TW201500958A - Personal data encryption/decryption system based on fingerprint and chaotic electrocardiographic signal - Google Patents

Personal data encryption/decryption system based on fingerprint and chaotic electrocardiographic signal Download PDF

Info

Publication number
TW201500958A
TW201500958A TW102121398A TW102121398A TW201500958A TW 201500958 A TW201500958 A TW 201500958A TW 102121398 A TW102121398 A TW 102121398A TW 102121398 A TW102121398 A TW 102121398A TW 201500958 A TW201500958 A TW 201500958A
Authority
TW
Taiwan
Prior art keywords
chaotic
encryption
decryption
fingerprint
unit
Prior art date
Application number
TW102121398A
Other languages
Chinese (zh)
Other versions
TWI492089B (en
Inventor
Chun-Liang Lin
Ching-Kun Chen
Cheng-Tang Chiang
Original Assignee
Nat Univ Chung Hsing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Chung Hsing filed Critical Nat Univ Chung Hsing
Priority to TW102121398A priority Critical patent/TWI492089B/en
Publication of TW201500958A publication Critical patent/TW201500958A/en
Application granted granted Critical
Publication of TWI492089B publication Critical patent/TWI492089B/en

Links

Landscapes

  • Collating Specific Patterns (AREA)

Abstract

The present invention relates to a personal data encryption/decryption system based on fingerprint and chaotic electrocardiographic signal, which comprises: an encryption device and a decryption device. The encryption device comprises a two-point electrocardiographic signal retrieval device, a first fingerprint retrieval device, and a chaos encryption unit. The decryption device comprises a second fingerprint retrieval device, an identity recognition unit, a data transmission part, and a chaos decryption unit. The chaos encryption unit and the chaos decryption unit transform an electrocardiographic signal into a phase plane through phase space reconstruction so as to obtain four electrocardiographic signal characteristic values <lambda>1 to <lambda>4, which are subjected to a predetermined operation to obtain a final characteristic value <lambda>f that is used as an initial value of a chaotic function to generate a chaotic series necessary for encryption/decryption of images and texts, in order to perform encryption/decryption of data. Thus, the present invention offers the advantage and effect of high security.

Description

以指紋與混沌心電訊號為基礎之個人資料加/解密系統 Personal data encryption/decryption system based on fingerprint and chaotic ECG signals

本發明係有關一種以指紋與混沌心電訊號為基礎之個人資料加/解密系統,特別是指一種具有預定運算之以指紋與混沌心電訊號為基礎之個人資料加/解密系統,其具有安全性高之優點及功效。 The invention relates to a personal data encryption/decryption system based on fingerprint and chaotic ECG signals, in particular to a personal data encryption/decryption system based on fingerprint and chaotic ECG signals with predetermined calculation, which has security The advantages and effects of high sex.

一般之混沌加解密裝置,使用者在加密個人資料前,需先設定密碼(初始值)並加以記憶,以便解密時使用。此一設定方式容易因時間長久而忘記密碼。 In general chaotic encryption and decryption devices, the user needs to set a password (initial value) and remember it before encrypting the personal data for use in decryption. This setting method is easy to forget the password for a long time.

當然,設定密碼的方式除了上述容易忘記之問題外,一般密碼的設定不外乎是數字、英文及符號等排列組合,因有跡可循,故容易遭到破解、複製,在使用上仍存在著安全上的疑慮。 Of course, in addition to the above-mentioned problems that are easy to forget, the general password setting is nothing more than the combination of numbers, English and symbols. Because of the traceability, it is easy to be cracked and copied, and still exists in use. Concerns about safety.

因此,有必要研發新產品,以解決上述缺點及問題。 Therefore, it is necessary to develop new products to solve the above shortcomings and problems.

本發明之目的在於提供一種以指紋與混沌心電訊號為基礎之個人資料加/解密系統,其具有安全性高之優點及功效,用以解決習知技術安全性較低之問題。 The object of the present invention is to provide a personal data encryption/decryption system based on fingerprint and chaotic ECG signals, which has the advantages and functions of high security, and solves the problem of low security of the prior art.

本發明解決上述問題之技術手段係提供一種以指紋與混沌心電訊號為基礎之個人資料加/解密系統,其包括:一加密裝置,其係具有一兩點式心電訊號擷取裝置、一第一指紋擷取裝置、一混沌加密單元;該兩點式心電訊號擷取裝置係用以量測一使用者之心電訊號;該第一指紋擷取裝置係用以擷取該使用者手指之指紋特徵;而該混沌加密單元係具有一混沌加密部及一第一處理部,該混沌加密部包含心電訊號特徵值擷取與圖、文加密所需之混沌函數,且該混沌加密部係經由相空間重構將心電訊號波形轉到相平面,得到四個心電訊號 特徵值λ 1~λ 4,並經由一預定運算後得到一最終特徵值λ F ,作為混沌函數的初始值,進而產生圖、文加密所需的混沌序列進行資料加密;又,該第一處理部係用以輸出該第一指紋擷取裝置擷取之指紋特徵、該最終特徵值λ F 之預定運算方式及經該混沌加密部加密後的資料;一解密裝置係具有一第二指紋擷取裝置、一身份辨識單元、一資料傳輸部及一混沌解密單元;該第二指紋擷取裝置係用以擷取該使用者手指之指紋特徵;該身份辨識單元係用以比對該第一指紋擷取裝置及該第二指紋擷取裝置所擷取之指紋特徵,進而對該使用者之身份進行辨識;該資料傳輸部係供一外部裝置將該心電圖訊號資料輸入該混沌解密單元;而混沌解密單元係具有一第二處理部及一混沌解密部,該第二處理部係用以接收該第一處理裝置輸出之該第一指紋擷取裝置擷取之指紋特徵、該最終特徵值λ F 之預定運算方式及經該混沌加密部加密後的資料,而該混沌解密部包含心電訊號特徵值擷取與圖、文解密所需之混沌函數,且該混沌解密部經由相空間重構將心電訊號波形轉到相平面,得到四個心電訊號特徵值λ 1~λ 4,並經由一預定運算後得到一最終特徵值λ F ,作為混沌函數的初始值,進而產生圖、文解密所需的混沌序列,對加密後的資料進行解密。 The technical means for solving the above problems provides a personal data encryption/decryption system based on fingerprint and chaotic ECG signals, comprising: an encryption device having a two-point ECG signal acquisition device, a first fingerprint capture device for measuring a user's ECG signal; the first fingerprint capture device for capturing the user a fingerprint feature of the finger; and the chaotic encryption unit has a chaotic encryption unit and a first processing unit, the chaotic encryption unit includes a chaotic function of the ECG feature value extraction and graph and text encryption, and the chaotic encryption The faculty transforms the ECG signal waveform into the phase plane via phase space reconstruction, and obtains four ECG eigenvalues λ 1 ~ λ 4 , and obtains a final eigenvalue λ F through a predetermined operation as the initial of the chaotic function. a value, which further generates a chaotic sequence required for image and text encryption for data encryption; and the first processing unit is configured to output a fingerprint feature captured by the first fingerprint capture device, and the final feature value λ F a predetermined operation mode and data encrypted by the chaotic encryption unit; the first decryption device has a second fingerprint capture device, an identity recognition unit, a data transmission unit, and a chaotic decryption unit; the second fingerprint capture device is The fingerprint identification feature is used to capture the fingerprint feature of the user's finger; the identity recognition unit is configured to compare the fingerprint feature captured by the first fingerprint capture device and the second fingerprint capture device, and thereby identify the user The data transmission unit is configured to provide an external device to input the ECG signal data into the chaotic decryption unit; and the chaotic decryption unit has a second processing unit and a chaotic decryption unit, wherein the second processing unit is configured to receive the The first processing device outputs a fingerprint feature captured by the first fingerprint capture device, a predetermined operation mode of the final feature value λ F , and a data encrypted by the chaotic encryption unit, and the chaotic decryption unit includes an ECG signal feature. The value captures the chaotic function required for the decryption of the graph and the text, and the chaotic decryption unit transfers the ECG signal waveform to the phase plane via phase space reconstruction to obtain four ECG signals. The eigenvalues λ 1 ~ λ 4 are obtained by a predetermined operation to obtain a final eigenvalue λ F as an initial value of the chaotic function, thereby generating a chaotic sequence required for the image and text decryption, and decrypting the encrypted data.

本發明之上述目的與優點,不難從下述所選用實施例之詳細說明與附圖中,獲得深入瞭解。 The above objects and advantages of the present invention will be readily understood from the following detailed description of the preferred embodiments illustrated herein.

茲以下列實施例並配合圖式詳細說明本發明於後: The invention will be described in detail in the following examples in conjunction with the drawings:

10‧‧‧加密裝置 10‧‧‧Encryption device

11‧‧‧兩點式心電訊號擷取裝置 11‧‧‧Two-point ECG signal extraction device

12‧‧‧第一指紋擷取裝置 12‧‧‧First fingerprint capture device

13‧‧‧混沌加密單元 13‧‧‧Chaotic encryption unit

131‧‧‧混沌加密部 131‧‧‧Chaotic Encryption Department

132‧‧‧第一處理部 132‧‧‧First Processing Department

20‧‧‧解密裝置 20‧‧‧Decryption device

21‧‧‧第二指紋擷取裝置 21‧‧‧Second fingerprint capture device

22‧‧‧身份辨識單元 22‧‧‧identity unit

23‧‧‧資料傳輸部 23‧‧‧Data Transmission Department

24‧‧‧混沌解密單元 24‧‧‧Chaotic decryption unit

241‧‧‧第二處理部 241‧‧‧Second Processing Department

242‧‧‧混沌解密部 242‧‧‧Chaotic Decryption Department

71‧‧‧外部裝置 71‧‧‧External devices

第一圖係本發明之以指紋與混沌心電訊號為基礎之個人資料加/解密系統之示意圖 The first figure is a schematic diagram of a personal data encryption/decryption system based on fingerprint and chaotic ECG signals of the present invention.

第二圖係本發明之指紋與心電圖擷取之示意圖 The second figure is a schematic diagram of the fingerprint and electrocardiogram of the present invention.

第三圖係本發明之加解密關係示意圖 The third figure is a schematic diagram of the encryption and decryption relationship of the present invention.

第四A圖係本發明之使用者一之心電訊號之示意圖 Figure 4A is a schematic diagram of the user's ECG signal of the present invention.

第四B圖係本發明之使用者一之混沌吸引子之示意圖 Figure 4B is a schematic diagram of a chaotic attractor of the user of the present invention

第五A圖係本發明之使用者二之心電訊號之示意圖 Figure 5A is a schematic diagram of the user's ECG signal of the present invention.

第五B圖係本發明之使用者二之混沌吸引子之示意圖 Figure 5B is a schematic diagram of the chaotic attractor of the user of the present invention

第六A圖係本發明之使用者三之心電訊號之示意圖 Figure 6A is a schematic diagram of the user's heart electronic signal of the present invention.

第六B圖係本發明之使用者三之混沌吸引子之示意圖 Figure 6B is a schematic diagram of the chaotic attractor of the user of the present invention

第七A圖係本發明之使用者四之心電訊號之示意圖 Figure 7A is a schematic diagram of the heartbeat signal of the user of the present invention.

第七B圖係本發明之使用者四之混沌吸引子之示意圖 Figure 7B is a schematic diagram of the chaotic attractor of the user of the present invention

第八A圖係本發明之使用者五之心電訊號之示意圖 Figure 8A is a schematic diagram of the user's heart signal of the present invention

第八B圖係本發明之使用者五之混沌吸引子之示意圖 Figure 8B is a schematic diagram of the chaotic attractor of the user of the present invention

第九A圖係本發明之使用者六之心電訊號之示意圖 Figure 9A is a schematic diagram of the user's heart signal of the present invention.

第九B圖係本發明之使用者六之混沌吸引子之示意圖 Figure 9B is a schematic diagram of the chaotic attractor of the user of the present invention

第十圖係本發明之加密流程之示意圖 The tenth figure is a schematic diagram of the encryption process of the present invention

第十一A圖係本發明之灰階影像之原始影像示意圖 11A is a schematic view of the original image of the gray scale image of the present invention

第十一B圖係本發明之灰階影像之原始影像像素分析示意圖 The eleventh B is a schematic diagram of the original image pixel analysis of the gray scale image of the present invention.

第十一C圖係本發明之灰階影像之加密影像示意圖 FIG. 11C is a schematic diagram of an encrypted image of a gray scale image of the present invention

第十一D圖係本發明之灰階影像之加密影像像素分析示意圖 11th D is a schematic diagram of pixel analysis of encrypted image of gray scale image of the present invention

第十一E圖係本發明之灰階影像之錯誤解密影像示意圖 The eleventh E is a schematic diagram of the error decryption image of the gray scale image of the present invention.

第十一F圖係本發明之灰階影像之正確解密影像示意圖 The eleventh F diagram is a schematic diagram of the correct decryption image of the gray scale image of the present invention

第十二A圖係本發明之索引影像之原始影像示意圖 Figure 12A is a schematic diagram of the original image of the index image of the present invention

第十二B圖係本發明之索引影像之原始影像像素分析示意圖 The twelfth B-picture is a schematic diagram of the original image pixel analysis of the index image of the present invention

第十二C圖係本發明之索引影像之加密影像示意圖 Twelfth C is a schematic diagram of an encrypted image of the index image of the present invention

第十二D圖係本發明之索引影像之加密影像像素分析示意圖 Twelfth D is a schematic diagram of pixel analysis of an encrypted image of an index image of the present invention

第十二E圖係本發明之索引影像之錯誤解密影像示意圖 Twelfth E is a schematic diagram of an error decrypted image of the index image of the present invention

第十二F圖係本發明之索引影像之正確解密影像示意圖 The twelfth F-picture is a schematic diagram of the correct decrypted image of the index image of the present invention

第十三A圖係本發明之RGB影像之原始影像示意圖 Figure 13A is a schematic diagram of the original image of the RGB image of the present invention.

第十三B圖係本發明之RGB影像之原始影像像素分析一之示意圖 Figure 13B is a schematic diagram of the original image pixel analysis of the RGB image of the present invention.

第十三C圖係本發明之RGB影像之原始影像像素分析二之示意圖 The thirteenth Cth diagram is a schematic diagram of the original image pixel analysis of the RGB image of the present invention.

第十三D圖係本發明之RGB影像之原始影像像素分析三之示意圖 The thirteenth D-picture is a schematic diagram of the original image pixel analysis of the RGB image of the present invention

第十三E圖係本發明之RGB影像之加密影像示意圖 Figure 13E is a schematic diagram of an encrypted image of the RGB image of the present invention.

第十三F圖係本發明之RGB影像之加密影像像素分析一之示意圖 The thirteenth Fth diagram is a schematic diagram of the pixel analysis of the encrypted image of the RGB image of the present invention.

第十三G圖係本發明之RGB影像之加密影像像素分析二之示意圖 The thirteenth G diagram is a schematic diagram of the second embodiment of the encrypted image pixel analysis of the RGB image of the present invention.

第十三H圖係本發明之RGB影像之加密影像像素分析三之示意圖 The thirteenth H picture is a schematic diagram of the encrypted image pixel analysis of the RGB image of the present invention

第十三I圖係本發明之RGB影像之錯誤解密影像示意圖 The thirteenth I picture is a schematic diagram of the erroneous decryption image of the RGB image of the present invention

第十三J圖係本發明之RGB影像之正確解密影像示意圖 The thirteenth J diagram is a schematic diagram of the correct decrypted image of the RGB image of the present invention

第十四A圖係本發明之明文示意圖 Figure 14A is a schematic view of the present invention

第十四B圖係本發明之加密後之密文示意圖 Figure 14B is a schematic diagram of the encrypted ciphertext of the present invention

第十四C圖係本發明之解密錯誤之文字之示意圖 Figure 14C is a schematic diagram of the text of the decryption error of the present invention

第十四D圖係本發明之正確解密後之明文示意圖 The fourteenth D diagram is a schematic diagram of the plaintext after the correct decryption of the present invention

如第一至第三圖所示,本發明係為一種以指紋與混沌心電訊號為基礎之個人資料加/解密系統,其包括:一加密裝置10及一解密裝置20。 As shown in the first to third figures, the present invention is a personal data encryption/decryption system based on fingerprint and chaotic ECG signals, comprising: an encryption device 10 and a decryption device 20.

關於該加密裝置10,其係具有一兩點式心電訊號擷取裝置11、一第一指紋擷取裝置12、一混沌加密單元13;該兩點式心電訊號擷取裝置11係用以量測一使用者之心電訊號;該第一指紋擷取裝置12係用以擷取該使用者手指之指紋特徵;而該混沌加密單元13係具有一混沌加密部131及一第一處理部132,該混沌加密部131包含心電訊號特徵值擷取與圖、文加密所需之混沌函數,且該混沌加密部131係經由相空間(phase plane)重構將心電訊號波形轉到相平面,得到四個心電訊號特徵值λ 1~λ 4(李亞普諾夫指數譜,英文為Lyapunov exponent),並經由一預定運算後得到一最終特徵值λ F ,作為混沌函數的初始值,進而產生圖、文加密所需的混沌序列進行資料加密;又,該第一處理部132係用以輸出該第一指紋擷取裝置12擷取之指紋特徵、該最終特徵值λ F 之預定運算方式及經該混沌加密部131加密後的資料;又,該第一指紋擷取裝置12與該兩點式心電訊號擷取裝置11係大體上位於同一平面上,當該使用者手指按壓於此平面上時,係會同時接觸該第一指紋擷取裝置12及該兩點式心電訊號擷取裝置11,進而可同時進行指紋之擷取與心電圖之量測。 The encryption device 10 has a two-point ECG capture device 11, a first fingerprint capture device 12, and a chaotic encryption unit 13; the two-point ECG capture device 11 is used. Measuring the heart signal of a user; the first fingerprint capturing device 12 is configured to capture the fingerprint feature of the user's finger; and the chaotic encryption unit 13 has a chaotic encryption unit 131 and a first processing unit. 132. The chaotic encryption unit 131 includes a chaotic function required for ECG signature extraction and graph and text encryption, and the chaotic encryption unit 131 converts the ECG waveform to phase via phase space reconstruction. In the plane, four ECG eigenvalues λ 1 ~ λ 4 (Lyapunov exponent, Lyapunov exponent in English) are obtained, and a final eigenvalue λ F is obtained as a preliminary value of the chaotic function through a predetermined operation. The chaotic sequence required for the encryption of the image and the text is generated for data encryption. The first processing unit 132 is configured to output the fingerprint feature captured by the first fingerprint capture device 12 and the predetermined operation mode of the final feature value λ F . And the chaos plus The first fingerprint capture device 12 and the two-point ECG capture device 11 are substantially on the same plane. When the user's finger presses on the plane, the system is The first fingerprint capturing device 12 and the two-point ECG signal capturing device 11 are simultaneously contacted, and the fingerprint capturing and the electrocardiogram measurement can be simultaneously performed.

而該解密裝置20係具有一第二指紋擷取裝置21、一身份辨識單元22、一資料傳輸部23及一混沌解密單元24;該第二指紋擷取裝置21係用以擷取該使用者手指之指紋特徵;該身份辨識單元22係用以比對該第一指紋擷取裝置12及該第二指紋擷取裝置21所擷取之指紋特徵,進而對 該使用者之身份進行辨識;該資料傳輸部23係供一外部裝置71將該心電圖訊號資料輸入該混沌解密單元24;而混沌解密單元24係具有一第二處理部241及一混沌解密部242,該第二處理部241係用以接收該第一處理裝置132輸出之該第一指紋擷取裝置12擷取之指紋特徵、該最終特徵值λ F 之預定運算方式及經該混沌加密部131加密後的資料,而該混沌解密部242包含心電訊號特徵值擷取與圖、文解密所需之混沌函數,且該混沌解密部241經由相空間重構將心電訊號波形轉到相平面,得到四個心電訊號特徵值λ 1~λ 4,並經由一預定運算後得到一最終特徵值λ F ,作為混沌函數的初始值,進而產生圖、文解密所需的混沌序列,對加密後的資料進行解密。 The decryption device 20 has a second fingerprint capture device 21, an identity recognition unit 22, a data transmission unit 23, and a chaotic decryption unit 24; the second fingerprint capture device 21 is configured to capture the user. a fingerprint feature of the finger; the identity recognition unit 22 is configured to identify the fingerprint of the user by comparing the fingerprint features captured by the first fingerprint capture device 12 and the second fingerprint capture device 21; The data transmission unit 23 is provided with an external device 71 for inputting the electrocardiogram signal data into the chaotic decryption unit 24; and the chaotic decryption unit 24 has a second processing unit 241 and a chaotic decryption unit 242, and the second processing unit 241 is used. The chaotic decryption is performed by receiving the fingerprint feature captured by the first fingerprint capture device 12 output by the first processing device 132, the predetermined operation mode of the final feature value λ F , and the data encrypted by the chaotic encryption unit 131. The portion 242 includes a chaotic function required for the ECG feature value extraction and the image and text decryption, and the chaotic decryption unit 241 transfers the ECG signal waveform to the phase plane via phase space reconstruction to obtain four ECG signal feature values. λ 1 ~ λ 4 , and a final eigenvalue λ F is obtained as a preliminary value of the chaotic function through a predetermined operation, thereby generating a chaotic sequence required for the image and text decryption, and decrypting the encrypted data.

更詳細的說,使用者在加密個人資料前,需先進行指紋擷取,再量取個人心電訊號並加以儲存(如第二圖);個人心電訊號係可儲存於一外部裝置71(例如:USB隨身碟),而指紋特徵擷取後係由該第一處理部132輸出至該第二處理部241,使該身份辨識部22可比對該第一指紋擷取裝置12及該第二指紋擷取裝置21擷取之指紋特徵。 In more detail, the user needs to perform fingerprint capture before encrypting the personal data, and then measure and store the personal ECG signal (as shown in the second figure); the personal ECG signal can be stored in an external device 71 ( For example, a USB flash drive, and the fingerprint feature is outputted by the first processing unit 132 to the second processing unit 241, so that the identity recognition unit 22 can compare the first fingerprint capture device 12 and the second The fingerprint feature captured by the fingerprint capture device 21.

由於心電訊號在時域上很難看出其特徵,因此經由相空間重構將ECG波形轉到相平面,即可清楚看出使用者之心電訊號的混沌吸引子。 Since the ECG signal is difficult to see in the time domain, the ECG waveform is transferred to the phase plane via phase space reconstruction, and the chaotic attractor of the user's heart signal is clearly visible.

如第四A至第九B圖所示,其係分別為6位使用者之心電訊號與混沌吸引子。透過該混沌加密部131取出心電特徵值,經由一預定運算後得到一最終特徵值λ F ,作為混沌函數的初始值作為混沌函數的初始值,進而產生圖、文加密所需的混沌序列進行資料加密。 As shown in the fourth A to ninth B, it is an ECG signal and a chaotic attractor for 6 users respectively. The chaotic encryption unit 131 extracts the electrocardiographic characteristic value, and obtains a final eigenvalue λ F through a predetermined operation as an initial value of the chaotic function as an initial value of the chaotic function, thereby generating a chaotic sequence required for image and text encryption. Data encryption.

最終特徵值λ F 之預定運算方式係可由使用者自行設定,並由該第一處理部132將此預定運算方式輸出至該第二處理部241(加密資料也同樣由該第一處理部132輸出至該第二處理部241),使同一心電訊號於該混沌加密部131及該混沌解密部242上進行預定運算後係可得到相同之最終特徵值λ F The predetermined calculation method of the final feature value λ F can be set by the user, and the first processing unit 132 outputs the predetermined calculation mode to the second processing unit 241 (the encrypted data is also output by the first processing unit 132 as well. The second processing unit 241) obtains the same final eigenvalue λ F after performing the predetermined calculation on the chaotic encryption unit 131 and the chaotic decryption unit 242 by the same electrocardiographic signal.

而關於該最終特徵值λ F 之預定運算方式,係列舉以下兩個自訂公式進行說明: 請參閱第一表,假設六位使用者皆擷取四個心電訊號特徵值 λ 1~λ 4,在經過公式(1)之運算後,係可分別得到六位使用者之最終特徵值λ F With regard to the predetermined calculation method of the final eigenvalue λ F , the following two custom formulas are described: Please refer to the first table, assuming that all six users draw four ECG eigenvalues λ 1 ~ λ 4 , and after the operation of equation (1), the final eigenvalues λ of six users can be obtained respectively. F.

請參閱第二表,假設六位使用者皆擷取四個心電訊號特徵值λ 1~λ 4,在經過公式(2)之運算後,係可分別得到六位使用者之最終特徵值λ F Please refer to the second table, six users are assumed to retrieve four ECG signal eigenvalues λ 1 ~ λ 4, after Equation (2) the operation system can obtain the final values of [lambda] wherein six users, respectively F.

由第一表及第二表之比較可以得知,在同一心電訊號的情況下(四個心電訊號特徵值λ 1~λ 4數值不變),藉由運算方式的改變,得到的最終特徵值λ F 也不相同,雖然不同受測者的λ 1~λ 4數值差異不大,但經合成運算可以拉大最終特徵值λ F 的差異;也就是說,本發明利用這樣的運算過程,來得到一個不具規律性的最終特徵值λ F ,係可有效提高加密資料之安全性。 It can be known from the comparison between the first table and the second table that in the case of the same ECG signal (the values of the four ECG signal values λ 1 ~ λ 4 are unchanged), the final result is obtained by the change of the operation mode. The eigenvalue λ F is also different, although the values of λ 1 ~ λ 4 of different subjects are not much different, but the difference of the final eigenvalue λ F can be enlarged by the synthesis operation; that is, the present invention utilizes such an operation process To obtain a non-regular final eigenvalue λ F , which can effectively improve the security of encrypted data.

前述運算公式(1)和(2)僅是一種λ 1~λ 4的合成方式,其他合成方式只要能產生相異較大的最終特徵值λ F 亦屬可行。 The foregoing calculation formulas (1) and (2) are only a synthesis method of λ 1 ~ λ 4 , and other synthesis methods are also feasible as long as different final eigenvalues λ F can be generated.

在混沌函數之運算方式方面,同樣也可由使用者自行設定,並以最終特徵值λ F 作為混沌函數的初始值,進而產生圖、文解密所需的混沌序列;而關於混沌序列之運算方式,係列舉以下兩個自訂公式進行說明:[A]文字:一維邏輯映射(Logistic Map)L n+1=AL n (1-L n )------------(1);請參閱第三表,本發明係以一段內容為『空格、空格、I、A、M、enter換行』之文字來進行加密之說明(在M後為ENTER符號,表示此行文字結束進行換行)。 In the operation mode of the chaotic function, it can also be set by the user, and the final eigenvalue λ F is used as the initial value of the chaotic function, thereby generating the chaotic sequence required for the decryption of the graph and the text; and regarding the operation mode of the chaotic sequence, The series is illustrated by the following two custom formulas: [A] Text: 1D Logistic Map L n +1 = AL n (1- L n )------------( 1); Please refer to the third table, the invention is encrypted with a piece of text as "space, space, I, A, M, enter" (the ENTER symbol after M, indicating the end of the line) Make a line break).

首先,將空格、空格、I、A、M等字元轉換至ASCⅡ codes後係為64、64、73、65、77;假設L 0=λ F =0.01,A=0.38,迭代公式(1)五次後得到:L1=0.0376;L2=0.1376;L3=0.4509;L4=0.9408;L5=0.2115;將L1~L6皆乘以10並取其個位數字後可得到0、1、4、9、2,並分別與轉換字元至ASCII codes後之32、32、73、65、77相加,得到32、33、77、74、79,再將32、33、77、74、79轉換回字元,所呈現的文字則改變為!、$、R、C、S,完成對文字之加密。 First, convert characters such as spaces, spaces, I, A, and M to ASCII codes to 64, 64, 73, 65, and 77; assuming L 0 = λ F = 0.01, A = 0.38, iterative formula (1) After five times, we get: L 1 =0.0376; L 2 =0.1376; L 3 =0.4509; L 4 =0.9408; L 5 =0.2115; multiply L 1 ~ L 6 by 10 and take the ones digit to get 0 1, 4, 9, 2, and add 32, 32, 73, 65, 77 after conversion characters to ASCII codes, get 32, 33, 77, 74, 79, then 32, 33, 77 , 74, 79 converted back to characters, the text presented is changed to! , $, R, C, S, complete the encryption of the text.

同理,若替換成不同之最終特徵值λ F 作為混沌函數的初始值,經由上述之過程,則會得到不同之結果。 Similarly, if the final final eigenvalue λ F is replaced as the initial value of the chaotic function, different results will be obtained through the above process.

以上為單行之作業,一篇文章若有多行,則依相同原理逐行處理,則可完成一整篇文字之加密。 The above is a single-line operation. If there is more than one line in an article, it will be processed line by line according to the same principle, and the whole text can be encrypted.

[B]圖案:利用前述之一維邏輯映射(Logistic Map)L n+1=AL n (1-L n )與二維海嫩映射(Henon Map); 本發明係以一5×5圖案之局部區塊中的像素矩陣來進行圖案加密之說明;先進行像素打亂處理,請參閱第四表,為方便說明,本發明係僅列出第一行之五個像素來說明,其餘類推。 [B] pattern: using the aforementioned one-dimensional logistic map (Listic +1 ) L n +1 = AL n (1- L n ) and two-dimensional Hainan map (Henon Map) The invention is characterized by pattern encryption in a pixel matrix in a partial block of a 5×5 pattern; first, the pixel scrambling process is performed, please refer to the fourth table. For convenience of description, the present invention lists only the first Five pixels of the line to illustrate, and the rest are analogous.

假設第一行之五個像素之RGB值中的R值(當然,也可以使用G或B)分別為17、35、42、12、255,且設定L 0=λ F =0.01,A=3.8,迭代5次後得到:L 1 =0.0376;L 2 =0.1376;L 3 =0.4509;L 4 =0.9408;L 5 =0.2115;分別乘10後捨去則後則為0、1、4、9、2。 Assume that the R value of the RGB values of the five pixels of the first line (of course, G or B can also be used) is 17, 35, 42, 12, 255, respectively, and set L 0 = λ F = 0.01, A = 3.8 After iteration 5 times, it is obtained: L 1 =0.0376; L 2 =0.1376; L 3 =0.4509; L 4 =0.9408; L 5 =0.2115; respectively, after multiplying by 10, then 0, 1, 4, 9, 2.

再分別與五個像素值之R值相加,即可得到新的R值17、36、46、21、257(→2),但257超過255,則減去255使其落在0~255之間(同理,反向解密時若超於0~255之範圍亦進行相同之反向處理),進而打亂原有像素之R值而無法分辨出原有之顏色。 Then add the R value of the five pixel values respectively to get the new R value 17, 36, 46, 21, 257 (→ 2), but if 257 exceeds 255, subtract 255 to make it fall from 0 to 255. In the same way (in the same way, if the reverse decryption is over the range of 0~255, the same reverse processing is performed), and the R value of the original pixel is disturbed, and the original color cannot be distinguished.

當像素值被打亂後,將進行(i,j)位置之打亂,假設X 0=Y 0=λ F =0.01,a=1.4,b=0.3,迭代公式(2)五次後得到:X1=1.0029,Y1=0.0100;X2=-0.4050,Y2=1.0029;X3=1.0712,Y3=-0.4050;X4=-0.7280,Y4=1.0712; X5=0.5795,Y5=-0.7280;將X1至X5之值及Y1至Y5之值進行大至小之排序,則會得到:X之順序:原有為1,2,3,4,5,變成3,1,5,2,4;Y之順序:原有為1,2,3,4,5,變成4,2,1,3,5;原有之(i,j)則依上述之新順序變成(i’,j’),例如原有之(1,1)位置則換到新的(3,4)位置;原有的(1,2)位置則換到新的(3,2)位置,依此類推。若是800x600之圖片,則二維海嫩映射(Henon Map)之迭代公式(2)可進行例如1500次迭代(可適情況增減),迭代後可得到1500個X值及1500個Y值,先將數值相同的部份惕除,再前移,然後分別取前800筆之X及前600筆之Y,分別進行大至小之排序,將將此新的X順序及Y順序之對應關係記錄下(即二維索引資料),用同前之方法,即可將此800x600之位置打亂。 When the pixel value is scrambled, the (i, j) position will be disturbed, assuming X 0 = Y 0 = λ F = 0.01, a = 1.4, b = 0.3, and the iteration formula (2) is obtained five times: X 1 =1.0029, Y 1 =0.0100; X 2 =-0.4050, Y 2 =1.0029; X 3 =1.0712, Y 3 =-0.4050; X 4 =-0.7280, Y 4 =1.0712; X 5 =0.5795,Y 5 =-0.7280; Sorting the values of X1 to X5 and the values of Y1 to Y5 from large to small will result in: X order: original is 1, 2, 3, 4, 5, becomes 3, 1, 5 , 2, 4; Y order: the original is 1, 2, 3, 4, 5, becomes 4, 2, 1, 3, 5; the original (i, j) becomes (i, in the new order mentioned above) ',j'), for example, the original (1,1) position is changed to the new (3,4) position; the original (1,2) position is changed to the new (3,2) position, This type of push. If it is a picture of 800x600, the iterative formula (2) of the two-dimensional Henon Map can be performed, for example, 1500 iterations (optional increase or decrease), and after iteration, 1500 X values and 1500 Y values can be obtained. Delete the same value and move forward, then take the first 800 X and the first 600 Y, respectively, to sort the big to the small, and record the correspondence between the new X and Y sequences. Under (ie, two-dimensional index data), you can use this method to disrupt the location of 800x600.

當像素值被打亂且(i,j)位置也被打亂後,則完成對圖案之加密作業。 When the pixel value is scrambled and the (i, j) position is also scrambled, the encryption of the pattern is completed.

關於本發明加密之流程,請參閱第十圖。 For the process of encryption of the present invention, please refer to the tenth figure.

在解密方面,使用者在解密時須先擷取指紋做身分確認,經該身份辨識單元22確認是加密者無誤後,即利用當時所擷取加密者的混沌心電訊號作為解譯金鑰(由外部裝置71將儲存之個人心電訊號輸出至該資料傳輸部23),進行解密的流程。 In terms of decryption, the user must first capture the fingerprint for identification after decryption. After the identity recognition unit 22 confirms that the encryptor is correct, the chaotic ECG signal of the encryptor is used as the interpretation key ( The stored personal electrocardiogram signal is outputted to the data transmission unit 23) by the external device 71, and the decryption process is performed.

關於本發明之圖檔加/解密結果,係以三種不同圖檔的類型,進行實際加/解密的結果來進行說明。 Regarding the image addition/decryption result of the present invention, the result of actual addition/decryption is described by the types of three different image files.

[I]圖檔一:灰階影像。請參閱第十一A至第十一F圖,其係分別為圖檔一之原始影像、原始影像像素分析、加密影像、加密影像像素分析、錯誤解密影像及正確解密影像。 [I] Image file 1: Grayscale image. Please refer to the 11th to 11th F drawings, which are the original image of the image file, the original image pixel analysis, the encrypted image, the encrypted image pixel analysis, the error decryption image and the correct decryption image.

[Ⅱ]圖檔二:索引影像。請參閱第十二A至第十二F圖,其係分別為圖檔二之原始影像、原始影像像素分析、加密影像、加密影像像素分析、錯誤解密影像及正確解密影像。 [II] Figure 2: Index image. Please refer to the 12th to 12th F pictures, which are the original image of the image file 2, the original image pixel analysis, the encrypted image, the encrypted image pixel analysis, the error decryption image and the correct decryption image.

[Ⅲ]圖檔三:RGB影像。請參閱第十三A至第十三F圖,第十三A圖為圖檔三之原始影像,第十三B、第十三C及第十三D圖係圖檔 三之原始影像像素分析、第十三E圖係圖檔三之加密影像,第十三F、第十三G及第十三H係圖檔三之加密影像像素分析,第十三I圖係圖檔三之錯誤解密影像,而第十三J圖係圖檔三之正確解密影像。 [III] Figure 3: RGB image. Please refer to Figures 13A to 13F. Figure 13A is the original image of Figure 3, and the 13th, 13th and 13th D drawings. The original image pixel analysis of the third, the encrypted image of the third image of the thirteenth E picture file, the encrypted image pixel analysis of the thirteenth F, the thirteenth G, and the thirteenth H series image file, the thirteenth I picture system The file of the third file is decrypted by the error, and the thirteenth J picture is the correct decryption image.

由上述三個圖檔的加密、解密結果可以得知,當錯誤解密時,所得到的影像係完全無法辨識,可有效保護其原始影像之安全性。 It can be known from the encryption and decryption results of the above three images that when the error is decrypted, the obtained image is completely unrecognizable, and the security of the original image can be effectively protected.

而關於文字之加解密結果,請參考第十四A至第十四D圖,其係分別為明文、加密後之密文、解密錯誤之文字及正確解密後之明文;由此可知,當錯誤解密時,所得到的文字排列係完全無法辨識出其內容,可有效保護其原始文字之安全性。 For the encryption and decryption results of the text, please refer to the fourteenth to the fourteenth Dth, which are respectively the plaintext, the encrypted ciphertext, the text of the decryption error, and the plaintext after the correct decryption; When decrypting, the obtained text arrangement can not recognize the content at all, which can effectively protect the security of the original text.

綜上所述,本發明之優點及功效可歸納為:[1]安全性高。本發明不但可將文圖以混沌序列進行加密,使其在未解密的情況下無法辨識其文圖內容,且在進行解密時,需同時符合指紋特徵及個人心電訊號,才可進行解密,非一般亂數解碼可破解之解密程序,故,具有安全性高之優點。 In summary, the advantages and effects of the present invention can be summarized as follows: [1] High security. The invention can not only encrypt the text in a chaotic sequence, but also can not recognize the content of the text in the case of undeciphering, and can perform decryption when the decryption is performed, and the fingerprint feature and the personal electrocardiogram are required to be decrypted. The non-general random number decoding can decrypt the decryption program, so it has the advantage of high security.

以上僅是藉由較佳實施例詳細說明本發明,對於該實施例所做的任何簡單修改與變化,皆不脫離本發明之精神與範圍。 The present invention has been described in detail with reference to the preferred embodiments of the present invention, without departing from the spirit and scope of the invention.

由以上詳細說明,可使熟知本項技藝者明瞭本發明的確可達成前述目的,實已符合專利法之規定,爰提出發明專利申請。 From the above detailed description, it will be apparent to those skilled in the art that the present invention can achieve the foregoing objects, and the invention has been in accordance with the provisions of the patent law.

10‧‧‧加密裝置 10‧‧‧Encryption device

11‧‧‧兩點式心電訊號擷取裝置 11‧‧‧Two-point ECG signal extraction device

12‧‧‧第一指紋擷取裝置 12‧‧‧First fingerprint capture device

13‧‧‧混沌加密單元 13‧‧‧Chaotic encryption unit

131‧‧‧混沌加密部 131‧‧‧Chaotic Encryption Department

132‧‧‧第一處理部 132‧‧‧First Processing Department

20‧‧‧解密裝置 20‧‧‧Decryption device

21‧‧‧第二指紋擷取裝置 21‧‧‧Second fingerprint capture device

22‧‧‧身份辨識單元 22‧‧‧identity unit

23‧‧‧資料傳輸部 23‧‧‧Data Transmission Department

24‧‧‧混沌解密單元 24‧‧‧Chaotic decryption unit

241‧‧‧第二處理部 241‧‧‧Second Processing Department

242‧‧‧混沌解密部 242‧‧‧Chaotic Decryption Department

71‧‧‧外部裝置 71‧‧‧External devices

Claims (2)

一種以指紋與混沌心電訊號為基礎之個人資料加/解密系統,其包括:一加密裝置,其係具有一兩點式心電訊號擷取裝置、一第一指紋擷取裝置、一混沌加密單元;該兩點式心電訊號擷取裝置係用以量測一使用者之心電訊號;該第一指紋擷取裝置係用以擷取該使用者手指之指紋特徵;而該混沌加密單元係具有一混沌加密部及一第一處理部,該混沌加密部包含心電訊號特徵值擷取與圖、文加密所需之混沌函數,且該混沌加密部係經由相空間重構將心電訊號波形轉到相平面,得到四個心電訊號特徵值特徵值λ 1~λ 4,並經由一預定運算後得到一最終特徵值λ F ,作為混沌函數的初始值,進而產生圖、文加密所需的混沌序列進行資料加密;又,該第一處理部係用以輸出該第一指紋擷取裝置擷取之指紋特徵、該最終特徵值λ F 之預定運算方式及經該混沌加密部加密後的資料;一解密裝置,其係具有一第二指紋擷取裝置、一身份辨識單元、一資料傳輸部及一混沌解密單元;該第二指紋擷取裝置係用以擷取該使用者手指之指紋特徵;該身份辨識單元係用以比對該第一指紋擷取裝置及該第二指紋擷取裝置所擷取之指紋特徵,進而對該使用者之身份進行辨識;該資料傳輸部係供一外部裝置將該心電圖訊號資料輸入該混沌解密單元;而混沌解密單元係具有一第二處理部及一混沌解密部,該第二處理部係用以接收該第一處理裝置輸出之該第一指紋擷取裝置擷取之指紋特徵、該最終特徵值λ F 之預定運算方式及經該混沌加密部加密後的資料,而該混沌解密部包含心電訊號特徵值擷取與圖、文解密所需之混沌函數,且該混沌解密部經由相空間重構將心電訊號波形轉到相平面,得到四 個心電訊號特徵值λ 1~λ 4,並經由一預定運算後得到一最終特徵值λ F ,作為混沌函數的初始值,進而產生圖、文解密所需的混沌序列,對加密後的資料進行解密。 A personal data encryption/decryption system based on fingerprint and chaotic ECG signals, comprising: an encryption device having a two-point ECG signal acquisition device, a first fingerprint capture device, and a chaotic encryption The two-point ECG signal acquisition device is configured to measure a user's ECG signal; the first fingerprint capture device is configured to capture a fingerprint feature of the user's finger; and the chaotic encryption unit The system has a chaotic encryption unit and a first processing unit. The chaotic encryption unit includes a chaotic function required for ECG eigenvalue extraction and graph and text encryption, and the chaotic encryption unit reconstructs the heart telegram via phase space reconstruction. The waveform of the number is transferred to the phase plane to obtain four ECG eigenvalues λ 1 ~ λ 4 , and a final eigenvalue λ F is obtained through a predetermined operation as the initial value of the chaotic function, thereby generating graph and text encryption. The required chaotic sequence is used for data encryption; further, the first processing unit is configured to output a fingerprint feature captured by the first fingerprint capture device, a predetermined operation mode of the final feature value λ F , and a chaotic encryption unit Encrypted data; a decryption device having a second fingerprint capture device, an identity recognition unit, a data transmission portion, and a chaotic decryption unit; the second fingerprint capture device is configured to capture the user a fingerprint feature of the finger; the identification unit is configured to identify the identity of the user by comparing the fingerprint feature captured by the first fingerprint capture device and the second fingerprint capture device; the data transmission portion An external device is configured to input the ECG signal data into the chaotic decryption unit; and the chaotic decryption unit has a second processing unit and a chaotic decryption unit, wherein the second processing unit is configured to receive the output of the first processing device a fingerprint feature captured by the first fingerprint capture device, a predetermined operation mode of the final feature value λ F , and a data encrypted by the chaotic encryption unit, and the chaotic decryption unit includes an ECG feature value extraction and graph and text Decrypting the required chaotic function, and the chaotic decryption unit transfers the ECG signal waveform to the phase plane via phase space reconstruction to obtain four ECG signal values λ 1 ~ λ 4 , and After the predetermined operation, a final eigenvalue λ F is obtained as the initial value of the chaotic function, thereby generating a chaotic sequence required for the image and text decryption, and decrypting the encrypted data. 如申請專利範圍第1項所述之以指紋與混沌心電訊號為基礎之個人資料加/解密系統,其中,該外部裝置係為一USB隨身碟。 For example, the fingerprint data and the chaotic ECG signal-based personal data encryption/decryption system described in claim 1 of the patent application, wherein the external device is a USB flash drive.
TW102121398A 2013-06-17 2013-06-17 Fingerprint and Chaos ECG signal based on the personal data encryption / decryption system TWI492089B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102121398A TWI492089B (en) 2013-06-17 2013-06-17 Fingerprint and Chaos ECG signal based on the personal data encryption / decryption system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102121398A TWI492089B (en) 2013-06-17 2013-06-17 Fingerprint and Chaos ECG signal based on the personal data encryption / decryption system

Publications (2)

Publication Number Publication Date
TW201500958A true TW201500958A (en) 2015-01-01
TWI492089B TWI492089B (en) 2015-07-11

Family

ID=52717952

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102121398A TWI492089B (en) 2013-06-17 2013-06-17 Fingerprint and Chaos ECG signal based on the personal data encryption / decryption system

Country Status (1)

Country Link
TW (1) TWI492089B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106326712A (en) * 2016-08-31 2017-01-11 维沃移动通信有限公司 Method for processing pictures and mobile terminal
CN106644918A (en) * 2016-10-21 2017-05-10 天津大学 Electrochemical noise data analysis method based on chaotic phase space reconstruction theory
CN107392970A (en) * 2017-07-12 2017-11-24 湖北民族学院 A kind of digital image encryption algorithm based on bit plane and high-dimension chaotic system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7277752B2 (en) * 2002-06-11 2007-10-02 Matos Jeffrey A System for cardiac resuscitation
CN101169810A (en) * 2006-10-27 2008-04-30 环达电脑(上海)有限公司 Electronic device possessing fingerprint identification system and its usage method
TWM339162U (en) * 2007-09-28 2008-08-21 Jin-Feng Lin Chaos encryption device based on different degrees of mobile healthcare

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106326712A (en) * 2016-08-31 2017-01-11 维沃移动通信有限公司 Method for processing pictures and mobile terminal
CN106644918A (en) * 2016-10-21 2017-05-10 天津大学 Electrochemical noise data analysis method based on chaotic phase space reconstruction theory
CN107392970A (en) * 2017-07-12 2017-11-24 湖北民族学院 A kind of digital image encryption algorithm based on bit plane and high-dimension chaotic system
CN107392970B (en) * 2017-07-12 2020-12-04 湖北民族学院 Digital image encryption method based on bit plane and high-dimensional chaotic system

Also Published As

Publication number Publication date
TWI492089B (en) 2015-07-11

Similar Documents

Publication Publication Date Title
Aparna et al. An efficient medical image watermarking technique in E-healthcare application using hybridization of compression and cryptography algorithm
Guo et al. Towards efficient privacy-preserving face recognition in the cloud
Abuadbba et al. Walsh–Hadamard-based 3-D steganography for protecting sensitive information in point-of-care
CN104408356B (en) A kind of fingerprint verification method and system, fingerprint template encryption device
CN103606047A (en) Password management system
Deng et al. A digital image encryption algorithm based on chaotic mapping
CN110519037B (en) Image encryption method of hyperchaotic pseudorandom sequence
Liji et al. Integer-to-integer wavelet transform based ECG steganography for securing patient confidential information
TWI492089B (en) Fingerprint and Chaos ECG signal based on the personal data encryption / decryption system
CN105095719A (en) Fingerprint unlocking method and system and electronic device provided with system
CN106357608B (en) A kind of private data encryption and decryption method towards personal medical treatment &amp; health data
CN105337742B (en) LFSR file encryption and decryption method based on facial image feature and GPS information
Bhatnagar et al. A novel chaos-based secure transmission of biometric data
Chen et al. A novel preprocessing method for solving long sequence problem in android malware detection
Murillo-Escobar et al. Secure access microcontroller system based on fingerprint template with hyperchaotic encryption
Sharma et al. Zero distortion technique: an approach to image steganography using strength of indexed based chaotic sequence
Banday et al. Securing medical images via a texture and chaotic key framework
CN115914488B (en) Medical image identity confusion sharing method, system, terminal equipment and storage medium
WO2017207998A1 (en) Method of associating a person with a digital object
Kumar et al. A cellular automata-based healthcare data encryption technique for IoT networks
Alruban et al. Biometrically linking document leakage to the individuals responsible
Sufi et al. A new feature detection mechanism and its application in secured ECG transmission with noise masking
CN106780668B (en) Method, system and mobile device for realizing visual display of user personal information data label
Katuk et al. An enhanced block pre-processing of PRESENT algorithm for fingerprint template encryption in the internet of things environment
CN106570362B (en) Password input method and device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees