假使PCA施加於餘數上(如同Landells等中所使用般),則錯誤地,其將偵測不正常事件。在此情形中,PCA無法區別大餘數是否導因於不正常程序事件或是導因於不良的模型預測。因此,根據本發明,將PCA施加於原資料而不是餘 數上。可以消除任何中間預測模型準確度。
PCA模型的實施 建立模型
起初,收集由正常及不正常區域資料組成的所有輸入參數資料作為訓練資料。起初,僅有對應於工廠的正常操作之資料被饋送至PCA演繹法以及相對於主成分軸作圖。在圖中,大部份的資料集中在稱為正常區的一區域中。
用於訓練資料的PCA圖的產生
在本發明中,發現第一及第二主成分捕捉超過90%之資料變化。所以,取代個別地監視25個不同的參數,僅有前二個主成分可以被監視以偵測任何不正常性。一旦在執行PCA演繹法之後取得前二個主成分的評分值時,對應的負擔值被凍結。計算評分及載入的計算程序總結於附件中。
如圖5a所示,繪製圍繞這些資料的橢圓形,其界定95%的信心間隔。換言之,對於95%的信心間隔,資料集(正常資料)中95%的資料點落在二主成分中的各主成分的臨界值範圍內。如圖5a所示般,正常區的所有資料的座標值對於PC1是落在-7至+6,以及對於PC2落在-4.2至+3.9。如圖5a中所示,因而繪出信心間隔橢圓形。
用於訓練資料的赫德寧(Hotelling)T2
在本發明的另一實施例中,計算對應於正常區的各資料點之T2值。T2值通常稱為赫德寧的T2統計,以及界定離開原點的資料點之距離,舉例而言,離二或更多主成分的交點或原點之資料點的距離。計算T2值的計算程序總結於附件中。在實例中,在圖中再度繪出95%的信心限制線,以致於95%的資料落在此線之下。藉由計算所有訓練資料集的所有T2值的95百分位,以計算高限制線的值。比較T2值與以例如橢圓信心間隔界定的預定臨界值會提供不正常事件是否發生或正發生的標示。
用於訓練資料的餘數圖
在本發明的又另一實施例中,對各資料點計算所謂的餘數。餘數代表未由預定數目的主成分表示之資料中的變異數的數量。假使值增加,則其表示相較於模型之程序變化,這表示偏離正常或預期表現。再度地,使用相同的程序,在圖上繪製95%的信心限制線以致於95%的資料落在此線之下。
PCA圖中一或複數不正常區的產生
在PCA模型建立的第二部份的實例中,各叢不正常事件資料接著乘以它們對應的負擔及評分。這些評分值接著繪於相同的主成分平面上。這些資料將出現在對應於正 常區的橢圓之外的不同集中區中。再度地,在相同圖形上繪出新橢圓,代表特定不正常事件的95%信心間隔。此橢圓現在代表特定不正常區,例如過度氯化區。對各叢的不正常區資料重複相同程序,以及,由於模型建立的結果而繪製數個用於各不正常事件的數個橢圓,取得如圖7中所示的圖片。圖7顯示具有正常區及不同的不正常區的即時PCA評分圖。在此圖中,橢圓(大中心形狀)正常區及所有其它橢圖代表不同的不正常區,例如過度氯化現象的區域、氯化不足區、線上氯化物分析器故障區等等。此圖識別出數個不正常事件的區域以及對應的標籤。
一旦所有正常及不正常區域繪於相同圖中時,現在,此圖可以用以繪製即時資料的PCA值。僅有信心橢圓保持在圖上以及圖上的所有訓練資料點被移除,以致於此圖可以用以容納新的即時資料。對於T2圖及餘數圖,僅保留軸及上限線。
使用PCA的故障診斷
從導因於程序資料集的PCA之資料,識別出不正常事件。有數種可以達成此點的方式。在本發明的一實施例中,根據用於預定數目的主成分(例如前二個主成分)之評分值,計算信心間隔。當然,可以應用二個以上的主成分。根據落在用於各主成分之預定信心間隔之內的來自資料集的資料點的百分比,界定信心程度。預定的資料點百分比典型上是在90至99%的範圍中的值,舉例而言, 95%的資料點。因此,對於95%的信心間隔,資料集中95%的資料點落在用於二主成分中的各主成分之臨界值範圍內。信心間隔的形狀典型上是橢圓形。假使最近收集的資料落在信心間隔之外時,通常稱為外圍,則這表示非一般或不正常事件正發生的標示。
在本發明的另一實施例中,計算用於各資料點的T2值。T2值通常稱為赫德寧的T2統計,以及,界定資料點離原點的距離,舉例而言,資料點離二或更多主成分的交點或原點之距離。比較T2值與例如橢圓信心間隔所界定的預定臨界值會提供不正常事件已經或正發生之標示。
在本發明的又另一實施例中,對各資料點計算所謂的餘數。餘數代表未由預定數目的主成分表示之資料中變異數的數量。增加的餘數值表示相較於模型之程序中的變化,這表示與正常或預期的表現之偏離。
個別地或結合地使用上述診斷技術,以決定不正常事件的發生。
即時實施PCA模型
圖4:資料歷史設備與載有PCA及/或ANN軟體的專用個人電腦之間的介面,顯示歷史伺服器(15)輸出與具有主成分分析軟體的電腦(30)相介接。資料歷史伺服器從工廠DCS或從工廠中各式各樣的傳送器或感測器接收即時程序參數值。所有的資料可以從資料歷史設備即時地饋送 至載有PCA及/或ANN軟體之分開的專用個人電腦。即時計算PCA評分、負擔、T2值及餘數值。預先產生的圖由新的即時資料更新。
即時偵測正常或不正常運行的工廠
人為地或視覺地偵測不正常事件。在一實施例中,在控制室中的顯示幕提供主成分評分圖或是T2圖、或是餘數圖中之一或更多給使用者。當資料點顯示為偏離至信心間隔之外時,則評分值的檢查及與其相關連的變數貢獻被用以決定偏離的原因。藉由設置偵測不正常事件何時正發生(舉例而言,來自餘數PCA資料的評分值、T2值、及餘數中之一或更多)的快速機構,則操作員能快速地決定任何偏離的原因及評估是否需要人為干預程序。
替代地,舉例而言,使用適當程式化的電腦,自動地執行分析及不正常事件偵測,程式化的電腦能夠根據例如PCA評分值、T2值或餘數中之一或更多而計算資料點是否落在信心間隔之外,以及辨識假使有任何變數則那些變數需要被改變,以改正不正常事件的原因。此資訊作為輸出饋送給程序控制機構,程序控制機構藉此改變獨立變數中之一或更多以排除不正常事件。
如圖5a-c中所示般,5a:PCA評分圖,5b:T2圖,5c:餘數圖,個別地或結合地使用圖5a至5c,以即時地偵測不正常事件。在圖5中,評分圖是累積圖,顯示最近 的資料點101以及先前收集的資料點相對於首二個主成分PC1:x軸、PC2:y軸之作圖。相較於95%的信心間隔102之資料點的位置提供程序是否在預期的寬容度內操作的標示,或是不正常事件是否發生的標示。假使EO反應程序正常運轉,則即時資料點將落在被指定為正常區的大橢圓內(參考圖7)。假使不正常的事發生時,則即時圖點將落在大橢圓(亦即,正常區橢圓)之外,表示工廠中發生不正常的事。假使即時圖點落入與不正常事件相關連的任何橢圓之內時,則使用者將快速地知道那一不正常事件正發生。這提供快速及容易做到的有效方法,來辨識已經知道其緩和動作之不正常事件的發生。校正動作可以由操作員人工地執行。替代地,這可自動地達成,以致於不正常事件的辨認提供維持最佳操作所需的校正動作給程序控制機構。
可能發生某不正常事件,此不正常事件導致即時圖點偏移至代表正常區之大橢圓的限制之外,但其未落在任何不正常事件的橢圖之下,而是出現在未由橢圓涵蓋的任何它處。這表示某新的不正常事件發生,此新的不正常事件發生以往未發生,亦即在訓練資料期間未發生。結果,能夠詳細地檢查程序以及找出那一不正常事件已發生。在PCA模型再訓練期間,在此時段中儲存的資料可以用以建立用於新的不正常事件之新的橢圓(稍後說明)。
隨著時間之T2值以及隨著時間之餘數值的趨勢圖也 顯示於圖5b及5c中。假使程序擾亂或其它不正常事件發生,則這由一或更多增加的T2值及落在預定的95%信心間隔102之外的評分值表示,舉例而言,如資料點103所標示般,也對應於增加的T2值108以及用於後續資料點109的餘數值的增加。
當偵測到不正常事件時,由使用者檢查所有對應的圖,以探測偏離之一或複數個資料點。一方式是觀察PC1貢獻點,如圖6所示,提供那些變數與不正常事件相關連的資訊。圖6中的圖顯示用於各PCA輸入變數之貢獻值y軸相對於用於落在95%的信心限制之外的評分資料點的第一主成分之圖,亦即,以PC1用於選取點的貢獻圖。具有高值的變數對於延著指定的主成分之資料點的位置具有高度影響。在所示的實例中,與第一主成分有關的評分資料點的位置特別受變數6、7及15重度影響。變數1及5對資料點具有中度影響。
在即時校正動作期間PCA圖的使用
在不正常事件發生後,在校正動作期間使用PCA圖。這由圖8a-8f解釋。圖8a-8f顯示具有正常區及不同的不正常區之各別的即時PCA評分圖的例子及快照。假設過度氯化現象已發生。圖8a代表正常工廠操作期間PCA評分圖。如同圖8a中所見般,即時點良好地在正常橢圓之內。圖8b代表當代表目前工廠狀態的點開始移向正常橢圓的周邊時3小時後的工廠條件。這將工廠開始從 正常移向不正常區之早期警告給予工廠操作員/工程師。圖8c顯示點正移向過度氯化區橢圓。操作員解釋此點的軌跡路徑以及瞭解觸媒正進入過度氯化。預期操作員採取立即的校正動作。操作員檢查圖6,圖6是該時刻的貢獻圖,以找出過度氯化操作的根本原因以及採取校正動作以消除根本原因。過多的EDC流量可能是根本原因。在操作員無法採取校正動作的情形中,點將偏移至過度氯化橢圓以及產生警報(圖8d)。如圖6所示,其也在面板中顯示根本原因。
現在,假使操作員採取適當的校正動作時,點開始即時地朝向正常橢圓移動。參見圖8e,這將操作員已採取的校正動作是正確的之標示給予操作員,以及,程序開始朝向正常區移動。假使操作員的校正動作不正確時,則點將開始反向移離正常區以及脫離代表正常操作的橢圓。假使操作員的校正動作不適當時,則點將不會移動且維持在過度氯化橢圓內部。
依此方式,操作員瞭解操作員的校正動作有多適當及正確。在程序恢復正常後,參見圖8f,點將移回至正常區橢圓。
PCA模型的驗證 EO觸媒的時變特徵
如同早先所述般,觸媒選擇性及觸媒活性隨著觸媒的年齡而變。由於觸媒的活性部位因燒結效應而永久喪失, 觸媒會逐漸地失去活性。在觸媒壽命期間反應器溫度及總氯化物需要逐漸地增加以維持生產率。選擇性隨著時間連續地下降。所以,由最近的資料建立的PCA模型在6個月後無效。舉例而言,目前似乎正常的反應器溫度及總氯化物值在6個月的操作後可能不正常。所以,預測模型等式或共同係數需要據此而隨著觸媒特徵改變而變。PCA模型需要以最近的操作資料週期地保持。
為了處理程序的時變特徵,發展可被追蹤及用於保持ANN及PCA模型之定量準則。這些包含稱為「餘數」的新變數,代表在程序的目前條件中模型的良好性。當餘數的值在3之下時,本模型被視為良好的以及捕捉程序的固有物理。但是,假使餘數的值在3之外及維持於該處,則其被視為表示目前的ANN及/或PCA模型變成選擇性的及應依目前的操作資料而重建/保持。
以餘數圖捕捉PCA模型的效率
當不正常事件發生時,在T2圖及在餘數圖中作出下述二觀察。在第一情形中,僅有T2值將增加至其較高限制線之上但是餘數值將維持在其最大限制值之下。這意指發生不正常事件但是由PCA模型良好地考慮,以低餘數值標示。餘數代表未由預定數目的主成分(典型地,前2或3個主成分)表示之資料中的變異數的數量。通常,餘數圖將是在95%信心間格最大限制線代表的臨界值之下,這意指程序資料中的大部份的變異數由前二或三個主成分 捕捉。在第二情形中,當不正常事件發生以及T2值和餘數值都越過其較高的限制線,這表示工廠中已發生未由目前的PCA模型良好地表示之某不正常事件。這向操作員表示要詳細研究事件。換言之,假使餘數值增加,則其表示相較於模型,程序中的特徵改變。假使餘數值突然地上升至臨界限制之外,然後回來時,則其被解釋為程序中發生PCA模型未捕捉到的非預期的某事,亦即,在以前的訓練資料期間,此事並未發生。但是,假使T2及餘數值都相當長時間地保持在高且在程序中未發現擾亂或不正常,則其被解釋為由於觸媒表現改變,程序特徵因而永久地改變以及其變化無法由目前的模型捕捉。從如圖6所示的貢獻圖中,可以發現關於那些參數正將T2及餘數值驅出範圍之外的更詳細資訊。當PCA模型需要依最近資料而重建或保持時,這是時間。
為EO反應器PCA模型的再訓練而實施之定量決定準則
在用於反應器PCA模型的實例中,T2的及用於餘數的較高限制設定於3。這意指,在正常操作期間,95%的計算T2及餘數值將是小於3。假使T2及餘數值連續三日都維持在3以上且在EO反應程序中沒有可見的不正常時,包含沒有傳送器或分析器的故障,則這可以被解釋為不再由目前的PCA模型捕捉的程序特徵之永久改變。當PCA模型需要依新的最近資料而重建或保持時,這是時間。
PCA模型的再訓練
在實例中,藉由收集三個月的最近資料而離線地達成再訓練,以及,再度地依循下相同程序而建立PCA模型。輸入參數維持相同。在保持PCA模型之後,評分及負擔值將改變。新的T2及餘數值將再度在它們的最大限制3之下。而且,如早先所述般,在訓練階段中,對於新的不正常事件,辨識新的橢圓面積。
ANN模型的再訓練
基本上,PCA及ANN模型化成類似EO反應程序。當PCA模型由於程序特徵的改變而變成無效時,可以預期ANN模型也將變成無效。正常地,當重新得到PCA模型時,希望也再訓練ANN模型。這也由ANN模型的誤差百分比準則標示。假使ANN模型的誤差百分比連續三天維持高於3%以上以及工廠正常運作,則ANN模型也被再訓練。藉由收集三個月的最近資料而離線地達成再訓練,以及,再訓練再度依循同於上述的程序而建立ANN模型。
ANN及PCA為基礎的故障診斷的資料流
圖10:ANN及PCA為基礎的故障診斷系統的概圖,代表ANN及PCA為基礎的故障診斷的概圖。如圖10所示,ANN及PCA為基礎的故障診斷系統目標在於分別地 及獨立地偵測EO反應程序中的任何故障。
診斷故障的替代方式:ANN嘗試使用ANN模型而從選取的輸入參數來預測EO反應表現參數,以及,比較真實的輸出與計算的輸出。這是模型為基礎的方式。
另一方面,PCA可以採取完成不同的輸入集以及將多維資料集轉換成為了容易觀視及瞭解而由第1及第2主成分標示的二維資料集。
不同的輸入參數:在實例中,從用於其輸入及輸出的每小時平均資料,建立ANN離線模型。當工廠處於正常及穩定狀態時,取得這些資料。另一方面,對於不同變數,取得PCA資料作為2分鐘快取資料。PCA輸入參數被視為比ANN輸入參數更徹底的。而且,在工廠的正常及不正常操作期間,取得PCA輸入資料。從每日日誌回溯所有過去發生於EO反應系統中的不正常事件,以及,分別地收集在該時段期間的資料。
離線模型建立及線上實施:以訓練資料,離線地建立ANN模型。為診斷故障,ANN模型預測的輸出與即時為基礎的輸出相比較,在這二者之間的誤差百分比在3%以上時,產生故障的訊號。另一方面,對於正常操作及不同的不正常操作,PCA模型在主成分平面中產生不同的橢圓。在PCA平面中,將點即時地作圖。此點的位置可以代表該時刻的工廠狀態。假使此點位在正常橢圓內部,則工廠是正常運轉。這也由對於正常操作將會在3之下的即時T2及餘數值表示。相對地,假使點落在代表不正常操 作之某指定的橢圓之內時,則產生故障訊號。這也由3以上的T2值表示。
獨立診斷:ANN及PCA被視為相同程序的二獨立稽核,它們根據完全不同的輸入集而獨立地診斷故障。它們的方式不同且它們彼此互補以及被視為是冗餘的。採用二個不同的系統的目的是增加故障偵測的可靠度。從與故障診斷有關的各種來源,可知即使當程序正常時,故障診斷系統有時仍會產生故障訊號。其使故障診斷系統的使用者混淆,以及,假使錯誤的偵測隨著時間而繼續時,則此系統的可靠度在使用者的心中是降低的。為了避免此點,提出實施二冗餘的、完全分開的故障診斷系統。為此目的,如圖10所示,提供選加的表決邏輯以警告使用者故障。
附件
主成分的計算
根據上述準則,選取輸入變數xi
歸一化xn=(x-xmean)/σ
計算共變異數矩陣xT n.xn的所有特徵向量及特徵值
依減少的特徵值次序,配置特徵向量。結果的矩陣稱為負擔矩陣。第一及第二特徵向量分別以f1(j)及f2(j)表示。
如下計算第一及第二主成分 赫德寧的T2計算
如下所述地計算赫德寧的T2
T2=(PC1 2/特徵值1)+(PC2 2/特徵值2)
T2統計測量PC1及PC2界定的平面內離程序中值之取樣的距離
高的T2統計因而表示取樣呈現極端變異,但由PCA模型良好地考慮。
餘數的計算Resi(j)=xn(j)-[(PC1*f1(j))+(PC2*f2(j))] 餘數=[Σresi(j)2/(n-2)]0.5
餘數測量垂直於PC1-PC2-平面的取樣之距離。
高餘數表示取樣呈現未由PCA模型良好考慮的變異的形式。
參考文獻
Bulsari A. B. (1994), Applications of artificial neural networks in process engineering, J. Syst. Engg. 4, 131-170 Hecht-Nielsen R. (1989), Theory of the back propagation neural network, Proceedings of the international joint conference on neural networks, 1, 593-611
Huang K., Zhan X-L, Chen F-Q, Lü D-W(2003), Catalyst design for methane oxidative coupling by using artificial neural network and hybrid genetic algorithm, Chem. Engg. Sci., 58
Lahiri S.K and Ghanta K.C (2008), Development of an artificial neural network correlation for prediction of hold-up of slurry transport in pipelines, Chemical Engineering Science 63, 1497-1509 Lahiri, S.K and Khalfe N. (2010), Modeling of commercial ethylene oxide reactor: A hybrid approach by artificial neural network & differential evolution, International J. of Chemical reactor engineering, Vol. 8, Article A4.
Riedmiller M., Braun H. (1993), A direct adaptive method for faster backpropagation learning: the RPROP algorithm, Proc. of the IEEE Int. Conf. On Neural Networks, San Francisco CA, Mar 28-Apr 1
Gill, P. R.; Murray, W.; and Wright, M. H.(1981)"The Levenberg-Marquardt Method." §4.7.3 in Practical Optimization. London: Academic Press, pp. 136-137
Stephanopoulos G., Han C. (1996), Intelligent systems in process engineering: A review, Comp. & Chem. Engg., 20, 743-791
Tambe S. S., Kulkarni B. D., Deshpande P. B. (1996), Elements of Artificial Neural Networks with selected applications in Chemical Engineering and Chemical & Biological Sciences, Simulations & Advanced Controls, Louisville, KY

Claims (26)

  1. 一種程序監控系統,該程序由與程序輸入輸出資料有關的多維程序資料域中的程序資料集決定,該系統包括:擷取機構,用於擷取眾多歷史程序資料集;轉換取得機構,藉由執行多變數資料分析,取得從該多維程序資料域至較低維度的模型資料域的轉換;以及,轉換機構,使用該取得的轉換,將目前的程序資料集轉換至模型資料集以監視該程序。
  2. 如申請專利範圍第1項之系統,其中,該執行多變數資料分析包括主成分分析。
  3. 如申請專利範圍第1項之系統,其中,該執行多變數資料分析包括建立人工神經網路。
  4. 如申請專利範圍第1項之系統,又包括:指定機構,用於指定該模型資料域的一或更多部份,各部份固持根據可從正常事件期間收集的以及不正常事件期間分別收集的歷史程序資料集取得的模型資料集中之一或更多叢而代表正常操作條件或特定不正常操作條件的模型資料集;以及診斷機構,藉由辨識出該模型資料域的一或更多指定的部份中之一固持目前模型資料集,而為該目前模型資料集診斷該程序的操作條件。
  5. 如申請專利範圍第4項之系統,其中,為該目前模型資料集診斷該程序的操作條件包括表示一或更多不正常 操作條件的故障診斷。
  6. 如申請專利範圍第4項之系統,其中,為該目前模型資料集診斷該程序的操作條件包括決定表示該目前模型資料集中的變異數的數量之餘數。
  7. 如申請專利範圍第6項之系統,又包括:偵測機構,根據觀察超過用於預定時間量的預定臨界值之餘數,偵測不再由該目前多變數資料分析捕捉的程序特徵的永久變化。
  8. 如申請專利範圍第1項之系統,其中,該程序是化學程序。
  9. 如申請專利範圍第8項之系統,其中,該化學程序包括在反應器系統中乙烯的氧化以產生環氧乙烷。
  10. 如申請專利範圍第9項之系統,其中,由該程序資料域代表的該程序輸入輸出資料是選自用於環氧乙烷生產的反應器系統處測得的下述參數的群組:輸入參數:反應器O2入口濃度、C2H4入口濃度、CO2入口濃度、氣體每小時空間速度、遍及反應器的環氧乙烷差量、工作率、累積的環氧乙烷產量、總氯化物濃度、洗滌器頂部溫度及清洗塔頂部溫度;輸出參數:氧轉換、饋送選擇性及反應器冷媒溫度。
  11. 如申請專利範圍第5項之系統,其中,故障診斷包括將觸媒的過度氯化或氯化不足診斷為不正常操作條件。
  12. 如申請專利範圍第1項之系統,其中,即時地取 得目前的程序資料以及/或即時地診斷操作條件。
  13. 一種程序監控方法,該程序由代表程序輸入輸出資料的多維程序資料域中的程序資料集決定,該方法包括:擷取眾多歷史程序資料集;藉由執行多變數資料分析,取得從該多維程序資料域至較低維度的模型資料域的轉換;以及,使用該取得的轉換,將目前的程序資料集轉換至模型資料集以監視該程序。
  14. 如申請專利範圍第13項之方法,其中,執行多變數資料分析包括主成分分析。
  15. 如申請專利範圍第13項之方法,其中,執行多變數資料分析包括建立人工神經網路。
  16. 如申請專利範圍第13項之方法,又包括:指定該模型資料域的一或更多部份,各部份固持根據可從正常事件期間收集的以及不正常事件期間分別收集的歷史程序資料集取得的模型資料集中之一或更多叢而代表正常操作條件或特定不正常操作條件的模型資料集;以及藉由辨識出該模型資料域的一或更多指定的部份中之一固持目前模型資料集,而為該目前模型資料集診斷該程序的操作條件。
  17. 如申請專利範圍第16項之方法,其中,為該目前模型資料集診斷該程序的操作條件包括表示一或更多不正常操作條件的故障診斷。
  18. 如申請專利範圍第13項之方法,其中,為該目前模型資料集診斷該程序的操作條件包括表示一或更多不正常操作條件的故障診斷。
  19. 如申請專利範圍第13項之方法,其中,為該目前模型資料集診斷該程序的操作條件包括決定表示該目前模型資料集中的變異數的數量之餘數。
  20. 如申請專利範圍第19項之方法,又包括:偵測手段,根據觀察超過用於預定時間量的預定臨界值之餘數,偵測不再由該目前多變數資料分析捕捉的程序特徵的永久變化。
  21. 如申請專利範圍第13項之方法,其中,該程序是化學程序。
  22. 如申請專利範圍第21項之方法,其中,該化學程序包括在反應器系統中乙烯的氧化以產生環氧乙烷。
  23. 如申請專利範圍第22項之方法,其中,由該程序資料域代表的該程序輸入輸出資料是選自用於環氧乙烷生產的反應器系統處測得的下述參數的群組:輸入參數:反應器O2入口濃度、C2H4入口濃度、CO2入口濃度、氣體每小時空間速度、遍及反應器的環氧乙烷差量、工作率、累積的環氧乙烷產量、總氯化物濃度、洗滌器頂部溫度及清洗塔頂部溫度;輸出參數:氧轉換、饋送選擇性及反應器冷媒溫度。
  24. 如申請專利範圍第17項之方法,其中,故障診斷包括將觸媒的過度氯化或氯化不足診斷為不正常操作條 件。
  25. 如申請專利範圍第13項之方法,其中,即時地取得目前的程序資料以及/或即時地診斷操作條件。
  26. 一種電腦程式產品,包括非暫時的電腦可讀取的媒體,具體實施程式指令,用以使系統執行下述步驟:擷取眾多歷史程序資料集;藉由執行多變數資料分析,取得從該多維程序資料域至較低維度的模型資料域的轉換;以及,使用該取得的轉換,將目前的程序資料集轉換至模型資料集以監視該程序。
TW103119571A 2013-06-07 2014-06-05 程序監控系統及方法 TWI648609B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361832450P 2013-06-07 2013-06-07
US61/832,450 2013-06-07

Publications (2)

Publication Number Publication Date
TW201510688A true TW201510688A (zh) 2015-03-16
TWI648609B TWI648609B (zh) 2019-01-21

Family

ID=51176424

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103119571A TWI648609B (zh) 2013-06-07 2014-06-05 程序監控系統及方法

Country Status (8)

Country Link
US (1) US9892238B2 (zh)
EP (1) EP3005004B1 (zh)
KR (1) KR20160018652A (zh)
CN (1) CN105492982B (zh)
BR (1) BR112015030481A2 (zh)
RU (1) RU2015152547A (zh)
TW (1) TWI648609B (zh)
WO (1) WO2014195915A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI665537B (zh) * 2017-02-17 2019-07-11 日商三菱日立電力系統股份有限公司 廠房的診斷裝置及診斷方法
TWI728535B (zh) * 2019-10-31 2021-05-21 國立勤益科技大學 監控系統與其方法
TWI809592B (zh) * 2021-12-08 2023-07-21 財團法人工業技術研究院 模型預測控制系統及其方法

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2952428C (en) * 2014-06-27 2022-08-23 Union Carbide Chemicals & Plastics Technology Llc Method of monitoring production of a chemical product and a chromatograph used therewith
US10444746B2 (en) * 2014-10-16 2019-10-15 Abb Schweiz Ag Method for managing subsystems of a process plant using a distributed control system
CN104635724B (zh) * 2014-12-25 2017-02-22 重庆科技学院 基于动态核独立分量分析的天然气净化过程异常检测方法
JP6662301B2 (ja) * 2015-01-07 2020-03-11 日本電気株式会社 学習装置、識別器、学習方法およびプログラム
EP3483795B1 (en) 2015-01-28 2021-03-10 Google LLC Batch normalization layers
JP6733164B2 (ja) * 2015-02-26 2020-07-29 富士電機株式会社 プロセス監視装置、プロセス監視方法及びプログラム
US10031510B2 (en) * 2015-05-01 2018-07-24 Aspen Technology, Inc. Computer system and method for causality analysis using hybrid first-principles and inferential model
US10148680B1 (en) * 2015-06-15 2018-12-04 ThetaRay Ltd. System and method for anomaly detection in dynamically evolving data using hybrid decomposition
DE102016008987B4 (de) * 2015-07-31 2021-09-16 Fanuc Corporation Maschinenlernverfahren und Maschinenlernvorrichtung zum Lernen von Fehlerbedingungen, und Fehlervorhersagevorrichtung und Fehlervorhersagesystem, das die Maschinenlernvorrichtung einschließt
US11521070B2 (en) * 2015-10-29 2022-12-06 Preferred Networks, Inc. Information processing device and information processing method
US10533881B2 (en) * 2016-04-10 2020-01-14 Forum Us, Inc. Airflow sensor assembly for monitored heat exchanger system
US10480820B2 (en) 2016-04-10 2019-11-19 Forum Us, Inc. Heat exchanger unit
US20170294103A1 (en) * 2016-04-10 2017-10-12 Global Heat Transfer Ulc Method for doing business
US10514205B2 (en) 2016-04-10 2019-12-24 Forum Us, Inc. Heat exchanger unit
US10545002B2 (en) * 2016-04-10 2020-01-28 Forum Us, Inc. Method for monitoring a heat exchanger unit
US10502597B2 (en) 2016-04-10 2019-12-10 Forum Us, Inc. Monitored heat exchanger system
CN106094745B (zh) * 2016-06-07 2018-11-16 蓝星(北京)技术中心有限公司 连续化工生产过程多变量动态在线监测方法和装置
EP3479261A1 (en) * 2016-06-30 2019-05-08 ExxonMobil Chemical Patents Inc. Methods and systems for operating a high pressure ethylene polymerization unit
US10474932B2 (en) * 2016-09-01 2019-11-12 Uptake Technologies, Inc. Detection of anomalies in multivariate data
US20180087790A1 (en) * 2016-09-28 2018-03-29 Johnson Controls Technology Company Systems and methods for automatically creating and using adaptive pca models to control building equipment
US10495334B2 (en) 2016-09-28 2019-12-03 Johnson Controls Techology Company Systems and methods for steady state detection
IT201600125128A1 (it) * 2016-12-12 2018-06-12 Seaside S R L Metodo per determinare un modello energetico di un impianto e corrispondente metodo per monitorare il comportamento energetico dell'impianto
KR20180069452A (ko) * 2016-12-15 2018-06-25 삼성전자주식회사 뉴럴 네트워크의 학습 방법 및 뉴럴 네트워크를 이용한 인식 방법, 및 그 장치
JP7179444B2 (ja) * 2017-03-29 2022-11-29 三菱重工業株式会社 予兆検知システム及び予兆検知方法
CN106933211B (zh) * 2017-04-18 2019-04-09 中南大学 一种识别工业过程动态调整区间的方法和装置
CN107728599B (zh) * 2017-09-01 2020-12-18 北京中燕信息技术有限公司 一种确定炼化装置阀门状态的方法和装置
EP3732480A1 (en) 2017-12-26 2020-11-04 Dow Technology Investments LLC System and method for providing on-line measurement of impurities in liquid ethylene oxide streams
US10909738B2 (en) 2018-01-05 2021-02-02 Nvidia Corporation Real-time hardware-assisted GPU tuning using machine learning
EP3521273A1 (en) * 2018-02-05 2019-08-07 YARA International ASA A method and system for controlling an operation of a urea production process
US20190302707A1 (en) * 2018-03-28 2019-10-03 Mitsubishi Electric Research Laboratories, Inc. Anomaly Detection in Manufacturing Systems Using Structured Neural Networks
EP3844495B1 (en) * 2018-08-28 2024-01-03 ABB Schweiz AG Method and control system for detecting faults associated with gas chromotograph device in process plant
WO2020047578A1 (en) * 2018-09-05 2020-03-12 Commonwealth Scientific And Industrial Research Organisation "a monitor for a multi-parameter manufacturing process"
EP4290412A3 (en) * 2018-09-05 2024-01-03 Sartorius Stedim Data Analytics AB Computer-implemented method, computer program product and system for data analysis
US11449047B2 (en) * 2018-09-28 2022-09-20 Rockwell Automation Technologies, Inc. Systems and methods for retraining a model a target variable in a tiered framework
CN109445422A (zh) * 2018-12-19 2019-03-08 佛山科学技术学院 一种化工生产设备故障预测方法
EP3696619A1 (en) * 2019-02-15 2020-08-19 Basf Se Determining operating conditions in chemical production plants
US11098962B2 (en) 2019-02-22 2021-08-24 Forum Us, Inc. Finless heat exchanger apparatus and methods
CN111695229B (zh) * 2019-03-12 2023-10-17 宁波大学 一种基于ga-ica的新型分散式非高斯过程监测方法
US11946667B2 (en) 2019-06-18 2024-04-02 Forum Us, Inc. Noise suppresion vertical curtain apparatus for heat exchanger units
CN112683982A (zh) * 2019-10-18 2021-04-20 北京化工大学 一种基于循环伏安法的智能总氯测定方法
CN111240279B (zh) * 2019-12-26 2021-04-06 浙江大学 一种面向工业不平衡数据的对抗增强故障分类方法
DE102020202463A1 (de) 2020-02-26 2021-08-26 WAGO Verwaltungsgesellschaft mit beschränkter Haftung Datenreduzierte Edge-zu-Cloud-Übertragung basierend auf Vorhersagemodellen
US11997830B2 (en) * 2020-10-29 2024-05-28 Nvidia Corporation Intelligent radiator-assisted power and coolant distribution unit for datacenter cooling systems
CN112365458A (zh) * 2020-11-02 2021-02-12 中材邦业(杭州)智能技术有限公司 一种基于ann神经网络的篦冷机堆雪人识别方法和系统
US20220264764A1 (en) * 2021-02-18 2022-08-18 Nvidia Corporation Intelligent fan wall-cooled overhead liquid-to-air heat exchanger for datacenter cooling systems
US20240150307A1 (en) 2021-04-08 2024-05-09 Shell Usa, Inc. Moderator and catalyst performance optimization for epoxidation of ethylene
CN113707232B (zh) * 2021-09-07 2023-07-04 华电电力科学研究院有限公司 一种催化剂管理系统及催化剂监测方法
CN113963826B (zh) * 2021-10-14 2024-01-12 西安交通大学 一种反应堆异常工况诊断与控制系统
CN114151291A (zh) * 2021-11-18 2022-03-08 华能新能源股份有限公司 一种风电机组早期故障监测方法
EP4206838A1 (en) * 2021-12-29 2023-07-05 Petkim Petrokimya Holding A.S. Forecasting and anomaly detection method for low density polyethylene autoclave reactor
CN114273981B (zh) * 2022-03-04 2022-05-20 苏州古田自动化科技有限公司 一种具有异常构件排查功能的卧式五轴数控加工中心
CN115047839B (zh) * 2022-08-17 2022-11-04 北京化工大学 一种甲醇制烯烃工业过程的故障监测方法和系统
CN115964645B (zh) * 2023-03-16 2023-07-14 北京数通魔方科技有限公司 一种基于大数据的信息处理方法与系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1365745A (en) * 1972-06-27 1974-09-04 Bp Chem Int Ltd Propylene oxide
US6094600A (en) * 1996-02-06 2000-07-25 Fisher-Rosemount Systems, Inc. System and method for managing a transaction database of records of changes to field device configurations
US6017143A (en) * 1996-03-28 2000-01-25 Rosemount Inc. Device in a process system for detecting events
US7085610B2 (en) * 1996-03-28 2006-08-01 Fisher-Rosemount Systems, Inc. Root cause diagnostics
US5859964A (en) * 1996-10-25 1999-01-12 Advanced Micro Devices, Inc. System and method for performing real time data acquisition, process modeling and fault detection of wafer fabrication processes
US7424395B2 (en) 2004-09-10 2008-09-09 Exxonmobil Research And Engineering Company Application of abnormal event detection technology to olefins recovery trains
US20070151451A1 (en) * 2005-12-22 2007-07-05 Rekers Dominicus M Process for the cooling, concentration or purification of ethylene oxide
CN101438249A (zh) * 2006-05-07 2009-05-20 应用材料股份有限公司 用于错误诊断的多种错误特征
US7587296B2 (en) * 2006-05-07 2009-09-08 Applied Materials, Inc. Adaptive multivariate fault detection
US7917240B2 (en) * 2006-09-29 2011-03-29 Fisher-Rosemount Systems, Inc. Univariate method for monitoring and analysis of multivariate data
EP1914638A1 (en) * 2006-10-18 2008-04-23 Bp Oil International Limited Abnormal event detection using principal component analysis
WO2010075166A1 (en) * 2008-12-23 2010-07-01 Shell Oil Company System and method for monitoring an industrial production process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI665537B (zh) * 2017-02-17 2019-07-11 日商三菱日立電力系統股份有限公司 廠房的診斷裝置及診斷方法
US11480501B2 (en) 2017-02-17 2022-10-25 Mitsubishi Heavy Industries, Ltd. Diagnosis device and diagnosis method for plant
TWI728535B (zh) * 2019-10-31 2021-05-21 國立勤益科技大學 監控系統與其方法
TWI809592B (zh) * 2021-12-08 2023-07-21 財團法人工業技術研究院 模型預測控制系統及其方法

Also Published As

Publication number Publication date
CN105492982A (zh) 2016-04-13
WO2014195915A1 (en) 2014-12-11
TWI648609B (zh) 2019-01-21
KR20160018652A (ko) 2016-02-17
EP3005004B1 (en) 2021-04-07
CN105492982B (zh) 2019-09-10
US9892238B2 (en) 2018-02-13
BR112015030481A2 (pt) 2017-07-25
EP3005004A1 (en) 2016-04-13
US20140365195A1 (en) 2014-12-11
RU2015152547A (ru) 2017-07-20

Similar Documents

Publication Publication Date Title
TWI648609B (zh) 程序監控系統及方法
Ge Review on data-driven modeling and monitoring for plant-wide industrial processes
Lau et al. Fault diagnosis of Tennessee Eastman process with multi-scale PCA and ANFIS
US20190302707A1 (en) Anomaly Detection in Manufacturing Systems Using Structured Neural Networks
Chiang et al. Process monitoring using causal map and multivariate statistics: fault detection and identification
Komulainen et al. An online application of dynamic PLS to a dearomatization process
Chen et al. Probabilistic contribution analysis for statistical process monitoring: A missing variable approach
US20050261837A1 (en) Kernel-based system and method for estimation-based equipment condition monitoring
Goulding et al. Fault detection in continuous processes using multivariate statistical methods
Baklouti et al. Iterated robust kernel fuzzy principal component analysis and application to fault detection
Dorgo et al. Decision trees for informative process alarm definition and alarm-based fault classification
CA2766560A1 (en) Method of determining the influence of a variable in a phenomenon
Ali et al. Multiscale principal component analysis-signed directed graph based process monitoring and fault diagnosis
Robertson et al. Topological preservation techniques for nonlinear process monitoring
Lou et al. Enhanced fault diagnosis method using conditional gaussian network for dynamic processes
Tatara et al. An intelligent system for multivariate statistical process monitoring and diagnosis
Yang et al. Quality-related monitoring of distributed process systems using dynamic concurrent partial least squares
Patterson-Hine et al. A review of diagnostic techniques for ISHM applications
Fei et al. Online process monitoring for complex systems with dynamic weighted principal component analysis
Ali et al. Multiscale monitoring of industrial chemical process using wavelet-entropy aided machine learning approach
Li et al. Qualitative/quantitative simulation of process temporal behavior using clustered fuzzy digraphs
Salahshoor et al. A new on-line predictive monitoring using an integrated approach adaptive filter and PCA
Deng et al. Nonlinear Process Monitoring Based on Multi-block Dynamic Kernel Principal Component Analysis
Xu et al. Multiscale kernel entropy component analysis with application to complex industrial process monitoring
Prashanthi et al. Hybrid Optimization-Based Neural Network Classifier for Software Defect Prediction