TW201442310A - Memory device and manufacturing method thereof - Google Patents

Memory device and manufacturing method thereof Download PDF

Info

Publication number
TW201442310A
TW201442310A TW102114642A TW102114642A TW201442310A TW 201442310 A TW201442310 A TW 201442310A TW 102114642 A TW102114642 A TW 102114642A TW 102114642 A TW102114642 A TW 102114642A TW 201442310 A TW201442310 A TW 201442310A
Authority
TW
Taiwan
Prior art keywords
layer
memory device
conductive layer
device structure
resistance
Prior art date
Application number
TW102114642A
Other languages
Chinese (zh)
Other versions
TWI500193B (en
Inventor
Tseung-Yuen Tseng
Chun-Yang Huang
Jheng-Hong Jiang
Original Assignee
Winbond Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Winbond Electronics Corp filed Critical Winbond Electronics Corp
Priority to TW102114642A priority Critical patent/TWI500193B/en
Publication of TW201442310A publication Critical patent/TW201442310A/en
Application granted granted Critical
Publication of TWI500193B publication Critical patent/TWI500193B/en

Links

Abstract

A memory device comprising at least a laminate structure is provided. The laminate structure consists of a structure of a top electrode/an upper resistive switching layer/an oxygen-plasma-treated lower resistive switching layer/a bottom electrode.

Description

記憶體元件與其製程 Memory component and its process

本發明是有關於一種半導體結構,且特別是有關於一種非揮發性記憶體元件與其製程。 This invention relates to a semiconductor structure, and more particularly to a non-volatile memory component and process thereof.

近年來,由於快閃記憶體(Flash memory)面臨到微縮物理極限與操作電壓過大等問題,因此,具簡單結構、小面積、操作速度快與低功率消耗的電阻式記憶體元件(Resistive Random Access Memory;RRAM),極有可能取代傳統的快閃記憶體,形成下世代非揮發性記憶體的主流。電阻式記憶體具有低電壓操作、低功率消耗、高密度堆積結構等極佳的記憶體操作特性,但是,電阻式記憶體具有耐操度(Endurance)不佳或重複寫入/抹除(Program/Erase)次數無法有效提升等問題。在連續轉態操作數次後,電阻式記憶體的高阻態電阻值無法維持應有的高電阻狀態,使後續電阻轉態的高低阻態電阻比值(on/off ratio)下降,造成記憶狀態判讀錯誤,成為電阻式記憶體在量產的阻礙。 In recent years, flash memory has faced problems such as miniaturized physical limit and excessive operating voltage. Therefore, resistive memory components with simple structure, small area, fast operation speed and low power consumption (Resistive Random Access) Memory; RRAM) is very likely to replace the traditional flash memory, forming the mainstream of the next generation of non-volatile memory. Resistive memory has excellent memory operation characteristics such as low voltage operation, low power consumption, and high density stacked structure. However, resistive memory has poor endurance or repeated write/erase (Program) /Erase) The number of times cannot be effectively improved. After several consecutive operations, the high-resistance resistance of the resistive memory cannot maintain the high-resistance state, and the high-low-resistance ratio (on/off ratio) of the subsequent resistance transition is reduced, resulting in a memory state. Interpretation errors become obstacles to mass production of resistive memory.

此外,電阻式記憶體的轉態機制為利用氧空缺(oxygen vacancies)或氧離子(oxygen ions)移動來形成導電燈絲(conductive filament),利用外在施加電壓極性與電流值,促使導電燈絲斷裂與再生成的現象,造成電阻值的差異。當執行多次電阻轉態之後,由於可供使用的氧離子被消耗殆盡,導致耐操度無法有效提升。 In addition, the resistive state of the resistive memory is the use of oxygen vacancies or oxygen ions to form a conductive filament (conductive Filament), using the external application of voltage polarity and current value, causing the phenomenon of breakage and re-generation of the conductive filament, resulting in a difference in resistance value. After performing multiple resistance transitions, the available oxygen ions are exhausted, resulting in an inability to effectively improve the resistance.

本發明提供一種記憶體元件結構,至少包括一疊層結構,該疊層結構至少包括下導電層、位於該下導電層上之下電阻轉態層、位於該下電阻轉態層上之上電阻轉態層與位於該上電阻轉態層上之上導電層。該上電阻轉態層包括以原子層沉積法形成的第一氧化物材料層,該下電阻轉態層包括以原子層沉積法形成且經由氧電漿處理的第二氧化物材料層。 The invention provides a memory device structure, comprising at least a laminated structure, the laminated structure comprising at least a lower conductive layer, a resistive transition layer on the lower conductive layer, and a resistor on the lower resistive transition layer The transition layer is on the conductive layer above the upper resistive transition layer. The upper resistive transition layer includes a first oxide material layer formed by atomic layer deposition, and the lower resistive transition layer includes a second oxide material layer formed by atomic layer deposition and treated via oxygen plasma.

根據本發明之實施例,前述上電阻轉態層所包括之該第一氧化物材料層的材料為二氧化鉿、氧化鋁、二氧化鈦、二氧化鋯、氧化錫或氧化鋅。該上電阻轉態層厚度為1奈米~100奈米。前述下電阻轉態層所包括之該第二氧化物材料層的材料為二氧化鉿、氧化鋁、二氧化鈦、二氧化鋯、氧化錫或氧化鋅。該下電阻轉態層厚度為1奈米~100奈米。 According to an embodiment of the invention, the material of the first oxide material layer included in the upper resistance change layer is ceria, alumina, titania, zirconia, tin oxide or zinc oxide. The upper resistance transition layer has a thickness of 1 nm to 100 nm. The material of the second oxide material layer included in the lower resistance transition layer is ceria, alumina, titania, zirconia, tin oxide or zinc oxide. The lower resistance transition layer has a thickness of 1 nm to 100 nm.

根據本發明之實施例,前述上導電層材料為導體材料,選自鈦、氮化鈦、鉑、鋁、鎢、銥、氧化銥、釕、鉭、氮化鉭、鎳、鉬、鋯或銦錫氧化物。該上導電層厚度為1奈米~1000奈米。前述下導電層材料為導體材料,選自鈦、氮化鈦、鉑、鋁、鎢、銥、氧化銥、釕、鉭、氮化鉭、鎳、鉬、鋯、銦錫氧化物或重度 摻雜矽半導體。該下導電層厚度為1奈米~500奈米。 According to an embodiment of the invention, the upper conductive layer material is a conductor material selected from the group consisting of titanium, titanium nitride, platinum, aluminum, tungsten, tantalum, niobium oxide, tantalum, niobium, tantalum nitride, nickel, molybdenum, zirconium or indium. Tin oxide. The upper conductive layer has a thickness of from 1 nm to 1000 nm. The foregoing conductive layer material is a conductor material selected from the group consisting of titanium, titanium nitride, platinum, aluminum, tungsten, tantalum, niobium oxide, tantalum, niobium, tantalum nitride, nickel, molybdenum, zirconium, indium tin oxide or heavy Doped germanium semiconductor. The thickness of the lower conductive layer is from 1 nm to 500 nm.

本發明提供一種記憶體元件結構之製造方法。該方法包括先形成一下導電層,並以原子層沉積法形成位於該下導電層之上的一下電阻轉態層。進行氧電漿處理該下電阻轉態層之後,以原子層沉積法形成位於該下電阻轉態層之上的一上電阻轉態層。接著,形成位於該上電阻轉態層之上的一上導電層。 The present invention provides a method of fabricating a memory device structure. The method includes first forming a conductive layer and forming a lower resistance transition layer over the lower conductive layer by atomic layer deposition. After the oxygen plasma treatment is performed on the lower resistance transition layer, an upper resistance transition layer on the lower resistance transition layer is formed by atomic layer deposition. Next, an upper conductive layer is formed over the upper resistive transition layer.

根據本發明之實施例,前述上導電層以原子層沉積法、電子束蒸鍍法或濺鍍法所形成,該上導電層材料選自鈦、氮化鈦、鉑、鋁、鎢、銥、氧化銥、釕、鉭、氮化鉭、鎳、鉬、鋯或銦錫氧化物。該上導電層厚度為1奈米~1000奈米。 According to an embodiment of the invention, the upper conductive layer is formed by atomic layer deposition, electron beam evaporation or sputtering, and the upper conductive layer material is selected from the group consisting of titanium, titanium nitride, platinum, aluminum, tungsten, tantalum, Cerium oxide, cerium, lanthanum, cerium nitride, nickel, molybdenum, zirconium or indium tin oxide. The upper conductive layer has a thickness of from 1 nm to 1000 nm.

根據本發明之實施例,前述下導電層以原子層沉積法、電子束蒸鍍法、濺鍍法或高溫爐管所形成,該下導電層材料選自鈦、氮化鈦、鉑、鋁、鎢、銥、氧化銥、釕、鉭、氮化鉭、鎳、鉬、鋯、銦錫氧化物或重度摻雜矽半導體。該下導電層厚度為1奈米~500奈米。 According to an embodiment of the invention, the lower conductive layer is formed by an atomic layer deposition method, an electron beam evaporation method, a sputtering method or a high temperature furnace tube, and the lower conductive layer material is selected from the group consisting of titanium, titanium nitride, platinum, aluminum, Tungsten, tantalum, niobium oxide, tantalum, niobium, tantalum nitride, nickel, molybdenum, zirconium, indium tin oxide or heavily doped germanium semiconductor. The thickness of the lower conductive layer is from 1 nm to 500 nm.

根據本發明之實施例,前述下導電層以原子層沉積法形成,而該下導電層以及該上電阻轉態層與該下電阻轉態層經由同一原子層沉積系統在腔體不破真空的情況下連續沉積。 According to an embodiment of the present invention, the lower conductive layer is formed by atomic layer deposition, and the lower conductive layer and the upper resistive transition layer and the lower resistive transition layer are not broken in the cavity through the same atomic layer deposition system. Continuous deposition.

根據本發明之實施例,進行氧電漿處理該下電阻轉態層經由同一原子層沉積系統在腔體溫度為250℃且工作壓力為0.2 Torr的環境下,對該下電阻轉態層進行200 W持續10分鐘的氧電漿處理。 According to an embodiment of the present invention, the lower resistance transformation layer is subjected to the same atomic layer deposition system, and the lower resistance transformation layer is subjected to 200 in a cavity temperature of 250 ° C and a working pressure of 0.2 Torr. W lasts 10 minutes of oxygen plasma treatment.

根據本發明之實施例,前述上電阻轉態層或下電阻轉態層的材料為二氧化鉿、氧化鋁、二氧化鈦、二氧化鋯、氧化錫或氧化鋅。 According to an embodiment of the invention, the material of the upper resistive transition layer or the lower resistive transition layer is ceria, alumina, titania, zirconia, tin oxide or zinc oxide.

基於上述,本發明採用前述實施例所描述之結構,能抑制高電阻狀態電阻值的下降,使高低阻態電阻比值不隨著轉態次數的增加而減少,改善記憶體的耐操度。 Based on the above, the present invention adopts the structure described in the foregoing embodiments, and can suppress the decrease of the resistance value of the high resistance state, so that the ratio of the high and low resistance states does not decrease with the increase of the number of transition states, thereby improving the resistance of the memory.

本發明藉由氧電漿處理來提升氧離子含量於電阻轉態層中,而增加的氧離子數目可有效提升電阻轉態的次數。此外,氧電漿處理與電阻轉態層薄膜的沉積皆由同一台原子層沉積系統來達成,此方式減少了因製程腔體破真空後所可能造成的薄膜品質變質或進而影響電阻轉態特性等問題,因此該製程方法可改善薄膜品質且便於大量量產製造。本發明之製程方法相當適合應用於高效能電阻式非揮發性記憶體元件的量產製作。 The invention enhances the oxygen ion content in the resistance transition layer by oxygen plasma treatment, and the increased number of oxygen ions can effectively increase the number of resistance transitions. In addition, the oxygen plasma treatment and the deposition of the resistive layer film are all achieved by the same atomic layer deposition system, which reduces the deterioration of the film quality or the resistance transition property which may be caused by the vacuum of the process cavity. Such problems, so the process method can improve the quality of the film and facilitate mass production. The process method of the present invention is quite suitable for mass production of high performance resistive non-volatile memory components.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the present invention will be more apparent from the following description.

10、11、12‧‧‧記憶體元件結構 10, 11, 12‧‧‧ memory component structure

100‧‧‧矽基板 100‧‧‧矽 substrate

200‧‧‧二氧化矽薄膜 200‧‧‧ cerium oxide film

300‧‧‧鈦薄膜 300‧‧‧Titanium film

400‧‧‧鉑薄膜 400‧‧‧Platinum film

500‧‧‧氮化鈦薄膜 500‧‧‧Titanium nitride film

600‧‧‧電漿處理後二氧化鉿薄膜 600‧‧‧Purified cerium oxide film after plasma treatment

700‧‧‧二氧化鉿薄膜 700‧‧‧ cerium oxide film

800‧‧‧鈦薄膜 800‧‧‧Titanium film

900‧‧‧二氧化鉿薄膜 900‧‧‧2O2 film

1000‧‧‧二氧化鉿薄膜 1000‧‧‧2O2 film

圖1A為本發明實施例之記憶體元件之部份結構示意圖。 FIG. 1A is a partial schematic structural view of a memory device according to an embodiment of the present invention.

圖1B為實施例之二氧化鉿元件對照組之結構示意圖。 Fig. 1B is a schematic view showing the structure of a ruthenium oxide element control group of the embodiment.

圖1C為實施例之經由氧電漿處理過二氧化鉿元件對照組之結構示意圖。 1C is a schematic view showing the structure of a control group of a cerium oxide element treated by an oxygen plasma according to an embodiment.

圖2為圖1A所示本發明實施例之記憶體元件之形成過程與第一次轉態之電壓電流關係圖。 2 is a diagram showing the relationship between the formation process of the memory device and the voltage and current of the first transition state in the embodiment of the present invention shown in FIG. 1A.

圖3為圖1A所示本發明實施例之記憶體元件實際執行施加偏壓連續週期循環100次之電壓電流關係圖。 FIG. 3 is a diagram showing the relationship between voltage and current in which the memory element of the embodiment of the present invention shown in FIG. 1A actually performs a continuous cycle of applying a bias voltage for 100 times.

圖4顯示圖1A所示本發明實施例之記憶體元件實際施予直流寫入與抹除電壓之耐操度測試。 4 shows the resistance test of the memory element of the embodiment of the present invention shown in FIG. 1A actually applying DC write and erase voltages.

圖5A為圖1B所示實施例之二氧化鉿元件對照組形成過程與第一次轉態之電壓電流關係圖。 Fig. 5A is a graph showing the relationship between the formation process of the ceria element control group and the voltage and current of the first transition state in the embodiment shown in Fig. 1B.

圖5B為圖1C所示實施例之經由氧電漿處理過二氧化鉿元件對照組形成過程與第一次轉態之電壓電流關係圖。 FIG. 5B is a graph showing the relationship between the formation process of the control group of the ceria element through the oxygen plasma and the voltage and current of the first transition state in the embodiment shown in FIG. 1C.

圖6A為圖1B所示實施例之二氧化鉿元件對照組實際執行施加偏壓連續週期循環100次之電壓電流關係圖。 Fig. 6A is a graph showing the relationship between voltage and current in which the ceria element control group of the embodiment shown in Fig. 1B actually performs a continuous cycle of applying a bias voltage for 100 times.

圖6B為圖1C所示實施例之經由氧電漿處理過二氧化鉿元件對照組實際執行施加偏壓連續週期循環10次之電壓電流關係圖。 Fig. 6B is a graph showing the relationship between the voltage and current of the continuous oxidation cycle of applying the bias voltage for 10 times in the control group of the cerium oxide element treated by the oxygen plasma treatment of the embodiment shown in Fig. 1C.

圖7A顯示圖1B所示實施例之二氧化鉿元件對照組在施予直流寫入與抹除電壓之耐操度測試。 Fig. 7A shows the resistance test of the ruthenium oxide element control group of the embodiment shown in Fig. 1B in the application of the DC write and erase voltages.

圖7B顯示圖1B所示實施例之經由氧電漿處理過二氧化鉿元件對照組在施予直流寫入與抹除電壓之耐操度測試。 Figure 7B shows the endurance test of the DC write and erase voltages applied to the control group of the ceria element via the oxygen plasma treatment of the embodiment of Figure 1B.

圖8顯示圖1A所示本發明實施例之記憶體元件施予動態脈衝之耐操度測試。 FIG. 8 shows the endurance test of the memory element applied to the dynamic pulse of the embodiment of the present invention shown in FIG. 1A.

為了改善電阻式記憶體的耐操度次數,本發明利用在元件製作的同時,利用電漿處理(plasma treatment),例如氧電漿,來有效提升電阻轉態層中可供使用的氧離子含量。並且,為了避免電阻式記憶體中的活性上電極(如鈦電極),直接捕獲因氧電漿處理所增加的額外氧離子數目,本發明額外在經由電漿處理過後的電阻轉態層之上,導入一層薄的介電層薄膜,藉此避免活性上電極與電漿處理過後的電阻轉態層直接接觸,防止額外產生的氧離子被活性上電極吸附,導致耐操度無法提升與改善。 In order to improve the number of times of resistance of the resistive memory, the present invention utilizes plasma treatment, such as oxygen plasma, to effectively increase the oxygen ion content available in the resistive transition layer while the device is being fabricated. . Moreover, in order to avoid active upper electrodes (such as titanium electrodes) in the resistive memory, the number of additional oxygen ions added by the oxygen plasma treatment is directly captured, and the present invention is additionally on the resistive transition layer after the plasma treatment. A thin dielectric film is introduced to prevent direct contact between the active upper electrode and the plasma-transformed layer after the plasma treatment, thereby preventing additional oxygen ions from being adsorbed by the active upper electrode, resulting in an inability to improve and improve the resistance.

以下實施例以電阻式記憶體結構為例,本發明實施例之電阻式記憶體結構包括:上電極/上電阻轉態層/氧電漿處理後的下電阻轉態層/下電極之疊層結構。 The following embodiment takes a resistive memory structure as an example. The resistive memory structure of the embodiment of the present invention includes: a stack of upper electrode/upper resistance transition layer/oxygen plasma treated lower resistance transition layer/lower electrode structure.

利用金屬或導電化合物作為下電極,後續先利用原子層沉積系統(Atomic Layer Deposition;ALD)形成二氧化鉿(HfO2)薄膜當作下電阻轉態層,當沉積完下電阻轉態層後,利用原子層沉積系統,在沉積腔體不破真空的環境下,對下電阻轉態層執行氧電漿處理的動作,藉此提升下電阻轉態層中的氧離子含量,之後,同樣利用原子層沉積系統,沉積另外一層上電阻轉態層於經由氧電漿處理過後的下電阻轉態層上方,最後沉積上電極,完成上電極/上電阻轉態層/氧電漿處理後的下電阻轉態層/下電極的電阻式記憶體結構。 Using a metal or a conductive compound as a lower electrode, a thin film of hafnium oxide (HfO 2 ) is formed as an underlying resistive layer by an atomic layer deposition (ALD) system, and after depositing the lower resistance layer, The atomic layer deposition system is used to perform the action of oxygen plasma treatment on the lower resistance layer under the environment in which the deposition chamber is not broken, thereby increasing the oxygen ion content in the lower resistance layer, and then using the atomic layer. Deposition system, deposit another layer of resistive transition layer over the lower resistance transition layer after treatment by oxygen plasma, and finally deposit the upper electrode to complete the lower resistance switch after the upper electrode/upper resistance transition layer/oxygen plasma treatment Resistive memory structure of the layer/lower electrode.

實施例 Example

圖1A為本發明實施例之記憶體元件之部份結構示意圖。以下簡述圖1A所示本發明實施例之記憶體元件10之形成過程。提供經過RCA清潔步驟清洗過後的矽基板100,利用高溫爐管形成200奈米厚的二氧化矽薄膜200於矽基板100上作為隔絕氧化層,再利用電子束蒸鍍法形成20奈米厚的鈦薄膜300以及50奈米厚的鉑薄膜400做為下導電層。接著我們利用原子層沉積(Atomic Layer Deposition)系統,以四二甲胺基化鈦(Ti[N(CH3)2]4;簡稱TDMAT)當作前驅物(precursor),利用氮氣電漿與TDMAT反應、在沉積溫度為250℃且工作壓力為0.3 Torr的環境下,形成10奈米的氮化鈦薄膜500做為下電極。之後,利用相同的原子層沉積系統,以四甲基乙基氨化乙鉿(Hf[N(C2H5)(CH3)]4;簡稱TEMAH)與水為前驅物,在沉積溫度為250℃且工作壓力為0.2 Torr的環境下,沉積9奈米厚的二氧化鉿薄膜當作下電阻轉態層。然後利用原子層沉積系統,在腔體溫度為250℃且工作壓力為0.2 Torr的環境下,對下電阻轉態層進行200 W持續10分鐘的氧電漿處理得到電漿處理後的二氧化鉿薄膜600。之後,利用原子層沉積系統,在經由氧電漿處理過後的下電阻轉態層(電漿處理後的二氧化鉿薄膜600)上方,沉積1奈米厚的二氧化鉿薄膜700當作上電阻轉態層。之後,利用電子束蒸鍍法並藉由金屬光罩定義出上電極面積(例如為4.9x10-4 cm2),形成50奈米厚的鈦金屬薄膜800做為上電極,最後將本發明記憶體元件置於真空退火爐管中、於400℃且高真空環境(例如約10-7 Torr)下,進行持續30分鐘的長時間沉積金 屬後退火(PMA),得到元件10部份結構示意圖如圖1A所示。記憶體元件10結構由下而上依序具有基板100、二氧化矽薄膜200(隔絕氧化層)、鈦薄膜300/鉑薄膜400(下導電層)、氮化鈦薄膜500(下電極)、經由氧電漿處理過後的二氧化鉿薄膜600(下電阻轉態層)、二氧化鉿薄膜700(上電阻轉態層)與鈦金屬薄膜(上電極)。 FIG. 1A is a partial schematic structural view of a memory device according to an embodiment of the present invention. The formation process of the memory device 10 of the embodiment of the present invention shown in Fig. 1A is briefly described below. The ruthenium substrate 100 after the RCA cleaning step is cleaned, and a 200 nm thick ruthenium dioxide film 200 is formed on the ruthenium substrate 100 as an isolation oxide layer by using a high temperature furnace tube, and then formed by a beam evaporation method to form a 20 nm thick layer. The titanium film 300 and the 50 nm thick platinum film 400 serve as a lower conductive layer. Then we use the Atomic Layer Deposition system to use tetramethylammonium titanium (Ti[N(CH 3 ) 2 ] 4 ; TDMAT for short) as the precursor, using nitrogen plasma and TDMAT. The reaction, at a deposition temperature of 250 ° C and a working pressure of 0.3 Torr, formed a 10 nm titanium nitride film 500 as a lower electrode. Thereafter, using the same atomic layer deposition system, tetramethylethylammonium hydride (Hf[N(C 2 H 5 )(CH 3 )] 4 ; TEMAH) and water are used as precursors at the deposition temperature. A 9 nm thick ruthenium dioxide film was deposited as a lower resistance transition layer at 250 ° C and a working pressure of 0.2 Torr. Then, using an atomic layer deposition system, the lower resistance layer is subjected to 200 W for 10 minutes of oxygen plasma treatment in a cavity temperature of 250 ° C and a working pressure of 0.2 Torr to obtain a plasma-treated cerium oxide. Film 600. Thereafter, using an atomic layer deposition system, a 1 nm thick ruthenium dioxide film 700 is deposited as an upper resistance over the lower resistance transition layer (plasma treated ruthenium oxide film 600) after the oxygen plasma treatment. Transition layer. Thereafter, an electron beam evaporation method is used to define an upper electrode area (for example, 4.9×10 −4 cm 2 ) by a metal mask, and a 50 nm thick titanium metal film 800 is formed as an upper electrode, and finally the memory of the present invention is used. The body element is placed in a vacuum annealing furnace tube at a temperature of 400 ° C and a high vacuum environment (for example, about 10 -7 Torr) for a long time deposition metal post-annealing (PMA) for 30 minutes to obtain a partial structural diagram of the element 10 as shown in the figure. Figure 1A shows. The structure of the memory element 10 has a substrate 100, a ceria film 200 (insulation oxide layer), a titanium film 300/platinum film 400 (lower conductive layer), a titanium nitride film 500 (lower electrode), and a via titanium nitride film sequentially from bottom to top. Oxygen plasma treated ruthenium dioxide film 600 (lower resistance transition layer), ruthenium dioxide film 700 (upper resistance transition layer) and titanium metal film (upper electrode).

本發明提供一記憶體元件至少包括一疊層結構,該疊層結構至少包括下導電層、位於該下導電層上之下電阻轉態層、位於該下電阻轉態層上之上電阻轉態層與位於該上電阻轉態層上之上導電層。元件之上電阻轉態層與下電阻轉態層利用原子層沉積法成長,且下電阻轉態層經由氧電漿處理。透過此一結構設計,此疊層結構應用於電阻式非揮發性記憶體,能有效提升電阻式記憶體耐操度的次數。 The invention provides a memory device comprising at least a laminated structure, the laminated structure comprising at least a lower conductive layer, a resistive transition layer on the lower conductive layer, and a resistance transition state on the lower resistance transition layer The layer and the conductive layer on the upper resistive transition layer. The resistive transition layer and the lower resistive transition layer on the component are grown by atomic layer deposition, and the lower resistive transition layer is processed via oxygen plasma. Through this structural design, the laminated structure is applied to a resistive non-volatile memory, which can effectively improve the resistance of the resistive memory.

本發明元件疊層結構中所述上電阻轉態層的材料與下電阻轉態層的材料,可以包含任意能以原子層沉積法沉積的氧化物材料,例如:二氧化鉿、氧化鋁、二氧化鈦、二氧化鋯、氧化錫或氧化鋅。針對原子層沉積法沉積的上電阻轉態層與下電阻轉態層,其沉積溫度範圍為例如100℃~500℃。所述之下電阻轉態層,其厚度為例如1奈米~100奈米。所述之上電阻轉態層,其厚度為例如1奈米~100奈米。或者,視元件設計所需,所述之上電阻轉態層亦可省略。 The material of the upper resistive transition layer and the material of the lower resistive transition layer in the device laminated structure of the present invention may comprise any oxide material which can be deposited by atomic layer deposition, for example: ceria, alumina, titania , zirconium dioxide, tin oxide or zinc oxide. The upper resistive transition layer and the lower resistive transition layer deposited by the atomic layer deposition method have a deposition temperature ranging, for example, from 100 ° C to 500 ° C. The lower resistance transition layer has a thickness of, for example, 1 nm to 100 nm. The upper resistive transition layer has a thickness of, for example, 1 nm to 100 nm. Alternatively, the upper resistive transition layer may also be omitted depending on the design of the component.

針對所述經由氧電漿處理過後的下電阻轉態層,利用同一原子層沉積系統進行電漿處理,其電漿可包含能以原子層沉積 系統提供氧離子的任意電漿類型,例如:氧氣電漿。 For the lower resistance transformation layer after the oxygen plasma treatment, the same atomic layer deposition system is used for plasma treatment, and the plasma may include deposition by atomic layer The system provides any type of plasma of oxygen ions, such as oxygen plasma.

本發明元件疊層結構中之上導電層就是作為上電極,而下導電層作為下電極。所述之上導電層,其厚度為例如1奈米~1000奈米。所述之下導電層,其厚度為例如1奈米~500奈米。所述上導電層之材料為導體材料,選自鈦、氮化鈦、鉑、鋁、鎢、銥、氧化銥、釕、鉭、氮化鉭、鎳、鉬、鋯或銦錫氧化物。所述下導電層之材料為導體材料,選自鈦、氮化鈦、鉑、鋁、鎢、銥、氧化銥、釕、鉭、氮化鉭、鎳、鉬、鋯、銦錫氧化物或重度摻雜矽半導體。所述上導電層可利用原子層沉積法、電子束蒸鍍法或濺鍍法來形成。所述下導電層可利用原子層沉積法、電子束蒸鍍法、濺鍍法或高溫爐管形成。根據本發明實施例,所述下導電層以及上電阻轉態層與下電阻轉態層,可經由同一原子層沉積系統、在不換製程機台與腔體不破真空的情況下,透過不同配方與製程條件連續沉積。 In the layer stack structure of the present invention, the upper conductive layer serves as the upper electrode and the lower conductive layer serves as the lower electrode. The upper conductive layer has a thickness of, for example, 1 nm to 1000 nm. The lower conductive layer has a thickness of, for example, 1 nm to 500 nm. The material of the upper conductive layer is a conductor material selected from the group consisting of titanium, titanium nitride, platinum, aluminum, tungsten, tantalum, niobium oxide, tantalum, niobium, tantalum nitride, nickel, molybdenum, zirconium or indium tin oxide. The material of the lower conductive layer is a conductor material selected from the group consisting of titanium, titanium nitride, platinum, aluminum, tungsten, tantalum, niobium oxide, tantalum, niobium, tantalum nitride, nickel, molybdenum, zirconium, indium tin oxide or heavy Doped germanium semiconductor. The upper conductive layer may be formed by an atomic layer deposition method, an electron beam evaporation method, or a sputtering method. The lower conductive layer may be formed by an atomic layer deposition method, an electron beam evaporation method, a sputtering method, or a high temperature furnace tube. According to the embodiment of the present invention, the lower conductive layer and the upper resistive transition layer and the lower resistive transition layer can pass different formulas through the same atomic layer deposition system without changing the vacuum in the process machine and the cavity. Continuous deposition with process conditions.

此外,針對前述實施例記憶體元件,製造單純二氧化鉿元件與經由氧電漿處理過的二氧化鉿元件作為本發明之記憶體元件的對照組。圖1B為實施例之二氧化鉿元件對照組之結構示意圖,以下簡述圖1B所示之單純二氧化鉿元件對照組的製作形成過程。其結構中所包括之矽基板100、二氧化矽薄膜200、鈦薄膜300、鉑薄膜400與氮化鈦薄膜500等乃依照類似前述圖1A所述方法步驟來形成,接著,利用原子層沉積(ALD)系統,於10奈米厚的氮化鈦薄膜500上方沉積10奈米厚的二氧化鉿薄膜900,之 後形成50奈米厚的鈦金屬薄膜800在二氧化鉿薄膜900上面,該鈦金屬薄膜800做為上電極,所製作的方法與參數與前述製程方法相同,得到元件11部份結構示意圖如圖1B所示。 Further, with respect to the memory element of the above-described embodiment, a simple ceria element and a ceria element treated with an oxygen plasma were used as a control group of the memory element of the present invention. Fig. 1B is a schematic view showing the structure of a cerium oxide element control group of the embodiment, and the formation process of the simple cerium oxide element control group shown in Fig. 1B is briefly described below. The tantalum substrate 100, the hafnium oxide film 200, the titanium thin film 300, the platinum thin film 400, and the titanium nitride thin film 500, which are included in the structure, are formed in accordance with the method steps similar to those described above with reference to FIG. 1A, and then, by atomic layer deposition ( ALD) system, depositing a 10 nm thick ruthenium dioxide film 900 over a 10 nm thick titanium nitride film 500, Then, a 50 nm thick titanium metal film 800 is formed on the ceria film 900, and the titanium metal film 800 is used as an upper electrode. The method and parameters are the same as the above-mentioned process method, and a partial structure diagram of the element 11 is obtained. 1B is shown.

圖1C為實施例之經由氧電漿處理過二氧化鉿元件對照組之結構示意圖。以下簡述圖1C所示實施例之經由氧電漿處理過二氧化鉿元件對照組之形成過程。其結構中所包括之矽基板100、二氧化矽薄膜200、鈦薄膜300、鉑薄膜400與氮化鈦薄膜500等乃依照類似前述圖1A所述方法步驟來形成,接著,利用原子層沉積(ALD)系統,於10奈米厚的氮化鈦薄膜500上方沉積10奈米厚的二氧化鉿薄膜1000,然後利用原子層沉積系統,對10奈米厚的二氧化鉿薄膜1000進行200 W持續10分鐘的氧電漿處理,之後,形成50奈米厚的鈦金屬薄膜800在經由氧電漿處理過二氧化鉿薄膜1000上面,該鈦金屬薄膜800做為上電極,所製作的方法與參數與前述製程方法相同,得到元件12部份結構示意圖如圖1C所示。 1C is a schematic view showing the structure of a control group of a cerium oxide element treated by an oxygen plasma according to an embodiment. The formation process of the cerium oxide element-treated control group via the oxygen plasma in the embodiment shown in Fig. 1C is briefly described below. The tantalum substrate 100, the hafnium oxide film 200, the titanium thin film 300, the platinum thin film 400, and the titanium nitride thin film 500, which are included in the structure, are formed in accordance with the method steps similar to those described above with reference to FIG. 1A, and then, by atomic layer deposition ( ALD) system, depositing a 10 nm thick ruthenium oxide film 1000 over a 10 nm thick titanium nitride film 500, and then performing a 200 W continuous on a 10 nm thick ruthenium oxide film 1000 using an atomic layer deposition system. After 10 minutes of oxygen plasma treatment, a 50 nm thick titanium metal film 800 is formed on the cerium oxide film 1000 treated by oxygen plasma, and the titanium metal film 800 is used as an upper electrode, and the method and parameters are fabricated. Similar to the foregoing process method, a schematic structural view of the component 12 is shown in FIG. 1C.

圖2為圖1A所示本發明實施例之記憶體元件之形成過程(forming process)與第一次轉態之電壓電流關係圖,其顯示利用本發明元件之操作模式。在形成過程中,當施加正直流偏壓於鈦薄膜800(上電極),且氮化鈦薄膜500(下電極)接地時,電流會隨著電壓增加而增加,當電流上升至限電流值(500μA時,其偏壓值為形成電壓(forming voltage),通常需要較大的偏壓,此時該元件電阻值由原本高電阻的初始狀態(initial state)轉換到低電阻狀態 (Low Resistance State;LRS),本發明元件之形成電壓約為3 V。接著,對本發明元件施予負偏壓操作,當施加偏壓從0 V到-0.7 V,當到達-0.7 V時電流值開始下降,此現象顯示出元件的電阻值隨著負偏壓的增高而上升,當持續施加負偏壓到達-2 V之後,該元件具有較高的電阻值,之後將施加的偏壓由-2 V掃到0 V,可發現當施加偏壓由0 V到-2 V時的電壓-電流曲線(I-V curve)與由-2 V到0 V不同,顯示出該元件由低電阻狀態之高電流轉態到高電阻狀態(High Resistance State;HRS)的低電流。之後對該元件施予一正偏壓0 V到2 V,電流會隨著電壓增加而增加,當施加正偏壓到達寫入電壓(Set Voltage)約0.6 V時,電流值到達限電流值(500 μA,此時元件由高電阻狀態改變至低電阻狀態,接著,對該元件施予負偏壓之抹除電壓(Reset Voltage)約-0.6 V時,電流再度下降,此時低電阻狀態之電流轉態到高電阻狀態,完成第一次電阻轉態(1st switch),且此電阻轉換特性可以多次重複操作,圖3為圖1A所示本發明實施例之記憶體元件,實際執行施加偏壓連續週期為0 V~1.5 V~0 V~-1.5 V~0V循環100次的結果,顯示出在讀取電壓為0.3 V時,具有高電流值(1 mA)與低電流值(100μA)2種不同的電阻狀態,亦即我們可以利用控制施予偏壓的大小使元件產生電阻的轉換以達到記憶目的,在無外加電源供應下,高低電阻狀態皆能維持其穩定的記憶態,可用於非揮發性記憶體之應用。 2 is a diagram showing the relationship between the forming process of the memory device and the voltage and current of the first transition state of the embodiment of the present invention shown in FIG. 1A, which shows the operation mode of the component using the present invention. During the formation process, when a positive DC bias is applied to the titanium film 800 (upper electrode) and the titanium nitride film 500 (lower electrode) is grounded, the current increases as the voltage increases, and when the current rises to the current limit value ( At 500μA, the bias voltage is a forming voltage, which usually requires a large bias voltage. At this time, the resistance value of the device is switched from the initial state of the high resistance to the low resistance state. (Low Resistance State; LRS), the forming voltage of the device of the present invention is about 3 V. Next, a negative bias operation is applied to the device of the present invention. When a bias voltage is applied from 0 V to -0.7 V, the current value begins to decrease when the voltage reaches -0.7 V, which indicates that the resistance value of the device increases with the negative bias voltage. Rising, after continuously applying a negative bias to -2 V, the component has a higher resistance value, and then the applied bias voltage is swept from -2 V to 0 V, and it can be found that when the bias voltage is applied from 0 V to - The voltage-current curve (IV curve) at 2 V is different from -2 V to 0 V, showing the low current of the component from a high current state of low resistance state to a high resistance state (HRS). After applying a positive bias voltage of 0 V to 2 V to the device, the current increases with increasing voltage. When a positive bias voltage is applied to reach a write voltage of about 0.6 V, the current value reaches the current limit value ( 500 μA, at this time, the component changes from a high resistance state to a low resistance state. Then, when the reset voltage of the component is applied with a negative bias voltage of about -0.6 V, the current is again decreased, and the low resistance state is at this time. The current is transferred to the high resistance state to complete the first resistance transition (1st switch), and the resistance conversion characteristic can be repeatedly operated. FIG. 3 is the memory component of the embodiment of the present invention shown in FIG. 1A, and the actual application is performed. The continuous cycle of the bias voltage is 0 V~1.5 V~0 V~-1.5 V~0V cycle 100 times, showing high current value (1 mA) and low current value (100μA) when the read voltage is 0.3 V. 2 kinds of different resistance states, that is, we can control the bias voltage of the component to make the resistance conversion of the component to achieve the memory purpose, and the high and low resistance states can maintain the stable memory state without the external power supply. Can be used in non-volatile memory applications.

圖4為圖1A所示本發明實施例之記憶體元件在施予直流寫入與抹除電壓之耐操度測試(endurance test),此測量條件皆於元 件之上電極施加偏壓且元件下電極給予接地,其中高電阻狀態與低電阻狀態皆在讀取電壓為0.3 V偏壓下讀取其高低阻態電流值,本發明的元件在超過11000次以上的連續轉態操作下,高電阻狀態與低電阻狀態之電阻比仍保有大於10倍的值,顯示其優秀之耐操度特性。 4 is an endurance test for applying a DC write and erase voltage to the memory device of the embodiment of the present invention shown in FIG. 1A, and the measurement conditions are all in the element. The upper electrode of the device is biased and the lower electrode of the component is grounded, wherein both the high resistance state and the low resistance state read the high and low resistance current values at a bias voltage of 0.3 V, and the component of the present invention exceeds 11,000 times. Under the above continuous transition operation, the resistance ratio of the high resistance state and the low resistance state still maintains a value greater than 10 times, showing excellent excellent resistance characteristics.

圖5A為圖1B所示實施例之二氧化鉿元件對照組形成過程與第一次轉態之電壓電流關係圖。圖5B為圖1C所示實施例之經由氧電漿處理過二氧化鉿元件對照組形成過程與第一次轉態之電壓電流關係圖。圖6A為圖1B所示實施例結構實際執行施加偏壓連續週期為0 V~1.5 V~0 V~-1.5 V~0V循環100次的結果。圖6B為圖1C所示實施例結構實際執行施加偏壓連續週期為0 V~1.5 V~0 V~-1.5 V~0V循環10次的結果。圖7A顯示圖1B所示實施例之結構在施予直流寫入與抹除電壓之耐操度測試,測量條件都是在元件之上電極施加偏壓且元件下電極給予接地,其中高電阻狀態與低電阻狀態皆在讀取電壓為0.3 V偏壓下讀取其高低阻態電流值,其結果顯示,二氧化鉿元件對照組的耐操度測試在超過6000次的連續轉態操作下,高電阻狀態的電流值有持續上升的趨勢,導致二氧化鉿元件對照組在數次連續轉態操作後的高低電阻狀態之電阻比值小於10倍。此外,圖7B顯示圖1C所示實施例之結構在施予直流寫入與抹除電壓之耐操度測試,測量條件皆於元件之上電極施加偏壓且元件下電極給予接地,其中高電阻狀態與低電阻狀態皆在讀取電壓為0.3 V偏壓下讀取其高低阻態電 流值,其結果顯示,經由氧電漿處理過二氧化鉿元件對照組可以使耐操度測試的轉態次數從6000次提升到10000次,顯示出經由氧電漿處理過二氧化鉿元件對照組可以提升耐操度測試的轉態次數,代表電漿處理對耐操度測試的正向影響。然而耐操度測試在超過10000次的連續轉態操作下,高電阻狀態的電流值仍有持續上升的趨勢,導致經由氧電漿處理過二氧化鉿元件對照組在數次連續轉態操作後的高低電阻狀態之電阻比值小於10倍。 Fig. 5A is a graph showing the relationship between the formation process of the ceria element control group and the voltage and current of the first transition state in the embodiment shown in Fig. 1B. FIG. 5B is a graph showing the relationship between the formation process of the control group of the ceria element through the oxygen plasma and the voltage and current of the first transition state in the embodiment shown in FIG. 1C. FIG. 6A is a result of actually performing the cycle of applying a bias voltage of 0 V~1.5 V~0 V~-1.5 V~0 V for 100 times in the structure of the embodiment shown in FIG. 1B. FIG. 6B is a result of the embodiment of the embodiment shown in FIG. 1C actually performing a cycle of applying a bias voltage of 0 V~1.5 V~0 V~-1.5 V~0 V for 10 times. Fig. 7A shows the structure of the embodiment shown in Fig. 1B subjected to a DC write and erase voltage tolerance test, the measurement conditions are that the electrode is biased on the upper electrode of the component and the lower electrode of the component is grounded, wherein the high resistance state Both the high and low resistance current values were read at a bias voltage of 0.3 V with the low resistance state. The results showed that the resistance test of the cerium oxide component control group was performed under more than 6,000 consecutive transition operations. The current value in the high resistance state tends to rise continuously, resulting in a resistance ratio of the high and low resistance states of the ceria element control group after several consecutive transition operations being less than 10 times. In addition, FIG. 7B shows the structure of the embodiment shown in FIG. 1C in which the DC write and erase voltages are subjected to the endurance test. The measurement conditions are all on the upper electrode of the component and the lower electrode of the component is grounded, wherein the high resistance Both the state and the low resistance state read their high and low resistance states under a bias voltage of 0.3 V. The flow value, the results show that the control group of the cerium oxide component treated by the oxygen plasma can increase the number of transitions of the resistance test from 6,000 times to 10,000 times, showing that the cerium oxide component has been treated via oxygen plasma. The group can improve the number of transitions of the endurance test, which represents the positive impact of the plasma treatment on the resistance test. However, in the continuous resistance operation of more than 10,000 cycles, the current value of the high resistance state continues to rise, resulting in the control of the ceria component via oxygen plasma after several consecutive transition operations. The resistance ratio of the high and low resistance states is less than 10 times.

將本發明實施例記憶體元件所得的圖2之電壓電流關係圖,與實施例二氧化鉿元件所得的圖5A之電壓電流關係圖和經由氧電漿處理過二氧化鉿元件所得的圖5B之電壓電流關係圖相比較對照,可以觀察出,本發明元件與各對照組的形成電壓皆落在3 V的位置。此外,將本發明實施例記憶體元件所得的圖3之電壓電流關係圖,與實施例二氧化鉿元件所得的圖6A之電壓電流關係圖和經由氧電漿處理過二氧化鉿元件所得的圖6B之電壓電流關係圖相比較對照,可以觀察出在相同的限電流值(2 mA與相同施加偏壓週期為0 V~1.5 V~0 V~-1.5 V~0V的操作下,本發明實施例記憶體元件與各對照組具有相同的寫入與抹除電壓,分別為0.7 V與-0.6 V。此結果顯示出,當元件在相同電阻轉態層總厚度之下(總厚度皆為10奈米),不論是否有經過氧電漿處理,對電阻式記憶體的操作並無直接影響,但是,從本發明實施例記憶體元件所得的圖4所顯示耐操度結果,與二氧化鉿元件之圖7A和經由氧電漿處理過二氧化鉿元件之圖7B所顯示耐操度結果相比較,本發明 實施例記憶體元件結構,確實在耐操度測試下,可以抑制因寫入與抹除電壓所造成高電阻狀態電流值上升的問題,能有效提升電阻式記憶體耐操度的特性。 The voltage-current relationship diagram of FIG. 2 obtained by the memory device of the embodiment of the present invention is compared with the voltage-current relationship diagram of FIG. 5A obtained by the embodiment of the ruthenium dioxide element, and FIG. 5B obtained by treating the ruthenium dioxide element with oxygen plasma. Comparing the voltage-current relationship diagrams, it can be observed that the formation voltages of the elements of the present invention and the respective control groups all fall at a position of 3 V. In addition, the voltage-current relationship diagram of FIG. 3 obtained by the memory device of the embodiment of the present invention, the voltage-current relationship diagram of FIG. 6A obtained by the embodiment of the ruthenium dioxide element, and the diagram obtained by treating the ruthenium dioxide element via the oxygen plasma. Comparing the voltage and current relationship diagrams of 6B, it can be observed that the same current limit value (2 mA and the same applied bias period is 0 V~1.5 V~0 V~-1.5 V~0 V, the implementation of the present invention The memory components have the same write and erase voltages as the respective control groups, 0.7 V and -0.6 V. This result shows that the components are below the total thickness of the same resistance transition layer (the total thickness is 10). Nano), whether or not treated by oxygen plasma, has no direct effect on the operation of the resistive memory, but the results of the resistance shown in Fig. 4 obtained from the memory device of the embodiment of the present invention, and cerium oxide Figure 7A of the component and the results of the endurance shown in Figure 7B of the oxygen dioxide treated ceria element, the present invention In the memory element structure of the embodiment, it is possible to suppress the problem that the current value of the high-resistance state is increased due to the writing and erasing voltages under the durability test, and the resistance of the resistive memory can be effectively improved.

圖8顯示本發明元件圖1A所示本發明實施例之記憶體元件結構執行動態量測的耐操度測試結果,測量條件乃是給予一脈衝電壓於本發明實施例記憶體元件之上電極,且元件下電極接地,其中所施加的脈衝寫入電壓為2.1 V、脈衝寬度為30奈秒、所施加的脈衝抹除電壓為-3.3 V、脈衝寬度為30奈秒且在讀取電壓為0.3 V下,讀取其高低組態的電流值。由實驗結果可知,本發明實施例記憶體元件結構確實可有效提升電阻式記憶體的耐操度操作次數,在30奈秒的超快速脈衝電壓操作下,高低阻態電阻比值可維持大於10倍的值高達一億次(108 cycles)操作,顯示本發明實施例記憶體元件具有優異之耐操度特性。 8 is a view showing the results of the test of the performance of the memory element structure of the embodiment of the present invention shown in FIG. 1A for performing dynamic measurement, which is performed by applying a pulse voltage to the upper electrode of the memory element of the embodiment of the present invention. And the lower electrode of the component is grounded, wherein the applied pulse write voltage is 2.1 V, the pulse width is 30 nanoseconds, the applied pulse erase voltage is -3.3 V, the pulse width is 30 nanoseconds, and the read voltage is 0.3. Under V, read the current value of its high and low configuration. It can be seen from the experimental results that the memory component structure of the embodiment of the present invention can effectively improve the number of times of resistance operation of the resistive memory. Under the ultra-fast pulse voltage operation of 30 nanoseconds, the ratio of the high and low resistance resistance can be maintained more than 10 times. value of up to one million times (10 8 cycles) operation, a display example of the memory device of the embodiment of the present invention have excellent characteristics Naicao degrees.

相較於未經由氧電漿處理的單純電阻式記憶體與未額外沉積上電阻轉態層的單純氧電漿處理的電阻轉態層電阻式記憶體,前述實施例所描述之結構(圖1A),針對記憶體的耐操度,能抑制高電阻狀態電阻值的下降,使高低阻態電阻比值不隨著轉態次數的增加而減少。本發明藉由氧電漿處理來提升氧離子含量於電阻轉態層中,而增加的氧離子數目可有效提升電阻轉態的次數。 The structure described in the foregoing embodiment is compared to a simple resistive memory that has not been treated with oxygen plasma and a resistively-transformed layer resistive memory that has not been additionally deposited with a resistive transition layer (Figure 1A). ), for the resistance of the memory, it is possible to suppress the decrease in the resistance value of the high resistance state, so that the ratio of the high and low resistance states does not decrease as the number of transitions increases. The invention enhances the oxygen ion content in the resistance transition layer by oxygen plasma treatment, and the increased number of oxygen ions can effectively increase the number of resistance transitions.

此外,氧電漿處理與電阻轉態層薄膜的沉積皆由相同的儀器原子層沉積系統來達成,此方式減少了因製程腔體破真空後所可能造成的薄膜品質變質或進而影響電阻轉態特性等問題,因 此該製程方法更適合應用於高效能電阻式非揮發性記憶體元件的量產製作。而且本發明所提供之電阻式記憶體製造流程方法與現今互補式金屬氧化物半導體製程相容,便於大量量產製造。 In addition, the oxygen plasma treatment and the deposition of the resistance transition layer film are all achieved by the same instrument atomic layer deposition system, which reduces the deterioration of the film quality or the resistance transition caused by the vacuum of the process cavity. Characteristics, etc. This process method is more suitable for mass production of high-performance resistive non-volatile memory components. Moreover, the resistive memory manufacturing process method provided by the present invention is compatible with the current complementary metal oxide semiconductor process, and is convenient for mass production.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

10‧‧‧記憶體元件結構 10‧‧‧Memory component structure

100‧‧‧矽基板 100‧‧‧矽 substrate

200‧‧‧二氧化矽薄膜 200‧‧‧ cerium oxide film

300‧‧‧鈦薄膜 300‧‧‧Titanium film

400‧‧‧鉑薄膜 400‧‧‧Platinum film

500‧‧‧氮化鈦薄膜 500‧‧‧Titanium nitride film

600‧‧‧電漿處理後二氧化鉿薄膜 600‧‧‧Purified cerium oxide film after plasma treatment

700‧‧‧二氧化鉿薄膜 700‧‧‧ cerium oxide film

800‧‧‧鈦薄膜 800‧‧‧Titanium film

Claims (18)

一種記憶體元件結構,至少包括一疊層結構,而該疊層結構至少包括:下導電層;下電阻轉態層,位於該下導電層之上;上電阻轉態層,位於該下電阻轉態層之上;以及上導電層,位於該上電阻轉態層之上,其中該上電阻轉態層包括以原子層沉積法形成的第一氧化物材料層,該下電阻轉態層包括以原子層沉積法形成且經由氧電漿處理的第二氧化物材料層。 A memory device structure comprising at least one laminated structure, wherein the laminated structure comprises at least: a lower conductive layer; a lower resistance transition layer located above the lower conductive layer; and an upper resistance transition layer located at the lower resistance layer Above the layer; and an upper conductive layer over the upper resistive transition layer, wherein the upper resistive transition layer comprises a first oxide material layer formed by atomic layer deposition, the lower resistive transition layer comprising A layer of a second oxide material formed by atomic layer deposition and treated via an oxygen plasma. 如申請專利範圍第1項所述之記憶體元件結構,其中該上電阻轉態層所包括之該第一氧化物材料層的材料為二氧化鉿、氧化鋁、二氧化鈦、二氧化鋯、氧化錫或氧化鋅。 The memory device structure of claim 1, wherein the material of the first oxide material layer included in the upper resistance transition layer is ceria, alumina, titania, zirconia, tin oxide. Or zinc oxide. 如申請專利範圍第1項所述之記憶體元件結構,其中該下電阻轉態層所包括之該第二氧化物材料層的材料為二氧化鉿、氧化鋁、二氧化鈦、二氧化鋯、氧化錫或氧化鋅。 The memory device structure of claim 1, wherein the material of the second oxide material layer included in the lower resistance transformation layer is ceria, alumina, titania, zirconia, tin oxide. Or zinc oxide. 如申請專利範圍第1所述之記憶體元件結構,其中該上電阻轉態層厚度為1奈米~100奈米。 The memory device structure of claim 1, wherein the upper resistance layer has a thickness of from 1 nm to 100 nm. 如申請專利範圍第1所述之記憶體元件結構,其中該下電阻轉態層厚度為1奈米~100奈米。 The memory device structure of claim 1, wherein the lower resistance layer has a thickness of from 1 nm to 100 nm. 如申請專利範圍第1所述之記憶體元件結構,其中該下導電層厚度為1奈米~500奈米。 The memory device structure of claim 1, wherein the lower conductive layer has a thickness of from 1 nm to 500 nm. 如申請專利範圍第1所述之記憶體元件結構,其中該上導電層厚度為1奈米~1000奈米。 The memory device structure of claim 1, wherein the upper conductive layer has a thickness of from 1 nm to 1000 nm. 如申請專利範圍第1所述之記憶體元件結構,其中該上導電層材料為導體材料,選自鈦、氮化鈦、鉑、鋁、鎢、銥、氧化銥、釕、鉭、氮化鉭、鎳、鉬、鋯或銦錫氧化物。 The memory device structure of claim 1, wherein the upper conductive layer material is a conductor material selected from the group consisting of titanium, titanium nitride, platinum, aluminum, tungsten, tantalum, niobium oxide, tantalum, niobium, tantalum nitride. , nickel, molybdenum, zirconium or indium tin oxide. 如申請專利範圍第1所述之記憶體元件結構,其中該下導電層材料為導體材料,選自鈦、氮化鈦、鉑、鋁、鎢、銥、氧化銥、釕、鉭、氮化鉭、鎳、鉬、鋯、銦錫氧化物或重度摻雜矽半導體。 The memory device structure of claim 1, wherein the lower conductive layer material is a conductor material selected from the group consisting of titanium, titanium nitride, platinum, aluminum, tungsten, tantalum, niobium oxide, tantalum, niobium, tantalum nitride. , nickel, molybdenum, zirconium, indium tin oxide or heavily doped germanium semiconductor. 一種記憶體元件結構之製造方法,至少包括:形成一下導電層;以原子層沉積法形成一下電阻轉態層,位於該下導電層之上;進行氧電漿處理該下電阻轉態層;以原子層沉積法形成一上電阻轉態層,位於該下電阻轉態層之上;以及形成一上導電層,位於該上電阻轉態層之上。 A method for fabricating a memory device structure, comprising at least: forming a conductive layer; forming a resistive transition layer by atomic layer deposition on the lower conductive layer; performing an oxygen plasma treatment on the lower resistance transition layer; The atomic layer deposition method forms an upper resistive transition layer over the lower resistive transition layer; and an upper conductive layer is formed over the upper resistive transition layer. 如申請專利範圍第10項所述之記憶體元件結構之製造方法,其中該上導電層以原子層沉積法、電子束蒸鍍法或濺鍍法所形成,該上導電層材料選自鈦、氮化鈦、鉑、鋁、鎢、銥、氧化銥、釕、鉭、氮化鉭、鎳、鉬、鋯或銦錫氧化物。 The method for fabricating a memory device structure according to claim 10, wherein the upper conductive layer is formed by atomic layer deposition, electron beam evaporation or sputtering, and the upper conductive layer material is selected from the group consisting of titanium, Titanium nitride, platinum, aluminum, tungsten, tantalum, niobium oxide, tantalum, niobium, tantalum nitride, nickel, molybdenum, zirconium or indium tin oxide. 如申請專利範圍第10項所述之記憶體元件結構之製造方法,其中該下導電層以原子層沉積法、電子束蒸鍍法、濺鍍法或 高溫爐管所形成,該下導電層材料選自鈦、氮化鈦、鉑、鋁、鎢、銥、氧化銥、釕、鉭、氮化鉭、鎳、鉬、鋯、銦錫氧化物或重度摻雜矽半導體。 The method for fabricating a memory device structure according to claim 10, wherein the lower conductive layer is deposited by atomic layer deposition, electron beam evaporation, sputtering, or Formed by a high temperature furnace tube, the material of the lower conductive layer is selected from the group consisting of titanium, titanium nitride, platinum, aluminum, tungsten, tantalum, niobium oxide, tantalum, niobium, tantalum nitride, nickel, molybdenum, zirconium, indium tin oxide or heavy Doped germanium semiconductor. 如申請專利範圍第10項所述之記憶體元件結構之製造方法,其中該上導電層厚度為1奈米~1000奈米。 The method of manufacturing a memory device structure according to claim 10, wherein the upper conductive layer has a thickness of from 1 nm to 1000 nm. 如申請專利範圍第10項所述之記憶體元件結構之製造方法,其中該下導電層厚度為1奈米~500奈米。 The method for manufacturing a memory device structure according to claim 10, wherein the lower conductive layer has a thickness of from 1 nm to 500 nm. 如申請專利範圍第10項所述之記憶體元件結構之製造方法,其中該下導電層以原子層沉積法形成,而該下導電層以及該上電阻轉態層與該下電阻轉態層經由同一原子層沉積系統在腔體不破真空的情況下連續沉積。 The method of fabricating a memory device structure according to claim 10, wherein the lower conductive layer is formed by atomic layer deposition, and the lower conductive layer and the upper resistive transition layer and the lower resistive transition layer are via The same atomic layer deposition system continuously deposits in the cavity without breaking the vacuum. 如申請專利範圍第15項所述之記憶體元件結構之製造方法,其中進行氧電漿處理該下電阻轉態層經由同一原子層沉積系統在腔體溫度為250℃且工作壓力為0.2 Torr的環境下,對該下電阻轉態層進行200 W持續10分鐘的氧電漿處理。 The method for fabricating a memory device structure according to claim 15, wherein the oxygen plasma treatment is performed through the same atomic layer deposition system at a cavity temperature of 250 ° C and a working pressure of 0.2 Torr. Under the environment, the lower resistance transformation layer was subjected to an oxygen plasma treatment of 200 W for 10 minutes. 如申請專利範圍第10項所述之記憶體元件結構之製造方法,其中該上電阻轉態層的材料為二氧化鉿、氧化鋁、二氧化鈦、二氧化鋯、氧化錫或氧化鋅。 The method for fabricating a memory device structure according to claim 10, wherein the material of the upper resistance transition layer is ceria, alumina, titania, zirconia, tin oxide or zinc oxide. 如申請專利範圍第10項所述之記憶體元件結構之製造方法,其中該下電阻轉態層的材料為二氧化鉿、氧化鋁、二氧化鈦、二氧化鋯、氧化錫或氧化鋅。 The method for manufacturing a memory device structure according to claim 10, wherein the material of the lower resistance transition layer is ceria, alumina, titania, zirconia, tin oxide or zinc oxide.
TW102114642A 2013-04-24 2013-04-24 Memory device and manufacturing method thereof TWI500193B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102114642A TWI500193B (en) 2013-04-24 2013-04-24 Memory device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102114642A TWI500193B (en) 2013-04-24 2013-04-24 Memory device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201442310A true TW201442310A (en) 2014-11-01
TWI500193B TWI500193B (en) 2015-09-11

Family

ID=52423031

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102114642A TWI500193B (en) 2013-04-24 2013-04-24 Memory device and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI500193B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI610476B (en) * 2017-03-16 2018-01-01 華邦電子股份有限公司 Resistive random access memory structure and forming method thereof
TWI764624B (en) * 2021-03-16 2022-05-11 國立陽明交通大學 Manufacturing method of conductive bridging memory device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4469023B2 (en) * 2008-07-11 2010-05-26 パナソニック株式会社 Nonvolatile memory element, manufacturing method thereof, and nonvolatile semiconductor device using the nonvolatile memory element
JP5457961B2 (en) * 2010-07-16 2014-04-02 株式会社東芝 Semiconductor memory device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI610476B (en) * 2017-03-16 2018-01-01 華邦電子股份有限公司 Resistive random access memory structure and forming method thereof
TWI764624B (en) * 2021-03-16 2022-05-11 國立陽明交通大學 Manufacturing method of conductive bridging memory device

Also Published As

Publication number Publication date
TWI500193B (en) 2015-09-11

Similar Documents

Publication Publication Date Title
CN101106171B (en) Non-volatile memory device including variable resistance material
JP5339716B2 (en) Resistive memory device and manufacturing method thereof
KR101206034B1 (en) Nonvolatile memory device using oxygen-deficient metal oxide layer and the fabrication method
JP5687978B2 (en) Resistance variable nonvolatile memory device, semiconductor device, and resistance variable nonvolatile memory operating method
JP7020690B2 (en) Memristor element and its manufacturing method
US20090020740A1 (en) Resistive memory structure with buffer layer
US9177998B2 (en) Method of forming an asymmetric MIMCAP or a Schottky device as a selector element for a cross-bar memory array
CN109659433B (en) Memristor with adjustable volatile resistance and nonvolatile resistance conversion behaviors and preparation method thereof
US8637413B2 (en) Nonvolatile resistive memory element with a passivated switching layer
JP2007235139A (en) Non-volatile memory device using two oxide layers
JP2007227922A (en) Nonvolatile memory device containing amorphous alloy oxide layer
TW201637015A (en) Resistive switching memory cell
EP3602561B1 (en) A switching resistor and method of making such a device
JP2018538701A5 (en)
TW201310659A (en) Resistance change device and manufacturing method of resistance change device
CN102280577A (en) Single-pole resistance-change device, single-pole resistance-change random access memory unit and preparation method for single-pole resistance-change device
US8929123B2 (en) Resistive-switching device capable of implementing multiary addition operation and method for multiary addition operation
TWI500193B (en) Memory device and manufacturing method thereof
CN113140675A (en) PN junction storage device based on ferroelectric doping
KR101069124B1 (en) Non-volatile resistance memory device
KR20100137608A (en) Nonvolatile resistance random access memory device
TWI492371B (en) Method for making a resistive random access memory
US20240107904A1 (en) Resistive Switching in a RRAM Device
Wang et al. High-performance VO x-based memristors with ultralow switching voltages prepared at room temperature
Molina et al. Memristance effect of metal-insulator-metal structures using Al2O3 film as active layer for emergent memory devices