TW201445163A - Positioning modules, positioning devices and methods for satellite positioning thereof - Google Patents

Positioning modules, positioning devices and methods for satellite positioning thereof Download PDF

Info

Publication number
TW201445163A
TW201445163A TW102138053A TW102138053A TW201445163A TW 201445163 A TW201445163 A TW 201445163A TW 102138053 A TW102138053 A TW 102138053A TW 102138053 A TW102138053 A TW 102138053A TW 201445163 A TW201445163 A TW 201445163A
Authority
TW
Taiwan
Prior art keywords
satellite
positioning
module
kalman filter
state vector
Prior art date
Application number
TW102138053A
Other languages
Chinese (zh)
Other versions
TWI528045B (en
Inventor
Juan Gou
Jing-Hua Zou
wei-hua Zhang
Original Assignee
O2Micro Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by O2Micro Inc filed Critical O2Micro Inc
Publication of TW201445163A publication Critical patent/TW201445163A/en
Application granted granted Critical
Publication of TWI528045B publication Critical patent/TWI528045B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/33Multimode operation in different systems which transmit time stamped messages, e.g. GPS/GLONASS

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

A positioning module includes a satellite selecting module selecting a positioning satellite from satellites of satellite navigation systems and outputting a frequency information and a pseudo range of the positioning satellite, and a Kalman filter coupled to the satellite selecting module receiving the frequency information and the pseudo range of the positioning satellite and calculating a positioning information of the positioning module basing on the Kalman filtering algorithm.

Description

定位模組、定位裝置和衛星定位方法 Positioning module, positioning device and satellite positioning method

本發明係關於一種衛星導航技術領域,特別是一種定位模組、定位裝置和衛星定位方法。 The invention relates to the field of satellite navigation technology, in particular to a positioning module, a positioning device and a satellite positioning method.

北斗衛星導航系統(BD Navigation Satellite System)是中國正在實施的自主研發、獨立運行的全球衛星導航系統,與美國的全球定位系統(Global Positioning System,GPS)、俄羅斯的格羅納斯(Glonass)衛星導航系統及歐盟的伽利略(Galileo)衛星導航系統並稱為全球四大衛星導航系統。 The BD Navigation Satellite System is a self-developed, independently operated global satellite navigation system being implemented in China, with the US Global Positioning System (GPS) and the Russian Glonass satellite. The navigation system and the European Union's Galileo satellite navigation system are also known as the world's four major satellite navigation systems.

現有的接收機,只能夠支援上述一種衛星導航系統,即,只能根據接收到的同一衛星導航系統的衛星信號進行定位,尚未實現能夠支援兩種或兩種以上的衛星導航系統的接收機。 The existing receiver can only support one type of satellite navigation system described above, that is, it can only perform positioning based on the satellite signals of the same satellite navigation system received, and a receiver capable of supporting two or more satellite navigation systems has not been realized.

本發明提供了一種定位模組,包括:一衛星選擇模組,從多個衛星導航系統的多個衛星中選擇一定位衛星,並輸出該定位衛星的一頻率資訊和一偽距;以及一卡爾曼濾波器,耦接該衛星選擇模組,接收該定位衛星的該頻率資訊和該偽距,並基於一卡爾曼濾波演算法計算該定位模組的一定位資訊。 The invention provides a positioning module, comprising: a satellite selection module, selecting a positioning satellite from a plurality of satellites of a plurality of satellite navigation systems, and outputting a frequency information and a pseudorange of the positioning satellite; and a Karl The Manchester filter is coupled to the satellite selection module, receives the frequency information of the positioning satellite and the pseudorange, and calculates a positioning information of the positioning module based on a Kalman filter algorithm.

本發明還提供了一種定位裝置,包括:一射頻模組,將接收到的一衛星信號與一本地載波信號混頻以產生一中頻信號,其中,該衛星信號來自多個衛星導航系統中的一衛星;一基帶信號處理模組,處理接收到的該中頻信號,以計算該衛星的一頻率資訊和一偽距並對接收到的 該衛星信號進行分類;以及一定位模組,耦接該基帶信號處理模組,根據該衛星信號的分類從多個衛星中選擇一定位衛星,並根據選擇的該定位衛星的一頻率資訊和一該偽距,基於一卡爾曼濾波演算法計算該定位裝置的一定位資訊。 The present invention also provides a positioning apparatus comprising: a radio frequency module, mixing a received satellite signal with a local carrier signal to generate an intermediate frequency signal, wherein the satellite signal is from a plurality of satellite navigation systems a satellite; a baseband signal processing module that processes the received intermediate frequency signal to calculate a frequency information of the satellite and a pseudorange and receives the received signal The satellite signal is classified; and a positioning module is coupled to the baseband signal processing module, and selects a positioning satellite from the plurality of satellites according to the classification of the satellite signal, and according to the selected frequency information of the positioning satellite and The pseudorange calculates a positioning information of the positioning device based on a Kalman filter algorithm.

本發明還提供了一種衛星定位方法,包括:接收一衛星信號,其中該衛星信號來自多個衛星導航系統中的一衛星;透過對該衛星信號的一捕獲和一跟蹤,獲取該衛星的一頻率資訊和一偽距並實現對該衛星信號的一分類;根據該衛星的該分類,從多個衛星中選擇一定位衛星;以及根據該定位衛星的一頻率資訊和一偽距,基於一卡爾曼濾波演算法計算一定位裝置的一定位資訊。 The invention also provides a satellite positioning method, comprising: receiving a satellite signal, wherein the satellite signal is from a satellite of a plurality of satellite navigation systems; obtaining a frequency of the satellite by capturing and tracking the satellite signal Information and a pseudorange and a classification of the satellite signal; selecting a positioning satellite from the plurality of satellites according to the classification of the satellite; and based on a frequency information and a pseudorange of the positioning satellite, based on a Kalman The filtering algorithm calculates a positioning information of a positioning device.

本發明提供的定位模組、定位裝置和衛星定位方法,在衛星導航系統中基於卡爾曼濾波演算法進行定位解算,不僅實現了對多種衛星導航系統的支援,還能夠提高定位精度。 The positioning module, the positioning device and the satellite positioning method provided by the invention are based on the Kalman filter algorithm for positioning and solving in the satellite navigation system, which not only realizes support for a plurality of satellite navigation systems, but also improves positioning accuracy.

S10-S20‧‧‧步驟 S10-S20‧‧‧Steps

S11-S17‧‧‧步驟 S11-S17‧‧‧Steps

S171-S174‧‧‧步驟 S171-S174‧‧‧Steps

10‧‧‧檢測模組 10‧‧‧Test module

20‧‧‧計算模組 20‧‧‧Computation Module

21‧‧‧分配單元 21‧‧‧Distribution unit

22‧‧‧捕獲追踪單元 22‧‧‧ Capture Tracking Unit

23‧‧‧計算單元 23‧‧‧Computation unit

500‧‧‧第二獲得單元 500‧‧‧Second acquisition unit

502‧‧‧衛星導航系統 502‧‧‧ satellite navigation system

5021-502J‧‧‧衛星 5021-502J‧‧‧ Satellite

504‧‧‧衛星導航系統 504‧‧‧Satellite navigation system

5041-504K‧‧‧衛星 5041-504K‧‧‧ Satellite

506‧‧‧天線 506‧‧‧Antenna

508‧‧‧射頻模組 508‧‧‧RF Module

510‧‧‧基帶信號處理模組 510‧‧‧Baseband signal processing module

512‧‧‧定位模組 512‧‧‧ Positioning Module

514‧‧‧使用者應用模組 514‧‧‧User Application Module

602‧‧‧衛星選擇模組 602‧‧‧ satellite selection module

604‧‧‧卡爾曼濾波器 604‧‧‧ Kalman filter

612‧‧‧初始狀態計算模組 612‧‧‧Initial state calculation module

614‧‧‧卡爾曼濾波計算模組 614‧‧‧Kalman Filter Computing Module

702-714‧‧‧步驟 702-714‧‧‧Steps

702-714‧‧‧步驟 702-714‧‧‧Steps

802-808‧‧‧步驟 802-808‧‧‧Steps

910‧‧‧軌跡 910‧‧‧Track

920‧‧‧軌跡 920‧‧‧Track

以下結合附圖和具體實施例對本發明的技術方法進行詳細的描述,以使本發明的特徵和優點更為明顯。其中:圖1所示為根據本發明一實施例的衛星定位方法的流程圖。 The technical method of the present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments to make the features and advantages of the present invention more obvious. Wherein: FIG. 1 is a flow chart of a satellite positioning method according to an embodiment of the invention.

圖2所示為根據本發明另一實施例的衛星定位方法的流程圖。 2 is a flow chart showing a satellite positioning method according to another embodiment of the present invention.

圖3所示為根據本發明一實施例的圖2中雙模式衛星定位方法的流程圖。 3 is a flow chart of the dual mode satellite positioning method of FIG. 2, in accordance with an embodiment of the present invention.

圖4所示為根據本發明一實施例的接收機的結構示意圖。 FIG. 4 is a schematic structural diagram of a receiver according to an embodiment of the present invention.

圖5所示為根據本發明一實施例的定位裝置的結構示意圖。 FIG. 5 is a schematic structural view of a positioning device according to an embodiment of the invention.

圖6所示為根據本發明一實施例的定位裝置內的定位模組的結構示意圖。 FIG. 6 is a schematic structural diagram of a positioning module in a positioning device according to an embodiment of the invention.

圖7所示為根據本發明一實施例的導航定位系統中基於卡爾曼濾波演算法進行定位的方法流程圖。 FIG. 7 is a flow chart showing a method for positioning based on a Kalman filter algorithm in a navigation and positioning system according to an embodiment of the invention.

圖8所示為根據本發明一實施例的衛星定位方法的流程圖。 FIG. 8 is a flow chart showing a satellite positioning method according to an embodiment of the present invention.

圖9所示為基於卡爾曼濾波演算法,單全球定位系統導航系統與雙 導航系統混合定位的軌跡對比示意圖。 Figure 9 shows a Kalman filter algorithm based on a single global positioning system navigation system with dual A schematic diagram of the trajectory comparison of the navigation system hybrid positioning.

以下將對本發明的實施例給出詳細的說明。雖然本發明將結合實施例進行闡述,但應理解這並非意指將本發明限定於這些實施例。相反地,本發明意在涵蓋由後附申請專利範圍所界定的本發明精神和範圍內所定義的各種變化、修改和均等物。 A detailed description of the embodiments of the present invention will be given below. While the invention will be described in conjunction with the embodiments, it is understood that the invention is not limited to the embodiments. Rather, the invention is to cover various modifications, equivalents, and equivalents of the invention as defined by the scope of the appended claims.

此外,在以下對本發明的詳細描述中,為了提供針對本發明的完全的理解,提供了大量的具體細節。然而,於本技術領域中具有通常知識者將理解,沒有這些具體細節,本發明同樣可以實施。在另外的一些實例中,對於大家熟知的方法、程序、元件和電路未作詳細描述,以便於凸顯本發明之主旨。 In addition, in the following detailed description of the embodiments of the invention However, it will be understood by those of ordinary skill in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail in order to facilitate the invention.

本發明實施例的衛星導航系統包括北斗衛星導航系統、全球定位系統、格羅納斯衛星導航系統以及伽利略衛星導航系統。每個衛星導航系統包括若干個衛星。在本發明實施例中,將接收機能夠接收到衛星信號的衛星稱為定位衛星。以北斗衛星導航系統為例,北斗衛星導航系統包括九顆北斗衛星,在2020年的規劃中,北斗衛星導航系統將具有30顆可用衛星。如果接收機能夠接收到六顆北斗衛星的北斗衛星信號,則將此六顆北斗衛星稱為北斗定位衛星。 The satellite navigation system of the embodiment of the invention includes a Beidou satellite navigation system, a global positioning system, a GLONAS satellite navigation system, and a Galileo satellite navigation system. Each satellite navigation system includes several satellites. In the embodiment of the present invention, a satellite capable of receiving a satellite signal by a receiver is referred to as a positioning satellite. Taking the Beidou satellite navigation system as an example, the Beidou satellite navigation system includes nine Beidou satellites. In the 2020 plan, the Beidou satellite navigation system will have 30 available satellites. If the receiver can receive the Beidou satellite signals of the six Beidou satellites, the six Beidou satellites are called Beidou positioning satellites.

圖1所示為根據本發明一實施例提供的衛星定位方法的流程圖。 FIG. 1 is a flow chart of a satellite positioning method according to an embodiment of the invention.

在步驟S10中,檢測接收機接收到的衛星信號是否來自不同的n個衛星導航系統,其中,n為大於1的整數。 In step S10, it is detected whether the satellite signals received by the receiver are from different n satellite navigation systems, where n is an integer greater than one.

在步驟S20中,若接收到來自一個以上的衛星導航系統的衛星信號,則根據各衛星信號對應的導航系統中的定位衛星的衛星資訊計算接收機的定位資訊及接收機相對於各衛星導航系統的時脈偏差對應的位移量。 In step S20, if satellite signals from more than one satellite navigation system are received, the positioning information of the receiver and the receiver are compared with each satellite navigation system according to the satellite information of the positioning satellites in the navigation system corresponding to each satellite signal. The amount of displacement corresponding to the clock deviation.

其中,定位衛星的衛星資訊具體可包括定位衛星的偽距、座標資訊、頻率資訊、多普勒、星曆及速度資訊等。接收機的定位資訊具體可包括位置資訊和速度資訊。 The satellite information of the positioning satellite may specifically include pseudo-distance, coordinate information, frequency information, Doppler, ephemeris and speed information of the positioning satellite. The positioning information of the receiver may specifically include location information and speed information.

圖2所示為根據本發明另一實施例提供的衛星定位方法的流程圖,本實施例以接收到北斗衛星導航系統的衛星信號和全球定位系統的衛星信號為例進行說明,即,接收機接收到了全球定位系統衛星信號和北斗衛星信號。 FIG. 2 is a flowchart of a satellite positioning method according to another embodiment of the present invention. The embodiment is described by taking a satellite signal of a Beidou satellite navigation system and a satellite signal of a global positioning system as an example, that is, a receiver. Received GPS satellite signals and Beidou satellite signals.

在步驟S11中,判斷是否接收到全球定位系統衛星信號,是則執行步驟S12,否則執行步驟S13。 In step S11, it is judged whether or not the global positioning system satellite signal is received, if yes, step S12 is performed, otherwise step S13 is performed.

在步驟S12中,判斷是否接收到北斗衛星信號,是則執行步驟S17,否則執行步驟S15。 In step S12, it is determined whether the Beidou satellite signal is received, if yes, step S17 is performed, otherwise step S15 is performed.

在步驟S13中,判斷是否接收到北斗衛星信號,是則執行步驟S16,否則執行步驟S14。 In step S13, it is determined whether the Beidou satellite signal is received, if yes, step S16 is performed, otherwise step S14 is performed.

在步驟S14中,不能夠實現定位,繼續檢測是否接收到全球定位系統衛星信號。 In step S14, the positioning cannot be achieved, and it is continuously detected whether or not the global positioning system satellite signal is received.

在步驟S15中,利用全球定位系統衛星信號對接收機進行定位。 In step S15, the receiver is positioned using the global positioning system satellite signal.

在步驟S16中,利用北斗衛星信號對接收機進行定位。 In step S16, the receiver is positioned using the Beidou satellite signal.

在步驟S17中,利用全球定位系統衛星信號和北斗衛星信號對接收機進行定位。 In step S17, the receiver is positioned using the global positioning system satellite signal and the Beidou satellite signal.

在上述步驟中,以先判斷是否接收到全球定位系統衛星信號為例進行說明。事實上,判斷是否接收到某一衛星信號的順序不限於此,本技術領域中具有通常知識者可以理解,也可先判斷接收到的信號是否為北斗衛星信號,還可先判斷接收到的衛星信號是否為伽利略衛星信號或格羅納斯衛星信號。 In the above steps, an example of determining whether or not the global positioning system satellite signal is received is described. In fact, the order of judging whether a certain satellite signal is received is not limited thereto, and those skilled in the art can understand that it is also possible to first determine whether the received signal is a Beidou satellite signal, and also determine the received satellite first. Whether the signal is a Galileo satellite signal or a Girona satellite signal.

由於北斗衛星信號、全球定位系統衛星信號和伽利略衛星信號均基於碼分多址(Code Division Multiple Access,CDMA)技術,因此在步驟S11、步驟S12和步驟S13中,接收機可透過I支路普通測距碼識別接收到的衛星信號是北斗衛星信號還是全球定位系統衛星信號,也可透過I支路普通測距碼識別伽利略衛星信號。由於格羅納斯衛星信號基於頻分多址(Frequency Division Multiple Access,FDMA) 技術,接收機可透過頻率識別是否為格羅納斯衛星信號。因此衛星導航系統可透過頻率資訊區分,衛星導航系統中的衛星可透過碼資訊區分。 Since the Beidou satellite signal, the global positioning system satellite signal, and the Galileo satellite signal are all based on Code Division Multiple Access (CDMA) technology, the receiver can pass through the I branch in steps S11, S12, and S13. The ranging code identifies whether the received satellite signal is a Beidou satellite signal or a global positioning system satellite signal, and the Galileo satellite signal can also be identified through the I branch normal ranging code. Because the GLONAS satellite signal is based on Frequency Division Multiple Access (FDMA) Technology, the receiver can identify whether it is a Girona satellite signal through frequency. Therefore, satellite navigation systems can be distinguished by frequency information, and satellites in satellite navigation systems can be distinguished by code information.

具體而言,表示北斗衛星信號和全球定位系統衛星信號的方程式如下:S j =AC j D j cos(2πf t+θ j ) Specifically, the equations representing the Beidou satellite signal and the global positioning system satellite signal are as follows: S j = AC j D j cos(2 πf t + θ j )

此方程式也適用於伽利略衛星信號。其中A表示調變於I支路的普通測距碼振幅;C表示I支路普通測距碼;D表示I支路上的導航電文資料;f表示衛星信號的載波頻率;t表示衛星信號的發射時間;j表示衛星的ID;Sj表示衛星ID為j的衛星所發射的信號;θ表示各衛星信號的初始載波相位,各個衛星的θ值可能不同。在衛星側,此方程式中的各個參數均為已知;在接收機側,需要透過信號捕獲和跟蹤獲知各個參數。此外,各個衛星導航系統的f值各不相同,但由於北斗衛星信號、全球定位系統衛星信號和伽利略衛星信號均基於碼分多址技術,因此三種系統內的同一信號段的發射頻率是一樣的。而格羅納斯衛星信號是基於頻分多址技術,因此格羅納斯衛星導航系統內的各衛星是透過不同的發射頻率區分的。 This equation also applies to Galileo satellite signals. Where A denotes the amplitude of the ordinary ranging code modulated in the I branch; C denotes the ordinary ranging code of the I branch; D denotes the navigation message data on the I branch; f denotes the carrier frequency of the satellite signal; t denotes the emission of the satellite signal Time; j represents the ID of the satellite; S j represents the signal transmitted by the satellite with satellite ID j; θ represents the initial carrier phase of each satellite signal, and the θ values of the respective satellites may be different. On the satellite side, each parameter in this equation is known; on the receiver side, each parameter needs to be known through signal acquisition and tracking. In addition, the f values of different satellite navigation systems are different, but since the Beidou satellite signal, the global positioning system satellite signal and the Galileo satellite signal are all based on code division multiple access technology, the transmission frequency of the same signal segment in the three systems is the same. . The Girona satellite signal is based on frequency division multiple access technology, so the satellites in the GLONAS satellite navigation system are distinguished by different transmission frequencies.

每一顆北斗衛星、全球定位系統衛星和伽利略衛星都具有唯一的偽隨機數(pseudo-random number,PRN)產生規則,因此可透過偽隨機數序(方程式S j =AC j D j cos(2πf t+θ j )中的C)識別具體是哪一種衛星信號。對接收機而言,可透過重建衛星的偽隨機數序以搜索和識別當前可用的衛星信號。重建過程具體為如下:偽隨機數序的產生規則方法均透過各衛星導航系統的介面控制檔(Interface Control Document,ICD)公佈,因此,接收機需要搜索衛星可能的接收頻率和偽隨機數資訊,在接收到一顆衛星的衛星信號後,可得到I支路上的導航電文資料D和載波相位θ,並且基帶通道會產生和此顆衛星一致的偽隨機數序,並嘗試對此衛星進行捕獲和跟蹤。如果捕獲跟蹤成功,則指示當前的輸入信號中存在這顆衛星信號。此外,只有當本地重建的偽隨機數與輸入信號的偽隨機數一致時,碼分多址出現相關峰,因此,可透過設置相應的捕獲臨限值檢測碼分多址的相關峰,以判斷是否捕獲成 功。 Each Beidou satellite, Global Positioning System satellite, and Galileo satellite has a unique pseudo-random number (PRN) generation rule, so it can be pseudo-random number order (equation S j = AC j D j cos (2) C) in πf t + θ j ) identifies which satellite signal is specifically. For the receiver, the pseudo-random number sequence of the reconstructed satellite can be used to search for and identify the currently available satellite signals. The reconstruction process is specifically as follows: the pseudo-random number order generation rule method is published through the interface control document (ICD) of each satellite navigation system, therefore, the receiver needs to search for possible satellite receiving frequency and pseudo-random number information. After receiving the satellite signal of one satellite, the navigation message data D and the carrier phase θ of the I branch can be obtained, and the baseband channel generates a pseudo-random number sequence consistent with the satellite, and attempts to capture the satellite and track. If the acquisition tracking is successful, it indicates that the satellite signal is present in the current input signal. In addition, the correlation peak appears in the code division multiple access only when the pseudo-random number reconstructed locally is consistent with the pseudo-random number of the input signal. Therefore, the correlation peak of the code division multiple access can be detected by setting the corresponding capture threshold to Determine if the capture is successful.

衛星一般會廣播兩種測距碼,分別載入在衛星信號的I支路和Q支路上。以北斗衛星導航系統為例,其中I支路為民用普通測距碼;Q支路為專業領域(例如,軍用)精密測距碼,需要得到授權,接收機才能接收。 Satellites typically broadcast two ranging codes, which are respectively loaded on the I and Q branches of the satellite signal. Taking the Beidou satellite navigation system as an example, the I branch is a civilian common ranging code; the Q branch is a professional area (for example, military) precision ranging code, which needs to be authorized and the receiver can receive.

對於步驟S15和步驟S16,即只接收到一個衛星導航系統的衛星信號時,例如,只接收到了北斗衛星信號,接收機透過下述方程式(1-1)至(1-n)確定其位置資訊和相對於北斗衛星導航系統的時脈偏差對應的位移量。 For step S15 and step S16, when only satellite signals of one satellite navigation system are received, for example, only the Beidou satellite signal is received, the receiver determines its position information by the following equations (1-1) to (1-n) The amount of displacement corresponding to the clock deviation of the Beidou satellite navigation system.

其中,ρ 1~ρ n 分別表示n個北斗定位衛星的偽距,可透過跟蹤環路測量得到;(x i ,y i ,z i )表示各個北斗定位衛星在定位時刻的座標資訊,其中1 i n,座標資訊能夠透過定位衛星的軌道參數和定位時間計算得到,而軌道參數是在衛星信號跟蹤鎖定之後,透過解調I支路上的導航電文資料D,並根據衛星導航系統的介面控制檔解析和收集得到的。此外,(x i ,y i ,z i )是ECEF座標系中的座標,ECEF座標系以地球質心為原點,Z軸向北沿地球自轉軸方向,X軸指向經緯度的(0,0)位置,右手系Y軸指向90度經線;b u 表示接收機相對於北斗衛星導航系統的時脈偏差對應的位移量;(x u ,y u ,z u )表示接收機的位置資訊。因此,存在四個未知量(x u ,y u ,z u )和b u ,至少需要四顆定位衛星的參數就可進行定位解算。 Where ρ 1 ~ ρ n respectively represent the pseudoranges of n Beidou positioning satellites, which can be measured through the tracking loop; ( x i , y i , z i ) represent the coordinate information of each Beidou positioning satellite at the time of positioning, where 1 i n , coordinate information can be calculated by the orbital parameters and positioning time of the positioning satellite, and the orbital parameter is after demodulating the navigation message data D on the I branch after the satellite signal tracking and locking, and according to the interface control file of the satellite navigation system And collected. In addition, ( x i , y i , z i ) is the coordinate in the ECEF coordinate system. The ECEF coordinate is based on the Earth's centroid, the Z axis is northward along the Earth's rotation axis, and the X axis is pointing to the latitude and longitude (0,0). Position, the Y-axis of the right hand is pointing to the 90-degree warp; b u is the displacement corresponding to the clock deviation of the Beidou satellite navigation system; ( x u , y u , z u ) is the position information of the receiver. Therefore, there are four unknowns ( x u , y u , z u ) and b u , and at least four positioning satellite parameters are needed to perform the positioning solution.

圖3所示為根據本發明一實施例的雙模式衛星定位方法的流程圖,即圖2中步驟S17中透過北斗衛星信號和全球定位系統衛星信號對接收機進行定位的方法。 FIG. 3 is a flow chart showing a method for positioning a dual mode satellite according to an embodiment of the present invention, that is, a method for positioning a receiver through a Beidou satellite signal and a global positioning system satellite signal in step S17 of FIG.

在步驟S171中,接收機為定位衛星分配資源。 In step S171, the receiver allocates resources for the positioning satellite.

本步驟中,接收機根據接收到衛星信號的定位衛星的 可見性、性能以及所處環境等因素為其分配資源。資源包括硬體方面的捕獲通道、跟蹤通道等,也包括軟體方面的中央處理器系統資源等。 In this step, the receiver is based on the positioning satellite that receives the satellite signal. Resources such as visibility, performance, and the environment in which they are located. Resources include hardware acquisition channels, tracking channels, etc., as well as software for central processing system resources.

接收機根據接收到信號的定位衛星的星曆等資訊判斷其可見性,即定位衛星是在接收機的視線之上還是在視線之下,如果是在接收機的視線之上,則可為其分配資源,如果在視線之下則不給其分配資源或少分配資源。另外,對於各種衛星信號,由於其編碼格式不同,對其進行掃描所佔用的時間也不同,如果掃描時間太長則會降低定位效率。這些都是接收機綜合考慮的因素。 The receiver judges the visibility based on the ephemeris of the positioning satellite receiving the signal, that is, whether the positioning satellite is above or below the line of sight of the receiver, and if it is above the line of sight of the receiver, Allocate resources, if you are under the line of sight, do not allocate resources or allocate resources less. In addition, for various satellite signals, because of their different encoding formats, the time taken to scan them is different. If the scanning time is too long, the positioning efficiency is lowered. These are all factors that are considered by the receiver.

在步驟S172中,接收機對分配有資源的定位衛星進行跟蹤捕獲,以得到各定位衛星的衛星資訊,包括偽距、座標資訊、速度資訊及頻率資訊等。 In step S172, the receiver performs tracking and capture on the positioning satellites allocated with resources to obtain satellite information of each positioning satellite, including pseudorange, coordinate information, speed information and frequency information.

本步驟中,由於衛星的偽距測量值可能存在一定的誤差,因此在衛星誤差相當的情況下,增加參與定位的衛星數量能夠減少其它衛星測量誤差對定位結果的影響,即提高定位精度。綜合考慮計算量等多方面的因素,一般限制參與定位的衛星個數為12個。 In this step, since the pseudorange measurement of the satellite may have a certain error, increasing the number of satellites participating in the positioning can reduce the influence of other satellite measurement errors on the positioning result, that is, improve the positioning accuracy, when the satellite error is equivalent. Considering many factors such as the amount of calculation, the number of satellites participating in positioning is generally limited to 12.

在步驟S174中,接收機根據步驟S172得到的衛星資訊,計算接收機的位置資訊、速度資訊及接收機相對於各衛星導航系統的時脈偏差對應的位移量。 In step S174, the receiver calculates the position information, the speed information of the receiver, and the displacement amount corresponding to the clock deviation of the receiver with respect to each satellite navigation system based on the satellite information obtained in step S172.

對於步驟S174,接收機透過下列方程式計算其位置資訊和位移量,在接收機能夠接收到k個衛星導航系統的衛星信號的情況下: For step S174, the receiver calculates its position information and displacement by the following equation: in the case where the receiver can receive satellite signals of k satellite navigation systems:

其中,ρ 11~ρ 1m 分別表示第一衛星導航系統的m個定位衛星的偽距;ρ 21~ρ 2n 分別表示第二衛星導航系統的n個定位衛星的偽距;ρ k1~ρ kp 分別表示第k衛星導航系統的p個定位衛星的偽距,k為大於等於1的整數,其中,偽距能夠透過跟蹤環路測量得到;(x 1i ,y 1i ,z 1i )表示第一衛星導航系統的各定位衛星在定位時刻的座標資訊,其中1 i m;(x2j ,y 2j ,z 2j )表示第二衛星導航系統的各定位衛星在定位時刻的座標資訊,其中1 j n;(x ko ,y ko ,z ko )表示第k衛星導航系統的各定位衛星在定位時刻的座標資訊,其中1 o p,各座標資訊能夠透過相應的定位衛星的軌道參數和定位時間計算得到,且1 m+n+p 12;b u1表示接收機相對於第一衛星導航系統的時脈偏差對應的位移量,即本地時脈相對於衛星導航系統的時脈的時脈偏差對應的位移量;b u2表示接收機相對於第二衛星導航系統的時脈偏差對應的位移量;b uk 表示接收機相對於第k衛星導航系統的時脈偏差對應的位移量;(x u ,y u ,z u )表示接收機的位置資訊。 Where ρ 11 ~ ρ 1 m respectively represent pseudoranges of m positioning satellites of the first satellite navigation system; ρ 21 ~ ρ 2 n respectively represent pseudoranges of n positioning satellites of the second satellite navigation system; ρ k 1 ~ ρ kp denotes the pseudorange of p positioning satellites of the kth satellite navigation system, respectively, k is an integer greater than or equal to 1, wherein the pseudorange can be measured through the tracking loop; ( x 1 i , y 1 i , z 1 i ) indicates coordinate information of each positioning satellite of the first satellite navigation system at the time of positioning, where 1 i m ;(x 2 j , y 2 j , z 2 j ) represents coordinate information of each positioning satellite of the second satellite navigation system at the time of positioning, wherein 1 j n ; ( x ko , y ko , z ko ) represents coordinate information of each positioning satellite of the kth satellite navigation system at the time of positioning, where 1 o p , each coordinate information can be calculated through the orbital parameters and positioning time of the corresponding positioning satellite, and 1 m + n + p 12; b u 1 represents the displacement amount corresponding to the clock deviation of the receiver relative to the first satellite navigation system, that is, the displacement amount corresponding to the clock deviation of the local clock relative to the clock of the satellite navigation system; b u 2 indicates reception The amount of displacement corresponding to the clock deviation of the second satellite navigation system; b uk represents the displacement corresponding to the clock deviation of the receiver relative to the kth satellite navigation system; ( x u , y u , z u ) indicates reception Machine location information.

由於本實施例以接收到來自兩個衛星導航系統的衛星信號為例進行說明,即接收到了北斗衛星信號和全球定位系統衛星信號。因此,上述方程式中k=2,只需要方程式(2-11)到(2-2n)就可計算接收機的位置資訊。這種情況下,存在五個未知量(x u ,y u ,z u )、b u1b u2,至少需要五顆定位衛星的參數就可進行定位解算。 Since the present embodiment is described by taking satellite signals from two satellite navigation systems as an example, the Beidou satellite signal and the global positioning system satellite signal are received. Therefore, in the above equation, k=2, only the equations (2-11) to (2-2n) are needed to calculate the position information of the receiver. In this case, there are five unknowns ( x u , y u , z u ), b u 1 and b u 2 , and at least five positioning satellite parameters are required to perform the positioning solution.

可以看出,與接收到來自一個衛星導航系統的衛星信號相比,當接收到來自兩個衛星導航系統的衛星信號時,需要根據增加的衛星導航系統的相對於接收機的時脈偏差對應的位移量,對計算出的定位資訊進行校正,提高定位精度。依次類推,當接收機接收到三個或更多衛星導航系統的衛星信號時,需要增加相應的衛星導航系統相對於 接收機的時脈偏差對應的位移量,以計算接收機的位置資訊。而且,本實施例提供的方法不僅能夠同時支援北斗衛星導航系統和全球定位系統,還能夠支援格羅納斯衛星導航系統和伽利略衛星導航系統,即,能夠支援上述衛星導航系統中的任意一個或多個。 It can be seen that when receiving satellite signals from two satellite navigation systems, it is necessary to correspond to the clock deviation of the satellite navigation system relative to the receiver when compared to receiving satellite signals from a satellite navigation system. The displacement amount is corrected for the calculated positioning information to improve the positioning accuracy. And so on, when the receiver receives satellite signals from three or more satellite navigation systems, it is necessary to increase the corresponding satellite navigation system relative to The displacement amount corresponding to the clock deviation of the receiver is used to calculate the position information of the receiver. Moreover, the method provided by the embodiment can not only support the Beidou satellite navigation system and the global positioning system, but also support the GLONAS satellite navigation system and the Galileo satellite navigation system, that is, can support any one of the above satellite navigation systems or Multiple.

綜上所述,上述方程式(2-11)到(2-kp)還可以下述方程式(2)表示: In summary, the above equations (2-11) to (2-kp) can also be expressed by the following equation (2):

其中,ρ ij 表示第i衛星導航系統的第j定位衛星的偽距;b ui 表示與接收機相對於第i衛星導航系統的時脈偏差對應的位移量;(x ij ,y ij ,z ij )表示第i衛星導航系統的第j定位衛星在定位時刻的座標資訊;(x u ,y u ,z u )表示接收機在定位時刻的位置資訊。 Where ρ ij represents the pseudorange of the jth positioning satellite of the i-th satellite navigation system; b ui represents the displacement corresponding to the clock deviation of the receiver relative to the i-th satellite navigation system; ( x ij , y ij , z ij ) indicates coordinate information of the jth positioning satellite of the i-th satellite navigation system at the time of positioning; ( x u , y u , z u ) indicates position information of the receiver at the time of positioning.

此外,由於在有些地區,有些衛星導航系統的可用定位衛星數量較少,這樣如果只根據一種衛星信號進行定位,就會降低定位精度。而如果接收機能夠支援多種衛星導航系統,則可用以定位的衛星數量就增加許多,因此定位或測速精度就會大幅提升。 In addition, because in some areas, some satellite navigation systems have fewer satellites available for positioning, so if only one satellite signal is used for positioning, the positioning accuracy will be reduced. If the receiver can support multiple satellite navigation systems, the number of satellites available for positioning will increase a lot, so the positioning or speed measurement accuracy will be greatly improved.

另一方面,在步驟S174中,接收機的速度資訊根據以下方程式進行計算: On the other hand, in step S174, the speed information of the receiver is calculated according to the following equation:

其中,f ij 表示接收機對第i衛星導航系統的第j定位衛星的接收頻率;f Tij 表示第i衛星導航系統的第j定位衛星的發射頻率,對於同一衛星導航系統中的衛星,可認為其發射頻率相同,例如,北斗衛星的B1信號發射頻率為1.561098e9赫茲,全球定位系統衛星的L1信號的發射頻率為1.57542e9赫茲,因此,若第i衛星導航系統包括3個衛星,則有f T11=f T12=f T13,本實施例將接收頻率和發射頻率並稱為頻率資訊;c表示光速,為2.99792458e8公尺/秒;(v ij_x ,v ij_y ,v ij_z )分別表示第i衛星導航系統的第j定位衛星在定位時刻的速度資訊,能夠透過衛星的星曆和當前時間計算得到;(a ij_x ,a ij_y ,a ij_z )分別表示第i衛星導航系統的第j定位衛星相對於接收機的方向向量,並且a ij_x =(x ij -x u )/ra ij_y =(y ij -y u )/ra ij_z =(z ij -z u )/r,其中,r為接收機相對於第i衛星導航系統的第j定位衛星的距離;(x ij ,y ij ,z ij )為第i衛星導航系統的第j定位衛星在定位時刻的位置資訊;(x u ,y u ,z u )為接收機在定位時刻的位置資訊;(,,)為接收機的速度資訊;為待求解的接收機的本地時脈變化率,即接收機的時脈變化速度,假定衛星導航系統的時脈是穩定的,則時脈變化率只與接收機的時脈有關,為接收機相對於衛星導航系統的時脈偏差的一階導數。 Where f ij represents the receiving frequency of the j-th positioning satellite of the i-th satellite navigation system by the receiver; f Tij represents the transmission frequency of the j-th positioning satellite of the i-th satellite navigation system, and for the satellite in the same satellite navigation system, it can be considered The transmission frequency is the same. For example, the Beidou satellite's B1 signal transmission frequency is 1.561098e9 Hz, and the global positioning system satellite's L1 signal has a transmission frequency of 1.57542e9 Hz. Therefore, if the i-th satellite navigation system includes three satellites, then f T 11 = f T 12 = f T 13 , in this embodiment, the receiving frequency and the transmitting frequency are referred to as frequency information; c is the speed of light, which is 2.97972458e8 meters/second; ( v ij_x , v ij_y , v ij_z ) respectively The speed information of the jth positioning satellite of the i-th satellite navigation system at the time of positioning can be calculated through the ephemeris and current time of the satellite; ( a ij_x , a ij_y , a ij_z ) respectively represent the j-th positioning of the i-th satellite navigation system The direction vector of the satellite relative to the receiver, and a ij_x = ( x ij - x u ) / r , a ij_y = ( y ij - y u ) / r , a ij_z = ( z ij - z u ) / r , where , r is the receiver relative to the ith satellite The distance of the jth positioning satellite of the navigation system; ( x ij , y ij , z ij ) is the position information of the jth positioning satellite of the i-th satellite navigation system at the positioning moment; ( x u , y u , z u ) is the reception Position information of the machine at the time of positioning; ( , , ) is the speed information of the receiver; For the local clock change rate of the receiver to be solved, ie the clock change speed of the receiver, assuming that the clock of the satellite navigation system is stable, the clock change rate is only related to the receiver's clock, which is the receiver. The first derivative of the clock deviation relative to the satellite navigation system.

透過上述方程式計算出接收機的位置資訊及速度資訊後,接收機就可輸出導航軌跡。 After calculating the position information and speed information of the receiver through the above equation, the receiver can output the navigation track.

進一步地,在步驟S172和步驟S174之間,還可包括步驟S173(圖3中未示出)。在步驟S173中,根據衛星資訊對各定位衛星進行識別,並剔除品質不符合要求的定位衛星,即跟蹤品質不符合要求的定位衛星的衛星資訊將不用於計算接收機的定位資訊。 Further, between step S172 and step S174, step S173 (not shown in FIG. 3) may be further included. In step S173, each positioning satellite is identified according to the satellite information, and the positioning satellite whose quality does not meet the requirements is removed, that is, the satellite information of the positioning satellite whose tracking quality is not satisfactory is not used to calculate the positioning information of the receiver.

在衛星的偽距和多普勒的測量誤差不大的情況下,增加參與定位的衛星數量能夠提高定位運算的精度。但是,如果衛星的跟蹤品質較差,即偽距和多普勒的測量誤差較大的情況下,增加參與定位的衛星反而會降低精度,這樣的衛星會被認為不符合設定要求,因此有必要對衛星的品質進行識別,剔除品質較差的冗餘衛星。識別冗餘衛星的方法可包括接收機自主完好性監控(Receiver Autonomous Integrity Monitoring,RAIM)方法,也可根據各接收機環路的輸出指標進行判別,例如,載波頻率的變化規律及偽距測量值的變化規律等,但不以此為限。 In the case that the pseudorange of the satellite and the measurement error of the Doppler are not large, increasing the number of satellites participating in the positioning can improve the accuracy of the positioning operation. However, if the tracking quality of the satellite is poor, that is, if the measurement error of the pseudorange and Doppler is large, increasing the satellite participating in the positioning will reduce the accuracy, and such a satellite will be considered not to meet the setting requirements, so it is necessary to The quality of the satellite is identified, and redundant satellites of poor quality are eliminated. The method for identifying a redundant satellite may include a Receiver Autonomous Integrity Monitoring (RAIM) method, or may be determined according to an output indicator of each receiver loop, for example, a variation of a carrier frequency and a pseudorange measurement value. The law of change, etc., but not limited to this.

圖4所示為根據本發明一實施例提供的接收機的結構示意圖。如圖4所示,接收機包括檢測模組10和計算模組20。 FIG. 4 is a schematic structural diagram of a receiver according to an embodiment of the invention. As shown in FIG. 4, the receiver includes a detection module 10 and a calculation module 20.

檢測模組10檢測是否接收到兩個或兩個以上的衛星導航系統的衛星信號。計算模組20耦接檢測模組10,在檢測模組10檢測到接收到兩個或兩個以上的衛星導航系統的衛星信號時,根據各衛星導航系統中的各個定位衛星的衛星資訊計算接收機的定位資訊和接收機相對於各衛星導航系統的時脈偏差對應的位移量。 The detection module 10 detects whether satellite signals of two or more satellite navigation systems are received. The computing module 20 is coupled to the detecting module 10, and when the detecting module 10 detects the satellite signals of two or more satellite navigation systems, it calculates and receives the satellite information according to each positioning satellite in each satellite navigation system. The positioning information of the machine and the displacement amount corresponding to the clock deviation of the receiver relative to each satellite navigation system.

進一步地,本發明實施例中的計算模組20可包括分配單元21、捕獲跟蹤單元22以及計算單元23。 Further, the computing module 20 in the embodiment of the present invention may include an allocating unit 21, an capturing and tracking unit 22, and a computing unit 23.

其中,分配單元21為各衛星導航系統的定位衛星分配資源。捕獲跟蹤單元22對由分配單元21分配有資源的定位衛星進行跟蹤捕獲,以得到各定位衛星的衛星資訊。衛星資訊具體可包括偽距、座標資訊、速度資訊和頻率資訊。計算單元23根據捕獲跟蹤單元22獲得的衛星資訊計算接收機的定位資訊以及與接收機相對於各衛星導航系統的時脈偏差對應的位移量。 Among them, the allocating unit 21 allocates resources for the positioning satellites of the satellite navigation systems. The acquisition tracking unit 22 performs tracking acquisition on the positioning satellites to which resources are allocated by the distribution unit 21 to obtain satellite information of each positioning satellite. Satellite information may include pseudoranges, coordinate information, speed information, and frequency information. The calculation unit 23 calculates the positioning information of the receiver and the displacement amount corresponding to the clock deviation of the receiver with respect to each satellite navigation system based on the satellite information obtained by the acquisition tracking unit 22.

具體地,本發明實施例的檢測模組10根據衛星信號I支路的普通測距碼判斷衛星信號是否為北斗衛星信號、全球定位系統衛星信號或者伽利略衛星信號,根據衛星信號的頻率判斷衛星信號是否為格羅納斯衛星信號。本發明實施例的計算單元23根據上述方程式(2-11)-(2-kp)計算接收機的位置資訊,根據上述方程式(3)計算接收機的速度資訊。 Specifically, the detecting module 10 of the embodiment of the present invention determines whether the satellite signal is a Beidou satellite signal, a global positioning system satellite signal, or a Galileo satellite signal according to the ordinary ranging code of the satellite signal I branch, and determines the satellite signal according to the frequency of the satellite signal. Whether it is the Girona satellite signal. The calculation unit 23 of the embodiment of the present invention calculates the position information of the receiver according to the above equations (2-11)-(2-kp), and calculates the speed information of the receiver according to the above equation (3).

此外,本發明實施例的計算模組20還可包括識別單元(圖4中未示出),根據所獲得的衛星資訊對各衛星導航系統中的定位衛星進行篩選,以使得跟蹤品質較差的定位衛星的衛星資訊將不用於計算接收機的定位資訊。 In addition, the computing module 20 of the embodiment of the present invention may further include an identifying unit (not shown in FIG. 4), and screening the positioning satellites in each satellite navigation system according to the obtained satellite information, so as to make the tracking quality poor positioning. The satellite information of the satellite will not be used to calculate the positioning information of the receiver.

本發明實施例提供的衛星定位方法和接收機,透過對接收到的衛星信號進行識別,並獲取衛星信號對應的各個衛星導航系統的衛星資訊,結合衛星導航系統的時脈相對於接收機的時脈偏差對應的位移量進行定位,不僅實現了對多種衛星導航系統的支援,還可提高定位精度。 The satellite positioning method and receiver provided by the embodiments of the present invention identify the received satellite signals and acquire satellite information of each satellite navigation system corresponding to the satellite signals, and combine the time of the satellite navigation system with respect to the receiver. Positioning of the displacement corresponding to the pulse deviation not only supports the support of various satellite navigation systems, but also improves the positioning accuracy.

圖5所示為根據本發明一實施例的多衛星導航系統的定位裝置500的結構示意圖。如圖5所示,定位裝置500(例如,接收機)包括天線506、射頻模組508、基帶信號處理模組510、定位模組512以及使用者應用模組514。在圖5所示的實施例中,定位裝置500接收來自衛星導航系統502和504中的衛星信號。其中衛星導航系統(例如,北斗衛星導航系統)502可包括衛星5021-502J(其中J為大於 1的正整數),衛星導航系統(例如,全球定位系統)504可包括衛星5041-504K(其中K為大於1的正整數)。儘管圖5中只示出了衛星導航系統502和504,本技術領域中具有通常知識者應當理解的是,本發明的實施例並不局限於兩個衛星導航系統,還可包含更多的衛星導航系統。 FIG. 5 is a schematic structural diagram of a positioning apparatus 500 of a multi-satellite navigation system according to an embodiment of the present invention. As shown in FIG. 5, the positioning device 500 (for example, a receiver) includes an antenna 506, a radio frequency module 508, a baseband signal processing module 510, a positioning module 512, and a user application module 514. In the embodiment shown in FIG. 5, positioning device 500 receives satellite signals from satellite navigation systems 502 and 504. Wherein the satellite navigation system (eg, Beidou satellite navigation system) 502 can include satellites 5021-502J (where J is greater than A positive integer of 1), the satellite navigation system (e.g., global positioning system) 504 can include satellites 5041-504K (where K is a positive integer greater than one). Although only satellite navigation systems 502 and 504 are shown in FIG. 5, it will be understood by those of ordinary skill in the art that embodiments of the present invention are not limited to two satellite navigation systems and may include more satellites. Navigation System.

在一個實施例中,定位裝置500透過天線506從多個衛星導航系統中接收衛星信號。例如,定位裝置500從衛星導航系統502中的衛星5021-502J和衛星導航系統504中的衛星5041-504K中接收衛星信號。在圖5所示的實施方式中,由於定位裝置500接收來自多個衛星導航系統的衛星信號,因此,天線506可配置為多模天線以接收不同頻率的衛星信號。 In one embodiment, positioning device 500 receives satellite signals from a plurality of satellite navigation systems via antenna 506. For example, positioning device 500 receives satellite signals from satellites 5021-502J in satellite navigation system 502 and satellites 5041-504K in satellite navigation system 504. In the embodiment shown in FIG. 5, since the positioning device 500 receives satellite signals from a plurality of satellite navigation systems, the antenna 506 can be configured as a multi-mode antenna to receive satellite signals of different frequencies.

射頻模組508透過天線506接收來自多個衛星導航系統的衛星信號,並將接收到的衛星信號與定位裝置500產生的本地載波信號混頻,以產生中頻信號。產生的中頻信號經過放大以及類比/數位轉換,被傳輸到基帶信號處理模組510。 The radio frequency module 508 receives satellite signals from a plurality of satellite navigation systems through the antenna 506, and mixes the received satellite signals with a local carrier signal generated by the positioning device 500 to generate an intermediate frequency signal. The generated intermediate frequency signal is transmitted to the baseband signal processing module 510 through amplification and analog/digital conversion.

基帶信號處理模組510對接收到的中頻信號進行捕獲、跟蹤和解碼,從而得到衛星的頻率資訊和偽距,並實現衛星的分類,即識別接收到的衛星信號來自於某個衛星定位系統中的某顆衛星。衛星的頻率資訊為定位裝置500在當前時刻接收到的衛星的頻率。對於基於頻分多址調變的導航系統的衛星信號,可透過頻率識別接收到的衛星信號。對於基於碼分多址調變的導航系統的衛星信號,可透過I支路普通測距碼識別接收到的衛星信號。 The baseband signal processing module 510 captures, tracks and decodes the received intermediate frequency signal, thereby obtaining the frequency information and pseudorange of the satellite, and realizing the classification of the satellite, that is, identifying the received satellite signal from a certain satellite positioning system. A satellite in the middle. The frequency information of the satellite is the frequency of the satellite received by the positioning device 500 at the current time. For satellite signals based on frequency division multiple access modulation navigation systems, the received satellite signals can be identified by frequency. For the satellite signal of the navigation system based on code division multiple access modulation, the received satellite signal can be identified by the I branch normal ranging code.

定位模組512接收來自基帶信號處理模組510的頻率資訊和偽距,並根據基帶信號處理模組510中對衛星進行的分類識別,從衛星5021-502J和5041-504K中選擇合適的定位衛星,並根據所選擇的定位衛星的頻率資訊和偽距,基於卡爾曼濾波演算法計算定位裝置500的定位資訊。隨後,定位裝置500的定位資訊被轉換成NMEA(The National Marine Electronics Association)的標準格式,被輸出到使用者應用模組514。在下文中,將對定位模組512進行詳細說明。 The positioning module 512 receives the frequency information and the pseudorange from the baseband signal processing module 510, and selects a suitable positioning satellite from the satellites 5021-502J and 5041-504K according to the classification and identification of the satellites in the baseband signal processing module 510. And calculating the positioning information of the positioning device 500 based on the Kalman filter algorithm according to the selected frequency information and pseudorange of the positioning satellite. Subsequently, the positioning information of the positioning device 500 is converted into a standard format of the NMEA (The National Marine Electronics Association), and is output to the user application module 514. Hereinafter, the positioning module 512 will be described in detail.

圖6所示為根據本發明一實施例的定位裝置500內的定位模組512的結構示意圖。圖6將結合圖5進行描述。如圖6所示,定位模組512包括衛星選擇模組602和卡爾曼濾波器604。衛星選擇模組602從多個衛星(例如,衛星5021-502J和5041-504K)中選擇定位衛星以使定位模組512進行定位解算,並輸出所選擇的定位衛星的頻率資訊和偽距。卡爾曼濾波器604耦接衛星選擇模組602耦接,接收定位衛星的頻率資訊和偽距,並基於卡爾曼濾波演算法計算定位裝置500的定位資訊。 FIG. 6 is a schematic structural diagram of a positioning module 512 in a positioning device 500 according to an embodiment of the invention. Figure 6 will be described in conjunction with Figure 5. As shown in FIG. 6, the positioning module 512 includes a satellite selection module 602 and a Kalman filter 604. The satellite selection module 602 selects a positioning satellite from a plurality of satellites (for example, satellites 5021-502J and 5041-504K) to cause the positioning module 512 to perform positioning and output, and outputs frequency information and pseudorange of the selected positioning satellite. The Kalman filter 604 is coupled to the satellite selection module 602, receives the frequency information and pseudorange of the positioning satellite, and calculates the positioning information of the positioning device 500 based on the Kalman filter algorithm.

在一個實施例中,衛星選擇模組602根據衛星信號的信號強度、衛星仰角以及衛星的跟蹤品質等因素選擇定位衛星。在操作中,衛星選擇模組602首先判斷接收到的來自一個衛星導航系統(例如,衛星導航系統502)中的衛星是否足以計算定位裝置500的定位資訊。具體地,衛星選擇模組602根據單個衛星導航系統中的衛星信號強度、衛星個數及精度衰減因數(dilution of precision,DOP)等指標確定衛星導航系統中的衛星是否可以計算符合定位裝置500要求的定位資訊。如果使用一個衛星導航系統(例如,衛星導航系統502)中的衛星就可對定位裝置500進行精確定位,則不需要選擇其它的衛星導航系統中的衛星;否則,還需要選擇來自其它衛星導航系統(例如,衛星導航系統504)中的衛星。例如,衛星選擇模組602接收到來自5顆衛星的衛星信號,其中有4顆衛星是全球定位系統中的衛星,1顆衛星是北斗系統中的衛星。衛星選擇模組602檢測到這4顆全球定位系統衛星具有良好的信號強度等參數,可對定位裝置500實現符合要求的定位,同時考慮到定位裝置500相對於不同導航系統具有不同的時脈偏差,增加另一個導航系統的衛星信號,會增加一個未知數,因此衛星選擇模組604選擇這4顆來自全球定位系統的衛星對定位裝置500進行單導航系統定位。在另一種情況中,假設衛星選擇模組602接收到5顆衛星的衛星信號,其中有3顆是全球定位系統衛星,2顆是北斗衛星。儘管考慮到定位裝置500相對於不同導航系統具有不同的時脈偏差,但是3顆全球定位系統衛星不足以實現對定位裝置500的定位,在這種情況下,衛星選 擇模組602會選擇來自全球定位系統的3顆衛星和來自北斗系統的2顆衛星進行多導航系統的定位,以實現對定位裝置500的精確定位。在又一種情況中,假設衛星選擇模組602接收到6顆衛星的衛星信號,其中有4顆是全球定位系統衛星,2顆是北斗衛星,並且,4顆全球定位系統衛星的信號強度比較弱。在這種情況下,儘管4顆衛星就可實現對定位裝置500的定位,但是利用信號強度較弱的衛星解算的結果會導致定位不精確。因此,衛星選擇模組602還會選擇來自全球定位系統的4顆衛星和來自北斗系統的2顆衛星,進行多導航定位系統的定位,以提高定位精度。 In one embodiment, the satellite selection module 602 selects the positioning satellite based on factors such as the signal strength of the satellite signal, the satellite elevation angle, and the tracking quality of the satellite. In operation, the satellite selection module 602 first determines whether the received satellite from a satellite navigation system (e.g., satellite navigation system 502) is sufficient to calculate positioning information for the positioning device 500. Specifically, the satellite selection module 602 determines whether the satellite in the satellite navigation system can be calculated according to the positioning device 500 according to satellite signal strength, satellite number, and precision attenuation (DOP) indicators in a single satellite navigation system. Location information. If the positioning device 500 can be accurately located using a satellite in a satellite navigation system (e.g., satellite navigation system 502), there is no need to select satellites in other satellite navigation systems; otherwise, selection from other satellite navigation systems is also required. A satellite in (e.g., satellite navigation system 504). For example, the satellite selection module 602 receives satellite signals from five satellites, four of which are satellites in the global positioning system, and one satellite is a satellite in the Beidou system. The satellite selection module 602 detects that the four global positioning system satellites have good signal strength and other parameters, and can achieve the required positioning of the positioning device 500, and consider that the positioning device 500 has different clock deviations with respect to different navigation systems. Adding satellite signals of another navigation system will increase an unknown number, so the satellite selection module 604 selects the four satellites from the global positioning system to perform single navigation system positioning on the positioning device 500. In another case, it is assumed that the satellite selection module 602 receives satellite signals of five satellites, three of which are global positioning system satellites and two of which are Beidou satellites. Although it is considered that the positioning device 500 has different clock deviations with respect to different navigation systems, the three global positioning system satellites are not sufficient to achieve positioning of the positioning device 500, in which case the satellite selection The selection module 602 selects three satellites from the global positioning system and two satellites from the Beidou system for positioning of the multi-navigation system to achieve precise positioning of the positioning device 500. In still another case, it is assumed that the satellite selection module 602 receives satellite signals of six satellites, four of which are global positioning system satellites, two of which are Beidou satellites, and the four global positioning system satellites have weak signal strength. . In this case, although the positioning of the positioning device 500 can be achieved by four satellites, the result of solving the satellite with weak signal strength may result in inaccurate positioning. Therefore, the satellite selection module 602 also selects four satellites from the global positioning system and two satellites from the Beidou system to perform positioning of the multi-navigation positioning system to improve positioning accuracy.

在選擇定位衛星之後,衛星選擇模組602將定位衛星的偽距和頻率資訊傳輸到卡爾曼濾波器604;卡爾曼濾波器604基於卡爾曼濾波演算法進行定位解算。如圖6所示,卡爾曼濾波器604包括初始狀態計算模組612和卡爾曼濾波計算模組614。在下文中,將結合卡爾曼濾波演算法的流程圖對定位模組中的卡爾曼濾波器604進行詳細介紹。 After selecting the positioning satellite, the satellite selection module 602 transmits the pseudorange and frequency information of the positioning satellite to the Kalman filter 604; the Kalman filter 604 performs the positioning solution based on the Kalman filtering algorithm. As shown in FIG. 6, the Kalman filter 604 includes an initial state calculation module 612 and a Kalman filter calculation module 614. In the following, the Kalman filter 604 in the positioning module will be described in detail in conjunction with the flowchart of the Kalman filter algorithm.

圖7所示為根據本發明一個實施例的導航定位系統中基於卡爾曼濾波演算法進行定位的流程圖。圖7將結合圖6進行描述。 FIG. 7 is a flow chart showing positioning based on a Kalman filter algorithm in a navigation and positioning system according to an embodiment of the present invention. Figure 7 will be described in conjunction with Figure 6.

對於定位裝置而言,卡爾曼模型一般有三種:P模型、PV模型及PVA模型。在P模型中,位置狀態被認為是隨機遊走的,常用於靜止場景;在PV模型中,速度被認為是隨機遊走的,一般用於低動態運動環境;在PVA模型中,狀態向量中需增加三個加速度分量,加速度被認為是隨機遊走的,一般用於定位裝置運動加速度變化範圍很大的場景,例如,高速飛行器。在下文中,將以M個導航系統的PV模型為例建立狀態方程式,其中M為大於等於1的正整數。本技術領域中具有通常知識者應當理解的是,基於卡爾曼濾波演算法的狀態方程式和觀測方程式還可在P模型和PVA模型中建立。 For positioning devices, there are three general Kalman models: P model, PV model and PVA model. In the P model, the position state is considered to be random walk, which is often used in static scenes; in the PV model, the velocity is considered to be random walk, generally used in low dynamic motion environments; in the PVA model, the state vector needs to be increased. The three acceleration components, the acceleration is considered to be random walk, and are generally used in scenes where the range of motion acceleration of the positioning device varies greatly, for example, a high-speed aircraft. In the following, a state equation will be established taking the PV models of M navigation systems as an example, where M is a positive integer greater than or equal to 1. It should be understood by those of ordinary skill in the art that state equations and observation equations based on the Kalman filter algorithm can also be established in the P model and the PVA model.

在卡爾曼濾波演算法中,狀態方程式被定義為:X k+1=Φ k X k +w k (4-1) In the Kalman filter algorithm, the equation of state is defined as: X k +1 = Φ k X k + w k (4-1)

其中,X為狀態向量;Φ為狀態矩陣;w為狀態雜訊;K為大於等於1的整數。 Where X is a state vector; Φ is a state matrix; w is a state noise; K is an integer greater than or equal to 1.

觀測方程式被定義為:Z k =H k X k +v k (4-2) The observation equation is defined as: Z k = H k X k + v k (4-2)

其中,Z為觀測向量;H為測量矩陣;v為測量雜訊。 Where Z is the observation vector; H is the measurement matrix; and v is the measurement noise.

對於M個導航系統,定義狀態向量X=[px,py,pz,vx,vy,vz,bu1,bu2,…buM,c ],其中,px,py,pz表示定位裝置500在ECEF座標系下的位置;vx,vy,vz表示定位裝置500在ECEF座標系下的速度;bu1,bu2,…buM表示定位裝置500的本地時間系統相對於導航系統1,2,…,M的時脈偏差;表示本地時間系統的時脈漂移;c表示光速,其中,M表示參與定位的導航系統個數。因此,狀態向量的長度為(7+M)。例如,當有兩個參與定位的導航系統時,狀態向量的長度為9,即狀態向量為X=[px,py,pz,vx,vy,vz,bu1,bu2,c ]。 For M navigation systems, define the state vector X = [p x , p y , p z , v x , v y , v z , b u1 , b u2 ,...b uM ,c Wherein, p x , p y , p z represent the position of the positioning device 500 under the ECEF coordinate system; v x , v y , v z represent the speed of the positioning device 500 under the ECEF coordinate system; b u1 , b u2 , ...b uM denotes the clock deviation of the local time system of the positioning device 500 with respect to the navigation systems 1, 2, ..., M; Indicates the clock drift of the local time system; c represents the speed of light, where M represents the number of navigation systems participating in the positioning. Therefore, the length of the state vector is (7+M). For example, when there are two navigation systems involved in positioning, the length of the state vector is 9, that is, the state vector is X=[p x , p y , p z , v x , v y , v z , b u1 , b u2 ,c ].

因此,對於M個導航系統,其狀態方程式可表示為(4-3): Therefore, for M navigation systems, the equation of state can be expressed as (4-3):

其中,p表示定位裝置500在ECEF座標系下的位置(px,py,pz);v表示定位裝置500在ECEF座標系下的速度(vx,vy,vz);tu表示本地時間系統與每個導航系統的時脈偏差(bu1,bu2,…buM);表示本地時間系統的時脈漂移。 Wherein the position p represents the positioning device 500 in the ECEF coordinate system (p x, p y, p z); v represents the speed of the positioning device 500 in the ECEF coordinate system (v x, v y, v z); t u Indicates the clock skew of the local time system and each navigation system (b u1 , b u2 , ... b uM ); Indicates the clock drift of the local time system.

因此,對於M個導航系統,其狀態矩陣Φ為(7+M)×(7+M)階矩陣: Therefore, for M navigation systems, the state matrix Φ is a (7+M)×(7+M) order matrix:

例如,對於雙導航系統,其狀態矩陣Φ為9×9階: 其中,T為定位裝置的定位週期。 For example, for a dual navigation system, the state matrix Φ is 9×9 steps: Where T is the positioning period of the positioning device.

根據前文的描述,M個導航系統中,位置觀測方程式可用(4-11)-(4-Mp)表示: According to the foregoing description, in the M navigation systems, the position observation equation can be expressed by (4-11)-(4-Mp):

其中,ρ 11~ρ 1m 分別表示第一衛星導航系統的m個定位衛星的偽距;ρ M1~ρ Mp 分別表示第M衛星導航系統的p個定位衛星的偽 距,上述偽距能夠透過跟蹤環路測量得到,其中M為大於等於1的整數;(x 1i ,y 1i ,z 1i )表示第一衛星導航系統的各定位衛星在定位時刻的座標資訊,其中1 i m;(x Mo ,y Mo ,z Mo )表示第M衛星導航系統的各定位衛星在定位時刻的座標資訊,其中1 o p,各座標資訊能夠透過相應的定位衛星的軌道參數和定位時間計算得到,且m+...+p=N(N為參與定位的定位衛星個數);b u1表示定位裝置500相對於第一衛星導航系統的時脈偏差,即本地時脈相對於衛星導航系統的時脈的偏差;b uM 表示定位裝置500相對於第M衛星導航系統的時脈偏差;(x u ,y u ,z u )表示定位裝置500的位置資訊。 Where ρ 11 ~ ρ 1 m respectively represent pseudoranges of m positioning satellites of the first satellite navigation system; ρ M 1 ~ ρ Mp respectively represent pseudoranges of p positioning satellites of the M satellite navigation system, and the pseudoranges can Obtained by the tracking loop, where M is an integer greater than or equal to 1; ( x 1 i , y 1 i , z 1 i ) represents coordinate information of each positioning satellite of the first satellite navigation system at the time of positioning, where 1 i m ;( x Mo , y Mo , z Mo ) represents the coordinate information of each positioning satellite of the M satellite navigation system at the time of positioning, where 1 o p , each coordinate information can be calculated through the orbital parameters and positioning time of the corresponding positioning satellite, and m +...+ p = N (N is the number of positioning satellites participating in the positioning); b u 1 indicates that the positioning device 500 is opposite The clock deviation of the first satellite navigation system, that is, the deviation of the local clock from the clock of the satellite navigation system; b uM represents the clock deviation of the positioning device 500 relative to the M satellite navigation system; ( x u , y u , z u ) represents the position information of the positioning device 500.

此外,對於M個導航系統,如果有N顆衛星參與定位,則速度的觀測方程式表示為:d=Hg (5-1) In addition, for M navigation systems, if there are N satellites participating in the positioning, the equation of observation of velocity is expressed as: d = Hg (5-1)

其中,d表示定位裝置500的速度在定位裝置500到定位衛星的向量上的分量,即: Where d represents the component of the speed of the positioning device 500 on the vector of the positioning device 500 to the positioning satellite, ie:

根據上述方程式(4-11)-(4-Mp)和(5-1),可得到觀測向量Z:Z=[ρ 11 ,ρ 1m ,...ρ M1 ,...ρ Mp ,d 11 ,d 1m ,...d M1 ,...d Mp ] T ,其中,m表示第一導航系統中參與定位的定位衛星個數;p表示第M導航系統中參與定位的定位衛星個數;ρ表示參與定位衛星的偽距;d表示定位裝置500的速度在定位裝置500到衛星的向量上的分量,單位為公尺/秒。觀測向量Z長度為2×(m+…+p)。 According to the above equations (4-11)-(4-Mp) and (5-1), the observation vector Z can be obtained: Z = [ ρ 11 , ... ρ 1m , ... ρ M1 , ... ρ Mp ,d 11 , ... d 1m ,... d M1 ,... d Mp ] T , where m represents the number of positioning satellites participating in the positioning in the first navigation system; p represents the positioning satellites participating in the positioning in the M navigation system ρ denotes the pseudorange participating in the positioning satellite; d denotes the component of the speed of the positioning device 500 on the vector of the positioning device 500 to the satellite, in units of meters per second. The length of the observation vector Z is 2 × (m + ... + p).

由此,基於卡爾曼濾波演算法的M個導航系統的測量矩陣可表示為(2N)×(7+M)階矩陣。N是參與定位的定位衛星個數,且N=m+…+p,其中,m為第一導航系統中參與定位的定位衛星個 數,p為第M導航系統中參與定位的定位衛星個數。M為參與定位的導航系統的個數。以雙導航系統的測量矩陣為例,假設第一衛星導航系統中有m顆定位衛星參與定位,第二衛星導航系統中有p顆衛星參與定位,則測量矩陣為(2×(m+p))×9階矩陣: Thus, the measurement matrix of the M navigation systems based on the Kalman filter algorithm can be expressed as a (2N)×(7+M) order matrix. N is the number of positioning satellites participating in the positioning, and N=m+...+p, where m is the number of positioning satellites participating in the positioning in the first navigation system, and p is the number of positioning satellites participating in the positioning in the M navigation system. M is the number of navigation systems involved in positioning. Taking the measurement matrix of the dual navigation system as an example, assuming that there are m positioning satellites participating in the positioning in the first satellite navigation system and p satellites participating in the positioning in the second satellite navigation system, the measurement matrix is (2×(m+p) ) × 9-order matrix:

其中,,A表示參與定位的導航系統,以雙導航系統為例,A等於1或2;表示定位裝置500位置的估計值在ECEF座標系下的x分量;Xj表示定位衛星位置在ECEF座標系下的x分量;表示定位衛星到定位裝置500的估計距離。 among them, , A indicates the navigation system participating in the positioning, taking the dual navigation system as an example, A is equal to 1 or 2; An x component representing an estimated value of the position of the positioning device 500 under the ECEF coordinate system; X j representing an x component of the position of the positioning satellite under the ECEF coordinate system; Represents the estimated distance from the positioning satellite to the positioning device 500.

應該理解的是,狀態向量X的元素位置可任意交換,交換後就需要調整相應的狀態矩陣和測量矩陣。同樣地,觀測向量Z中的元素位置也可任意交換,交換後也需要調整相應的狀態矩陣和測量矩陣。 It should be understood that the element positions of the state vector X can be exchanged arbitrarily, and the corresponding state matrix and measurement matrix need to be adjusted after the exchange. Similarly, the position of the elements in the observation vector Z can also be exchanged arbitrarily, and the corresponding state matrix and measurement matrix need to be adjusted after the exchange.

如圖7所示,在步驟702中,卡爾曼濾波器604中的初始狀態計算模組612計算卡爾曼濾波器604的初始狀態向量X0和初始誤差協方差P0。當完成初始化後,執行步驟704,否則執行步驟703。 As shown in FIG. 7, in step 702, the Kalman filter 604 in the initial state calculation module 612 calculates the Kalman filter 604 of the initial state vector X 0 and initial error covariance P 0. When the initialization is completed, step 704 is performed, otherwise step 703 is performed.

在步驟703中,一般使用最小二乘法初始化卡爾曼濾 波器604。 In step 703, the Kalman filter is generally initialized using a least squares method. Wave 604.

在步驟704中,卡爾曼濾波計算模組614確定當前時刻的卡爾曼濾波器604的觀測向量Z。如上文所述,觀測向量Z包括有參與定位的定位衛星的偽距和定位裝置的速度在定位裝置到定位衛星的向量上的分量。即,Z=[ρ 11 ,ρ 1m ,...ρ M1 ,...ρ Mp ,d 11 ,d 1m ,...d M1 ,...d Mp ] T ,觀測向量Z的長度為2×N,N表示參與定位的定位衛星的個數,且N=m+…+p。其中,m表示第一導航系統中參與定位的定位衛星個數;p表示第M導航系統中參與定位的定位衛星個數;M表示參與定位的導航系統的個數。 In step 704, the Kalman filter calculation module 614 determines the observation vector Z of the Kalman filter 604 at the current time. As described above, the observation vector Z includes the pseudorange of the positioning satellite participating in the positioning and the component of the speed of the positioning device on the vector of the positioning device to the positioning satellite. That is, Z = [ ρ 11 , ... ρ 1m , ... ρ M1 , ... ρ Mp , d 11 , ... d 1m ,... d M1 ,... d Mp ] T , the length of the observation vector Z 2 × N, N represents the number of positioning satellites participating in the positioning, and N = m + ... + p. Wherein m represents the number of positioning satellites participating in the positioning in the first navigation system; p represents the number of positioning satellites participating in the positioning in the M navigation system; and M represents the number of navigation systems participating in the positioning.

在步驟705中,得到初始狀態向量X0和初始誤差協方差P0In step 705, an initial state vector X 0 and an initial error covariance P 0 are obtained .

在步驟706中,卡爾曼濾波計算模組614根據前一時刻k-1的狀態向量計算當前時刻k的狀態向量的估計值。在一個實施例中,卡爾曼濾波計算模組614根據方程式(6-1)計算當前時刻k的狀態向量的估計值X- k:X- kkXk-1 (6-1) In step 706, the Kalman filter calculation module 614 calculates an estimated value of the state vector of the current time k based on the state vector of the previous time k-1. In one embodiment, the Kalman filter calculation module 614 (6-1) equation is calculated based on the estimated current value of the state vector at time k X - k: X - k = Φ k X k-1 (6-1)

在步驟708中,卡爾曼濾波計算模組614根據前一時刻k-1的誤差協方差計算當前時刻k的誤差協方差的估計值。在一個實施例中,卡爾曼濾波計算模組614根據方程式(6-2)計算當前時刻k的誤差協方差的估計值P- k:P- kkPk-1Φk T+Qk (6-2) In step 708, the Kalman filter calculation module 614 calculates an estimate of the error covariance at the current time k based on the error covariance of the previous time k-1. In one embodiment, the Kalman filter calculation module 614 calculates a current estimated value of the error covariance P at time k according to equation (6-2) - k: P - k = Φ k P k-1 Φ k T + Q k (6-2)

其中,Qk代表過程激勵雜訊協方差。 Where Q k represents the process excitation noise covariance.

在步驟710中,卡爾曼濾波計算模組614根據計算出的誤差協方差的估計值P- k,並根據方程式(6-3)計算當前時刻的卡爾曼增益Kk:Kk=P- kHk T[HkPk -Hk T+Pk]-1 (6-3) In step 710, the Kalman filter calculation module 614 calculates the Kalman gain K k of the current time according to the estimated value P - k of the calculated error covariance according to the equation (6-3): K k = P - k H k T [H k P k - H k T +P k ] -1 (6-3)

在步驟712中,卡爾曼濾波器計算模組614根據計算出的卡爾曼增益Kk、當前時刻的狀態向量的估計值X- k以及當前時刻的觀測向量Z,按照方程式(6-4)更新當前時刻的狀態向量Xk: Xk=X- k+Kk[Zk-HkXk -] (6-4) In step 712, the Kalman filter calculation module 614 updates according to the calculated Kalman gain K k , the estimated value of the state vector of the current time X - k , and the observation vector Z of the current time according to equation (6-4). State vector of the current moment X k : X k =X - k +K k [Z k -H k X k - ] (6-4)

在步驟714中,卡爾曼濾波器計算模組614根據計算出的卡爾曼增益Kk以及當前時刻的誤差協方差的估計值P- k,按照方程式(6-5)更新當前時刻的誤差協方差Pk:Pk=[1-KkHk]Pk - (6-5) In step 714, the Kalman filter calculation module 614 updates the error covariance of the current time according to the equation (6-5) according to the calculated Kalman gain K k and the estimated value P - k of the error covariance at the current time. P k :P k =[1-K k H k ]P k - (6-5)

更新得到的當前時刻的狀態向量Xk在被驗證為有效後,可輸出至使用者應用模組514中。此外,在下一時刻(k+1),更新後得到的k時刻的狀態向量Xk和誤差協方差Pk還可作為(k+1)時刻的前一時刻的值,以更新(k+1)時刻的狀態向量X(k+1)和誤差協方差P(k+1)。這一更新的步驟重複步驟704-714,在此不再詳述。 The state vector X k of the current time obtained by the update may be output to the user application module 514 after being verified as valid. Further, at the next time (k + 1), the state vector X k and error covariance after updating time k P k obtained can be used as the value of the previous time (k + 1) time to update the (k + 1 The state vector X (k+1) and the error covariance P (k+1) at the moment. This updated step repeats steps 704-714 and will not be described in detail herein.

圖8所示為根據本發明一實施例的衛星定位方法的流程圖。圖8將結合圖5和圖6進行描述。 FIG. 8 is a flow chart showing a satellite positioning method according to an embodiment of the present invention. Figure 8 will be described in conjunction with Figures 5 and 6.

在步驟802中,定位裝置500從多個導航系統接收衛星信號。更具體地,如圖5所示,定位裝置500透過天線506接收導航系統502和504中的衛星5021-502J和5041-504K的衛星信號。 In step 802, positioning device 500 receives satellite signals from a plurality of navigation systems. More specifically, as shown in FIG. 5, positioning device 500 receives satellite signals from satellites 5021-502J and 5041-504K in navigation systems 502 and 504 via antenna 506.

在步驟804中,定位裝置500計算衛星信號的頻率和偽距並獲得衛星信號的分類資訊。更具體地,定位裝置500中的射頻模組508將接收到的衛星信號與定位裝置500產生的本地載波信號混頻,以產生中頻信號。產生的中頻信號經過放大以及類比/數位轉換,被傳輸到基帶信號處理模組510。基帶信號處理模組510對接收到的中頻信號進行捕獲、跟蹤和解碼,從而得到衛星信號的頻率資訊和偽距以及實現對衛星信號的分類。例如,定位裝置500中的基帶信號處理模組510可透過本地重建衛星的偽隨機數序信號以識別接收到的衛星信號具體是來自哪個導航系統。 In step 804, the positioning device 500 calculates the frequency and pseudorange of the satellite signal and obtains classification information of the satellite signal. More specifically, the radio frequency module 508 in the positioning device 500 mixes the received satellite signal with a local carrier signal generated by the positioning device 500 to generate an intermediate frequency signal. The generated intermediate frequency signal is transmitted to the baseband signal processing module 510 through amplification and analog/digital conversion. The baseband signal processing module 510 captures, tracks, and decodes the received intermediate frequency signal, thereby obtaining frequency information and pseudorange of the satellite signal and realizing classification of the satellite signal. For example, the baseband signal processing module 510 in the positioning device 500 can transmit a pseudo-random number sequence signal of the local reconstructed satellite to identify which navigation system the received satellite signal is from.

在步驟806中,定位裝置500從衛星(例如,衛星5021-502J和5041-504K)中選擇定位衛星以計算定位裝置500的定位資訊,例如,定位裝置的位置資訊和速度資訊。例如,定位裝置500中的衛星選擇模組602根據接收到的衛星信號的信號強度、衛星仰角以及衛星的跟蹤品質等因素選擇定位衛星。 In step 806, the positioning device 500 selects a positioning satellite from satellites (eg, satellites 5021-502J and 5041-504K) to calculate positioning information for the positioning device 500, such as location information and speed information for the positioning device. For example, the satellite selection module 602 in the positioning device 500 selects the positioning satellite based on factors such as the received signal strength of the satellite signal, the satellite elevation angle, and the tracking quality of the satellite.

在步驟808中,當衛星選擇模組602選擇定位衛星之後,輸出定位衛星的偽距和頻率資訊至卡爾曼濾波器604。卡爾曼濾波器604根據接收到的定位衛星的偽距和頻率資訊,根據卡爾曼濾波演算法計算定位裝置500的定位資訊。 In step 808, after the satellite selection module 602 selects the positioning satellite, the pseudorange and frequency information of the positioning satellite is output to the Kalman filter 604. The Kalman filter 604 calculates the positioning information of the positioning device 500 according to the Kalman filter algorithm based on the pseudorange and frequency information of the received positioning satellite.

具體地,卡爾曼濾波器604中的初始狀態計算模組612計算卡爾曼濾波器的初始狀態向量X0和初始誤差協方差P0Specifically, the initial state calculation module 612 in the Kalman filter 604 calculates the initial state vector X 0 and the initial error covariance P 0 of the Kalman filter.

當完成初始化後,卡爾曼濾波器604中的卡爾曼濾波計算模組614確定當前時刻的卡爾曼濾波器604的觀測向量Z。 Upon completion of initialization, the Kalman filter calculation module 614 in the Kalman filter 604 determines the observation vector Z of the Kalman filter 604 at the current time.

之後,卡爾曼濾波計算模組614根據前一時刻的狀態向量計算當前時刻k的狀態向量的估計值,並根據前一時刻的誤差協方差計算當前時刻k的誤差協方差的估計值P- k。在這之後,卡爾曼濾波計算模組614根據計算出的誤差協方差的估計值P- k,計算當前時刻的卡爾曼增益Kk。計算出卡爾曼增益Kk之後,卡爾曼濾波器計算模組614根據計算出的卡爾曼增益Kk、當前時刻的狀態向量的估計值X- k以及當前時刻的觀測向量Z,更新當前時刻的狀態向量Xk,並根據計算出的卡爾曼增益Kk以及當前時刻的誤差協方差的估計值P- k,更新當前時刻的誤差協方差Pk。更新得到的當前時刻的狀態向量Xk在被驗證為有效後,可輸出至使用者應用模組514中。 Thereafter, the Kalman filter calculation module 614 calculates a current estimated value of the state vector of the state vector at time k in accordance with the previous time, and to calculate an estimate error covariance P k in accordance with the current time covariance a previous time - k . After that, the Kalman filter calculation module 614 calculates the Kalman gain K k at the current time based on the calculated estimated value P - k of the error covariance. After calculating the Kalman gain K k, the Kalman filter module 614 is calculated based on the estimated value of the state vector X on the calculated Kalman gain K k, the current time - the current time and the observation vector k of Z, updates the current time The state vector X k , and the error covariance P k at the current time is updated based on the calculated Kalman gain K k and the estimated value P - k of the error covariance at the current time. The state vector X k of the current time obtained by the update may be output to the user application module 514 after being verified as valid.

此外,在下一時刻(k+1),更新後得到的k時刻的狀態向量Xk和誤差協方差Pk還可作為(k+1)時刻的前一時刻的值,以更新(k+1)時刻的狀態向量X(k+1)和誤差協方差P(k+1)Further, at the next time (k + 1), the state vector X k and error covariance after updating time k P k obtained can be used as the value of the previous time (k + 1) time to update the (k + 1 The state vector X (k+1) and the error covariance P (k+1) at the moment.

圖9所示為信號強度比較弱的單全球定位系統導航系統與雙導航系統混合定位的軌跡對比示意圖。如圖9所示,910表示信號強度比較弱的單全球定位系統導航系統中使用卡爾曼濾波演算法定位獲得的軌跡,920表示雙導航系統混合定位中使用卡爾曼濾波演算法獲得的軌跡。從圖9中可見,對於信號比較弱的單導航系統而言,選擇來自其它導航系統的衛星信號,基於卡爾曼濾波演算法進行多導航系統的定位,可獲得比較精確的定位結果。 Figure 9 is a schematic diagram showing the trajectory comparison of the hybrid positioning of the single global positioning system navigation system and the dual navigation system with weak signal strength. As shown in FIG. 9, 910 denotes a trajectory obtained by using a Kalman filter algorithm in a single global positioning system navigation system with weak signal strength, and 920 denotes a trajectory obtained by using a Kalman filter algorithm in a hybrid positioning of a dual navigation system. It can be seen from FIG. 9 that for a single navigation system with weak signals, satellite signals from other navigation systems are selected, and the positioning of the multi-navigation system based on the Kalman filter algorithm can obtain relatively accurate positioning results.

上文具體實施方式和附圖僅為本發明之常用實施例。 顯然,在不脫離申請專利範圍所界定的本發明精神和發明範圍的前提下可以有各種增補、修改和替換。本技術領域中具有通常知識者應該理解,本發明在實際應用中可根據具體的環境和工作要求在不背離發明準則的前提下在形式、結構、佈局、比例、材料、元素、元件及其它方面有所變化。因此,在此披露之實施例僅用於說明而非限制,本發明之範圍由後附申請專利範圍及其合法等同物界定,而不限於此前之描述。 The above detailed description and the accompanying drawings are only typical embodiments of the invention. It is apparent that various additions, modifications and substitutions are possible without departing from the spirit and scope of the invention as defined by the appended claims. It should be understood by those of ordinary skill in the art that the present invention may be applied in the form of the form, structure, arrangement, ratio, material, element, element, and other aspects in the actual application without departing from the invention. Changed. Therefore, the embodiments disclosed herein are intended to be illustrative and not restrictive, and the scope of the invention is defined by the scope of the appended claims

500‧‧‧第二獲得單元 500‧‧‧Second acquisition unit

502‧‧‧衛星導航系統 502‧‧‧ satellite navigation system

5021-502J‧‧‧衛星 5021-502J‧‧‧ Satellite

504‧‧‧衛星導航系統 504‧‧‧Satellite navigation system

5041-504K‧‧‧衛星 5041-504K‧‧‧ Satellite

506‧‧‧天線 506‧‧‧Antenna

508‧‧‧射頻模組 508‧‧‧RF Module

510‧‧‧基帶信號處理模組 510‧‧‧Baseband signal processing module

512‧‧‧定位模組 512‧‧‧ Positioning Module

514‧‧‧使用者應用模組 514‧‧‧User Application Module

Claims (20)

一種定位模組,包括:一衛星選擇模組,從多個衛星導航系統的多個衛星中選擇一定位衛星,並輸出該定位衛星的一頻率資訊和一偽距;以及一卡爾曼濾波器,耦接該衛星選擇模組,接收該定位衛星的該頻率資訊和該偽距,並基於一卡爾曼濾波演算法計算該定位模組的一定位資訊。 A positioning module includes: a satellite selection module, selecting a positioning satellite from a plurality of satellites of a plurality of satellite navigation systems, and outputting a frequency information and a pseudorange of the positioning satellite; and a Kalman filter, The satellite selection module is coupled to receive the frequency information of the positioning satellite and the pseudorange, and calculate a positioning information of the positioning module based on a Kalman filtering algorithm. 如申請專利範圍第1項的定位模組,其中,該卡爾曼濾波器包括:一初始狀態計算模組,根據該定位衛星的該頻率資訊和該偽距,計算該卡爾曼濾波器的一初始狀態向量和一誤差協方差;以及一卡爾曼濾波計算模組,基於該卡爾曼濾波演算法計算一當前時刻的一狀態向量,該狀態向量包括該定位模組的該定位資訊。 The positioning module of claim 1, wherein the Kalman filter comprises: an initial state calculation module, and calculating an initial of the Kalman filter according to the frequency information of the positioning satellite and the pseudorange a state vector and an error covariance; and a Kalman filter calculation module, based on the Kalman filter algorithm, calculating a state vector of a current time, the state vector including the positioning information of the positioning module. 如申請專利範圍第2項的定位模組,其中,該狀態向量包括該定位模組的一位置、一速度、一本地時間系統與該多個衛星導航系統的一時脈偏差以及該本地時間系統的一時脈漂移。 The positioning module of claim 2, wherein the state vector comprises a position of the positioning module, a speed, a local time system and a clock deviation of the plurality of satellite navigation systems, and the local time system One clock drift. 如申請專利範圍第2項的定位模組,其中,該狀態向量的一長度為(7+M),其中,M為該定位衛星所在該多個衛星導航系統的一個數。 The positioning module of claim 2, wherein a length of the state vector is (7+M), wherein M is a number of the plurality of satellite navigation systems in which the positioning satellite is located. 如申請專利範圍第2項的定位模組,其中,該卡爾曼濾波計算模組使用該卡爾曼濾波演算法,根據一前一時刻的一狀態向量和該當前時刻的一觀測向量,更新該當前時刻的該狀態向量,其中,該觀測向量包括該定位衛星的該偽距和該定位 模組的一速度在該定位模組到該定位衛星的一向量上的一分量。 For example, the positioning module of claim 2, wherein the Kalman filter calculation module uses the Kalman filter algorithm to update the current state according to a state vector of a previous moment and an observation vector of the current moment. The state vector of the time, wherein the observation vector includes the pseudorange of the positioning satellite and the positioning A speed of the module is a component of the positioning module to a vector of the positioning satellite. 如申請專利範圍第5項的定位模組,其中,該觀測向量的一長度為2×N,其中N為該定位衛星的一個數。 For example, the positioning module of claim 5, wherein a length of the observation vector is 2×N, where N is a number of the positioning satellite. 一種定位裝置,包括:一射頻模組,將接收到的一衛星信號與一本地載波信號混頻以產生一中頻信號,其中,該衛星信號來自多個衛星導航系統中的一衛星;一基帶信號處理模組,處理接收到的該中頻信號,以計算該衛星的一頻率資訊和一偽距並對接收到的該衛星信號進行分類;以及一定位模組,耦接該基帶信號處理模組,根據該衛星信號的分類從多個衛星中選擇一定位衛星,並根據該定位衛星的一頻率資訊和一偽距,基於一卡爾曼濾波演算法計算該定位裝置的一定位資訊。 A positioning device includes: an RF module, mixing a received satellite signal with a local carrier signal to generate an intermediate frequency signal, wherein the satellite signal is from a satellite of a plurality of satellite navigation systems; a baseband a signal processing module, processing the received intermediate frequency signal to calculate a frequency information of the satellite and a pseudorange and classifying the received satellite signal; and a positioning module coupled to the baseband signal processing module And selecting a positioning satellite from the plurality of satellites according to the classification of the satellite signal, and calculating a positioning information of the positioning device based on a Kalman filtering algorithm according to a frequency information of the positioning satellite and a pseudorange. 如申請專利範圍第7項的定位裝置,其中,該定位模組包括:一衛星選擇模組,從該多個衛星中選擇該定位衛星,並輸出該定位衛星的該頻率資訊和該偽距;以及一卡爾曼濾波器,耦接該衛星選擇模組,接收該定位衛星的該頻率資訊和該偽距,並基於該卡爾曼濾波演算法計算該定位裝置的該定位資訊。 The positioning device of claim 7, wherein the positioning module comprises: a satellite selection module, selecting the positioning satellite from the plurality of satellites, and outputting the frequency information of the positioning satellite and the pseudorange; And a Kalman filter coupled to the satellite selection module, receiving the frequency information of the positioning satellite and the pseudorange, and calculating the positioning information of the positioning device based on the Kalman filter algorithm. 如申請專利範圍第8項的定位裝置,其中,該卡爾曼濾波器包括:一初始狀態計算模組,根據該定位衛星的該頻率資訊和該偽距,計算該卡爾曼濾波器的一初始狀態向量和一誤差協方差 矩陣;以及一卡爾曼濾波計算模組,基於該卡爾曼濾波演算法計算一當前時刻的一狀態向量,該狀態向量包括該定位裝置的該定位資訊。 The positioning device of claim 8 , wherein the Kalman filter comprises: an initial state calculation module, and calculating an initial state of the Kalman filter according to the frequency information of the positioning satellite and the pseudorange Vector and an error covariance a matrix; and a Kalman filter calculation module, based on the Kalman filter algorithm, calculating a state vector of a current time, the state vector including the positioning information of the positioning device. 如申請專利範圍第9項的定位裝置,其中,該狀態向量包括該定位裝置的一位置、一速度、一本地時間系統與該多個衛星導航系統的一時脈偏差以及該本地時間系統的一時脈漂移。 The positioning device of claim 9, wherein the state vector comprises a position of the positioning device, a speed, a local time system and a clock deviation of the plurality of satellite navigation systems, and a time of the local time system drift. 如申請專利範圍第9項的定位裝置,其中,該狀態向量的一長度為(7+M),其中,M為該定位衛星所在該多個衛星導航系統的一個數。 The positioning device of claim 9, wherein the length of the state vector is (7+M), wherein M is a number of the plurality of satellite navigation systems in which the positioning satellite is located. 如申請專利範圍第9項的定位裝置,其中,該卡爾曼濾波計算模組使用該卡爾曼濾波演算法,根據一前一時刻的一狀態向量和該當前時刻的一觀測向量,更新該當前時刻的該狀態向量,其中,該觀測向量包括該定位衛星的該偽距和該定位裝置的一速度在該定位裝置到該定位衛星的一向量上的一分量。 The positioning device of claim 9, wherein the Kalman filter calculation module uses the Kalman filter algorithm to update the current time according to a state vector of a previous moment and an observation vector of the current moment. The state vector, wherein the observation vector includes the pseudorange of the positioning satellite and a component of the positioning device at a speed of the positioning device to a vector of the positioning satellite. 如申請專利範圍第12項的定位裝置,其中,該觀測向量的一長度為2×N,其中N為該定位衛星的一個數。 The positioning device of claim 12, wherein a length of the observation vector is 2×N, where N is a number of the positioning satellite. 一種衛星定位方法,包括:接收一衛星信號,其中該衛星信號來自多個衛星導航系統中的一衛星;透過對該衛星信號的一捕獲和一跟蹤,獲取該衛星的一頻率資訊和一偽距並實現對該衛星信號的一分類;根據該衛星信號的該分類,從該多個衛星中選擇一定位衛星;以及 根據該定位衛星的一頻率資訊和一偽距,基於一卡爾曼濾波演算法計算一定位裝置的一定位資訊。 A satellite positioning method includes: receiving a satellite signal, wherein the satellite signal is from a satellite of a plurality of satellite navigation systems; obtaining a frequency information and a pseudorange of the satellite through a capture and a tracking of the satellite signal And implementing a classification of the satellite signal; selecting a positioning satellite from the plurality of satellites according to the classification of the satellite signal; According to a frequency information of the positioning satellite and a pseudorange, a positioning information of a positioning device is calculated based on a Kalman filter algorithm. 如申請專利範圍第14項的衛星定位方法,其中,根據該定位衛星的該頻率資訊和該偽距,基於該卡爾曼濾波演算法計算該定位裝置的該定位資訊的步驟包括:確定一當前時刻的一卡爾曼濾波器的一觀測向量,該觀測向量包括該定位衛星的該偽距和該定位裝置的一速度在該定位裝置到該定位衛星的一向量上的一分量;以及根據一前一時刻的一狀態向量和該當前時刻的該觀測向量,更新該當前時刻的一狀態向量,其中,該狀態向量包括該定位裝置的一位置、該定位裝置的該速度、該定位裝置的一本地時間系統與該多個衛星導航系統的一時脈偏差,以及該本地時間系統的一時脈漂移。 The satellite positioning method of claim 14, wherein the step of calculating the positioning information of the positioning device based on the Kalman filter algorithm according to the frequency information of the positioning satellite and the pseudorange comprises: determining a current time An observation vector of a Kalman filter, the observation vector comprising the pseudorange of the positioning satellite and a component of the positioning device at a speed of the positioning device to the positioning satellite; and according to a previous one Updating a state vector of the current time by a state vector of the time and the observation vector of the current time, wherein the state vector includes a position of the positioning device, the speed of the positioning device, and a local time of the positioning device A clock offset of the system from the plurality of satellite navigation systems, and a clock drift of the local time system. 如申請專利範圍第15項的衛星定位方法,其中,根據該前一時刻的該狀態向量和該當前時刻的該觀測向量更新該當前時刻的該狀態向量的步驟包括:根據該前一時刻的該狀態向量,計算該當前時刻的該狀態向量的一估計值;根據該前一時刻的一誤差協方差,計算該當前時刻的一誤差協方差的一估計值;根據該當前時刻的該誤差協方差的該估計值,計算一卡爾曼增益;以及根據計算的該卡爾曼增益、該當前時刻的該狀態向量的該估計值和該當前時刻的該觀測向量,更新該當前時刻的該狀態向量。 The satellite positioning method of claim 15, wherein the updating the state vector of the current time according to the state vector of the previous moment and the observation vector of the current moment comprises: according to the previous moment a state vector, calculating an estimated value of the state vector at the current time; calculating an estimated value of an error covariance at the current time according to an error covariance of the previous time; and the error covariance according to the current time The estimated value, a Kalman gain is calculated; and the state vector of the current time is updated according to the calculated Kalman gain, the estimated value of the state vector at the current time, and the observed vector of the current time. 如申請專利範圍第16項的衛星定位方法,其中,根據該定位 衛星的該頻率資訊和該偽距,基於該卡爾曼濾波演算法計算該定位裝置的該定位資訊的步驟還包括:根據計算的該卡爾曼增益和該當前時刻的該誤差協方差的該估計值,更新該當前時刻的該誤差協方差。 For example, the satellite positioning method of claim 16 of the patent scope, wherein, according to the positioning The frequency information of the satellite and the pseudorange, the step of calculating the positioning information of the positioning device based on the Kalman filter algorithm further comprises: calculating the estimated value of the error covariance according to the calculated Kalman gain and the current time , updating the error covariance of the current moment. 如申請專利範圍第15項的衛星定位方法,其中,還包括:根據獲取的該當前時刻的一誤差協方差和該當前時刻的該狀態向量,計算一下一時刻的一狀態向量。 The satellite positioning method of claim 15, wherein the method further comprises: calculating a state vector of a moment according to the obtained error covariance of the current moment and the state vector of the current moment. 如申請專利範圍第15項的衛星定位方法,其中,該觀測向量的一長度為2×N,其中,N為該定位衛星的一個數。 The satellite positioning method of claim 15, wherein the length of the observation vector is 2×N, wherein N is a number of the positioning satellite. 如申請專利範圍第15項的衛星定位方法,其中,該當前時刻的該狀態向量的一長度為(7+M),其中,M為該定位衛星所在該多個衛星導航系統的一個數。 The satellite positioning method of claim 15, wherein a length of the state vector of the current time is (7+M), wherein M is a number of the plurality of satellite navigation systems in which the positioning satellite is located.
TW102138053A 2013-05-24 2013-10-22 Positioning modules, positioning devices and methods for satellite positioning thereof TWI528045B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310196978.5A CN104181560A (en) 2013-05-24 2013-05-24 Positioning module, positioning device and satellite positioning method

Publications (2)

Publication Number Publication Date
TW201445163A true TW201445163A (en) 2014-12-01
TWI528045B TWI528045B (en) 2016-04-01

Family

ID=51962751

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102138053A TWI528045B (en) 2013-05-24 2013-10-22 Positioning modules, positioning devices and methods for satellite positioning thereof

Country Status (2)

Country Link
CN (1) CN104181560A (en)
TW (1) TWI528045B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105549044A (en) * 2015-12-17 2016-05-04 中国电子科技集团公司第三十八研究所 Combined positioning device and method of GNSS (Global Navigation Satellite System) based on data fusion
CN108549097A (en) * 2018-03-26 2018-09-18 中国电子科技集团公司第二十八研究所 Ground strengthening system Differential positioning method based on EKF filter
CN109067449B (en) * 2018-05-28 2021-08-03 成都市精准时空科技有限公司 Multimode satellite communication terminal with multiple antenna lines and method
CN110376621B (en) * 2019-08-15 2020-06-09 北京航天宏图信息技术股份有限公司 Satellite positioning method and device based on Beidou No. three B2B signal
CN115342820A (en) * 2022-10-18 2022-11-15 深圳市诚王创硕科技有限公司 Navigation positioning system for automobile driving at night
CN116125380B (en) * 2023-04-19 2023-06-30 齐鲁工业大学(山东省科学院) Mobile scene super-resolution positioning method based on Kalman filter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103033822B (en) * 2011-09-30 2014-09-24 迈实电子(上海)有限公司 Mobile information confirmation device and mobile information confirmation method and receiving set

Also Published As

Publication number Publication date
CN104181560A (en) 2014-12-03
TWI528045B (en) 2016-04-01

Similar Documents

Publication Publication Date Title
US10371806B2 (en) Doppler aided inertial navigation
TWI528045B (en) Positioning modules, positioning devices and methods for satellite positioning thereof
KR102154979B1 (en) Navigation and integrity monitoring
TWI533011B (en) Methods and receivers for improving pusle-per-second precision of navigation system time
US10473792B2 (en) Positioning systems
TW201445168A (en) A receiver and method for satellite positioning and speed measuring
CN109975837A (en) The method of the estimation integrality of mobile carrier position is checked in star base positioning measurment system
EP3408686B1 (en) Hybrid rtk
CN111164461A (en) System for determining a physical metric such as location
US11061143B2 (en) Global navigation satellite system, navigation terminal, navigation method and program
EP2806289A1 (en) Module, device and method for positioning
CN107607971B (en) Time frequency transmission method based on GNSS common-view time comparison algorithm and receiver
TW201339613A (en) Satellite positioning methods and receiver
JP2010071686A (en) Positioning apparatus, computer program, and positioning method
US20140180580A1 (en) Module, device and method for positioning
JP5077054B2 (en) Mobile positioning system
US9031572B2 (en) Method and apparatus for estimating satellite positioning reliability
Yang et al. Resilient smartphone positioning using native sensors and PPP augmentation
KR101447357B1 (en) Method and system for navigation
US10386495B1 (en) Method and apparatus for detecting poor Doppler measurement results in global navigation satellite system navigation
Fakhreddine et al. Data fusion for hybrid and autonomous time-of-flight positioning
Averin et al. Topcon’s Innovative B210 Receiver Board: Advanced Multi-Engine Platform (AMP™) is a Key to Unparalleled Performance
Chu et al. Multi-receiver direct position estimation tested on a full-scale fixed-wing aircraft
CN113281796A (en) Position determining method, speed determining method, device, equipment and storage medium
Erlendsdottír GPS with Real Time Kinematics on Communicator 200