TW201505402A - Combination of multiple precoding techniques for multicarrier modulation systems - Google Patents

Combination of multiple precoding techniques for multicarrier modulation systems Download PDF

Info

Publication number
TW201505402A
TW201505402A TW103112041A TW103112041A TW201505402A TW 201505402 A TW201505402 A TW 201505402A TW 103112041 A TW103112041 A TW 103112041A TW 103112041 A TW103112041 A TW 103112041A TW 201505402 A TW201505402 A TW 201505402A
Authority
TW
Taiwan
Prior art keywords
precoding
precoder
scheme
oobe
attribute
Prior art date
Application number
TW103112041A
Other languages
Chinese (zh)
Inventor
Zi-Hao You
Juan Fan
I-Tai Lu
Rui Yang
Jia-Ling Li
Erdem Bala
Original Assignee
Interdigital Patent Holdings
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Interdigital Patent Holdings filed Critical Interdigital Patent Holdings
Publication of TW201505402A publication Critical patent/TW201505402A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03898Spatial equalizers codebook-based design
    • H04L25/0391Spatial equalizers codebook-based design construction details of matrices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03828Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03961Spatial equalizers design criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/26265Arrangements for sidelobes suppression specially adapted to multicarrier systems, e.g. spectral precoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03375Passband transmission
    • H04L2025/03414Multicarrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transmitters (AREA)

Abstract

Systems, methods, and instrumentalities are disclosed to utilize a combined precoding technique in a multicarrier modulation system to reduce out-of-band power leakage. A combined precoder may be used to precode a symbol stream using a matrix-based precoding component to generate a first precoded symbol stream. The combined precoder may then be used to apply a perturbation to the first precoded symbol stream to generate a second precoded symbol stream.

Description

多載波調變系統多預編碼技術組合Multi-carrier modulation system multi-precoding technology combination

相關申請的交叉引用 本申請要求享有2013年3月29日提交的申請號為61/806,614的美國臨時專利申請的權益,該申請的內容在此通過引用合併到本申請中。CROSS-REFERENCE TO RELATED APPLICATIONS This application claims the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the disclosure.

多載波調變(MCM)技術可以能夠同時在多個窄帶子載波上傳輸一組資料。通過使用高級寬頻調變和編碼方案,與使用單載波調變技術的系統相比,使用MCM的系統可以在頻率選擇性通道中實現更高的頻譜效率。將總頻帶分為多個在頻率上重疊的正交子帶的正交分頻多工(OFDM)技術是MCM方案的一個示例。 OFDM可以具有多個有利特性,例如高頻譜效率、對通道衰落的強健性、多路延遲擴展容忍、高效快速傅利葉變換(FFT)實現等。然而,一個問題是其子載波的高旁瓣(sidelobe)。因此,OFDM信號可以產生相對大的帶外(OOB)輻射和/或帶外發射(OOBE),並且對於某些無線通訊系統和應用會是不理想的。例如,作為解決由快速數量增長的無線通訊技術和裝置帶來的頻譜壅塞問題的有前途的解決方案,認知無線電(CR)近來已經被顯著地關注。CR系統可以在被分配給被許可的用戶(LU)的頻帶中通過利用LU頻帶的空閒部分操作並且可以將其對LU的干擾減小或最小化。OFDM已經被認作是用於在基於第一認知無線電的標準IEEE 802.22中的CR候選。基於OFDM的CR系統會遭受干擾由LU佔用的其它頻帶的大的OOB輻射。Multi-Carrier Modulation (MCM) technology can transmit a set of data on multiple narrow-band subcarriers simultaneously. By using advanced wideband modulation and coding schemes, systems using MCM can achieve higher spectral efficiency in frequency selective channels than systems using single carrier modulation techniques. An orthogonal frequency division multiplexing (OFDM) technique that divides the total frequency band into a plurality of orthogonal sub-bands that overlap in frequency is an example of an MCM scheme. OFDM can have several advantageous features such as high spectral efficiency, robustness to channel fading, multipath delay spread tolerance, efficient fast Fourier transform (FFT) implementation, and the like. However, one problem is the high sidelobe of its subcarriers. Thus, OFDM signals can produce relatively large out-of-band (OOB) radiation and/or out-of-band emissions (OOBE) and can be undesirable for certain wireless communication systems and applications. For example, cognitive radio (CR) has recently received significant attention as a promising solution to the problem of spectrum congestion caused by rapidly increasing number of wireless communication technologies and devices. The CR system can operate in the frequency band allocated to the licensed user (LU) by utilizing the idle portion of the LU band and can reduce or minimize its interference to the LU. OFDM has been recognized as a CR candidate for use in the standard IEEE 802.22 based on the first cognitive radio. OFDM-based CR systems suffer from large OOB radiation that interferes with other frequency bands occupied by the LU.

系統、方法以及工具被揭露以使用在多載波調變系統中的組合預編碼技術。組合預編碼器可以被用於通過使用基於矩陣的預編碼元件來預編碼符號串流以產生第一預編碼的符號串流。接下來組合預編碼器可以被用於對第一預編碼的符號串流實施擾動以產生第二預編碼的符號串流。因此,與第二預編碼的符號串流的傳輸相關聯的OOBE可以小於與未編碼的資料串流的傳輸相關聯的OOBE。 例如,基於矩陣的預編碼方案可以包括奇異值分解(SVD)預編碼器方案、N-連續預編碼器方案、頻譜預編碼方案等等中的一個或多個。在產生第二預編碼的符號串流時可以將擾動加至第一預編碼的符號串流。可以在第一子載波集合上傳送擾動並且可以在第二子載波集合上傳送資料符號串。第一預編碼方案可以通過利用第一預編碼矩陣屬性來減少OOBE,並且第二預編碼方案可以通過利用別的預編碼矩陣屬性來減少OOBE。例如,第一預編碼屬性可以是零空間屬性並且第二預編碼屬性可以是連續導數屬性。Systems, methods, and tools are disclosed to use a combined precoding technique in a multi-carrier modulation system. A combined precoder may be used to precode the symbol stream by using a matrix based precoding element to produce a first precoded symbol stream. The combined precoder may then be used to perturb the first precoded symbol stream to produce a second precoded symbol stream. Thus, the OOBE associated with the transmission of the second precoded symbol stream may be less than the OOBE associated with the transmission of the unencoded data stream. For example, the matrix based precoding scheme may include one or more of a singular value decomposition (SVD) precoder scheme, an N-continuous precoder scheme, a spectral precoding scheme, and the like. A perturbation may be added to the first precoded symbol stream when the second precoded symbol stream is generated. The perturbation may be transmitted on the first set of subcarriers and the data symbol string may be transmitted on the second set of subcarriers. The first precoding scheme may reduce OOBE by utilizing the first precoding matrix attributes, and the second precoding scheme may reduce OOBE by utilizing other precoding matrix attributes. For example, the first precoding attribute may be a zero space attribute and the second precoding attribute may be a continuous derivative attribute.

現在可以參照附圖描述具體實施方式。雖然該描述提供了可能實施的具體示例,但應當注意的是具體示例是示例性的,並且不以任何方式限制本申請的範圍。 第1A圖是在其中可以實施一個或多個實施方式的示例通信系統100的系統圖。通信系統100可以是向多個使用者提供內容,例如語音、資料、視訊、訊息發送、廣播等的多重存取系統。通信系統100可以使多個無線使用者通過系統資源分享(包括無線頻寬)存取這些內容。例如,通信系統100可以使用一種或多種通道存取方法,例如分碼多重存取(CDMA),分時多重存取(TDMA),分頻多重存取(FDMA),正交FDMA(OFDMA),單載波FMDA(SC-FDMA)等。 如第1A圖所示,通信系統100可以包括無線發射/接收單元(WTRU)102a、102b、102c和/或102d(其一般或整體上稱為WTRU 102)、無線電存取網路(RAN)103/104/105、核心網路106/107/109、公共交換電話網路(PSTN)108、網際網路110和其他網路112。不過應該理解的是,揭露的實施方式考慮到了任何數量的WTRU、基地台、網路和/或網路元件。WTRU 102a、102b、102c、102d的每一個可以是配置為在無線環境中進行操作和/或通信的任何類型的裝置。作為示例,可以將WTRU 102a、102b、102c、102d配置為傳送和/或接收無線信號,並可以包括使用者設備(UE)、移動站、固定或者移動使用者單元、傳呼器、行動電話、個人數位助理(PDA)、智慧型電話、筆記型電腦、隨身型易網機、個人電腦、無線感測器、消費電子產品等等。 通信系統100還可以包括基地台114a和基地台114b。基地台114a、114b的每一個都可以是配置為與WTRU 102a、102b、102c、102d中的至少一個無線對接以便於存取一個或者多個通信網路,例如核心網路106/107/109、網際網路110和/或網路112的任何類型裝置。作為示例,基地台114a、114b可以是基地台收發台(BTS)、節點B、e節點B、家庭節點B、家庭e節點B、網站控制器、存取點(AP)、無線路由器等等。雖然基地台114a、114b的每一個被描述為單獨的元件,但是應該理解的是,基地台114a、114b可以包括任何數量互連的基地台和/或網路元件。 基地台114a可以是RAN 103/104105的一部分,RAN 103/104105還可以包括其他基地台和/或網路元件(未顯示),例如基地台控制器(BSC)、無線電網路控制器(RNC)、中繼節點等。可以將基地台114a和/或基地台114b配置為在特定地理區域之內發送和/或接收無線信號,該區域可以被稱為胞元(未顯示)。胞元還可以被劃分為胞元扇區。例如,與基地台114a關聯的胞元可以劃分為三個扇區。因此,在一種實施方式中,基地台114a可以包括三個收發器,即胞元的每個扇區有一個。在另一種實施方式中,基地台114a可以使用多輸入多輸出(MIMO)技術,因此可以將多個收發器用於胞元的每一個扇區。 基地台114a、114b可以通過空中介面115/116/117與WTRU 102a、102b、102c、102d中的一個或者多個通信,該空中介面可以是任何合適的無線通訊鏈路(例如,射頻(RF)、微波、紅外(IR)、紫外線(UV)、可見光等)。可以使用任何合適的無線電存取技術(RAT)來建立空中介面115/116/117。 更具體地,如上所述,通信系統100可以是多重存取系統,並可以使用一種或者多種通道存取方案,例如CDMA、TDMA、FDMA、OFDMA、SC-FDMA等等。例如,RAN 103/104/105中的基地台114a和WTRU 102a、102b、102c可以使用例如通用移動電信系統(UMTS)陸地無線電存取(UTRA)的無線電技術,其可以使用寬頻CDMA(WCDMA)來建立空中介面115/116/117。WCDMA可以包括例如高速封包存取(HSPA)和/或演進的HSPA(HSPA+)的通信協定。HSPA可以包括高速下行鏈路封包存取(HSDPA)和/或高速上行鏈路封包存取(HSUPA)。 在另一種實施方式中,基地台114a和WTRU 102a、102b、102c可以使用例如演進的UMTS陸地無線電存取(E-UTRA)的無線電技術,其可以使用長期演進(LTE)和/或高級LTE(LTE-A)來建立空中介面115/116/117。 在其他實施方式中,基地台114a和WTRU 102a、102b、102c可以使用例如IEEE802.16(即,全球互通微波存取(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、暫行標準 2000(IS-2000)、暫行標準95(IS-95)、暫行標準856(IS-856)、全球移動通信系統(GSM)、GSM演進的增強型資料速率(EDGE)、GSM EDGE(GERAN)等等的無線電技術。 第1A圖中的基地台114b可以是無線路由器、家庭節點B、家庭e節點B或者存取點,例如,並且可以使用任何適當的RAT以便於局部區域中的無線連接,例如商業場所、住宅、車輛、校園等等。在一種實施方式中,基地台114b和WTRU 102c、102d可以示例如IEEE 802.11的無線電技術來建立無線區域網路(WLAN)。在另一種實施方式中,基地台114b和WTRU 102c、102d可以使用例如IEEE 802.15的無線電技術來建立無線個人區域網路(WPAN)。仍然在另一種實施方式中,基地台114b和WTRU 102c、102d可以使用基於蜂巢的RAT(例如,WCDMA,CDMA2000,GSM,LTE,LTE-A等)來建立微微胞元或毫微微胞元。如第1A圖所示,基地台114b可以具有到網際網路110的直接連接。因此,基地台114b可以不需要經由核心網路106/107/109而存取到網際網路110。 RAN 103/104/105可以與核心網路106/107/109通信,該核心網路106/107/109可以是被配置為向WTRU 102a、102b、102c、102d中的一個或多個提供語音、資料、應用和/或網際網路協定語音(VoIP)服務等的任何類型的網路。例如,核心網路106/107/109可以提供呼叫控制、計費服務、基於移動位置的服務、預付費呼叫、網際網路連接、視訊分配等和/或執行高級安全功能,例如用戶認證。雖然第1A圖中未示出,應該理解的是,RAN 103/104/105和/或核心網路106/107/109可以與使用和RAN 103/104/105相同的RAT或不同RAT的其他RAN進行直接或間接的通信。例如,除了連接到正在使用E-UTRA無線電技術的RAN 103/104/105之外,核心網路106/107/109還可以與使用GSM無線電技術的另一個RAN(未示出)通信。 核心網路106/107/109還可以充當WTRU 102a、102b、102c、102d存取到PSTN 108、網際網路110和/或其他網路112的閘道。PSTN 108可以包括提供普通老式電話服務(POTS)的電路交換電話網路。網際網路110可以包括使用公共通信協定的互聯電腦網路和裝置的全球系統,該協定例如有TCP/IP網際網路協定組中的傳輸控制協定(TCP)、使用者資料包通訊協定(UDP)和網際網路協定(IP)。網路112可以包括被其他服務提供者擁有和/或營運的有線或無線的通信網路。例如,網路112可以包括連接到一個或多個RAN的另一個核心網路,該RAN可以使用和RAN 103/104/105相同的RAT或不同的RAT。 通信系統100中的WTRU 102a、102b、102c、102d的某些或全部可以包括多模式能力,例如WTRU 102a、102b、102c、102d可以包括用於在不同無線鏈路上與不同無線網路進行通信的多個收發器。例如,第1A圖中示出的WTRU 102c可被配置為與基地台114a通信,該基地台114a可以使用基於蜂巢的無線電技術,以及與基地台114b通信,該基地台114b可以使用IEEE 802無線電技術。 第1B圖是WTRU 102示例的系統圖。如第1B圖所示,WTRU 102可以包括處理器118、收發器120、發射/接收元件122、揚聲器/麥克風124、數字鍵盤126、顯示器/觸控板128、不可移除記憶體130、可移除記憶體132、電源134、全球定位系統(GPS)晶片組136和其他週邊設備138。應該理解的是,WTRU 102可以在保持與實施方式一致時,包括前述元件的任何子組合。此外,實施方式考慮了基地台114a和114b,和/或基地台114a和114b可以代表的節點,例如但不限於基地台收發台(BTS),節點B,網站控制器,存取點(AP),家庭節點B,演進的家庭節點B(e節點B),家庭演進的節點B(HeNB),家庭演進的節點B閘道,以及代理節點等,可以包括第1B圖描述的和在此描述的一些或全部元件。 處理器118可以是通用處理器、專用處理器、常規處理器、數位訊號處理器(DSP)、多個微處理器、與DSP核相關聯的一個或多個微處理器、控制器、微控制器、專用積體電路(ASIC)、場可程式設計閘陣列(FPGA)電路、任何其他類型的積體電路(IC)、狀態機等等。處理器118可執行信號編碼、資料處理、功率控制、輸入/輸出處理和/或使WTRU 102運行於無線環境中的任何其他功能。處理器118可以耦合到收發器120,該收發器120可耦合到發射/接收元件122。雖然第1B圖描述了處理器118和收發器120是單獨的組件,但是應該理解的是,處理器118和收發器120可以一起整合在電子封裝或晶片中。 發射/接收元件122可以被配置為通過空中介面115/116/117將信號發送到基地台(例如,基地台114a),或從基地台(例如,基地台114a)接收信號。例如,在一種實施方式中,發射/接收元件122可以是被配置為發送和/或接收RF信號的天線。在另一種實施方式中,發射/接收元件122可以是被配置為發送和/或接收例如IR、UV或可見光信號的發射器/檢測器。仍然在另一種實施方式中,發射/接收元件122可以被配置為發送和接收RF和光信號兩者。應當理解,發射/接收元件122可以被配置為發送和/或接收無線信號的任何組合。 另外,雖然發射/接收元件122在第1B圖中描述為單獨的元件,但是WTRU 102可以包括任意數量的發射/接收元件122。更具體的,WTRU 102可以使用例如MIMO技術。因此,在一種實施方式中,WTRU 102可以包括用於通過空中介面115/116/117發送和接收無線信號的兩個或更多個發射/接收元件122(例如,多個天線)。 收發器120可以被配置為調變要由發射/接收元件122發送的信號和/或解調由發射/接收元件122接收的信號。如上面提到的,WTRU 102可以具有多模式能力。因此收發器120可以包括使WTRU 102經由多個例如UTRA和IEEE 802.11的RAT通信的多個收發器。 WTRU 102的處理器118可以耦合到下述設備,並且可以從下述設備中接收使用者輸入資料:揚聲器/麥克風124、數字鍵盤126和/或顯示器/觸控板128(例如,液晶顯示器(LCD)顯示單元或有機發光二極體(OLED)顯示單元)。處理器118還可以輸出使用者資料到揚聲器/麥克風124、鍵盤數字126和/或顯示/觸控板128。另外,處理器118可以從任何類型的適當的記憶體存取資訊,並且可以儲存資料到任何類型的適當的記憶體中,例如不可移除記憶體130和/或可移除記憶體132。不可移除記憶體130可以包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、硬碟或任何其他類型的記憶體裝置。可移除記憶體132可以包括用戶身份模組(SIM)卡、記憶棒、安全數位(SD)記憶卡等等。在其他實施方式中,處理器118可以從在實體位置上沒有位於WTRU 102上,例如位於伺服器或家用電腦(未示出)上的記憶體存取資訊,並且可以將資料儲存在該記憶體中。 處理器118可以從電源134接收電能,並且可以被配置為分配和/或控制到WTRU 102中的其他部件的電能。電源134可以是給WTRU 102供電的任何適當的裝置。例如,電源134可以包括一個或多個乾電池(例如,鎳鎘(NiCd)、鎳鋅(NiZn)、鎳氫(NiMH)、鋰離子(Li-ion)等等),太陽能電池,燃料電池等等。 處理器118還可以耦合到GPS晶片組136,該GPS晶片組136可以被配置為提供關於WTRU 102當前位置的位置資訊(例如,經度和緯度)。WTRU 102可以通過空中介面115/116/117從基地台(例如,基地台114a、114b)接收加上或取代GPS晶片組136資訊之位置資訊和/或基於從兩個或更多個鄰近基地台接收的信號的定時來確定其位置。應當理解,WTRU 102在保持實施方式的一致性時,可以通過任何適當的位置確定方法獲得位置資訊。 處理器118還可以耦合到其他週邊設備138,該週邊設備138可以包括一個或多個提供附加特性、功能和/或有線或無線連接的軟體和/或硬體模組。例如,週邊設備138可以包括加速計、電子羅盤、衛星收發器、數位相機(用於照片或視訊)、通用序列匯流排(USB)埠、振動裝置、電視收發器、免持耳機、藍芽(Bluetooth® )模組、調頻(FM)無線電單元、數位音樂播放機、媒體播放機、視訊遊戲機模組、網際網路瀏覽器等等。 第1C圖是根據實施方式的RAN 103和核心網路106的系統圖。如上面提到的,RAN 103可使用UTRA無線電技術通過空中介面115與WTRU 102a、102b和102c通信。RAN 103還可以與核心網路106通信。如第1C圖所示,RAN 103可以包括節點B 140a、140b、140c,節點B 140a、140b、140c的每一個包括一個或多個用於通過空中介面115與WTRU 102a、102b、102c、102d通信的收發器。節點B 140a、140b、140c的每一個可以與RAN 103內的特定胞元(未顯示)關聯。RAN 103還可以包括RNC 142a、142b。應當理解的是,RAN 103在保持實施方式的一致性時,可以包括任意數量的節點B和RNC。 如第1C圖所示,節點B 140a、140b可以與RNC 142a通信。此外,節點B 140c可以與RNC 142b通信。節點B 140a、140b、140c可以通過Iub介面與各自RNC 142a、142b通信。RNC 142a、142b可以通過Iur介面相互通信。RNC 142a、142b的每一個可以被配置以控制其連接的各個節點B 140a、140b、140c。另外,RNC 142a、142b的每一個可以被配置以執行或支援其他功能,例如外環功率控制、負載控制、準入控制、封包排程、切換控制、巨集分集、安全功能、資料加密等等。 第1C圖中所示的核心網路106可以包括媒體閘道(MGW)144、移動交換中心(MSC)146、服務GPRS支援節點(SGSN)148、和/或閘道GPRS支持節點(GGSN)150。儘管前述元件的每一個被描述為核心網路106的部分,應當理解的是,這些元件中的任何一個可以被不是核心網路營運商的實體擁有或營運。 RAN 103中的RNC 142a可以通過IuCS介面連接至核心網路106中的MSC 146。MSC 146可以連接至MGW 144。MSC 146和MGW 144可以向WTRU 102a、102b、102c提供到電路切換式網路(例如PSTN 108)的存取,以便於WTRU 102a、102b、102c和傳統陸地線路通信裝置之間的通信。 RAN 103中RNC 142a還可以通過IuPS介面連接至核心網路106中的SGSN 148。SGSN 148可以連接至GGSN 150。SGSN 148和GGSN 150可以向WTRU 102a、102b、102c提供到封包交換網路(例如網際網路110)的存取,以便於WTRU 102a、102b、102c和IP賦能裝置之間的通信。 如上所述,核心網路106還可以連接至網路112,網路112可以包括由其他服務提供者擁有或營運的其他有線或無線網路。 第1D圖是根據實施方式的RAN 104和核心網路107的系統圖。如上面提到的,RAN 104可使用E-UTRA無線電技術通過空中介面116與WTRU 102a、102b、102c通信。RAN 104還可以與核心網路107通信。 RAN 104可包括e節點B 160a、160b、160c,但可以理解的是,RAN 104可以包括任意數量的e節點B而保持與各種實施方式的一致性。e節點B 160a、160b、160c的每一個可包括一個或多個用於通過空中介面116與WTRU 102a、102b、102c通信的收發器。在一種實施方式中,e節點B 160a、160b、160c可以使用MIMO技術。因此,e節點B 160a例如可以使用多個天線來向WTRU 102a發送無線信號和/或從其接收無線信號。 e節點B 160a、160b、160c的每一個可以與特定胞元關聯(未顯示),並可以被配置為處理無線電資源管理決策、切換決策、在上行鏈路和/或下行鏈路中的用戶排程等等。如第1D圖所示,e節點B 160a、160b、160c可以通過X2介面相互通信。 第1D圖中所示的核心網路107可以包括移動性管理實體(MME)162、服務閘道164和封包資料網路(PDN)閘道166。雖然前述元件的每一個被描述為核心網路107的一部分,應當理解的是,這些元件中的任意一個可以由除了核心網路營運商之外的實體擁有和/或營運。 MME 162可以經由S1介面連接到RAN 104中的e節點B 160a、160b、160c的每一個,並可以作為控制節點。例如,MME 162可以負責WTRU 102a、102b、102c的用戶認證、承載啟動/去啟動、在WTRU 102a、102b、102c的初始附著期間選擇特定服務閘道等等。MME 162還可以提供控制平面功能,用於在RAN 104和使用例如GSM或者WCDMA的其他無線電技術的其他RAN(未顯示)之間切換。 服務閘道164可以經由S1介面連接到RAN 104中的eNB 160a、160b、160c的每一個。服務閘道164通常可以向/從WTRU 102a、102b、102c路由和轉發使用者資料封包。服務閘道164還可以執行其他功能,例如在eNB間切換期間錨定用戶平面、當下行鏈路資料對於WTRU 102a、102b、102c可用時觸發傳呼、管理和儲存WTRU 102a、102b、102c的上下文(context)等等。 服務閘道164還可以連接到PDN閘道166,PDN閘道166可以向WTRU 102a、102b、102c提供到封包交換網路(例如網際網路110)的存取,以便於WTRU 102a、102b、102c與IP賦能裝置之間的通信。 核心網路107可以便於與其他網路的通信。例如,核心網路107可以向WTRU 102a、102b、102c提供到電路切換式網路(例如PSTN 108)的存取,以便於WTRU 102a、102b、102c與傳統陸地線路通信裝置之間的通信。例如,核心網路107可以包括IP閘道(例如IP多媒體子系統(IMS)伺服器),或者與之通信,該IP閘道作為核心網路107與PSTN 108之間的介面。另外,核心網路107可以向WTRU 102a、102b、102c提供到網路112的存取,該網路112可以包括被其他服務提供者擁有和/或營運的其他有線或無線網路。 第1E圖是根據實施方式的RAN 105和核心網路109的系統圖。RAN 105可以是使用IEEE 802.16無線電技術通過空中介面117與WTRU 102a、102b、102c進行通信的存取服務網路(ASN)。如下面進一步討論的,WTRU 102a、102b、102c,RAN 105和核心網路109的不同功能實體之間的鏈路可以被定義為參考點。 如第1E圖所示,RAN 105可以包括基地台180a、180b、180c和ASN閘道182,但應當理解的是,RAN 105可以包括任意數量的基地台和ASN閘道而與實施方式保持一致。基地台180a、180b、180c的每一個可以與RAN 105中特定胞元(未示出)關聯並可以包括一個或多個通過空中介面117與WTRU 102a、102b、102c通信的收發器。在一個示例中,基地台180a、180b、180c可以使用MIMO技術。因此,基地台180a例如可以使用多個天線來向WTRU 102a發送無線信號,或從其接收無線信號。基地台180a、180b、180c可以提供移動性管理功能,例如切換(handoff)觸發、隧道建立、無線電資源管理,業務分類、服務品質(QoS)策略執行等等。ASN閘道182可以充當業務聚集點,並且負責傳呼、緩存使用者設定檔(profile)、路由到核心網路109等等。 WTRU 102a、102b、102c和RAN 105之間的空中介面117可以被定義為實施802.16規範的R1參考點。另外,WTRU 102a、102b、102c的每一個可以與核心網路109建立邏輯介面(未顯示)。WTRU 102a、102b、102c和核心網路109之間的邏輯介面可以定義為R2參考點,其可以用於認證、授權、IP主機(host)配置管理和/或移動性管理。 基地台180a、180b、180c的每一個之間的通信鏈路可以定義為包括便於WTRU切換和基地台間轉移資料的協定的R8參考點。基地台180a、180b、180c和ASN閘道182之間的通信鏈路可以定義為R6參考點。R6參考點可以包括用於便於基於與WTRU 102a、102b、102c的每一個關聯的移動性事件的移動性管理的協定。 如第1E圖所示,RAN 105可以連接至核心網路109。RAN 105和核心網路109之間的通信鏈路可以定義為包括例如便於資料轉移和移動性管理能力的協定的R3參考點。核心網路109可以包括移動IP本地代理(MIP-HA)184,認證、授權、記帳(AAA)伺服器186和閘道188。儘管前述的每個元件被描述為核心網路109的部分,應當理解的是,這些元件中的任意一個可以由不是核心網路營運商的實體擁有或營運。 MIP-HA可以負責IP位址管理,並可以使WTRU 102a、102b、102c在不同ASN和/或不同核心網路之間漫遊。MIP-HA 184可以向WTRU 102a、102b、102c提供封包交換網路(例如網際網路110)的存取,以便於WTRU 102a、102b、102c和IP賦能裝置之間的通信。AAA伺服器186可以負責使用者認證和支援使用者服務。閘道188可便於與其他網路交互工作。例如,閘道188可以向WTRU 102a、102b、102c提供電路切換式網路(例如PSTN 108)的存取,以便於WTRU 102a、102b、102c和傳統陸地線路通信裝置之間的通信。此外,閘道188可以向WTRU 102a、102b、102c提供網路112的存取,網路112可以包括由其他服務提供者擁有或營運的其他有線或無線網路。 儘管未在第1E圖中顯示,應當理解的是,RAN 105可以連接至其他ASN,並且核心網路109可以連接至其他核心網路。RAN 105和其他ASN之間的通信鏈路可以定義為R4參考點,其可以包括協調RAN 105和其他ASN之間的WTRU 102a、102b、102c的移動性的協定。核心網路109和其他核心網路之間的通信鏈路可以定義為R5參考點,其可以包括促進本地核心網路和被訪問核心網路之間的互通的協定。 在基於多載波調變的發射機,組合預編碼技術可以實現一個或多個包括減少或最小化帶外功率洩漏的多載波調變波形設計目的。例如,組合預編碼技術可以使用匹配的編碼率以有序的方式來組合多個元件預編碼技術來達到一個或多個多載波調變設計目標,例如減少或最小化帶外功率洩漏、減小PAPR、減少或最小化BER等等。每個元件預編碼技術可以致力於一個或多個設計目標並且元件預編碼器的組合可以被設計為按序地實施元件不會使得單獨的元件預編碼技術的受歡迎的功能失效。可以被用作為組合預編碼技術的單獨預編碼元件的不同預編碼技術的示例在下文中被描述。 示例性組合預編碼器可以在OFDM系統中將奇異值分解(SVD)預編碼用作第一預編碼元件以及將頻譜預編碼作為第二預編碼元件以減小或最小化OOB功率洩漏。在發射機中,在IFFT操作之前,每個複合的符號塊可以被處理兩次。第一預編碼器可以利用SVD預編碼器來對在位於通帶外的特定頻率的功率陷波(notch)以減小或最小化帶外功率發射。接下來,可以是頻譜預編碼器的第二元件可以被用於將OFDM中的矩形脈衝成形替換為子載波上的頻譜預編碼以實現位於通帶外的功率頻譜密度中的更快的下降(roll off)。在接收機,在FFT操作之後,接收機可以以發送預編碼過程的反向順序解碼信號塊。 其它類型的元件預編碼器可以被使用。例如,基於矩陣的預編碼技術可以被用在第一預編碼元件中並且可以與使用可以在第二預編碼元件中被實現的擾動向量的預編碼技術組合。例如,SVD預編碼可以通過第一預編碼元件被實現,其中該第一預編碼元件可以與實現N連續預編碼技術以最小化OOB功率洩漏的第二預編碼元件組合。例如,在發射機,SVD預編碼可以被應用於資料向量,並且接下來擾動向量可以被計算並被加至預編碼的信號來在每個CP-OFDM符號的左邊緣執行等於其前一個符號的右邊緣的第1次至第J 次求導。在接收機,擾動向量可以被估計並且從接收到的信號中被減去,並且資料可以通過使用解碼矩陣被恢復。增加擾動向量的方法可以通過將資料向量擴展至具有更大尺寸的空間並且創建與在該被擴展的空間內的原始資料向量正交的擾動向量來實現。在這種方式中,接收機的操作可以不估計擾動向量,但替代的是,可以將被擴展的空間內的被估計的資料投射至原始的資料。 其它類型的一些傳輸方案可以被使用以減小基於正交分頻多工(OFDM)的認知無線電(CR)系統的OOB輻射(除了或而非使用一個或多個預編碼元件)。例如,濾波和/或加窗技術可以被使用。然而,例如,濾波和/或加窗技術會引入長延遲和/或位元誤碼率(BER)的降級。 可以被用於減小洩漏的另一種示例性方法涉及禁止或避免利用某些CR子載波以創建在CR頻帶和LU頻帶之間的一個或多個保護頻帶。然而,有目的地僅通過避免使用一個或多個子載波創建保護頻帶不足以減小對於實際上的可接受級別的干擾,並且這種技術會導致某些頻譜效率的損耗。在一種示例中,取消子載波(CC)可以被使用從而產生有效保護頻帶並減少假發射。例如,不是禁止或避免使用子載波,而是對指定CC的輸入可以使得在通常被指派給LU的某頻率的輻射被減小或被最小化。對CC的輸入的內容可以取決於剩餘的資料子載波的輸入,這在計算上會是複雜的,使得在實際中難以實現對CC的使用。 在一種示例中,被稱為子載波權重(SW)的另一種方法可以被用作預編碼元件。SW可以被視為使用不降低頻譜效率的實對角矩陣的預編碼方法。子載波權重可以涉及子載波輸入的配置以減小或最小化在某頻率的輻射,並且也會是計算上複雜的。 可以被用作預編碼元件的另一種示例性預編碼方法是奇異值分解(SVD)預編碼。例如,雖然SVD預編碼可以一定程度地降低頻譜效率,SVD可以利用具有小於一的碼率的預編碼矩陣來減小OOB輻射。不同於子載波權重,用於這種預編碼方法中的矩陣可以不是方矩陣。然而,該矩陣的設計不依賴於輸入資料。因此,相比較於需要得知每個輸入的技術,實現這種預編碼器的複雜度會被降低。 另一種預編碼元件方案,例如頻譜預編碼同樣獨立於輸入資料。替代了減小或最小化在某頻率的系統能量的SVD預編碼,頻譜預編碼使用新的正交基礎集合來為每個傳統OFDM符號替代矩形脈衝,從而新旁瓣下降得比sinc函數的更快。頻譜效率會由於當帶內範圍被固定時受限的可用基礎集合的數量而降低。當頻譜效率從1降至(N-1)/N並且從(N-1)/N降至(N-2)/N時,顯著的OOB功率抑制改善會發生,其中N可以是子載波的數量。隨著頻譜效率繼續降低,改善會變得較不顯著。因此,如果總頻譜效率損失的一部分從頻譜預編碼中重新分配給一些其他的諸如SVD預編碼的預編碼方案,得到的組合方案可以優於分別使用的方案中的任何一種。 另一種示例預編碼元件方案可以指的是N連續預編碼。N連續預編碼可以具有接近OOBE抑制效果,無論循環前綴(CP)是否被使用。例如,替代了設計預編碼矩陣,N連續預編碼可以根據當前和上一個符號設計擾動向量,從而對應的時域符號可以到處具有連續值及導數。由於當最大導數階很大時在接收機內擾動向量不會被正確地估計,即使在通道是理想的並且疊代運算解碼器被使用情況中一些錯誤也會發生。通過增加最大導數階,可以達到更大的OOBE抑制。 正交分頻多工(OFDM)可以具有會導致系統的低功率效率的高峰-均功率比(PAPR)。許多MCM系統會遇到高PAPR問題。可以通過使用會使用擾動編碼以減小PAPR的諸如選擇級別映射(SLM)和部分傳送序列(PTS)的信號加擾技術來減小PAPR。通常邊資訊被用於信號加擾技術,其中該信號加擾技術引進了冗餘並且有效輸送量會被減少。預編碼技術也可以是通過引進一些冗余在維持適合的誤差特性的同時減小PAPR的有效方法。可以通過信號失真來減小PAPR,其中信號失真會(例如使用壓縮技術以及削波和濾波技術)通過直接失真信號減小高峰值。雖然這種技術會有效地減小PAPR,但是其會顯著地降低誤差性能。 預編碼技術可以向諸如OFDM系統的MCM系統的缺點提供補救措施。不同的預編碼技術會在MCM波形設計中達到不同的目標。將不同類型的預編碼技術的不同方面整合會在避免單獨技術的不良效應的同時在MCM波形系統中達到不同的設計目的。例如,預編碼系統可以被設計為減小或最小化OOB功率洩漏、減小PARA、最小化BER等。 如第2圖所示,組合預編碼技術可以被用於結合多個單獨預編碼技術,例如(1) 其中,GN 可以是第N 個元件預編碼器(例如,資料串流基本上通過的第i 個預編碼器)並且可以代表一個預編碼技術的預編碼矩陣。 第2圖概念地示意了作為預編碼器塊202的組合預編碼器200的每個元件預編碼器。使用多元件預編碼器在這裡可以指的是使用組合預編碼。組合預編碼技術可以使用一系列元件預編碼器來滿足多個設計目標。例如,每個單獨元件預編碼器可以被設計為致力於一個或多個設計目標,例如減小或最小化OOB功率洩漏、減小或最小化PAPR,減小或最小化BER等等。在一個示例中,維度Ni ×Ki 的第i 個預編碼矩陣Gi 可以滿足匹配的編碼率(維度)約束條件,從而Ki =Ni -1 (2) 此外,預編碼技術的組合可以被設計為預編碼器的總結合不會使一個或多個元件預編碼技術功能失效(即,保證應用組合中的每個預編碼器不會過度地削弱單獨預編碼器被設計達到的效果)。 第3圖示意了示例性正交分頻多工(OFDM)系統的發射機300。第4圖示出了OFDM系統的接收機400。第3圖和第4圖可以被用於示意具有任意連續或非連續可用頻譜的預編碼OFDM(P-OFDM)系統的一般情況。 當可用頻譜是非連續時,為了減小帶外(OOB)功率洩漏,一個元件預編碼矩陣可以被設計為對帶外頻率陷波。 在一種示例中,除了使用多個元件預編碼器以在傳輸前處理信號(例如,為了各種設計目的),擾動向量可以被添加以用於傳送信號。例如,第15圖示意了組合預編碼器1500可以同擾動向量被使用的示例。 例如,令 d l =[d1,l d2,l …dk,l ] T 代表第l 個資料向量,其中l 可以是時域中的索引並且K 可以是每個向量的長度。每個向量可以被N×K 預編碼矩陣G 來左乘,並且加以擾動向量 w l =[w1,l w2,l …wN,l ] T ,例如,得到的信號可以是:b l =Gd l + w l (3) 其中b l =[b 1,l b 2,l …b N,l ] T 可以代表第l 個預編碼向量。編碼率可以被定義為不大於1的K/N 。x l 可以是對應於輸入b l 的逆向快速傅利葉變換(IFFT)操作輸出。可以在x l 之前插入CP,例如,從而抵消通道效應。在接收機,CP可以從接收到的向量r l 中被去除。接下來,接收到的向量可以使用快速傅利葉變換(FFT)塊被處理並且通過在擾動向量被估計和移除之後以K×N 解碼矩陣來左乘而被解碼,例如, l =( l - l (4) 其中 l 可以是被估計的擾動向量並且 l 可以是被估計的資料信號。如果通道是理想的,則如果 l =w l 並且G=I 時資料可以被正確地解碼。在這種組合預編碼技術中,G 可以類似於在等式(1)中描述的被定義。 作為組合預編碼技術的一個示例,元件預編碼器可以被用於減小在OFDM系統中的OOB功率洩漏。例如,示例性SVD預編碼方法可以被用作第一元件預編碼器來對位於通帶外的某頻率進行功率陷波(例如以減小帶外功率發射)。頻譜預編碼方法可以被設計為使用在子載波上的頻譜預編碼替代OFDM中的矩形脈衝成形以達到在位於通帶外側的頻譜密度功率的更快的下降並且可以被用作為另一種元件預編碼器。如第2圖和/或第15圖總的所示,這些預編碼方法可以被用作組合預編碼器中的元件預編碼器。通過適當地調整預編碼矩陣的維度(例如通過適當地指派匹配的碼率),組合預編碼器可以具有比兩個單獨元件預編碼器中的任何一個更好的OOB功率抑制效果。 第5圖示意了可以採取預編碼技術的示例性OFDM系統500。如第5圖中所示,源位元串流可以通過PSK/QAM調變塊502被映射至符號串流。符號串流可以被應用至串列至並行(S/P)轉換塊504。如果 d l =[d1,l d2,l …dk,l ] T 代表第l 個資料向量,其中l 可以是時域中的索引並且K 可以是每個向量的長度,則向量可以被N×K 預編碼矩陣G 來左乘,從而:b l =Gd l (5) 其中b l =[b1,l b2,l …bN,l ] T 可以代表在預編碼塊506的第l 個預編碼向量。編碼率可以被定義為不大於1的K/Nx l 可以是在IFFT塊508的對於b l 的輸出。循環前綴(CP)和/或零填充(ZP)可以在塊510被加至x l 以抵消通道效應。符號串流可以在塊512通過通道被傳送。在接收機,CP和/或ZP可以在塊514從接收到的向量r’ l 中被移除。符號串流可以由FFT塊516處理並且可以通過以以K ×N 解碼矩陣來左乘而被解碼,從而: l = l (6) 如果通道是理想的,則如果G=I (7) 資料可以被正確解碼。 被解碼的符號串流可以被並行至串列(P/S)轉換塊520處理,並且可以通過PSK/QAM解調塊522被映射至位元串流。 在SVD預編碼中,對於給定的b l 的連續時域傳送信號xl t )可以被表達為:(8) 其中pi t )可以是被加窗的子載波波形,被表達為:(9) 具有的脈衝形狀函數為:(10) 其中Td 可以是有效符號持續時間,並且TCP 可以是循環前綴持續時間。在頻域中,xl t )可以被表達為:(11)   其中(12) 其中=Tcp +Td 可以是整個符號持續時間。在一個示例中,對於預編碼矩陣G S 的預編碼器值可以被設計為系統減小或最小化在頻率f1 f2 …fM 處的輻射功率。例如,表示 X l =[Xl f1 Xl (f2 )…Xl (fM ) ] T 會導致(13) 為了無論d l 而減小或最小化P 的SVD可以被執行,例如從而將P 分解為:P =U∑V H (14) 其中U 可以是M×M 的單位矩陣, 可以是可以以非增順序包含P 的奇異值的對角M×N 矩陣,以及V 可以是行可以為v 1 v 2 ,…v N N×N 的單位矩陣。預編碼矩陣可以被選擇為:(15) 如果R 被定義為編碼冗餘,則R=N-K ,如果R≥M ,則對於任意d l 來說=0,這是由於b l 可以在P 的零空間內。 矩形脈衝OFDM可以處理非連續脈衝邊沿並且可以表現出會下降為f -2 的相對大的功率頻譜旁瓣。連續相位OFDM信號會表現出下降為f -4 的相對小的功率頻譜旁瓣,並且相比於矩形脈衝OFDM信號會提供更高的頻譜效率。在示例性頻譜預編碼方法中,滿足連續相位條件的兩個基礎集合族可以被使用,例如分別為族W 和族V 。 相對應的預編碼OFDM結構可以被用於使用伴隨著輸入資料的基礎集合來構建OFDM信號。基於族WL 的預編碼矩陣G WL 的項可以被定義為:(16) 其中u=1,2…L 。在等式(16)中,可以是當預設u≥2 並且時在v 的模2 u 值的二進位表達(例如,以位元)中的最高和最低有效位的總和。其他項可以等於0。 基於族V L 的預編碼矩陣G V L 的項可以被定義為:(17) 其中u= 1,2…L 。在等式(17)中,如果u =log2 N 並且,則,否則,可以代表在v的二進位表達中的最低有效位元。其他項可以等於0。等式(16)和/或(17)中的L 可以是確定碼率的參數。例如,碼率可以被表達為1-2 -L L ∈[1,log 2 N ]。由於G S G WL G VL 可以是包含標準正交列的左單位矩陣,解碼矩陣可以是其共軛轉置。 SVD預編碼矩陣和頻譜預編碼矩陣(例如使用G WL )可以被組合,例如通過定義G =G S G WL G =G WL G S 。將G 定義為G =G S G WL 會導致會引起誤差的當矩陣被G S 左乘時G WL b l 不能具有連續相位屬性。在另一方面,通過選擇G =G WL G S ,連續相位屬相可以維持,並且能夠使用SVD預編碼的優勢可以被實現。 在一個示例中,組合預編碼器可以被按照如下設計。可以使用等式(16)來定義G WL 而不考慮G S 。可以針對PG WL 來執行SVD(例如以PG WL 代替等式(14)中的P ),例如以確定G S (例如,使用等式(15)來確定G S )。通過這種做法,組合預編碼矩陣G 以及解碼矩陣可以被表達為:以及(18) 用於頻譜預編碼的被傳送信號x l 可以是IFFT輸出的實數部分,而IFFT輸出的複數部分可以被用於SVD預編碼。如第5圖所示,在一種示例中,IFFT輸出的複數部分可以被使用。 在一種示例中,對於給定的G 的維度的G S G W L 的匹配的維度可以是分散式的,從而會得到高度的OOB功率抑制。例如,第6圖可以是示意了在對沒有任何CP或ZP(例如,沒有防護(NG))的64子載波OFDM系統通過使用QPSK調變和大小為256的FFT來應用頻譜預編碼之後的PSD的圖600。模擬結果示出對於用於給定的情況(例如,NG、ZP和CP)的相同L ,基於WL 的系統的PSD可以勝過基於V L 的系統。碼率可以是1-2 -L 。第6圖中的5個曲線602、604、606、608和610可以示出當碼率從1(未編碼)降至63/64(L =6)時,最大的OOB功率減量(decrement)出現。曲線602示意了用於未編碼系統的PSD。曲線604、606、608和610分別示意了針對L 值為6、5、4和3的PSD。隨著L 進一步線性地下降,累積抑制影響可以隨著碼率指數地下降而變得不太有效。 第7圖是示出了在應用SVD預編碼方法之後的PSD的圖700。曲線702示意了用於未編碼系統的PSD。兩組陷波頻率被用於該模擬,被稱為包括[-14.5 -13.5 -12.5 -11.5 74.5 75.5 76.5 7755]的近陷波頻率和包括[-35.5 -34.5 -33.5 -32.5 95.5 96.5 97.5 98.5]的遠陷波頻率。曲線704和706分別示出了當R=2時的針對組1和2的PSD。曲線708和710分別示出了當R=4時的針對組1和2的PSD。曲線712和714分別示出了當R=6時的針對組1和2的PSD。曲線716和718分別示出了當R=8時的針對組1和2的PSD。 對於在該模擬中的0-63的主動子載波索引和大小為256的FFT,組1可以接近帶內且組2可以是遠離的。第7圖示出了被選擇的陷波頻率的分配可以提供在OOB功率和衰減率之間的權衡。每1/64編碼減量的功率減量基本上不改變並且當碼率小於62/64時可以比頻譜預編碼的大得多。根據這種觀察,當總率被固定為k /n 時,可以通過採取會導致將K /(N -1)分配為SVD預編碼率並且將(N -1)/N 分配為頻譜預編碼率的[K /(N -1),(N -1)/N ]碼率對來達到可接受的OOB功率抑制-衰減率級別。 第8圖和第9圖是分別示出了針對組1(近陷波)和組2(遠陷波)陷波頻率的基於SVD預編碼方法和組合NG-OFDM預編碼方法的比較的圖800和900。第8圖基於在SVD預編碼和組合NG-OFDM預編碼中的組1中的陷波頻率。第9圖基於在SVD預編碼和組合NG-OFDM預編碼中的組2中的陷波頻率。在第8圖和第9圖中,曲線802和902示出了用於未編碼系統的PSD。曲線804和904示出了對於R=4的使用SVD預編碼的碼率的PSD。曲線806和906示出了組合NG-OFDM預編碼技術的對於R=3,L=6的碼率的PSD。曲線808和908示出了使用SVD預編碼的對於R=6的碼率的PSD。曲線810和910示出了組合NG-OFDM預編碼技術的對於R=5,L=6的碼率的PSD。 曲線812和912示出了使用SVD預編碼的對於R=8的碼率的PSD。曲線814和914示出了組合NG-OFDM預編碼技術的對於R=7,L=6的碼率的PSD。第8圖示出了,對於三種碼率中的每一個,組合NG-OFDM預編碼方案提供了比SVD預編碼方案大約少15dB的總OOB功率,代價為難以在第8圖中觀察到的稍微更寬的過渡帶。在此描述的SVD預編碼方法和組合NG-OFDM預編碼方案之間的過渡帶差別在第9圖中可以更大,但是看到使用組合NG-OFDM預編碼方案的OOB功率減量相對地顯著。 第10圖和第11圖是分別示出了針對組1(近陷波)和組2(遠陷波)陷波頻率的基於SVD的預編碼和組合ZP-OFDM預編碼方法的比較的圖1000和1100。第10圖基於在SVD預編碼和組合ZP-OFDM預編碼方案中的組1的陷波頻率。第11圖基於在SVD預編碼和組合ZP-OFDM預編碼方案中的組2的陷波頻率。在第10圖和第11圖中,曲線1002和1102示出了針對未編碼系統的PSD。曲線1004和1104示出了對於使用SVD的R=4的碼率的PSD。曲線1006和1106示出了使用組合ZP-OFDM預編碼方案的針對R=3,L=6的碼率的PSD。曲線1008和1108示出了使用SVD預編碼的針對R=6的碼率的PSD。曲線1010和1110示出了使用組合ZP-OFDM預編碼方案的針對R=5,L=6的碼率的PSD。曲線1012和1112示出了使用SVD預編碼的針對R=8的碼率的PSD。曲線1014和1114示出了使用組合ZP-OFDM預編碼方案的針對R=7,L=6的碼率的PSD。在第10圖和第11圖中,ZP的長度可以是Td /16(例如資料塊長度的1/16)。第10圖和第11圖可以表現得類似於第8圖和第9圖,例如部分地由於以下事實:因為在ZP之前的每個資料塊的兩個邊緣上的值也可以是零並且因為等式(14)中的PV 值可以在ZP被添加之後幾乎不改變,頻譜預編碼的連續相位特性被維持。 第12圖和第13圖分別是示出了針對組1(近陷波)和組2(遠陷波)陷波頻率的基於SVD的預編碼和組合CP-OFDM預編碼技術的比較的圖1200和1300。第12圖基於在SVD預編碼方法和組合CP-OFDM預編碼方案中的組1的陷波頻率。第13圖基於在SVD預編碼和組合CP-OFDM預編碼方案中的組2的陷波頻率。在該示例中,CP的長度也是Td /16。由於CP被添加並且CP起始邊緣通常不是零,則頻譜預編碼方案會不能夠使用CP構建連續信號。因此,向頻譜預編碼指派總頻譜效率損耗的1/K 並且向SVD預編碼指派剩下的(K-1 )/K 不會比向SVD預編碼單獨指派所有的頻譜效率損耗好得多(如果真的有)。 在第12圖和第13圖中,曲線1202和1302示出了針對未編碼系統的PSD。曲線1204和1304示出了使用SVD的對於R=4的碼率的PSD。曲線1206和1306示出了使用組合CP-OFDM預編碼方法的針對R=3,L=6的碼率的PSD。曲線1208和1308示出了使用SVD預編碼的針對R=6的碼率的PSD。曲線1210和1310示出了使用組合CP-OFDM預編碼方法的針對R=5,L=6的碼率的PSD。曲線1212和1312示出了使用SVD預編碼的針對R=8的碼率的PSD。曲線1214和1314示出了使用組合CP-OFDM預編碼方法的針對R=7,L=6的碼率的PSD。 通過將第11圖和第12圖與第7圖至第11圖相比較,可以看到的是,對於CP-OFDM的所有三種碼率的OOB功率抑制效果會比NG-OFDM和ZP-OFDM的差。這可以由於在NG-OFDM和ZP-OFDM中,旁瓣的寬度可以等於相鄰的子載波的頻率間隔。這會導致子載波的每個旁瓣與一些或來自所有其它子載波的旁瓣完全重疊。因此,在等式(14)中的P 的奇異值會快速下降。然而,當CP被添加並且符號持續時間增加,旁瓣的寬度會變窄。因此,P 的奇異值會更緩慢地下降。如果Pl 是在被選陷波頻率fl 處的預編碼之後的平均功率洩漏,在預編碼之後的平均功率洩漏可以被表達為:(19) 其中Ps 可以是d l 的平均功率並且σ2 (P)可以是P 的第i 大的奇異值。從這層意義上來說,對於相同的R 值,組合CP-OFDM預編碼方法的功率洩漏Pl 可以大於組合NG-OFDM預編碼方法和/或組合ZP-OFDM預編碼方法的Pl 。 第14圖示出了在使用QPSK調變的示例性NG-OFDM系統中的三種方案的IFFT輸出的位元錯誤率(BER)。子載波的數量可以是64並且FFT大小可以是256。在該示例中,通道可以是加性白高斯雜訊(AWGN)通道,例如,,其中n l 可以表示雜訊向量。SNR(dB)可以被定義為:(20) 曲線1402示出了未編碼系統的BER。曲線1404示出了使用SVD預編碼的系統的針對R=4的碼率的ER。曲線1406示出了使用頻譜預編碼的系統的針對L=4的碼率的BER。曲線1408示出了使用組合NG-OFDM預編碼的系統的針對R=3,L=6的碼率的BER。曲線1410示出了使用SVD預編碼的系統的針對R=6的碼率的BER。曲線1412示出了使用頻譜預編碼的系統的針對L=3的碼率的BER。曲線1414示出了使用組合NG-OFDM預編碼的系統的針對R=7,L=6的碼率的BER。在第14圖使出的示例中,曲線1404、1406和1408可以代表使用基本相同編碼率的系統。類似地,曲線1410、1412和1414可以代表使用基本相同編碼率的系統。 如第14圖所示,當具有相同碼率時,使用遠陷波頻率的組合方案可以具有與SVD預編碼或頻譜預編碼幾乎相同的BER曲線。此外,隨著碼率下降,BER可以變得稍微好一些(例如更小),這是由於可以在接收機被估計的d l 的長度可以被減小而預編碼矩陣的行大小可以不變。因此,更低的碼率可以提供稍微更高的分集增益。 組合預編碼器的其它示例可以被採用在OFDM系統中,從而減小或最小化OOB功率洩漏。例如,SVD預編碼器設計可以在位於通帶外的特定頻率處功率陷波以減小或最小化帶外功率發射。在SVD預編碼之後,N連續預編碼方法可以被執行。N連續預編碼方法可以採用擾動向量,該擾動向量可以取決於當前和先前的符號。因此,N連續預編碼可以被執行,從而對應的時域符號可以具有連續值和導數,例如在每處。由於最大導數階可以被增加以得到更大的OOBE抑制,如果其它技術或方法可以被指定以達到類似的目的(例如可以通過獲得連續導數特性抑制OOBE的方案和/或通過利用零空間特性抑制OOBE的方案),則不必採用大的階數。例如,考慮到N連續預編碼方案可以通過獲得連續導數特性抑制OOBE並且SVD預編碼方案可以通過利用零空間特性抑制OOBE,不同的預編碼方案可以被指定為利用這兩種特性。 例如,組合預編碼方案可以被指定為對第一元件預編碼器使用Beck預編碼,並且對第二元件預編碼器使用N連續預編碼。這種技術可以使用預編碼矩陣和擾動向量,並且可以提供比Beck預編碼技術或N連續預編碼技術單獨可以提供的更好的OOBE抑制。 例如,高OOBE的原因之一可以是時域信號的不連續性。由於在CP-OFDM符號中信號可以是隨處連續的,可以通過保證CP-OFDM符號的左邊緣的值和其第1至第J 階導數可以等於在前一個符號的右邊緣的值和其第1至第J 階導數來解決不連續信號導數的問題。例如,這種關係可以被表達為調整d l ,從而:(21) 在示例中,擾動向量可以被用於保證等式(21)被滿足(例如,保證CP-OFDM符號的左邊緣的值和其第1至第J 階導數可以等於在前一個符號的右邊緣的值和其第1至第J 階導數)。額外的預編碼元件可以(例如當進一步減小OOBE時)與擾動向量一起被使用以滿足等式(21)。 作為示例,令。可以通過找到來實現保證每個CP-OFDM符號的左邊緣的左邊緣值和其第1至第J 階導數可以等於在前一個CP-OFDM符號的右邊緣的右邊緣值和其第1至第J 階導數,由此,                                                                   (22) 其中(23) 並且(24) 由於A 可以是(J +1)×N 矩陣並且N 可以大於(J +1),的解可以不是唯一的。在滿足等式(21)-(24)的可能值中,具有最小幅度的值可以通過引進被表示為的Moore-Penrose擬似逆(pseudoinverse)來被找到。如果這樣,則可以被表達為:(25) 在接收機處,如果假設沒有通道效應或雜訊,可以在FFT過程後正確地恢復可以被正確地估計,從而可以從中被移除以恢復d l 。根據等式(25),可以取決於d l 。疊代運算解碼器可以被使用。在第i 次(i ≥1)疊代運算中,被估計的擾動向量可以被表達為:(26) 其中可以從可能的頻域符號向量中選擇以減小或最小化。第i次疊代運算決定向量可以被表達為:(27) 其中。由於可以取決於b l-1 d l ,從而使用擾動向量以減小OOBE的方案可以是資料有關的。如果這種方案由第15圖中的結構來實現,則在等式(4)中G =I 並且。 組合預編碼器可以被設計為使用SVD預編碼器作為第一元件預編碼器以及N連續預編碼作為第二元件預編碼器。例如,這種組合預編碼方案可以在第15圖中被功能性地示出。為了保證組合方案可以利用來自SVD預編碼方法的零空間特性的優勢以及來自N連續預編碼方法的連續導數特性,擾動向量可以被表達為w l =Gv l 。根據該關係,等式(3)可以被表達為:(28) 為了設計組合預編碼器,G 可以被配置為G =G S 而不考慮v l 。等式(28)可以被代入等式(22),並且Moore-Penrose廣義逆方法可以被使用。v l 最小幅值可以被表達為:(29) 在接收機處,可以是對應於第l 個預編碼的頻域符號的被恢復的FFT輸出。預編碼的頻域信號可以被SVD解碼器處理。令並且。在被SVD解碼器處理之後,可以通過疊代運算N連續解碼器被處理。第i 次(i ≥1)疊代運算的被估計的擾動向量可以被表達為:(30) 並且第i 次疊代運算決定向量可以被表達為:(31) 在示例中,N連續預編碼元件預編碼器可以使用被選擇的載波操作。例如,在N連續預編碼中擾動可以被加至在每個子載波上的資料。在接收機處,疊代運算演算法可以被用於估計被傳送的資料。在示例中,子載波的子集可以被用於攜帶擾動,而剩餘的子載波可以被用於攜帶資料(例如沒有任何擾動)。在接收機處,具有擾動的子載波可以被丟棄而剩餘的子載波可以以常規OFDM資料傳輸被處理。 作為示例,根據等式(22),N連續條件可以被表達為:(32) 其中(33) 在等式(33)中, w l 可以是沒有資料的擾動向量,並且 d l 可以是沒有擾動的資料向量。可以通過多種不同方法使用 d l w l 來形成向量b l 。例如,只要b l 的任何元素是 d l 的元素或 w l 的元素,但不是二者之和,向量b l 可以作為 d l w l 的函數以多種方式被表達。 w l 的維度可以是(M ×1),其中M 可以是被用於攜帶擾動的子載波的數量。 d l 的的維度可以是((N-M )×1)。因此,給定的子載波可以攜帶擾動或資料。通過將等式(33)代入等式(32),N連續表達還可以被表達為:(34) 為了解出等式(34),下面的方法可以被採用。對於第一塊l =1,可以假設 w l-1 = w o =0。由於資料是已知的, w l 可以在接下來(例如根據等式(34)通過確定w l =w 1 )被確定。對於第二塊,l =2,從前一個步驟中確定的w 1 的值可以被用於根據等式(34)計算 w 2 。該過程可以根據來自前一個步驟的被確定的w l-1 值來針對每個塊被重複。因此,對於第l 個塊,w l 可以根據從前一個疊代運算確定的w l-1 值以及將根據等式(34)被傳送的資料來被確定。 在接收機處,攜帶擾動的子載波可以被丟棄,而攜帶資料的子載波可以在OFDM解碼器中被處理。在示例中,攜帶擾動的子載波可以是分佈的而不是連續的。如果攜帶擾動的子載波是非連續的,則等式(33)可以被相應地表達。 數值分析可以被執行以評估使用實施SVD預編碼的第一元件預編碼器以及實施N連續預編碼器的第二元件預編碼器的組合預編碼器的性能。例如,組合預編碼器的性能可以相對於單獨的SVD預編碼器和/或單獨的N連續預編碼器來被評估。 例如,考慮300子載波OFDM系統(即,令N=300)。例如,用於子載波頻率[f1 f2 …f300 ]的子載波索引可以被表達為[-150 -149 … -2 -1 1 2 … 149 150]。在下面的示例中,16QAM調變可以被使用,並且FFT大小可以是1024。 第16圖示出了SVD預編碼器、N連續預編碼器和在系統中使用SVD預編碼器元件和N連續預編碼元件而不使用循環前綴(CP)的組合預編碼器的示例性PSD比較。例如,曲線示出了未編碼系統的PSD的示例。曲線1604示出了使用N連續預編碼的系統的PSD的示例。術語J =1代表了N連續預編碼器系統可以具有J =1的最大導數階。曲線1606示意了使用SVD預編碼的系統的PSD的示例。術語R =8代表了SVD預編碼器可以使用R =8的冗餘執行預編碼。陷波頻率的數量(M )可以被選擇為M =8。例如,陷波頻率的索引可以被選擇為[-184.5 -183.5 -182.5 -181.5 181.5 182.5 183.5 184.5]。曲線1608示出了使用R =8的SVD預編碼元件和J =1的N連續預編碼元件的組合預編碼器的PSD的示例。 在第16圖中,CP可以不被插入(即,TCP =0)。相比較於未編碼OFDM(例如曲線1602),N連續預編碼器(例如,曲線1604)和SVD方案(例如曲線1606)顯示了在阻帶中的大約40dB更多的OOBE抑制。然而,兩種方案具有非常不同的衰減表現。例如,N連續方案可以具有很慢的衰減並且相對大的過渡帶,而SVD方案可以具有更小的過渡帶。相比較於SVD方案和N連續方案,組合方案可以在提供接近兩種方案單獨的OOBE抑制總和的同時,類似於SVD方案具有相對小的過渡帶。這可以是由於兩個元件方案通過使用彼此基本獨立的兩個特性(例如零空間特性和連續導數特性)來抑制OOBE。因此,可以通過利用不同特性來將每個元件增加至總OOBE抑制,從而避免元件方案中的一個影響其他的操作。 第17圖示出了SVD預編碼器、N連續預編碼器以及在使用了循環前綴(CP)的系統中使用SVD預編碼器元件和N連續預編碼器元件的組合預編碼器的示例性PSD比較。例如,曲線1702示出了使用CP的未編碼系統的的PSD的示例。曲線1704示出了使用具有J =1的最大導數階的N連續預編碼的系統的PSD的示例。曲線1706示意了使用具有冗餘為R =8的SVD預編碼的系統的PSD的示例。陷波頻率的數量(M )可以被選擇為M =8。例如,陷波頻率的索引可以被選擇為[-184.5 -183.5 -182.5 -181.5 181.5 182.5 183.5 184.5]。曲線1708示出了在具有CP的系統中使用R =8的SVD預編碼元件和J =1的N連續預編碼元件的組合預編碼器的PSD的示例。 在第17圖中,CP可以以TCP =9/128Td 被插入。將第17圖與第16圖相比,可以看到的是對於SVD方案,在CP插入之後OOBE抑制可以被減少20dB。不管CP是否被使用,N連續方案可以具有大約相同的OOBE抑制。此外,如第16圖和第17圖中所示,組合預編碼方案可以顯示比SVD方案或N連續方案更明顯的改善。如果使用了CP插入(例如第17圖),組合方案的OOBE抑制甚至可以會比沒有使用CP插入的(例如第16圖)更大。 在示例中,在第16圖和第17圖中示出的四種方案的l = 1, 2, …, 500)的平均發射功率可以被比較。表1示出了SVD預編碼器、N連續預編碼器和使用SVD預編碼器元件和N連續預編碼器元件的組合預編碼器之間的傳輸功率的比較。在表1示出的示例中,來源資料符號功率的期望可以被標準化從而在兩種情況(例如使用CP和不使用CP)中未編碼OFDM的功率等於1。 由於SVD預編碼矩陣可以是具有編碼率小於1的半單位矩陣,SVD方案的平均發射功率也可以被減小。將未編碼系統與N連續預編碼器系統相比較,由N連續方案中的擾動向量帶來的功率增量可以忽略。類似的,由組合方案中的擾動向量 v l 帶來的功率增量可以是可以忽略的小值J (例如J =1)。 為了比較各種預編碼系統的峰-均功率比(PAPR)性能,不同方案的發射信號(l = 1, 2, …, 500)的補充累積分佈函數(CCDF)可以被考慮。例如,第18圖示出了對於未編碼系統的CCDF、示例性SVD預編碼器、N連續預編碼器以及對於TCP =0的情況的具有SVD元件和N連續元件的組合預編碼器。例如,曲線1802可以代表對於未編碼系統的CCDF。曲線1804可以代表具有J =1的N連續預編碼器的CCDF。曲線1806可以代表具有R =8的SVD預編碼器的CCDF。曲線1808可以代表具有R =8的SVD預編碼器元件和J =1的N連續預編碼器元件的組合預編碼器的CCDF。 在示例中,SVD編碼率越低,PAPR越高。由於在本示例中SVD方案和組合方案的編碼率可以是292/300 ≈ 0.97,在SVD曲線(例如曲線1806)、N連續曲線(例如曲線1804)和組合預編碼器曲線(例如曲線1808)之間的區別可以是細微的。 不同預編碼系統的位元錯誤率(BER)性能可以被估計。例如,第19圖示意了示例性SVD預編碼器、示例性N連續預編碼器以及具有SVD元件和N連續預編碼器元件的組合預編碼器的BER的比較。例如,曲線1902可以代表未編碼系統的BER。曲線1904可以代表J =1的N連續預編碼器的BER。曲線1906可以代表R =8的SVD預編碼器的BER。曲線1908可以代表具有R =8的SVD預編碼器元件和J =1的N連續預編碼器元件的組合預編碼器的BER。 通道可以被假設為AWGN通道,意味著,其中n l 表示雜訊向量。SNR(dB)可以被表達為:(35) 疊代運算解碼器可以被用於N連續方案和/或具有N連續預編碼器元件的組合方案。例如,疊代運算的次數可以被設置為3,但其他值也可以被使用。SVD編碼率越低,BER越低。由於此處的編碼率可以接近1,差別可以是微不足道的。對於N連續方案,在疊代運算過程中擾動向量會不被正確地估計並且不會針對每個符號而被移除。當J足夠小(例如J =1)以至於的幅度極小於星座圖(例如本情況中的16QAM)的最小距離時,由的不準確估計帶來的錯誤可以忽略不計。至少由於這些原因,第19圖中的四條曲線中的每一個可以幾乎重疊。 模擬結果顯示出,無論是否有CP,相比較於單獨SVD預編碼方案或單獨N連續預編碼方案,具有多個獨立預編碼元件的組合預編碼器方案可以提供增加的OOBE抑制。由於可以以很低的編碼率損耗的代價(在上述模擬中損耗為8/300)來實現明顯的OOBE抑制效果,PAPR性能可以幾乎與未編碼OFDM相同。少量的疊代運算和適宜的最大導數階的設置可以將來自擾動向量的BER干擾減小至可以忽略的級別。 WTRU可以查閱實體裝置的身份、或者諸如訂閱相關的身份的用戶的身份,例如MSISDN、SIP URI等。WTRU可以查閱基於應用的身份,例如可以針對每個應用使用的用戶名稱。在此描述的處理方法(例如組合預編碼方法)可以通過各種發射方(例如WTRU、諸如eNB的基地台、eNB、存取點等)來實施。在此描述的預編碼方法可以被用於上行鏈路和/或下行鏈路。可以採用上述的預編碼技術的示例無線通訊系統可以採用一個或多個通道存取方法,例如分碼多重存取(CDMA)、分時多重存取(TDMA)、分頻多重存取(FDMA)、正交FDMA(OFDMA)、單載波FDMA(SC-FDMA)等等。 儘管上面以特定的組合描述了特徵和元素,但是本領域普通技術人員可以理解,每個特徵或元素可以單獨的使用或與其他的特徵和元素進行組合使用。此外,這裡描述的實施方式可以用電腦過程、軟體或韌體實現,其可包含到由電腦或處理器執行的電腦可讀媒體中。電腦可讀媒體的示例包括電子信號(通過有線或者無線連接傳送的)和電腦可讀儲存媒體。電腦可讀儲存媒體的示例包括但不限制為唯讀記憶體(ROM)、隨機存取記憶體(RAM)、暫存器、快取記憶體、半導體記憶體裝置、磁性媒體(例如內部硬碟和抽取式磁碟),磁光媒體和光媒體,例如光碟(CD),和數位通用碟片(DVD)。與軟體相關聯的處理器用於實現在WTRU、UE、終端、基地台、RNC或任何主機電腦中使用的射頻收發器。The detailed description can now be described with reference to the drawings. While the description provides specific examples of possible implementations, it should be noted that the specific examples are illustrative and are not intended to limit the scope of the application. FIG. 1A is a system diagram of an example communication system 100 in which one or more embodiments may be implemented. Communication system 100 can be a multiple access system that provides content to multiple users, such as voice, data, video, messaging, broadcast, and the like. Communication system 100 can enable multiple wireless users to access such content through system resource sharing, including wireless bandwidth. For example, communication system 100 can use one or more channel access methods, such as code division multiple access (CDMA), time division multiple access (TDMA), frequency division multiple access (FDMA), orthogonal FDMA (OFDMA), Single carrier FMDA (SC-FDMA), etc. As shown in FIG. 1A, communication system 100 can include wireless transmit/receive units (WTRUs) 102a, 102b, 102c, and/or 102d (which are generally or collectively referred to as WTRUs 102), Radio Access Network (RAN) 103. /104/105, core network 106/107/109, public switched telephone network (PSTN) 108, internet 110 and other networks 112. It should be understood, however, that the disclosed embodiments contemplate any number of WTRUs, base stations, networks, and/or network elements. Each of the WTRUs 102a, 102b, 102c, 102d may be any type of device configured to operate and/or communicate in a wireless environment. By way of example, the WTRUs 102a, 102b, 102c, 102d may be configured to transmit and/or receive wireless signals and may include user equipment (UE), mobile stations, fixed or mobile subscriber units, pagers, mobile phones, individuals Digital assistants (PDAs), smart phones, notebook computers, portable Internet devices, personal computers, wireless sensors, consumer electronics, and more. Communication system 100 can also include a base station 114a and a base station 114b. Each of the base stations 114a, 114b can be configured to wirelessly interface with at least one of the WTRUs 102a, 102b, 102c, 102d to facilitate access to one or more communication networks, such as the core network 106/107/109, Any type of device of the Internet 110 and/or the network 112. By way of example, base stations 114a, 114b may be base station transceiver stations (BTS), node B, eNodeB, home node B, home eNodeB, website controller, access point (AP), wireless router, and the like. While each of the base stations 114a, 114b is depicted as a separate component, it should be understood that the base stations 114a, 114b can include any number of interconnected base stations and/or network elements. The base station 114a may be part of the RAN 103/104105, which may also include other base stations and/or network elements (not shown), such as a base station controller (BSC), a radio network controller (RNC). , relay nodes, etc. Base station 114a and/or base station 114b may be configured to transmit and/or receive wireless signals within a particular geographic area, which may be referred to as a cell (not shown). Cells can also be divided into cell sectors. For example, a cell associated with base station 114a can be divided into three sectors. Thus, in one embodiment, base station 114a may include three transceivers, i.e., one for each sector of a cell. In another embodiment, base station 114a may use multiple input multiple output (MIMO) technology, so multiple transceivers may be used for each sector of the cell. The base stations 114a, 114b may communicate with one or more of the WTRUs 102a, 102b, 102c, 102d over the null plane 115/116/117, which may be any suitable wireless communication link (eg, radio frequency (RF)) , microwave, infrared (IR), ultraviolet (UV), visible light, etc.). The null interfacing surface 115/116/117 can be established using any suitable radio access technology (RAT). More specifically, as noted above, communication system 100 can be a multiple access system and can employ one or more channel access schemes such as CDMA, TDMA, FDMA, OFDMA, SC-FDMA, and the like. For example, base station 114a and WTRUs 102a, 102b, 102c in RAN 103/104/105 may use a radio technology such as Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access (UTRA), which may use Wideband CDMA (WCDMA) Establish an empty intermediary plane 115/116/117. WCDMA may include communication protocols such as High Speed Packet Access (HSPA) and/or Evolved HSPA (HSPA+). HSPA may include High Speed Downlink Packet Access (HSDPA) and/or High Speed Uplink Packet Access (HSUPA). In another embodiment, the base station 114a and the WTRUs 102a, 102b, 102c may use a radio technology such as Evolved UMTS Terrestrial Radio Access (E-UTRA), which may use Long Term Evolution (LTE) and/or LTE-Advanced ( LTE-A) to establish an empty intermediate plane 115/116/117. In other embodiments, base station 114a and WTRUs 102a, 102b, 102c may use, for example, IEEE 802.16 (ie, Worldwide Interoperability for Microwave Access (WiMAX)), CDMA2000, CDMA2000 1X, CDMA2000 EV-DO, Interim Standard 2000 (IS) -2000), Interim Standard 95 (IS-95), Interim Standard 856 (IS-856), Global System for Mobile Communications (GSM), Enhanced Data Rate for GSM Evolution (EDGE), GSM EDGE (GERAN), etc. technology. The base station 114b in FIG. 1A may be a wireless router, a home Node B, a home eNodeB, or an access point, for example, and any suitable RAT may be used to facilitate wireless connectivity in a local area, such as a commercial location, a residence, Vehicles, campuses, etc. In one embodiment, base station 114b and WTRUs 102c, 102d may exemplify a radio technology such as IEEE 802.11 to establish a wireless local area network (WLAN). In another embodiment, base station 114b and WTRUs 102c, 102d may establish a wireless personal area network (WPAN) using a radio technology such as IEEE 802.15. In still another embodiment, base station 114b and WTRUs 102c, 102d may use a cellular based RAT (e.g., WCDMA, CDMA2000, GSM, LTE, LTE-A, etc.) to establish picocells or femtocells. As shown in FIG. 1A, the base station 114b can have a direct connection to the Internet 110. Thus, base station 114b may not need to access Internet 110 via core network 106/107/109. The RAN 103/104/105 may be in communication with a core network 106/107/109, which may be configured to provide voice to one or more of the WTRUs 102a, 102b, 102c, 102d, Any type of network such as data, applications, and/or Voice over Internet Protocol (VoIP) services. For example, the core network 106/107/109 may provide call control, billing services, mobile location based services, prepaid calling, internet connectivity, video distribution, etc. and/or perform advanced security functions such as user authentication. Although not shown in FIG. 1A, it should be understood that the RAN 103/104/105 and/or the core network 106/107/109 may be associated with the same RAT as the RAN 103/104/105 or other RANs of different RATs. Direct or indirect communication. For example, in addition to being connected to the RAN 103/104/105 that is using the E-UTRA radio technology, the core network 106/107/109 can also communicate with another RAN (not shown) that uses the GSM radio technology. The core network 106/107/109 may also serve as a gateway for the WTRUs 102a, 102b, 102c, 102d to access the PSTN 108, the Internet 110, and/or other networks 112. The PSTN 108 may include a circuit switched telephone network that provides Plain Old Telephone Service (POTS). The Internet 110 may include a global system of interconnected computer networks and devices that use public communication protocols, such as Transmission Control Protocol (TCP) in the TCP/IP Internet Protocol Group, User Data Packet Protocol (UDP). ) and Internet Protocol (IP). Network 112 may include a wired or wireless communication network that is owned and/or operated by other service providers. For example, the network 112 may include another core network connected to one or more RANs that may use the same RAT as the RAN 103/104/105 or a different RAT. Some or all of the WTRUs 102a, 102b, 102c, 102d in the communication system 100 may include multi-mode capabilities, for example, the WTRUs 102a, 102b, 102c, 102d may include communications for communicating with different wireless networks over different wireless links. Multiple transceivers. For example, the WTRU 102c shown in FIG. 1A can be configured to communicate with a base station 114a that can communicate with the base station 114b using a cellular-based radio technology, and the base station 114b can use IEEE 802 radio technology. . FIG. 1B is a system diagram of an example of a WTRU 102. As shown in FIG. 1B, the WTRU 102 may include a processor 118, a transceiver 120, a transmit/receive element 122, a speaker/microphone 124, a numeric keypad 126, a display/touchpad 128, a non-removable memory 130, and a removable In addition to memory 132, power source 134, global positioning system (GPS) chipset 136, and other peripheral devices 138. It should be understood that the WTRU 102 may include any sub-combination of the aforementioned elements while remaining consistent with the embodiments. Moreover, embodiments take into account base stations 114a and 114b, and/or nodes that base stations 114a and 114b can represent, such as, but not limited to, base station transceiver stations (BTS), node B, website controllers, access points (APs). , Home Node B, Evolved Home Node B (eNode B), Home Evolved Node B (HeNB), Home Evolved Node B Gateway, Proxy Node, etc., may include the description described in FIG. 1B and described herein. Some or all of the components. The processor 118 can be a general purpose processor, a special purpose processor, a conventional processor, a digital signal processor (DSP), a plurality of microprocessors, one or more microprocessors associated with the DSP core, a controller, a micro control , dedicated integrated circuit (ASIC), field programmable gate array (FPGA) circuits, any other type of integrated circuit (IC), state machine, and more. The processor 118 may perform signal coding, data processing, power control, input/output processing, and/or any other function that causes the WTRU 102 to operate in a wireless environment. The processor 118 can be coupled to a transceiver 120 that can be coupled to the transmit/receive element 122. Although FIG. 1B depicts processor 118 and transceiver 120 as separate components, it should be understood that processor 118 and transceiver 120 can be integrated together in an electronic package or wafer. The transmit/receive element 122 can be configured to transmit signals to or from a base station (e.g., base station 114a) via the null planes 115/116/117. For example, in one embodiment, the transmit/receive element 122 can be an antenna configured to transmit and/or receive RF signals. In another embodiment, the transmit/receive element 122 can be a transmitter/detector configured to transmit and/or receive, for example, IR, UV, or visible light signals. In still another embodiment, the transmit/receive element 122 can be configured to transmit and receive both RF and optical signals. It should be understood that the transmit/receive element 122 can be configured to transmit and/or receive any combination of wireless signals. Additionally, although the transmit/receive element 122 is depicted as a separate element in FIG. 1B, the WTRU 102 may include any number of transmit/receive elements 122. More specifically, the WTRU 102 may use, for example, MIMO technology. Thus, in one embodiment, the WTRU 102 may include two or more transmit/receive elements 122 (e.g., multiple antennas) for transmitting and receiving wireless signals over the null intermediaries 115/116/117. The transceiver 120 can be configured to modulate signals to be transmitted by the transmit/receive element 122 and/or demodulate signals received by the transmit/receive element 122. As mentioned above, the WTRU 102 may have multi-mode capabilities. Transceiver 120 may thus include a plurality of transceivers that cause WTRU 102 to communicate via a plurality of RATs, such as UTRA and IEEE 802.11. The processor 118 of the WTRU 102 may be coupled to a device and may receive user input data from a speaker/microphone 124, a numeric keypad 126, and/or a display/touchpad 128 (eg, a liquid crystal display (LCD) a display unit or an organic light emitting diode (OLED) display unit). The processor 118 can also output user data to the speaker/microphone 124, keyboard number 126, and/or display/trackpad 128. Additionally, processor 118 can access information from any type of suitable memory and can store the data into any type of suitable memory, such as non-removable memory 130 and/or removable memory 132. Non-removable memory 130 may include random access memory (RAM), read only memory (ROM), hard disk, or any other type of memory device. The removable memory 132 can include a Subscriber Identity Module (SIM) card, a memory stick, a secure digital (SD) memory card, and the like. In other embodiments, the processor 118 may access information from memory that is not located on the WTRU 102 at a physical location, such as on a server or a home computer (not shown), and may store data in the memory. in. The processor 118 can receive power from the power source 134 and can be configured to allocate and/or control power to other components in the WTRU 102. Power source 134 can be any suitable device that powers WTRU 102. For example, the power source 134 may include one or more dry cells (eg, nickel cadmium (NiCd), nickel zinc (NiZn), nickel metal hydride (NiMH), lithium ion (Li-ion), etc.), solar cells, fuel cells, etc. . The processor 118 may also be coupled to a GPS chipset 136 that may be configured to provide location information (eg, longitude and latitude) regarding the current location of the WTRU 102. The WTRU 102 may receive location information from or to the base station (e.g., base station 114a, 114b) plus or in place of the GPS chipset 136 information via the nulling plane 115/116/117 and/or based on two or more neighboring base stations. The timing of the received signal determines its position. It should be understood that the WTRU 102 may obtain location information by any suitable location determination method while maintaining consistency of implementation. The processor 118 can also be coupled to other peripheral devices 138, which can include one or more software and/or hardware modules that provide additional features, functionality, and/or wired or wireless connections. For example, peripheral device 138 may include an accelerometer, an electronic compass, a satellite transceiver, a digital camera (for photo or video), a universal serial bus (USB) port, a vibrating device, a television transceiver, hands-free headset, Bluetooth ( Bluetooth® Modules, FM radio units, digital music players, media players, video game console modules, Internet browsers, and more. 1C is a system diagram of RAN 103 and core network 106, in accordance with an embodiment. As mentioned above, the RAN 103 can communicate with the WTRUs 102a, 102b, and 102c over the null plane 115 using UTRA radio technology. The RAN 103 can also communicate with the core network 106. As shown in FIG. 1C, RAN 103 may include Node Bs 140a, 140b, 140c, each of Node Bs 140a, 140b, 140c including one or more for communicating with WTRUs 102a, 102b, 102c, 102d over null plane 115 Transceiver. Each of Node Bs 140a, 140b, 140c can be associated with a particular cell (not shown) within RAN 103. The RAN 103 may also include RNCs 142a, 142b. It should be understood that the RAN 103 may include any number of Node Bs and RNCs while maintaining consistency of implementation. As shown in FIG. 1C, Node Bs 140a, 140b can communicate with RNC 142a. Additionally, Node B 140c can communicate with RNC 142b. Node Bs 140a, 140b, 140c can communicate with respective RNCs 142a, 142b via an Iub interface. The RNCs 142a, 142b can communicate with one another via the Iur interface. Each of the RNCs 142a, 142b can be configured to control the respective Node Bs 140a, 140b, 140c to which it is connected. Additionally, each of the RNCs 142a, 142b can be configured to perform or support other functions, such as outer loop power control, load control, admission control, packet scheduling, handover control, macro diversity, security functions, data encryption, and the like. . The core network 106 shown in FIG. 1C may include a media gateway (MGW) 144, a mobile switching center (MSC) 146, a Serving GPRS Support Node (SGSN) 148, and/or a Gateway GPRS Support Node (GGSN) 150. . While each of the foregoing elements is described as being part of core network 106, it should be understood that any of these elements may be owned or operated by an entity that is not a core network operator. The RNC 142a in the RAN 103 can be connected to the MSC 146 in the core network 106 via an IuCS interface. The MSC 146 can be connected to the MGW 144. The MSC 146 and the MGW 144 may provide the WTRUs 102a, 102b, 102c with access to a circuit-switched network (e.g., PSTN 108) to facilitate communications between the WTRUs 102a, 102b, 102c and conventional landline communication devices. The RNC 142a in the RAN 103 can also be connected to the SGSN 148 in the core network 106 via an IuPS interface. The SGSN 148 can be connected to the GGSN 150. The SGSN 148 and GGSN 150 may provide the WTRUs 102a, 102b, 102c with access to a packet switched network (e.g., the Internet 110) to facilitate communications between the WTRUs 102a, 102b, 102c and IP-enabled devices. As noted above, the core network 106 can also be connected to the network 112, which can include other wired or wireless networks owned or operated by other service providers. FIG. 1D is a system diagram of the RAN 104 and the core network 107 in accordance with an embodiment. As mentioned above, the RAN 104 can communicate with the WTRUs 102a, 102b, 102c over the null plane 116 using E-UTRA radio technology. The RAN 104 can also communicate with the core network 107. The RAN 104 may include eNodeBs 160a, 160b, 160c, although it will be appreciated that the RAN 104 may include any number of eNodeBs to maintain consistency with various embodiments. Each of the eNodeBs 160a, 160b, 160c may include one or more transceivers for communicating with the WTRUs 102a, 102b, 102c over the null plane 116. In one embodiment, the eNodeBs 160a, 160b, 160c may use MIMO technology. Thus, eNodeB 160a, for example, may use multiple antennas to transmit and/or receive wireless signals to and from WTRU 102a. Each of the eNodeBs 160a, 160b, 160c may be associated with a particular cell (not shown) and may be configured to handle radio resource management decisions, handover decisions, subscriber ranks in the uplink and/or downlink Cheng and so on. As shown in FIG. 1D, the eNodeBs 160a, 160b, 160c can communicate with each other through the X2 interface. The core network 107 shown in FIG. 1D may include a Mobility Management Entity (MME) 162, a Serving Gateway 164, and a Packet Data Network (PDN) Gateway 166. While each of the foregoing elements is described as being part of core network 107, it should be understood that any of these elements may be owned and/or operated by entities other than the core network operator. The MME 162 may be connected to each of the eNodeBs 160a, 160b, 160c in the RAN 104 via an S1 interface and may serve as a control node. For example, the MME 162 may be responsible for user authentication of the WTRUs 102a, 102b, 102c, bearer initiation/deactivation, selection of a particular service gateway during initial attachment of the WTRUs 102a, 102b, 102c, and the like. The MME 162 may also provide control plane functionality for switching between the RAN 104 and other RANs (not shown) using other radio technologies such as GSM or WCDMA. Service gateway 164 may be connected to each of eNBs 160a, 160b, 160c in RAN 104 via an S1 interface. The service gateway 164 can typically route and forward user data packets to/from the WTRUs 102a, 102b, 102c. The service gateway 164 may also perform other functions, such as anchoring the user plane during inter-eNB handovers, triggering paging, managing and storing the context of the WTRUs 102a, 102b, 102c when downlink information is available to the WTRUs 102a, 102b, 102c ( Context) and so on. The service gateway 164 may also be connected to a PDN gateway 166 that may provide the WTRUs 102a, 102b, 102c with access to a packet switched network (e.g., the Internet 110) to facilitate the WTRUs 102a, 102b, 102c. Communication with IP-enabled devices. The core network 107 can facilitate communication with other networks. For example, core network 107 may provide WTRUs 102a, 102b, 102c with access to a circuit-switched network (e.g., PSTN 108) to facilitate communications between WTRUs 102a, 102b, 102c and conventional landline communication devices. For example, core network 107 may include or be in communication with an IP gateway (e.g., an IP Multimedia Subsystem (IMS) server) that serves as an interface between core network 107 and PSTN 108. In addition, core network 107 can provide WTRUs 102a, 102b, 102c with access to network 112, which can include other wired or wireless networks that are owned and/or operated by other service providers. FIG. 1E is a system diagram of the RAN 105 and the core network 109 in accordance with an embodiment. The RAN 105 may be an Access Service Network (ASN) that communicates with the WTRUs 102a, 102b, 102c over the null plane 117 using IEEE 802.16 radio technology. As discussed further below, the links between the different functional entities of the WTRUs 102a, 102b, 102c, RAN 105, and core network 109 may be defined as reference points. As shown in FIG. 1E, the RAN 105 can include base stations 180a, 180b, 180c and ASN gateway 182, although it should be understood that the RAN 105 can include any number of base stations and ASN gateways consistent with the embodiment. Each of the base stations 180a, 180b, 180c may be associated with a particular cell (not shown) in the RAN 105 and may include one or more transceivers that communicate with the WTRUs 102a, 102b, 102c over the null plane 117. In one example, base stations 180a, 180b, 180c may use MIMO technology. Thus, base station 180a, for example, may use multiple antennas to transmit wireless signals to, or receive wireless signals from, WTRU 102a. The base stations 180a, 180b, 180c may provide mobility management functions such as handoff triggering, tunnel establishment, radio resource management, traffic classification, quality of service (QoS) policy enforcement, and the like. The ASN gateway 182 can act as a service aggregation point and is responsible for paging, caching user profiles, routing to the core network 109, and the like. The null interfacing plane 117 between the WTRUs 102a, 102b, 102c and the RAN 105 may be defined as an Rl reference point implementing the 802.16 specification. In addition, each of the WTRUs 102a, 102b, 102c can establish a logical interface (not shown) with the core network 109. The logical interface between the WTRUs 102a, 102b, 102c and the core network 109 can be defined as an R2 reference point that can be used for authentication, authorization, IP host configuration management, and/or mobility management. The communication link between each of the base stations 180a, 180b, 180c may be defined as an R8 reference point that includes a protocol that facilitates WTRU handover and inter-base station transfer of data. The communication link between base stations 180a, 180b, 180c and ASN gateway 182 may be defined as an R6 reference point. The R6 reference point may include an agreement to facilitate mobility management based on mobility events associated with each of the WTRUs 102a, 102b, 102c. As shown in FIG. 1E, the RAN 105 can be connected to the core network 109. The communication link between the RAN 105 and the core network 109 can be defined as an R3 reference point that includes, for example, protocols that facilitate data transfer and mobility management capabilities. The core network 109 may include a Mobile IP Home Agent (MIP-HA) 184, an Authentication, Authorization, Accounting (AAA) server 186, and a gateway 188. While each of the foregoing elements is described as being part of core network 109, it should be understood that any of these elements may be owned or operated by an entity that is not a core network operator. The MIP-HA may be responsible for IP address management and may cause the WTRUs 102a, 102b, 102c to roam between different ASNs and/or different core networks. The MIP-HA 184 may provide the WTRUs 102a, 102b, 102c with access to a packet switched network (e.g., the Internet 110) to facilitate communications between the WTRUs 102a, 102b, 102c and IP-enabled devices. The AAA server 186 can be responsible for user authentication and support for user services. Gateway 188 facilitates interworking with other networks. For example, gateway 188 can provide WTRUs 102a, 102b, 102c with access to a circuit-switched network (e.g., PSTN 108) to facilitate communications between WTRUs 102a, 102b, 102c and conventional landline communication devices. In addition, gateway 188 can provide access to network 112 to WTRUs 102a, 102b, 102c, which can include other wired or wireless networks owned or operated by other service providers. Although not shown in Figure 1E, it should be understood that the RAN 105 can be connected to other ASNs and the core network 109 can be connected to other core networks. The communication link between the RAN 105 and other ASNs may be defined as an R4 reference point, which may include an agreement to coordinate the mobility of the WTRUs 102a, 102b, 102c between the RAN 105 and other ASNs. The communication link between core network 109 and other core networks may be defined as an R5 reference point, which may include an agreement to facilitate interworking between the local core network and the visited core network. In a multi-carrier modulated transmitter, the combined precoding technique can achieve one or more multi-carrier modulated waveform design goals including reducing or minimizing out-of-band power leakage. For example, a combined precoding technique can combine multiple component precoding techniques in an ordered manner using matched coding rates to achieve one or more multi-carrier modulation design goals, such as reducing or minimizing out-of-band power leakage, reducing PAPR, reduce or minimize BER, etc. Each component precoding technique can be dedicated to one or more design goals and the combination of component precoders can be designed to implement components in sequence without defeating the popular functionality of the individual component precoding techniques. Examples of different precoding techniques that can be used as separate precoding elements of a combined precoding technique are described below. An exemplary combined precoder may use singular value decomposition (SVD) precoding as the first precoding element and spectral precoding as the second precoding element in the OFDM system to reduce or minimize OOB power leakage. In the transmitter, each composite symbol block can be processed twice before the IFFT operation. The first precoder may utilize an SVD precoder to notch or minimize out-of-band power emissions for power at specific frequencies located outside the passband. Next, a second component, which may be a spectral precoder, may be used to replace rectangular pulse shaping in OFDM with spectral precoding on subcarriers to achieve a faster drop in power spectral density outside the passband ( Roll off). At the receiver, after the FFT operation, the receiver can decode the block of signals in the reverse order of the transmit precoding process. Other types of component precoders can be used. For example, matrix based precoding techniques can be used in the first precoding element and can be combined with precoding techniques using perturbation vectors that can be implemented in the second precoding element. For example, SVD precoding may be implemented by a first precoding element, which may be combined with a second precoding element that implements an N continuous precoding technique to minimize OOB power leakage. For example, at the transmitter, SVD precoding can be applied to the data vector, and then the perturbation vector can be calculated and added to the precoded signal to perform equal to its previous symbol on the left edge of each CP-OFDM symbol. 1st to the right edgeJ Derivation. At the receiver, the perturbation vector can be estimated and subtracted from the received signal, and the data can be recovered by using the decoding matrix. The method of adding a perturbation vector can be implemented by extending the data vector to a space having a larger size and creating a perturbation vector orthogonal to the original data vector within the expanded space. In this manner, the operation of the receiver may not estimate the perturbation vector, but instead, the estimated data in the expanded space may be projected onto the original material. Some other types of transmission schemes may be used to reduce OOB radiation (other than or instead of using one or more precoding elements) of an orthogonal frequency division multiplexing (OFDM) based cognitive radio (CR) system. For example, filtering and/or windowing techniques can be used. However, for example, filtering and/or windowing techniques can introduce long delays and/or degradation of bit error rate (BER). Another exemplary method that can be used to reduce leakage involves prohibiting or avoiding the use of certain CR subcarriers to create one or more guard bands between the CR band and the LU band. However, purposefully creating a guard band only by avoiding the use of one or more subcarriers is not sufficient to reduce interference to a practically acceptable level, and this technique can result in some spectral efficiency loss. In one example, the cancel subcarrier (CC) can be used to generate an effective guard band and reduce spurious emissions. For example, instead of using or avoiding the use of subcarriers, the input to the designated CC may cause the radiation at a certain frequency that is typically assigned to the LU to be reduced or minimized. The content of the input to the CC may depend on the input of the remaining data subcarriers, which can be computationally complex, making it difficult to implement the use of the CC in practice. In one example, another method called subcarrier weight (SW) can be used as the precoding element. SW can be viewed as a precoding method using a real diagonal matrix that does not degrade spectral efficiency. Subcarrier weights may relate to the configuration of subcarrier inputs to reduce or minimize radiation at a certain frequency, and may also be computationally complex. Another exemplary precoding method that can be used as a precoding element is singular value decomposition (SVD) precoding. For example, although SVD precoding can reduce spectral efficiency to some extent, SVD can utilize a precoding matrix having a code rate of less than one to reduce OOB radiation. Unlike subcarrier weights, the matrices used in such precoding methods may not be square matrices. However, the design of the matrix does not depend on the input data. Therefore, the complexity of implementing such a precoder can be reduced compared to techniques that require knowledge of each input. Another precoding element scheme, such as spectral precoding, is also independent of the input data. Instead of reducing or minimizing SVD precoding of system energy at a certain frequency, spectral precoding uses a new set of orthogonal bases to replace rectangular pulses for each conventional OFDM symbol, so that the new side lobes fall more than the sinc function. fast. Spectral efficiency can be reduced by the number of available base sets that are limited when the in-band range is fixed. When the spectral efficiency decreases from 1 to (N-1)/N and from (N-1)/N to (N-2)/N, significant OOB power suppression improvement occurs, where N can be subcarrier Quantity. As spectral efficiency continues to decrease, improvements will become less significant. Thus, if a portion of the total spectral efficiency loss is reallocated from spectral precoding to some other precoding scheme, such as SVD precoding, the resulting combined scheme may be superior to any of the separately used schemes. Another example precoding element scheme may refer to N continuous precoding. N consecutive precoding can have near OOBE suppression effects, regardless of whether a cyclic prefix (CP) is used. For example, instead of designing a precoding matrix, N consecutive precoding can design a perturbation vector based on the current and previous symbols such that the corresponding time domain symbols can have continuous values and derivatives everywhere. Since the perturbation vector is not correctly estimated in the receiver when the maximum derivative order is large, some errors occur even when the channel is ideal and the iterative decoder is used. Greater OOBE suppression can be achieved by increasing the maximum derivative order. Orthogonal Frequency Division Multiplexing (OFDM) can have a peak-to-average power ratio (PAPR) that results in low power efficiency of the system. Many MCM systems experience high PAPR problems. The PAPR can be reduced by using signal scrambling techniques such as Select Level Mapping (SLM) and Partial Transfer Sequence (PTS) that would use perturbation coding to reduce PAPR. Typically side information is used in signal scrambling techniques where the signal scrambling technique introduces redundancy and the effective throughput is reduced. Precoding techniques can also be an effective way to reduce PAPR while introducing some redundancy while maintaining suitable error characteristics. PAPR can be reduced by signal distortion, which can reduce high peaks by direct distortion signals (eg, using compression techniques and clipping and filtering techniques). While this technique effectively reduces PAPR, it can significantly reduce error performance. Precoding techniques can provide remedies for the shortcomings of MCM systems such as OFDM systems. Different precoding techniques will achieve different goals in MCM waveform design. Integrating different aspects of different types of precoding techniques will achieve different design goals in the MCM waveform system while avoiding the undesirable effects of the individual techniques. For example, the precoding system can be designed to reduce or minimize OOB power leakage, reduce PARA, minimize BER, and the like. As shown in Figure 2, the combined precoding technique can be used to combine multiple separate precoding techniques, such as(1) Among them,G N Can be the firstN Component precoder (for example, the data stream basically passes the firsti Precoders and can represent a precoding matrix of a precoding technique. FIG. 2 conceptually illustrates each of the component precoders of the combined precoder 200 as the precoder block 202. The use of a multi-element precoder may refer herein to the use of combined precoding. Combined precoding techniques can use a range of component precoders to meet multiple design goals. For example, each individual component precoder can be designed to address one or more design goals, such as reducing or minimizing OOB power leakage, reducing or minimizing PAPR, reducing or minimizing BER, and the like. In one example, the dimensionN i ×K i Firsti Precoding matrixG i Can satisfy the matching coding rate (dimension) constraints, thusK i =N i -1 (2) Furthermore, the combination of precoding techniques can be designed such that the total combination of precoders does not disable one or more component precoding techniques (ie, ensuring that each precoder in the application combination does not overly Weaken the effect that individual precoders are designed to achieve). Figure 3 illustrates a transmitter 300 of an exemplary orthogonal frequency division multiplexing (OFDM) system. Figure 4 shows a receiver 400 of an OFDM system. Figures 3 and 4 can be used to illustrate the general case of a precoding OFDM (P-OFDM) system with any continuous or discontinuous available spectrum. To reduce out-of-band (OOB) power leakage when the available spectrum is discontinuous, an element precoding matrix can be designed to trap out-of-band frequencies. In one example, in addition to using multiple component precoders to process signals prior to transmission (eg, for various design purposes), a perturbation vector can be added for transmitting signals. For example, Figure 15 illustrates an example in which the combined precoder 1500 can be used with the perturbation vector. For example, order d l =[d 1,l d 2,l ...d k,l ] T Representativel Data vector, wherel Can be an index in the time domain andK Can be the length of each vector. Each vector can beN×K Precoding matrixG Multiply left and perturb the vector w l =[w 1,l w 2,l ...w N,l ] T For example, the resulting signal can be:b l =Gd l + w l (3) whereb l =[b 1,l b 2,l ...b N,l ] T Can represent the firstl Precoding vectors. The coding rate can be defined as not more than one.K/N . x l Can be corresponding to the inputb l The inverse fast Fourier transform (IFFT) operation output. allowablex l Insert the CP before, for example, to counteract the channel effect. At the receiver, the CP can receive the vector fromr l Was removed. Next, the received vector can be processed using a Fast Fourier Transform (FFT) block and by after the perturbation vector is estimated and removedK×N The decoding matrix is left-multiplied and decoded, for example, l =( l - l ) (4) where l Can be the estimated disturbance vector and l It can be an estimated data signal. If the channel is ideal, then if l =w l andG=I The time data can be decoded correctly. In this combined precoding technique,G It can be defined similarly to that described in equation (1). As an example of a combined precoding technique, an element precoder can be used to reduce OOB power leakage in an OFDM system. For example, an exemplary SVD precoding method can be used as the first component precoder to power notch a certain frequency outside the passband (eg, to reduce out-of-band power transmission). The spectral precoding method can be designed to use spectral precoding on subcarriers instead of rectangular pulse shaping in OFDM to achieve a faster drop in spectral density power outside the passband and can be used as another component precoding Device. As generally shown in Figure 2 and/or Figure 15, these precoding methods can be used as component precoders in a combined precoder. By appropriately adjusting the dimensions of the precoding matrix (e.g., by appropriately assigning a matched code rate), the combined precoder may have a better OOB power suppression effect than any of the two individual component precoders. Figure 5 illustrates an exemplary OFDM system 500 that may employ precoding techniques. As shown in FIG. 5, the source bit stream can be mapped to the symbol stream by the PSK/QAM modulation block 502. The symbol stream can be applied to the serial to parallel (S/P) conversion block 504. in case d l =[d 1,l d 2,l ...d k,l ] T Representativel Data vector, wherel Can be an index in the time domain andK Can be the length of each vector, then the vector can beN×K Precoding matrixG Come left to multiply, thus:b l =Gd l (5) whereb l =[b 1,l b 2,l ...b N,l ] T May represent the first in precoding block 506l Precoding vectors. The coding rate can be defined as not more than one.K/N .x l Can be in the IFFT block 508b l Output. Cyclic prefix (CP) and/or zero padding (ZP) may be added to block 510. l To offset the channel effect. The symbol stream can be transmitted through the channel at block 512. At the receiver, the CP and/or ZP may receive the vector from block 514.r' l Was removed. The symbol stream can be processed by FFT block 516 and can be passed toK ×N The decoding matrix is left-multiplied and decoded, thereby: l = l (6) If the channel is ideal, thenG=I (7) The data can be decoded correctly. The decoded symbol stream can be processed in parallel to serial (P/S) conversion block 520 and can be mapped to a bit stream by PSK/QAM demodulation block 522. In SVD precoding, for a givenb l Continuous time domain transmission signalx l (t ) can be expressed as:(8) wherep i (t ) can be a windowed subcarrier waveform, expressed as:(9) The pulse shape function is:(10) whereT d Can be a valid symbol duration, andT CP Can be a cyclic prefix duration. In the frequency domain,x l (t ) can be expressed as:(11) where(12) where =T cp +T d Can be the entire symbol duration. In one example, for a precoding matrixG S The precoder value can be designed to reduce or minimize the frequency at the systemf 1 , f 2 , ...f M Radiated power at the place. For example, representation X l =[X l ( f 1 ) X l (f 2 )...X l (f M ) ] T Will cause(13) for whateverd l Decrease or minimize,P SVD can be executed, for example,P Decomposed into:P =U∑V H (14) whereU Can beM×M Unit matrix, Can be included in non-incremental orderP Diagonal of singular valuesM×N Matrix, andV Can be a line can bev 1 ,v 2 ,...v N ofN×N Unit matrix. The precoding matrix can be chosen to:(15) IfR Defined as code redundancy, thenR=NK ,in caseR≥M , for anyd l In terms of=0, this is due tob l allowableP Within the zero space. Rectangular pulse OFDM can handle non-continuous pulse edges and can appear to fall tof -2 The relatively large power spectrum side lobes. Continuous phase OFDM signals will show a drop tof -4 The relatively small power spectrum side lobes provide higher spectral efficiency than rectangular pulsed OFDM signals. In an exemplary spectral precoding method, two basic set of families satisfying a continuous phase condition can be used, such as a familyW FamilyV . A corresponding precoded OFDM structure can be used to construct an OFDM signal using a base set that accompanies the input data. Family basedW L Precoding matrixG WL The item can be defined as:(16) whereu=1,2...L . In equation (16),Can be presetU≥2 andAt the timev Mould 2 u The sum of the highest and least significant bits in the binary representation of the value (eg, in bits). Other items can be equal to zero. Based on family V L Precoding matrixG V L The item can be defined as:(17) whereu= 1,2...L . In equation (17), ifu =Log 2 N and,then,otherwise,It can represent the least significant bit in the binary representation of v. Other items can be equal to zero. In equations (16) and/or (17)L It can be a parameter that determines the code rate. For example, the code rate can be expressed as 1-2 -L ,L ∈[1,Log 2 N ]. due toG S ,G WL withG VL It may be a left unit matrix containing standard orthogonal columns, and the decoding matrix may be its conjugate transpose. SVD precoding matrix and spectral precoding matrix (eg useG WL Can be combined, for example by definitionG =G S G WL orG =G WL G S . willG defined asG =G S G WL Will cause the error to be caused when the matrix isG S Left multiplyG WL b l Cannot have continuous phase properties. On the other hand, by choosingG =G WL G S The continuous phase genus can be maintained, and the advantage of being able to use SVD precoding can be achieved. In one example, the combined precoder can be designed as follows. Can be defined using equation (16)G WL Without considerationG S . Can be targetedPG WL To perform SVD (for example,PG WL In place of equation (14)P ), for example to determineG S (for example, using equation (15) to determineG S ). By doing this, combine precoding matricesG And the decoding matrix can be expressed as:as well as(18) Transmitted signal for spectrum precodingx l It can be the real part of the IFFT output, and the complex part of the IFFT output can be used for SVD precoding. As shown in Figure 5, in one example, the complex portion of the IFFT output can be used. In one example, for a givenG DimensionalG S withG W L The matching dimensions can be decentralized, resulting in a high degree of OOB power rejection. For example, Figure 6 may be a PSD after applying spectral precoding to a 64 subcarrier OFDM system without any CP or ZP (eg, no guard (NG)) by using QPSK modulation and a 256 FFT. Figure 600. The simulation results show the same for the given case (eg NG, ZP and CP)L ,based onW L System's PSD can outweigh V-based L system. The code rate can be 1-2 -L . The five curves 602, 604, 606, 608, and 610 in FIG. 6 may show that the code rate is reduced from 1 (uncoded) to 63/64 (L When =6), the largest OOB power decrement appears. Curve 602 illustrates the PSD for an uncoded system. Curves 604, 606, 608, and 610 are respectively illustrated forL PSDs with values of 6, 5, 4, and 3. along withL Further linearly decreasing, the cumulative suppression effect can become less effective as the code rate decreases exponentially. Figure 7 is a diagram 700 showing the PSD after applying the SVD precoding method. Curve 702 illustrates the PSD for an uncoded system. Two sets of notch frequencies were used for the simulation and were referred to as near notch frequencies including [-14.5 -13.5 -12.5 -11.5 74.5 75.5 76.5 7755] and included [-35.5 -34.5 -33.5 -32.5 95.5 96.5 97.5 98.5] The far wave frequency. Curves 704 and 706 show the PSD for groups 1 and 2, respectively, when R=2. Curves 708 and 710 show the PSD for groups 1 and 2, respectively, when R=4. Curves 712 and 714 show the PSD for groups 1 and 2, respectively, when R=6. Curves 716 and 718 show the PSD for groups 1 and 2, respectively, when R=8. For the active subcarrier index of 0-63 and the FFT of size 256 in the simulation, group 1 can be close to the band and group 2 can be far away. Figure 7 shows that the allocation of the selected notch frequency can provide a trade-off between OOB power and attenuation rate. The power reduction per 1/64 code decrement does not substantially change and can be much larger than the spectral precoding when the code rate is less than 62/64. According to this observation, when the total rate is fixed tok /n When it can be taken, it will lead toK /(N -1) is assigned to the SVD precoding rate and will (N -1)/N Assigned to the spectrum precoding rate [K /(N -1),(N -1)/N The code rate pair achieves an acceptable OOB power rejection-attenuation rate level. 8 and 9 are graphs 800 showing a comparison of the SVD-based precoding method and the combined NG-OFDM precoding method for the group 1 (near notch) and group 2 (far trap) notch frequencies, respectively. And 900. Figure 8 is based on the notch frequency in Group 1 in SVD precoding and combined NG-OFDM precoding. Figure 9 is based on the notch frequency in Group 2 in SVD precoding and combined NG-OFDM precoding. In Figures 8 and 9, curves 802 and 902 show PSDs for uncoded systems. Curves 804 and 904 show the PSD of the code rate using SVD precoding for R=4. Curves 806 and 906 show the PSD for the code rate for R=3, L=6 in combination with the NG-OFDM precoding technique. Curves 808 and 908 show the PSD for the code rate of R=6 using SVD precoding. Curves 810 and 910 show the PSD for the code rate for R=5, L=6 in combination with the NG-OFDM precoding technique. Curves 812 and 912 show the PSD for the code rate of R=8 using SVD precoding. Curves 814 and 914 show the PSD for a combination of NG-OFDM precoding techniques for a code rate of R=7, L=6. Figure 8 shows that for each of the three code rates, the combined NG-OFDM precoding scheme provides approximately 15 dB less total OOB power than the SVD precoding scheme, at the expense of a slight difficulty observed in Figure 8. A wider transition zone. The transition band difference between the SVD precoding method and the combined NG-OFDM precoding scheme described herein may be larger in FIG. 9, but it is seen that the OOB power reduction using the combined NG-OFDM precoding scheme is relatively significant. 10 and 11 are graphs 1000 showing a comparison of SVD-based precoding and combined ZP-OFDM precoding methods for group 1 (near notch) and group 2 (far trap) notch frequencies, respectively. And 1100. Figure 10 is based on the notch frequency of Group 1 in the SVD precoding and combined ZP-OFDM precoding scheme. Figure 11 is based on the notch frequency of group 2 in the SVD precoding and combined ZP-OFDM precoding scheme. In Figures 10 and 11, curves 1002 and 1102 show PSDs for uncoded systems. Curves 1004 and 1104 show the PSD for a code rate of R=4 using SVD. Curves 1006 and 1106 show PSDs for a code rate of R=3, L=6 using a combined ZP-OFDM precoding scheme. Curves 1008 and 1108 show the PSD for the code rate of R=6 using SVD precoding. Curves 1010 and 1110 show PSDs for a code rate of R=5, L=6 using a combined ZP-OFDM precoding scheme. Curves 1012 and 1112 show the PSD for the code rate of R=8 using SVD precoding. Curves 1014 and 1114 show the PSD for a code rate of R=7, L=6 using a combined ZP-OFDM precoding scheme. In Figures 10 and 11, the length of the ZP can beT d /16 (for example, 1/16 of the length of the data block). Figures 10 and 11 may behave similarly to Figures 8 and 9, for example due in part to the fact that the values on both edges of each data block before the ZP may also be zero and because In equation (14)P withV The value can be hardly changed after the ZP is added, and the continuous phase characteristics of the spectrum precoding are maintained. Figures 12 and 13 are respectively a diagram 1200 showing a comparison of SVD-based precoding and combined CP-OFDM precoding techniques for group 1 (near notch) and group 2 (far trap) notch frequencies, respectively. And 1300. Figure 12 is based on the notch frequency of group 1 in the SVD precoding method and the combined CP-OFDM precoding scheme. Figure 13 is based on the notch frequency of group 2 in the SVD precoding and combined CP-OFDM precoding scheme. In this example, the length of the CP is alsoT d /16. Since the CP is added and the CP start edge is usually not zero, the spectrum precoding scheme will not be able to construct a continuous signal using the CP. Therefore, assigning total spectral efficiency loss to spectral precoding1/K And assign the remaining to the SVD precoding (K-1 ) /K There is no much better (if true) than all spectral efficiency losses assigned to SVD precoding alone. In Figures 12 and 13, curves 1202 and 1302 show PSDs for uncoded systems. Curves 1204 and 1304 show the PSD for the code rate of R=4 using SVD. Curves 1206 and 1306 show the PSD for a code rate of R=3, L=6 using a combined CP-OFDM precoding method. Curves 1208 and 1308 show the PSD for the code rate of R=6 using SVD precoding. Curves 1210 and 1310 show the PSD for a code rate of R=5, L=6 using a combined CP-OFDM precoding method. Curves 1212 and 1312 show the PSD for the code rate of R=8 using SVD precoding. Curves 1214 and 1314 show PSDs for a code rate of R=7, L=6 using a combined CP-OFDM precoding method. By comparing Fig. 11 and Fig. 12 with Fig. 7 to Fig. 11, it can be seen that the OOB power suppression effect for all three code rates of CP-OFDM is better than that of NG-OFDM and ZP-OFDM. difference. This may be due to the fact that in NG-OFDM and ZP-OFDM, the width of the side lobes may be equal to the frequency spacing of adjacent subcarriers. This would cause each side lob of the subcarrier to completely overlap with some or some side lobes from all other subcarriers. Therefore, in equation (14)P The singular value will drop rapidly. However, when the CP is added and the symbol duration increases, the width of the side lobes becomes narrower. therefore,P The singular value will drop more slowly. in caseP l Is at the selected notch frequencyf l At the average power leakage after precoding, the average power leakage after precoding can be expressed as:(19) whereP s Can bed l Average power and σ2 (P) can beP Firsti Large singular value. In this sense, for the sameR Value, power leakage of combined CP-OFDM precoding methodP l Can be larger than the combined NG-OFDM precoding method and/or the combined ZP-OFDM precoding methodP l . Figure 14 shows the bit error rate (BER) of the IFFT output for the three schemes in an exemplary NG-OFDM system using QPSK modulation. The number of subcarriers may be 64 and the FFT size may be 256. In this example, the channel can be an additive white Gaussian noise (AWGN) channel, for example,,among themn l Can represent the noise vector. SNR (dB) can be defined as:(20) Curve 1402 shows the BER of the uncoded system. Curve 1404 shows the ER for the code rate of R=4 for the system using SVD precoding. Curve 1406 shows the BER for a code rate of L=4 for a system using spectral precoding. Curve 1408 shows the BER for a code rate of R=3, L=6 using a system combining NG-OFDM precoding. Curve 1410 shows the BER for the code rate of R=6 for systems using SVD precoding. Curve 1412 shows the BER for a code rate of L=3 for a system using spectral precoding. Curve 1414 shows the BER for a code rate of R=7, L=6 using a system combining NG-OFDM precoding. In the example illustrated in Figure 14, curves 1404, 1406, and 1408 may represent systems that use substantially the same encoding rate. Similarly, curves 1410, 1412, and 1414 can represent systems that use substantially the same encoding rate. As shown in Fig. 14, when having the same code rate, the combination scheme using the far notch frequency can have almost the same BER curve as SVD precoding or spectral precoding. Furthermore, as the code rate drops, the BER can become slightly better (eg smaller) due to the fact that it can be estimated at the receiver.d l The length of the precoding matrix can be reduced while the length of the precoding matrix can be reduced. Therefore, a lower code rate can provide a slightly higher diversity gain. Other examples of combined precoders can be employed in an OFDM system to reduce or minimize OOB power leakage. For example, an SVD precoder design can power notch at a particular frequency outside the passband to reduce or minimize out-of-band power emissions. After the SVD precoding, the N continuous precoding method can be performed. The N-continuous precoding method may employ a perturbation vector, which may depend on the current and previous symbols. Thus, N consecutive precoding can be performed such that the corresponding time domain symbols can have consecutive values and derivatives, for example at each location. Since the maximum derivative order can be increased to achieve greater OOBE rejection, other techniques or methods can be specified to achieve similar goals (eg, schemes that can suppress OOBE by obtaining continuous derivative characteristics and/or suppress OOBE by utilizing zero-space characteristics) The scheme does not have to use a large order. For example, considering that the N-continuous precoding scheme can suppress OOBE by obtaining continuous derivative characteristics and the SVD precoding scheme can suppress OOBE by utilizing zero-space characteristics, different precoding schemes can be specified to utilize both of these characteristics. For example, the combined precoding scheme can be specified to use Beck precoding for the first component precoder and N continuous precoding for the second component precoder. This technique can use precoding matrices and perturbation vectors and can provide better OOBE rejection than can be provided by Beck precoding techniques or N continuous precoding techniques. For example, one of the reasons for high OOBE may be the discontinuity of the time domain signal. Since the signals can be contiguous everywhere in the CP-OFDM symbol, the values of the left edge of the CP-OFDM symbol and its first to theJ The order derivative can be equal to the value at the right edge of the previous symbol and its first to the firstJ The order derivative solves the problem of discontinuous signal derivatives. For example, this relationship can be expressed as an adjustmentd l ,thereby:(21) In the example, the perturbation vectorCan be used to ensure that equation (21) is satisfied (eg, to guarantee the value of the left edge of the CP-OFDM symbol and its first to the firstJ The order derivative can be equal to the value at the right edge of the previous symbol and its first to the firstJ Order derivative). Additional precoding elements can be used with the perturbation vector (e.g., when OOBE is further reduced) to satisfy equation (21). As an example, let. Can be found byTo achieve the left edge value of each left edge of each CP-OFDM symbol and its first to the firstJ The order derivative may be equal to the right edge value of the right edge of the previous CP-OFDM symbol and its first to the firstJ Order derivative, (22) where(23) and(24) due toA Can be (J +1)×N Matrix andN Can be greater than (J +1),The solution may not be unique. Possible values satisfying equations (21)-(24)Medium, with the smallest magnitudeCan be expressed asofThe Moore-Penrose pseudo-inverse (pseudoinverse) was found. If so, thenCan be expressed as:(25) At the receiver, if there is no channel effect or noise, it can be recovered correctly after the FFT process..Can be correctly estimated, thusCan be fromRemoved to recoverd l . According to equation (25),Can depend ond l . An iterative arithmetic decoder can be used. In the firsti Timesi ≥1) Estimated disturbance vector in iterative operationCan be expressed as:(26) where you can choose from possible frequency domain symbol vectorsTo reduce or minimize. The i-th iteration operation decision vectorCan be expressed as:(27) where. due toCan depend onb L-1 withd l Thus, the scheme of using the perturbation vector to reduce OOBE can be data related. If this scheme is implemented by the structure in Figure 15, then in equation (4)G =I and. The combined precoder can be designed to use the SVD precoder as the first component precoder and the N continuous precoding as the second component precoder. For example, such a combined precoding scheme can be functionally illustrated in FIG. In order to ensure that the combined scheme can take advantage of the zero-space characteristics from the SVD precoding method and the continuous derivative characteristics from the N continuous precoding method, the perturbation vector can be expressed asw l =Gv l . According to this relationship, equation (3) can be expressed as:(28) In order to design a combined precoder,G Can be configured asG =G S Without considerationv l . Equation (28) can be substituted into equation (22), and the Moore-Penrose generalized inverse method can be used.v l The minimum amplitude can be expressed as:(29) At the receiver,Can correspond to the firstl The recovered FFT output of the precoded frequency domain symbols. The precoded frequency domain signal can be used by the SVD decoderdeal with. makeand. After being processed by the SVD decoder,It can be processed by an iterative operation N continuous decoder. Firsti Timesi ≥1) Estimated perturbation vector of iterative operationCan be expressed as:(30) and the firsti Sub-precision operation decision vectorCan be expressed as:(31) In an example, the N-continuous precoding element precoder can operate using the selected carrier. For example, in N consecutive precoding the perturbation can be added to the data on each subcarrier. At the receiver, an iterative algorithm can be used to estimate the data being transmitted. In an example, a subset of subcarriers can be used to carry the perturbations, while the remaining subcarriers can be used to carry the data (eg, without any perturbations). At the receiver, the subcarriers with perturbations can be discarded and the remaining subcarriers can be processed in conventional OFDM data transmission. As an example, according to equation (22), the N continuous condition can be expressed as:(32) where(33) In equation (33), w l Can be a perturbation vector without data, and d l It can be a data vector without disturbance. Can be used in many different ways d l with w l To form a vectorb l . For example, as long asb l Any element is d l Element or w l Element, but not the sum of the two, vectorb l can be used as d l with w l The function is expressed in a variety of ways. w l The dimension can be (M ×1), whereM It can be the number of subcarriers that are used to carry the disturbance. d l The dimension can be (NM ) × 1). Thus, a given subcarrier can carry perturbations or data. By substituting equation (33) into equation (32), N continuous expression can also be expressed as:(34) To understand equation (34), the following method can be used. For the first blockl =1, you can assume w L-1 = w o =0. Since the information is known, w l Can be determined next (for example by equation (34)w l =w 1 )It is determined. For the second block,l =2, determined from the previous stepw 1 The value can be used to calculate according to equation (34) w 2 . The process can be determined based on the previous stepw L-1 The value is repeated for each block. Therefore, for the firstl Block,w l Can be determined from the previous iterationw L-1 The value and the data to be transmitted according to equation (34) are determined. At the receiver, the subcarriers carrying the perturbations can be discarded, while the subcarriers carrying the data can be processed in the OFDM decoder. In an example, the perturbed subcarriers may be distributed rather than continuous. If the perturbed subcarriers are non-contiguous, equation (33) can be expressed accordingly. Numerical analysis can be performed to evaluate the performance of a combined precoder using a first component precoder implementing SVD precoding and a second component precoder implementing an N continuous precoder. For example, the performance of the combined precoder can be evaluated relative to a separate SVD precoder and/or a separate N continuous precoder. For example, consider a 300 subcarrier OFDM system (ie, let N = 300). For example, for subcarrier frequencies [f 1 f 2 ...f 300 The subcarrier index of ] can be expressed as [-150 - 149 ... -2 -1 1 2 ... 149 150]. In the example below, 16QAM modulation can be used and the FFT size can be 1024. Figure 16 shows an exemplary PSD comparison of an SVD precoder, an N continuous precoder, and a combined precoder using SVD precoder elements and N consecutive precoding elements in the system without using a cyclic prefix (CP). . For example, the curve shows an example of a PSD for an uncoded system. Curve 1604 shows an example of a PSD for a system that uses N consecutive precoding. the termJ =1 represents that the N continuous precoder system can haveJ The maximum derivative order of =1. Curve 1606 illustrates an example of a PSD for a system that uses SVD precoding. the termR =8 represents the SVD precoder can be usedR Redundant precoding of =8. The number of notch frequencies (M ) can be selected asM =8. For example, the index of the notch frequency can be selected as [-184.5 -183.5 -182.5 -181.5 181.5 182.5 183.5 184.5]. Curve 1608 shows the useR =8 SVD precoding components andJ An example of a PSD of a combined precoder of N consecutive precoding elements of =1. In Figure 16, the CP may not be inserted (ie,T CP =0). Compared to uncoded OFDM (e.g., curve 1602), the N-continuous precoder (e.g., curve 1604) and the SVD scheme (e.g., curve 1606) exhibit approximately 40 dB more OOBE rejection in the stop band. However, both solutions have very different attenuation performance. For example, an N-continuous scheme can have very slow attenuation and a relatively large transition band, while an SVD scheme can have a smaller transition band. Compared to the SVD scheme and the N-continuous scheme, the combined scheme can provide a relatively small transition band similar to the SVD scheme while providing a single OOBE suppression sum that is close to the two schemes. This may be because the two component schemes suppress OOBE by using two characteristics that are substantially independent of each other, such as zero space characteristics and continuous derivative characteristics. Thus, each component can be added to total OOBE rejection by utilizing different characteristics, thereby avoiding one of the component schemes from affecting other operations. Figure 17 shows an exemplary PSD of an SVD precoder, an N continuous precoder, and a combined precoder using an SVD precoder element and an N continuous precoder element in a system using a cyclic prefix (CP). Comparison. For example, curve 1702 shows an example of a PSD for an uncoded system using a CP. Curve 1704 shows the use of havingJ An example of a PSD of a N-continuous precoding system with a maximum derivative order of =1. Curve 1706 illustrates the use of having redundancy forR An example of a PSD for a SVD precoded system of =8. The number of notch frequencies (M ) can be selected asM =8. For example, the index of the notch frequency can be selected as [-184.5 -183.5 -182.5 -181.5 181.5 182.5 183.5 184.5]. Curve 1708 shows the use in a system with a CPR =8 SVD precoding components andJ An example of a PSD of a combined precoder of N consecutive precoding elements of =1. In Figure 17, the CP canT CP =9/128T d Was inserted. Comparing Fig. 17 with Fig. 16, it can be seen that for the SVD scheme, OOBE suppression can be reduced by 20 dB after CP insertion. The N-continuous scheme can have approximately the same OOBE rejection regardless of whether the CP is used. Furthermore, as shown in Figures 16 and 17, the combined precoding scheme can show a more significant improvement than the SVD scheme or the N continuous scheme. If CP insertion is used (eg, Figure 17), the OOBE rejection of the combined scheme may even be larger than without the CP insertion (eg, Figure 16). In the example, the four schemes shown in FIGS. 16 and 17(l The average transmit power of = 1, 2, ..., 500) can be compared. Table 1 shows a comparison of the transmission power between an SVD precoder, an N continuous precoder, and a combined precoder using an SVD precoder element and an N continuous precoder element. In the example shown in Table 1, the expectation of source material symbol power can be normalized such that the power of uncoded OFDM is equal to 1 in both cases (eg, using CP and not using CP). Since the SVD precoding matrix can be a semi-integral matrix having a coding rate of less than 1, the average transmit power of the SVD scheme can also be reduced. Comparing uncoded systems with N-continuous precoder systems, perturbation vectors in N-continuous schemesThe power increase brought can be ignored. Similarly, the perturbation vector in the combination scheme v l The power increase brought can be a negligible small valueJ (E.gJ =1). In order to compare the peak-to-average power ratio (PAPR) performance of various precoding systems, the transmission signals of different schemes(l The supplementary cumulative distribution function (CCDF) of = 1, 2, ..., 500) can be considered. For example, Figure 18 shows a CCDF for an uncoded system, an exemplary SVD precoder, an N continuous precoder, andT CP A combined precoder having an SVD element and an N continuous element in the case of =0. For example, curve 1802 can represent a CCDF for an uncoded system. Curve 1804 can representJ CCD N of the N continuous precoder. Curve 1806 can representR =8 SDFD precoder CCDF. Curve 1808 can representR =8 SVD precoder components andJ The CCDF of the combined precoder of the N consecutive precoder elements of =1. In the example, the lower the SVD coding rate, the higher the PAPR. Since the coding rate of the SVD scheme and the combination scheme in this example may be 292/300 ≈ 0.97, in the SVD curve (eg, curve 1806), the N continuous curve (eg, curve 1804), and the combined precoder curve (eg, curve 1808) The difference can be subtle. The bit error rate (BER) performance of different precoding systems can be estimated. For example, Figure 19 illustrates a comparison of the BER of an exemplary SVD precoder, an exemplary N continuous precoder, and a combined precoder with SVD elements and N continuous precoder elements. For example, curve 1902 can represent the BER of an uncoded system. Curve 1904 can representJ BER of the N consecutive precoder of =1. Curve 1906 can representR = 8 BER of the SVD precoder. Curve 1908 can representR =8 SVD precoder components andJ BER of the combined precoder of N consecutive precoder elements of =1. The channel can be assumed to be an AWGN channel, meaning,among themn l Represents a noise vector. SNR (dB) can be expressed as:(35) The iterative operation decoder can be used for an N-continuous scheme and/or a combined scheme with N-continuous precoder elements. For example, the number of iterations can be set to 3, but other values can be used as well. The lower the SVD coding rate, the lower the BER. Since the coding rate here can be close to 1, the difference can be negligible. For the N-continuous scheme, the perturbation vectors are not correctly estimated during the iterative operation and are not removed for each symbol. When J is small enough (for exampleJ =1) so much so thatWhen the amplitude is extremely smaller than the minimum distance of the constellation (for example, 16QAM in this case),The errors caused by inaccurate estimates are negligible. For at least these reasons, each of the four curves in Fig. 19 can overlap almost. The simulation results show that a combined precoder scheme with multiple independent precoding elements can provide increased OOBE rejection, whether or not there is a CP, compared to a separate SVD precoding scheme or a separate N continuous precoding scheme. Since significant OOBE suppression can be achieved at the expense of very low coding rate loss (8/300 in the above simulation), the PAPR performance can be almost the same as uncoded OFDM. A small number of iterative operations and a suitable maximum derivative order setting can reduce the BER interference from the perturbation vector to a negligible level. The WTRU may consult the identity of the physical device, or the identity of a user, such as a subscription-related identity, such as an MSISDN, SIP URI, and the like. The WTRU may consult an application based identity, such as a username that may be used for each application. The processing methods described herein (e.g., combined precoding methods) may be implemented by various transmitting parties (e.g., WTRUs, base stations such as eNBs, eNBs, access points, etc.). The precoding methods described herein can be used for the uplink and/or downlink. An example wireless communication system that can employ the precoding techniques described above can employ one or more channel access methods, such as code division multiple access (CDMA), time division multiple access (TDMA), and frequency division multiple access (FDMA). , orthogonal FDMA (OFDMA), single carrier FDMA (SC-FDMA), and the like. Although features and elements have been described above in a particular combination, one of ordinary skill in the art will appreciate that each feature or element can be used alone or in combination with other features and elements. Moreover, the embodiments described herein can be implemented in a computer process, software or firmware, which can be embodied in a computer readable medium executed by a computer or processor. Examples of computer readable media include electronic signals (transmitted over a wired or wireless connection) and computer readable storage media. Examples of computer readable storage media include, but are not limited to, read only memory (ROM), random access memory (RAM), scratchpad, cache memory, semiconductor memory device, magnetic media (eg internal hard drive) And removable disks), magneto-optical media and optical media, such as compact discs (CDs), and digital versatile discs (DVDs). A processor associated with the software is used to implement a radio frequency transceiver for use in a WTRU, UE, terminal, base station, RNC, or any host computer.

100 通信系統 102、102a、102b、102c、102d 無線發射/接收單元(WTRU) 103、104、105 無線電存取網路(RAN) 106、107、109 核心網路 108 公共交換電話網路(PSTN) 110 網際網路 112 其他網路 114a、114b 基地台 115、116、117 空中介面 118 處理器 120 收發器 122 發射/接收元件 124 揚聲器/麥克風 126 數字鍵盤 128 顯示器/觸控板 130 不可移除記憶體 132 可移除記憶體 134 電源 136 全球定位系統(GPS)晶片組 138 週邊設備 140a、140b、140c 節點B 142a、142b 無線電網路控制器(RNC) 144 媒體閘道(MGW) 146 移動交換中心(MSC) 148 服務GPRS支援節點(SGSN) 150 閘道GPRS支持節點(GGSN) 160a、160b、160c e節點B 162 移動性管理實體(MME) 164 服務閘道 166 封包資料網路(PDN)閘道 180a、180b、180c 基地台 182 存取服務網路(ASN)閘道 184 移動IP本地代理(MIP-HA) 186 認證、授權、記帳(AAA)伺服器186 188 閘道 200、1500 組合預編碼器 202 預編碼器塊 300 發射機 400 接收機 500 正交分頻多工(OFDM)系統 502 PSK/QAM調變塊 504 並行(S/P)轉換塊 506 預編碼塊 508 逆向快速傅利葉變換(IFFT)塊 510、512、514 塊 516 高效快速傅利葉變換(FFT)塊 520 串列(P/S)轉換塊 522 PSK/QAM解調塊 600、700、800、900、1000、1100、1200、1300 圖 602、604、606、608、610、702、704、706、708、710、712、714、716、718、802、804、806、808、810、812、814、902、904、906、908、910、912、914、1002、1004、1006、1008、1010、1012、1014、1102、1104、1106、1108、1110、1112、1114、1202、1204、1206、1208、1210、1212、1214、1302、1304、1306、1308、1310、1312、1314、1402、1404、1406、1408、1410、1412、1414、1602、1604、1606、1608、1610、1702、1704、1706、1708、1802、1804、1806、1808、1902、1904、1906、1908 曲線 BER 位元錯誤率 CCDF 補充累積分佈函數 CP 循環前綴 IP 網際網路協定 Iub、IuCS、IuPS、iur、S1、X2 介面 R1、R3、R6、R8 參考點 SVD 奇異值分解 ZP 零填充100 communication system 102, 102a, 102b, 102c, 102d wireless transmit/receive unit (WTRU) 103, 104, 105 radio access network (RAN) 106, 107, 109 core network 108 public switched telephone network (PSTN) 110 Internet 112 Other Networks 114a, 114b Base Stations 115, 116, 117 Empty Intermediary 118 Processor 120 Transceiver 122 Transmitting/Receiving Elements 124 Speaker/Microphone 126 Numeric Keypad 128 Display/Touchpad 130 Non-Removable Memory 132 Removable Memory 134 Power Supply 136 Global Positioning System (GPS) Chipset 138 Peripheral Devices 140a, 140b, 140c Node B 142a, 142b Radio Network Controller (RNC) 144 Media Gateway (MGW) 146 Mobile Switching Center ( MSC) 148 Serving GPRS Support Node (SGSN) 150 Gateway GPRS Support Node (GGSN) 160a, 160b, 160c eNodeB 162 Mobility Management Entity (MME) 164 Service Gateway 166 Packet Data Network (PDN) Gateway 180a , 180b, 180c base station 182 access service network (ASN) gateway 184 mobile IP local agent (MIP-HA) 186 authentication, authorization, accounting (AAA) server 186 188 Gateway 200, 1500 Combined Precoder 202 Precoder Block 300 Transmitter 400 Receiver 500 Orthogonal Frequency Division Multiplexing (OFDM) System 502 PSK/QAM Modulation Block 504 Parallel (S/P) Conversion Block 506 Precoding Block 508 inverse fast Fourier transform (IFFT) block 510, 512, 514 block 516 efficient fast Fourier transform (FFT) block 520 serial (P/S) conversion block 522 PSK / QAM demodulation block 600, 700, 800, 900, 1000, 1100, 1200, 1300 Figures 602, 604, 606, 608, 610, 702, 704, 706, 708, 710, 712, 714, 716, 718, 802, 804, 806, 808, 810, 812, 814, 902, 904, 906, 908, 910, 912, 914, 1002, 1004, 1006, 1008, 1010, 1012, 1014, 1102, 1104, 1106, 1108, 1110, 1112, 1114, 1202, 1204, 1206, 1208, 1210, 1212, 1214, 1302, 1304, 1306, 1308, 1310, 1312, 1314, 1402, 1404, 1406, 1408, 1410, 1412, 1414, 1602, 1604, 1606, 1608, 1610, 1702, 1704, 1706, 1708, 1802, 1804, 1806, 1808, 1902, 1904, 1906, 1908 Curve BER Bit Error Rate CCDF Supplementary Cumulative Distribution Function CP Cyclic Prefix IP Internet Protocol Iub, IuCS, IuPS, iur, S1, X2 interface R1, R3, R6, R8 reference point SVD singular value decomposition ZP zero padding

通過結合附圖的示例的方式,可以從下面的說明中得到更詳細的理解,其中: 第1A圖是可以在其中實施一個或多個揭露的實施方式的示例通信系統的系統圖; 第1B圖是可以用於第1A圖所示的通信系統中的示例無線發射/接收單元(WTRU)的系統圖; 第1C圖是可以用於第1A圖所示的通信系統中的示例無線電存取網路和示例核心網路的系統圖; 第1D圖是可以用於第1A圖所示的通信系統中的另一示例無線電存取網路和示例核心網路的系統圖; 第1E圖是可以用於第1A圖所示的通信系統中的另一示例無線電存取網路和示例核心網路的系統圖; 第2圖是示意了示例性組合預編碼器的框圖; 第3圖是示意了預編碼的正交分頻多工(P-OFDM)系統的示例性發射機的框圖; 第4圖是示意了P-OFDM系統的示例性接收機的框圖; 第5圖是示意了採用預編碼技術的示例性OFDM系統的框圖; 第6圖是示意了對示例性OFDM系統實施頻譜預編碼方法之後的PSD的圖; 第7圖是示意了對示例性OFDM系統實施SVD預編碼方法之後的PSD的圖; 第8圖是示意了基於SVD的和用於近陷波(close-notched)頻率的組合NG-OFDM的比較的圖; 第9圖是示意了基於SVD的和用於近陷波頻率的組合NG-OFDM的比較的圖; 第10圖是示意了基於SVD的和用於近陷波頻率的組合ZP-OFDM的比較的圖; 第11圖是示意了基於SVD的和用於近陷波頻率的組合ZP-OFDM的比較的圖; 第12圖是示意了基於SVD的和用於近陷波頻率的組合CP-OFDM的比較的圖; 第13圖是示意了基於SVD的和用於近陷波頻率的組合CP-OFDM的比較的圖; 第14圖是示意了在示例性NG-OFDM系統中的IFFT輸出的位元錯誤率(BER)的圖; 第15圖示意了組合預編碼器可以與擾動向量一同被使用的示例; 第16圖示意了沒有CP的系統中的SVD預編碼器、N連續預編碼器和組合預編碼器的示例性PSD比較; 第17圖示意了有CP的系統中的SVD預編碼器、N連續預編碼器和組合預編碼器的示例性PSD比較; 第18圖示意了未編碼系統、SVD預編碼器、N連續預編碼器和組合預編碼器的CCDF;以及 第19圖示意了SVD預編碼器、N連續預編碼器和組合預編碼器的BER的比較。A more detailed understanding of the following description can be obtained by way of example in the accompanying drawings in which: FIG. 1A is a system diagram of an example communication system in which one or more disclosed embodiments may be implemented; FIG. Is a system diagram of an exemplary wireless transmit/receive unit (WTRU) that can be used in the communication system shown in FIG. 1A; FIG. 1C is an example radio access network that can be used in the communication system shown in FIG. 1A And a system diagram of an example core network; FIG. 1D is a system diagram of another example radio access network and an example core network that may be used in the communication system shown in FIG. 1A; FIG. 1E is applicable to A system diagram of another example radio access network and an example core network in the communication system shown in FIG. 1A; FIG. 2 is a block diagram illustrating an exemplary combined precoder; A block diagram of an exemplary transmitter of a coded orthogonal frequency division multiplexing (P-OFDM) system; FIG. 4 is a block diagram illustrating an exemplary receiver of a P-OFDM system; A block diagram of an exemplary OFDM system of coding techniques; 6 is a diagram illustrating a PSD after performing a spectrum precoding method on an exemplary OFDM system; FIG. 7 is a diagram illustrating a PSD after implementing an SVD precoding method on an exemplary OFDM system; FIG. 8 is a diagram illustrating Comparison of SVD based and combined NG-OFDM for near-notched frequencies; Figure 9 is a diagram illustrating comparison of SVD based and combined NG-OFDM for near notch frequencies Figure 10 is a diagram illustrating a comparison of SVD-based and combined ZP-OFDM for near notch frequencies; Figure 11 is a comparison of SVD-based and combined ZP-OFDM for near notch frequencies Figure 12 is a diagram illustrating a comparison of SVD-based and combined CP-OFDM for near notch frequencies; Figure 13 is a diagram illustrating SVD-based and combined CP-OFDM for near notch frequencies Figure 14 is a diagram illustrating the bit error rate (BER) of the IFFT output in an exemplary NG-OFDM system; Figure 15 illustrates that the combined precoder can be used with the perturbation vector Example; Figure 16 shows the SVD precoder, N continuous precoder in a system without CP Comparing with an exemplary PSD of a combined precoder; Figure 17 illustrates an exemplary PSD comparison of an SVD precoder, an N continuous precoder, and a combined precoder in a system with CP; Figure 18 illustrates The CCDF of the uncoded system, the SVD precoder, the N continuous precoder, and the combined precoder; and Fig. 19 illustrates the comparison of the BERs of the SVD precoder, the N continuous precoder, and the combined precoder.

1500 組合預編碼器1500 combined precoder

Claims (20)

一種用於減小一多載波調變系統中的帶外發射(OOBE)的組合預編碼器,該組合預編碼器包括: 一第一預編碼元件,被配置為將一基於矩陣的預編碼方案應用於一資料串流以產生一第一預編碼的符號串流;以及 一第二預編碼元件,被配置為將一擾動應用於該第一預編碼的符號串流以產生一第二預編碼的符號串流。A combined precoder for reducing out-of-band emissions (OOBE) in a multi-carrier modulation system, the combined precoder comprising: a first precoding element configured to have a matrix based precoding scheme Applied to a data stream to generate a first precoded symbol stream; and a second precoding element configured to apply a perturbation to the first precoded symbol stream to generate a second precoding Symbolic stream. 如申請專利範圍第1項所述的組合預編碼器,其中與該第二預編碼的符號串流的傳輸相關聯的OOBE少於與該資料串流的未編碼傳輸的傳輸相關聯的OOBE。The combined precoder of claim 1, wherein the OOBE associated with the transmission of the second precoded symbol stream is less than the OOBE associated with the transmission of the uncoded transmission of the data stream. 如申請專利範圍第1項所述的組合預編碼器,其中該第一預編碼方案包括一奇異值分解(SVD)預編碼器方案、一N-連續預編碼方案或一頻譜預編碼方案中的一者。The combined precoder according to claim 1, wherein the first precoding scheme comprises a singular value decomposition (SVD) precoder scheme, an N-continuous precoding scheme or a spectrum precoding scheme. One. 如申請專利範圍第1項所述的組合預編碼器,其中該擾動在一第一子載波組上被傳送,並且資料符號在一第二子載波組上被傳送。The combined precoder of claim 1, wherein the perturbation is transmitted on a first subcarrier group and the data symbols are transmitted on a second subcarrier group. 如申請專利範圍第4項所述的組合預編碼器,其中該資料符號在該第二子載波組上無擾動地被傳送。The combined precoder of claim 4, wherein the data symbol is transmitted undisturbed on the second subcarrier group. 如申請專利範圍第1項所述的組合預編碼器,其中該基於矩陣的預編碼方案通過利用一第一預編碼屬性來減少OOBE,並且該第二預編碼元件通過利用一不同的預編碼屬性來減少OOBE。A combined precoder as claimed in claim 1 wherein the matrix based precoding scheme reduces OOBE by utilizing a first precoding attribute and the second precoding element utilizes a different precoding attribute To reduce OOBE. 如申請專利範圍第6項所述的組合預編碼器,其中該第一預編碼屬性包括一零空間屬性並且該第二預編碼屬性包括一連續導數屬性。The combined precoder of claim 6, wherein the first precoding attribute comprises a zero space attribute and the second precoding attribute comprises a continuous derivative attribute. 一種用於減小一多載波調變系統中的帶外發射(OOBE)的方法,該方法包括: 使用一基於矩陣的預編碼方案來預編碼一符號串流以產生一預編碼的符號串流;以及 對該預編碼的符號串流施加一擾動。A method for reducing out-of-band emissions (OOBE) in a multi-carrier modulation system, the method comprising: precoding a symbol stream using a matrix-based precoding scheme to generate a precoded symbol stream And applying a perturbation to the precoded symbol stream. 如申請專利範圍第8項所述的方法,其中與該第二預編碼的符號串流的傳輸相關聯的OOBE少於與該資料串流的未編碼傳輸的傳輸相關聯的該OOBE。The method of claim 8, wherein the OOBE associated with the transmission of the second precoded symbol stream is less than the OOBE associated with the transmission of the uncoded transmission of the data stream. 如申請專利範圍第8項所述的方法,其中該第一預編碼方案包括一奇異值分解(SVD)預編碼器方案、一N-連續預編碼方案或一頻譜預編碼方案中的一者。The method of claim 8, wherein the first precoding scheme comprises one of a singular value decomposition (SVD) precoder scheme, an N-continuous precoding scheme, or a spectral precoding scheme. 如申請專利範圍第8項所述的方法,還包括: 在一第一子載波組上傳送該擾動;以及 在一第二子載波組上傳送資料符號。The method of claim 8, further comprising: transmitting the perturbation on a first subcarrier group; and transmitting the data symbol on a second subcarrier group. 如申請專利範圍第11項所述的方法,其中該資料符號在該第二子載波組上無擾動地被傳送。The method of claim 11, wherein the data symbol is transmitted undisturbed on the second subcarrier group. 如申請專利範圍第8項所述的方法,其中該基於矩陣的預編碼方案通過利用一第一預編碼屬性來減少OOBE,並且第二預編碼元件通過利用不同的預編碼屬性來減少OOBE。The method of claim 8, wherein the matrix-based precoding scheme reduces OOBE by utilizing a first precoding attribute, and the second precoding element reduces OOBE by utilizing different precoding attributes. 如申請專利範圍第13項所述的方法,其中該第一預編碼屬性包括一零空間屬性並且該第二預編碼屬性包括一連續導數屬性。The method of claim 13, wherein the first precoding attribute comprises a zero space attribute and the second precoding attribute comprises a continuous derivative attribute. 一種裝置,包括: 一處理器;以及 一記憶體,該記憶體包含指令,該指令在被該處理器執行時使該裝置: 使用一基於矩陣的預編碼方案來預編碼一符號串流以產生一預編碼的符號串流;以及 對該預編碼的符號串流施加一擾動。An apparatus comprising: a processor; and a memory, the memory including instructions that, when executed by the processor, cause the apparatus to: precode a symbol stream using a matrix-based precoding scheme to generate a precoded symbol stream; and applying a perturbation to the precoded symbol stream. 如申請專利範圍第15項所述的裝置,其中與該第二預編碼的符號串流的傳輸相關聯的OOBE少於與該資料串流的未編碼傳輸的傳輸相關聯的該OOBE。The apparatus of claim 15 wherein the OOBE associated with the transmission of the second precoded symbol stream is less than the OOBE associated with the transmission of the uncoded transmission of the data stream. 如申請專利範圍第15項所述的裝置,其中該第一預編碼方案包括一奇異值分解(SVD)預編碼器方案、一N-連續預編碼方案或一頻譜預編碼方案中的一者。The apparatus of claim 15, wherein the first precoding scheme comprises one of a singular value decomposition (SVD) precoder scheme, an N-continuous precoding scheme, or a spectral precoding scheme. 如申請專利範圍第15項所述的裝置,其中該記憶體包括進一步的指令,該進一步的指令用於: 在一第一子載波組上傳送該擾動;以及 在一第二子載波組上傳送資料符號。The device of claim 15, wherein the memory comprises a further instruction for: transmitting the disturbance on a first subcarrier group; and transmitting on a second subcarrier group Data symbol. 如申請專利範圍第15項所述的裝置,其中該基於矩陣的預編碼方案通過利用一第一預編碼屬性來減少OOBE,並且該第二預編碼元件通過利用一不同的預編碼屬性來減少OOBE。The apparatus of claim 15, wherein the matrix-based precoding scheme reduces OOBE by utilizing a first precoding attribute, and the second precoding element reduces OOBE by utilizing a different precoding attribute. . 如申請專利範圍第19項所述的裝置,其中該第一預編碼屬性包括一零空間屬性並且該第二預編碼屬性包括一連續導數屬性。The apparatus of claim 19, wherein the first precoding attribute comprises a zero space attribute and the second precoding attribute comprises a continuous derivative attribute.
TW103112041A 2013-03-29 2014-03-31 Combination of multiple precoding techniques for multicarrier modulation systems TW201505402A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201361806614P 2013-03-29 2013-03-29

Publications (1)

Publication Number Publication Date
TW201505402A true TW201505402A (en) 2015-02-01

Family

ID=51688387

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103112041A TW201505402A (en) 2013-03-29 2014-03-31 Combination of multiple precoding techniques for multicarrier modulation systems

Country Status (2)

Country Link
TW (1) TW201505402A (en)
WO (1) WO2014204544A2 (en)

Also Published As

Publication number Publication date
WO2014204544A3 (en) 2015-03-12
WO2014204544A2 (en) 2014-12-24

Similar Documents

Publication Publication Date Title
TWI707570B (en) METHODS AND PROCEDURES TO IMPROVE PHYSICAL LAYER EFFICIENCY USING UNIQUE WORD (UW) DISCRETE FOURIER TRANSFORM SPREAD ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (DFT-s-OFDM)
TWI698110B (en) Method and apparatus for phase tracking reference signal transmission
CN110447212B (en) Method and apparatus for reference signal of next generation wireless communication system
EP3384649B1 (en) Use of both cyclic prefix and zero tail in dft-spread-ofdm
TWI695643B (en) Improved uplink spectrum efficiency
JP6732046B2 (en) Uplink asynchronous non-orthogonal multiple access
TWI717500B (en) Apparatus and methods for non-systematic complex coded discrete fourier transform spread orthogonal frequency division multiplexing
JP2017204873A (en) Reduction of spectral leakage in OFDM system
TW201803322A (en) Methods, apparatuses and systems directed to unique word discrete fourier transform spread and shaped orthogonal frequency division multiplexing based transmissions
US11658762B2 (en) Non-orthogonal multiple access for uplink data transmission for 5G or other next generation network
US10298431B2 (en) Tail cancelation and addition of unique word for orthogonal frequency division multiplexing
JP2016511584A (en) Pulse shaping orthogonal frequency division multiplexing
CN104769849B (en) Determine that the peak power that more clusters are wirelessly transferred reduces (MPR)
US20180139081A1 (en) Cyclic prefix-aligned generalized and n-continuous orthogonal frequency division multiplexing
TW201735575A (en) Methods, apparatuses and systems directed to adaptation of cyclic prefix duration to delay spread
CN107078989B (en) Selection of filter sideband suppression based on channel quality in commonly filtered multi-carriers
US20210359894A1 (en) Facilitation of reduction of peak to average power ratio for 5g or other next generation network
WO2017047210A1 (en) Device and method
WO2020033134A1 (en) Facilitating fast channel state information computation for 5g wireless communication systems
WO2018085561A1 (en) Dtf-s-ofdm and ofdm with frequency domain cyclic prefix and cyclic suffix
TW201505402A (en) Combination of multiple precoding techniques for multicarrier modulation systems
US20200244509A1 (en) In-phase and quadrature-phase estimation and correction using kernel analysis
TW201436513A (en) Precoding for multicarrier modulation systems
US20190394795A1 (en) Facilitation of frequency selective scheduling for 5g or other next generation network