TW201441479A - System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system - Google Patents

System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system Download PDF

Info

Publication number
TW201441479A
TW201441479A TW102138891A TW102138891A TW201441479A TW 201441479 A TW201441479 A TW 201441479A TW 102138891 A TW102138891 A TW 102138891A TW 102138891 A TW102138891 A TW 102138891A TW 201441479 A TW201441479 A TW 201441479A
Authority
TW
Taiwan
Prior art keywords
fuel
exhaust gas
flow rate
stream
oxidant
Prior art date
Application number
TW102138891A
Other languages
Chinese (zh)
Other versions
TWI602986B (en
Inventor
Richard Huntington
Sulabh K Dhanuka
Ilya Aleksandrovich Slobodyanskiy
Original Assignee
Exxonmobil Upstream Res Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxonmobil Upstream Res Co filed Critical Exxonmobil Upstream Res Co
Publication of TW201441479A publication Critical patent/TW201441479A/en
Application granted granted Critical
Publication of TWI602986B publication Critical patent/TWI602986B/en

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Turbines (AREA)

Abstract

A system is provided with a turbine combustor having a first diffusion fuel nozzle, wherein the first diffusion fuel nozzle is configured to produce a diffusion flame. The system includes a turbine driven by combustion products from the diffusion flame in the turbine combustor. The system also includes an exhaust gas compressor, wherein the exhaust gas compressor is configured to compress and route an exhaust gas from the turbine to the turbine combustor along an exhaust recirculation path. In addition, the system includes a control system configured to control flow rates of at least one oxidant and at least one fuel to the turbine combustor in a stoichiometric control mode and a non-stoichiometric control mode, wherein the stoichiometric control mode is configured to change the flow rates and provide a substantially stoichiometric ratio of the at least one fuel with the at least one oxidant, and the non-stoichiometric control mode is configured to change the flow rates and provide a non-stoichiometric ratio of the at least one fuel with the at least one oxidant.

Description

化學計量廢氣再循環燃氣渦輪系統中之以擴散燃燒進行負載控制之系統及方法 System and method for load control by diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system

在本文中所揭示之標的係有關燃氣渦輪引擎。 The subject matter disclosed herein relates to gas turbine engines.

燃氣渦輪引擎被用在各種廣泛的應用(諸如發電、飛機以及各種機械)中。燃氣渦輪引擎通常在燃燒器段中燃燒燃料與氧化劑(例如,空氣),以產生熱燃燒產物,其然後驅動渦輪區的一或多個渦輪級。進而,渦輪段驅動壓縮機段的一個或多個壓縮機級,從而將氧化劑壓縮以隨著燃料吸進燃燒器段。同樣地,燃料和氧化劑在燃燒器段中混合,然後燃燒以產生熱燃燒產物。燃氣渦輪引擎通常沿著燃燒器段之燃燒室上游的一或多個流動路徑預混燃料和氧化劑,且因此燃氣渦輪引擎通常用預混火焰操作。不幸地,預混火焰可能很難控制或保持,其會影響各種廢氣排放和動力需求。再者,燃氣渦輪引擎通常消耗大 量的空氣作為氧化劑,並將大量的廢氣排入大氣。換句話說,廢氣通常以燃氣渦輪操作之副產物而浪費掉。 Gas turbine engines are used in a wide variety of applications, such as power generation, aircraft, and various machinery. Gas turbine engines typically combust fuel and oxidant (eg, air) in a combustor section to produce hot combustion products that then drive one or more turbine stages of the turbine zone. In turn, the turbine section drives one or more compressor stages of the compressor section to compress the oxidant to draw into the combustor section with the fuel. Likewise, the fuel and oxidant are mixed in the combustor section and then combusted to produce a hot combustion product. Gas turbine engines typically premix fuel and oxidant along one or more flow paths upstream of the combustor section, and thus the gas turbine engine typically operates with a premixed flame. Unfortunately, premixed flames can be difficult to control or maintain, which can affect various exhaust emissions and power requirements. Furthermore, gas turbine engines are usually expensive The amount of air acts as an oxidant and discharges a large amount of exhaust gas into the atmosphere. In other words, the exhaust gas is typically wasted as a by-product of gas turbine operation.

發明之簡要說明 Brief description of the invention

某些在範圍上與初始主張之發明相當的具體實例總結如下。這些具體實例不意圖限制所要主張發明之範圍,而是這些具體實例僅意圖提供本發明之可能形式的簡要概述。事實上,本發明可包括各種可能類似於或不同於下述具體實例的形式。 Some specific examples that are comparable in scope to the originally claimed invention are summarized below. These specific examples are not intended to limit the scope of the claimed invention, but are intended to provide a brief summary of possible forms of the invention. In fact, the invention may encompass a variety of forms that may be similar or different from the specific examples described below.

在第一具體實例中提供一種系統,其具備具有第一擴散燃料噴嘴之渦輪燃燒器,其中該第一擴散燃料噴嘴係經配置以產生擴散火焰。該系統包括由來自渦輪燃燒器中的擴散火焰之燃燒產物驅動的渦輪。該系統也包括廢氣壓縮機,其中該廢氣壓縮機係經配置以將來自渦輪的廢氣壓縮及沿著廢氣再循環路徑發送至該渦輪燃燒器。此外,該系統包括控制系統,其經配置以化學計量的控制模式和非化學計量的控制模式來控制至少一種氧化劑和至少一種燃料至渦輪燃燒器之流率,其中該化學計量的控制模式係經配置以改變該等流率且提供該至少一種燃料與該至少一種氧化劑之實質上化學計量比,及該非化學計量的控制模式係經配置以改變該等流率且提供該至少一種燃料與該至少一種氧化劑之非化學計量比。 In a first embodiment, a system is provided having a turbine combustor having a first diffusion fuel nozzle, wherein the first diffusion fuel nozzle is configured to generate a diffusion flame. The system includes a turbine driven by combustion products from a diffused flame in a turbine combustor. The system also includes an exhaust gas compressor, wherein the exhaust gas compressor is configured to compress exhaust gas from the turbine and send it along the exhaust gas recirculation path to the turbine combustor. Additionally, the system includes a control system configured to control a flow rate of the at least one oxidant and the at least one fuel to the turbine combustor in a stoichiometric control mode and a non-stoichiometric control mode, wherein the stoichiometric control mode is Configuring to vary the flow rates and providing a substantial stoichiometric ratio of the at least one fuel to the at least one oxidant, and the non-stoichiometric control mode is configured to vary the flow rates and provide the at least one fuel and the at least A non-stoichiometric ratio of an oxidant.

在第二具體實例中提供一種方法,其包括將 至少一種氧化劑和至少一種燃料注入渦輪燃燒器之室,其中該至少一種氧化劑和該至少一種燃料混合和燃燒而成擴散火焰以產生燃燒產物。該方法進一步包括用該燃燒產物驅動渦輪和輸出廢氣。該方法進一步包括將該廢氣沿著廢氣再循環路徑再循環至廢氣壓縮機。該方法進一步包括將廢氣壓縮和發送至該渦輪燃燒器。該方法進一步包括以化學計量的控制模式控制該至少一種氧化劑和該至少一種燃料至該渦輪燃燒器之流率,其中該化學計量的控制模式係經配置以改變該等流率及提供至少一種燃料與至少一種氧化劑之實質上化學計量比。該方法進一步包括以非化學計量的控制模式控制該至少一種氧化劑和該至少一種燃料至該渦輪燃燒器之流率,其中該非化學計量的控制模式係經配置以改變該等流率及提供至少一種燃料與至少一種氧化劑之非化學計量比。 In a second embodiment, a method is provided that includes At least one oxidant and at least one fuel are injected into the chamber of the turbine combustor, wherein the at least one oxidant and the at least one fuel are mixed and combusted to form a diffusion flame to produce a combustion product. The method further includes driving the turbine and outputting the exhaust with the combustion products. The method further includes recycling the exhaust gas to the exhaust gas compressor along an exhaust gas recirculation path. The method further includes compressing and transmitting the exhaust gas to the turbine combustor. The method further includes controlling a flow rate of the at least one oxidant and the at least one fuel to the turbine combustor in a stoichiometric control mode, wherein the stoichiometric control mode is configured to vary the flow rate and provide at least one fuel A substantially stoichiometric ratio to at least one oxidant. The method further includes controlling a flow rate of the at least one oxidant and the at least one fuel to the turbine combustor in a non-stoichiometric control mode, wherein the non-stoichiometric control mode is configured to vary the flow rates and provide at least one A non-stoichiometric ratio of fuel to at least one oxidant.

在第三具體實例中提供一種方法,其包括將 氧化劑引至至少一個氧化劑壓縮機以產生壓縮氧化劑流。 該方法進一步包括將再循環低氧含量氣體流引至燃氣渦輪引擎的壓縮機段以產生壓縮低氧含量氣體流。該方法進一步包括將第一壓縮氧化劑流率之第一部分的壓縮氧化劑流和第一燃料流率之燃料流以實質上化學計量比引至至少一個渦輪燃燒器,並於燃燒點混合該壓縮氧化劑流和該燃料流,及燃燒該壓縮氧化劑流和該燃料流的混合物。該方法進一步包括將低氧含量氣體流率之第一部分的壓縮低氧含量氣體流引至該至少一個渦輪燃燒器,並在燃燒點之後將 其與該壓縮氧化劑和該燃料之燃燒流混合,及產生高溫高壓低氧含量流。該方法進一步包括將該高溫高壓低氧含量流引至燃氣渦輪引擎的膨脹器段,並膨脹該高溫高壓低氧含量流,以產生第一機械動力以及具有第一再循環低氧含量氣體流率之再循環低氧含量氣體流,其中該再循環低氧含量氣體流含有第一再循環低氧含量氣體排放物水平。該方法進一步包括使用第一部分的第一機械動力以驅動該燃氣渦輪引擎的壓縮機段。該方法進一步包括使用第二部分的第一機械動力以驅動下列中的至少一者:產生器、該至少一個氧化劑壓縮機或至少一個其他機械裝置。該方法進一步包括以再循環迴路將再循環低氧含量氣體流從膨脹器段之出口再循環至燃氣渦輪引擎的壓縮機段之入口。該方法進一步包括從該燃氣渦輪引擎提取至少第二部分的壓縮低氧含量氣體流,和將該至少第二部分的壓縮低氧含量氣體流遞送至該第一至少一個氧化觸媒單元,及產生包含第一低氧含量產物排放物水平在目標範圍內之低氧含量產物流。該方法進一步包括將燃料流流率減少至小於該第一燃料流流率之第二燃料流流率,及將第一部分的該壓縮氧化劑流流率減少至小於該第一壓縮氧化劑流率之第二壓縮氧化劑流率,其中保持該實質上化學計量比,產生小於該第一機械動力之第二機械動力,及產生包含第二低氧含量產物排放物水平在目標範圍內之低氧含量產物流。該方法進一步包括將燃料流流率減少至小於該第二燃料流流率之第三燃料流流率,及將第一部分的該壓縮氧化劑流流率減少 至小於該第二壓縮氧化劑流率之第三壓縮氧化劑流率,其中保持該實質上化學計量比,產生小於該第二機械動力之第三機械動力,及產生包含第三低氧含量產物排放物水平在目標範圍內之低氧含量產物流。該方法進一步包括將燃料流流率減少至小於該該第三燃料流流率之第四燃料流流率,及將該第一部分的壓縮氧化劑流流率減少至小於該第三壓縮氧化劑流率之第四壓縮氧化劑流率,其中不保持該實質上化學計量比,及達到貧燃料燃燒,產生小於該第三機械動力之第四機械動力,及產生包含高氧含量產物排放物水平之高氧含量產物流。 In a third embodiment, a method is provided that includes The oxidant is directed to at least one oxidant compressor to produce a stream of compressed oxidant. The method further includes directing a recycle low oxygen content gas stream to a compressor section of the gas turbine engine to produce a compressed low oxygen content gas stream. The method further includes directing a first portion of the first compressed oxidant flow rate of the compressed oxidant stream and the first fuel stream rate fuel stream to the at least one turbine combustor at a substantially stoichiometric ratio and mixing the compressed oxidant stream at the point of combustion And the fuel stream, and combusting the mixture of the compressed oxidant stream and the fuel stream. The method further includes directing a first portion of the compressed low oxygen content gas stream of the low oxygen content gas flow rate to the at least one turbine combustor and after the combustion point It mixes with the compressed oxidant and the combustion stream of the fuel and produces a high temperature, high pressure, low oxygen content stream. The method further includes directing the high temperature, high pressure, low oxygen content stream to an expander section of the gas turbine engine and expanding the high temperature, high pressure, low oxygen content stream to produce a first mechanical power and having a first recirculated low oxygen content gas stream The recycle of the low oxygen content gas stream, wherein the recycle low oxygen content gas stream contains a first recycle low oxygen content gas effluent level. The method further includes using the first portion of the first mechanical power to drive the compressor section of the gas turbine engine. The method further includes using a second portion of the first mechanical power to drive at least one of: a generator, the at least one oxidant compressor, or at least one other mechanical device. The method further includes recycling the recirculated low oxygen content gas stream from the outlet of the expander section to the inlet of the compressor section of the gas turbine engine in a recirculation loop. The method further includes extracting at least a second portion of the compressed low oxygen content gas stream from the gas turbine engine, and delivering the at least a second portion of the compressed low oxygen content gas stream to the first at least one oxidation catalyst unit, and A low oxygen content product stream comprising a first low oxygen content product effluent level within a target range is produced. The method further includes reducing a fuel flow rate to a second fuel flow rate that is less than the first fuel flow rate, and reducing the first portion of the compressed oxidant flow rate to less than the first compressed oxidant flow rate a second compressed oxidant flow rate, wherein the substantially stoichiometric ratio is maintained, a second mechanical power less than the first mechanical power is generated, and a low oxygen content product stream comprising a second low oxygen content product effluent level within a target range is produced . The method further includes reducing a fuel flow rate to a third fuel flow rate that is less than the second fuel flow rate, and reducing the first portion of the compressed oxidant flow rate And a third compressed oxidant flow rate that is less than the second compressed oxidant flow rate, wherein the substantially stoichiometric ratio is maintained, a third mechanical power less than the second mechanical power is generated, and a third low oxygen content product effluent is produced A low oxygen content product stream that is horizontally within the target range. The method further includes reducing a fuel flow rate to a fourth fuel flow rate that is less than the third fuel flow rate, and reducing the first portion of the compressed oxidant flow rate to be less than the third compressed oxidant flow rate a fourth compressed oxidant flow rate, wherein the substantial stoichiometric ratio is not maintained, and lean fuel combustion is achieved, producing a fourth mechanical power that is less than the third mechanical power, and producing a high oxygen content that includes a high oxygen content product effluent level Product stream.

10‧‧‧系統 10‧‧‧System

12‧‧‧烴產生系統 12‧‧‧ hydrocarbon generation system

14‧‧‧以渦輪為主之服務系統 14‧‧‧ Turbine-based service system

16‧‧‧油/氣體提取系統 16‧‧‧Oil/Gas Extraction System

18‧‧‧提高油回收(EOR)系統 18‧‧‧Enhanced Oil Recovery (EOR) System

20‧‧‧地下儲存器 20‧‧‧ Underground storage

22‧‧‧地面設備 22‧‧‧ground equipment

24‧‧‧生產樹 24‧‧‧Production tree

26‧‧‧油/氣體井 26‧‧‧ Oil/Gas Well

28‧‧‧管件 28‧‧‧ Pipe fittings

30‧‧‧孔 30‧‧‧ hole

32‧‧‧土 32‧‧‧ soil

34‧‧‧流體注入系統 34‧‧‧Fluid injection system

36‧‧‧管件 36‧‧‧ Pipe fittings

38‧‧‧孔 38‧‧‧ hole

40‧‧‧流體 40‧‧‧ fluid

42‧‧‧廢氣 42‧‧‧Exhaust

44‧‧‧箭頭 44‧‧‧ arrow

46‧‧‧偏移距離 46‧‧‧Offset distance

48‧‧‧油/氣體 48‧‧‧oil/gas

50‧‧‧箭頭 50‧‧‧ arrow

52‧‧‧燃氣渦輪系統 52‧‧‧ gas turbine system

54‧‧‧廢氣(EG)處理系統 54‧‧‧Exhaust gas (EG) treatment system

56‧‧‧熱回收蒸汽產生器(HRSG) 56‧‧‧Heat Recovery Steam Generator (HRSG)

58‧‧‧廢氣再循環(EGR)系統 58‧‧‧Exhaust Gas Recirculation (EGR) System

60‧‧‧廢氣 60‧‧‧Exhaust

62‧‧‧蒸汽 62‧‧‧Steam

64‧‧‧處理過的水 64‧‧‧Processed water

66‧‧‧廢氣 66‧‧‧Exhaust

68‧‧‧氧化劑 68‧‧‧Oxidant

70‧‧‧燃料 70‧‧‧fuel

72‧‧‧機械動力 72‧‧‧Mechanical power

74‧‧‧電力 74‧‧‧Power

76‧‧‧提取點 76‧‧‧ extraction points

78‧‧‧廢氣(EG)供應系統 78‧‧‧Exhaust gas (EG) supply system

80‧‧‧廢氣(EG)提取系統 80‧‧‧Exhaust gas (EG) extraction system

82‧‧‧廢氣(EG)處理系統 82‧‧‧Exhaust gas (EG) treatment system

84‧‧‧其他系統 84‧‧‧Other systems

86‧‧‧管線 86‧‧‧ pipeline

88‧‧‧儲存槽 88‧‧‧ storage tank

90‧‧‧碳固存系統 90‧‧‧Carbon storage system

92‧‧‧二氧化碳 92‧‧‧ Carbon dioxide

94‧‧‧氮 94‧‧‧Nitrate

95‧‧‧流 95‧‧‧ flow

96‧‧‧第一流(富CO2貧N2流) 96‧‧‧First stream (CO 2 lean N 2 flow)

97‧‧‧第二流(中間濃度CO2和N2流) 97‧‧‧Second flow (intermediate concentration of CO 2 and N 2 streams)

98‧‧‧第三流(貧CO2富N2流) 98‧‧‧ third stream (CO 2 rich N 2 stream)

100‧‧‧控制系統 100‧‧‧Control system

102‧‧‧組合循環系統 102‧‧‧Combined circulatory system

104‧‧‧蒸汽渦輪 104‧‧‧Steam turbine

106‧‧‧機器 106‧‧‧ Machine

108‧‧‧水 108‧‧‧ water

110‧‧‧廢氣再循環路徑 110‧‧‧Exhaust gas recirculation path

112‧‧‧廢氣注入EOR系統 112‧‧‧Exhaust gas injection into the EOR system

114‧‧‧蒸汽注入EOR系統 114‧‧‧Steam injection into the EOR system

116‧‧‧其他油/氣體系統 116‧‧‧Other oil/gas systems

118‧‧‧控制器 118‧‧‧ Controller

120‧‧‧處理器 120‧‧‧ processor

122‧‧‧記憶體 122‧‧‧ memory

124‧‧‧蒸汽渦輪控制 124‧‧‧Steam turbine control

126‧‧‧SEGR:燃氣渦輪系統控制 126‧‧‧SEGR: Gas Turbine System Control

128‧‧‧機器控制 128‧‧‧ Machine Control

130‧‧‧感測器反饋 130‧‧‧Sensor feedback

132‧‧‧近距介面 132‧‧‧ close interface

134‧‧‧遠程介面 134‧‧‧Remote interface

150‧‧‧燃氣渦輪引擎 150‧‧‧ gas turbine engine

152‧‧‧壓縮機段 152‧‧‧Compressor section

154‧‧‧燃燒器段 154‧‧‧burner section

156‧‧‧渦輪段 156‧‧‧ Turbine section

158‧‧‧壓縮機級 158‧‧‧Compressor level

160‧‧‧燃燒器 160‧‧‧ burner

162‧‧‧旋轉軸 162‧‧‧Rotary axis

164‧‧‧燃料噴嘴 164‧‧‧fuel nozzle

166‧‧‧頭端部分 166‧‧‧ head section

168‧‧‧燃燒部分 168‧‧‧ burning part

170‧‧‧壓縮廢氣 170‧‧‧Compressed exhaust gas

172‧‧‧燃燒氣體 172‧‧‧ combustion gases

174‧‧‧渦輪級 174‧‧‧ Turbine grade

176‧‧‧軸 176‧‧‧Axis

178‧‧‧機器 178‧‧‧ Machine

180‧‧‧機器 180‧‧‧ Machine

182‧‧‧廢氣出口 182‧‧‧Exhaust gas outlet

184‧‧‧廢氣入口 184‧‧‧Exhaust gas inlet

186‧‧‧氧化劑壓縮系統 186‧‧‧Oxidant Compression System

188‧‧‧氧化劑壓縮機 188‧‧‧Oxidant compressor

190‧‧‧驅動器 190‧‧‧ drive

192‧‧‧廢氣(EG)處理元件 192‧‧‧Exhaust gas (EG) treatment components

194‧‧‧EG處理元件 194‧‧‧EG processing components

196‧‧‧EG處理元件 196‧‧‧EG processing components

198‧‧‧EG處理元件 198‧‧‧EG processing components

200‧‧‧EG處理元件 200‧‧‧EG processing components

202‧‧‧EG處理元件 202‧‧‧EG processing components

204‧‧‧EG處理元件 204‧‧‧EG processing components

206‧‧‧EG處理元件 206‧‧‧EG processing components

208‧‧‧EG處理元件 208‧‧‧EG processing components

210‧‧‧EG處理元件 210‧‧‧EG processing components

212‧‧‧管線 212‧‧‧ pipeline

214‧‧‧熱交換器 214‧‧‧ heat exchanger

216‧‧‧管線 216‧‧‧ pipeline

220‧‧‧操作方法 220‧‧‧How to operate

222‧‧‧方塊 222‧‧‧ squares

224‧‧‧方塊 224‧‧‧ squares

226‧‧‧方塊 226‧‧‧ square

228‧‧‧方塊 228‧‧‧ squares

230‧‧‧方塊 230‧‧‧ squares

232‧‧‧方塊 232‧‧‧ square

234‧‧‧方塊 234‧‧‧ squares

236‧‧‧方塊 236‧‧‧ squares

238‧‧‧方塊 238‧‧‧ squares

240‧‧‧方塊 240‧‧‧ squares

242‧‧‧方塊 242‧‧‧ squares

244‧‧‧方塊 244‧‧‧ square

246‧‧‧方塊 246‧‧‧ squares

300‧‧‧氣體處理次系統 300‧‧‧ gas treatment subsystem

302‧‧‧閥 302‧‧‧ valve

304‧‧‧感測器 304‧‧‧ Sensor

306‧‧‧提供控制訊號 306‧‧‧ Provide control signals

308‧‧‧觸媒和熱回收(CHR)系統 308‧‧‧catalyst and heat recovery (CHR) systems

310‧‧‧除濕系統(MRS) 310‧‧‧Dehumidification System (MRS)

312‧‧‧除粒系統(PRS) 312‧‧‧Degranulation System (PRS)

314‧‧‧升壓鼓風機 314‧‧‧Booster blower

316‧‧‧觸媒單元 316‧‧‧catalyst unit

318‧‧‧熱交換器 318‧‧‧ heat exchanger

320‧‧‧觸媒單元 320‧‧‧catalyst unit

322‧‧‧觸媒單元 322‧‧‧catalyst unit

324‧‧‧觸媒單元 324‧‧‧catalyst unit

326‧‧‧觸媒單元 326‧‧‧catalyst unit

328‧‧‧觸媒單元 328‧‧‧catalyst unit

330‧‧‧熱交換器 330‧‧‧ heat exchanger

332‧‧‧熱交換器 332‧‧‧ heat exchanger

334‧‧‧氧化劑觸媒單元(UCU) 334‧‧‧Oxidant Catalytic Unit (UCU)

336‧‧‧氧化劑燃料 336‧‧‧Oxidant fuel

338‧‧‧熱回收單元(HRU) 338‧‧‧Heat Recovery Unit (HRU)

340‧‧‧熱回收蒸汽產生器(HRSG) 340‧‧‧Heat Recovery Steam Generator (HRSG)

342‧‧‧蒸汽 342‧‧‧Steam

344‧‧‧蒸汽渦輪(ST) 344‧‧‧Steam Turbine (ST)

346‧‧‧負載 346‧‧‧load

348‧‧‧機械動力 348‧‧‧Mechanical power

350‧‧‧電力 350‧‧‧Power

352‧‧‧除濕單元(MRU) 352‧‧‧Dehumidification unit (MRU)

354‧‧‧除濕單元(MRU) 354‧‧‧Dehumidification unit (MRU)

356‧‧‧除濕單元(MRU) 356‧‧‧Dehumidification unit (MRU)

358‧‧‧熱交換器 358‧‧‧ heat exchanger

360‧‧‧冷凝器 360‧‧‧Condenser

362‧‧‧水 362‧‧‧ water

364‧‧‧除濕分離器或過濾器 364‧‧‧Dehumidification separator or filter

372‧‧‧水 372‧‧‧ water

374‧‧‧除粒單元(PRU) 374‧‧‧Degranulation unit (PRU)

376‧‧‧除粒單元(PRU) 376‧‧‧Degranulation unit (PRU)

378‧‧‧除粒單元(PRU) 378‧‧‧Degranulation unit (PRU)

380‧‧‧慣性分離器 380‧‧‧Inertial separator

382‧‧‧重力分離器 382‧‧‧ Gravity Separator

384‧‧‧微粒 384‧‧‧ particles

386‧‧‧除粒過濾器 386‧‧‧Drop filter

388‧‧‧第一分級過濾器 388‧‧‧First grading filter

390‧‧‧第二分級過濾器 390‧‧‧Second grading filter

392‧‧‧微粒 392‧‧‧ particles

394‧‧‧排放閥 394‧‧‧Drain valve

396‧‧‧排放系統 396‧‧‧Drainage system

420‧‧‧系統 420‧‧‧ system

422‧‧‧目標系統 422‧‧‧Target system

424‧‧‧處理次系統 424‧‧‧Processing subsystem

426‧‧‧壓縮系統 426‧‧‧Compression system

428‧‧‧除濕/脫水系統 428‧‧‧Dehumidification/dehydration system

430‧‧‧除粒/濾粒系統 430‧‧‧Degranulation/filter system

432‧‧‧氣體分離系統 432‧‧‧Gas Separation System

434‧‧‧氣體純化系統 434‧‧‧Gas purification system

436‧‧‧CO2富流 436‧‧‧CO 2 rich flow

438‧‧‧中間濃度流 438‧‧‧ intermediate concentration flow

440‧‧‧CO2貧流 440‧‧‧CO 2 lean flow

442‧‧‧次氣體處理系統 442‧‧ ‧ gas treatment system

444‧‧‧能量回收系統 444‧‧‧Energy recovery system

446‧‧‧次氣體處理系統 446‧‧ ‧ gas treatment system

448‧‧‧次氣體處理系統 448‧‧ gas treatment system

450‧‧‧次氣體處理系統 450‧‧ ‧ gas treatment system

452‧‧‧能量回收系統 452‧‧‧Energy recovery system

454‧‧‧能量回收系統 454‧‧‧Energy recovery system

456‧‧‧能量回收系統 456‧‧‧Energy recovery system

458‧‧‧壓縮系統 458‧‧‧Compression system

460‧‧‧除濕/脫水系統 460‧‧‧Dehumidification/dehydration system

462‧‧‧渦輪/膨脹器 462‧‧‧ Turbine/expander

464‧‧‧負載 464‧‧‧load

466‧‧‧機械動力 466‧‧‧Mechanical power

468‧‧‧電力 468‧‧‧Power

490‧‧‧護罩 490‧‧‧Shield

492‧‧‧壓縮機排放腔 492‧‧‧Compressor discharge chamber

494‧‧‧室 Room 494‧‧

496‧‧‧第一壁或襯墊 496‧‧‧First wall or liner

498‧‧‧第二壁或流動套管 498‧‧‧Second wall or flow casing

500‧‧‧流動通道 500‧‧‧Flow channel

502‧‧‧孔道或穿孔 502‧‧‧ holes or perforations

504‧‧‧廢氣流 504‧‧‧Exhaust flow

506‧‧‧孔道或穿孔 506‧‧ ‧ holes or perforations

508‧‧‧廢氣注入 508‧‧‧Exhaust gas injection

510‧‧‧稀釋劑注入器 510‧‧‧Diluent injector

512‧‧‧稀釋劑注入 512‧‧‧Diluent injection

514‧‧‧稀釋劑 514‧‧‧ Thinner

516‧‧‧火焰 516‧‧‧flame

518‧‧‧流體供應系統(FSS) 518‧‧‧Fluid Supply System (FSS)

520‧‧‧燃燒產物或廢氣 520‧‧‧Combustion products or waste gas

522‧‧‧閥 522‧‧‧ valve

524‧‧‧提取管線 524‧‧‧ Extraction pipeline

526‧‧‧閥 526‧‧‧ valve

528‧‧‧排放管線 528‧‧‧Drainage line

530‧‧‧排放系統 530‧‧‧Drainage system

550‧‧‧預混燃料噴嘴 550‧‧‧Premixed fuel nozzle

552‧‧‧預混火焰 552‧‧‧Premixed flame

554‧‧‧擴散燃料噴嘴 554‧‧‧Diffusion fuel nozzle

556‧‧‧擴散火焰 556‧‧‧Diffuse flame

558‧‧‧混合部分 558‧‧‧ mixed part

560‧‧‧注入部分 560‧‧‧Injection

562‧‧‧混合室 562‧‧‧Mixed room

564‧‧‧外殼 564‧‧‧Shell

566‧‧‧注入通道 566‧‧‧Injection channel

568‧‧‧導管 568‧‧‧ catheter

570‧‧‧注入出口 570‧‧‧Injected into the exit

580‧‧‧第一混合室 580‧‧‧First mixing room

582‧‧‧第二混合室 582‧‧‧Second mixing room

584‧‧‧第一外殼部分 584‧‧‧ first outer casing part

586‧‧‧第二外殼部分 586‧‧‧Second outer casing

590‧‧‧並聯混合段 590‧‧‧ parallel mixing section

592‧‧‧渦漩段 592‧‧‧Vortex

594‧‧‧內導管或集線器(hub) 594‧‧‧Inner conduit or hub (hub)

596‧‧‧外導管 596‧‧‧External catheter

598‧‧‧渦旋葉片 598‧‧ vortex blades

600‧‧‧圓周方向 600‧‧‧ circumferential direction

602‧‧‧縱軸 602‧‧‧ vertical axis

604‧‧‧內通道 604‧‧‧ internal passage

606‧‧‧外通道 606‧‧‧Outer channel

608‧‧‧徑向通道 608‧‧‧radial channel

610‧‧‧注入口 610‧‧‧Injection

612‧‧‧箭頭 612‧‧‧ arrow

614‧‧‧混合物 614‧‧‧Mixture

616‧‧‧箭頭 616‧‧‧ arrow

618‧‧‧混合物 618‧‧‧Mixture

620‧‧‧箭頭 620‧‧‧ arrow

622‧‧‧箭頭 622‧‧‧ arrow

624‧‧‧箭頭 624‧‧‧ arrow

640‧‧‧獨立通道 640‧‧‧Independent channel

642‧‧‧燃料通道 642‧‧‧fuel passage

644‧‧‧氧化劑通道 644‧‧‧Oxidant channel

646‧‧‧內導管 646‧‧‧Inner catheter

648‧‧‧外導管或結構 648‧‧‧External catheter or structure

650‧‧‧燃料出口 650‧‧‧fuel exports

652‧‧‧氧化劑出口 652‧‧‧Oxidant export

654‧‧‧共用平面或下游端 654‧‧‧Shared plane or downstream

656‧‧‧輪廓或邊界 656‧‧‧ outline or border

670‧‧‧獨立通道 670‧‧‧Independent channel

672‧‧‧注入部分 672‧‧‧Injection

674‧‧‧混合部分 674‧‧‧ mixed part

676‧‧‧內混合室 676‧‧・Internal mixing room

678‧‧‧外混合室 678‧‧‧External mixing room

680‧‧‧內導管或外殼 680‧‧‧Inner duct or casing

682‧‧‧外導管或外殼 682‧‧‧External catheter or casing

684‧‧‧燃料-稀釋劑通道 684‧‧‧fuel-diluent channel

686‧‧‧氧化劑-稀釋劑通道 686‧‧‧Oxidizer-diluent channel

688‧‧‧內導管 688‧‧‧Inner catheter

690‧‧‧外導管 690‧‧‧External catheter

692‧‧‧出口 692‧‧‧Export

694‧‧‧出口 694‧‧‧Export

696‧‧‧共用平面或下游端 696‧‧‧shared or downstream

698‧‧‧燃料-稀釋劑混合物 698‧‧‧fuel-diluent mixture

700‧‧‧氧化劑-稀釋劑混合物 700‧‧‧Oxidant-diluent mixture

702‧‧‧輪廓或邊界 702‧‧‧ outline or border

720‧‧‧獨立通道 720‧‧‧independent channel

722‧‧‧流體A通道 722‧‧‧Fluid A channel

724‧‧‧流體B通道 724‧‧‧ Fluid B channel

726‧‧‧流體C通道 726‧‧‧Function C channel

728‧‧‧導管或結構 728‧‧‧catheter or structure

730‧‧‧導管或結構 730‧‧‧catheter or structure

732‧‧‧導管或結構 732‧‧‧catheter or structure

734‧‧‧流體A 734‧‧‧Fluid A

736‧‧‧流體B 736‧‧‧ Fluid B

738‧‧‧流體C 738‧‧‧ Fluid C

740‧‧‧孔道 740‧‧‧ Hole

742‧‧‧孔道 742‧‧‧ Hole

744‧‧‧孔道 744‧‧‧ Hole

746‧‧‧共用平面或下游端 746‧‧‧ shared plane or downstream

760‧‧‧流體D通道 760‧‧‧D fluid channel

762‧‧‧導管或結構 762‧‧‧catheter or structure

764‧‧‧流體D 764‧‧‧ Fluid D

766‧‧‧出口 766‧‧‧Export

770‧‧‧稀釋劑注入系統 770‧‧‧Diluent injection system

772‧‧‧燃燒之熱產物 772‧‧‧Hot products of combustion

774‧‧‧流體E 774‧‧‧Fluid E

776‧‧‧流體F 776‧‧‧Fluid F

778‧‧‧流體G 778‧‧‧ Fluid G

790‧‧‧燃料A噴嘴 790‧‧‧Fuel A nozzle

792‧‧‧燃料B噴嘴 792‧‧‧fuel B nozzle

794‧‧‧燃料C噴嘴 794‧‧‧Fuel C nozzle

796‧‧‧燃料D噴嘴 796‧‧‧fuel D nozzle

798‧‧‧燃料E噴嘴 798‧‧‧Fuel E nozzle

800‧‧‧燃料F噴嘴 800‧‧‧Fuel F nozzle

802‧‧‧燃料G噴嘴 802‧‧‧fuel G nozzle

810‧‧‧流體供應迴路 810‧‧‧ Fluid supply circuit

812‧‧‧稀釋劑供應迴路 812‧‧‧Diluent supply circuit

814‧‧‧燃料噴嘴供應迴路 814‧‧‧fuel nozzle supply circuit

816‧‧‧第一噴嘴迴路 816‧‧‧First nozzle circuit

818‧‧‧第二噴嘴迴路 818‧‧‧Second nozzle circuit

820‧‧‧第三噴嘴迴路 820‧‧‧ third nozzle circuit

822‧‧‧化學計量控制模式 822‧‧‧Stoichiometric Control Mode

824‧‧‧非化學計量控制模式 824‧‧‧Non-stoichiometric control mode

826‧‧‧貧燃料控制模式 826‧‧‧ lean fuel control mode

828‧‧‧富燃料控制模式 828‧‧‧rich fuel control mode

830‧‧‧流體供應控制 830‧‧‧ Fluid supply control

832‧‧‧第一迴路控制 832‧‧‧First loop control

834‧‧‧第二迴路控制 834‧‧‧Second loop control

836‧‧‧第三迴路控制 836‧‧‧ Third loop control

840‧‧‧燃氣渦輪負載(EGR流) 840‧‧‧Gas turbine load (EGR flow)

842‧‧‧燃料/氧化劑比 842‧‧‧fuel/oxidant ratio

844‧‧‧擴散火焰可操作性曲線 844‧‧‧Diffuse flame operability curve

846‧‧‧預混火焰可操作性曲線 846‧‧‧Premixed flame operability curve

當參照附圖(在整個圖式中類似的字母表示類似的零件)閱讀以下的詳細說明時,本發明的這些和其他特徵、觀點和優點將變得更好理解,其中:圖1為具有連接到烴產生系統的以渦輪為主之服務系統的系統之具體實例的圖示;圖2為圖1的系統之具體實例的圖示,其進一步說明控制系統和組合循環系統;圖3為圖1和2的系統之具體實例的圖示,其進一步說明燃氣渦輪引擎、廢氣供應系統、和廢氣處理系統的細節;圖4為操作圖1-3的系統之方法的具體實例之流程圖; 圖5為圖1-3的廢氣處理系統之具體實例的 圖示;圖6為圖1-3的廢氣供應系統之具體實例的圖示;圖7為圖1-3的燃氣渦輪引擎之具體實例的圖示,其進一步說明燃燒器、燃料噴嘴、和氧化劑、燃料、和稀釋劑之流的細節;圖8為圖7的燃料噴嘴之具體實例的圖示,其說明預混燃料噴嘴配置;圖9為圖7的燃料噴嘴之具體實例的圖示,其說明預混燃料噴嘴配置;圖10為圖7的燃料噴嘴之具體實例的圖示,其說明預混燃料噴嘴配置;圖11為圖7的燃料噴嘴之具體實例的圖示,其說明擴散燃料噴嘴配置;圖12為圖7的燃料噴嘴之具體實例的圖示,其說明擴散燃料噴嘴配置;圖13為圖7的燃料噴嘴之具體實例的圖示,其說明擴散燃料噴嘴配置;圖14為圖13的燃料噴嘴之具體實例的截面示意圖,其係沿著線14-14取得;圖15為圖13的燃料噴嘴之具體實例的截面示意圖,其係沿著線14-14取得;圖16為圖7的燃燒器和燃料噴嘴之具體實例 的圖示,其說明擴散燃料噴嘴配置和稀釋劑注入系統;圖17為圖7的燃燒器和燃料噴嘴之具體實例的截面示意圖,其係沿著線17-17取得,說明燃料噴嘴之多噴嘴配置;及圖18為燃氣渦輪負載和廢氣再循環(EGR)流對擴散火焰配置和預混火焰配置之燃料/氧化劑比的曲線圖。 These and other features, aspects and advantages of the present invention will become better understood from the <RTIgt; 2 is a diagram of a specific example of a system of a turbine-based service system to a hydrocarbon generation system; FIG. 2 is a diagram of a specific example of the system of FIG. 1 further illustrating a control system and a combined cycle system; FIG. 3 is FIG. And a detailed description of a system of systems of 2, which further illustrate details of a gas turbine engine, an exhaust gas supply system, and an exhaust gas treatment system; FIG. 4 is a flow diagram of a specific example of a method of operating the system of FIGS. 1-3; Figure 5 is a specific example of the exhaust gas treatment system of Figures 1-3 Figure 6 is a diagram of a specific example of the exhaust gas supply system of Figures 1-3; Figure 7 is an illustration of a specific example of the gas turbine engine of Figures 1-3, further illustrating the combustor, fuel nozzle, and Details of a flow of oxidant, fuel, and diluent; FIG. 8 is a diagram of a specific example of the fuel nozzle of FIG. 7 illustrating a premixed fuel nozzle configuration; FIG. 9 is a diagram of a specific example of the fuel nozzle of FIG. It illustrates a premixed fuel nozzle configuration; FIG. 10 is a diagram of a specific example of the fuel nozzle of FIG. 7 illustrating a premixed fuel nozzle configuration; FIG. 11 is a diagram of a specific example of the fuel nozzle of FIG. FIG. 12 is a diagram illustrating a specific example of the fuel nozzle of FIG. 7 illustrating a diffusion fuel nozzle configuration; FIG. 13 is a diagram of a specific example of the fuel nozzle of FIG. 7 illustrating a diffusion fuel nozzle configuration; FIG. Figure 13 is a schematic cross-sectional view of a specific example of the fuel nozzle of Figure 13 taken along line 14-14; Figure 15 is a schematic cross-sectional view of a specific example of the fuel nozzle of Figure 13 taken along line 14-14; Figure 7 burner and fuel nozzle Examples Figure, which illustrates a diffusion fuel nozzle configuration and a diluent injection system; Figure 17 is a schematic cross-sectional view of a specific example of the burner and fuel nozzle of Figure 7, taken along line 17-17, illustrating the multi-nozzle of the fuel nozzle Configuration; and Figure 18 is a plot of gas turbine load and exhaust gas recirculation (EGR) flow versus diffusion/fire ratio for the pre-mixed flame configuration.

發明之詳細說明 Detailed description of the invention

一或多個本發明的特定具體實例將描述於下。為了提供此等具體實例之簡要說明,實際實施的所有特徵可不在說明書中描述。應理解:在任何該等實際實施的開發中,如在任何工程或設計項目中,必須進行許多實施-具體決定以實現開發者的特定目的,諸如符合與系統相關和商業相關的限制,其可從一個實施變化到另一個。此外,應理解:該類開發努力可能是複雜且耗時的,但對於具有本揭示的利益之熟習該項技術者而言,仍然是設計、製造和生產的例行任務。 One or more specific embodiments of the invention will be described below. In order to provide a brief description of these specific examples, all features of an actual implementation may not be described in the specification. It should be understood that in the development of any such actual implementation, as in any engineering or design project, many implementations must be made - specific decisions to achieve the developer's specific purpose, such as compliance with system-related and business-related restrictions, which may Change from one implementation to another. Moreover, it should be understood that such development efforts may be complex and time consuming, but are still routine tasks of design, manufacture, and manufacture for those skilled in the art having the benefit of this disclosure.

當介紹本發明各種具體實例的元件時,冠詞“一(a、an)”、和“該(the、said)”意欲表示存在一或多個元件。術語“包含”、“包括”和“具有”意欲為包括性並且表示可以有除所列元件之外的其它元件。 When introducing elements of various specific embodiments of the invention, the articles "a", "the", and "said" are intended to mean the presence of one or more elements. The terms "comprising", "including" and "having" are intended to be inclusive and mean that there may be other elements than those listed.

如下文所詳細討論的,該等所揭示之具體實 例通常係有關具有廢氣再循環(EGR)之燃氣渦輪系統,且特別是使用EGR之燃氣渦輪系統的化學計量操作。例如,該燃氣渦輪系統可經配置以沿著廢氣再循環路徑再循環廢氣,化學計量地燃燒燃料和氧化劑連同至少一些的再循環廢氣,和捕獲用於各種目標系統之廢氣。廢氣之再循環連同化學計量燃燒可幫助增加二氧化碳(CO2)在廢氣中的濃度水平,其然後可經後處理以分離和純化CO2和氮(N2)而用於各種目標系統。燃氣渦輪系統也可沿著該廢氣再循環路徑使用各種廢氣處理(例如,熱回收、觸媒反應、等等),從而增加CO2的濃度水平、減少其他排放(例如,一氧化碳、氮氧化物、和未燃燒的烴類)之濃度水平,和增加能量回收(例如,用熱回收單元)。再者,燃氣渦輪引擎可經配置以用一或多個擴散火焰而非或除了預混火焰來燃燒燃料和氧化劑。擴散火焰可幫助保持穩定性和操作在某些化學計量燃燒之限制內,其轉而幫助增加CO2之產生。例如,如下文所討論,相較於用預混火焰操作之燃氣渦輪系統,用擴散火焰操作之燃氣渦輪系統可允許更大量的EGR。轉而,增加量的EGR有助於增加CO2產生。可能目標系統包括管線、儲存槽、碳固存系統、和烴產生系統,諸如提高油回收(EOR)系統。 As discussed in detail below, the specific examples disclosed are generally related to stoichiometric operation of a gas turbine system having exhaust gas recirculation (EGR), and particularly a gas turbine system using EGR. For example, the gas turbine system can be configured to recirculate exhaust gases along an exhaust gas recirculation path, stoichiometrically combust fuel and oxidant along with at least some of the recirculated exhaust gases, and capture exhaust gases for various target systems. Together with the recirculating exhaust gases may help to increase the stoichiometric combustion of carbon dioxide (CO 2) concentration level in the exhaust gas, which is then post processed to separation and purification of CO 2 and nitrogen (N 2) was used in the various target systems. Gas turbine systems may also use various exhaust gas treatments (eg, heat recovery, catalyst reactions, etc.) along the exhaust gas recirculation path to increase CO 2 concentration levels and reduce other emissions (eg, carbon monoxide, nitrogen oxides) And the level of concentration of unburned hydrocarbons, and increased energy recovery (eg, with a heat recovery unit). Further, the gas turbine engine can be configured to combust fuel and oxidant with one or more diffusion flames instead of or in addition to a premixed flame. Diffusion flame operation and can help maintain the stability of combustion within certain limits stoichiometry, which in turn helps to increase the CO 2 generation. For example, as discussed below, a gas turbine system operating with a diffusion flame may allow for a greater amount of EGR than a gas turbine system operating with a premixed flame. In turn, an increased amount of EGR helps increase CO 2 production. Possible target systems include pipelines, storage tanks, carbon sequestration systems, and hydrocarbon generation systems, such as enhanced oil recovery (EOR) systems.

作為通常情況,值得注意討論的是:在預混 火焰(即,預混燃燒)與擴散火焰(即,擴散燃燒)之間的差異。燃燒(即,預混或擴散燃燒)基本上是在燃料和氧化劑(諸如空氣、氧、富氧空氣、減氧空氣、或氧和氮 之混合物)之間的放熱化學反應(例如,燃燒反應)。在燃料和氧化劑之間的放熱化學反應可實質上影響(和控制)火焰之穩定性(例如,火焰表面之穩定性),且反之亦然。例如,從該放熱化學反應釋放之熱有助於維持火焰,且因此較高火焰溫度通常導致更大的火焰穩定性。換句話說,與放熱化學反應有關之較高溫度可幫助增加火焰穩定性,而與放熱化學反應有關之較低溫度可減少火焰穩定性。火焰溫度主要可取決於燃料/氧化劑比。特別地,火焰溫度於化學計量燃料/氧化劑比可為最高,如下文所詳細討論的,其通常包括消耗實質上所有的燃料和氧化劑之放熱化學反應,從而導致實質上沒有殘餘氧化劑或未燃燒燃料。 As a general case, it is worth noting that the premix is The difference between a flame (ie, premixed combustion) and a diffusion flame (ie, diffusion combustion). Combustion (ie, premixed or diffused combustion) is essentially in fuels and oxidants (such as air, oxygen, oxygen-enriched air, oxygen-reduced air, or oxygen and nitrogen) An exothermic chemical reaction (eg, a combustion reaction) between the mixtures). The exothermic chemical reaction between the fuel and the oxidant can substantially affect (and control) the stability of the flame (eg, the stability of the flame surface), and vice versa. For example, the heat released from the exothermic chemical reaction helps to maintain the flame, and thus higher flame temperatures generally result in greater flame stability. In other words, higher temperatures associated with exothermic chemical reactions can help increase flame stability, while lower temperatures associated with exothermic chemical reactions can reduce flame stability. The flame temperature can primarily depend on the fuel/oxidant ratio. In particular, the flame temperature can be highest at the stoichiometric fuel/oxidant ratio, as discussed in detail below, which typically includes an exothermic chemical reaction that consumes substantially all of the fuel and oxidant, resulting in substantially no residual oxidant or unburned fuel. .

關於預混燃燒,燃料和氧化劑在一或多個在 預混火焰之上游的位置混合,其基本上為燃料和氧化劑之預混物的燃燒。通常,在預混火焰中燃料和氧化劑的放熱化學反應受限於在預混火焰上游之預混物的燃料/氧化劑比。在許多配置中(特別是當一或多個稀釋劑與燃料和氧化劑預混時),可能更難使預混火焰保持實質上化學計量燃料/氧化劑比,且因此可能更難以將火焰的穩定性最大化。在某些配置中,預混火焰可用貧燃料之燃料/氧化劑比達到,其減低火焰溫度,且因此有助於降低氮氧化物(NOX)(例如,一氧化氮(NO)和二氧化氮(NO2))的排放。而減少NOX排放係與排放法規有關,減低火焰溫度也導致火焰穩定性降低。在該等所揭示之具體實例 中,系統可經控制以提供實質上化學計量燃料/氧化劑比(例如,增加火焰溫度和火焰穩定性),同時為了排放控制(例如,減少NOX排放),使用一或多個稀釋劑來減低溫度。特別地,如下文所討論,稀釋劑可與該燃料和氧化劑分開提供(例如,在燃燒點之後及/或該預混火焰下游),從而能夠更精確地控制燃料/氧化劑比,以達到化學計量燃燒,同時也使用稀釋劑來控制溫度和排放(例如,NOX排放)。換句話說,燃料和氧化劑流可彼此與稀釋劑流獨立地控制,從而提供送到預混火焰的位置之預混物中之更精確控制的燃料/氧化劑比。 With regard to premixed combustion, the fuel and oxidant are mixed at one or more locations upstream of the premixed flame, which is essentially the combustion of the premix of fuel and oxidant. Typically, the exothermic chemical reaction of the fuel and oxidant in the premixed flame is limited by the fuel/oxidant ratio of the premix upstream of the premixed flame. In many configurations (particularly when one or more diluents are premixed with the fuel and oxidant), it may be more difficult to maintain the premixed flame at a substantially stoichiometric fuel/oxidant ratio, and thus may be more difficult to stabilize the flame. maximize. In some configurations, the available fuel lean premixed flame fuels / oxidant ratio of which reduce the flame temperature and thus help reduce the nitrogen oxides (NO X) (e.g., nitric oxide (NO) and nitrogen dioxide (NO 2 )) emissions. Reduce NO X emissions system and the regulations relating to emissions, reduced flame temperature also leads to reduced flame stability. In the specific examples disclosed in these, the system may be controlled to provide a substantially stoichiometric fuel / oxidant ratio (e.g., increase the flame temperature and flame stability), and in order to control the emission (e.g., to reduce NO X emissions), using One or more diluents to reduce the temperature. In particular, as discussed below, a diluent can be provided separately from the fuel and oxidant (eg, after the point of combustion and/or downstream of the premixed flame) to enable more precise control of the fuel/oxidant ratio for stoichiometry combustion, but also to control the temperature and diluent emissions (e.g., NO X emissions). In other words, the fuel and oxidant streams can be controlled independently of each other with the diluent stream to provide a more precisely controlled fuel/oxidant ratio in the premix to the location of the premixed flame.

關於擴散燃燒,燃料和氧化劑通常不在擴散 火焰之上游混合,而是燃料和氧化劑直接在火焰表面混合和反應及/或火焰表面存在於燃料和氧化劑之間混合的位置。特別地,燃料和氧化劑分開地接近火焰表面(或擴散邊界/界面),且然後沿著該火焰表面(或擴散邊界/界面)擴散(例如,經由分子和黏性擴散)以產生擴散火焰。值得注意的是:燃料和氧化劑可沿著此火焰表面(或擴散邊界/界面)呈實質上化學計量比,其可沿著此火焰表面產生更高的火焰溫度(例如,最高火焰溫度)。同樣地,相較於貧燃料或富燃料之燃料/氧化劑比,化學計量燃料/氧化劑比通常產生更高的火焰溫度(例如,最高火焰溫度)。結果,擴散火焰可比預混火焰實質上更穩定,因為燃料和氧化劑之擴散有助於沿著該火焰表面保持化學計量比(和更高的溫度)。雖然更高的火焰溫度也會導致 更大的廢氣排放,諸如NOX排放,但該等所揭示之具體實例使用一或多個稀釋劑來幫助控制溫度和排放同時仍避免燃料和氧化劑之任何預混。例如,該等所揭示之具體實例可引入一或多個與燃料和氧化劑分開之稀釋劑(例如,在燃燒點之後及/或擴散火焰之下游),從而幫助減低溫度和減少擴散火焰所產生之排放(例如,NOX排放)。 With regard to diffusion combustion, the fuel and oxidant are typically not mixed upstream of the diffusion flame, but rather where the fuel and oxidant mix and react directly on the surface of the flame and/or the surface of the flame is present between the fuel and the oxidant. In particular, the fuel and oxidant are separately adjacent to the flame surface (or diffusion boundary/interface) and then diffused (eg, via molecular and viscous diffusion) along the flame surface (or diffusion boundary/interface) to create a diffusion flame. It is worth noting that the fuel and oxidant may be substantially stoichiometric along the surface of the flame (or diffusion boundary/interface), which may produce a higher flame temperature (eg, the highest flame temperature) along the surface of the flame. Likewise, stoichiometric fuel/oxidant ratios typically produce higher flame temperatures (eg, highest flame temperatures) than lean fuel or fuel rich fuel to oxidant ratios. As a result, the diffusion flame can be substantially more stable than the premixed flame because the diffusion of fuel and oxidant helps maintain a stoichiometric ratio (and higher temperature) along the surface of the flame. Although higher flame temperatures also lead to greater emissions, such as NO X emissions, but the specific examples disclosed the use of one or more of such diluents to help control the temperature and emissions while still avoiding any pre of fuel and oxidant Mixed. For example, such disclosed embodiments may incorporate one or more diluents separate from the fuel and oxidant (eg, after the point of combustion and/or downstream of the diffusion flame) to help reduce temperature and reduce the generation of diffusion flames. emissions (e.g., NO X emissions).

在該等所揭示之具體實例中,廢氣再循環 (EGR)所提供之廢氣充當稀釋劑中的至少一者。廢氣 (作為稀釋劑之一)基本上與氧化劑和燃料之流分離,從而使燃料、氧化劑、和稀釋劑(例如,廢氣)流能夠獨立控制。在某些具體實例中,廢氣可在燃燒點之後及/或火焰(例如,預混火焰及/或擴散火焰)下游注入渦輪燃燒器,從而幫助減低溫度和減少廢氣排放,例如,NOX排放。然而,其他稀釋劑(例如,蒸汽、氮、或其他惰性氣體)也可單獨或以與廢氣組合之方式用於溫度及/或排放物的控制。如果在預混火焰和擴散火焰之間產生差異,EGR的量可能在用預混燃料噴嘴相對於擴散燃料噴嘴操作的燃氣渦輪系統之間顯著改變。預混火焰可限制於預混火焰的上游之預混物(例如,包括稀釋劑與燃料和氧化劑的混合),且因此,預混火焰可能不能夠將火焰穩定性保持高於某些EGR水平。換句話說,在燃氣渦輪系統之預混火焰配置中,增加與燃料和氧化劑預混之廢氣(例如,EGR)的量可能越來越減低預混火焰的溫度和火焰穩定性,且因此過多的EGR可能導致預混火焰變得不穩定。 然而,在燃氣渦輪系統的擴散火焰配置中,現據信:增加量的廢氣(例如,EGR)可與擴散火焰一起使用,遠遠超出了任何與預混火焰配置有關之限制。例如,在實質上化學計量EGR燃氣渦輪系統中,可以擴散火焰配置使用的廢氣(例如,EGR)之量可為大於可以預混火焰配置使用的廢氣(例如,EGR)之量的至少約10、20、30、40、50、60、70、80、90、或100百分比。進一步的實例中,在實質上化學計量EGR燃氣渦輪系統中,可以擴散火焰配置使用的廢氣(例如,EGR)之量可為大於約35、40、45、50、55、60、65、70、或75體積百分比的廢氣(例如,EGR),相對於通過燃燒器和渦輪段之總流量(例如,氧化劑、燃料、和稀釋劑之總流量)。結果,CO2產生之顯著改良可藉由使用擴散火焰(例如,擴散燃料噴嘴)連同實質上化學計量EGR燃氣渦輪系統達成。 In the disclosed embodiments, the exhaust gas provided by exhaust gas recirculation (EGR) acts as at least one of the diluents. The exhaust gas (as one of the diluents) is substantially separated from the streams of oxidant and fuel so that the fuel, oxidant, and diluent (eg, exhaust gas) streams can be independently controlled. In certain instances, the exhaust gas may be, and / or after combustion flame point (e.g., premixed flame and / or a diffusion flame) is injected downstream of the turbine combustor, helping to reduce the temperature and reducing emissions, e.g., NO X emissions. However, other diluents (eg, steam, nitrogen, or other inert gases) may also be used for temperature and/or emissions control, either alone or in combination with exhaust gases. If a difference is produced between the premixed flame and the diffusion flame, the amount of EGR may vary significantly between the gas turbine system operating with the premixed fuel nozzle relative to the diffusion fuel nozzle. The premixed flame may be limited to a premix upstream of the premixed flame (eg, including a mixture of diluent and fuel and oxidant), and thus, the premixed flame may not be able to maintain flame stability above certain EGR levels. In other words, in a premixed flame configuration of a gas turbine system, increasing the amount of exhaust gas (eg, EGR) premixed with fuel and oxidant may increasingly reduce the temperature and flame stability of the premixed flame, and thus excessive The EGR may cause the premixed flame to become unstable. However, in the diffusion flame configuration of a gas turbine system, it is believed that an increased amount of exhaust gas (e.g., EGR) can be used with the diffusion flame, well beyond any limitations associated with premixed flame configurations. For example, in a substantially stoichiometric EGR gas turbine system, the amount of exhaust gas (eg, EGR) that can be used to diffuse the flame configuration can be at least about 10 greater than the amount of exhaust gas (eg, EGR) that can be used in the premixed flame configuration. , 20, 30, 40, 50, 60, 70, 80, 90, or 100 percent. In a further example, in a substantially stoichiometric EGR gas turbine system, the amount of exhaust gas (eg, EGR) that can be used to diffuse the flame configuration can be greater than about 35, 40, 45, 50, 55, 60, 65, 70. , or 75 volume percent of exhaust (eg, EGR) relative to the total flow through the combustor and turbine section (eg, total flow of oxidant, fuel, and diluent). A result, CO 2 can be significantly improved by generation of a diffusion flame (e.g., diffusion fuel nozzles), together with a substantially stoichiometric EGR gas turbine system reached.

雖然在擴散燃料噴嘴可特別有助於提高EGR 和CO2產生的量,但該等所揭示之具體實例採用各種控制以幫助控制燃料/氧化劑比、火焰之穩定性、廢氣排放、和功率輸出,無論系統是否用預混火焰、擴散火焰、或其組合操作。例如,該等所揭示之具體實例可包括具有一或多個擴散燃料噴嘴和預混燃料噴嘴之燃燒器,其可透過不同流體供應迴路獨立控制以提供預混火焰配置和擴散火焰配置二者之效益。 Although the fuel diffusion nozzle may particularly help to improve the amount of EGR and produced CO 2, but the specific disclosed example of such various controls to assist in controlling the fuel / oxidant ratio, flame stability, emissions, and power output, Whether the system is operated with a premixed flame, a diffused flame, or a combination thereof. For example, such disclosed embodiments may include a combustor having one or more diffusion fuel nozzles and premixed fuel nozzles that are independently controllable through different fluid supply circuits to provide both a premixed flame configuration and a diffused flame configuration. benefit.

圖1為具有與以渦輪為主之服務系統14有關 的烴產生系統12的系統10之具體實例的圖示。如下述所 進一步詳細討論者,各種以渦輪為主之服務系統14之具體實例係經配置以將各種服務(諸如電力、機械動力、和流體(例如,廢氣))提供至該烴產生系統12而促進油及/或氣體之生產或擷取。在所說明之具體實例中,該烴產生系統12包括油/氣體提取系統16和提高油回收(EOR)系統18,彼等係連接到地下儲存器20(例如,油、氣體、或烴貯槽)。該油/氣體提取系統16包括連接到油/氣體井26之各種地面設備22,諸如耶誕樹或生產樹24。再者,該井26可包括一或多個貫穿土32中的鑽孔30至地下儲存器20之管件28。該樹24包括一或多個閥、抗流器、隔離套管、防噴器和各種流量控制裝置,彼等調節壓力和控制至和來自該地下儲存器20之壓力和流量。而該樹24通常用於控制出自該地下儲存器20的生產流體(例如,油或氣體)之流量,該EOR系統18可藉由將一或多個流體注入地下儲存器20來增加油或氣體之產生。 Figure 1 is related to the service system 14 based on the turbine. Schematic representation of a specific example of system 10 of hydrocarbon generation system 12. As described below As further discussed in detail, specific examples of various turbine-based service systems 14 are configured to provide various services (such as electrical, mechanical, and fluid (eg, exhaust)) to the hydrocarbon generation system 12 to promote oil and / or the production or extraction of gas. In the illustrated embodiment, the hydrocarbon generation system 12 includes an oil/gas extraction system 16 and an enhanced oil recovery (EOR) system 18 that are coupled to an underground reservoir 20 (eg, an oil, gas, or hydrocarbon storage tank). . The oil/gas extraction system 16 includes various ground equipment 22, such as a Christmas tree or production tree 24, connected to an oil/gas well 26. Again, the well 26 may include one or more tubular members 28 that extend through the borehole 30 in the earth 32 to the subterranean reservoir 20. The tree 24 includes one or more valves, chokes, isolation sleeves, blowout preventers, and various flow control devices that regulate pressure and control pressure to and from the underground reservoir 20. While the tree 24 is typically used to control the flow of production fluid (e.g., oil or gas) from the subterranean reservoir 20, the EOR system 18 can increase oil or gas by injecting one or more fluids into the subterranean reservoir 20. Produced.

因此,該EOR系統18可包括流體注入系統 34,其具有一或多個貫穿土32中的孔38至地下儲存器20之管件36。例如,該EOR系統18可將一或多個流體40(諸如氣體、蒸汽、水、化學品、或其任何組合)發送進入該流體注入系統34。例如,如下述所進一步詳細討論者,該EOR系統18可連接到以渦輪為主之服務系統14,使得該系統14將廢氣42(例如,實質上或完全沒有氧)發送至EOR系統18供用作注入流體40。該流體注入 系統34將流體40(例如,廢氣42)發送通過一或多個管件36進入地下儲存器20,如箭頭44所示。該注入流體40通過於距離該油/氣體井26之管件28的偏移距離46的管件36進入地下儲存器20。因此,該注入流體40替換配置在地下儲存器20中之油/氣體48,並驅動該油/氣體48向上通過一或多個烴產生系統12之管件28,如箭頭50所示。如下述所進一步詳細討論者,該注入流體40可包括源自該以渦輪為主之服務系統14的廢氣42,該以渦輪為主之服務系統14能夠根據烴產生系統12之需要現場產生廢氣42。換句話說,該以渦輪為主之系統14可同時產生一或多個供烴產生系統12使用之服務(例如,電力、機械動力、蒸汽、水(例如,脫鹽水)、和廢氣(例如,實質上無氧)),從而減少或消除對該類服務的外部來源之依賴。 Thus, the EOR system 18 can include a fluid injection system 34, having one or more tubes 36 extending through holes 38 in the earth 32 to the subterranean reservoir 20. For example, the EOR system 18 can send one or more fluids 40 (such as gases, steam, water, chemicals, or any combination thereof) into the fluid injection system 34. For example, as discussed in further detail below, the EOR system 18 can be coupled to a turbine-based service system 14 such that the system 14 sends exhaust gas 42 (eg, substantially or completely free of oxygen) to the EOR system 18 for use as The fluid 40 is injected. Fluid injection System 34 sends fluid 40 (e.g., exhaust gas 42) through one or more tubes 36 into underground reservoir 20, as indicated by arrow 44. The injection fluid 40 enters the underground reservoir 20 through a tubular member 36 that is offset from the tubular member 28 of the oil/gas well 26. Thus, the injection fluid 40 replaces the oil/gas 48 disposed in the subterranean reservoir 20 and drives the oil/gas 48 up through the tubular member 28 of one or more hydrocarbon generating systems 12, as indicated by arrow 50. As discussed in further detail below, the injection fluid 40 can include exhaust gas 42 derived from the turbine-based service system 14, which can generate exhaust gas on-site as desired by the hydrocarbon generation system 12. . In other words, the turbine-based system 14 can simultaneously produce one or more services for use by the hydrocarbon generation system 12 (eg, electrical, mechanical, steam, water (eg, desalinated), and exhaust (eg, Substantially anaerobic)), thereby reducing or eliminating dependence on external sources of such services.

在所說明之具體實例中,該以渦輪為主之服 務系統14包括化學計量廢氣再循環(SEGR)燃氣渦輪系統52和廢氣(EG)處理系統54。燃氣渦輪系統52可經配置而以操作之化學計量燃燒模式(例如,化學計量控制模式)和操作之非化學計量燃燒模式(例如,非化學計量控制模式),諸如貧燃料控制模式或富燃料控制模式來操作。在化學計量控制模式中,燃燒通常以燃料和氧化劑之實質上化學計量比發生,從而導致實質上化學計量燃燒。 特別地,化學計量燃燒通常包括在燃燒反應中消耗實質上所有的燃料和氧化劑,使得燃燒產物實質上或完全沒有未 燃燒燃料和氧化劑。化學計量燃燒之一測量為當量比,或phi(),其為實際燃料/氧化劑比相對於化學計量燃料/氧化劑比之比。大於1.0之當量比導致燃料和氧化劑之富燃料燃燒,而小於1.0之當量比導致燃料和氧化劑之貧燃料燃燒。相比之下,1.0之當量比導致不是富燃料也不是貧燃料之燃燒,從而在燃燒反應中實質上消耗所有的燃料和氧化劑。在該等所揭示之具體實例的情況下,術語化學計量或實質上化學計量可指約0.95至約1.05之當量比。 然而,該等所揭示之具體實例也可包括1.0加或減0.01、0.02、0.03、0.04、0.05、或以上之當量比。同樣地,在以渦輪為主之服務系統14中的燃料和氧化劑之化學計量燃燒可導致實質上沒有未燃燒燃料或氧化劑殘留的燃燒產物或廢氣(例如,42)。例如,該廢氣42可具有小於1、2、3、4、或5體積百分比之氧化劑(例如,氧)、未燃燒燃料或烴類(例如,HCs)、氮氧化物(例如,NOX)、一氧化碳(CO)、硫氧化物(例如,SOX)、氫、和其他不完全燃燒之產物。進一步的實例中,該廢氣42可具有小於約10、20、30、40、50、60、70、80、90、100、200、300、400、500、1000、2000、3000、4000、或5000體積百萬分之一(ppmv)的氧化劑(例如,氧)、未燃燒燃料或烴類(例如,HCs)、氮氧化物(例如,NOX)、一氧化碳(CO)、硫氧化物(例如,SOX)、氫、和其他不完全燃燒之產物。然而,該等所揭示之具體實例也可在廢氣42中產生其他範圍之殘餘燃 料、氧化劑、和其他排放物水平。如使用於本文中,術語排放、排放物水平、和排放目標可指某些燃燒產物(例如,NOX、CO、SOX、O2、N2、H2、HCs、等等)之濃度水平,其可存在於再循環氣體流、排放氣體流(例如,排放到大氣中)、和各種目標系統(例如,烴產生系統12)中所使用之氣體流中。 In the illustrated embodiment, the turbine-based service system 14 includes a stoichiometric exhaust gas recirculation (SEGR) gas turbine system 52 and an exhaust (EG) treatment system 54. The gas turbine system 52 can be configured to operate in a stoichiometric combustion mode (eg, a stoichiometric control mode) and an operational non-stoichiometric combustion mode (eg, a non-stoichiometric control mode), such as a lean fuel control mode or fuel rich Control mode to operate. In stoichiometric control mode, combustion typically occurs at a substantially stoichiometric ratio of fuel to oxidant, resulting in substantially stoichiometric combustion. In particular, stoichiometric combustion typically involves the consumption of substantially all of the fuel and oxidant in the combustion reaction such that the combustion products are substantially or completely free of unburned fuel and oxidant. One of stoichiometric combustion is measured as an equivalence ratio, or phi ( ), which is the ratio of the actual fuel to oxidant ratio to the stoichiometric fuel/oxidant ratio. An equivalence ratio greater than 1.0 results in fuel rich combustion of the fuel and oxidant, while an equivalent ratio of less than 1.0 results in lean fuel combustion of the fuel and oxidant. In contrast, an equivalent ratio of 1.0 results in a combustion that is not rich or lean fuel, thereby substantially consuming all of the fuel and oxidant in the combustion reaction. In the case of the specific examples disclosed, the term stoichiometric or substantially stoichiometric may mean an equivalent ratio of from about 0.95 to about 1.05. However, the specific examples disclosed may also include 1.0 plus or minus an equivalent ratio of 0.01, 0.02, 0.03, 0.04, 0.05, or more. Likewise, stoichiometric combustion of fuel and oxidant in a turbine-based service system 14 can result in substantially no combustion products or exhaust gases (eg, 42) that remain unburned fuel or oxidant. For example, the exhaust gas 42 may have a less than 3, 4, or 5 volume percent of an oxidizing agent (e.g., oxygen), the unburned fuel or hydrocarbons (e.g., HCs in), nitrogen oxides (e.g., NO X), Carbon monoxide (CO), sulfur oxides (e.g., SO X), hydrogen, and other products of incomplete combustion. In a further example, the exhaust gas 42 can have less than about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 1000, 2000, 3000, 4000, or 5000. parts per million by volume (ppmv) of an oxidant (e.g., oxygen), the unburned fuel or hydrocarbons (e.g., HCs in), nitrogen oxides (e.g., NO X), carbon monoxide (CO), sulfur oxides (e.g., SO X ), hydrogen, and other products of incomplete combustion. However, such disclosed embodiments may also produce other ranges of residual fuel, oxidant, and other emissions levels in the exhaust gas 42. As used herein, the term emissions, emission levels, and emissions targets may refer to certain combustion products (e.g., NO X, CO, SO X , O 2, N 2, H 2, HCs, etc.) the levels It may be present in the recycle gas stream, the exhaust gas stream (e.g., vented to the atmosphere), and the gas stream used in various target systems (e.g., hydrocarbon generation system 12).

雖然在不同具體實例中該SEGR燃氣渦輪系 統52和該EG處理系統54可包括各種組件,但所說明之EG處理系統54包括熱回收蒸汽產生器(HRSG)56和廢氣再循環(EGR)系統58,其可接收和處理源自該SEGR燃氣渦輪系統52之廢氣60。該HRSG 56可包括一或多個熱交換器、冷凝器、和各種熱回收設備,彼等共同運作以將熱從該廢氣60轉移到水流,從而產生蒸汽62。該蒸汽62可使用於一或多個蒸汽渦輪、EOR系統18、或任何烴產生系統12的其他部分中。例如,該HRSG 56可產生低壓、中壓、及/或高壓蒸汽62,其可經選擇而施用於低、中、和高壓蒸汽渦輪級,或EOR系統18之不同應用。除了該蒸汽62之外,處理過的水64(諸如脫鹽水)可被HRSG 56、EGR系統58、及/或另一部分的EG處理系統54或SEGR燃氣渦輪系統52產生。該處理過的水64(例如,脫鹽水)特別可用於缺水區域,諸如內陸或沙漠地區。由於大量的空氣驅動SEGR燃氣渦輪系統52內之燃料的燃燒,所以至少部分可產生該處理過的水64。而在許多應用(包括烴產生系統12)中,蒸汽62和水64之 現場產生可能是有利的,廢氣42、60之現場產生可特別有利於EOR系統18,由於其低氧含量、高壓、和得自該SEGR燃氣渦輪系統52之熱。因此,HRSG 56、EGR系統58、及/或另一部分的EG處理系統54可將廢氣66輸出或再循環至SEGR燃氣渦輪系統52中,同時也將廢氣42發送至EOR系統18供烴產生系統12使用。同樣地,該廢氣42可直接從該SEGR燃氣渦輪系統52提取(即,不通過EG處理系統54)以供用於烴產生系統12之EOR系統18。 Although in different specific examples, the SEGR gas turbine system The system 52 and the EG processing system 54 may include various components, but the illustrated EG processing system 54 includes a heat recovery steam generator (HRSG) 56 and an exhaust gas recirculation (EGR) system 58 that may receive and process derived from the SEGR Exhaust gas 60 of gas turbine system 52. The HRSG 56 may include one or more heat exchangers, condensers, and various heat recovery devices that operate together to transfer heat from the exhaust gas 60 to the water stream to produce steam 62. This steam 62 can be used in one or more steam turbines, EOR system 18, or other portions of any hydrocarbon production system 12. For example, the HRSG 56 can generate low pressure, medium pressure, and/or high pressure steam 62 that can be selectively applied to low, medium, and high pressure steam turbine stages, or different applications of the EOR system 18. In addition to the steam 62, treated water 64, such as desalinated water, may be produced by the HRSG 56, the EGR system 58, and/or another portion of the EG processing system 54 or the SEGR gas turbine system 52. The treated water 64 (e.g., desalinated water) is particularly useful in water-deficient areas such as inland or desert areas. The treated water 64 is at least partially generated as a result of the large amount of air driving the combustion of the fuel within the SEGR gas turbine system 52. In many applications, including hydrocarbon generation system 12, steam 62 and water 64 On-site production may be advantageous, and on-site generation of exhaust gases 42, 60 may be particularly advantageous for EOR system 18 due to its low oxygen content, high pressure, and heat from the SEGR gas turbine system 52. Accordingly, the HRSG 56, the EGR system 58, and/or another portion of the EG processing system 54 may output or recirculate the exhaust gas 66 to the SEGR gas turbine system 52 while also sending the exhaust gas 42 to the EOR system 18 for the hydrocarbon generation system. 12 use. Likewise, the exhaust gas 42 may be extracted directly from the SEGR gas turbine system 52 (ie, not through the EG processing system 54) for use in the EOR system 18 for the hydrocarbon generation system 12.

廢氣再循環係由EG處理系統54之EGR系統 58操控。例如,該EGR系統58包括一或多個導管、閥、鼓風機、廢氣處理系統(例如,過濾器、除粒單元、氣體分離單元、氣體純化單元、熱交換器、熱回收單元、除濕單元、觸媒單元、化學品注入單元、或其任何組合),且控制以將廢氣沿著廢氣再循環路徑從SEGR燃氣渦輪系統52之輸出(例如,排放廢氣60)再循環至輸入(例如,入口廢氣66)。在所說明之具體實例中,該SEGR燃氣渦輪系統52將廢氣66吸進具有一或多個壓縮機的壓縮機段,從而將廢氣66與吸入的氧化劑68和一或多個燃料70一起壓縮而使用於燃燒器段中。氧化劑68可包括周圍空氣、純氧、富氧空氣、減氧空氣、氧-氮混合物、或促進燃料70的燃燒之任何適當氧化劑。燃料70可包括一或多種氣體燃料、液體燃料、或其任何組合。例如,燃料70可包括天然氣、液化天然氣(LNG)、合成氣、甲烷、 乙烷、丙烷、丁烷、石油腦、煤油、柴油、乙醇、甲醇、生物燃料、或其任何組合。 Exhaust gas recirculation is performed by the EGR system of the EG treatment system 54 58 control. For example, the EGR system 58 includes one or more conduits, valves, blowers, exhaust gas treatment systems (eg, filters, degranulation units, gas separation units, gas purification units, heat exchangers, heat recovery units, dehumidification units, touch a media unit, a chemical injection unit, or any combination thereof, and controlled to recirculate exhaust gas from an output of the SEGR gas turbine system 52 (eg, exhaust gas 60) along an exhaust gas recirculation path to an input (eg, an inlet exhaust gas) 66). In the illustrated embodiment, the SEGR gas turbine system 52 draws exhaust gas 66 into a compressor section having one or more compressors to compress the exhaust gas 66 with the inhaled oxidant 68 and one or more fuels 70. It is used in the burner section. The oxidant 68 can include ambient air, pure oxygen, oxygen-enriched air, oxygen-reduced air, an oxygen-nitrogen mixture, or any suitable oxidant that promotes combustion of the fuel 70. Fuel 70 may include one or more gaseous fuels, liquid fuels, or any combination thereof. For example, fuel 70 may include natural gas, liquefied natural gas (LNG), syngas, methane, Ethane, propane, butane, petroleum brain, kerosene, diesel, ethanol, methanol, biofuel, or any combination thereof.

SEGR燃氣渦輪系統52在燃燒器段中混合和 燃燒廢氣66、氧化劑68和燃料70,從而產生熱燃燒氣體或廢氣60以驅動一或多個在渦輪段中之渦輪級。在某些具體實例中,在燃燒器段中之各燃燒器包括一或多個預混燃料噴嘴、一或多個擴散燃料噴嘴、或其任何組合。例如,各預混燃料噴嘴可經配置以在燃料噴嘴中內部地及/或該燃料噴嘴之上游部分地混合氧化劑68和燃料70,從而將氧化劑-燃料混合物從該燃料噴嘴注入用於預混燃燒之燃燒區(例如,預混火焰)。進一步的實例中,各擴散燃料噴嘴可經配置以隔離在燃料噴嘴內的氧化劑68和燃料70之流,從而將氧化劑68和燃料70分開地從該燃料噴嘴注入用於擴散燃燒之燃燒區(例如,擴散火焰)。特別地,由擴散燃料噴嘴提供之擴散燃燒延遲氧化劑68和燃料70的混合直到初始燃燒的點,即,火焰區。在使用擴散燃料噴嘴之具體實例中,擴散火焰可提供增加之火焰穩定性,因為擴散火焰通常在氧化劑68和燃料70的分開流之間的化學計量點(即,當氧化劑68和燃料70被混合時)形成。在某些具體實例中,一或多個稀釋劑(例如,廢氣60、蒸汽、氮、或另一惰性氣體)可與氧化劑68、燃料70、或二者在擴散燃料噴嘴或預混燃料噴嘴中預混。此外,一或多個稀釋劑(例如,廢氣60、蒸汽、氮、或另一惰性氣體)可於各燃燒器內之燃燒點或下游注 入燃燒器中。此等稀釋劑之使用可幫助使火焰(例如,預混火焰或擴散火焰)緩和,從而幫助減少NOX排放,諸如一氧化氮(NO)和二氧化氮(NO2)。無論火焰之類型,燃燒產生熱燃燒氣體或廢氣60而驅動一或多個渦輪級。當各渦輪級係由廢氣60驅動時,SEGR燃氣渦輪系統52產生機械動力72及/或電力74(例如,經由發電機)。系統52也輸出廢氣60,且可進一步輸出水64。同樣地,水64可為處理過的水,諸如脫鹽水,其可現場或異地使用於各種應用。 The SEGR gas turbine system 52 mixes and combusts the exhaust gas 66, oxidant 68, and fuel 70 in the combustor section to produce hot combustion gases or exhaust gases 60 to drive one or more turbine stages in the turbine section. In certain embodiments, each combustor in the combustor section includes one or more premixed fuel nozzles, one or more diffusion fuel nozzles, or any combination thereof. For example, each premixed fuel nozzle can be configured to partially mix the oxidant 68 and the fuel 70 internally and/or upstream of the fuel nozzle in the fuel nozzle to inject the oxidant-fuel mixture from the fuel nozzle for premixed combustion. Burning zone (eg, premixed flame). In a further example, each diffusion fuel nozzle can be configured to isolate a flow of oxidant 68 and fuel 70 within the fuel nozzle to separately inject oxidant 68 and fuel 70 from the fuel nozzle into a combustion zone for diffusion combustion (eg, , diffusion flame). In particular, the diffusion combustion provided by the diffusion fuel nozzle delays the mixing of the oxidant 68 and the fuel 70 until the point of initial combustion, i.e., the flame zone. In a specific example of using a diffusion fuel nozzle, the diffusion flame can provide increased flame stability because the diffusion flame is typically at a stoichiometric point between the separate streams of oxidant 68 and fuel 70 (ie, when oxidant 68 and fuel 70 are mixed) Time) formed. In certain embodiments, one or more diluents (eg, exhaust gas 60, steam, nitrogen, or another inert gas) may be in the diffusion fuel nozzle or premixed fuel nozzle with oxidant 68, fuel 70, or both. Premixed. Additionally, one or more diluents (eg, exhaust gas 60, steam, nitrogen, or another inert gas) may be injected into the combustor at or near the point of combustion within each combustor. The use of such diluents may help the flame (e.g., a diffusion flame or a premixed flame) alleviated, thereby helping to reduce NO X emissions, such as nitric oxide (NO) and nitrogen dioxide (NO 2). Regardless of the type of flame, combustion produces hot combustion gases or exhaust gases 60 to drive one or more turbine stages. When each turbine stage is driven by exhaust gas 60, SEGR gas turbine system 52 produces mechanical power 72 and/or electric power 74 (eg, via a generator). System 52 also outputs exhaust gas 60 and may further output water 64. Likewise, water 64 can be treated water, such as desalinated water, which can be used on-site or off-site for a variety of applications.

廢氣提取也由使用一或多個提取點76之 SEGR燃氣渦輪系統52提供。例如,所說明之具體實例包括具有廢氣(EG)提取系統80和廢氣(EG)處理系統82的廢氣(EG)供應系統78,其接收來自提取點76的廢氣42,處理廢氣42,和然後將廢氣42供應或分配至各種目標系統。目標系統可包括EOR系統18及/或其他系統,諸如管線86、儲存槽88、或碳固存系統90。EG提取系統80可包括一或多個導管、閥、控制、和流分離,其促進廢氣42與氧化劑68、燃料70、和其他污染物之隔離,同時也控制經提取之廢氣42的溫度、壓力、和流率。EG處理系統82可包括一或多個熱交換器(例如,熱回收單元諸如熱回收蒸汽產生器、冷凝器、冷卻器、或加熱器)、觸媒系統(例如,氧化觸媒系統)、除粒及/或除水系統(例如,氣體脫水單元、慣性分離器、聯合過濾器、不透水性過濾器、和其他過濾器)、化學品注入系 統、以溶劑為主之處理系統(例如,吸收器、閃蒸槽、等等)、碳捕集系統、氣體分離系統、氣體純化系統、及/或以溶劑為主之處理系統、廢氣壓縮機、其任何組合。此等EG處理系統82之次系統能夠控制溫度、壓力、流率、水分含量(例如,除水之量)、微粒含量(例如,除粒之量)、和氣體組成(例如,CO2、N2、等等的百分比)。 Exhaust gas extraction is also provided by a SEGR gas turbine system 52 that uses one or more extraction points 76. For example, the illustrated specific example includes an exhaust (EG) supply system 78 having an exhaust (EG) extraction system 80 and an exhaust (EG) treatment system 82 that receives exhaust gas 42 from extraction point 76, processes exhaust gas 42, and then Exhaust gas 42 is supplied or distributed to various target systems. The target system may include an EOR system 18 and/or other systems, such as line 86, storage tank 88, or carbon sequestration system 90. The EG extraction system 80 can include one or more conduits, valves, controls, and flow separations that promote separation of the exhaust gases 42 from the oxidant 68, fuel 70, and other contaminants while also controlling the temperature and pressure of the extracted exhaust gases 42. , and flow rate. The EG processing system 82 can include one or more heat exchangers (eg, a heat recovery unit such as a heat recovery steam generator, a condenser, a cooler, or a heater), a catalyst system (eg, an oxidation catalyst system), Granules and/or water removal systems (eg, gas dehydration units, inertial separators, combined filters, water-impermeable filters, and other filters), chemical injection systems, solvent-based processing systems (eg, absorption) , flash tank, etc.), carbon capture system, gas separation system, gas purification system, and/or solvent based processing system, exhaust gas compressor, any combination thereof. The secondary systems of such EG processing systems 82 are capable of controlling temperature, pressure, flow rate, moisture content (eg, amount of water removed), particulate content (eg, amount of particulate removal), and gas composition (eg, CO 2 , N). 2 , etc.).

視目標系統而定,經提取之廢氣42係藉由 EG處理系統82之一或多個次系統處理。例如,EG處理系統82可將全部或部分的廢氣42導向通過碳捕集系統、氣體分離系統、氣體純化系統、及/或以溶劑為主之處理系統,其經控制以分離和純化用於各種目標系統之含碳氣體(例如,二氧化碳)92及/或氮(N2)94。例如,EG處理系統82之具體實例可進行氣體分離和純化以產生多個不同的廢氣42之流95(諸如第一流96、第二流97、和第三流98)。第一流96可具有富二氧化碳及/或貧氮之第一組成(例如,富CO2貧N2流)。第二流97可具有中間濃度水平的二氧化碳及/或氮之第二組成(例如,中間濃度CO2和N2流)。第三流98可具有貧二氧化碳及/或富氮之第三組成(例如,貧CO2富N2流)。各流95(例如,96、97、和98)可包括氣體脫水單元、過濾器、氣體壓縮機、或其任何組合,以促進流95遞送至目標系統。在某些具體實例中,該富CO2貧N2流96可具有大於約70、75、80、85、90、95、96、97、98、或99體積百 分比的CO2純度或濃度水平,和小於約1、2、3、4、5、10、15、20、25、或30體積百分比的N2純度或濃度水平。相比之下,貧CO2富N2流98可具有小於約1、2、3、4、5、10、15、20、25、或30體積百分比的CO2純度或濃度水平,和大於約70、75、80、85、90、95、96、97、98、或99體積百分比的N2純度或濃度水平。中間濃度CO2和N2流97可具有介於約30至70、35至65、40至60、或45至55體積百分比之間的CO2純度或濃度水平及/或N2純度或濃度水平。雖然前述範圍只是非限制例,但富CO2貧N2流96和貧CO2富N2流98可特別適合於與EOR系統18和其他系統84一起使用。然而,任何此等富、貧、或中間濃度CO2流95可單獨或以與EOR系統18和其他系統84之各種組合使用。例如,EOR系統18和其他系統84(例如,管線86、儲存槽88、和碳固存系統90)各可接收一或多個富CO2貧N2流96、一或多個貧CO2富N2流98、一或多個中間濃度CO2和N2流97、和一或多個未經處理的廢氣42流(即,繞過EG處理系統82)。 Depending on the target system, the extracted exhaust gas 42 is processed by one or more secondary systems of the EG processing system 82. For example, EG processing system 82 can direct all or a portion of exhaust gas 42 through a carbon capture system, a gas separation system, a gas purification system, and/or a solvent-based processing system that is controlled for separation and purification for various The carbon dioxide gas (e.g., carbon dioxide) 92 and/or nitrogen (N 2 ) 94 of the target system. For example, a specific example of EG processing system 82 may perform gas separation and purification to produce a plurality of different streams 95 of exhaust gas 42 (such as first stream 96, second stream 97, and third stream 98). 96 may have a first stream rich in carbon dioxide and / or nitrogen, depleted first composition (e.g., CO 2 rich stream lean N 2). The second stream 97 can have a second concentration of carbon dioxide and/or nitrogen at an intermediate concentration level (eg, an intermediate concentration of CO 2 and N 2 streams). 98 may have a third carbon dioxide-lean stream and / or the third nitrogen enriched composition (e.g., the CO 2 lean stream enriched N 2). Each stream 95 (e.g., 96, 97, and 98) can include a gas dehydration unit, a filter, a gas compressor, or any combination thereof to facilitate delivery of stream 95 to the target system. In certain instances, the N 2 lean CO 2 rich stream 96 may be greater than about 70,75,80,85,90,95,96,97,98, or 99 percent by volume CO 2 concentration or the purity level, And less than about 1, 2, 3, 4, 5, 10, 15, 20, 25, or 30 volume percent N 2 purity or concentration levels. In contrast, N 2 enriched CO 2 lean stream may have less than about 98 1,2,3,4,5,10,15,20,25, or 30 percent by volume of CO 2 concentration or the purity level of greater than about 70, 75, 80, 85, 90, 95, 96, 97, 98, or 99 volume percent N 2 purity or concentration level. The intermediate concentration CO 2 and N 2 stream 97 can have a CO 2 purity or concentration level and/or N 2 purity or concentration level between about 30 to 70, 35 to 65, 40 to 60, or 45 to 55 volume percent. . While the foregoing ranges are only non-limiting examples, the CO 2 lean N 2 stream 96 and the CO 2 rich N 2 stream 98 may be particularly suitable for use with the EOR system 18 and other systems 84. However, any such rich, lean, or an intermediate concentration of 95 CO 2 stream may be used alone or in various combinations with other EOR systems 18 and 84 of the systems used. For example, EOR system 18 and other systems 84 (eg, line 86, storage tank 88, and carbon sequestration system 90) each can receive one or more CO 2 lean N 2 streams 96, one or more lean CO 2 rich The N 2 stream 98, one or more intermediate concentrations of CO 2 and N 2 streams 97, and one or more untreated exhaust gas streams 42 (ie, bypassing the EG processing system 82).

EG提取系統80沿著該壓縮機段、燃燒器段、 及/或渦輪段於一或多個提取點76提取廢氣42,使得廢氣42可於適當溫度和壓力下使用於EOR系統18和其他系統84。EG提取系統80及/或EG處理系統82也可使流體流(例如,廢氣42)循環進出該EG處理系統54。例如,通過EG處理系統54的一部分廢氣42可藉由EG提取系 統80提取而使用於EOR系統18和其他系統84。在某些具體實例中,該EG供應系統78和EG處理系統54可獨立或彼此整合,且因此其可使用獨立或共用次系統。例如,EG處理系統82可被EG供應系統78和EG處理系統54二者使用。從該EG處理系統54提取之廢氣42可進行多級的氣體處理,諸如在EG處理系統54中進行一或多級的氣體處理,接著在EG處理系統82中額外進行一或多級的氣體處理。 The EG extraction system 80 is along the compressor section, the combustor section, And/or the turbine section extracts the exhaust gas 42 at one or more extraction points 76 such that the exhaust gas 42 can be used in the EOR system 18 and other systems 84 at appropriate temperatures and pressures. The EG extraction system 80 and/or EG processing system 82 may also circulate fluid streams (e.g., exhaust gas 42) into and out of the EG processing system 54. For example, a portion of the exhaust gas 42 passing through the EG processing system 54 may be passed through an EG extraction system. The system 80 is extracted for use in the EOR system 18 and other systems 84. In some embodiments, the EG supply system 78 and the EG processing system 54 can be integrated independently or with each other, and thus they can use separate or shared subsystems. For example, EG processing system 82 can be used by both EG supply system 78 and EG processing system 54. Exhaust gas 42 extracted from the EG processing system 54 may be subjected to multiple stages of gas processing, such as one or more stages of gas processing in the EG processing system 54, followed by additional one or more stages of gas processing in the EG processing system 82. .

在各提取點76,由於在EG處理系統54中進 行的實質上化學計量燃燒及/或氣體處理,經提取之廢氣42可為實質上無氧化劑68和燃料70(例如,未燃燒之燃料或烴)。再者,視目標系統而定,經提取之廢氣42在EG供應系統78之EG處理系統82中進行進一步處理,從而進一步減少任何殘餘氧化劑68、燃料70、或其他不要的燃燒產物。例如,在EG處理系統82中處理之前或之後,經提取之廢氣42可具有小於1、2、3、4、或5體積百分比的氧化劑(例如,氧)、未燃燒燃料或烴類(例如,HCs)、氮氧化物(例如,NOX)、一氧化碳(CO)、硫氧化物(例如,SOX)、氫、和其他不完全燃燒之產物。進一步的實例中,在EG處理系統82中處理之前或之後,經提取之廢氣42可具有小於約10、20、30、40、50、60、70、80、90、100、200、300、400、500、1000、2000、3000、4000、或5000體積百萬分之一(ppmv)的氧化劑(例如,氧)、未燃燒燃料或烴類 (例如,HCs)、氮氧化物(例如,NOX)、一氧化碳 (CO)、硫氧化物(例如,SOX)、氫、和其他不完全燃 燒之產物。因此,廢氣42特別適合與EOR系統18一起使用。 At each extraction point 76, the extracted off-gas 42 may be substantially free of oxidant 68 and fuel 70 (eg, unburned fuel or hydrocarbons due to substantially stoichiometric combustion and/or gas treatment performed in EG processing system 54). ). Further, depending on the target system, the extracted exhaust gas 42 is further processed in the EG processing system 82 of the EG supply system 78 to further reduce any residual oxidant 68, fuel 70, or other undesirable combustion products. For example, the extracted exhaust gas 42 may have less than 1, 2, 3, 4, or 5 volume percent oxidant (eg, oxygen), unburned fuel, or hydrocarbons before or after processing in the EG processing system 82 (eg, HCs in), nitrogen oxides (e.g., nO X), carbon monoxide (CO), sulfur oxides (e.g., SO X), hydrogen, and other products of incomplete combustion. In a further example, the extracted exhaust gas 42 may have less than about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400 before or after processing in the EG processing system 82. , 500,1000,2000,3000,4000, or 5000 parts per million by volume (ppmv) of an oxidant (e.g., oxygen), the unburned fuel or hydrocarbons (e.g., HCs in), nitrogen oxides (e.g., NO X ) carbon monoxide (CO), sulfur oxides (eg, SO X ), hydrogen, and other products of incomplete combustion. Therefore, the exhaust gas 42 is particularly suitable for use with the EOR system 18.

渦輪系統52之EGR操作特別允許在許多位 置76提取廢氣。例如,系統52之壓縮機段可用於壓縮廢氣66而沒有任何氧化劑68(即,僅廢氣66之壓縮),使得實質上無氧廢氣42可在氧化劑68和燃料70的入口之前從該壓縮機段及/或燃燒器段提取。提取點76可位於相鄰的壓縮機級之間的級間口、於沿著該壓縮機排放護罩之口、於沿著在燃燒器段中的各燃燒器之口、或其任何組合。在某些具體實例中,該廢氣66可在到達燃燒器段中的各燃燒器之頭端部分及/或燃料噴嘴之後才與氧化劑68和燃料70混合。再者,一或多個流分離器(例如,壁、分隔器、檔板、或類似者)可用以隔離來自提取點76之氧化劑68和燃料70。使用此等流分離器,提取點76可直接沿著燃燒器段中的各燃燒器之壁配置。 The EGR operation of the turbine system 52 is specifically allowed in many positions Set 76 to extract the exhaust gas. For example, the compressor section of system 52 can be used to compress exhaust gas 66 without any oxidant 68 (i.e., only compression of exhaust gas 66) such that substantially oxygen-free exhaust gas 42 can exit the compressor section prior to the inlet of oxidant 68 and fuel 70. And / or burner section extraction. The extraction point 76 can be located between the interstage ports between adjacent compressor stages, at the ports along the compressor discharge shroud, along the ports of the burners in the combustor section, or any combination thereof. In some embodiments, the exhaust gas 66 can be mixed with the oxidant 68 and the fuel 70 after reaching the head end portion of each combustor in the combustor section and/or the fuel nozzle. Further, one or more flow separators (eg, walls, dividers, baffles, or the like) can be used to isolate oxidant 68 and fuel 70 from extraction point 76. Using these flow separators, the extraction point 76 can be configured directly along the walls of each combustor in the combustor section.

一旦廢氣66、氧化劑68、和燃料70流過頭 端部分(例如,通過燃料噴嘴)進入各燃燒器之燃燒部分(例如,燃燒室),SEGR燃氣渦輪系統52係經控制以提供廢氣66、氧化劑68、和燃料70之實質上化學計量燃燒。例如,系統52可保持約0.95至約1.05之當量比。結果,廢氣66、氧化劑68、和燃料70的混合物在各燃燒器中之燃燒產物實質上無氧和未燃燒燃料。因此,燃燒產物 (或廢氣)可從SEGR燃氣渦輪系統52之渦輪段提取以 供用作發送至EOR系統18之廢氣42。沿著該渦輪段,提取點76可位於任何渦輪級,諸如在相鄰渦輪級之間的級間口。因此,使用任何前述的提取點76,以渦輪為主之服務系統14可產生、提取、和遞送廢氣42至烴產生系統12(例如,EOR系統18)以供用於從地下儲存器20產生油/氣體48。 Once the exhaust gas 66, the oxidant 68, and the fuel 70 flow through the head The end portion (e.g., through a fuel nozzle) enters a combustion portion (e.g., a combustion chamber) of each combustor, and the SEGR gas turbine system 52 is controlled to provide substantially stoichiometric combustion of the exhaust gas 66, the oxidant 68, and the fuel 70. For example, system 52 can maintain an equivalent ratio of from about 0.95 to about 1.05. As a result, the combustion products of the mixture of exhaust gas 66, oxidant 68, and fuel 70 in each combustor are substantially oxygen free and unburned. Therefore, combustion products (or exhaust) may be extracted from the turbine section of the SEGR gas turbine system 52 Used as exhaust gas 42 to the EOR system 18. Along the turbine section, the extraction point 76 can be located at any turbine stage, such as an interstage port between adjacent turbine stages. Thus, using any of the aforementioned extraction points 76, the turbine-based service system 14 can generate, extract, and deliver exhaust gas 42 to a hydrocarbon generation system 12 (e.g., EOR system 18) for use in producing oil from the underground storage 20. Gas 48.

圖2為圖1的系統10之具體實例的圖示,其 說明連接到以渦輪為主之服務系統14和烴產生系統12之控制系統100。在所說明之具體實例中,以渦輪為主之服務系統14包括組合循環系統102,其包括作為頂循環之SEGR燃氣渦輪系統52、作為底循環之蒸汽渦輪104、和用以從廢氣60回收熱以產生用於驅動蒸汽渦輪104之蒸汽62的HRSG 56。同樣地,SEGR燃氣渦輪系統52接收、混合和化學計量地燃燒廢氣66、氧化劑68、和燃料70(例如,預混及/或擴散火焰),從而產生廢氣60、機械動力72、電力74、及/或水64。例如,SEGR燃氣渦輪系統52可驅動一或多個負載或機器106,諸如發電機、氧化劑壓縮機(例如,主空氣壓縮機)、齒輪箱、泵、烴產生系統12之設備、或其任何組合。在一些具體實例中,機器106可包括與SEGR燃氣渦輪系統52串聯之其他驅動器,諸如電動馬達或蒸汽渦輪(例如,蒸汽渦輪104)。因此,由SEGR燃氣渦輪系統52(和任何另外的驅動器)驅動之機器106的輸出可包括機械動力72和電 力74。機械動力72及/或電力74可現場用於供電烴產生系統12,電力74可分配到電力網、或其任何組合。機器106之輸出也可包括用於引入SEGR燃氣渦輪系統52之燃燒段的壓縮流體,諸如壓縮氧化劑68(例如,空氣或氧)。此等輸出(例如,廢氣60、機械動力72、電力74、及/或水64)各可認為是以渦輪為主之服務系統14的服務。 2 is an illustration of a specific example of the system 10 of FIG. A control system 100 coupled to a turbine-based service system 14 and a hydrocarbon generation system 12 is illustrated. In the illustrated embodiment, the turbine-based service system 14 includes a combined cycle system 102 that includes a SEGR gas turbine system 52 as a top cycle, a steam turbine 104 as a bottom cycle, and a recovery from exhaust gas 60. Heat is generated to generate HRSG 56 for driving steam 62 of steam turbine 104. Similarly, SEGR gas turbine system 52 receives, mixes, and stoichiometrically combusts exhaust gas 66, oxidant 68, and fuel 70 (eg, premixed and/or diffused flames) to produce exhaust gas 60, mechanical power 72, electrical power 74, And / or water 64. For example, SEGR gas turbine system 52 can drive one or more loads or machines 106, such as generators, oxidant compressors (eg, main air compressors), gearboxes, pumps, equipment of hydrocarbon generation system 12, or any thereof combination. In some embodiments, machine 106 may include other drives in series with SEGR gas turbine system 52, such as an electric motor or steam turbine (eg, steam turbine 104). Thus, the output of machine 106 driven by SEGR gas turbine system 52 (and any additional drives) may include mechanical power 72 and electricity Force 74. Mechanical power 72 and/or power 74 may be used on-site to power hydrocarbon production system 12, and power 74 may be distributed to the power grid, or any combination thereof. The output of machine 106 may also include a compressed fluid for introducing a combustion section of SEGR gas turbine system 52, such as a compressed oxidant 68 (eg, air or oxygen). Such outputs (e.g., exhaust gas 60, mechanical power 72, power 74, and/or water 64) may each be considered to be services of a turbine-based service system 14.

SEGR燃氣渦輪系統52產生廢氣42、60,其 可為實質上無氧,並將此廢氣42、60發送至EG處理系統54及/或EG供應系統78。EG供應系統78可處理和遞送廢氣42(例如,流95)至烴產生系統12及/或其他系統84。如上述所討論的,EG處理系統54可包括HRSG 56和EGR系統58。HRSG 56可包括一或多個熱交換器、冷凝器、和各種熱回收設備,其可用以從廢氣60回收或轉移熱到水108以產生用於驅動蒸汽渦輪104之蒸汽62。類似於SEGR燃氣渦輪系統52,蒸汽渦輪104可驅動一或多個負載或機器106,從而產生機械動力72和電力74。在所說明之具體實例中,SEGR燃氣渦輪系統52和蒸汽渦輪104係串聯排列以驅動相同的機器106。然而,在其他具體實例中,SEGR燃氣渦輪系統52和蒸汽渦輪104可分開地驅動不同機器106以獨立地產生機械動力72及/或電力74。當蒸汽渦輪104由來自HRSG 56的蒸汽62驅動時,蒸汽62之溫度和壓力逐漸減少。因此,蒸汽渦輪104將用過的蒸汽62及/或水108再循環回到HRSG 56而 經由從廢氣60之熱回收用於另外的蒸汽產生。除了蒸汽產生,HRSG 56、EGR系統58、及/或另一部分的EG處理系統54可產生水64、可與烴產生系統12一起使用之廢氣42,及可用作輸入SEGR燃氣渦輪系統52之廢氣66。例如,水64可為供其它應用使用之處理過的水64,諸如脫鹽水。脫鹽水特別可用於低水可利用率之區。關於廢氣60,EG處理系統54之具體實例可經配置以將廢氣60再循環通過EGR系統58有或沒有將廢氣60通過HRSG 56。 SEGR gas turbine system 52 produces exhaust gases 42, 60, which This may be substantially oxygen free and the exhaust gases 42, 60 are sent to the EG processing system 54 and/or the EG supply system 78. The EG supply system 78 can process and deliver the exhaust gas 42 (eg, stream 95) to the hydrocarbon generation system 12 and/or other systems 84. As discussed above, EG processing system 54 may include HRSG 56 and EGR system 58. The HRSG 56 may include one or more heat exchangers, condensers, and various heat recovery devices that may be used to recover or transfer heat from the exhaust gas 60 to the water 108 to produce steam 62 for driving the steam turbine 104. Similar to the SEGR gas turbine system 52, the steam turbine 104 can drive one or more loads or machines 106 to generate mechanical power 72 and electrical power 74. In the illustrated embodiment, the SEGR gas turbine system 52 and steam turbine 104 are arranged in series to drive the same machine 106. However, in other embodiments, SEGR gas turbine system 52 and steam turbine 104 may separately drive different machines 106 to independently generate mechanical power 72 and/or power 74. When steam turbine 104 is driven by steam 62 from HRSG 56, the temperature and pressure of steam 62 gradually decreases. Thus, steam turbine 104 recirculates used steam 62 and/or water 108 back to HRSG 56. Additional steam generation is provided via heat recovery from the exhaust gas 60. In addition to steam generation, HRSG 56, EGR system 58, and/or another portion of EG processing system 54 may generate water 64, exhaust gas 42 that may be used with hydrocarbon generation system 12, and may be used as an input SEGR gas turbine system 52. Exhaust gas 66. For example, water 64 can be treated water 64 for other applications, such as desalinated water. Demineralized water is particularly useful in areas where low water availability is available. With respect to exhaust gas 60, a specific example of EG processing system 54 may be configured to recirculate exhaust gas 60 through EGR system 58 with or without exhaust gas 60 through HRSG 56.

在所說明之具體實例中,SEGR燃氣渦輪系統 52具有廢氣再循環路徑110,其從系統52之廢氣出口延伸至廢氣入口。沿著該路徑110,廢氣60通過EG處理系統54,其在所說明之具體實例中包括HRSG 56和EGR系統58。該EGR系統58可包括一或多個沿著該路徑110串聯及/或並聯排列之導管、閥、鼓風機、氣體處理系統(例如,過濾器、除粒單元、氣體分離單元、氣體純化單元、熱交換器、熱回收單元諸如熱回收蒸汽產生器、除濕單元、觸媒單元、化學品注入單元、或其任何組合)。換句話說,EGR系統58可包括在系統52的廢氣出口和廢氣入口之間沿著該廢氣再循環路徑110的任何流量控制組件、壓力控制組件、溫度控制組件、水分控制組件、和氣體組成控制組件。因此,在沿著路徑110具有HRSG 56之具體實例中,HRSG 56可被認為是EGR系統58之組件。然而,在某些具體實例中,該HRSG 56可沿著與廢 氣再循環路徑110無關之排放路徑配置。無論HRSG 56是否沿著與EGR系統58不同的路徑或共用的路徑,HRSG 56和EGR系統58吸入廢氣60和輸出再循環廢氣66、可供與EG供應系統78一起使用的廢氣42(例如,用於烴產生系統12及/或其他系統84)、或另一輸出的廢氣。同樣地,SEGR燃氣渦輪系統52吸入、混合、和化學計量地燃燒廢氣66、氧化劑68、和燃料70(例如,預混及/或擴散火焰)以產生用於分配至EG處理系統54、烴產生系統12、或其他系統84之實質上無氧和無燃料廢氣60。 In the specific example illustrated, the SEGR gas turbine system 52 has an exhaust gas recirculation path 110 that extends from the exhaust gas outlet of system 52 to the exhaust gas inlet. Along this path 110, exhaust gas 60 passes through an EG processing system 54, which in the illustrated embodiment includes an HRSG 56 and an EGR system 58. The EGR system 58 may include one or more conduits, valves, blowers, gas treatment systems (eg, filters, degranulation units, gas separation units, gas purification units, heat) arranged in series and/or in parallel along the path 110. An exchanger, a heat recovery unit such as a heat recovery steam generator, a dehumidification unit, a catalyst unit, a chemical injection unit, or any combination thereof. In other words, EGR system 58 may include any flow control assembly, pressure control assembly, temperature control assembly, moisture control assembly, and gas composition control along the exhaust gas recirculation path 110 between the exhaust gas outlet and exhaust gas inlet of system 52. Component. Thus, in a particular example having HRSG 56 along path 110, HRSG 56 may be considered a component of EGR system 58. However, in some specific examples, the HRSG 56 may be along and waste The gas recirculation path 110 has an unrelated discharge path configuration. Regardless of whether the HRSG 56 is along a different path or a shared path than the EGR system 58, the HRSG 56 and the EGR system 58 draw in the exhaust gas 60 and output the recirculated exhaust gas 66, the exhaust gas 42 available for use with the EG supply system 78 (eg, The hydrocarbon generation system 12 and/or other system 84), or another output of exhaust gas. Likewise, SEGR gas turbine system 52 inhales, mixes, and stoichiometrically combusts exhaust gas 66, oxidant 68, and fuel 70 (eg, premixed and/or diffused flame) to produce a hydrocarbon for distribution to EG processing system 54, A substantially oxygen-free and fuel-free exhaust gas 60 of system 12, or other system 84, is produced.

如上參照圖1所述,烴產生系統12可包括各 種促進透過油/氣體井26從地下儲存器20回收或產生油/氣體48的設備。例如,烴產生系統12可包括具有流體注入系統34的EOR系統18。在所說明之具體實例中,該流體注入系統34包括廢氣注入EOR系統112和蒸汽注入EOR系統114。雖然流體注入系統34可接收來自各種來源的流體,但所說明之具體實例可接收來自以渦輪為主之服務系統14的廢氣42和蒸汽62。以渦輪為主之服務系統14所產生之廢氣42及/或蒸汽62也可發送至烴產生系統12以供使用於其他油/氣體系統116中。 As described above with reference to Figure 1, the hydrocarbon generation system 12 can include various An apparatus that facilitates recovery or production of oil/gas 48 from underground storage 20 through oil/gas well 26. For example, hydrocarbon generation system 12 can include an EOR system 18 having a fluid injection system 34. In the illustrated embodiment, the fluid injection system 34 includes an exhaust gas injection EOR system 112 and a steam injection EOR system 114. While fluid injection system 34 can receive fluids from a variety of sources, the illustrated embodiment can receive exhaust gas 42 and steam 62 from a turbine-based service system 14. Exhaust gas 42 and/or steam 62 produced by the turbine-based service system 14 may also be sent to the hydrocarbon generation system 12 for use in other oil/gas systems 116.

廢氣42及/或蒸汽62之量、質、和流動可由 控制系統100控制。控制系統100可完全用於以渦輪為主之服務系統14,或控制系統100也可隨意地對烴產生系統12及/或其他系統84提供控制(或至少一些數據以利 於控制)。在所說明之具體實例中,該控制系統100包括具有處理器120、記憶體122、蒸汽渦輪控制124、SEGR燃氣渦輪系統控制126、和機器控制128的控制器118。 處理器120可包括單一處理器或二或多個冗餘(redundant)處理器,諸如用於控制以渦輪為主之服務系統14的三重冗餘處理器。記憶體122可包括揮發性及/或非揮發性記憶體。例如,記憶體122可包括一或多個硬碟、快閃記憶體、唯讀記憶體、隨機存取記憶體、或其任何組合。控制124、126、和128可包括軟體及/或硬體控制。例如,控制124、126、和128可包括各種儲存於記憶體122和由處理器120執行之指令或代碼。控制124係經配置以控制蒸汽渦輪104之操作,SEGR燃氣渦輪系統控制126係經配置以控制系統52,和機器控制128係經配置以控制機器106。因此,控制器118(例如,控制124、126、和128)可經配置以整合以渦輪為主之服務系統14的各種次系統而將適當的廢氣42流提供至烴產生系統12。 The amount, mass, and flow of exhaust gas 42 and/or steam 62 may be Control system 100 controls. The control system 100 can be fully utilized for the turbine-based service system 14, or the control system 100 can optionally provide control (or at least some data to the hydrocarbon generation system 12 and/or other systems 84). For control). In the illustrated embodiment, the control system 100 includes a controller 118 having a processor 120, a memory 122, a steam turbine control 124, a SEGR gas turbine system control 126, and a machine control 128. Processor 120 may include a single processor or two or more redundant processors, such as a triple redundant processor for controlling a turbo-based service system 14. Memory 122 can include volatile and/or non-volatile memory. For example, memory 122 can include one or more hard disks, flash memory, read only memory, random access memory, or any combination thereof. Controls 124, 126, and 128 may include software and/or hardware controls. For example, controls 124, 126, and 128 can include various instructions or code stored in memory 122 and executed by processor 120. Control 124 is configured to control operation of steam turbine 104, SEGR gas turbine system control 126 is configured to control system 52, and machine control 128 is configured to control machine 106. Accordingly, controller 118 (eg, controls 124, 126, and 128) may be configured to integrate various exhaust systems of turbine-based service system 14 to provide a suitable exhaust gas stream 42 to hydrocarbon generation system 12.

在某些控制系統100之具體實例中,圖示中 所說明或本文中所述之各元件(例如,系統、次系統、和組件)包括(例如,直接在該元件之內、上游、或下游)一或多個經由工業控制網路以及控制器118彼此通信連接之工業控制部件(feature),諸如感測器和控制裝置。例如,與各元件相關聯的控制裝置可包括專用裝置控制器(例如,包括處理器、記憶體、和控制指令)、一個或多 個引動器、閥、開關和工業控制設備,其能夠根據感測器反饋130、來自該控制器118之控制信號、來自使用者之控制信號、或其任何組合而進行控制。因此,任何本文中所述的控制功能可由控制器118、與各元件相關聯的專用裝置控制器、或其組合所儲存及/或執行的控制指令來實現。 In some specific examples of the control system 100, in the illustration Each of the elements (eg, systems, subsystems, and components) described or described herein includes (eg, directly within, upstream, or downstream of the element) one or more via an industrial control network and controller 118 Industrial control features that are communicatively coupled to one another, such as sensors and controls. For example, the control device associated with each component can include a dedicated device controller (eg, including a processor, memory, and control instructions), one or more The actuators, valves, switches, and industrial control devices are capable of being controlled based on sensor feedback 130, control signals from the controller 118, control signals from the user, or any combination thereof. Thus, any of the control functions described herein can be implemented by control instructions stored and/or executed by controller 118, a dedicated device controller associated with each component, or a combination thereof.

為了促進該控制功能,控制系統100包括一 或多分佈在整個系統10之感測器,以獲得用於執行各種控制(例如,控制124、126、和128)的感測器反饋130。例如,感測器反饋130可從分佈在整個SEGR燃氣渦輪系統52、機器106、EG處理系統54、蒸汽渦輪104、烴產生系統12、或任何在整個以渦輪為主之服務系統14或烴產生系統12中的其他組件之感測器獲得。例如,感測器反饋130可包括溫度反饋、壓力反饋、流率反饋、火焰溫度反饋、燃燒動力學反饋、入口氧化劑組成反饋、入口燃料組成反饋、排放組成反饋、機械動力72之輸出水平、電力74之輸出水平、廢氣42、60之輸出量、水64之輸出量或品質、或其任何組合。例如,感測器反饋130可包括廢氣42、60之組成以促進在SEGR燃氣渦輪系統52中之化學計量燃燒。例如,感測器反饋130可包括來自一或多個沿著氧化劑68的氧化劑供應路徑之入口氧化劑感測器、一或多個沿著燃料70的燃料供應路徑之入口燃料感測器、和一或多個沿著該廢氣再循環路徑110配置及/或在SEGR燃氣渦輪系統52內之廢氣排放感 測器的反饋。入口氧化劑感測器、入口燃料感測器、和廢氣排放感測器可包括溫度感測器、壓力感測器、流率感測器、和組成感測器。排放感測器可包括用於氮氧化物(例如,NOX感測器)、碳氧化物(例如,CO感測器和CO2感測器)、硫氧化物(例如,SOX感測器)、氫(例如,H2感測器)、氧(例如,O2感測器)、未燃燒的烴類(例如,HC感測器)、或其他不完全燃燒之產物、或其任何組合之感測器。 To facilitate this control function, control system 100 includes one or more sensors distributed throughout system 10 to obtain sensor feedback 130 for performing various controls (eg, controls 124, 126, and 128). For example, sensor feedback 130 may be distributed throughout SEGR gas turbine system 52, machine 106, EG processing system 54, steam turbine 104, hydrocarbon generation system 12, or any turbine-based service system 14 or hydrocarbon Sensors that generate other components in system 12 are obtained. For example, sensor feedback 130 may include temperature feedback, pressure feedback, flow rate feedback, flame temperature feedback, combustion dynamics feedback, inlet oxidant composition feedback, inlet fuel composition feedback, emissions composition feedback, output level of mechanical power 72, power The output level of 74, the output of exhaust gases 42, 60, the output or quality of water 64, or any combination thereof. For example, sensor feedback 130 may include a composition of exhaust gases 42, 60 to facilitate stoichiometric combustion in SEGR gas turbine system 52. For example, sensor feedback 130 may include an inlet oxidant sensor from one or more oxidant supply paths along oxidant 68, one or more inlet fuel sensors along a fuel supply path of fuel 70, and a Feedback of a plurality of exhaust emission sensors disposed along the exhaust gas recirculation path 110 and/or within the SEGR gas turbine system 52. The inlet oxidant sensor, the inlet fuel sensor, and the exhaust emission sensor can include a temperature sensor, a pressure sensor, a flow rate sensor, and a component sensor. Emissions sensor may include a nitrogen oxide (e.g., NO X sensor), carbon oxides (e.g., CO and CO 2 sensors sensor), sulfur oxides (e.g., SO X sensor ), hydrogen (eg, H 2 sensor), oxygen (eg, O 2 sensor), unburned hydrocarbon (eg, HC sensor), or other incompletely combusted product, or any combination thereof Sensor.

使用此反饋130,控制系統100可調整(例 如,增加、減少、或保持)廢氣66、氧化劑68、及/或燃料70進入SEGR燃氣渦輪系統52之入口流量(其他操作參數之中)以將當量比保持在適當範圍內,例如,介於約0.95至約1.05之間,介於約0.95至約1.0之間,介於約1.0至約1.05之間,或實質上於1.0。例如,控制系統100可分析反饋130以監控廢氣排放(例如,氮氧化物、碳氧化物諸如CO和CO2、硫氧化物、氫、氧、未燃燒的烴類、和其他不完全燃燒的產物之濃度水平)及/或判定當量比,和然後控制一或多個組件以調整廢氣排放(例如,在廢氣42中之濃度水平)及/或當量比。控制組件可包括任何參照圖示所說明和所述之組件,包括但不限於沿著用於氧化劑68、燃料70、和廢氣66之供應路徑的閥;氧化劑壓縮機、燃料泵、或EG處理系統54中之任何組件;SEGR燃氣渦輪系統52之任何組件、或其任何組合。控制組件可調整(例如,增加、減少、或保持)在SEGR燃氣 渦輪系統52內燃燒之氧化劑68、燃料70、和廢氣66的流率、溫度、壓力、或百分比(例如,當量比)。控制組件也可包括一或多種氣體處理系統,諸如觸媒單元(例如,氧化觸媒單元)、用於觸媒單元之供應(例如,氧化燃料、熱、電、等等)、氣體純化及/或分離單元(例如,以溶劑為主之分離器、吸收器、閃蒸槽、等等)、和過濾單元。氣體處理系統可幫助減少各種沿著該廢氣再循環路徑110、排放路徑(例如,排放到大氣中)、或至EG供應系統78的提取路徑之廢氣排放。 Using this feedback 130, the control system 100 can adjust (eg, increase, decrease, or maintain) the exhaust gas 66, the oxidant 68, and/or the fuel 70 into the inlet flow of the SEGR gas turbine system 52 (among other operating parameters) to The equivalent ratio is maintained within a suitable range, for example, between about 0.95 and about 1.05, between about 0.95 and about 1.0, between about 1.0 and about 1.05, or substantially 1.0. For example, control system 100 can analyze feedback 130 to monitor exhaust emissions (eg, nitrogen oxides, carbon oxides such as CO and CO 2 , sulfur oxides, hydrogen, oxygen, unburned hydrocarbons, and other products that are not completely combusted). The concentration level) and/or determine the equivalence ratio, and then control one or more components to adjust exhaust emissions (eg, concentration levels in the exhaust gas 42) and/or equivalence ratios. The control assembly can include any of the components illustrated and described with reference to the drawings, including but not limited to valves along the supply path for oxidant 68, fuel 70, and exhaust 66; oxidant compressor, fuel pump, or EG processing system Any of the components of 54; any component of the SEGR gas turbine system 52, or any combination thereof. The control assembly can adjust (eg, increase, decrease, or maintain) the flow rate, temperature, pressure, or percentage (eg, equivalence ratio) of the oxidant 68, fuel 70, and exhaust 66 combusted within the SEGR gas turbine system 52. The control assembly may also include one or more gas treatment systems, such as a catalytic unit (eg, an oxidation catalyst unit), a supply for the catalyst unit (eg, oxidizing fuel, heat, electricity, etc.), gas purification, and/or Or a separation unit (for example, a solvent-based separator, an absorber, a flash tank, etc.), and a filtration unit. The gas treatment system can help reduce various exhaust emissions along the exhaust gas recirculation path 110, the exhaust path (eg, vented to the atmosphere), or to the extraction path of the EG supply system 78.

在某些具體實例中,該控制系統100可分析 反饋130和控制一或多個組件以保持或減少排放物水平(例如,廢氣42、60、95之濃度水平)至目標範圍,諸如小於約10、20、30、40、50、100、200、300、400、500、1000、2000、3000、4000、5000、或10000體積百萬分之一(ppmv)。此等目標範圍對於各廢氣排放(例如,氮氧化物、一氧化碳、硫氧化物、氫、氧、未燃燒的烴類和其他不完全燃燒之產物的濃度水平)可為相同或不同。例如,視當量比而定,控制系統100可選擇性地控制廢氣排放(例如,濃度水平):氧化劑(例如,氧)在小於約10、20、30、40、50、60、70、80、90、100、250、500、750、或1000ppmv之目標範圍內;一氧化碳(CO)在小於約20、50、100、200、500、1000、2500、或5000ppmv之目標範圍內;及氮氧化物(NOX)在小於約50、100、200、300、400、或500ppmv之目標範圍 內。在某些用實質上化學計量當量比操作之具體實例中,控制系統100可選擇性地控制廢氣排放(例如,濃度水平):氧化劑(例如,氧)在小於約10、20、30、40、50、60、70、80、90、或100ppmv之目標範圍內;及一氧化碳(CO)在小於約500、1000、2000、3000、4000、或5000ppmv之目標範圍內。在某些用貧燃料當量比(例如,介於約0.95至1.0之間)操作之具體實例中,控制系統100可選擇性地控制廢氣排放(例如,濃度水平):氧化劑(例如,氧)在小於約500、600、700、800、900、1000、1100、1200、1300、1400、或1500ppmv之目標範圍內;一氧化碳(CO)在小於約10、20、30、40、50、60、70、80、90、100、150、或200ppmv之目標範圍內;及氮氧化物(例如,NOX)在小於約50、100、150、200、250、300、350、或400ppmv之目標範圍內。前述目標範圍僅是例子,且不打算限制該等所揭示之具體實例的範圍。 In some embodiments, the control system 100 can analyze the feedback 130 and control one or more components to maintain or reduce emissions levels (eg, concentration levels of exhaust gases 42, 60, 95) to a target range, such as less than about 10 20, 30, 40, 50, 100, 200, 300, 400, 500, 1000, 2000, 3000, 4000, 5000, or 10,000 parts by volume (ppmv). These target ranges may be the same or different for each exhaust gas emission (eg, concentration levels of nitrogen oxides, carbon monoxide, sulfur oxides, hydrogen, oxygen, unburned hydrocarbons, and other products that are not completely combusted). For example, depending on the equivalence ratio, control system 100 can selectively control exhaust emissions (eg, concentration levels): the oxidant (eg, oxygen) is less than about 10, 20, 30, 40, 50, 60, 70, 80, Within the target range of 90, 100, 250, 500, 750, or 1000 ppmv; carbon monoxide (CO) in the target range of less than about 20, 50, 100, 200, 500, 1000, 2500, or 5000 ppmv; and nitrogen oxides ( NO X) in less than about 50,100,200,300,400 or 500ppmv the target range. In certain embodiments operating with a substantially stoichiometric equivalent ratio, the control system 100 can selectively control exhaust emissions (eg, concentration levels): the oxidant (eg, oxygen) is less than about 10, 20, 30, 40, Within the target range of 50, 60, 70, 80, 90, or 100 ppmv; and carbon monoxide (CO) within a target range of less than about 500, 1000, 2000, 3000, 4000, or 5000 ppmv. In certain embodiments operating with a lean fuel equivalent ratio (eg, between about 0.95 and 1.0), control system 100 can selectively control exhaust emissions (eg, concentration levels): oxidant (eg, oxygen) at Within a target range of less than about 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, or 1500 ppmv; carbon monoxide (CO) is less than about 10, 20, 30, 40, 50, 60, 70, 80,90,100,150 within target range, or of 200ppmv; and nitrogen oxides (e.g., NO X) within less than about 50,100,150,200,250,300,350, or the target range 400ppmv. The foregoing range of objectives is only an example and is not intended to limit the scope of the specific examples disclosed.

控制系統100也可連接到近距介面132和遠 程介面134。例如,近距介面132可包括現場配置於以渦輪為主之服務系統14及/或烴產生系統12之電腦工作站。相比之下,遠程介面134可包括異地配置於以渦輪為主之服務系統14和烴產生系統12之電腦工作站,諸如透過網際網路連接。此等介面132和134促進以渦輪為主之服務系統14的監測和控制,諸如透過一個或多個的感測器反饋130、操作參數、等等的圖形顯示器。 Control system 100 can also be connected to close interface 132 and far Cheng Jie 134. For example, the proximity interface 132 can include a computer workstation that is field configured on the turbine-based service system 14 and/or the hydrocarbon generation system 12. In contrast, the remote interface 134 can include a computer workstation that is remotely deployed to the turbine-based service system 14 and the hydrocarbon generation system 12, such as via an internet connection. These interfaces 132 and 134 facilitate monitoring and control of the turbine-based service system 14, such as a graphical display that passes through one or more sensor feedbacks 130, operational parameters, and the like.

同樣地,如上所述,控制器118包括各種控 制124、126、和128以促進以渦輪為主之服務系統14的控制。蒸汽渦輪控制124可接收感測器反饋130和輸出控制指令以促進蒸汽渦輪104之操作。例如,蒸汽渦輪控制124可接收來自HRSG 56、機器106、沿著蒸汽62之路徑的溫度和壓力感測器、沿著水108之路徑的溫度和壓力感測器、及各種指示機械動力72和電力74之感測器的感測器反饋130。同樣地,SEGR燃氣渦輪系統控制126可接收來自一或多個沿著該SEGR燃氣渦輪系統52、機器106、EG處理系統54、或其任何組合配置之感測器的感測器反饋130。例如,感測器反饋130可得自配置在SEGR燃氣渦輪系統52內或外部之溫度感測器、壓力感測器、間隙感測器、振動感測器、火焰感測器、燃料組成感測器、廢氣組成感測器、或其任何組合。最後,機器控制128可接收來自與機械動力72和電力74有關之各種感測器,以及配置在機器106內的感測器之感測器反饋130。 此等控制124、126、和128各使用感測器反饋130以改良以渦輪為主之服務系統14的操作。 Likewise, as described above, the controller 118 includes various controls 124, 126, and 128 are implemented to facilitate control of the turbine-based service system 14. Steam turbine control 124 may receive sensor feedback 130 and output control commands to facilitate operation of steam turbine 104. For example, steam turbine control 124 can receive temperature and pressure sensors from HRSG 56, machine 106, a path along steam 62, temperature and pressure sensors along the path of water 108, and various indicating mechanical powers 72 and Sensor feedback 130 of the sensor of power 74. Likewise, SEGR gas turbine system control 126 can receive sensor feedback 130 from one or more sensors configured along the SEGR gas turbine system 52, machine 106, EG processing system 54, or any combination thereof. . For example, sensor feedback 130 may be derived from a temperature sensor, pressure sensor, gap sensor, vibration sensor, flame sensor, fuel composition configured within or external to SEGR gas turbine system 52. The detector, the exhaust gas composition sensor, or any combination thereof. Finally, machine control 128 can receive various sensor responses from mechanical power 72 and power 74, as well as sensor feedback 130 of the sensors disposed within machine 106. These controls 124, 126, and 128 each use sensor feedback 130 to improve the operation of the turbine-based service system 14.

在所說明之具體實例中,SEGR燃氣渦輪系統 控制126可執行指令以控制EG處理系統54、EG供應系統78、烴產生系統12、及/或其他系統84中之廢氣42、60、95的量和質。例如,SEGR燃氣渦輪系統控制126可將廢氣60中的氧化劑(例如,氧)及/或未燃燒燃料之水平保持低於適合與廢氣注入EOR系統112一起使用之閾 值。在某些具體實例中,該閾值水平以廢氣42、60的體積計可為小於1、2、3、4、或5百分比的氧化劑(例如,氧)及/或未燃燒燃料;或氧化劑(例如,氧)及/或未燃燒燃料(和其他廢氣排放)在廢氣42、60中之閾值水平可小於約10、20、30、40、50、60、70、80、90、100、200、300、400、500、1000、2000、3000、4000、或5000體積百萬分之一(ppmv)。進一步的實例中,為了達到氧化劑(例如,氧)及/或未燃燒燃料之此等低水平,SEGR燃氣渦輪系統控制126可使SEGR燃氣渦輪系統52中的燃燒當量比保持介於約0.95和約1.05之間。 SEGR燃氣渦輪系統控制126也可控制EG提取系統80和EG處理系統82以將廢氣42、60、95之溫度、壓力、流率、和氣體組成保持在用於廢氣注入EOR系統112、管線86、儲存槽88、和碳固存系統90之適當範圍內。如上述所討論的,EG處理系統82可經控制以將廢氣42純化及/或分離成一或多種氣體流95,諸如富CO2貧N2流96、中間濃度CO2和N2流97、和貧CO2富N2流98。除了用於廢氣42、60、和95之控制外,控制124、126、和128可執行一或多個指令以將機械動力72保持在適當功率範圍內,或將電力74保持在適當頻率和功率範圍內。 In the illustrated embodiment, SEGR gas turbine system control 126 may execute instructions to control exhaust gases 42, 60, 95 of EG processing system 54, EG supply system 78, hydrocarbon generation system 12, and/or other systems 84. Quantity and quality. For example, the SEGR gas turbine system control 126 may maintain the level of oxidant (eg, oxygen) and/or unburned fuel in the exhaust gas 60 below a threshold suitable for use with the exhaust gas injection EOR system 112. In certain embodiments, the threshold level can be less than 1, 2, 3, 4, or 5 percent of oxidant (eg, oxygen) and/or unburned fuel, or oxidant (eg, by volume of exhaust gases 42, 60) , oxygen) and/or unburned fuel (and other exhaust emissions) may have a threshold level in the exhaust gases 42, 60 of less than about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300. , 400, 500, 1000, 2000, 3000, 4000, or 5000 parts per million (ppmv). In a further example, to achieve such low levels of oxidant (eg, oxygen) and/or unburned fuel, SEGR gas turbine system control 126 may maintain a combustion equivalent ratio in SEGR gas turbine system 52 of between about 0.95. And about 1.05. The SEGR gas turbine system control 126 can also control the EG extraction system 80 and the EG processing system 82 to maintain the temperature, pressure, flow rate, and gas composition of the exhaust gases 42, 60, 95 in the exhaust gas injection EOR system 112, line 86. The storage tank 88, and the carbon sequestration system 90 are within an appropriate range. As discussed above, EG processing system 82 may be controlled to 42 purified exhaust gas and / or separated into one or more gas flow 95, such as a CO 2 rich lean N 2 stream 96, intermediate concentrations of CO 2 and N 2 stream 97, and The CO 2 rich N 2 stream 98. In addition to the controls for exhaust gases 42, 60, and 95, controls 124, 126, and 128 can execute one or more commands to maintain mechanical power 72 within an appropriate power range, or maintain power 74 at an appropriate frequency and power. Within the scope.

圖3為系統10之具體實例的圖示,其進一步 說明與烴產生系統12及/或其他系統84一起使用之燃氣渦輪引擎52的細節。在所說明之具體實例中,SEGR燃氣渦輪系統52包括連接到EG處理系統54之燃氣渦輪引擎 150。所說明之燃氣渦輪引擎150包括壓縮機段152、燃燒器段154、和膨脹器段或渦輪段156。壓縮機段152包括一或多個廢氣壓縮機或壓縮機級158,諸如1至20個以串聯排列配置之旋轉壓縮機葉片的級。同樣地,燃燒器段154包括一或多個燃燒器160,諸如1至20個沿圓周分布在SEGR燃氣渦輪系統52之旋轉軸162周圍的燃燒器160。再者,各燃燒器160可包括一或多個經配置以注入廢氣66、氧化劑68、及/或燃料70之燃料噴嘴164。例如,各燃燒器160之頭端部分166可容納1、2、3、4、5、6、或更多個燃料噴嘴164,其可將廢氣66、氧化劑68、及/或燃料70之流或混合物注入燃燒器160之燃燒部分168(例如,燃燒室)。 3 is an illustration of a specific example of system 10, further Details of the gas turbine engine 52 for use with the hydrocarbon generation system 12 and/or other systems 84 are illustrated. In the illustrated embodiment, the SEGR gas turbine system 52 includes a gas turbine engine coupled to the EG processing system 54 150. The illustrated gas turbine engine 150 includes a compressor section 152, a combustor section 154, and an expander section or turbine section 156. Compressor section 152 includes one or more exhaust gas compressor or compressor stages 158, such as 1 to 20 stages of rotary compressor blades arranged in series. Likewise, the combustor section 154 includes one or more combustors 160, such as 1 to 20 combustors 160 circumferentially distributed about the axis of rotation 162 of the SEGR gas turbine system 52. Further, each combustor 160 can include one or more fuel nozzles 164 configured to inject exhaust gas 66, oxidant 68, and/or fuel 70. For example, the head end portion 166 of each combustor 160 can house 1, 2, 3, 4, 5, 6, or more fuel nozzles 164 that can flow the exhaust gas 66, the oxidant 68, and/or the fuel 70 or The mixture is injected into a combustion portion 168 (e.g., a combustion chamber) of the combustor 160.

燃料噴嘴164可包括預混燃料噴嘴164(例 如,經配置以預混用於產生氧化劑/燃料預混火焰之氧化劑68和燃料70)及/或擴散燃料噴嘴164(例如,經配置以注入用於產生氧化劑/燃料擴散火焰之氧化劑68和燃料70的分開流)之任何組合。預混燃料噴嘴164之具體實例可包括渦旋葉片、混合室、或其他用以在噴嘴164中內部混合氧化劑68和燃料70的部件(feature)。預混燃料噴嘴164也可接收至少一些部分混合之氧化劑68和燃料70。在某些具體實例中,各擴散燃料噴嘴164可隔離氧化劑68和燃料70之流直到注入點,同時也隔離一或多個稀釋劑(例如,廢氣66、蒸汽、氮、或另一惰性氣體)之流直到注入點。在其他具體實例中,各擴散燃料噴嘴164 可隔離氧化劑68和燃料70之流直到注入之點,同時在注入點之前部分地混合一或多個稀釋劑(例如,廢氣66、蒸汽、氮、或另一惰性氣體)與氧化劑68及/或燃料70。 此外,一或多個稀釋劑(例如,廢氣66、蒸汽、氮、或另一惰性氣體)可在該燃燒區或下游注入燃燒器(例如,注入燃燒之熱產物),從而幫助減少燃燒的熱產物之溫度和減少NOX(例如,NO和NO2)之排放。不論燃料噴嘴164之類型,可控制SEGR燃氣渦輪系統52以提供氧化劑68和燃料70之實質上化學計量燃燒。 Fuel nozzle 164 may include a premixed fuel nozzle 164 (eg, oxidant 68 and fuel 70 configured to premix oxidant/fuel premixed flame) and/or a diffusion fuel nozzle 164 (eg, configured to inject for production) Any combination of oxidant/fuel diffusion flame oxidant 68 and separate flow of fuel 70). Specific examples of the premixed fuel nozzle 164 may include a swirl vane, a mixing chamber, or other features to internally mix the oxidant 68 and the fuel 70 in the nozzle 164. The premixed fuel nozzle 164 can also receive at least some of the partially mixed oxidant 68 and fuel 70. In some embodiments, each diffusion fuel nozzle 164 can isolate the flow of oxidant 68 and fuel 70 up to the point of injection while also isolating one or more diluents (eg, exhaust gas 66, steam, nitrogen, or another inert gas). The flow until the injection point. In other embodiments, each diffusion fuel nozzle 164 can isolate the flow of oxidant 68 and fuel 70 until the point of injection while partially mixing one or more diluents (eg, exhaust gas 66, steam, nitrogen, or Another inert gas) is with the oxidant 68 and/or the fuel 70. Additionally, one or more diluents (eg, exhaust gas 66, steam, nitrogen, or another inert gas) may be injected into the combustor or downstream (eg, injected into the hot product of combustion) to help reduce the heat of combustion the temperature of the product and reduce the NO X (e.g., NO, and NO 2) of the discharge. Regardless of the type of fuel nozzle 164, the SEGR gas turbine system 52 can be controlled to provide substantially stoichiometric combustion of the oxidant 68 and fuel 70.

在操作中,如圖所示,壓縮機段152接收和 壓縮來自EG處理系統54之廢氣66,和將壓縮廢氣170輸出至燃燒器段154中之各燃燒器160。一旦在各燃燒器160內燃燒燃料60、氧化劑68、和廢氣170,另外的燃燒廢氣或產物172(即,燃燒氣體)被發送進入渦輪段156。類似於壓縮機段152,渦輪段156包括一或多個渦輪或渦輪級174,其可包括一系列的旋轉渦輪葉片。此等渦輪葉片然後由在燃燒器段154中產生的燃燒產物172驅動,從而驅動連接到機器106之軸176的旋轉。同樣地,機器106可包括各種連接到SEGR燃氣渦輪系統52任何一端的設備,諸如連接到渦輪段156之機器106、178及/或連接到壓縮機段152之機器106、180。在某些具體實例中,該機器106、178、180可包括一或多個發電機、用於氧化劑68之氧化劑壓縮機、用於燃料70之燃料泵、齒輪箱、或連接到SEGR燃氣渦輪系統52之另外的驅動器 (例如蒸汽渦輪104、電動馬達、等等)。如圖所示,渦 輪段156將廢氣60輸出以沿著該廢氣再循環路徑110而從渦輪段156之廢氣出口182再循環至廢氣入口184進入壓縮機段152。如上文所詳細討論的,沿著該廢氣再循環路徑110,廢氣60通過EG處理系統54(例如,HRSG 56及/或EGR系統58)。 In operation, as shown, compressor section 152 receives and Exhaust gas 66 from EG processing system 54 is compressed, and compressed exhaust gas 170 is output to each combustor 160 in combustor section 154. Once fuel 60, oxidant 68, and exhaust gas 170 are combusted within each combustor 160, additional combustion exhaust or product 172 (ie, combustion gases) is sent to turbine section 156. Similar to compressor section 152, turbine section 156 includes one or more turbine or turbine stages 174, which may include a series of rotating turbine blades. These turbine blades are then driven by combustion products 172 produced in the combustor section 154 to drive rotation of the shaft 176 that is coupled to the machine 106. Likewise, machine 106 may include various devices coupled to either end of SEGR gas turbine system 52, such as machines 106, 178 coupled to turbine section 156 and/or machines 106, 180 coupled to compressor section 152. In some embodiments, the machine 106, 178, 180 can include one or more generators, an oxidant compressor for the oxidant 68, a fuel pump for the fuel 70, a gearbox, or a SEGR gas turbine. Additional drivers for system 52 (eg steam turbine 104, electric motor, etc.). As shown, the vortex The wheel section 156 outputs exhaust gas 60 to recirculate from the exhaust gas outlet 182 of the turbine section 156 to the exhaust gas inlet 184 along the exhaust gas recirculation path 110 into the compressor section 152. As discussed in detail above, along the exhaust gas recirculation path 110, the exhaust gas 60 passes through an EG processing system 54 (eg, HRSG 56 and/or EGR system 58).

同樣地,燃燒器段154中的各燃燒器160接 收、混合、和化學計量地燃燒壓縮廢氣170、氧化劑68、和燃料70以產生另外的燃燒廢氣或產物172以驅動渦輪段156。在某些具體實例中,該氧化劑68係以氧化劑壓縮系統186(諸如主空氣壓縮(MAC)系統)壓縮。氧化劑壓縮系統186包括連接到驅動器190之氧化劑壓縮機188。例如,驅動190可包括電動馬達、燃燒引擎、或其任何組合。在某些具體實例中,該驅動器190可為渦輪引擎,諸如燃氣渦輪引擎150。因此,氧化劑壓縮系統186可為機器106的整體部分。換句話說,壓縮機188可直接或間接地以由燃氣渦輪引擎150的軸176所提供的機械動力72驅動。在該類具體實例中,驅動器190可以被排除,因為壓縮機188依賴於來自渦輪發動機150之動力輸出。然而,在所說明之具體實例中,該氧化劑壓縮系統186係與該機器106分離。在任一具體實例中,壓縮系統186將氧化劑68壓縮和供應至燃料噴嘴164和燃燒器160。如下述所進一步詳細討論者,氧化劑68和燃料70可在特別選定的位置提供至燃氣渦輪引擎150,以促進壓 縮廢氣170的隔離和提取而沒有任何降解廢氣170的品質之氧化劑68或燃料70。 Similarly, each burner 160 in the combustor section 154 is connected The compressed exhaust gas 170, oxidant 68, and fuel 70 are combusted, mixed, and stoichiometrically combusted to produce additional combustion exhaust gases or products 172 to drive the turbine section 156. In some embodiments, the oxidant 68 is compressed by an oxidant compression system 186, such as a primary air compression (MAC) system. The oxidant compression system 186 includes an oxidant compressor 188 that is coupled to a driver 190. For example, drive 190 can include an electric motor, a combustion engine, or any combination thereof. In some embodiments, the driver 190 can be a turbine engine, such as a gas turbine engine 150. Thus, the oxidant compression system 186 can be an integral part of the machine 106. In other words, the compressor 188 can be driven, directly or indirectly, by mechanical power 72 provided by the shaft 176 of the gas turbine engine 150. In this particular example, the driver 190 can be eliminated because the compressor 188 is dependent on the power output from the turbine engine 150. However, in the particular embodiment illustrated, the oxidant compression system 186 is separate from the machine 106. In either embodiment, compression system 186 compresses and supplies oxidant 68 to fuel nozzle 164 and combustor 160. As discussed in further detail below, oxidant 68 and fuel 70 may be provided to gas turbine engine 150 at a particular selected location to facilitate pressure Isolation and extraction of the reduced exhaust gas 170 without any oxidant 68 or fuel 70 that degrades the quality of the exhaust gas 170.

如圖3中所示,EG供應系統78係配置在燃 氣渦輪引擎150和目標系統(例如,烴產生系統12和其他系統84)之間。特別地,EG供應系統78(例如,EG提取系統(EGES)80))可沿著該壓縮機段152、燃燒器段154、及/或渦輪段156於一或多個提取點76連接到燃氣渦輪引擎150。例如,提取點76可位於相鄰的壓縮機級之間,諸如在壓縮機級之間的2、3、4、5、6、7、8、9、或10個級間提取點76。此等級間提取點76各提供不同溫度和壓力的經提取之廢氣42。類似地,提取點76可位於相鄰渦輪級之間,諸如在渦輪級之間的2、3、4、5、6、7、8、9、或10個級間提取點76。此等級間提取點76各提供不同溫度和壓力的經提取之廢氣42。進一步的實例中,提取點76可位於遍及燃燒器段154之眾多位置,可提供不同溫度、壓力、流率、和氣體組成。此等提取點76各可包括EG提取導管、一或多個閥、感測器、和控制,其可用以選擇性控制經提取之廢氣42至EG供應系統78的流。 As shown in Figure 3, the EG supply system 78 is configured to burn Between the gas turbine engine 150 and a target system (e.g., hydrocarbon generation system 12 and other systems 84). In particular, an EG supply system 78 (eg, an EG extraction system (EGES) 80) can be coupled to the combustion section along the compressor section 152, the combustor section 154, and/or the turbine section 156 at one or more extraction points 76. Gas turbine engine 150. For example, the extraction point 76 can be located between adjacent compressor stages, such as between 2, 3, 4, 5, 6, 7, 8, 9, or 10 stages between compressor stages. This inter-stage extraction point 76 each provides an extracted exhaust gas 42 of varying temperature and pressure. Similarly, the extraction point 76 can be located between adjacent turbine stages, such as between 2, 3, 4, 5, 6, 7, 8, 9, or 10 interstage extraction points 76 between turbine stages. This inter-stage extraction point 76 each provides an extracted exhaust gas 42 of varying temperature and pressure. In a further example, the extraction points 76 can be located at numerous locations throughout the combustor section 154 to provide different temperatures, pressures, flow rates, and gas compositions. Each of the extraction points 76 can include an EG extraction conduit, one or more valves, a sensor, and a control that can be used to selectively control the flow of the extracted exhaust gas 42 to the EG supply system 78.

經提取之廢氣42(其由EG供應系統78分 配)具有適合於目標系統(例如,烴產生系統12和其他系統84)之控制組成。例如,於各個此等提取點76,廢氣170可與氧化劑68和燃料70之注入點(或流)實質上隔離。換句話說,EG供給系統78可專門設計用來從燃氣 渦輪引擎150中提取廢氣170,而沒有任何添加的氧化劑68或燃料70。再者,鑑於各燃燒器160中之化學計量燃燒,經提取之廢氣42可實質上無氧和燃料。EG供應系統78可將經提取之廢氣42直接或間接發送至用於各種方法(諸如提高油回收、碳固存、儲存)中之烴產生系統12及/或其他系統84,或輸送到異地位置。然而,在某些具體實例中,EG供應系統78包括在與目標系統一起使用之前,用於進一步處理廢氣42之EG處理系統(EGTS)82。例如,EG處理系統82可將廢氣42純化及/或分離成一或多個流95,諸如富CO2貧N2流96、中間濃度CO2和N2流97、和貧CO2富N2流98。此等處理過的廢氣流95可個別地或以任何組合與烴生產系統12和其他系統84(例如,管線86、儲存槽88、和碳固存系統90)一起使用。 The extracted exhaust gas 42 (which is distributed by the EG supply system 78) has a control composition suitable for the target system (e.g., the hydrocarbon production system 12 and other systems 84). For example, at each of these extraction points 76, the exhaust gas 170 can be substantially isolated from the injection point (or flow) of the oxidant 68 and the fuel 70. In other words, the EG supply system 78 can be specifically designed to extract the exhaust gas 170 from the gas turbine engine 150 without any added oxidant 68 or fuel 70. Moreover, in view of the stoichiometric combustion in each combustor 160, the extracted exhaust gas 42 can be substantially oxygen free and fuel. The EG supply system 78 can send the extracted exhaust gas 42 directly or indirectly to the hydrocarbon generation system 12 and/or other system 84 for use in various methods, such as enhanced oil recovery, carbon sequestration, storage, or to an off-site location. . However, in some embodiments, EG supply system 78 includes an EG processing system (EGTS) 82 for further processing of exhaust gas 42 prior to use with the target system. For example, EG processing system 82 may be 42 purified exhaust gas and / or separated into one or more streams 95, such as a CO 2 rich lean N 2 stream 96, intermediate concentrations of CO 2 and N 2 stream 97, and the CO 2 lean-rich N 2 stream 98. These treated exhaust streams 95 can be used with the hydrocarbon production system 12 and other systems 84 (e.g., line 86, storage tank 88, and carbon sequestration system 90), either individually or in any combination.

類似於在EG供應系統78進行之廢氣處理, EG處理系統54可包括多個廢氣(EG)處理組件192,諸如以組件編號194、196、198、200、202、204、206、208、和210表示者。此等EG處理組件192(例如,194至210)可以一或多個串聯排列、並聯排列、或串聯和並聯排列之任何組合沿著該廢氣再循環路徑110配置。例如,EG處理組件192(例如,194至210)可包括下列之以任何順序的任何串聯和/或並聯排列:一或多個熱交換器(例如,熱回收單元諸如熱回收蒸汽產生器、冷凝器、冷卻器、或加熱器)、觸媒系統(例如,氧化觸媒系 統)、除粒及/或除水系統(例如,慣性分離器、聯合過濾器、不透水性過濾器、和其他過濾器)、化學品注入系統、以溶劑為主之處理系統(例如,吸收器、閃蒸槽、等等)、碳捕集系統、氣體分離系統、氣體純化系統、及/或以溶劑為主之處理系統、或其任何組合。在某些具體實例中,該觸媒系統可包括氧化觸媒、一氧化碳還原觸媒、氮氧化物還原觸媒、氧化鋁、氧化鋯、氧化矽、氧化鈦、氧化鉑、氧化鈀、氧化鈷、或混合金屬氧化物、或其組合。該等所揭示之具體實例意在包括前述組件192的串聯和並聯排列的任何和所有排列組合。如下所示,表1描述一些組件192沿著該廢氣再循環路徑110排列之非限制例。 Similar to the exhaust gas treatment performed in the EG supply system 78, The EG processing system 54 may include a plurality of exhaust gas (EG) processing components 192, such as those represented by component numbers 194, 196, 198, 200, 202, 204, 206, 208, and 210. These EG processing components 192 (e.g., 194-210) may be disposed along the exhaust gas recirculation path 110 in one or more series, parallel, or any combination of series and parallel arrangements. For example, EG processing component 192 (eg, 194-210) can include any of the following series and/or parallel arrangements in any order: one or more heat exchangers (eg, heat recovery units such as heat recovery steam generators, condensation) , cooler, or heater), catalyst system (eg, oxidation catalyst) System, degranulation and/or water removal systems (eg, inertial separators, combined filters, water-impermeable filters, and other filters), chemical injection systems, solvent-based treatment systems (eg, absorption) , flash tank, etc.), carbon capture system, gas separation system, gas purification system, and/or solvent based processing system, or any combination thereof. In some embodiments, the catalyst system may include an oxidation catalyst, a carbon monoxide reduction catalyst, a nitrogen oxide reduction catalyst, aluminum oxide, zirconium oxide, hafnium oxide, titanium oxide, platinum oxide, palladium oxide, cobalt oxide, Or a mixed metal oxide, or a combination thereof. The specific examples disclosed are intended to include any and all permutations of the series and parallel arrangements of the aforementioned components 192. As shown below, Table 1 describes a non-limiting example of some of the components 192 being aligned along the exhaust gas recirculation path 110.

如表1中所示,觸媒單元係以CU表示,氧化 觸媒單元係以OCU表示,升壓鼓風機係以BB表示,熱交換器係以HX表示,熱回收單元係以HRU表示,熱回收蒸汽產生器係以HRSG表示,冷凝器係以COND表示,蒸汽渦輪係以ST表示,除粒單元係以PRU表示,除濕單元係以MRU表示,過濾器係以FIL表示,聯合過濾器係 以CFIL表示,不透水性過濾器係以WFIL表示,慣性分離器係以INER表示,和稀釋劑供應系統(例如,蒸汽、氮、或其他惰性氣體)係以DIL表示。雖然表1以從渦輪段156之廢氣出口182向壓縮機段152之廢氣入口184的順序說明組件192,但表1也意欲涵蓋所示組件192的反向順序。在表1中,任何包括二或多個組件之方格意欲涵蓋與該組件之整合單元、組件之並聯排列、或其任何組合。再者,在表1範圍內,HRU、HRSG、和COND為HE之例子;HRSG為HRU之例子;COND、WFIL、和CFIL為WRU之例子;INER、FIL、WFIL、和CFIL為PRU之例子;及WFIL和CFIL為FIL之例子。同樣地,表1不意欲排除任何未說明之組件192的排列。在某些具體實例中,所說明之組件192(例如,194至210)可以部分或完全整合於HRSG56、EGR系統58、或其任何組合中。此等EG處理組件192可使能夠反饋控制溫度、壓力、流速和氣體組成,同時也從廢氣60中除去水分和微粒。再者,處理過的廢氣60可於一或多個提取點76提取而用於EG供應系統78及/或再循環至壓縮機段152之廢氣入口184。 As shown in Table 1, the catalyst unit is represented by CU, oxidized The catalyst unit is represented by OCU, the booster blower is indicated by BB, the heat exchanger is represented by HX, the heat recovery unit is represented by HRU, the heat recovery steam generator is represented by HRSG, and the condenser is represented by COND, steam The turbine system is denoted by ST, the degranulation unit is represented by PRU, the dehumidification unit is represented by MRU, the filter is represented by FIL, and the combined filter system Expressed in terms of CFIL, the water-impermeable filter is represented by WFIL, the inertial separator is represented by INER, and the diluent supply system (eg, steam, nitrogen, or other inert gas) is represented by DIL. While Table 1 illustrates component 192 in the order from exhaust gas outlet 182 of turbine section 156 to exhaust gas inlet 184 of compressor section 152, Table 1 is also intended to encompass the reverse sequence of illustrated assembly 192. In Table 1, any square comprising two or more components is intended to encompass integrated units, parallel arrangements of components, or any combination thereof. Furthermore, in the scope of Table 1, HRU, HRSG, and COND are examples of HE; HRSG is an example of HRU; COND, WFIL, and CFIL are examples of WRU; and INER, FIL, WFIL, and CFIL are examples of PRU; And WFIL and CFIL are examples of FIL. Similarly, Table 1 is not intended to exclude any arrangement of components 192 that are not illustrated. In some embodiments, illustrated components 192 (eg, 194 through 210) may be partially or fully integrated into HRSG 56, EGR system 58, or any combination thereof. These EG processing components 192 can provide feedback control of temperature, pressure, flow rate, and gas composition while also removing moisture and particulates from the exhaust gas 60. Further, the treated exhaust gas 60 may be extracted at one or more extraction points 76 for use in the EG supply system 78 and/or recycled to the exhaust gas inlet 184 of the compressor section 152.

當處理過的再循環廢氣66通過壓縮機段 152,SEGR燃氣渦輪系統52可沿著一或多個管線212(例如,排氣導管或旁路導管)排出一部分的壓縮廢氣。 各管線212可將廢氣發送進入一或多個熱交換器214(例如,冷卻單元),從而冷卻用於再循環回到SEGR燃氣渦 輪系統52之廢氣。例如,在通過熱交換器214之後,一部分的冷卻廢氣可沿著用於渦輪護罩、渦輪罩、軸承、和其他組件之冷卻及/或密封的管線212發送至渦輪段156。 在該類具體實例中,SEGR燃氣渦輪系統52不會為了冷卻及/或密封目的而將任何氧化劑68(或其他可能的污染物)發送通過渦輪段156,且因此任何洩漏的冷卻廢氣將不會污染流過和驅動渦輪段156之渦輪級的燃燒熱產物(例如,工作廢氣)。進一步的實例中,在通過熱交換器214之後,一部分的冷卻廢氣可沿著管線216(例如,回程導管)發送至壓縮機段152之上游壓縮機級,從而改良以壓縮機段152壓縮之效率。在該類具體實例中,熱交換器214可配置成用於壓縮機段152之級間冷卻單元。以此方式,冷卻廢氣幫助增加SEGR燃氣渦輪系統52之操作效率,而同時幫助保持廢氣之純度(例如,實質上無氧化劑和燃料)。 When the treated recirculated exhaust gas 66 passes through the compressor section 152. The SEGR gas turbine system 52 can exhaust a portion of the compressed exhaust gas along one or more lines 212 (eg, an exhaust conduit or a bypass conduit). Each line 212 can send exhaust gas into one or more heat exchangers 214 (eg, a cooling unit) for cooling for recirculation back to the SEGR gas vortex Exhaust gas from wheel system 52. For example, after passing through the heat exchanger 214, a portion of the cooled exhaust gas may be sent to the turbine section 156 along a line 212 for cooling and/or sealing of the turbine shroud, turbine shroud, bearings, and other components. In this particular example, the SEGR gas turbine system 52 will not send any oxidant 68 (or other possible contaminant) through the turbine section 156 for cooling and/or sealing purposes, and thus any leaking cooling exhaust will not It will contaminate the combustion heat products (e.g., working exhaust gases) that flow through and drive the turbine stages of the turbine section 156. In a further example, after passing through heat exchanger 214, a portion of the cooled exhaust gas may be sent along line 216 (eg, a return conduit) to the upstream compressor stage of compressor section 152, thereby improving the efficiency of compression with compressor section 152. . In this particular example, heat exchanger 214 can be configured for an interstage cooling unit of compressor section 152. In this manner, cooling the exhaust gases helps increase the operational efficiency of the SEGR gas turbine system 52 while helping to maintain the purity of the exhaust gases (eg, substantially free of oxidant and fuel).

圖4為圖1-3中所示的系統10之操作方法 220的具體實例之流程圖。在某些具體實例中,方法220可為電腦執行方法,其存取一或多個儲存在記憶體122中之指令並在圖2中所示的控制器118之處理器120上執行指令。例如,方法220中的各步驟可包括可由參考圖2所述的控制系統100之控制器118執行的指令。 4 is an operation method of the system 10 shown in FIGS. 1-3 A flow chart of a specific example of 220. In some embodiments, method 220 can be a computer-implemented method of accessing one or more instructions stored in memory 122 and executing instructions on processor 120 of controller 118 shown in FIG. For example, steps in method 220 may include instructions that may be executed by controller 118 of control system 100 described with reference to FIG.

方法220可以啟動圖1-3之SEGR燃氣渦輪系 統52的啟動模式開始,如方塊222所指示。例如,啟動模式可包括逐步提升SEGR燃氣渦輪系統52以將熱梯 度、振動、和間隙(例如,在旋轉和固止部件之間)保持在可接受的閾值內。例如,在啟動模式222期間,方法220可開始將壓縮氧化劑68供應至燃燒器段154之燃燒器160和燃料噴嘴164,如224方塊所指示。在某些具體實例中,壓縮氧化劑可包括壓縮空氣、氧、富氧空氣、減氧空氣、氧-氮混合物、或其任何組合。例如,氧化劑68可以圖3中所示之氧化劑壓縮系統186壓縮。方法220也可在啟動模式222期間開始將燃料供應至燃燒器160和燃料噴嘴164,如方塊226所指示。在啟動模式222期間,方法220也可開始將廢氣(可使用時)供應至燃燒器160和燃料噴嘴164,如方塊228所指示。例如,燃料噴嘴164可產生一或多個擴散火焰、預混火焰、或擴散和預混火焰之組合。在啟動模式222期間,正由燃氣渦輪引擎156所產生之廢氣60在量及/或質方面可能不足或不穩定。因此,在啟動模式期間,方法220可從一或多個儲存單元(例如,儲存槽88)、管線86、其他SEGR燃氣渦輪系統52、或其他廢氣來源供應廢氣66。 Method 220 can initiate the SEGR gas turbine system of Figures 1-3 The startup mode of system 52 begins as indicated by block 222. For example, the startup mode may include stepping up the SEGR gas turbine system 52 to bring the hot ladder Degrees, vibrations, and gaps (eg, between rotating and securing components) remain within acceptable thresholds. For example, during startup mode 222, method 220 may begin supplying compressed oxidant 68 to combustor 160 and fuel nozzle 164 of combustor section 154 as indicated by block 224. In certain embodiments, the compressed oxidant can include compressed air, oxygen, oxygen-enriched air, oxygen-reduced air, an oxygen-nitrogen mixture, or any combination thereof. For example, oxidant 68 can be compressed by oxidant compression system 186 as shown in FIG. Method 220 may also begin to supply fuel to combustor 160 and fuel nozzle 164 during start mode 222 as indicated by block 226. During the startup mode 222, the method 220 may also begin to supply exhaust gas (when available) to the combustor 160 and the fuel nozzle 164 as indicated by block 228. For example, fuel nozzle 164 can produce one or more diffusion flames, premixed flames, or a combination of diffused and premixed flames. During startup mode 222, exhaust gas 60 being produced by gas turbine engine 156 may be insufficient or unstable in quantity and/or quality. Thus, during the startup mode, method 220 may supply exhaust gas 66 from one or more storage units (eg, storage tank 88), line 86, other SEGR gas turbine system 52, or other source of exhaust.

方法220然後可在燃燒器160中燃燒壓縮氧 化劑、燃料、和廢氣之混合物以產生熱燃燒氣體172,如方塊230所指示。特別地,方法220可由圖2之控制系統100控制以促進混合物在燃燒器段154之燃燒器160中的化學計量燃燒(例如,化學計量擴散燃燒、預混燃燒、或二者)。然而,在啟動模式222期間,可能特別難以保持混合物之化學計量燃燒(且因此低水平之氧化劑和未燃燒 燃料可存在於熱燃燒氣體172中)。結果,如下述所進一步詳細討論者,在啟動模式222中,熱燃燒氣體172可具有比在穩態模式期間之更大量的殘餘氧化劑68及/或燃料70。為此原因,方法220可在啟動模式期間執行一或多個控制指令以減少或消除熱燃燒氣體172中之殘餘氧化劑68及/或燃料70。 Method 220 can then burn compressed oxygen in combustor 160 A mixture of chemicals, fuel, and exhaust gases to produce hot combustion gases 172, as indicated by block 230. In particular, method 220 can be controlled by control system 100 of FIG. 2 to promote stoichiometric combustion of the mixture in combustor 160 of combustor section 154 (eg, stoichiometric diffusion combustion, premixed combustion, or both). However, during startup mode 222, it may be particularly difficult to maintain stoichiometric combustion of the mixture (and thus low levels of oxidant and unburned Fuel may be present in the hot combustion gases 172). As a result, as discussed in further detail below, in startup mode 222, hot combustion gases 172 may have a greater amount of residual oxidant 68 and/or fuel 70 than during steady state mode. For this reason, method 220 can execute one or more control commands during the startup mode to reduce or eliminate residual oxidant 68 and/or fuel 70 in hot combustion gases 172.

方法220然後用熱燃燒氣體172驅動渦輪段 156,如方塊232所指示。例如,熱燃燒氣體172可驅動一或多個配置在渦輪段156內之渦輪級174。在渦輪段156之下游,方法220可處理來自最後渦輪級174之廢氣60,如方塊234所指示。例如,廢氣處理234可包括過濾、任何殘餘氧化劑68及/或燃料70之觸媒反應、化學處理、用HRSG 56之熱回收、等等。方法220也可將至少一些廢氣60再循環回到SEGR燃氣渦輪系統52之壓縮機段152,如方塊236所指示。例如,廢氣再循環236可包括經過具有如圖1-3中所示之EG處理系統54的廢氣再循環路徑110之通道。 Method 220 then drives the turbine section with hot combustion gases 172 156, as indicated by block 232. For example, hot combustion gases 172 may drive one or more turbine stages 174 disposed within turbine section 156. Downstream of the turbine section 156, the method 220 can process the exhaust gas 60 from the last turbine stage 174 as indicated by block 234. For example, exhaust gas treatment 234 can include filtration, catalyst reaction of any residual oxidant 68 and/or fuel 70, chemical treatment, heat recovery with HRSG 56, and the like. The method 220 may also recirculate at least some of the exhaust gas 60 back to the compressor section 152 of the SEGR gas turbine system 52, as indicated by block 236. For example, exhaust gas recirculation 236 may include passage through an exhaust gas recirculation path 110 having an EG processing system 54 as shown in FIGS. 1-3.

因而,再循環的廢氣66可在壓縮機段152中 被壓縮,如方塊238所指示。例如,SEGR燃氣渦輪系統52可在一或多個壓縮機段152之壓縮機級158中相繼地壓縮再循環的廢氣66。隨後,壓縮的廢氣170可提供至該燃燒器160和燃料噴嘴164,如方塊228所指示。然後可再重複步驟230、232、234、236、和238,直到方法220最終轉變至穩態模式,如方塊240所指示。當轉變 240之後,該方法220可繼續進行步驟224至238,但也可以開始經由EG供給系統78提取廢氣42,如方塊242所指示。例如,廢氣42可沿著該壓縮機段152、燃燒器段154、和渦輪段156從一或多個提取點76提取,如圖3中所指示。因而,方法220可將經提取之廢氣42從該EG供應系統78供應至烴產生系統12,如方塊244所指示。 烴產生系統12然後可將廢氣42注入土32中以提高油回收,如方塊246所指示。例如,經提取之廢氣42可被圖1-3中所示之EOR系統18的廢氣注入EOR系統112使用。 Thus, the recirculated exhaust gas 66 can be in the compressor section 152 Compressed as indicated by block 238. For example, the SEGR gas turbine system 52 may successively compress the recirculated exhaust gas 66 in the compressor stage 158 of one or more compressor sections 152. Compressed exhaust gas 170 may then be provided to the combustor 160 and fuel nozzle 164 as indicated by block 228. Steps 230, 232, 234, 236, and 238 may then be repeated until method 220 eventually transitions to a steady state mode, as indicated by block 240. When changing After 240, the method 220 may proceed to steps 224 through 238, but may also begin to extract the exhaust gas 42 via the EG supply system 78, as indicated by block 242. For example, exhaust gas 42 may be extracted from one or more extraction points 76 along the compressor section 152, combustor section 154, and turbine section 156, as indicated in FIG. Thus, method 220 may supply extracted exhaust gas 42 from the EG supply system 78 to hydrocarbon generation system 12 as indicated by block 244. Hydrocarbon production system 12 may then inject exhaust gas 42 into soil 32 to enhance oil recovery, as indicated by block 246. For example, the extracted exhaust gas 42 can be used by the EOR system 112 of the EOR system 18 shown in Figures 1-3.

圖5為如圖1-3中所示之EG處理系統54的 具體實例之方塊圖示。在所說明之具體實例中,EG處理系統54具有連接到多個沿著該廢氣再循環路徑110分佈之氣體處理次系統300、閥302、和感測器(S)304的控制系統100。例如,各次系統300和其之組件192可包括一或多個配置在個別次系統300或組件192之內部、上游、及/或下游的閥302和感測器304。雖然未示於圖5中,但一或多個閥302可位於或接近各感測器304之位置,從而對通過EG處理系統54提供更大的流量控制。 在操作中,控制系統100可從該感測器304獲得感測器反饋130並將控制信號306提供至閥302、次系統300、和組件192而用於控制EG處理系統54。感測器反饋130也可包括來自SEGR燃氣渦輪系統52、EG供應系統78、和其他以渦輪為主之服務系統14的組件之各種感測器反 饋。 Figure 5 is an EG processing system 54 as shown in Figures 1-3 A block diagram of a specific example. In the illustrated embodiment, EG processing system 54 has a control system 100 coupled to a plurality of gas processing subsystems 300, valves 302, and sensors (S) 304 distributed along the exhaust gas recirculation path 110. For example, each subsystem 300 and its components 192 can include one or more valves 302 and sensors 304 disposed internal, upstream, and/or downstream of individual subsystems 300 or 192. Although not shown in FIG. 5, one or more valves 302 can be located at or near the locations of the various sensors 304 to provide greater flow control through the EG processing system 54. In operation, control system 100 may obtain sensor feedback 130 from the sensor 304 and provide control signals 306 to valve 302, subsystem 300, and component 192 for controlling EG processing system 54. Sensor feedback 130 may also include various sensors from components of SEGR gas turbine system 52, EG supply system 78, and other turbine-based service systems 14 Feed.

氣體處理次系統300各可包括一或多個組件 以控制溫度、壓力、氣體組成、水分含量、微粒含量、或其任何組合。如圖5中所示,氣體處理次系統300包括觸媒和熱回收(CHR)系統308、除濕系統(MRS)310、和除粒系統(PRS)312。氣體處理次系統300也包括一或多個升壓鼓風機314以幫助沿著該廢氣再循環路徑110增加廢氣42之流量和壓力。雖然在所說明之具體實例中CHR 308、升壓鼓風機314、MRS 310、和PRS 312係以串聯排列,但其他具體實例可以其他串聯及/或並聯配置重新排列此等組件。 The gas processing subsystems 300 can each include one or more components To control temperature, pressure, gas composition, moisture content, particulate content, or any combination thereof. As shown in FIG. 5, gas treatment subsystem 300 includes a catalyst and heat recovery (CHR) system 308, a dehumidification system (MRS) 310, and a degranulation system (PRS) 312. The gas processing subsystem 300 also includes one or more booster blowers 314 to help increase the flow and pressure of the exhaust gases 42 along the exhaust gas recirculation path 110. Although CHR 308, booster blower 314, MRS 310, and PRS 312 are arranged in series in the illustrated embodiment, other embodiments may rearrange such components in other series and/or parallel configurations.

CHR系統308包括一或多個彼此串聯、並聯、或整合配置之觸媒單元316和熱交換器(HX)318。例如,CHR系統308可包括一系列的觸媒單元316,諸如觸媒單元320、322、324、326、和328。CHR系統308也可包括一系列的熱交換器318,諸如熱交換器330和332。觸媒單元316彼此可為相同或不同。例如,一或多個的觸媒單元316可包括氧化觸媒單元(OCU)334,其使用氧化劑燃料336以驅動氧化反應而將一氧化碳(CO)和未燃燒的烴類(HCs)轉化成二氧化碳(CO2)和水蒸汽。一或多個的觸媒單元316也可驅動還原反應,將氮氧化物(NOX)轉化成二氧化碳(CO2)、氮(N2)、和水。在所說明之具體實例中,該觸媒單元320係配置在熱交換器330之上游,觸媒單元322係整合在熱 交換器330中,觸媒單元324係配置在熱交換器330和熱交換器332之間,觸媒單元326係整合在熱交換器332中,和觸媒單元328係配置在熱交換器332之下游。然而,CHR系統308之各種具體實例可排除或包括任何一或多個的觸媒單元316,或觸媒單元316可以其他排列配置在CHR系統308中。 The CHR system 308 includes one or more catalyst units 316 and heat exchangers (HX) 318 that are arranged in series, in parallel, or in an integrated configuration. For example, CHR system 308 can include a series of catalyst units 316, such as catalyst units 320, 322, 324, 326, and 328. The CHR system 308 can also include a series of heat exchangers 318, such as heat exchangers 330 and 332. The catalyst units 316 can be the same or different from each other. For example, one or more of the catalyst units 316 can include an oxidation catalyst unit (OCU) 334 that uses oxidant fuel 336 to drive an oxidation reaction to convert carbon monoxide (CO) and unburned hydrocarbons (HCs) to carbon dioxide ( CO 2 ) and water vapor. One or more of the catalyst units 316 can also drive a reduction reaction to convert nitrogen oxides (NO x ) to carbon dioxide (CO 2 ), nitrogen (N 2 ), and water. In the illustrated embodiment, the catalyst unit 320 is disposed upstream of the heat exchanger 330, the catalyst unit 322 is integrated in the heat exchanger 330, and the catalyst unit 324 is disposed in the heat exchanger 330 and heat exchange. Between the devices 332, the catalyst unit 326 is integrated in the heat exchanger 332, and the catalyst unit 328 is disposed downstream of the heat exchanger 332. However, various specific examples of CHR system 308 may exclude or include any one or more of catalyst units 316, or catalyst unit 316 may be configured in other arrangements in CHR system 308.

熱交換器318係經配置以將熱從該廢氣42轉 移到一或多種氣體、液體、或其他流體,諸如水中。在所說明之具體實例中,每一個熱交換器318包括熱回收單元(HRU)338,其係經配置以從該廢氣42回收熱而使用於一或多種其他應用。例如,所示的熱回收單元338各包括熱回收蒸汽產生器(HRSG)340,其係經配置以從該廢氣42回收熱而使用於產生蒸汽342。該蒸汽342可使用於EG處理系統54、EOR系統18,或以渦輪為主之服務系統14內的其他位置中之各種製程。在所說明之具體實例中,各HRSG 340將蒸汽342供應至一或多個蒸汽渦輪(ST)344,其可驅動一或多個負載346以產生機械動力348及/或電力350。例如,該等負載346可包括發電機,其能夠產電力350。雖然CHR系統308說明串聯排列之觸媒單元316和熱交換器318,但CHR系統308之其他具體實例可並聯排列二或多個觸媒單元316和熱交換器318。 在廢氣42通過CHR系統308之後,廢氣42可接著在流過一或多個升壓鼓風機314之後通過除濕系統310和除粒系統312。 Heat exchanger 318 is configured to divert heat from the exhaust gas 42 Move to one or more gases, liquids, or other fluids, such as water. In the illustrated embodiment, each heat exchanger 318 includes a heat recovery unit (HRU) 338 that is configured to recover heat from the exhaust gas 42 for use in one or more other applications. For example, the illustrated heat recovery units 338 each include a heat recovery steam generator (HRSG) 340 that is configured to recover heat from the exhaust gas 42 for use in generating steam 342. The steam 342 can be used in various processes in the EG processing system 54, the EOR system 18, or other locations within the turbine-based service system 14. In the illustrated embodiment, each HRSG 340 supplies steam 342 to one or more steam turbines (ST) 344 that can drive one or more loads 346 to generate mechanical power 348 and/or power 350. For example, the loads 346 can include a generator capable of producing electricity 350. While the CHR system 308 illustrates the catalyst cells 316 and heat exchangers 318 arranged in series, other specific examples of the CHR system 308 can arrange two or more catalyst units 316 and heat exchangers 318 in parallel. After the exhaust gas 42 passes through the CHR system 308, the exhaust gas 42 may then pass through the dehumidification system 310 and the degranulation system 312 after flowing through one or more booster blowers 314.

該除濕系統(MRS)310可包括一或多個除濕 單元(MRU)352,諸如MRU 354和356。在所說明之具體實例中,該MRU 354包括熱交換器358,其可經配置以將熱從該廢氣42轉移到其他氣體、液體、或其他流體,從而冷卻廢氣42以使除濕。例如,熱交換器358可包括或配置成冷凝器360,其作用是充分冷卻廢氣42以凝結廢氣42中的水分和去除為水362之冷凝液。然而,MRU 354可包括各種冷卻單元(例如,2、3、4、或更多個冷凝器、冷凍器、等等)以從廢氣42冷凝水分,從而產生水362。MRS 310也可包括其他除水技術,諸如過濾單元。例如,MRU 356可包括一或多個除濕分離器或過濾器364,諸如水氣分離器(WGS)366、不透水性過濾器(WFIL)368、和聯合過濾器(CFIL)370,其可從該廢氣42捕獲和除去水分以產生水372之輸出。雖然MRS 310說明MRU 354在MRU 356之上游,但是MRS 310之其他具體實例可將MRU 356置於MRU354的上游或與MRU 354平行。再者,MRS 310可包括另外的除濕過濾器364、熱交換器358、或任何其他除濕組件。在廢氣42藉由MRS 310處理而除去水分之後,廢氣42然後可通過除粒系統312。 The dehumidification system (MRS) 310 can include one or more dehumidification Units (MRU) 352, such as MRUs 354 and 356. In the illustrated embodiment, the MRU 354 includes a heat exchanger 358 that can be configured to transfer heat from the exhaust gas 42 to other gases, liquids, or other fluids to cool the exhaust gas 42 for dehumidification. For example, heat exchanger 358 can include or be configured as a condenser 360 that functions to sufficiently cool exhaust gas 42 to condense moisture in exhaust gas 42 and to remove condensate from water 362. However, the MRU 354 can include various cooling units (eg, 2, 3, 4, or more condensers, chillers, etc.) to condense moisture from the exhaust gas 42 to produce water 362. The MRS 310 may also include other water removal techniques, such as a filtration unit. For example, the MRU 356 can include one or more dehumidification separators or filters 364, such as a water gas separator (WGS) 366, a watertight filter (WFIL) 368, and a combined filter (CFIL) 370, which can be The exhaust gas 42 captures and removes moisture to produce an output of the water 372. While MRS 310 illustrates MRU 354 upstream of MRU 356, other specific examples of MRS 310 may place MRU 356 upstream of MRU 354 or parallel to MRU 354. Further, the MRS 310 can include an additional dehumidification filter 364, a heat exchanger 358, or any other dehumidification assembly. After the exhaust gas 42 is removed by treatment with the MRS 310, the exhaust gas 42 can then pass through the degranulation system 312.

除粒系統(PRS)312可包括一或多個除粒單 元(PRU)374,其可以串聯、並聯、或其任何組合排列。例如,該PRS 312可包括以串聯排列配置之PRU 376和PRU 378。PRU 376可包括慣性分離器380、重力分離 器382、或任何其他類型之分離單元、或其任何組合,從而迫使微粒384與廢氣42之流分開。例如,慣性分離器380可包括離心分離器,其使用離心力驅動微粒384離開廢氣42之流。類似地,重力分離器382可使用重力驅動微粒384離開廢氣42之流。PRU 378可包括一或多個除粒過濾器386,諸如第一分級過濾器388和第二分級過濾器390。此等分級過濾器388和390可包括漸細過濾器介質,諸如膜過濾器。然而,分級過濾器388和390可包括不透水性過濾器(WFIL)、聯合過濾器(CFIL)、膜過濾器、或其任何組合。當廢氣42通過第一和第二分級過濾器388和390時,過濾器386從廢氣42捕獲或除去微粒392。雖然所示的PRS 312將PRU376置於PRU 378之上游,但其他具體實例可將PRU 378置於PRU 376的上游或與PRU 376平行。在廢氣42以PRS 312處理之後,廢氣42然後可再循環回至SEGR燃氣渦輪系統52中,如箭頭110所示。 Degranulation system (PRS) 312 may include one or more degranulation sheets Meta (PRU) 374, which may be arranged in series, in parallel, or any combination thereof. For example, the PRS 312 can include PRUs 376 and PRUs 378 configured in a series arrangement. PRU 376 can include inertial separator 380, gravity separation The device 382, or any other type of separation unit, or any combination thereof, forces the particles 384 to separate from the flow of the exhaust gas 42. For example, the inertial separator 380 can include a centrifugal separator that uses centrifugal force to drive the flow of particulates 384 away from the exhaust gas 42. Similarly, gravity separator 382 can use gravity to drive particles 384 out of the flow of exhaust gas 42. The PRU 378 can include one or more degranulation filters 386, such as a first staging filter 388 and a second staging filter 390. Such grading filters 388 and 390 can include tapered filter media, such as membrane filters. However, the staged filters 388 and 390 can include a water impermeable filter (WFIL), a combined filter (CFIL), a membrane filter, or any combination thereof. As the exhaust gas 42 passes through the first and second staged filters 388 and 390, the filter 386 captures or removes particles 392 from the exhaust gas 42. While the PRS 312 is shown placing the PRU 376 upstream of the PRU 378, other specific examples may place the PRU 378 upstream of or parallel to the PRU 376. After the exhaust gas 42 is treated with the PRS 312, the exhaust gas 42 may then be recycled back to the SEGR gas turbine system 52 as indicated by arrow 110.

沿著該廢氣再循環路徑110,CHR系統308、 MRS 310、PRS 312、和升壓鼓風機314可由控制系統100控制而先調整廢氣42的溫度、壓力、流率、水分水平、微粒水平、和氣體組成之後才返回進入SEGR燃氣渦輪系統52。例如,控制系統100可接收來自沿著該廢氣再循環路徑110配置之各種感測器304的感測器反饋130,從而提供氧、一氧化碳、氫、氮氧化物(NOX)、未燃燒的烴類(HCs)、硫氧化物(SOX)、水分、或其任何組合 之排放(例如濃度水平)的反饋指示。因應該感測器反饋130,控制系統100可調整(例如,增加、減少、或保持)被送入用於燃燒之SEGR燃氣渦輪系統52的廢氣66、氧化劑68、和燃料70之壓力、溫度、或流率。例如,控制系統100可因應該感測器反饋130而調整沿著該廢氣再循環路徑110之閥302、在燃氣渦輪引擎150的壓縮機段152內之入口導葉、通向排放系統396之排放閥394、或其任何組合,從而調整進入燃氣渦輪引擎150的燃燒器段154之廢氣42流。 Along the exhaust gas recirculation path 110, the CHR system 308, the MRS 310, the PRS 312, and the booster blower 314 may be controlled by the control system 100 to first adjust the temperature, pressure, flow rate, moisture level, particulate level, and gas of the exhaust gas 42. The composition is returned to the SEGR gas turbine system 52. For example, the control system 100 may receive feedback from the various sensors of the sensor 130 along the path to the configuration of the exhaust gas recirculation 110,304 so as to provide oxygen, carbon monoxide, hydrogen, nitrogen oxides (NO X), unburned hydrocarbons Feedback indication of emissions (eg, concentration levels) of the class (HCs), sulfur oxides (SO X ), moisture, or any combination thereof. The control system 100 can adjust (e.g., increase, decrease, or maintain) the pressure, temperature, and temperature of the exhaust gas 66, oxidant 68, and fuel 70 that are fed to the SEGR gas turbine system 52 for combustion, as a result of the sensor feedback 130. , or flow rate. For example, control system 100 can adjust valve 302 along the exhaust gas recirculation path 110, inlet guide vanes within compressor section 152 of gas turbine engine 150, to exhaust system 396 as a function of sensor feedback 130. The bleed valve 394, or any combination thereof, adjusts the flow of exhaust gas 42 into the combustor section 154 of the gas turbine engine 150.

在CHR系統308中,控制系統100可因應感 測器反饋130而調整之氧化劑燃料336進入各觸媒單元316之流量,從而增加或減少在各觸媒單元316內之氧化反應以改變再循環回至SEGR燃氣渦輪系統52廢氣42之的氣體組成。例如,控制系統100可增加氧化劑燃料336之流量以增加在各UCU 334內之氧化反應,從而減少一氧化碳(CO)和未燃燒的烴類(HCs)之水平和增加二氧化碳(CO2)之水平。控制系統100也可減少氧化劑燃料336進入各UCU 334之流量,從而減少二氧化碳(CO2)之水平和增加一氧化碳(CO)和未燃燒的烴類(HCs)之水平。控制系統100也可選擇性地增加或減少通過各觸媒單元316、繞過一或多個的觸媒單元316、或其任何組合之廢氣流的量。控制系統100也可選擇性地將廢氣42送過、部分地繞過、或完全繞過一或多個的熱交換器318,諸如熱回收單元338。以此方式,控制系統100可增加或 減少廢氣42之溫度,同時也增加或減少用於驅動蒸汽渦輪344之蒸汽產生的量。 In the CHR system 308, the control system 100 can adjust the flow of the oxidant fuel 336 into the respective catalyst units 316 in response to the sensor feedback 130, thereby increasing or decreasing the oxidation reaction within each of the catalyst units 316 to change the recirculation back. The gas composition to the exhaust gas 42 of the SEGR gas turbine system 52. For example, the control system 100 may increase the oxidant flow of fuel 336 to increase the oxidation reaction in each of UCU 334, thereby reducing carbon monoxide (CO) and unburned hydrocarbons (HCs in) and increased levels of carbon dioxide (CO 2) of the level. The control system 100 may also reduce the fuel oxidizer 336 flow into each of UCU 334, thereby reducing carbon dioxide (CO 2) and increased levels of carbon monoxide (CO) and unburned hydrocarbons (HCs in) of levels. Control system 100 can also selectively increase or decrease the amount of exhaust gas flow through each catalyst unit 316, bypassing one or more catalyst units 316, or any combination thereof. Control system 100 can also selectively circulate, partially bypass, or completely bypass one or more heat exchangers 318, such as heat recovery unit 338. In this manner, control system 100 can increase or decrease the temperature of exhaust gas 42 while also increasing or decreasing the amount of steam generated to drive steam turbine 344.

在MRS 310和PRS 312中,控制系統100可 因應感測器反饋130以確保充分去除水分和微粒。例如,因應指示水分含量之感測器反饋130,控制系統100可控制在MRS 310內之MRU 352以增加或減少從廢氣42之水分去除。因應指示微粒含量之感測器反饋130,控制系統100可調整在PRS 312內之PRU 374,從而增加或減少從廢氣42的微粒除去之量。藉由控制系統100之此等控制動作各可根據來自EG處理系統54、SEGR燃氣渦輪系統52,或以渦輪為主之服務系統14內的其他位置之反饋130。在某些具體實例中,該控制系統100係經配置以在各次系統及/或組件,諸如CHR系統308、MRS 310、PRS 312、或任何之彼等組件(例如,觸媒單元316、熱交換器318、MRU 352、PRU 374、等等)之內、上游或下游,沿著該廢氣再循環路徑110,將廢氣42之溫度、壓力、及/或流率保持在個別目標範圍(例如,目標溫度範圍、目標壓力範圍和目標流率範圍)內。控制系統100可經配置以在SEGR燃氣渦輪系統52中之各種控制改變(包括改變氧化劑68、燃料70、和稀釋劑至燃料噴嘴164和燃燒器160之流率)期間將溫度、壓力、及/或流率保持在該等目標範圍內。 In the MRS 310 and the PRS 312, the control system 100 can The sensor feedback 130 is responsive to ensure adequate removal of moisture and particulates. For example, control system 100 may control MRU 352 within MRS 310 to increase or decrease moisture removal from exhaust gas 42 in response to sensor feedback 130 indicating moisture content. In response to the sensor feedback 130 indicating the particulate content, the control system 100 can adjust the PRU 374 within the PRS 312 to increase or decrease the amount of particulate removal from the exhaust gas 42. These control actions by the control system 100 may each be based on feedback 130 from the EG processing system 54, the SEGR gas turbine system 52, or other locations within the turbine-based service system 14. In some embodiments, the control system 100 is configured to be in each subsystem and/or component, such as the CHR system 308, the MRS 310, the PRS 312, or any other component thereof (eg, the catalyst unit 316, heat) Within, upstream or downstream of exchanger 318, MRU 352, PRU 374, etc., along the exhaust gas recirculation path 110, the temperature, pressure, and/or flow rate of exhaust gas 42 are maintained within individual target ranges (eg, Within the target temperature range, target pressure range, and target flow rate range. Control system 100 can be configured to vary temperature, pressure, and during various control changes in SEGR gas turbine system 52, including changing the flow rate of oxidant 68, fuel 70, and diluent to fuel nozzle 164 and combustor 160. / or the flow rate remains within these target ranges.

圖6為具有將廢氣流95提取、處理和遞送至 各種目標系統422之EG供應系統78的系統420之具體 實例的圖示。上文所討論的,EG供應系統78包括廢氣提取系統80和EG處理系統82。廢氣提取系統80沿著該SEGR燃氣渦輪系統52、EG處理系統54,或任何以渦輪為主之服務系統14內的其他位置從一或多個提取點76接收廢氣42。EG處理系統82然後用多個處理次系統424(諸如壓縮系統426、除濕/脫水系統428、除粒/過濾系統430、氣體分離系統432、和氣體純化系統434)處理提取之廢氣42。 Figure 6 is an illustration of extracting, processing, and delivering an exhaust stream 95 to Specific to system 420 of EG supply system 78 of various target systems 422 An illustration of an example. As discussed above, the EG supply system 78 includes an exhaust gas extraction system 80 and an EG processing system 82. Exhaust gas extraction system 80 receives exhaust gas 42 from one or more extraction points 76 along the SEGR gas turbine system 52, EG processing system 54, or other location within any turbine-based service system 14. The EG processing system 82 then processes the extracted exhaust gas 42 with a plurality of processing subsystems 424, such as compression system 426, dehumidification/dewatering system 428, degranulation/filtration system 430, gas separation system 432, and gas purification system 434.

所示的處理次系統424可以串聯、並聯、或 其任何組合配置。壓縮系統426在一或多個壓縮級中可包括一或多個旋轉壓縮機、往復式壓縮機、或其任何組合。 除濕/脫水系統428可包括一或多個熱交換器、熱回收單元諸如熱回收蒸汽產生器、冷凝器、水氣分離器諸如離心水氣分離器、過濾器、乾燥劑或其他脫水介質、或其任何組合。除粒/過濾系統430可包括一或多個慣性分離器、重力分離器、過濾器、或其任何組合。例如,過濾器可包括膜過濾器、不透水性過濾器、聯合過濾器、或其任何組合。氣體分離系統432可包括一或多個以溶劑為主的分離系統,其可包括一或多個吸收器、閃蒸槽、或其任何組合。例如,氣體分離系統432可經配置以從該廢氣42分離二氧化碳(CO2)及/或氮(N2)。進一步的實例中,氣體分離系統432可包括CO2/N2分離器及/或碳捕集系統。 氣體純化系統432也可包括一或多個以溶劑為主的氣體純化器,和可進一步減少來自該氣體分離系統432的分離氣 體(例如,CO2及/或N2)內之雜質。例如,任何經分離之二氧化碳(CO2)可藉由氣體純化系統434進一步純化,從而增加分離二氧化碳(CO2)之純度水平。類似地,氣體純化系統434可進一步純化分離氮(N2),從而去除分離氮(N2)中之任何雜質。在某些具體實例中,該分離出的二氧化碳和分離出的氮可具有至少約70、80、90、95、96、97、98、99或更大的體積百分比純度之純度水平。在某些具體實例中,該氣體分離系統432可產生多個廢氣流95,諸如第一流96、第二流97和第三流98。例如,第一流96可包括富CO2流436,第二流97可包括中間濃度流438,和第三流98可包括貧CO2流440。 The illustrated processing subsystems 424 can be configured in series, in parallel, or any combination thereof. The compression system 426 can include one or more rotary compressors, reciprocating compressors, or any combination thereof in one or more compression stages. The dehumidification/dewatering system 428 can include one or more heat exchangers, a heat recovery unit such as a heat recovery steam generator, a condenser, a water gas separator such as a centrifugal water gas separator, a filter, a desiccant, or other dewatering medium, or Any combination of them. Degranulation/filtration system 430 can include one or more inertial separators, gravity separators, filters, or any combination thereof. For example, the filter can include a membrane filter, a water impermeable filter, a combined filter, or any combination thereof. Gas separation system 432 can include one or more solvent-based separation systems that can include one or more absorbers, flash tanks, or any combination thereof. For example, gas separation system 432 can be configured to separate carbon dioxide (CO 2 ) and/or nitrogen (N 2 ) from the exhaust gas 42. In a further example, gas separation system 432 can include a CO 2 /N 2 separator and/or a carbon capture system. Gas purification system 432 may also include one or more solvent-based gas purifier, and can be further reduced from the gas separation gas separation system 432 (e.g., CO 2 and / or N 2) of the impurities. For example, any carbon dioxide (CO 2) 434 may be separated further purified by the gas purification system, thereby increasing the separation of carbon dioxide (CO 2) levels of purity. Similarly, the gas purification system 434 can be further purified and isolated nitrogen (N 2), thereby removing the separation of nitrogen (N 2) of any impurity. In certain embodiments, the separated carbon dioxide and the separated nitrogen can have a purity level of at least about 70, 80, 90, 95, 96, 97, 98, 99 or greater volume percent purity. In some embodiments, the gas separation system 432 can generate a plurality of exhaust streams 95, such as a first stream 96, a second stream 97, and a third stream 98. For example, the first stream 96 may comprise CO 2 rich stream 436, the second flow stream 97 can include intermediate concentrations of 438, and the third stream 98 may comprise 440 CO 2 lean stream.

一或多個之此等廢氣流95然後可通往一或多 個次氣體處理系統442及/或能量回收系統444。例如,第一流96可通往次氣體處理系統446,第二流97可通往次氣體處理系統448,和第三流98可通往次氣體處理系統450。類似地,第一流96可通往能量回收系統452,第二流97可通往能量回收系統454,和第三流98可通往能量回收系統456。次氣體處理系統442各可包括壓縮系統458、除濕/脫水系統460、或任何其他適當處理組件。同樣地,壓縮系統458可包括一或多個以串聯或並聯排列配置之旋轉壓縮機、往復式壓縮機、或其任何組合。除濕/脫水系統460可包括水氣分離器、冷凝器、過濾器、或其任何組合,從而去除任何在以壓縮系統458壓縮之後殘留在流96、97、或98中的水分。同樣地,流96、97、和 98各可通過其本身專用的次氣體處理系統442,或此等流之二或多者可共用一個次氣體處理系統442。在此系統442中的次處理之後,處理過的廢氣流96、97、和98然後可通往一或多個目標系統422,諸如烴產生系統12、管線86、儲存槽88、及/或碳固存系統90。換句話說,個別流96、97、和98之任何一或多者可被一或多個的目標系統422獨立地或集體地使用。 One or more of these exhaust streams 95 can then lead to one or more Secondary gas treatment system 442 and/or energy recovery system 444. For example, the first stream 96 can lead to the secondary gas processing system 446, the second stream 97 can lead to the secondary gas processing system 448, and the third stream 98 can lead to the secondary gas processing system 450. Similarly, the first stream 96 can lead to an energy recovery system 452, the second stream 97 can lead to an energy recovery system 454, and the third stream 98 can lead to an energy recovery system 456. The secondary gas treatment systems 442 can each include a compression system 458, a dehumidification/dewatering system 460, or any other suitable processing component. Likewise, compression system 458 can include one or more rotary compressors, reciprocating compressors, or any combination thereof, arranged in a series or parallel arrangement. Dehumidification/dewatering system 460 can include a water gas separator, a condenser, a filter, or any combination thereof to remove any moisture remaining in stream 96, 97, or 98 after compression by compression system 458. Similarly, streams 96, 97, and 98 may each share a secondary gas treatment system 442 by its own dedicated secondary gas treatment system 442, or two or more of such streams. After the secondary treatment in this system 442, the treated exhaust streams 96, 97, and 98 can then be passed to one or more target systems 422, such as hydrocarbon generation system 12, line 86, storage tank 88, and/or carbon. Solid storage system 90. In other words, any one or more of the individual streams 96, 97, and 98 can be used independently or collectively by one or more target systems 422.

在能量回收系統444中,流96、97、和98各 可使能量回收在一或多個渦輪或膨脹器462中,其然後驅動一或多個負載464以產生機械動力466及/或電力468。 例如,負載464可包括一或多個發電機以產生電力468。 同樣地,每一流96、97、和98可在其專用的能量回收系統452、454、或456中獨立地或集體地驅動其本身的渦輪或膨脹器462。此回收能量可用以驅動在整個以渦輪為主之服務系統14中的其它設備。 In energy recovery system 444, streams 96, 97, and 98 are each Energy may be recovered in one or more turbines or expanders 462, which then drive one or more loads 464 to generate mechanical power 466 and/or power 468. For example, load 464 can include one or more generators to generate electrical power 468. Likewise, each stream 96, 97, and 98 can independently or collectively drive its own turbine or expander 462 in its dedicated energy recovery system 452, 454, or 456. This recovered energy can be used to drive other equipment throughout the turbine-based service system 14.

圖7為燃氣渦輪引擎150的燃燒器段154之 具體實例的圖示。如圖所示,燃燒器段154具有配置在一或多個燃燒器160周圍之護罩490,從而界定在護罩490和燃燒器160之間的壓縮機排放腔492。各燃燒器160包括頭端部分166和燃燒部分168。燃燒部分168可包括室494、配置在室494周圍的第一壁或襯墊496、和配置於偏移圍繞第一壁496之第二壁或流動套管498。例如,第一和第二壁496和498通常可彼此同軸以界定從燃燒部分168導至頭端部分166之中空圓周空間或流動通道500。 第二壁或流動套管498可包括多個孔道或穿孔502,使壓縮的廢氣170從壓縮機部分152進入流動通道500。廢氣170然後沿著該襯墊496向頭端部分166流過通道500,如箭頭504所示,從而當廢氣170流向頭端部分166而送入室494(例如透過一或多個燃料噴嘴164)時冷卻襯墊496。 7 is a combustor section 154 of gas turbine engine 150 An illustration of a specific example. As shown, the combustor section 154 has a shroud 490 disposed about one or more combustors 160 to define a compressor discharge cavity 492 between the shroud 490 and the combustor 160. Each combustor 160 includes a head end portion 166 and a combustion portion 168. The combustion portion 168 can include a chamber 494, a first wall or gasket 496 disposed about the chamber 494, and a second wall or flow sleeve 498 disposed offset from the first wall 496. For example, the first and second walls 496 and 498 can generally be coaxial with each other to define a hollow circumferential space or flow passage 500 that leads from the combustion portion 168 to the head end portion 166. The second wall or flow sleeve 498 can include a plurality of channels or perforations 502 that allow the compressed exhaust gas 170 to enter the flow passage 500 from the compressor portion 152. Exhaust gas 170 then flows along passage 496 to head end portion 166 through passage 500, as indicated by arrow 504, to flow into exhaust chamber 170 to head end portion 166 and into chamber 494 (e.g., through one or more fuel nozzles 164). The liner 496 is cooled.

在某些具體實例中,該襯墊496也可包括一 或多個孔道或穿孔506,從而使部分的廢氣170能夠直接注入室494,如508箭頭所示。例如,廢氣注入508可充當稀釋劑注入,其可經配置以控制室494內之溫度、壓力、流率、氣體組成(例如,排放物水平)、或其任何組合。特別地,廢氣注入508可有助於控制室494內之溫度,使得在燃燒的熱產物中,氮氧化物(NOX)之排放可實質上減少。一或多個另外的稀釋劑(諸如氮、蒸汽、其他惰性氣體)或另外的廢氣可透過一或多個稀釋劑注入器510注入,如箭頭512所示。同時,廢氣注入508和稀釋劑注入512可經控制以調整流過室494之熱燃燒氣體的溫度、排放物之濃度水平、或其他特性。 In some embodiments, the liner 496 can also include one or more channels or perforations 506 to enable a portion of the exhaust gas 170 to be injected directly into the chamber 494, as indicated by the arrow 508. For example, exhaust gas injection 508 can act as a diluent injection that can be configured to control temperature, pressure, flow rate, gas composition (eg, effluent levels), or any combination thereof, within chamber 494. In particular, exhaust gas injection 508 can help control the temperature within chamber 494 such that nitrogen oxide (NO x ) emissions can be substantially reduced in the hot products of combustion. One or more additional diluents (such as nitrogen, steam, other inert gases) or additional exhaust gases may be injected through one or more diluent injectors 510, as indicated by arrow 512. At the same time, exhaust gas injection 508 and diluent injection 512 can be controlled to adjust the temperature of the hot combustion gases flowing through chamber 494, the concentration level of the emissions, or other characteristics.

在頭端部分166中,一或多個燃料噴嘴164 可將廢氣170、氧化劑68、燃料70、和一或多個稀釋劑514(例如,廢氣、蒸汽、氮、其他惰性氣體、或其任何組合)發送進入用於燃燒之室494。例如,各燃燒器160可包括1、2、3、4、5、6、7、8、或更多個燃料噴嘴164,各配置成擴散燃料噴嘴及/或預混燃料噴嘴。例如, 各燃料噴嘴164可將氧化劑68、燃料70、稀釋劑514、及/或廢氣170以預混或獨立流送入室494,從而產生火焰516。氧化劑68和燃料70之預混流產生預混火焰,而氧化劑68和燃料70之分開流產生擴散火焰。 In the head end portion 166, one or more fuel nozzles 164 Exhaust gas 170, oxidant 68, fuel 70, and one or more diluents 514 (eg, exhaust, steam, nitrogen, other inert gases, or any combination thereof) may be sent to chamber 494 for combustion. For example, each combustor 160 can include 1, 2, 3, 4, 5, 6, 7, 8, or more fuel nozzles 164, each configured as a diffusion fuel nozzle and/or a premixed fuel nozzle. E.g, Each fuel nozzle 164 can feed oxidant 68, fuel 70, diluent 514, and/or exhaust gas 170 into chamber 494 in a premixed or separate stream to produce a flame 516. The premixed flow of oxidant 68 and fuel 70 produces a premixed flame, while the separate flow of oxidant 68 and fuel 70 produces a diffusion flame.

控制系統100係連接到一或多個流體供應系 統518,其控制氧化劑68、燃料70、稀釋劑514、及/或廢氣170之壓力、溫度、流率、及/或混合物。例如,該控制系統100可獨立地控制氧化劑68、燃料70、稀釋劑514、及/或廢氣170之流量以便控制當量比、排放物水平(例如一氧化碳、氮氧化物、硫氧化物、未燃燒的烴類、氫、及/或氧)、功率輸出、或其任何組合。在操作中,控制系統100可控制流體供應系統518以增加氧化劑68和燃料70之流量同時保持實質上化學計量燃燒,或控制系統100可控制流體供應系統518以減少氧化劑68和燃料70之流量同時保持實質上化學計量燃燒。控制系統100可以遞增的步驟(例如,1、2、3、4、5、或更多個步驟)、連續地或其任何組合,執行各個此等氧化劑68和燃料70之流率的增加或減少。再者,控制系統100可控制流體供應系統518以增加或減少氧化劑68和燃料70之流量以便提供氧化劑68和燃料70之富燃料混合物、貧燃料混合物、或任何其他混合物,進入室494,從而使燃燒之熱產物或廢氣520具有低氧濃度、高氧濃度、或任何其他氧的適當濃度之未燃燒的烴類、一氧化碳、氮氧化物、硫氧化物等。在控制氧化劑68和燃料70之流量的同 時,控制系統100也可控制流體供應系統518以增加或減少稀釋劑514(例如,蒸汽、廢氣、氮、或任何其他惰性氣體)之流量,從而幫助控制通過室494朝向渦輪段156之燃燒熱產物520的溫度、壓力、流率、及/或氣體組成(例如,排放物水平)。 Control system 100 is coupled to one or more fluid supply systems System 518 controls the pressure, temperature, flow rate, and/or mixture of oxidant 68, fuel 70, diluent 514, and/or exhaust gas 170. For example, the control system 100 can independently control the flow of oxidant 68, fuel 70, diluent 514, and/or exhaust gas 170 to control equivalence ratios, emissions levels (eg, carbon monoxide, nitrogen oxides, sulfur oxides, unburned, Hydrocarbons, hydrogen, and/or oxygen), power output, or any combination thereof. In operation, control system 100 can control fluid supply system 518 to increase the flow of oxidant 68 and fuel 70 while maintaining substantially stoichiometric combustion, or control system 100 can control fluid supply system 518 to reduce the flow of oxidant 68 and fuel 70 simultaneously Maintain substantial stoichiometric combustion. Control system 100 may perform an increase or decrease in the flow rate of each of such oxidant 68 and fuel 70 in incremental steps (eg, 1, 2, 3, 4, 5, or more steps), continuously, or any combination thereof. . Further, control system 100 can control fluid supply system 518 to increase or decrease the flow of oxidant 68 and fuel 70 to provide a rich fuel mixture of oxidant 68 and fuel 70, a lean fuel mixture, or any other mixture, into chamber 494, thereby The hot product or EGR of combustion 520 has a low oxygen concentration, a high oxygen concentration, or any other concentration of unburned hydrocarbons, carbon monoxide, nitrogen oxides, sulfur oxides, and the like of any other oxygen. In controlling the flow of oxidant 68 and fuel 70 Control system 100 can also control fluid supply system 518 to increase or decrease the flow of diluent 514 (eg, steam, exhaust, nitrogen, or any other inert gas) to help control the heat of combustion through chamber 494 toward turbine section 156. The temperature, pressure, flow rate, and/or gas composition (e.g., effluent level) of product 520.

控制系統100也可控制包括EG提取系統80 和EG處理系統82之EG供應系統78。例如,控制系統100可選擇性地開或關一或多個沿著在該燃燒器段154和EG提取系統80之間的提取管線524配置之閥522。控制系統100可選擇性地開或關此等閥522以增加或減少廢氣42送至EG提取系統80之流量,同時也選擇性地從不同位置提取廢氣,以使得將不同溫度及/或壓力之廢氣送至EG提取系統80。控制系統100也可控制一或多個沿著導至排放系統530的管線528配置之閥526。例如,控制系統100可選擇性地打開閥526以透過排放系統530將部分的廢氣排放進入大氣,從而減少EG供應系統78中的壓力。 Control system 100 can also control including EG extraction system 80 And the EG supply system 78 of the EG processing system 82. For example, control system 100 can selectively open or close one or more valves 522 disposed along extraction line 524 between the combustor section 154 and EG extraction system 80. Control system 100 can selectively open or close such valves 522 to increase or decrease the flow of exhaust gas 42 to EG extraction system 80, while also selectively extracting exhaust gases from different locations such that different temperatures and/or pressures are to be applied. The exhaust gas is sent to the EG extraction system 80. Control system 100 can also control one or more valves 526 disposed along line 528 leading to exhaust system 530. For example, control system 100 can selectively open valve 526 to vent a portion of the exhaust gases into the atmosphere through exhaust system 530, thereby reducing the pressure in EG supply system 78.

如上所討論的,燃燒器段154中之各燃燒器 160可包括一或多個燃料噴嘴164,其可被配置成預混燃料噴嘴及/或擴散燃料噴嘴。例如,圖8、9、和10說明配置成可操作而產生預混火焰516、552之預混燃料噴嘴550的燃料噴嘴164之具體實例,而圖11-16說明配置成可操作而產生擴散火焰516、556之擴散燃料噴嘴554的燃料噴嘴164之具體實例。此等燃料噴嘴550和554可單 獨或以彼此任何組合使用於各燃燒器160中,如下述參照圖17進一步詳細討論的。例如,各燃燒器160可包括僅預混燃料噴嘴550、僅擴散燃料噴嘴554、或預混燃料噴嘴550和擴散燃料噴嘴554二者之任何組合。 As discussed above, each burner in the combustor section 154 160 may include one or more fuel nozzles 164 that may be configured as premixed fuel nozzles and/or diffusion fuel nozzles. For example, Figures 8, 9, and 10 illustrate specific examples of fuel nozzles 164 that are configured to operate to produce premixed fuel nozzles 550 of premixed flames 516, 552, while Figures 11-16 illustrate configurations that are operable to produce a diffusion flame. A specific example of a fuel nozzle 164 of a diffusion fuel nozzle 554 of 516, 556. These fuel nozzles 550 and 554 can be single They are used alone or in any combination with each other in each combustor 160, as discussed in further detail below with respect to FIG. For example, each combustor 160 may include only any combination of premixed fuel nozzles 550, only diffused fuel nozzles 554, or premixed fuel nozzles 550 and diffused fuel nozzles 554.

預混燃料噴嘴550可具各種配置以使完全或 部分地預混氧化劑68和燃料70且同時也隨意預混一或多個稀釋劑514諸如廢氣170、蒸汽、氮、或任何其他適當惰性氣體。圖8為具有連接到注入部分560之混合部分558的預混燃料噴嘴550之具體實例的圖示。混合部分558包括至少一個被至少一個外殼564環繞的混合室562,而注入部分560包括至少一個被至少一個導管568環繞的注入通道566。例如,混合部分558之外殼564可包括一或多個導管、注入孔、渦旋葉片、流動干擾器、或其他用以促進氧化劑68和燃料70之間的混合之結構。混合部分558也可接收一或多個稀釋劑514(諸如廢氣170、蒸汽、氮、或另一惰性氣體之流,從而使稀釋劑514與氧化劑68和燃料70一起混合。一旦氧化劑68和燃料70在混合室562內充分混合,該預混燃料噴嘴550將該燃料氧化劑混合物通過注入通道566發送至少一個注入出口570。然後可使氧化劑68和燃料70(和隨意一或多個稀釋劑514)之排出混合物點燃而產生預混火焰552。在某些具體實例中,該控制系統100可選擇性地控制流體供應系統518以增加或減少氧化劑68和燃料70(和隨意一或多個稀釋劑514)之流量,從而調整當量 比、由預混火焰552產生之排放物水平、燃氣渦輪引擎150的功率輸出、或其任何組合。在某些具體實例中,所示預混燃料噴嘴550可不預混任何稀釋劑與氧化劑68和燃料70,而是可在燃燒點之後及/或在預混火焰552下游提供一或多個稀釋劑(例如,廢氣、蒸汽、氮、或另一惰性氣體)。以此方式,氧化劑68和燃料70之流量可獨立地控制以更精確控制燃料/氧化劑比,從而幫助達到化學計量燃燒而改良火焰穩定性,同時為了控制溫度和排放(例如,NOX排放)也使用下游稀釋劑。 The premixed fuel nozzle 550 can have various configurations to premix the oxidant 68 and the fuel 70 completely or partially and at the same time optionally premix one or more diluents 514 such as exhaust gas 170, steam, nitrogen, or any other suitable inert gas. FIG. 8 is an illustration of a specific example of a premixed fuel nozzle 550 having a mixing portion 558 coupled to an injection portion 560. The mixing portion 558 includes at least one mixing chamber 562 surrounded by at least one outer casing 564, and the injection portion 560 includes at least one injection passage 566 surrounded by at least one conduit 568. For example, the outer casing 564 of the mixing portion 558 can include one or more conduits, injection holes, scroll vanes, flow disruptors, or other structures to promote mixing between the oxidant 68 and the fuel 70. Mixing portion 558 can also receive a stream of one or more diluents 514, such as exhaust gas 170, steam, nitrogen, or another inert gas, such that diluent 514 is mixed with oxidant 68 and fuel 70. Once oxidant 68 and fuel 70 Intimately mixed within the mixing chamber 562, the premixed fuel nozzle 550 sends the fuel oxidant mixture through the injection passage 566 to at least one injection outlet 570. The oxidant 68 and fuel 70 (and optionally one or more diluents 514) can then be The effluent mixture is ignited to produce a premixed flame 552. In some embodiments, the control system 100 can selectively control the fluid supply system 518 to increase or decrease the oxidant 68 and fuel 70 (and optionally one or more diluents 514). The flow rate, thereby adjusting the equivalence ratio, the level of emissions produced by the premixed flame 552, the power output of the gas turbine engine 150, or any combination thereof. In some embodiments, the premixed fuel nozzle 550 is shown as not premixed. Any diluent and oxidant 68 and fuel 70, but may provide one or more diluents (eg, exhaust, steam, nitrogen, after the combustion point and/or downstream of the premixed flame 552) Another inert gas). In this manner, the flow rates of oxidant 68 and fuel 70 can be independently controlled to more precisely control the fuel/oxidant ratio to help achieve stoichiometric combustion to improve flame stability while controlling temperature and emissions (eg, , NO X emissions) also downstream of the diluent used.

圖9為具有混合部分558之多級配置的預混 燃料噴嘴550之具體實例的圖示。如圖所示,混合部分558包括第一和第二混合室580和582,彼等係由外殼564之第一和第二外殼部分584和586界定。第一和第二混合室580和582以串聯配置說明,雖然混合部分558之其他具體實例可以並聯配置排列第一和第二混合室580和582。混合部分558也可包括與第一和第二混合室580和582組合之另外的混合室。例如,混合部分558可包括1、2、3、4、5、6、7、8、9、10、或更多個以串聯配置、並聯配置、或其組合之混合室。各混合室580和582可包括一或多個混合裝置,諸如渦旋葉片、流動干擾器、曲折路徑、遞增和遞減直徑之通道、或其任何組合。在操作中,混合部分558接收一或多個來自該流體供應系統518的氧化劑68、燃料70、和一或多個稀釋劑514之流。同樣地,稀釋劑514可包括廢氣170、蒸汽、氮、或 一或多個其他惰性氣體。各混合室580和582可接收和混合來自流體供應系統518之二或多個不同流體。例如,第一混合室580可接收和混合氧化劑68和燃料70之一或多個流,而第二混合室582可接收和混合氧化劑68和稀釋劑514或燃料70和稀釋劑514之一或多個流。換句話說,第一和第二混合室580和582可接收和混合來自該流體供應系統518之二或多個的相同流體流,或二或多個不同流體流。以此方式,第一和第二混合室580和582可依序地混合來自流體供應系統518之各種流體,且然後將混合物導向用於遞送到燃燒器160的室494之注入通道566。當氧化劑68、燃料70、和一或多個稀釋劑514的混合物流過注入通道566之注入出口570,混合物點燃和形成預混火焰552。同樣地,控制系統100可選擇性地控制流體供應系統518以增加、減少、或保持氧化劑68、燃料70、和一或多個稀釋劑514之流量,從而調整燃氣渦輪引擎150的當量比、排放物水平、功率輸出、或其任何組合。 Figure 9 is a premix of a multi-stage configuration with a hybrid portion 558 An illustration of a specific example of a fuel nozzle 550. As shown, the mixing portion 558 includes first and second mixing chambers 580 and 582 that are bounded by first and second outer casing portions 584 and 586 of the outer casing 564. The first and second mixing chambers 580 and 582 are illustrated in a series configuration, although other embodiments of the mixing portion 558 can arrange the first and second mixing chambers 580 and 582 in parallel. Mixing portion 558 can also include additional mixing chambers in combination with first and second mixing chambers 580 and 582. For example, mixing portion 558 can include 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more mixing chambers in a series configuration, a parallel configuration, or a combination thereof. Each mixing chamber 580 and 582 can include one or more mixing devices, such as scroll blades, flow disruptors, tortuous paths, channels of incremental and decreasing diameters, or any combination thereof. In operation, mixing portion 558 receives one or more streams of oxidant 68, fuel 70, and one or more diluents 514 from the fluid supply system 518. Likewise, diluent 514 can include exhaust gas 170, steam, nitrogen, or One or more other inert gases. Each mixing chamber 580 and 582 can receive and mix two or more different fluids from the fluid supply system 518. For example, the first mixing chamber 580 can receive and mix one or more streams of oxidant 68 and fuel 70, while the second mixing chamber 582 can receive and mix one or more of oxidant 68 and diluent 514 or fuel 70 and diluent 514. Stream. In other words, the first and second mixing chambers 580 and 582 can receive and mix the same fluid stream from two or more of the fluid supply systems 518, or two or more different fluid streams. In this manner, the first and second mixing chambers 580 and 582 can sequentially mix the various fluids from the fluid supply system 518 and then direct the mixture to the injection channel 566 for delivery to the chamber 494 of the combustor 160. When a mixture of oxidant 68, fuel 70, and one or more diluents 514 flows through injection port 570 of injection passage 566, the mixture ignites and forms a premixed flame 552. Likewise, control system 100 can selectively control fluid supply system 518 to increase, decrease, or maintain flow of oxidant 68, fuel 70, and one or more diluents 514 to adjust the equivalence ratio of gas turbine engine 150, Emission levels, power output, or any combination thereof.

圖10為具有與渦漩段592串聯之分級混合部 分558的預混燃料噴嘴550之具體實例的圖示,該分級混合部分558具有並聯混合段590。如上述參考圖9所討論者,並聯混合段590包括第一和第二混合室580和582,其中該第一和第二混合室580和582係彼此並聯配置在渦漩段592之上游。渦漩段592包括內導管或轂594、繞著內導管594配置之外導管596、和多個在內導管594和外 導管596之間徑向延伸的渦旋葉片598。各渦旋葉片598可成角度或彎曲,以迫使流體流動而在繞著預混燃料噴嘴550之縱軸602的圓周方向600形成漩渦。內導管594界定內通道604、外導管596界定外通道606、和各渦旋葉片598界定徑向通道608。一或多個的渦旋葉片598也包括多個注入口610,其可直接配置在各渦旋葉片598之後緣上或上游。 Figure 10 is a hierarchical mixing section with a series of vortex segments 592 An illustration of a specific example of a premixed fuel nozzle 550 of subsection 558 having a parallel mixing section 590. As discussed above with reference to FIG. 9, parallel mixing section 590 includes first and second mixing chambers 580 and 582, wherein the first and second mixing chambers 580 and 582 are disposed in parallel with one another upstream of scroll section 592. The vortex section 592 includes an inner conduit or hub 594, a conduit 596 disposed about the inner conduit 594, and a plurality of inner conduits 594 and A swirling vane 598 extending radially between the conduits 596. Each scroll blade 598 can be angled or curved to force fluid flow to form a vortex in a circumferential direction 600 about the longitudinal axis 602 of the premixed fuel nozzle 550. The inner conduit 594 defines an inner passage 604, the outer conduit 596 defines an outer passage 606, and each of the swirl vanes 598 defines a radial passage 608. The one or more scroll vanes 598 also include a plurality of injection ports 610 that may be disposed directly on or upstream of the trailing edge of each of the scroll vanes 598.

在所說明之具體實例中,該流體供應系統518 將一或多個氧化劑68和稀釋劑514之流發送進入第一混合室580,同時也將一或多個燃料70和稀釋劑514之流送入第二混合室582。第一混合室580實質上混合氧化劑68和稀釋劑514之流,和然後將混合物發送進入在內和外導管594和596之間的外通道606,如箭頭612所示。 氧化劑68和稀釋劑514之混合物614然後流向渦漩段592中之多個渦旋葉片598,其中渦旋葉片598迫使混合物614繞著軸602形成渦旋,如箭頭600所示。 In the illustrated embodiment, the fluid supply system 518 A stream of one or more oxidant 68 and diluent 514 is sent to the first mixing chamber 580 while one or more streams of fuel 70 and diluent 514 are also fed to the second mixing chamber 582. The first mixing chamber 580 substantially mixes the stream of oxidant 68 and diluent 514, and then sends the mixture into the outer passage 606 between the inner and outer conduits 594 and 596, as indicated by arrow 612. Mixture 614 of oxidant 68 and diluent 514 then flows to a plurality of swirl vanes 598 in scroll section 592, wherein swirl vanes 598 force mixture 614 to form a swirl about axis 602, as indicated by arrow 600.

同時,第二混合室582將燃料70和稀釋劑 514之預混流發送進入由內導管594界定之內通道604,如箭頭616所示。燃料70和稀釋劑514之混合物618然後沿著該內通道604縱向流動,和然後徑向轉入多個渦旋葉片598,如箭頭620所示。一旦到達多個注入口610,則燃料70和稀釋劑514之混合物618通過注入口610進入外通道606,如箭頭622所示。二種混合物(即,預混的氧化劑和稀釋劑流614及預混的燃料和稀釋劑流622) 然後在注入通道566內進一步混合,如箭頭624所示。氧化劑68、燃料70、和稀釋劑514之混合物624然後通過注入出口570而離開預混燃料噴嘴550,且隨後點燃以形成預混火焰552。同樣地,控制系統100可選擇性地控制流體供應系統518以獨立控制氧化劑68、燃料70、和稀釋劑514之流量,從而增加、減少、或保持燃氣渦輪引擎150的當量比、排放物水平、功率輸出、或其任何組合。 At the same time, the second mixing chamber 582 will fuel 70 and diluent The premixed stream of 514 is sent into the inner passage 604 defined by the inner conduit 594, as indicated by arrow 616. Mixture 618 of fuel 70 and diluent 514 then flows longitudinally along the inner passage 604 and then radially into the plurality of scroll vanes 598 as indicated by arrow 620. Once the plurality of injection ports 610 are reached, the mixture 618 of fuel 70 and diluent 514 enters the outer passage 606 through the injection port 610, as indicated by arrow 622. Two mixtures (i.e., premixed oxidant and diluent stream 614 and premixed fuel and diluent stream 622) Further mixing is then performed within the injection channel 566 as indicated by arrow 624. Mixture 624 of oxidant 68, fuel 70, and diluent 514 then exits premixed fuel nozzle 550 through injection outlet 570 and is subsequently ignited to form premixed flame 552. Likewise, control system 100 can selectively control fluid supply system 518 to independently control the flow of oxidant 68, fuel 70, and diluent 514 to increase, decrease, or maintain the equivalence ratio, emissions level of gas turbine engine 150. , power output, or any combination thereof.

圖11為擴散燃料噴嘴554之具體實例的圖 示,其具有多個用於將氧化劑68和燃料70送入燃燒器160之室494的獨立通道640。獨立通道640可包括多個同心環狀通道、由多個周邊通道包圍之中央通道、或其任何組合。在所說明之具體實例中,該獨立通道640包括一或多個燃料通道642和一或多個氧化劑通道644。例如,所示的燃料通道642為一被內導管646所環繞的中央燃料通道,而一或多個氧化劑通道644為配置在內導管646和外導管或結構648之間的外氧化劑通道。進一步的實例中,氧化劑通道644可包括一環狀氧化劑通道或多個沿著在內和外導管646和648之間的燃料通道642的周圍配置之獨立氧化劑通道。在此等具體實例中,氧化劑和燃料通道642和644可沿著擴散燃料噴嘴554之全長彼此隔離。 內和外導管646和648可充當隔離壁,其保持氧化劑68和燃料70之間的分離。燃料通道642終止於燃料出口650,且一或多個氧化劑通道644終止於一或多個氧化劑出口652。此等燃料和氧化劑出口650和652可沿著擴散 燃料噴嘴554之共用平面或下游端654配置,從而延遲氧化劑68和燃料70之混合直到從燃料噴嘴554注入燃燒器160的室494中之後。 11 is a diagram of a specific example of a diffusion fuel nozzle 554. It is shown with a plurality of individual channels 640 for feeding oxidant 68 and fuel 70 into chamber 494 of combustor 160. The independent channel 640 can include a plurality of concentric annular channels, a central channel surrounded by a plurality of peripheral channels, or any combination thereof. In the illustrated embodiment, the independent passage 640 includes one or more fuel passages 642 and one or more oxidant passages 644. For example, the illustrated fuel passage 642 is a central fuel passage surrounded by an inner conduit 646 and the one or more oxidant passages 644 are external oxidant passages disposed between the inner conduit 646 and the outer conduit or structure 648. In a further example, the oxidant passage 644 can include an annular oxidant passage or a plurality of separate oxidant passages disposed about the fuel passage 642 between the inner and outer conduits 646 and 648. In these specific examples, the oxidant and fuel passages 642 and 644 can be isolated from each other along the entire length of the diffusion fuel nozzle 554. The inner and outer conduits 646 and 648 can act as a dividing wall that maintains separation between the oxidant 68 and the fuel 70. Fuel passage 642 terminates at fuel outlet 650 and one or more oxidant passages 644 terminate at one or more oxidant outlets 652. These fuel and oxidant outlets 650 and 652 can be diffused along The common or downstream end 654 of the fuel nozzle 554 is configured to retard mixing of the oxidant 68 and the fuel 70 until after injection from the fuel nozzle 554 into the chamber 494 of the combustor 160.

當氧化劑68和燃料70在室494中彼此混合或擴散時,形成如輪廓或邊界656所示的擴散火焰556。輪廓656可表示擴散壁或火焰壁,其中以氧化劑68和燃料70以實質上化學計量方式混合和燃燒(例如,實質上化學計量燃燒)。換句話說,輪廓或邊界656可表示擴散火焰556之穩定火焰壁,其中該當量比為約1.0或介於約0.95至1.05之間。類似於參考上述圖8-10所討論的預混燃料噴嘴550,擴散燃料噴嘴554可以控制系統100控制而改變燃氣渦輪引擎150的當量比、廢氣排放、功率輸出、或其任何組合。例如,所示的控制系統100因應感測器反饋130而選擇性地控制流體供應系統518以增加、減少、或保持氧化劑68和燃料70之流量。 As the oxidant 68 and fuel 70 mix or diffuse into each other in chamber 494, a diffusion flame 556 as shown by profile or boundary 656 is formed. Profile 656 can represent a diffusion wall or flame wall in which oxidant 68 and fuel 70 are mixed and combusted in a substantially stoichiometric manner (eg, substantially stoichiometric combustion). In other words, the contour or boundary 656 can represent a stable flame wall of the diffusion flame 556, wherein the equivalence ratio is between about 1.0 or between about 0.95 and 1.05. Similar to the premixed fuel nozzles 550 discussed above with respect to FIGS. 8-10, the diffusion fuel nozzles 554 can control the system 100 control to vary the equivalence ratio of the gas turbine engine 150, exhaust emissions, power output, or any combination thereof. For example, the illustrated control system 100 selectively controls the fluid supply system 518 to increase, decrease, or maintain the flow of oxidant 68 and fuel 70 in response to sensor feedback 130.

圖12為具有多個獨立通道670與注入部分672和混合部分674的擴散燃料噴嘴554之具體實例的圖示。混合部分674可包括一或多個內混合室676和一或多個外混合室678。例如,內混合室676可為燃料/稀釋劑混合室,其係經配置以混合一或多個燃料70和稀釋劑514之流。外混合室676可包括一或多個氧化劑/稀釋劑混合室,其係經配置以混合一或多個氧化劑68和稀釋劑514之流。此等混合室各可包括外圍結構,諸如外殼或外導管。例如,混合室676可被內導管或內殼680環繞,而混 合室678可被外導管或外殼682環繞。在某些具體實例中,混合室678可被圍在內和外導管680和682之間。 12 is an illustration of a specific example of a diffusion fuel nozzle 554 having a plurality of independent channels 670 and an injection portion 672 and a mixing portion 674. Mixing portion 674 can include one or more inner mixing chambers 676 and one or more outer mixing chambers 678. For example, the internal mixing chamber 676 can be a fuel/diluent mixing chamber configured to mix one or more streams of fuel 70 and diluent 514. The outer mixing chamber 676 can include one or more oxidant/diluent mixing chambers configured to mix one or more streams of oxidant 68 and diluent 514. Each of the mixing chambers may include a peripheral structure such as a housing or an outer conduit. For example, the mixing chamber 676 can be surrounded by an inner or inner casing 680, while mixing The housing 678 can be surrounded by an outer conduit or housing 682. In some embodiments, the mixing chamber 678 can be enclosed between the inner and outer conduits 680 and 682.

類似地,注入部分672包括一或多個燃料-稀 釋劑通道684和一或多個氧化劑-稀釋劑通道686。各燃料-稀釋劑通道684係流體地連接到一或多個的混合室678,而各氧化劑-稀釋劑通道686係流體地連接到一或多個的混合室678。燃料-稀釋劑通道684可被內導管688環繞,而一或多個氧化劑-稀釋劑通道686可被外導管690環繞。例如,所示的燃料-稀釋劑通道684可為中央燃料-稀釋劑通道684,其係被一或多個外氧化劑-稀釋劑通道686環繞。例如,內和外導管688和690可為同心環狀導管,彼等以同軸或同心環形式排列界定通道684和686。 然而,燃料-稀釋劑通道684可表示單一中央通道或或多個配置在內導管688內之分離通道。同樣地,氧化劑-稀釋劑通道686可表示單一環狀通道或多個沿著燃料稀釋通道684周圍彼此隔開的獨立通道,而其餘以內和外導管688和690彼此隔離。在某些實施例中,內導管680和688形成單一連續內導管,和外導管682和690形成單一連續外導管。 Similarly, the injection portion 672 includes one or more fuel-thin Release channel 684 and one or more oxidant-diluent channels 686. Each fuel-diluent channel 684 is fluidly coupled to one or more mixing chambers 678, and each oxidant-diluent channel 686 is fluidly coupled to one or more mixing chambers 678. The fuel-diluent channel 684 can be surrounded by an inner conduit 688, and one or more oxidant-diluent channels 686 can be surrounded by an outer conduit 690. For example, the illustrated fuel-diluent channel 684 can be a central fuel-diluent channel 684 that is surrounded by one or more external oxidant-diluent channels 686. For example, the inner and outer conduits 688 and 690 can be concentric annular conduits that define channels 684 and 686 in a coaxial or concentric annular arrangement. However, the fuel-diluent passage 684 can represent a single central passage or a plurality of separate passages disposed within the inner conduit 688. Likewise, the oxidant-diluent passage 686 can represent a single annular passage or a plurality of separate passages spaced apart from each other around the fuel dilution passage 684, with the remainder being isolated from each other by the inner and outer conduits 688 and 690. In certain embodiments, inner conduits 680 and 688 form a single continuous inner conduit, and outer conduits 682 and 690 form a single continuous outer conduit.

在操作中,控制系統100選擇性地控制流體 供應系統518以增加、減少、或保持燃料70和稀釋劑514進入混合室676之流量,其在混合物通入燃料-稀釋劑通道684之前混合燃料70和稀釋劑514。類似地,控制系統100選擇性地控制流體供應系統518以增加、減少、 或保持氧化劑68和稀釋劑514進入一或多個混合室678之流量,其在混合物遞送進入一或多個氧化劑-稀釋劑通道686之前混合氧化劑68和稀釋劑514。然後擴散燃料噴嘴554分開地將燃料-稀釋劑混合物698沿著該通道684流至出口692,且同時將氧化劑-稀釋劑混合物700沿著該通道686流至一或多個出口694。類似於圖11之具體實例,出口692和694可沿著擴散燃料噴嘴554之共用平面或下游端696排列,從而保持在通道686中之氧化劑-稀釋劑混合物700和在通道684中之燃料-稀釋劑混合物698之間的隔離。此隔離延遲氧化劑68和燃料70之間的混合直到共用平面696之下游。 In operation, control system 100 selectively controls fluid The supply system 518 is configured to increase, decrease, or maintain the flow of fuel 70 and diluent 514 into the mixing chamber 676, which mixes the fuel 70 and diluent 514 before the mixture passes into the fuel-diluent passage 684. Similarly, control system 100 selectively controls fluid supply system 518 to increase, decrease, Or maintaining a flow of oxidant 68 and diluent 514 into one or more mixing chambers 678 that mix oxidant 68 and diluent 514 before the mixture is delivered into one or more oxidant-diluent channels 686. The diffusion fuel nozzle 554 then separately flows the fuel-diluent mixture 698 along the passage 684 to the outlet 692 and simultaneously flows the oxidant-diluent mixture 700 along the passage 686 to the one or more outlets 694. Similar to the embodiment of FIG. 11, outlets 692 and 694 can be aligned along a common or downstream end 696 of diffusion fuel nozzle 554 to maintain oxidant-diluent mixture 700 in passage 686 and fuel-dilution in passage 684. Isolation between the agent mixture 698. This isolation delays mixing between the oxidant 68 and the fuel 70 until downstream of the common plane 696.

當燃料-稀釋劑混合物698和氧化劑-稀釋劑混 合物700從該擴散燃料噴嘴554流進燃燒器160之室494時,混合物698和700通常沿著可界定擴散火焰556之擴散壁或火焰壁之輪廓或邊界702彼此擴散和燃燒。同樣地,控制系統100可選擇性地控制流體供應系統518以獨立地控制氧化劑68、燃料70、和稀釋劑514至各混合室676和678之流量,從而控制各混合室676和678內之混合,同時也控制燃燒器160之室494內的擴散和燃燒。例如,控制系統100可選擇性地控制流體供應系統518以調整氧化劑68相對於燃料70之比、稀釋劑514相對於氧化劑68和燃料70的合併流之比、氧化劑68相對於一或多個混合室678和對應通道686之每一者中的稀釋劑514之比、和燃料70相對於一或多個混合室676和對應通道 道684之每一者中的稀釋劑514之比。因此,控制系統100可調整這些比率、流率、溫度、和流體組成(例如,氧化劑68、燃料70、和稀釋劑514之組成)之每一者以調整燃氣渦輪引擎150的當量比、廢氣排放、和功率輸出。 When fuel-diluent mixture 698 and oxidant-diluent are mixed As the composition 700 flows from the diffusion fuel nozzle 554 into the chamber 494 of the combustor 160, the mixtures 698 and 700 generally diffuse and combust with each other along a contour or boundary 702 of the diffusing or flame wall that may define the diffusion flame 556. Likewise, control system 100 can selectively control fluid supply system 518 to independently control the flow of oxidant 68, fuel 70, and diluent 514 to each of mixing chambers 676 and 678 to control mixing within mixing chambers 676 and 678. At the same time, the diffusion and combustion in the chamber 494 of the burner 160 is also controlled. For example, control system 100 can selectively control fluid supply system 518 to adjust the ratio of oxidant 68 to fuel 70, the ratio of diluent 514 to combined flow of oxidant 68 and fuel 70, and the oxidant 68 relative to one or more mixtures. The ratio of diluent 514 in each of chamber 678 and corresponding passage 686, and fuel 70 relative to one or more mixing chambers 676 and corresponding passages The ratio of diluent 514 in each of the lanes 684. Accordingly, control system 100 can adjust each of these ratios, flow rates, temperatures, and fluid compositions (eg, the composition of oxidant 68, fuel 70, and diluent 514) to adjust the equivalence ratio of the gas turbine engine 150, exhaust. Emissions, and power output.

圖13為擴散燃料噴嘴554之具體實例的圖 示,其說明多個獨立通道720。所示的通道640包括流體A通道722、一或多個流體B通道724、和一或多個流體C通道726。該流體A通道722可以導管或結構728而與一或多個流體B通道724分離或隔離,該一或多個流體B通道724可以導管或結構730而與一或多個流體C通道726分離,和該一或多個流體C通道726可被外導管或結構732包圍或支持。 FIG. 13 is a diagram of a specific example of the diffusion fuel nozzle 554. Shown, it illustrates a plurality of independent channels 720. Channel 640 is shown to include a fluid A channel 722, one or more fluid B channels 724, and one or more fluid C channels 726. The fluid A channel 722 can be separated or isolated from the one or more fluid B channels 724 by conduits or structures 728 that can be separated from the one or more fluid C channels 726 by conduits or structures 730, The one or more fluid C-channels 726 can be surrounded or supported by an outer conduit or structure 732.

例如,如圖14中所示,流體通道722、724 和726可以同心排列方式配置,其中該導管728圍繞作為中央流體通道之流體A通道722,流體B通道724係配置在導管728和730之間,和流體C通道726係配置在導管730和732之間。同樣地,導管728、730和732可以同心排列方式配置,使得流體B通道724和流體C通道726各表示連續的環狀通道。 For example, as shown in Figure 14, fluid channels 722, 724 And 726 can be configured in a concentric arrangement wherein the conduit 728 surrounds a fluid A channel 722 that is a central fluid channel, the fluid B channel 724 is disposed between the conduits 728 and 730, and the fluid C channel 726 is disposed at the conduits 730 and 732. between. Likewise, conduits 728, 730, and 732 can be configured in a concentric arrangement such that fluid B channel 724 and fluid C channel 726 each represent a continuous annular passage.

然而,擴散燃料噴嘴554可以其他排列方式排列通道722、724和726,諸如圖15所示之獨立通道。在圖15之具體實例中,流體A通道722表示中央流體通道,而流體B通道724和流體C通道726表示多個在燃 料噴嘴554內彼此隔開的獨立通道。例如,流體B通道724可包括2、3、4、5、6、7、8、或更多個沿著中央流體A通道722周圍彼此隔開的獨立流體通道。同樣地,流體C通道726可包括多個沿著流體B通道724周圍彼此隔開的獨立通道。例如,流體B通道724可排列成通道724的第一環或圓形圖案,而流體C通道726可排列成通道726的第二環或圓形圖案。 However, the diffusion fuel nozzles 554 can arrange the channels 722, 724, and 726 in other arrangements, such as the individual channels shown in FIG. In the embodiment of Figure 15, fluid A channel 722 represents a central fluid channel, while fluid B channel 724 and fluid C channel 726 represents a plurality of fueling A separate channel within the nozzle 554 that is spaced apart from each other. For example, fluid B channel 724 can include 2, 3, 4, 5, 6, 7, 8, or more separate fluid channels spaced apart from one another along central fluid A channel 722. Likewise, fluid C-channel 726 can include a plurality of separate channels that are spaced apart from each other along the circumference of fluid B-channel 724. For example, fluid B channels 724 can be arranged in a first loop or circular pattern of channels 724, while fluid C channels 726 can be arranged in a second loop or circular pattern of channels 726.

在此等配置任一者中,圖13之擴散燃料噴嘴 554係經配置以分別將流體A 734流過流體A通道722、流體B 736流過一或多個流體B通道724、和流體C 738流過一或多個流體C通道726。此等流體734、736和738各可包括一或多個流體,諸如氧化劑68、燃料70、和稀釋劑514。然而,流體734、736和738在擴散燃料噴嘴554內可不混合任何之氧化劑68和燃料70,從而延遲在氧化劑68和燃料70之間的混合直到流體從孔道740、742、和744噴進燃燒器160之室494。同樣地,此等孔道740、742、和744可沿著擴散燃料噴嘴554之共用平面或下游端746配置。各種流體接著混合和燃燒以形成擴散火焰556,如上述所討論。下表2說明一些可與圖13-15之擴散燃料噴嘴554一起使用的流體A、B、和C之可能的非限制例。 In any of these configurations, the diffusion fuel nozzle of Figure 13 The 554 is configured to flow fluid A 734 through fluid A channel 722, fluid B 736 through one or more fluid B channels 724, and fluid C 738 through one or more fluid C channels 726, respectively. These fluids 734, 736, and 738 can each include one or more fluids, such as oxidant 68, fuel 70, and diluent 514. However, fluids 734, 736, and 738 may not mix any oxidant 68 and fuel 70 within diffusion fuel nozzle 554, thereby delaying mixing between oxidant 68 and fuel 70 until fluid is injected into burner 160 from channels 740, 742, and 744. Room 494. Likewise, such channels 740, 742, and 744 can be disposed along a common or downstream end 746 of the diffusion fuel nozzle 554. The various fluids are then mixed and combusted to form a diffusion flame 556, as discussed above. Table 2 below illustrates some possible non-limiting examples of fluids A, B, and C that can be used with the diffusion fuel nozzles 554 of Figures 13-15.

如上所示,擴散燃料噴嘴554可將各種組合 的流體(例如,氧化劑68、燃料70和稀釋劑514)流過通道722、724和726以產生擴散火焰556。同樣地,氧化劑68可包括氧、周圍空氣、富氧空氣、減氧空氣、氮和氧之混合物、或其任何組合。燃料70可包括液體燃料及/或氣體燃料,諸如天然氣、合成氣、或任何其他本文中所述之燃料。稀釋劑514可包括廢氣170、蒸汽、氮、或另一惰性氣體、或其任何組合。雖然表2描述一些流體的可能實例,但流體的任何組合可與圖13-15中的擴散燃料噴嘴554一起使用。此外,雖然所述的具體實例在擴散燃料噴嘴554內不混合任何燃料70與氧化劑68,但其他具體實例可以將小量(例如,小於1、2、3、4、5、6、7、8、9、或10體積百分比)之氧化劑68混合燃料70,或將小量(例如,小於1、2、3、4、5、6、7、8、9、或10體積百分比)之燃料70混合氧化劑68。 As indicated above, the diffusion fuel nozzle 554 can be various combinations Fluid (eg, oxidant 68, fuel 70, and diluent 514) flows through passages 722, 724, and 726 to create a diffusion flame 556. Likewise, oxidant 68 can include oxygen, ambient air, oxygen-enriched air, oxygen-reduced air, a mixture of nitrogen and oxygen, or any combination thereof. Fuel 70 may comprise a liquid fuel and/or a gaseous fuel, such as natural gas, syngas, or any other fuel described herein. Diluent 514 can include exhaust gas 170, steam, nitrogen, or another inert gas, or any combination thereof. While Table 2 describes some possible examples of fluids, any combination of fluids can be used with the diffusion fuel nozzles 554 of Figures 13-15. Moreover, while the specific example described does not mix any fuel 70 and oxidant 68 within the diffusion fuel nozzle 554, other embodiments may be small (eg, less than 1, 2, 3, 4, 5, 6, 7, 8) 9, 9, or 10 volume percent of the oxidant 68 mixes the fuel 70, or mixes a small amount (eg, less than 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 volume percent) of the fuel 70 Oxidizer 68.

圖16為具有配置在燃燒器160內的擴散燃料 噴嘴554之一的燃燒器段154之具體實例的圖示。類似於圖13-15中所示之擴散燃料噴嘴554,圖16之擴散燃料噴嘴554包括被導管728所環繞的流體A通道724、被導管730所環繞的流體B通道724、被導管732所環繞的流體C通道726、和被外導管或結構762所環繞的流體D通道760。流體D通道760係經配置以接收來自流體供應系統518之流體D 764,並透過一或多個出口766將流體D 764送進室494。通道722、724、726、和760可具有沿著擴散燃料噴嘴554之共用平面或下游端746配置的個別出口740、742、744、和766,從而隔離流體734、736、738、和764之流直到流體到達室494。以此方式,擴散燃料噴嘴554促進擴散火焰556之形成。各流體734、736、738、和764可包括氧化劑68、燃料70、和一或多個稀釋劑514,諸如廢氣170、蒸汽、氮、及/或一或多個其他惰性氣體。然而,流體通道722、724、726、和760在擴散燃料噴嘴554內可不混合任何之氧化劑68和燃料70,從而促進氧化劑68和燃料70之隔離直到流體到達室494。氧化劑68和燃料70可與一或多個稀釋劑514分開地或部分預混地流過各獨立流體通道722、724、726、和760。類似於先前的具體實例,控制系統100可選擇性地控制流體供應系統518以增加、減少、或保持各流體734、736、738、和764之流量,從而調整燃氣渦輪引擎150的流體中之流體流量比、當量比、排放物水平、功率 輸出、或其任何組合。 Figure 16 is a diffusion fuel disposed within a combustor 160 An illustration of a specific example of a combustor section 154 of one of the nozzles 554. Similar to the diffusion fuel nozzle 554 shown in Figures 13-15, the diffusion fuel nozzle 554 of Figure 16 includes a fluid A channel 724 surrounded by a conduit 728, a fluid B channel 724 surrounded by a conduit 730, surrounded by a conduit 732. Fluid C channel 726, and fluid D channel 760 surrounded by outer conduit or structure 762. Fluid D channel 760 is configured to receive fluid D 764 from fluid supply system 518 and to deliver fluid D 764 to chamber 494 through one or more outlets 766. Channels 722, 724, 726, and 760 can have individual outlets 740, 742, 744, and 766 disposed along a common or downstream end 746 of diffusion fuel nozzle 554 to isolate fluids 734, 736, 738, and 764. Until the fluid reaches chamber 494. In this manner, the diffusion fuel nozzle 554 promotes the formation of the diffusion flame 556. Each fluid 734, 736, 738, and 764 can include an oxidant 68, a fuel 70, and one or more diluents 514, such as exhaust gas 170, steam, nitrogen, and/or one or more other inert gases. However, fluid passages 722, 724, 726, and 760 may not mix any oxidant 68 and fuel 70 within diffusion fuel nozzle 554, thereby promoting isolation of oxidant 68 from fuel 70 until fluid reaches chamber 494. Oxidant 68 and fuel 70 may flow through separate fluid passages 722, 724, 726, and 760, separately or partially premixed with one or more diluents 514. Similar to the previous specific example, control system 100 can selectively control fluid supply system 518 to increase, decrease, or maintain flow of fluids 734, 736, 738, and 764 to adjust the fluid in gas turbine engine 150. Fluid flow ratio, equivalence ratio, emission level, power Output, or any combination thereof.

圖16之所示燃燒器160也包括沿著燃燒器 160之燃燒部分168配置的稀釋劑注入系統770,使得一或多個稀釋劑(例如,廢氣170、蒸汽、氮、或其他惰性氣體)可注入室494中以控制由擴散火焰556所形成之燃燒772的熱產物之溫度、壓力、流率、氣體組成(例如,排放物水平)、或其任何組合。例如,稀釋劑注入系統770可包括配置在第一壁或襯墊496的穿孔506之孔道,和多個貫穿第一和第二壁496和498至燃燒器160之室494的稀釋劑注入器510。在操作中,孔道或穿孔506可經配置以注入流體E 774,諸如廢氣170,如箭頭508所示。稀釋劑注入器510可經配置以將流體F 776及/或流體G 778注入室494,如箭頭512所示。例如,流體F 776和流體G 778可包括另外的廢氣170、蒸汽、氮、一或多個其他惰性氣體、或其任何組合。此等注入稀釋劑508和512可經配置以控制從該擴散火焰556產生之燃燒的熱產物772之溫度、壓力、流率、氣體組成(例如,排放物水平)、或其任何組合。在某些具體實例中,該控制系統100可選擇性地控制流體供應系統518以增加、減少、或保持各種流體734、736、738、764、774、776、和778之流量,從而控制氧化劑68對燃料70之比、一或多個稀釋劑514相對於氧化劑68和燃料70之比、或其任何組合。因而,此等流體之控制調整可改變燃氣渦輪引擎150的當量比、排放物水平、和功率輸出。下表3說明一些可 與圖16之擴散燃料噴嘴554和燃燒器160一起使用的流體A、B、C、D、E、F、和G之可能的非限制例。 The burner 160 shown in Figure 16 is also included along the burner The diluent portion 168 of the 160 is configured to inject the diluent into the system 770 such that one or more diluents (eg, exhaust gas 170, steam, nitrogen, or other inert gas) can be injected into the chamber 494 to control the combustion formed by the diffusion flame 556. Temperature, pressure, flow rate, gas composition (e.g., effluent level) of the thermal product of 772, or any combination thereof. For example, the diluent injection system 770 can include a bore disposed in the first wall or bore 506 of the liner 496, and a plurality of diluent injectors 510 extending through the first and second walls 496 and 498 to the chamber 494 of the combustor 160. . In operation, the channels or perforations 506 can be configured to inject fluid E 774, such as exhaust gas 170, as indicated by arrow 508. Diluent injector 510 can be configured to inject fluid F 776 and/or fluid G 778 into chamber 494 as indicated by arrow 512. For example, fluid F 776 and fluid G 778 can include additional exhaust gas 170, steam, nitrogen, one or more other inert gases, or any combination thereof. The implant diluents 508 and 512 can be configured to control the temperature, pressure, flow rate, gas composition (e.g., effluent level) of the combusted thermal product 772 produced from the diffusion flame 556, or any combination thereof. In certain embodiments, the control system 100 can selectively control the fluid supply system 518 to increase, decrease, or maintain flow of various fluids 734, 736, 738, 764, 774, 776, and 778 to control the oxidant 68. The ratio to fuel 70, the ratio of one or more diluents 514 to oxidant 68 and fuel 70, or any combination thereof. Thus, the control adjustment of such fluids can change the equivalence ratio, emissions level, and power output of the gas turbine engine 150. Table 3 below shows some Possible non-limiting examples of fluids A, B, C, D, E, F, and G used with diffusion fuel nozzle 554 and burner 160 of FIG.

如上所示,擴散燃料噴嘴554和燃燒器160 可將流體(例如,氧化劑68、燃料70、和稀釋劑514)的各種組合流過通道722、724、726、和760、孔道506、和稀釋劑注入器510以產生擴散火焰556。同樣地,氧化劑68可包括氧、周圍空氣、富氧空氣、減氧空 氣、氮和氧之混合物、或其任何組合。燃料70可包括液體燃料及/或氣體燃料,諸如天然氣、合成氣、或任何本文中所揭示之其他燃料。稀釋劑514可包括廢氣170、蒸汽、氮、或另一惰性氣體、或其任何組合。雖然表3描述一些流體的可能實例,但流體的任何組合可與圖16中的擴散燃料噴嘴554和燃燒器160一起使用。此外,雖然所述的具體實例在擴散燃料噴嘴554內不混合任何燃料70與氧化劑68,但其他具體實例可以將小量(例如,小於1、2、3、4、5、6、7、8、9、或10體積百分比)之氧化劑68混合燃料70,或將小量(例如,小於1、2、3、4、5、6、7、8、9、或10體積百分比)之燃料70混合氧化劑68。 As shown above, the diffusion fuel nozzle 554 and the burner 160 Various combinations of fluids (eg, oxidant 68, fuel 70, and diluent 514) may be flowed through passages 722, 724, 726, and 760, channels 506, and diluent injector 510 to create a diffusion flame 556. Similarly, oxidant 68 can include oxygen, ambient air, oxygen-enriched air, oxygen depletion a mixture of gas, nitrogen and oxygen, or any combination thereof. Fuel 70 may include liquid fuels and/or gaseous fuels such as natural gas, syngas, or any of the other fuels disclosed herein. Diluent 514 can include exhaust gas 170, steam, nitrogen, or another inert gas, or any combination thereof. While Table 3 describes some possible examples of fluids, any combination of fluids can be used with the diffusion fuel nozzles 554 and burners 160 of FIG. Moreover, while the specific example described does not mix any fuel 70 and oxidant 68 within the diffusion fuel nozzle 554, other embodiments may be small (eg, less than 1, 2, 3, 4, 5, 6, 7, 8) 9, 9, or 10 volume percent of the oxidant 68 mixes the fuel 70, or mixes a small amount (eg, less than 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 volume percent) of the fuel 70 Oxidizer 68.

圖17為沿著圖7之線17-17取得之燃燒器 160的截面示意圖,其進一步說明燃料噴嘴164之多噴嘴排列和稀釋劑注入器510之多注入器排列。所示的燃料噴嘴164包括燃料噴嘴A 790、燃料噴嘴B 792、燃料噴嘴C 794、燃料噴嘴D 796、燃料噴嘴E 798、燃料噴嘴F 800、和燃料噴嘴G 802。在所說明之具體實例中,該噴嘴790為中央燃料噴嘴,其被作為外或週邊燃料噴嘴之其餘燃料噴嘴792、794、796、798、800和802所環繞。雖然所說明之具體實例包括單個中央燃料噴嘴164和六個外燃料噴嘴164,但其他具體實例可包括任何數目的中央和外燃料噴嘴。所示的燃料噴嘴164可包括一或多個參照圖8-16所顯示和描述之預混燃料噴嘴550及/或擴散燃料噴 嘴554。例如,所有燃料噴嘴164可配置成預混燃料噴嘴550,所有燃料噴嘴164可配置成擴散燃料噴嘴554,或燃料噴嘴164可包括預混燃料噴嘴550和擴散燃料噴嘴554二者之一或多者。可對各燃料噴嘴164獨立地控制流至燃料噴嘴164之流體流,或可以燃料噴嘴164之群組控制流體流。例如,該中央燃料噴嘴790可由外燃料噴嘴792、794、796、798、800、和802之一或多個群組獨立地控制。進一步的實例中,一或多個預混燃料噴嘴550可由一或多個擴散燃料噴嘴554獨立地控制。此等不同控制方案可促進不同操作模式,可有效提供化學計量燃燒和減少廢氣42之排放。 Figure 17 is a burner taken along line 17-17 of Figure 7 A cross-sectional schematic view of 160 further illustrates the multiple nozzle arrangement of fuel nozzle 164 and the multiple injector arrangement of diluent injector 510. The illustrated fuel nozzle 164 includes a fuel nozzle A 790, a fuel nozzle B 792, a fuel nozzle C 794, a fuel nozzle D 796, a fuel nozzle E 798, a fuel nozzle F 800, and a fuel nozzle G 802. In the illustrated embodiment, the nozzle 790 is a central fuel nozzle that is surrounded by the remaining fuel nozzles 792, 794, 796, 798, 800, and 802 as outer or peripheral fuel nozzles. While the specific examples illustrated include a single central fuel nozzle 164 and six outer fuel nozzles 164, other specific examples may include any number of central and outer fuel nozzles. The illustrated fuel nozzle 164 may include one or more premixed fuel nozzles 550 and/or diffusion fuel sprays as shown and described with respect to Figures 8-16. Mouth 554. For example, all of the fuel nozzles 164 may be configured as premixed fuel nozzles 550, all of the fuel nozzles 164 may be configured as diffusion fuel nozzles 554, or the fuel nozzles 164 may include one or more of premixed fuel nozzles 550 and diffusion fuel nozzles 554. . The fluid flow to the fuel nozzles 164 can be independently controlled for each fuel nozzle 164, or the fluid flow can be controlled by a group of fuel nozzles 164. For example, the central fuel nozzle 790 can be independently controlled by one or more groups of outer fuel nozzles 792, 794, 796, 798, 800, and 802. In a further example, one or more premixed fuel nozzles 550 can be independently controlled by one or more diffusion fuel nozzles 554. These different control schemes facilitate different modes of operation, effectively providing stoichiometric combustion and reducing emissions from exhaust gases 42.

如圖17中所進一步所說明,該燃料噴嘴164 和稀釋劑注入器510可透過多個流體供應迴路810(諸如一或多個稀釋劑供應迴路812和一或多個燃料噴嘴供應迴路814)連接到流體供應系統518。例如,稀釋劑供應迴路812可包括1、2、3、4、5、6、7、8、或更多個獨立稀釋劑供應迴路812,從而使稀釋劑注入器510能有多種稀釋劑注入模式。類似地,該燃料噴嘴供應迴路814可包括1、2、3、4、5、6、7、8、或更多個獨立燃料噴嘴供應迴路814,從而使燃料噴嘴164能有多種流體供應模式。例如,燃料噴嘴供應迴路814可包括第一噴嘴迴路816、第二噴嘴迴路818和第三噴嘴迴路820。此等燃料噴嘴供應迴路814(例如,816、818、和820)各可包括一或多個燃料管線、氧化劑管線、及/或稀釋劑管線(例 如,廢氣管線、蒸汽管線、氮管線、及/或其他惰性氣體管線),其係流體地連接到至少一個燃料噴嘴164。在所說明之具體實例中,該第一噴嘴迴路816係連接到第一組的燃料噴嘴164(例如,中央燃料噴嘴790),第二噴嘴迴路818係連接到第二組的燃料噴嘴164(例如,外燃料噴嘴794、798、和802),和第三噴嘴迴路820係連接到第三組的燃料噴嘴164(例如,外燃料噴嘴792、796、和800)。在一些具體實例中,連接到噴嘴供應迴路814之一的各組燃料噴嘴164可全部為擴散燃料噴嘴、全部為預混燃料噴嘴、或擴散燃料噴嘴和預混燃料噴嘴之任何組合。然而,任何數目或配置之燃料噴嘴164可連接到各燃料噴嘴供應迴路814,和任何數目之噴嘴供應迴路814可連接到燃料噴嘴164。同樣地,燃料噴嘴供應迴路814係連接到流體供應系統518,其可包括閥、流量調節器、和其他用以控制流至燃料噴嘴164之流率和壓力的流量控制。 As further illustrated in FIG. 17, the fuel nozzle 164 The diluent injector 510 can be coupled to the fluid supply system 518 through a plurality of fluid supply circuits 810, such as one or more diluent supply circuits 812 and one or more fuel nozzle supply circuits 814. For example, the diluent supply circuit 812 can include 1, 2, 3, 4, 5, 6, 7, 8, or more separate diluent supply circuits 812 to enable the diluent injector 510 to have multiple diluent injection modes. . Similarly, the fuel nozzle supply circuit 814 can include 1, 2, 3, 4, 5, 6, 7, 8, or more independent fuel nozzle supply circuits 814 to enable the fuel nozzles 164 to have multiple fluid supply modes. For example, fuel nozzle supply circuit 814 can include a first nozzle circuit 816, a second nozzle circuit 818, and a third nozzle circuit 820. These fuel nozzle supply circuits 814 (eg, 816, 818, and 820) may each include one or more fuel lines, oxidant lines, and/or diluent lines (eg, For example, an exhaust line, a steam line, a nitrogen line, and/or other inert gas lines) are fluidly coupled to at least one fuel nozzle 164. In the illustrated embodiment, the first nozzle circuit 816 is coupled to a first set of fuel nozzles 164 (eg, central fuel nozzles 790) and the second nozzle circuit 818 is coupled to a second set of fuel nozzles 164 (eg, The outer fuel nozzles 794, 798, and 802), and the third nozzle circuit 820 are coupled to the third set of fuel nozzles 164 (eg, outer fuel nozzles 792, 796, and 800). In some embodiments, each set of fuel nozzles 164 connected to one of the nozzle supply circuits 814 can be all diffusion fuel nozzles, all premixed fuel nozzles, or any combination of diffusion fuel nozzles and premixed fuel nozzles. However, any number or configuration of fuel nozzles 164 may be coupled to each fuel nozzle supply circuit 814, and any number of nozzle supply circuits 814 may be coupled to fuel nozzles 164. Likewise, fuel nozzle supply circuit 814 is coupled to fluid supply system 518, which may include valves, flow regulators, and other flow controls to control flow rate and pressure to fuel nozzles 164.

因而,流體供應系統518係連接到控制系統 100,其可使用控制器118以接收感測器反饋130,並將控制信號306提供給流體供應系統518以控制迴路812和814之操作。在所說明之具體實例中,該系統100之控制器118可儲存和執行化學計量控制模式822和非化學計量控制模式824(例如,與其相關之電腦指令或代碼),其可進一步包括貧燃料控制模式826和富燃料控制模式828。系統100之控制器118也可儲存和執行包括第一流 體迴路控制832、第二流體迴路控制834和第三流體迴路控制836之流體供應控制830(例如,與其相關之電腦指令或代碼)。例如,第一流體迴路控制832可經配置以控制至第一噴嘴迴路816之各種流率(例如,氧化劑68、燃料70及/或稀釋劑514),第二流體迴路控制834可經配置以控制至第二噴嘴迴路818之各種流率(例如,氧化劑68、燃料70及/或稀釋劑514),和第三流體迴路控制836可經配置以控制至第三噴嘴迴路820之各種流率(例如,氧化劑68、燃料70、及/或稀釋劑514)。 Thus, the fluid supply system 518 is connected to the control system 100, which can use controller 118 to receive sensor feedback 130 and provide control signal 306 to fluid supply system 518 to control the operation of loops 812 and 814. In the illustrated embodiment, controller 118 of system 100 can store and execute stoichiometric control mode 822 and non-stoichiometric control mode 824 (eg, computer instructions or code associated therewith), which can further include lean fuel control Mode 826 and rich fuel control mode 828. The controller 118 of the system 100 can also store and execute including the first stream The fluid circuit control 830 of the body loop control 832, the second fluid circuit control 834, and the third fluid circuit control 836 (eg, computer instructions or code associated therewith). For example, the first fluid circuit control 832 can be configured to control various flow rates to the first nozzle circuit 816 (eg, oxidant 68, fuel 70, and/or diluent 514), and the second fluid circuit control 834 can be configured to control Various flow rates to the second nozzle circuit 818 (eg, oxidant 68, fuel 70, and/or diluent 514), and third fluid circuit control 836 can be configured to control various flow rates to the third nozzle circuit 820 (eg, Oxidizer 68, fuel 70, and/or diluent 514).

在某些具體實例中,該化學計量控制模式822 係經配置以改變至少一種燃料70和至少一種氧化劑68之流率,並提供燃料70與氧化劑68之實質上化學計量比,而非化學計量控制模式824係經配置以改變該等流率,並提供燃料70與氧化劑68之非化學計量比。例如,化學計量控制模式822可經配置以提供實質上化學計量比為約1.0,或介於約0.95和約1.05之間的當量比。反之,非化學計量控制模式824可經配置以提供非化學計量比為小於約0.95或大於約1.05之當量比。在一些具體實例中,該控制系統100可經配置以將該等流率從第一組的流率改變至第二組的流率,其中該第一和第二流率係彼此不同(例如,其中一者大於或小於另一者)。該等流率之控制改變也可包含在化學計量控制模式822和非化學計量控制模式824之間的轉換,或該等流率之控制改變可包含保持實質上化學計量比。該等流率之控制改變也可包含SEGR燃氣 渦輪系統52之功率輸出(或負載)從第一功率輸出(或第一負載)改變至第二功率輸出(或第二負載),其中該第一和第二功率輸出(例如,負載)係彼此不同(例如,其中一者小於或大於另一者)。例如,功率輸出之控制改變可包含渦輪負載之控制改變,例如,從額定或正常負載(例如,100百分比)減少至部分負載(例如,50百分比)。該等流率之控制改變也可包含將廢氣中的排放物保持在一或多個目標排放範圍內,其中該排放物可包含一氧化碳、氧、氮氧化物、硫氧化物、未燃燒的烴類、氫、或其任何組合。在某些具體實例中,該一或多個目標排放範圍包括小於約50體積百萬分之一(ppmv)的氧範圍及/或小於約5000ppmv的一氧化碳範圍。在其他具體實例中,該一或多個目標排放範圍包含小於約10體積百萬分之一(ppmv)的氧範圍及/或小於約1000ppmv的一氧化碳範圍。 In some embodiments, the stoichiometric control mode 822 Is configured to vary the flow rate of the at least one fuel 70 and the at least one oxidant 68 and provide a substantial stoichiometric ratio of the fuel 70 to the oxidant 68, while the non-stoichiometric control mode 824 is configured to vary the flow rate, and A non-stoichiometric ratio of fuel 70 to oxidant 68 is provided. For example, stoichiometric control mode 822 can be configured to provide a substantially stoichiometric ratio of about 1.0, or an equivalence ratio between about 0.95 and about 1.05. Conversely, the non-stoichiometric control mode 824 can be configured to provide a non-stoichiometric ratio of less than about 0.95 or greater than about 1.05. In some specific examples, the control system 100 can be configured to change the equal flow rates from a first set of flow rates to a second set of flow rates, wherein the first and second flow rates are different from one another (eg, One of them is larger or smaller than the other). The change in control of the flow rates may also include a transition between the stoichiometric control mode 822 and the non-stoichiometric control mode 824, or the control change of the flow rates may include maintaining a substantial stoichiometric ratio. Control changes to such flow rates may also include SEGR gas The power output (or load) of the turbine system 52 changes from a first power output (or first load) to a second power output (or second load), wherein the first and second power outputs (eg, loads) are each other Different (for example, one of them is smaller or larger than the other). For example, a change in control of the power output may include a change in control of the turbine load, for example, from a nominal or normal load (eg, 100 percent) to a partial load (eg, 50 percent). The controlled change in the flow rates may also include maintaining emissions in the exhaust gas within one or more target emissions ranges, wherein the emissions may include carbon monoxide, oxygen, nitrogen oxides, sulfur oxides, unburned hydrocarbons , hydrogen, or any combination thereof. In some embodiments, the one or more target emission ranges include an oxygen range of less than about 50 parts per million (ppmv) and/or a range of carbon monoxide of less than about 5000 ppmv. In other embodiments, the one or more target emission ranges comprise a range of oxygen of less than about 10 parts per million (ppmv) and/or a range of carbon monoxide of less than about 1000 ppmv.

在一些具體實例中,於化學計量的控制模式 822之控制系統100係經配置以保持該實質上化學計量比且同時逐漸地減少多組流率中的流率(例如,氧化劑68和燃料70)、逐漸地減少SEGR燃氣渦輪系統52之多個功率輸出(例如,全負載、第一部分負載、第二部分負載等)中的一個功率輸出(例如,負載),和將廢氣中的排放保持在一或多個目標排放範圍內。控制系統100也可經配置以在逐漸地減少該流率、逐漸地減少該功率輸出、及保持排放之後從該化學計量的控制模式822轉換至非化學 計量的控制模式824。在從化學計量的控制模式822轉換至該非化學計量的控制模式824之後,控制系統100也可經配置以用非化學計量的控制模式824之富燃料控制模式或貧燃料控制模式操作。控制系統100也可經配置以將廢氣中的排放保持在第一組的目標排放範圍(例如,當以化學計量控制模式822操作之時)和第二組的目標排放範圍(例如,當以非化學計量控制模式824操作之時),其中該第一和第二組的目標排放範圍係彼此不同。雖然前述實例提供一些SEGR燃氣渦輪引擎52的控制方案,但應當理解可由使用擴散燃料噴嘴、預混燃料噴嘴或其任何組合之控制系統100執行任何數目的控制方案。 In some specific examples, in the stoichiometric control mode Control system 100 of 822 is configured to maintain the substantially stoichiometric ratio while gradually reducing flow rates in multiple sets of flow rates (eg, oxidant 68 and fuel 70), gradually reducing the number of SEGR gas turbine systems 52 One of the power outputs (eg, full load, first partial load, second partial load, etc.) is one of the power outputs (eg, load), and the emissions in the exhaust are maintained within one or more target emissions ranges. Control system 100 can also be configured to transition from the stoichiometric control mode 822 to non-chemical after gradually reducing the flow rate, gradually reducing the power output, and maintaining emissions. Metered control mode 824. After transitioning from the stoichiometric control mode 822 to the non-stoichiometric control mode 824, the control system 100 can also be configured to operate with the rich fuel control mode or the lean fuel control mode of the non-stoichiometric control mode 824. Control system 100 can also be configured to maintain emissions in the exhaust gas within a target emission range of the first group (eg, when operating in stoichiometric control mode 822) and a target emission range of the second group (eg, when The stoichiometric control mode 824 operates when the target emission ranges of the first and second sets are different from each other. While the foregoing examples provide some control schemes for the SEGR gas turbine engine 52, it should be understood that any number of control schemes may be implemented by the control system 100 using a diffusion fuel nozzle, a premixed fuel nozzle, or any combination thereof.

圖18為廢氣再循環(EGR)流率和燃氣渦輪 負載840對用於SEGR燃氣渦輪系統52之燃料/氧化劑比842的曲線圖,其說明擴散火焰可操作性曲線844和預混火焰可操作性曲線846。通過SEGR燃氣渦輪系統52的EGR流率通常是與燃氣渦輪引擎150上的負載成比例,且因此Y-軸840通常指示EGR流率和燃氣渦輪負載二者。 通常,各曲線844和846以上及至左側的區域表示SEGR燃氣渦輪系統52的各火焰配置之不穩定區。值得注意的是:擴散火焰可操作性曲線844實質上超過預混火焰可操作性曲線846,表示用擴散燃燒操作之SEGR燃氣渦輪系統52有顯著更大的EGR流率和負載範圍。如圖18中所示,擴散火焰可操作性曲線844可對應於配備擴散燃料噴嘴554之燃燒器160,其中廢氣(例如,稀釋劑)係在燃 燒點之後的擴散燃料噴嘴554下游及/或由噴嘴554產生之擴散火焰556下游注入。該類擴散燃燒配置之一實例示於圖16中。相比之下,預混火焰可操作性曲線846可對應於配備預混燃料噴嘴550之燃燒器160,其中該氧化劑68、燃料70、和稀釋劑514(例如,廢氣)係在燃燒點之前(即,在預混火焰552之上游)預混。同樣地,擴散火焰可操作性曲線844表示通過SEGR燃氣渦輪系統52之EGR流率大很多,也表示產生更多二氧化碳供使用於目標系統422。使用前述擴散燃燒配置操作之SEGR燃氣渦輪系統52也可具有實質上減少之氧和一氧化碳的排放。此等排放減少可至少部分是由於氧化劑68、燃料70、和稀釋劑514(例如,廢氣)之流量的獨立控制。據信擴散燃料噴嘴554和稀釋劑注入之各種配置(例如,圖16之稀釋劑注入系統770)可實質上增加燃氣渦輪負載之可操作範圍、廢氣之生產量、和廢氣42(例如,流95)之輸出以供用於目標系統422(諸如烴產生系統12)。 Figure 18 shows exhaust gas recirculation (EGR) flow rate and gas turbine A plot of load 840 versus fuel/oxidant ratio 842 for SEGR gas turbine system 52 illustrates diffusion flame operability curve 844 and premixed flame operability curve 846. The EGR flow rate through the SEGR gas turbine system 52 is typically proportional to the load on the gas turbine engine 150, and thus the Y-axis 840 typically indicates both the EGR flow rate and the gas turbine load. Typically, the regions above and to the left of each of curves 844 and 846 represent unstable regions of each flame configuration of SEGR gas turbine system 52. It is worth noting that the diffusion flame operability curve 844 substantially exceeds the premixed flame operability curve 846, indicating that the SEGR gas turbine system 52 operating with diffusion combustion has significantly greater EGR flow rate and load range. As shown in FIG. 18, the diffusion flame operability curve 844 may correspond to a combustor 160 equipped with a diffusion fuel nozzle 554, wherein the exhaust gas (eg, diluent) is ignited Downstream of the diffusion fuel nozzle 554 after the burn point and/or downstream of the diffusion flame 556 generated by the nozzle 554. An example of such a diffusion combustion configuration is shown in FIG. In contrast, the premixed flame operability curve 846 can correspond to the combustor 160 equipped with the premixed fuel nozzle 550, wherein the oxidant 68, fuel 70, and diluent 514 (eg, exhaust gas) are before the combustion point ( That is, premixed upstream of the premixed flame 552). Similarly, the diffusion flame operability curve 844 indicates that the EGR flow rate through the SEGR gas turbine system 52 is much greater, also indicating that more carbon dioxide is produced for use in the target system 422. The SEGR gas turbine system 52 operating using the aforementioned diffusion combustion configuration may also have substantially reduced emissions of oxygen and carbon monoxide. These reductions in emissions may be due, at least in part, to the independent control of the flow of oxidant 68, fuel 70, and diluent 514 (e.g., exhaust). It is believed that various configurations of diffusion fuel nozzle 554 and diluent injection (eg, diluent injection system 770 of FIG. 16) can substantially increase the operational range of the gas turbine load, the amount of exhaust gas produced, and the exhaust gas 42 (eg, flow) The output of 95) is for use in a target system 422 (such as hydrocarbon generation system 12).

附加說明 Additional information

舉例來說,提供以下各項作為本揭示的進一步說明:具體實例1.一種系統,其包含:渦輪燃燒器,其包含第一擴散燃料噴嘴,其中該第一擴散燃料噴嘴係經配置以產生擴散火焰;渦輪,其係由來自渦輪燃燒器中的擴散火焰之燃燒產物驅動;廢氣壓縮機,其中該廢氣 壓縮機係經配置以將來自渦輪的廢氣及沿著廢氣再循環路徑壓縮發送至該渦輪燃燒器;及控制系統,其經配置以化學計量的控制模式和非化學計量的控制模式來控制至少一種氧化劑和至少一種燃料至渦輪燃燒器之流率,其中該化學計量的控制模式係經配置以改變該等流率且提供該至少一種燃料與該至少一種氧化劑之實質上化學計量比,及該非化學計量的控制模式係經配置以改變該等流率且提供該至少一種燃料與該至少一種氧化劑之非化學計量比。 For example, the following is provided as a further illustration of the present disclosure: Embodiment 1. A system comprising: a turbine combustor including a first diffusion fuel nozzle, wherein the first diffusion fuel nozzle is configured to generate diffusion a flame; a turbine driven by a combustion product from a diffusion flame in a turbine combustor; an exhaust gas compressor, wherein the exhaust gas a compressor is configured to compress exhaust gas from the turbine and along the exhaust gas recirculation path to the turbine combustor; and a control system configured to control at least one of a stoichiometric control mode and a non-stoichiometric control mode a flow rate of the oxidant and the at least one fuel to the turbine combustor, wherein the stoichiometric control mode is configured to vary the flow rate and provide a substantially stoichiometric ratio of the at least one fuel to the at least one oxidant, and the non-chemical The metered control mode is configured to vary the flow rates and provide a non-stoichiometric ratio of the at least one fuel to the at least one oxidant.

具體實例2.具體實例1之系統,其中該化學 計量的控制模式係經配置以提供約1.0的當量比之該實質上化學計量比。 Specific Example 2. The system of Concrete Example 1, wherein the chemistry The metered control mode is configured to provide an equivalent stoichiometric ratio of about 1.0 to the substantially stoichiometric ratio.

具體實例3.任何前述具體實例之系統,其中 該化學計量的控制模式係經配置以提供介於約0.95和約1.05之間的當量比之該實質上化學計量比。 Specific example 3. The system of any of the preceding specific examples, wherein The stoichiometric control mode is configured to provide the substantially stoichiometric ratio of the equivalence ratio between about 0.95 and about 1.05.

具體實例4.任何前述具體實例之系統,其中 該非化學計量的控制模式係經配置以提供小於約0.95或大於約1.05的當量比之該非化學計量比。 Specific example 4. The system of any of the preceding specific examples, wherein The non-stoichiometric control mode is configured to provide the non-stoichiometric ratio of an equivalence ratio of less than about 0.95 or greater than about 1.05.

具體實例5.任何前述具體實例之系統,其中 該控制系統係經配置以將該等流率從第一組流率改變至第二組流率及改變該化學計量的控制模式和該非化學計量的控制模式之間的轉換。 Specific example 5. The system of any of the preceding specific examples, wherein The control system is configured to change the flow rate from the first set of flow rates to the second set of flow rates and to change the conversion between the stoichiometric control mode and the non-stoichiometric control mode.

具體實例6.任何前述具體實例之系統,其中 該第二組流率係小於該第一組流率。 Specific example 6. The system of any of the preceding specific examples, wherein The second set of flow rates is less than the first set of flow rates.

具體實例7.任何前述具體實例之系統,其中 該第二組流率係大於該第一組流率。 Specific example 7. The system of any of the preceding specific examples, wherein The second set of flow rates is greater than the first set of flow rates.

具體實例8.任何前述具體實例之系統,其中 於化學計量的控制模式之該控制系統係經配置以將該等流率從第一組流率改變至第二組流率同時保持該實質上化學計量比。 Specific example 8. The system of any of the preceding specific examples, wherein The control system in the stoichiometric control mode is configured to change the equal flow rates from the first set of flow rates to the second set of flow rates while maintaining the substantially stoichiometric ratio.

具體實例9.任何前述具體實例之系統,其中 該第二組流率係小於該第一組流率。 Specific example 9. The system of any of the preceding specific examples, wherein The second set of flow rates is less than the first set of flow rates.

具體實例10.任何前述具體實例之系統,其中 該第二組流率係大於該第一組流率。 Specific example 10. The system of any of the preceding specific examples, wherein The second set of flow rates is greater than the first set of flow rates.

具體實例11.任何前述具體實例之系統,其中 於化學計量的控制模式之該控制系統係經配置以分別藉由將該等流率從第一組流率改變至第二組流率而將該渦輪之功率輸出從第一功率輸出改變至第二功率輸出。 Specific example 11. The system of any of the preceding specific examples, wherein The control system in the stoichiometric control mode is configured to change the power output of the turbine from the first power output to the first by changing the equal flow rate from the first set of flow rates to the second set of flow rates, respectively Two power outputs.

具體實例12.任何前述具體實例之系統,其中 該第二組流率係小於該第一組流率,及該第二功率輸出係小於該第一功率輸出。 Embodiment 12. The system of any of the preceding specific examples, wherein The second set of flow rates is less than the first set of flow rates, and the second power output is less than the first power output.

具體實例13.任何前述具體實例之系統,其中 該第二組流率係大於該第一組流率,及該第二功率輸出係大於該第一功率輸出。 Specific example 13. The system of any of the preceding specific examples, wherein The second set of flow rates is greater than the first set of flow rates, and the second power output is greater than the first power output.

具體實例14.任何前述具體實例之系統,其中 於化學計量的控制模式之該控制系統係經配置以在將該等流率從第一組流率改變至第二組流率之同時將廢氣中的排放保持在一或多個目標排放範圍內。 Specific example 14. The system of any of the preceding specific examples, wherein The control system in the stoichiometric control mode is configured to maintain emissions in the exhaust gas within one or more target emissions ranges while changing the equal flow rates from the first set of flow rates to the second set of flow rates .

具體實例15.任何前述具體實例之系統,其中 該排放包含一氧化碳、氧、氮氧化物、硫氧化物、未燃燒的烴類、氫、或其任何組合。 Embodiment 15. The system of any of the preceding specific examples, wherein The emissions comprise carbon monoxide, oxygen, nitrogen oxides, sulfur oxides, unburned hydrocarbons, hydrogen, or any combination thereof.

具體實例16.任何前述具體實例之系統,其中 該一或多個目標排放範圍包含小於約50體積百萬分之一(ppmv)的氧範圍及/或小於約5000ppmv的一氧化碳範圍。 Specific example 16. The system of any of the preceding specific examples, wherein The one or more target emission ranges comprise a range of oxygen of less than about 50 parts per million (ppmv) and/or a range of carbon monoxide of less than about 5000 ppmv.

具體實例17.任何前述具體實例之系統,其中 該一或多個目標排放範圍包含小於約10體積百萬分之一(ppmv)的氧範圍及/或小於約1000ppmv的一氧化碳範圍。 Specific example 17. The system of any of the preceding specific examples, wherein The one or more target emission ranges comprise a range of oxygen of less than about 10 parts per million (ppmv) and/or a range of carbon monoxide of less than about 1000 ppmv.

具體實例18.任何前述具體實例之系統,其中 於化學計量的控制模式之該控制系統係經配置以逐漸地改變多組流率中的流率同時保持該實質上化學計量比。 Embodiment 18. The system of any of the preceding specific examples, wherein The control system in the stoichiometric control mode is configured to gradually change the flow rate in the plurality of sets of flow rates while maintaining the substantially stoichiometric ratio.

具體實例19.任何前述具體實例之系統,其中 該多組流率包含至少三組的流率。 Embodiment 19. The system of any of the preceding specific examples, wherein The plurality of sets of flow rates comprise flow rates of at least three sets.

具體實例20.任何前述具體實例之系統,其中 該多組流率包含至少四組的流率。 Specific example 20. The system of any of the preceding specific examples, wherein The plurality of sets of flow rates comprise flow rates of at least four sets.

具體實例21.任何前述具體實例之系統,其中 於化學計量的控制模式之該控制系統係經配置以保持該實質上化學計量比,且同時:逐漸地減少該多組流率中之流率;逐漸地減少該渦輪的多個功率輸出中之一功率輸出;及將廢氣中的排放保持在一或多個目標排放範圍內。 Specific example 21. The system of any of the preceding specific examples, wherein The control system in the stoichiometric control mode is configured to maintain the substantially stoichiometric ratio while simultaneously: gradually reducing the flow rate in the plurality of sets of flow rates; gradually reducing the plurality of power outputs of the turbine a power output; and maintaining emissions in the exhaust gas within one or more target emissions ranges.

具體實例22.任何前述具體實例之系統,其中該排放包含一氧化碳、氧、氮氧化物、硫氧化物、未燃燒 的烴類、氫、或其任何組合。 Embodiment 22. The system of any preceding embodiment, wherein the emission comprises carbon monoxide, oxygen, nitrogen oxides, sulfur oxides, unburned Hydrocarbons, hydrogen, or any combination thereof.

具體實例23.任何前述具體實例之系統,其中 該一或多個目標排放範圍包含小於約50體積百萬分之一(ppmv)的氧範圍及/或小於約5000ppmv的一氧化碳範圍。 Specific example 23. The system of any of the preceding specific examples, wherein The one or more target emission ranges comprise a range of oxygen of less than about 50 parts per million (ppmv) and/or a range of carbon monoxide of less than about 5000 ppmv.

具體實例24.任何前述具體實例之系統,其中 該一或多個目標排放範圍包含小於約10體積百萬分之一(ppmv)的氧範圍及/或小於約1000ppmv的一氧化碳範圍。 Specific example 24. The system of any of the preceding specific examples, wherein The one or more target emission ranges comprise a range of oxygen of less than about 10 parts per million (ppmv) and/or a range of carbon monoxide of less than about 1000 ppmv.

具體實例25.任何前述具體實例之系統,其中 該控制系統係經配置以在逐漸地減少該流率、逐漸地減少該功率輸出、及保持排放之後從該化學計量的控制模式轉換至該非化學計量的控制模式。 Specific example 25. The system of any preceding specific example, wherein The control system is configured to transition from the stoichiometric control mode to the non-stoichiometric control mode after gradually reducing the flow rate, gradually reducing the power output, and maintaining emissions.

具體實例26.任何前述具體實例之系統,其中 在從該化學計量的控制模式轉換至該非化學計量的控制模式之後,該控制系統係經配置以用非化學計量的控制模式之富燃料控制模式操作。 Specific example 26. The system of any preceding specific example, wherein After switching from the stoichiometric control mode to the non-stoichiometric control mode, the control system is configured to operate in a fuel rich control mode that is not in a stoichiometric control mode.

具體實例27.任何前述具體實例之系統,其中 在從該化學計量的控制模式轉換至該非化學計量的控制模式之後,該控制系統係經配置而以非化學計量的控制模式之貧燃料控制模式操作。 Specific example 27. The system of any preceding embodiment, wherein After switching from the stoichiometric control mode to the non-stoichiometric control mode, the control system is configured to operate in a lean fuel control mode of a non-stoichiometric control mode.

具體實例28.任何前述具體實例之系統,其中 該控制系統係經配置使當以化學計量的控制模式操作時將廢氣中的排放保持在第一組的目標排放範圍內,該控制系 統係經配置使當以非化學計量的控制模式操作時將廢氣中的排放保持在第二組的目標排放範圍內,及該第一和第二組的目標排放範圍係彼此不同。 Specific example 28. The system of any preceding embodiment, wherein The control system is configured to maintain emissions in the exhaust gas within a target emission range of the first group when operating in a stoichiometric control mode, the control system The system is configured to maintain emissions in the exhaust gas within a target emission range of the second group when operating in a non-stoichiometric control mode, and the target emission ranges of the first and second groups are different from each other.

具體實例29.任何前述具體實例之系統,其中 該非化學計量的控制模式包含具有氧排放之目標排放範圍為至少約1000體積百萬分之一(ppmv)的貧燃料控制模式。 Specific example 29. The system of any preceding specific example, wherein The non-stoichiometric control mode includes a lean fuel control mode having a target emission range of oxygen emissions of at least about 1000 parts per million (ppmv).

具體實例30.任何前述具體實例之系統,其中 該非化學計量的控制模式包含具有一氧化碳排放之目標排放範圍為小於約100體積百萬分之一(ppmv)的貧燃料控制模式。 Specific example 30. The system of any preceding specific example, wherein The non-stoichiometric control mode includes a lean fuel control mode with a target emission range of carbon monoxide emissions of less than about 100 parts per million (ppmv).

具體實例31.任何前述具體實例之系統,其中 該非化學計量的控制模式包含具有一氧化碳排放之目標排放範圍為小於約20體積百萬分之一(ppmv)的貧燃料控制模式。 Specific example 31. The system of any preceding embodiment, wherein The non-stoichiometric control mode includes a lean fuel control mode having a target emission range of carbon monoxide emissions of less than about 20 parts per million (ppmv).

具體實例32.任何前述具體實例之系統,其中 該非化學計量的控制模式包含具有氮氧化物排放之目標排放範圍為小於約200體積百萬分之一(ppmv)的貧燃料控制模式。 Specific example 32. The system of any preceding embodiment, wherein The non-stoichiometric control mode includes a lean fuel control mode having a target emission range of nitrogen oxide emissions of less than about 200 parts per million (ppmv).

具體實例33.任何前述具體實例之系統,其中 該非化學計量的控制模式包含具有氮氧化物排放之目標排放範圍為小於約100體積百萬分之一(ppmv)的貧燃料控制模式。 Specific example 33. The system of any preceding embodiment, wherein The non-stoichiometric control mode includes a lean fuel control mode having a target emission range of nitrogen oxide emissions of less than about 100 parts per million (ppmv).

具體實例34.任何前述具體實例之系統,其中 該控制系統係經配置以:逐漸地改變該多組流率中之流率;因應該流率之改變,逐漸地改變該渦輪的多個功率輸出中之一功率輸出;在改變流率之前和之後,將該廢氣中的排放保持在一或多個目標排放範圍內;在改變流率之前和之後,將沿著該廢氣再循環路徑之廢氣的溫度保持在目標溫度範圍內;及在改變流率之前和之後,將沿著該廢氣再循環路徑之廢氣的壓力保持在目標溫度範圍內。 Specific example 34. The system of any preceding embodiment, wherein The control system is configured to: gradually change the flow rate in the plurality of sets of flow rates; gradually change one of the plurality of power outputs of the turbine due to a change in the flow rate; before changing the flow rate and Thereafter, the emissions in the exhaust gas are maintained within one or more target emission ranges; before and after the flow rate is changed, the temperature of the exhaust gases along the exhaust gas recirculation path is maintained within a target temperature range; and the flow is changed Before and after the rate, the pressure of the exhaust gas along the exhaust gas recirculation path is maintained within the target temperature range.

具體實例35.任何前述具體實例之系統,其中 該控制系統係經配置以在至少一個觸媒單元下游沿著該廢氣再循環路徑將該溫度保持在目標溫度範圍內。 Specific example 35. The system of any preceding embodiment, wherein The control system is configured to maintain the temperature within the target temperature range along the exhaust gas recirculation path downstream of the at least one catalyst unit.

具體實例36.任何前述具體實例之系統,其中 該控制系統係經配置以藉由調整廢氣提取閥、廢氣排放閥、廢氣壓縮機或氧化劑壓縮機之操作速率、廢氣壓縮機入口導流片之位置、廢氣壓縮機再循環閥、或其任何組合中的至少一者保持該壓力。 Specific example 36. The system of any preceding embodiment, wherein The control system is configured to adjust an operating rate of an exhaust gas extraction valve, an exhaust gas discharge valve, an exhaust gas compressor or an oxidant compressor, a position of an exhaust gas compressor inlet baffle, an exhaust gas compressor recirculation valve, or any combination thereof At least one of them maintains this pressure.

具體實例37.任何前述具體實例之系統,其中 該渦輪燃燒器包含連接到該第一流體供應迴路之第一組燃料噴嘴和連接到該第二流體供應迴路之第二組燃料噴嘴,第一擴散噴嘴為第一或第二組燃料噴嘴之一部分,及該第二控制系統係經配置以透過該第一和第二流體供應迴路獨立地控制流體流。 Specific example 37. The system of any preceding embodiment, wherein The turbine combustor includes a first set of fuel nozzles coupled to the first fluid supply circuit and a second set of fuel nozzles coupled to the second fluid supply circuit, the first diffusion nozzle being a portion of the first or second set of fuel nozzles And the second control system is configured to independently control fluid flow through the first and second fluid supply circuits.

具體實例38.任何前述具體實例之系統,其中 該第一組燃料噴嘴包含單一燃料噴嘴,及該第二組燃料噴嘴包含多個燃料噴嘴。 Specific example 38. The system of any preceding embodiment, wherein The first set of fuel nozzles includes a single fuel nozzle, and the second set of fuel nozzles includes a plurality of fuel nozzles.

具體實例39.任何前述具體實例之系統,其中 該第一組燃料噴嘴包含第一多個燃料噴嘴,及該第二組燃料噴嘴包含第二多個燃料噴嘴。 Specific example 39. The system of any preceding embodiment, wherein The first set of fuel nozzles includes a first plurality of fuel nozzles, and the second set of fuel nozzles includes a second plurality of fuel nozzles.

具體實例40.任何前述具體實例之系統,其中 該渦輪燃燒器包含連接到第三流體供應迴路之第三組燃料噴嘴,及該控制系統係經配置以透過該第一、第二、和第三流體供應迴路獨立地控制流體流。 Specific example 40. The system of any preceding embodiment, wherein The turbine combustor includes a third set of fuel nozzles coupled to a third fluid supply circuit, and the control system is configured to independently control fluid flow through the first, second, and third fluid supply circuits.

具體實例41.任何前述具體實例之系統,其中 該控制系統係經配置以透過第一和第二流體供應迴路而以不同速率獨立地改變該流體。 Specific example 41. The system of any preceding specific example, wherein The control system is configured to independently change the fluid at different rates through the first and second fluid supply circuits.

具體實例42.任何前述具體實例之系統,其中 該控制系統係經配置以透過第一和第二流體供應迴路而以相同速率獨立地改變該流體。 Specific example 42. The system of any preceding embodiment, wherein The control system is configured to independently change the fluid at the same rate through the first and second fluid supply circuits.

具體實例43.任何前述具體實例之系統,其中 該第一組燃料噴嘴包含至少第一擴散燃料噴嘴,及該第二組燃料噴嘴包含第二擴散燃料噴嘴。 Specific example 43. The system of any preceding embodiment, wherein The first set of fuel nozzles includes at least a first diffusion fuel nozzle, and the second set of fuel nozzles includes a second diffusion fuel nozzle.

具體實例44.任何前述具體實例之系統,其中 該第一組燃料噴嘴包含至少第一擴散燃料噴嘴,及該第二組燃料噴嘴包含第一預混燃料噴嘴。 Specific example 44. The system of any preceding embodiment, wherein The first set of fuel nozzles includes at least a first diffusion fuel nozzle, and the second set of fuel nozzles includes a first premixed fuel nozzle.

具體實例45.任何前述具體實例之系統,其包 含沿著該廢氣再循環路徑配置之第一觸媒單元。 Concrete example 45. The system of any of the preceding specific examples, the package thereof A first catalyst unit disposed along the exhaust gas recirculation path.

具體實例46.任何前述具體實例之系統,其中 該第一觸媒單元係經配置以控制廢氣中的氧、一氧化碳、二氧化碳、氮氧化物、未燃燒的烴類、或其任何組合之濃 度水平。 Specific example 46. The system of any preceding embodiment, wherein The first catalyst unit is configured to control the concentration of oxygen, carbon monoxide, carbon dioxide, nitrogen oxides, unburned hydrocarbons, or any combination thereof in the exhaust gas Degree level.

具體實例47.任何前述具體實例之系統,其中 該第一觸媒單元包含氧化觸媒、一氧化碳還原觸媒、氮氧化物還原觸媒、氧化鋁、氧化鋯、氧化矽、氧化鈦、氧化鉑、氧化鈀、氧化鈷、或混合金屬氧化物、或其組合。 Specific example 47. The system of any preceding specific example, wherein The first catalyst unit comprises an oxidation catalyst, a carbon monoxide reduction catalyst, a nitrogen oxide reduction catalyst, aluminum oxide, zirconium oxide, hafnium oxide, titanium oxide, platinum oxide, palladium oxide, cobalt oxide, or a mixed metal oxide. Or a combination thereof.

具體實例48.任何前述具體實例之系統,其中 該第一觸媒單元經配置以用廢氣和氧化劑燃料驅動氧化反應。 Specific example 48. The system of any preceding embodiment, wherein The first catalyst unit is configured to drive an oxidation reaction with the exhaust gas and the oxidant fuel.

具體實例49.任何前述具體實例之系統,其中 該控制系統係經配置以調整氧化劑燃料之流量來控制氧化反應系統。 Specific example 49. The system of any preceding embodiment, wherein The control system is configured to adjust the flow of oxidant fuel to control the oxidation reaction system.

具體實例50.任何前述具體實例之系統,其中 該控制系統係經配置以因應感測器反饋而調整氧化劑燃料之流量,及該感測器反饋包含指示氧、一氧化碳、氫、氮氧化物、未燃燒的烴類、或其任何組合之氣體組成反饋。 Specific example 50. The system of any preceding embodiment, wherein The control system is configured to adjust the flow of oxidant fuel in response to sensor feedback, and the sensor feedback includes a gas composition indicative of oxygen, carbon monoxide, hydrogen, nitrogen oxides, unburned hydrocarbons, or any combination thereof Feedback.

具體實例51.任何前述具體實例之系統,其包 含沿著該廢氣再循環路徑配置之第一熱回收單元、第二熱回收單元、或其組合。 Specific example 51. The system of any of the foregoing specific examples, the package thereof A first heat recovery unit, a second heat recovery unit, or a combination thereof disposed along the exhaust gas recirculation path.

具體實例52.任何前述具體實例之系統,其包 含沿著該廢氣再循環路徑配置之第一觸媒單元、第二觸媒單元、或其組合。 Specific example 52. The system of any of the foregoing specific examples, the package thereof A first catalyst unit, a second catalyst unit, or a combination thereof disposed along the exhaust gas recirculation path.

具體實例53.任何前述具體實例之系統,其中 該第一或第二觸媒單元係配置於上游、下游,或與第一或第二熱回收單元整合。 Specific example 53. The system of any preceding specific example, wherein The first or second catalyst unit is configured upstream, downstream, or integrated with the first or second heat recovery unit.

具體實例54.任何前述具體實例之系統,其包 含具有第一熱回收蒸汽產生器的第一熱回收單元。 Concrete example 54. The system of any of the preceding specific examples, the package thereof A first heat recovery unit having a first heat recovery steam generator.

具體實例55.任何前述具體實例之系統,其包 含連接到該第一熱回收蒸汽產生器之第一蒸汽渦輪。 Specific example 55. The system of any of the preceding specific examples, the package thereof A first steam turbine coupled to the first heat recovery steam generator.

具體實例56.任何前述具體實例之系統,其包 含具有第二熱回收蒸汽產生器的第二熱回收單元、連接到該第一熱回收蒸汽產生器之第一蒸汽渦輪、及連接到該第二熱回收蒸汽產生器之第二蒸汽渦輪。 Specific example 56. The system of any of the preceding specific examples, the package thereof A second heat recovery unit having a second heat recovery steam generator, a first steam turbine coupled to the first heat recovery steam generator, and a second steam turbine coupled to the second heat recovery steam generator.

具體實例57.任何前述具體實例之系統,其包 含沿著該廢氣再循環路徑配置之除濕系統及/或除粒系統。 Concrete example 57. The system of any of the preceding specific examples, the package thereof A dehumidification system and/or a degranulation system disposed along the exhaust gas recirculation path.

具體實例58.任何前述具體實例之系統,其中 該除濕系統包含熱交換器、冷凝器、水氣分離器、第一過濾器、或其任何組合,其中該除粒系統包含慣性分離器、重力分離器、第二過濾器、或其任何組合。 Specific example 58. The system of any preceding embodiment, wherein The dehumidification system comprises a heat exchanger, a condenser, a water gas separator, a first filter, or any combination thereof, wherein the degranulation system comprises an inertial separator, a gravity separator, a second filter, or any combination thereof.

具體實例59.任何前述具體實例之系統,其包 含沿著該廢氣再循環路徑配置之升壓鼓風機。 Specific example 59. The system of any of the foregoing specific examples, the package thereof A booster blower disposed along the exhaust gas recirculation path.

具體實例60.任何前述具體實例之系統,其包 含沿著該廢氣再循環路徑配置之熱回收單元、升壓鼓風機、除濕單元、及除粒單元。 Specific Example 60. The system of any of the foregoing specific examples, the package thereof A heat recovery unit, a booster blower, a dehumidifying unit, and a degranulation unit disposed along the exhaust gas recirculation path.

具體實例61.任何前述具體實例之系統,其中 該第一擴散燃料噴嘴包含沿著該第一擴散燃料噴嘴之彼此隔離的第一燃料通道及第一氧化劑通道。 Specific example 61. The system of any preceding embodiment, wherein The first diffusion fuel nozzle includes a first fuel passage and a first oxidant passage that are isolated from each other along the first diffusion fuel nozzle.

具體實例62.任何前述具體實例之系統,其中 該第一擴散燃料噴嘴包含第一稀釋劑通道。 Specific example 62. The system of any preceding embodiment, wherein The first diffusion fuel nozzle includes a first diluent passage.

具體實例63.任何前述具體實例之系統,其中 該第一稀釋劑通道係經配置以將一部分的該廢氣流過該第一擴散燃料噴嘴。 Specific example 63. The system of any preceding embodiment, wherein The first diluent passage is configured to flow a portion of the exhaust gas through the first diffusion fuel nozzle.

具體實例64.任何前述具體實例之系統,其中 該稀釋劑通道係經配置以將一部分的該廢氣、蒸汽、氮、另一惰性氣體、或其組合流過該第一擴散燃料噴嘴。 Specific example 64. The system of any preceding specific example, wherein The diluent passage is configured to flow a portion of the exhaust gas, steam, nitrogen, another inert gas, or a combination thereof through the first diffusion fuel nozzle.

具體實例65.任何前述具體實例之系統,其中 該渦輪燃燒器包含配置於第一擴散燃料噴嘴下游的稀釋劑注入系統。 Specific example 65. The system of any preceding embodiment, wherein The turbine combustor includes a diluent injection system disposed downstream of the first diffusion fuel nozzle.

具體實例66.任何前述具體實例之系統,其中 該稀釋劑注入系統係經配置以將一部分的廢氣、蒸汽、氮或另一惰性氣體、或其組合注入第一擴散燃料噴嘴下游的渦輪燃燒器之室。 Specific example 66. The system of any preceding specific example, wherein The diluent injection system is configured to inject a portion of the exhaust gas, steam, nitrogen, or another inert gas, or a combination thereof, into a chamber of a turbine combustor downstream of the first diffusion fuel nozzle.

具體實例67.任何前述具體實例之系統,其中 該稀釋劑注入系統在渦輪燃燒器之襯墊中包含多個孔道,且該多個孔道係經配置以將該部分的廢氣注入該渦輪燃燒器之室。 Specific example 67. The system of any preceding embodiment, wherein The diluent injection system includes a plurality of cells in a liner of the turbine combustor, and the plurality of cells are configured to inject the portion of exhaust gas into the chamber of the turbine combustor.

具體實例68.任何前述具體實例之系統,其中 該渦輪燃燒器包含配置在該室周圍的第一壁、配置在該第一壁周圍的第二壁、及配置在該第一和第二壁之間的排氣通道,其中該稀釋劑注入系統包含多個貫穿渦輪燃燒器之第一和第二壁的稀釋劑注入器。 Specific example 68. The system of any preceding embodiment, wherein The turbine combustor includes a first wall disposed about the chamber, a second wall disposed about the first wall, and an exhaust passage disposed between the first and second walls, wherein the diluent injection system A diluent injector comprising a plurality of first and second walls through the turbine combustor.

具體實例69.任何前述具體實例之系統,其中 該多個稀釋劑注入器係經配置以將部分的廢氣、蒸汽、氮、或另一惰性氣體注入渦輪燃燒器之室。 Specific example 69. The system of any preceding embodiment, wherein The plurality of diluent injectors are configured to inject a portion of the exhaust, steam, nitrogen, or another inert gas into the chamber of the turbine combustor.

具體實例70.任何前述具體實例之系統,其包含經配置以提取一部分的廢氣之廢氣提取系統。 Embodiment 70. The system of any preceding embodiment, comprising an exhaust gas extraction system configured to extract a portion of the exhaust gas.

具體實例71.任何前述具體實例之系統,其包含經配置以處理該部分的廢氣之廢氣處理系統。 Embodiment 71. The system of any preceding embodiment, comprising an exhaust gas treatment system configured to treat the portion of the exhaust.

具體實例72.任何前述具體實例之系統,其中該廢氣處理系統包含經配置以將部分的廢氣分離成多個氣體流之氣體分離系統。 The system of any preceding embodiment, wherein the exhaust gas treatment system comprises a gas separation system configured to separate a portion of the exhaust gas into a plurality of gas streams.

具體實例73.任何前述具體實例之系統,其中該多個氣體流包含富二氧化碳(CO2)之第一流和貧二氧化碳(CO2)之第二流。 73. Specific examples of the system of any of the foregoing specific examples, wherein the carbon dioxide-rich stream comprises a plurality of gas (CO 2) and the first flow-lean carbon dioxide (CO 2) of the second stream.

具體實例74.任何前述具體實例之系統,其中該廢氣處理系統包含經配置以接收該第一或第二流中的至少一者的氣體壓縮系統、除濕系統、除粒系統、或其組合。 The system of any preceding embodiment, wherein the exhaust treatment system comprises a gas compression system, a dehumidification system, a degranulation system, or a combination thereof configured to receive at least one of the first or second streams.

具體實例75.任何前述具體實例之系統,其中該廢氣處理系統包含經配置以純化多個氣體流中的至少一者之氣體純化系統。 The system of any preceding embodiment, wherein the exhaust gas treatment system comprises a gas purification system configured to purify at least one of the plurality of gas streams.

具體實例76.任何前述具體實例之系統,其包含經配置以接收該多個流中的至少一者的目標系統,其中該目標系統包含烴產生系統、地下儲存器、碳固存系統、管線、儲存槽、或其任何組合。 Embodiment 76. The system of any preceding embodiment, comprising a target system configured to receive at least one of the plurality of streams, wherein the target system comprises a hydrocarbon generation system, an underground storage, a carbon storage system, a pipeline, Storage tank, or any combination thereof.

具體實例77.任何前述具體實例之系統,其中 該廢氣處理系統包含經配置以壓縮部分的廢氣之壓縮系統。 Embodiment 77. The system of any preceding embodiment, wherein The exhaust treatment system includes a compression system configured to compress a portion of the exhaust.

具體實例78.任何前述具體實例之系統,其中該廢氣處理系統包含除濕系統及/或除粒系統。 The system of any preceding embodiment, wherein the exhaust gas treatment system comprises a dehumidification system and/or a degranulation system.

具體實例79.任何前述具體實例之系統,其包含因應感測器反饋而調整一或多個操作參數來控制在廢氣中的當量比或排放物水平之控制系統。 Embodiment 79. The system of any preceding embodiment, comprising a control system that adjusts one or more operating parameters to control an equivalence ratio or effluent level in the exhaust gas in response to sensor feedback.

具體實例80.任何前述具體實例之系統,其中該一或多個操作參數包含至該渦輪燃燒器之氧化劑流率及/或燃料流率。 The system of any preceding embodiment, wherein the one or more operational parameters comprise an oxidant flow rate and/or a fuel flow rate to the turbine combustor.

具體實例81.任何前述具體實例之系統,其中該控制系統係經配置以將該當量比保持介於約0.95和1.05之間。 Embodiment 81. The system of any preceding embodiment, wherein the control system is configured to maintain the equivalence ratio between about 0.95 and 1.05.

具體實例82.任何前述具體實例之系統,其中該感測器反饋包含有關氧、一氧化碳、氫、氮氧化物、未燃燒的烴類、或其任何組合之氣體組成反饋。 Embodiment 82. The system of any preceding embodiment, wherein the sensor feedback comprises gas composition feedback relating to oxygen, carbon monoxide, hydrogen, nitrogen oxides, unburned hydrocarbons, or any combination thereof.

具體實例83.任何前述具體實例之系統,其中該控制系統係連接到多個經配置以獲得感測器反饋之感測器,和該多個感測器係沿著該廢氣再循環路徑、渦輪燃燒器、渦輪、廢氣壓縮機、或其組合配置。 Embodiment 83. The system of any preceding embodiment, wherein the control system is coupled to a plurality of sensors configured to obtain sensor feedback, and the plurality of sensors are along the exhaust gas recirculation path, turbine Burner, turbine, exhaust gas compressor, or a combination thereof.

具體實例84.任何前述具體實例之系統,其包含從廢氣壓縮機至渦輪之旁路管線,其中該旁路管線包含經配置以冷卻從廢氣壓縮機至渦輪之廢氣的旁路流的熱交換器。 Embodiment 84. The system of any preceding embodiment, comprising a bypass line from an exhaust gas compressor to a turbine, wherein the bypass line comprises a heat exchanger configured to cool a bypass flow of exhaust gas from the exhaust gas compressor to the turbine .

具體實例85.任何前述具體實例之系統,其包 含具有渦輪燃燒器、渦輪、和廢氣壓縮機之燃氣渦輪引擎,其中該燃氣渦輪引擎為化學計量廢氣再循環(SEGR)燃氣渦輪引擎。 Specific example 85. The system of any of the preceding specific examples, the package thereof A gas turbine engine having a turbine combustor, a turbine, and an exhaust gas compressor, wherein the gas turbine engine is a stoichiometric exhaust gas recirculation (SEGR) gas turbine engine.

具體實例86.任何前述具體實例之系統,其包 含連接到該燃氣渦輪引擎之廢氣提取系統、連接到該廢氣提取系統之廢氣處理系統、及連接到該廢氣處理系統之烴產生系統。 Specific example 86. The system of any of the foregoing specific examples, the package thereof An exhaust gas extraction system coupled to the gas turbine engine, an exhaust gas treatment system coupled to the exhaust gas extraction system, and a hydrocarbon production system coupled to the exhaust gas treatment system.

具體實例87.一種方法,其包含:將至少一種 氧化劑和至少一種燃料注入渦輪燃燒器之室,其中該至少一種氧化劑和該至少一種燃料混合和燃燒而成擴散火焰以產生燃燒產物;用該燃燒產物驅動渦輪和輸出廢氣;將該廢氣沿著廢氣再循環路徑再循環至廢氣壓縮機;將廢氣壓縮和發送至該渦輪燃燒器;以化學計量的控制模式控制該至少一種氧化劑和該至少一種燃料至該渦輪燃燒器之流率,其中該化學計量的控制模式係經配置以改變該等流率及提供至少一種燃料與至少一種氧化劑之實質上化學計量比;及以非化學計量的控制模式控制該至少一種氧化劑和該至少一種燃料至該渦輪燃燒器之流率,其中該非化學計量的控制模式係經配置以改變該等流率及提供至少一種燃料與至少一種氧化劑之非化學計量比。 Specific example 87. A method comprising: at least one An oxidant and at least one fuel are injected into the chamber of the turbine combustor, wherein the at least one oxidant and the at least one fuel are mixed and combusted to form a diffusion flame to produce a combustion product; the combustion product is used to drive the turbine and output the exhaust gas; Recycling path is recirculated to the exhaust gas compressor; exhaust gas is compressed and sent to the turbine combustor; flow rate of the at least one oxidant and the at least one fuel to the turbine combustor is controlled in a stoichiometric control mode, wherein the stoichiometry Control mode is configured to vary the flow rates and provide a substantially stoichiometric ratio of the at least one fuel to the at least one oxidant; and control the at least one oxidant and the at least one fuel to the turbine in a non-stoichiometric control mode The flow rate of the device, wherein the non-stoichiometric control mode is configured to vary the flow rates and provide a non-stoichiometric ratio of the at least one fuel to the at least one oxidant.

具體實例88.任何前述具體實例之方法,其中 於化學計量的控制模式之控制包含提供約1.0的當量比之該實質上化學計量比。 Specific example 88. The method of any preceding embodiment, wherein Control of the stoichiometric control mode includes providing the substantially stoichiometric ratio of an equivalent ratio of about 1.0.

具體實例89.任何前述具體實例之方法,其中 於化學計量的控制模式之控制包含提供介於約0.95和約1.05之間的當量比之該實質上化學計量比。 Specific example 89. The method of any preceding embodiment, wherein Control of the stoichiometric control mode includes providing the substantially stoichiometric ratio of the equivalence ratio between about 0.95 and about 1.05.

具體實例90.任何前述具體實例之方法,其中 於非化學計量的控制模式之控制包含提供小於約0.95或大於約1.05的當量比之該非化學計量比。 Embodiment 90. The method of any of the preceding embodiments, wherein Control of the non-stoichiometric control mode includes providing the non-stoichiometric ratio of an equivalence ratio of less than about 0.95 or greater than about 1.05.

具體實例91.任何前述具體實例之方法,其包 含將該等流率從第一組流率改變至第二組流率及在該化學計量的控制模式和該非化學計量的控制模式之間的轉換。 Specific Example 91. The method of any of the foregoing specific examples, the package thereof There is a transition between changing the flow rate from the first set of flow rates to the second set of flow rates and between the stoichiometric control mode and the non-stoichiometric control mode.

具體實例92.任何前述具體實例之方法,其中 該第二組流率係小於該第一組流率。 Specific example 92. The method of any preceding embodiment, wherein The second set of flow rates is less than the first set of flow rates.

具體實例93.任何前述具體實例之方法,其中 該第二組流率係大於該第一組流率。 Specific example 93. The method of any preceding embodiment, wherein The second set of flow rates is greater than the first set of flow rates.

具體實例94.任何前述具體實例之方法,其中 於化學計量的控制模式之控制包含將該等流率從第一組流率改變至第二組流率同時保持該實質上化學計量比。 Embodiment 94. The method of any preceding embodiment, wherein Control of the stoichiometric control mode includes changing the flow rates from the first set of flow rates to the second set of flow rates while maintaining the substantially stoichiometric ratio.

具體實例95.任何前述具體實例之方法,其中 該第二組流率係小於該第一組流率。 Specific example 95. The method of any preceding embodiment, wherein The second set of flow rates is less than the first set of flow rates.

具體實例96.任何前述具體實例之方法,其中 該第二組流率係大於該第一組流率。 Specific example 96. The method of any preceding embodiment, wherein The second set of flow rates is greater than the first set of flow rates.

具體實例97.任何前述具體實例之方法,其中 於化學計量的控制模式之控制包含分別藉由從第一組流率改變至第二組流率而將該渦輪之功率輸出從第一功率輸出改變至第二功率輸出。 Embodiment 97. The method of any preceding embodiment, wherein Control of the stoichiometric control mode includes changing the power output of the turbine from the first power output to the second power output by changing from the first set of flow rates to the second set of flow rates, respectively.

具體實例98.任何前述具體實例之方法,其中 該第二組流率係小於該第一組流率,及該第二功率輸出係小於該第一功率輸出。 Specific example 98. The method of any preceding embodiment, wherein The second set of flow rates is less than the first set of flow rates, and the second power output is less than the first power output.

具體實例99.任何前述具體實例之方法,其中 該第二組流率係大於該第一組流率,及該第二功率輸出係大於該第一功率輸出。 Embodiment 99. The method of any preceding embodiment, wherein The second set of flow rates is greater than the first set of flow rates, and the second power output is greater than the first power output.

具體實例100.任何前述具體實例之方法,其 中於化學計量的控制模式之控制包含在將該等流率從第一組流率改變至第二組流率之同時將廢氣中的排放保持在一或多個目標排放範圍內。 Specific example 100. The method of any of the preceding specific examples, Control of the stoichiometric control mode includes maintaining the emissions in the exhaust within one or more target emissions ranges while changing the flow rates from the first set of flow rates to the second set of flow rates.

具體實例101.任何前述具體實例之方法,其 中該排放包含一氧化碳、氧、氮氧化物、硫氧化物、未燃燒的烴類、氫、或其任何組合。 Specific example 101. The method of any of the preceding specific examples, The emissions include carbon monoxide, oxygen, nitrogen oxides, sulfur oxides, unburned hydrocarbons, hydrogen, or any combination thereof.

具體實例102.任何前述具體實例之方法,其 中該一或多個目標排放範圍包含小於約50體積百萬分之一(ppmv)的氧範圍及/或小於約5000ppmv的一氧化碳範圍。 Specific example 102. The method of any of the preceding specific examples, The one or more target emission ranges comprise a range of oxygen of less than about 50 parts per million (ppmv) and/or a range of carbon monoxide of less than about 5000 ppmv.

具體實例103.任何前述具體實例之方法,其 中該一或多個目標排放範圍包含小於約10體積百萬分之一(ppmv)的氧範圍及/或小於約1000ppmv的一氧化碳範圍。 Specific example 103. The method of any of the preceding specific examples, The one or more target emission ranges comprise a range of oxygen of less than about 10 parts per million (ppmv) and/or a range of carbon monoxide of less than about 1000 ppmv.

具體實例104.任何前述具體實例之方法,其 中於化學計量的控制模式之控制包含逐漸地改變多組流率中的流率同時保持該實質上化學計量比。 Specific example 104. The method of any of the preceding specific examples, Control of the stoichiometric control mode involves gradually changing the flow rate in the plurality of sets of flow rates while maintaining the substantially stoichiometric ratio.

具體實例105.任何前述具體實例之方法,其 中該多組流率包含至少三組流率。 Specific example 105. The method of any of the preceding specific examples, The multi-group flow rate includes at least three sets of flow rates.

具體實例106.任何前述具體實例之方法,其 中該多組流率包含至少四組的流率。 Specific example 106. The method of any of the preceding specific examples, The multi-group flow rate includes flow rates of at least four groups.

具體實例107.任何前述具體實例之方法,其 中於化學計量的控制模式之控包含保持實質上化學計量比,且同時:逐漸地減少該多組流率中之流率;逐漸地減少該渦輪的多個功率輸出中之一功率輸出;及將排放保持在一或多個目標排放範圍內之廢氣中。 Specific example 107. The method of any of the preceding specific examples, Controlling the stoichiometric control mode includes maintaining a substantially stoichiometric ratio while simultaneously: gradually reducing the flow rate in the plurality of sets of flow rates; gradually reducing one of the plurality of power outputs of the turbine; and The emissions are maintained in the exhaust gas within one or more target emissions ranges.

具體實例108.任何前述具體實例之方法,其 中該排放包含一氧化碳、氧、氮氧化物、硫氧化物、未燃燒的烴類、氫、或其任何組合。 Specific example 108. The method of any of the preceding specific examples, The emissions include carbon monoxide, oxygen, nitrogen oxides, sulfur oxides, unburned hydrocarbons, hydrogen, or any combination thereof.

具體實例109.任何前述具體實例之方法,其 中該一或多個目標排放範圍包含小於約50體積百萬分之一(ppmv)的氧範圍及/或小於約5000ppmv的一氧化碳範圍。 Specific example 109. The method of any of the preceding specific examples, The one or more target emission ranges comprise a range of oxygen of less than about 50 parts per million (ppmv) and/or a range of carbon monoxide of less than about 5000 ppmv.

具體實例110.任何前述具體實例之方法,其 中該一或多個目標排放範圍包含小於約10體積百萬分之一(ppmv)的氧範圍及/或小於約1000ppmv的一氧化碳範圍。 Specific example 110. The method of any of the preceding specific examples, The one or more target emission ranges comprise a range of oxygen of less than about 10 parts per million (ppmv) and/or a range of carbon monoxide of less than about 1000 ppmv.

具體實例111.任何前述具體實例之方法,其 包含在逐漸地減少該等流率、逐漸地減少該功率輸出、和保持排放之後,從該化學計量的控制模式轉換至該非化學計量的控制模式。 Specific example 111. The method of any of the preceding specific examples, The transition from the stoichiometric control mode to the non-stoichiometric control mode is included after gradually reducing the flow rate, gradually reducing the power output, and maintaining the emissions.

具體實例112.任何前述具體實例之方法,其 中於非化學計量的控制模式之控制包含在從該化學計量的控制模式轉換至該非化學計量的控制模式之後,以富燃料控制模式操作。 Specific example 112. The method of any of the preceding specific examples, Control of the non-stoichiometric control mode includes operating in a rich fuel control mode after switching from the stoichiometric control mode to the non-stoichiometric control mode.

具體實例113.任何前述具體實例之方法,其 中於非化學計量的控制模式之控制包含在從該化學計量的控制模式轉換至該非化學計量的控制模式之後,以貧燃料控制模式操作。 Specific example 113. The method of any of the preceding specific examples, Control of the non-stoichiometric control mode includes operating in a lean fuel control mode after switching from the stoichiometric control mode to the non-stoichiometric control mode.

具體實例114.任何前述具體實例之方法,其 中於化學計量的控制模式之控制包含將廢氣中的排放保持在第一組的目標排放範圍內,其中於非化學計量的控制模式之控制包含將廢氣中的排放保持在第二組的目標排放範圍內,其中該第一和第二組的目標排放範圍係彼此不同。 Specific example 114. The method of any of the preceding specific examples, The control of the stoichiometric control mode includes maintaining emissions in the exhaust gas within the target emission range of the first group, wherein control of the non-stoichiometric control mode includes maintaining the emissions in the exhaust gas in the second group of target emissions Within the scope, wherein the target emission ranges of the first and second groups are different from each other.

具體實例115.任何前述具體實例之方法,其 中於非化學計量的控制模式之控制包含以具有氧排放之目標排放範圍為至少約1000體積百萬分之一(ppmv)的貧燃料控制模式操作。 Specific example 115. The method of any of the preceding specific examples, Control of the non-stoichiometric control mode includes operating in a lean fuel control mode having a target emission range of oxygen emissions of at least about 1000 parts per million (ppmv).

具體實例116.任何前述具體實例之方法,其 中於非化學計量的控制模式之控制包含以具有一氧化碳排放之目標排放範圍為小於約100體積百萬分之一(ppmv)的貧燃料控制模式操作。 Specific example 116. The method of any of the preceding specific examples, Control of the non-stoichiometric control mode includes operation in a lean fuel control mode having a target emission range of carbon monoxide emissions of less than about 100 parts per million (ppmv).

具體實例117.任何前述具體實例之方法,其 中於非化學計量的控制模式之控制包含以具有一氧化碳排放之目標排放範圍為小於約20體積百萬分之一(ppmv) 的貧燃料控制模式操作。 Specific example 117. The method of any of the preceding specific examples, The control of the non-stoichiometric control mode includes a target emission range with carbon monoxide emissions of less than about 20 parts per million (ppmv) The lean fuel control mode operates.

具體實例118.任何前述具體實例之方法,其 中於非化學計量的控制模式之控制包含以具有氮氧化物排放之目標排放範圍為小於約200體積百萬分之一(ppmv)的貧燃料控制模式操作。 Specific example 118. The method of any of the preceding specific examples, Control of the non-stoichiometric control mode includes operation in a lean fuel control mode having a target emission range of nitrogen oxide emissions of less than about 200 parts per million (ppmv).

具體實例119.任何前述具體實例之方法,其 中於非化學計量的控制模式之控制包含以具有氮氧化物排放範圍為小於約100體積百萬分之一(ppmv)的目標排放之貧燃料控制模式操作。 Specific example 119. The method of any of the preceding specific examples, Control of the non-stoichiometric control mode includes operation in a lean fuel control mode having a target emission having a nitrogen oxide emission range of less than about 100 parts per million (ppmv).

具體實例120.任何前述具體實例之方法,其 包含控制一或多個用於下列之操作參數:逐漸地改變該多組流率中的流率;因應改變該流率,逐漸地改變渦輪的多個功率輸出中之一功率輸出;在改變流率之前和之後,將該廢氣中的排放保持在一或多個目標排放範圍內;在改變流率之前和之後,將沿著該廢氣再循環路徑之廢氣的溫度保持在目標溫度範圍內;及在改變流率之前和之後,將沿著該廢氣再循環路徑之廢氣的壓力保持在目標溫度範圍內。 Specific example 120. The method of any of the preceding specific examples, Including controlling one or more operational parameters for: gradually changing the flow rate in the plurality of sets of flow rates; gradually changing one of the plurality of power outputs of the turbine in response to changing the flow rate; changing the flow Before and after the rate, the emissions in the exhaust gas are maintained within one or more target emission ranges; before and after the flow rate is changed, the temperature of the exhaust gases along the exhaust gas recirculation path is maintained within a target temperature range; The pressure of the exhaust gas along the exhaust gas recirculation path is maintained within the target temperature range before and after the flow rate is changed.

具體實例121.任何前述具體實例之方法,其 中控制包含在至少一個觸媒單元下游將該溫度沿著該廢氣再循環路徑保持在目標溫度範圍內。 Specific example 121. The method of any of the preceding specific examples, The medium control includes maintaining the temperature along the exhaust gas recirculation path within a target temperature range downstream of the at least one catalyst unit.

具體實例122.任何前述具體實例之方法,其 中控制包含藉由調整廢氣提取閥、廢氣排放閥、廢氣壓縮機或氧化劑壓縮機之操作速率、廢氣壓縮機入口導流片之 位置、廢氣壓縮機再循環閥、或其任何組合中的至少一者而保持該壓力。 Specific example 122. The method of any of the preceding specific examples, The medium control includes adjusting the operating rate of the exhaust gas extraction valve, the exhaust gas discharge valve, the exhaust gas compressor or the oxidant compressor, and the exhaust gas compressor inlet baffle The pressure is maintained by at least one of a position, an exhaust gas compressor recirculation valve, or any combination thereof.

具體實例123.任何前述具體實例之方法,其 包含透過第一和第二流體供應迴路獨立地控制流體流,其中該渦輪燃燒器包含連接到該第一流體供應迴路之第一組燃料噴嘴和連接到該第二流體供應迴路之第二組燃料噴嘴,其中第一或第二組燃料噴嘴中之至少一者包含經配置以產生擴散火焰之第一擴散燃料噴嘴。 Specific example 123. The method of any of the preceding specific examples, Including independently controlling fluid flow through first and second fluid supply circuits, wherein the turbine combustor includes a first set of fuel nozzles coupled to the first fluid supply circuit and a second set of fuel coupled to the second fluid supply circuit A nozzle, wherein at least one of the first or second set of fuel nozzles comprises a first diffusion fuel nozzle configured to generate a diffusion flame.

具體實例124.任何前述具體實例之方法,其 中該第一組燃料噴嘴包含單一燃料噴嘴,及該第二組燃料噴嘴包含多個燃料噴嘴。 Specific example 124. The method of any of the preceding specific examples, The first set of fuel nozzles includes a single fuel nozzle, and the second set of fuel nozzles includes a plurality of fuel nozzles.

具體實例125.任何前述具體實例之方法,其 中該第一組燃料噴嘴包含第一多個燃料噴嘴,及該第二組燃料噴嘴包含第二多個燃料噴嘴。 Specific example 125. The method of any of the preceding specific examples, The first set of fuel nozzles includes a first plurality of fuel nozzles, and the second set of fuel nozzles includes a second plurality of fuel nozzles.

具體實例126.任何前述具體實例之方法,其 包含透過第一流體供應迴路、第二流體供應迴路、及第三流體供應迴路獨立地控制流體流,其中該渦輪燃燒器包含連接到該第三流體供應迴路之第三組燃料噴嘴。 Specific example 126. The method of any of the preceding specific examples, The fluid flow is independently controlled by the first fluid supply circuit, the second fluid supply circuit, and the third fluid supply circuit, wherein the turbine combustor includes a third set of fuel nozzles coupled to the third fluid supply circuit.

具體實例127.任何前述具體實例之方法,其 包含透過第一和第二流體供應迴路以不同速率獨立地改變該等流體流。 Specific example 127. The method of any of the preceding specific examples, The fluid flow is independently varied at different rates through the first and second fluid supply circuits.

具體實例128.任何前述具體實例之方法,其 包含透過第一和第二流體供應迴路以相同速率獨立地改變該等流體流。 Specific example 128. The method of any of the preceding specific examples, The fluid flow is independently varied at the same rate through the first and second fluid supply circuits.

具體實例129.任何前述具體實例之方法,其 中該第一組燃料噴嘴包含至少第一擴散燃料噴嘴,及該第二組燃料噴嘴包含第二擴散燃料噴嘴。 Specific example 129. The method of any of the preceding specific examples, The first set of fuel nozzles includes at least a first diffusion fuel nozzle, and the second set of fuel nozzles includes a second diffusion fuel nozzle.

具體實例130.任何前述具體實例之方法,其 中該第一組燃料噴嘴包含至少第一擴散燃料噴嘴,及該第二組燃料噴嘴包含第一預混燃料噴嘴。 Specific example 130. The method of any of the preceding specific examples, The first set of fuel nozzles includes at least a first diffusion fuel nozzle, and the second set of fuel nozzles includes a first premixed fuel nozzle.

具體實例131.任何前述具體實例之方法,其 中注入包含從沿著該第一擴散燃料噴嘴之彼此隔離的個別第一和第二通道分開注入該至少一種氧化劑和該至少一種燃料。 Specific example 131. The method of any of the preceding specific examples, The medium injection includes separately injecting the at least one oxidant and the at least one fuel from the individual first and second passages that are isolated from each other along the first diffusion fuel nozzle.

具體實例132.任何前述具體實例之方法,其 中該第一和第二通道係以同心排列方式配置。 Specific example 132. The method of any of the preceding specific examples, The first and second channels are arranged in a concentric arrangement.

具體實例133.任何前述具體實例之方法,其 中該第一通道沿著該第二通道周圍延伸。 Specific example 133. The method of any of the preceding specific examples, The first passage extends around the second passage.

具體實例134.任何前述具體實例之方法,其 中該第二通道沿著該第一通道周圍延伸。 Specific example 134. The method of any of the preceding specific examples, The second channel extends around the first channel.

具體實例135.任何前述具體實例之方法,其 包含將至少一種稀釋劑注入該室。 Specific example 135. The method of any of the preceding specific examples, Injecting at least one diluent into the chamber.

具體實例136.任何前述具體實例之方法,其 中該至少一種稀釋劑包含一部分的該廢氣、蒸汽、氮、另一惰性氣體、或其組合。 Specific example 136. The method of any of the preceding specific examples, The at least one diluent comprises a portion of the offgas, steam, nitrogen, another inert gas, or a combination thereof.

具體實例137.任何前述具體實例之方法,其 包含沿著第一擴散燃料噴嘴從彼此隔離的個別第一和第二通道分開注入該至少一種氧化劑和該至少一種燃料,及透 過第一擴散燃料噴嘴發送稀釋劑流。 Specific example 137. The method of any of the preceding specific examples, Injecting the at least one oxidant and the at least one fuel separately from the respective first and second channels isolated from each other along the first diffusion fuel nozzle, and A diluent stream is sent through the first diffusion fuel nozzle.

具體實例138.任何前述具體實例之方法,其 包含將稀釋劑流送入第一擴散燃料噴嘴下游之室。 Specific example 138. The method of any of the preceding specific examples, A chamber is provided for feeding a stream of diluent downstream of the first diffusion fuel nozzle.

具體實例139.任何前述具體實例之方法,其 包含透過多個在渦輪燃燒器之襯墊中的多個孔道注入稀釋劑流,且該稀釋劑流包含一部分的廢氣。 Specific example 139. The method of any of the preceding specific examples, A stream of diluent is injected through a plurality of channels in a liner of a turbine combustor, and the diluent stream contains a portion of the offgas.

具體實例140.任何前述具體實例之方法,其 包含透過多個貫穿渦輪燃燒器之至少一個壁的稀釋劑注入器注入稀釋劑流,且該稀釋劑流包含一部分的廢氣、蒸汽、氮、或另一惰性氣體。 Specific example 140. The method of any of the preceding specific examples, A diluent stream is injected through a plurality of diluent injectors through at least one wall of the turbine combustor, and the diluent stream comprises a portion of exhaust gas, steam, nitrogen, or another inert gas.

具體實例141.任何前述具體實例之方法,其 包含沿著該廢氣再循環路徑用第一觸媒單元處理該廢氣。 Specific example 141. The method of any of the preceding specific examples, The treatment of the exhaust gas with the first catalyst unit along the exhaust gas recirculation path is included.

具體實例142.任何前述具體實例之方法,其 中處理包含控制廢氣中的一氧化碳、二氧化碳、和未燃燒的烴類之濃度水平。 Specific example 142. The method of any of the preceding specific examples, The middle treatment involves controlling the concentration levels of carbon monoxide, carbon dioxide, and unburned hydrocarbons in the exhaust.

具體實例143.任何前述具體實例之方法,其 中處理包含用該廢氣和氧化劑燃料驅動氧化反應。 Specific example 143. The method of any of the preceding specific examples, The middle treatment involves driving the oxidation reaction with the exhaust gas and the oxidant fuel.

具體實例144.任何前述具體實例之方法,其 包含控制氧化劑燃料至第一觸媒單元之流量以控制該氧化反應。 Specific example 144. The method of any of the preceding specific examples, A flow rate that controls the oxidant fuel to the first catalyst unit is included to control the oxidation reaction.

具體實例145.任何前述具體實例之方法,其 包含因應感測器反饋而控制氧化劑燃料之流量,和該第二感測器反饋包含指示氧、一氧化碳、氫、氮氧化物、未燃燒的烴類、或其任何組合之氣體組成反饋。 Specific example 145. The method of any of the preceding specific examples, A flow rate comprising oxidant fuel is controlled in response to sensor feedback, and the second sensor feedback includes gas composition feedback indicative of oxygen, carbon monoxide, hydrogen, nitrogen oxides, unburned hydrocarbons, or any combination thereof.

具體實例146.任何前述具體實例之方法,其 包含使用第一熱回收單元、第二熱回收單元、或其組合沿著該廢氣再循環路徑從廢氣回收熱。 Specific example 146. The method of any of the preceding specific examples, Recovering heat from the exhaust gas along the exhaust gas recirculation path using the first heat recovery unit, the second heat recovery unit, or a combination thereof.

具體實例147.任何前述具體實例之方法,其 包含用在該第一或第二熱回收單元之內、上游或下游的該第一觸媒單元驅動第一觸媒反應。 Specific example 147. The method of any of the preceding specific examples, The first catalyst unit included within, upstream or downstream of the first or second heat recovery unit drives the first catalyst reaction.

具體實例148.任何前述具體實例之方法,其 包含用在該第一或第二熱回收單元之內、上游或下游的該第二觸媒單元驅動第二觸媒反應。 Specific example 148. The method of any of the preceding specific examples, The second catalyst unit included within, upstream or downstream of the first or second heat recovery unit drives a second catalyst reaction.

具體實例149.任何前述具體實例之方法,其 包含用第一熱回收單元之第一熱回收蒸汽產生器產生第一蒸汽、用第二熱回收單元之第二熱回收蒸汽產生器產生第二蒸汽、或其組合。 Specific example 149. The method of any of the preceding specific examples, A first heat recovery steam generator comprising a first heat recovery unit is used to generate a first steam, a second heat recovery steam generator of the second heat recovery unit is used to generate a second steam, or a combination thereof.

具體實例150.任何前述具體實例之方法,其 包含用該第一蒸汽驅動第一蒸汽渦輪或用該第二蒸汽驅動第二蒸汽渦輪。 Specific example 150. The method of any of the preceding specific examples, Either driving the first steam turbine with the first steam or driving the second steam turbine with the second steam.

具體實例151.任何前述具體實例之方法,其 包含用沿著該廢氣再循環路徑配置之除濕系統從廢氣中除去水分。 Specific example 151. The method of any of the preceding specific examples, It includes removing moisture from the exhaust gas by a dehumidification system disposed along the exhaust gas recirculation path.

具體實例152.任何前述具體實例之方法,其 中該除濕系統包含熱交換器、冷凝器、水氣分離器、過濾器、或其任何組合。 Specific example 152. The method of any of the preceding specific examples, The dehumidification system comprises a heat exchanger, a condenser, a water gas separator, a filter, or any combination thereof.

具體實例153.任何前述具體實例之方法,其 包含用沿著該廢氣再循環路徑配置之除粒系統從廢氣中除 去顆粒。 Specific example 153. The method of any of the preceding specific examples, Including the removal of exhaust gas by a degranulation system disposed along the exhaust gas recirculation path Remove the particles.

具體實例154.任何前述具體實例之方法,其 中該除粒系統包含慣性分離器、重力分離器、過濾器、或其任何組合。 Specific example 154. The method of any of the preceding specific examples, The degranulation system comprises an inertial separator, a gravity separator, a filter, or any combination thereof.

具體實例155.任何前述具體實例之方法,其 包含用沿著該廢氣再循環路徑配置之升壓鼓風機將廢氣之流升壓。 Specific example 155. The method of any of the preceding specific examples, A step of boosting the flow of exhaust gas with a booster blower disposed along the exhaust gas recirculation path.

具體實例156.任何前述具體實例之方法,其 包含沿著該廢氣再循環路徑配置之熱回收單元、升壓鼓風機、除濕單元、和除粒單元。 Specific example 156. The method of any of the preceding specific examples, A heat recovery unit, a booster blower, a dehumidification unit, and a degranulation unit disposed along the exhaust gas recirculation path are included.

具體實例157.任何前述具體實例之方法,其 包含用廢氣提取系統提取一部分的廢氣。 Specific example 157. The method of any of the preceding specific examples, It includes extracting a portion of the exhaust gas with an exhaust gas extraction system.

具體實例158.任何前述具體實例之方法,其 包含用廢氣處理系統處理該部分的廢氣。 Specific example 158. The method of any of the preceding specific examples, This includes treating the portion of the exhaust with an exhaust gas treatment system.

具體實例159.任何前述具體實例之方法,其 中處理該部分的廢氣包含將該部分的廢氣分離成多個氣體流。 Specific example 159. The method of any of the preceding specific examples, The process of treating the portion of the off-gas comprises separating the portion of the off-gas into a plurality of gas streams.

具體實例160.任何前述具體實例之方法,其 中該多個氣體流包含富二氧化碳(CO2)之第一流和貧二氧化碳(CO2)之第二流。 Specific examples of the method according to any of the preceding 160. Specific examples, wherein the carbon dioxide-rich stream comprises a plurality of gas (CO 2) and the first flow-lean carbon dioxide (CO 2) of the second stream.

具體實例161.任何前述具體實例之方法,其 中處理該部分的廢氣包含用氣體壓縮系統壓縮該部分的廢氣、該第一流、或該第二蒸汽。 Specific example 161. The method of any of the preceding specific examples, The process of treating the portion of the off-gas comprises compressing the portion of the off-gas, the first stream, or the second stream with a gas compression system.

具體實例162.任何前述具體實例之方法,其 中處理該部分的廢氣包含用除濕系統從該部分的廢氣、該第一流、或該第二蒸汽除去水分。 Specific example 162. The method of any of the preceding specific examples, The treatment of the portion of the off-gas comprises removing moisture from the portion of the off-gas, the first stream, or the second vapor with a dehumidification system.

具體實例163.任何前述具體實例之方法,其 中處理該部分的廢氣包含用除粒系統從該部分的廢氣、該第一流、或該第二蒸汽除去微粒。 Specific example 163. The method of any of the preceding specific examples, The treatment of the portion of the off-gas comprises removing the particulates from the portion of the offgas, the first stream, or the second vapor by a degranulation system.

具體實例164.任何前述具體實例之方法,其 包含將該部分的廢氣、該第一流、或該第二蒸汽發送目標系統,其中該目標系統包含烴產生系統、地下儲存器、碳固存系統、管線、儲存槽、或其任何組合。 Specific example 164. The method of any of the preceding specific examples, The exhaust gas comprising the portion, the first stream, or the second vapor delivery target system, wherein the target system comprises a hydrocarbon generation system, an underground storage, a carbon storage system, a pipeline, a storage tank, or any combination thereof.

具體實例165.任何前述具體實例之方法,其 包含因應感測器反饋而調整一或多個操作參數以控制廢氣中之當量比或排放物水平。 Specific example 165. The method of any of the preceding specific examples, One or more operating parameters are adjusted in response to sensor feedback to control the equivalence ratio or effluent level in the exhaust.

具體實例166.任何前述具體實例之方法,其 包含藉由監測有關氧、一氧化碳、氫、氮氧化物、未燃燒的烴類、或其任何組合之廢氣的氣體組成來獲得感測器反饋。 Specific example 166. The method of any of the preceding specific examples, Sensor feedback is obtained by monitoring the gas composition of the exhaust gases related to oxygen, carbon monoxide, hydrogen, nitrogen oxides, unburned hydrocarbons, or any combination thereof.

具體實例167.任何前述具體實例之方法,其 中獲得感測器反饋包含監測多個沿著該廢氣再循環路徑、渦輪燃燒器、渦輪、廢氣壓縮機、或其組合配置之感測器。 Specific example 167. The method of any of the preceding specific examples, Obtaining sensor feedback in the middle includes monitoring a plurality of sensors along the exhaust gas recirculation path, turbine combustor, turbine, exhaust gas compressor, or a combination thereof.

具體實例168.任何前述具體實例之方法,其 包含將該廢氣之旁路流沿著旁路管線從該廢氣壓縮機發送至該渦輪。 Specific example 168. The method of any of the preceding specific examples, A bypass stream comprising the exhaust gas is sent from the exhaust gas compressor to the turbine along a bypass line.

具體實例169.任何前述具體實例之方法,其 包含沿著該旁路管線冷卻該廢氣之旁路流,和使用該廢氣之旁路流冷卻該渦輪。 Specific example 169. The method of any of the preceding specific examples, A bypass stream that cools the exhaust gas along the bypass line is included, and a bypass flow using the exhaust gas cools the turbine.

具體實例170.任何前述具體實例之方法,其 包含操作具有渦輪燃燒器、渦輪、和該廢氣壓縮機之燃氣渦輪引擎以在該化學計量的控制模式期間根據感測器反饋達成實質上化學計量燃燒。 Specific example 170. The method of any of the preceding specific examples, A gas turbine engine operating with a turbine combustor, a turbine, and the exhaust gas compressor is included to achieve substantial stoichiometric combustion based on sensor feedback during the stoichiometric control mode.

具體實例171.任何前述具體實例之方法,其 包含用連接到該燃氣渦輪引擎之廢氣提取系統提取一部分的廢氣,和將該部分的廢氣發送至烴產生系統、碳固存系統、管線、儲存槽、或其任何組合。 Specific example 171. The method of any of the preceding specific examples, A portion of exhaust gas is extracted with an exhaust gas extraction system coupled to the gas turbine engine, and the portion of the exhaust gas is sent to a hydrocarbon generation system, a carbon sequestration system, a pipeline, a storage tank, or any combination thereof.

具體實例172.一種方法,其包含:將氧化劑 引至至少一個氧化劑壓縮機以產生壓縮氧化劑流;將再循環低氧含量氣體流引至燃氣渦輪引擎的壓縮機段以產生壓縮低氧含量氣體流;將第一壓縮氧化劑流率之第一部分的壓縮氧化劑流和第一燃料流率之燃料流以實質上化學計量比引至至少一個渦輪燃燒器,並於燃燒點混合該壓縮氧化劑流和該燃料流,及燃燒該壓縮氧化劑流和該燃料流的混合物;將低氧含量氣體流率之第一部分的壓縮低氧含量氣體流引至該至少一個渦輪燃燒器,並在燃燒點之後將其與該壓縮氧化劑和該燃料之燃燒流混合,及產生高溫高壓低氧含量流;將該高溫高壓低氧含量流引至燃氣渦輪引擎的膨脹器段,並膨脹該高溫高壓低氧含量流,以產生第一機械動力以及具有第一再循環低氧含量氣體流率之再循環低氧含量氣體流,其中該再循環低氧含量氣體流含有第一再 循環低氧含量氣體排放物水平;使用第一部分的第一機械動力以驅動該燃氣渦輪引擎的壓縮機段;使用第二部分的第一機械動力以驅動下列中的至少一者:產生器、該至少一個氧化劑壓縮機或至少一個其他機械裝置;以再循環迴路將再循環低氧含量氣體流從膨脹器段之出口再循環至燃氣渦輪引擎的壓縮機段之入口;從該燃氣渦輪引擎提取至少第二部分的壓縮低氧含量氣體流,和將該至少第二部分的壓縮低氧含量氣體流遞送至該第一至少一個氧化觸媒單元,及產生包含第一低氧含量產物排放物水平在目標範圍內之低氧含量產物流;將燃料流流率減少至小於該第一燃料流流率之第二燃料流流率,及將第一部分的該壓縮氧化劑流流率減少至小於該第一壓縮氧化劑流率之第二壓縮氧化劑流率,其中保持該實質上化學計量比,產生小於該第一機械動力之第二機械動力,及產生包含第二低氧含量產物排放物水平在目標範圍內之低氧含量產物流;將燃料流流率減少至小於該第二燃料流流率之第三燃料流流率,及將第一部分的該壓縮氧化劑流流率減少至小於該第二壓縮氧化劑流率之第三壓縮氧化劑流率,其中保持該實質上化學計量比,產生小於該第二機械動力之第三機械動力,及產生包含第三低氧含量產物排放物水平在目標範圍內之低氧含量產物流;及將燃料流流率減少至小於該該第三燃料流流率之第四燃料流流率,及將該第一部分的壓縮氧化劑流流率減少至小於該第三壓縮氧化劑流率之第四壓縮氧化劑流率,其中不保持該實質上化學計量比,及達到貧燃料 燃燒,產生小於該第三機械動力之第四機械動力,及產生包含高氧含量產物排放物水平之高氧含量產物流。 Specific Example 172. A method comprising: oxidizing an oxidant Leading to at least one oxidant compressor to produce a compressed oxidant stream; directing the recycled low oxygen content gas stream to a compressor section of the gas turbine engine to produce a compressed low oxygen content gas stream; the first portion of the first compressed oxidant flow rate The compressed oxidant stream and the fuel stream of the first fuel flow rate are directed to the at least one turbine combustor at a substantially stoichiometric ratio, and the compressed oxidant stream and the fuel stream are mixed at a point of combustion, and the compressed oxidant stream and the fuel are combusted a mixture of streams; directing a first portion of the compressed low oxygen content gas stream of the low oxygen content gas flow rate to the at least one turbine combustor and mixing it with the compressed oxidant and the combustion stream of the fuel after the combustion point, and Generating a high temperature, high pressure, low oxygen content stream; directing the high temperature, high pressure, low oxygen content stream to the expander section of the gas turbine engine, and expanding the high temperature, high pressure, low oxygen content stream to produce a first mechanical power and having a first recycle low An oxygen content gas flow rate recycling a low oxygen content gas stream, wherein the recycled low oxygen content gas stream contains a first Circulating a low oxygen content gas effluent level; using a first portion of the first mechanical power to drive the compressor section of the gas turbine engine; using a second portion of the first mechanical power to drive at least one of: a generator, The at least one oxidant compressor or at least one other mechanical device; recycling the recirculated low oxygen content gas stream from the outlet of the expander section to the inlet of the compressor section of the gas turbine engine in a recirculation loop; from the gas turbine The engine extracts at least a second portion of the compressed low oxygen content gas stream, and delivers the at least a second portion of the compressed low oxygen content gas stream to the first at least one oxidation catalyst unit, and produces a product comprising the first low oxygen content product a low oxygen content product stream having a level of matter within the target range; reducing the fuel stream flow rate to a second fuel stream flow rate that is less than the first fuel stream flow rate, and reducing the first portion of the compressed oxidant stream flow rate to less than a second compressed oxidant flow rate of the first compressed oxidant flow rate, wherein the substantially stoichiometric ratio is maintained, resulting in a second less than the first mechanical power Mechanical power, and producing a low oxygen content product stream having a second low oxygen content product effluent level within a target range; reducing the fuel flow rate to a third fuel flow rate less than the second fuel flow rate, and Reducing the first portion of the compressed oxidant flow rate to a third compressed oxidant flow rate that is less than the second compressed oxidant flow rate, wherein maintaining the substantially stoichiometric ratio produces a third mechanical power that is less than the second mechanical power, And generating a low oxygen content product stream comprising a third low oxygen content product effluent level within the target range; and reducing the fuel flow rate to a fourth fuel flow rate that is less than the third fuel flow rate, and The first portion of the compressed oxidant flow rate is reduced to a fourth compressed oxidant flow rate that is less than the third compressed oxidant flow rate, wherein the substantially stoichiometric ratio is not maintained, and lean fuel is achieved Combustion produces a fourth mechanical power that is less than the third mechanical power and produces a high oxygen content product stream comprising a high oxygen content product effluent level.

具體實例173.任何前述具體實例之方法,其 中該第一再循環低氧含量氣體排放包含氧、一氧化碳、氫、氮的氧化物、未燃燒的烴類或不完全燃燒之類似產物中的至少一者。 Specific example 173. The method of any of the preceding specific examples, The first recycled low oxygen content gas discharge comprises at least one of oxygen, carbon monoxide, hydrogen, nitrogen oxides, unburned hydrocarbons, or similar products of incomplete combustion.

具體實例174.任何前述具體實例之方法,其 中該第一、第二和第三低氧含量產物排放包含氧、一氧化碳、氫、氮的氧化物、未燃燒的烴類或不完全燃燒之類似產物中的至少一者。 Specific example 174. The method of any of the preceding specific examples, The first, second, and third low oxygen content product emissions comprise at least one of oxygen, carbon monoxide, hydrogen, nitrogen oxides, unburned hydrocarbons, or similar products of incomplete combustion.

具體實例175.任何前述具體實例之方法,其 中該高氧含量產物排放包含氧、一氧化碳、氫、氮的氧化物、未燃燒的烴類或不完全燃燒之類似產物中的至少一者。 Specific example 175. The method of any of the preceding specific examples, The high oxygen content product discharge comprises at least one of oxygen, carbon monoxide, hydrogen, nitrogen oxides, unburned hydrocarbons or similar products of incomplete combustion.

具體實例176.任何前述具體實例之方法,其 中該低氧含量產物排放物水平之限值為50ppmv氧和5000ppmv一氧化碳中的至少一者。 Specific example 176. The method of any of the preceding specific examples, The limit of the low oxygen content product effluent level is at least one of 50 ppmv oxygen and 5000 ppmv carbon monoxide.

具體實例177.任何前述具體實例之方法,其 中該低氧含量產物排放物水平之限值為10ppmv氧和1000ppmv一氧化碳中的至少一者。 Specific example 177. The method of any of the preceding specific examples, The limit of the low oxygen content product effluent level is at least one of 10 ppmv oxygen and 1000 ppmv carbon monoxide.

具體實例178.任何前述具體實例之方法,其 中該高氧含量產物排放物水平包含至少1000ppmv氧。 Specific example 178. The method of any of the preceding specific examples, The high oxygen content product effluent level comprises at least 1000 ppmv oxygen.

具體實例179.任何前述具體實例之方法,其 中該高氧含量產物排放物水平包含小於100ppmv一氧化 碳。 Specific example 179. The method of any of the preceding specific examples, The high oxygen content product effluent level contains less than 100 ppmv oxidized carbon.

具體實例180.任何前述具體實例之方法,其 中該高氧含量產物排放物水平包含小於20ppmv一氧化碳。 Specific example 180. The method of any of the preceding specific examples, The high oxygen content product effluent level comprises less than 20 ppmv carbon monoxide.

具體實例181.任何前述具體實例之方法,其 中該高氧含量產物排放物水平包含小於200ppmv氮氧化物。 Specific example 181. The method of any of the preceding specific examples, The high oxygen content product effluent level comprises less than 200 ppmv oxynitride.

具體實例182.任何前述具體實例之方法,其 中該高氧含量產物排放物水平包含小於100ppmv氮氧化物。 Specific example 182. The method of any of the preceding specific examples, The high oxygen content product effluent level comprises less than 100 ppmv oxynitride.

具體實例183.任何前述具體實例之方法,其 包含將第二部分的壓縮氧化劑流引至該第一至少一個氧化觸媒單元以氧化至少一部分之包含在第二部分的壓縮低氧含量流中的一氧化碳、氫、未燃燒的烴類或不完全燃燒之類似產物中的至少一者。 Specific example 183. The method of any of the preceding specific examples, Including introducing a second portion of the compressed oxidant stream to the first at least one oxidation catalyst unit to oxidize at least a portion of the carbon monoxide, hydrogen, unburned hydrocarbons, or incomplete contained in the compressed low oxygen content stream of the second portion At least one of the similar products of combustion.

具體實例184.任何前述具體實例之方法,其 包含將氧化燃料引至該第一至少一個氧化觸媒單元,和減少至少一部分之包含在第二部分的該壓縮低氧含量流中的殘餘氧。 Specific example 184. The method of any of the preceding specific examples, Including introducing an oxidizing fuel to the first at least one oxidation catalyst unit, and reducing at least a portion of residual oxygen contained in the compressed low oxygen content stream of the second portion.

具體實例185.任何前述具體實例之方法,其 中該氧化劑基本上由周圍空氣和包含氮之再循環低氧含量氣體流組成。 Specific example 185. The method of any of the preceding specific examples, The oxidant consists essentially of ambient air and a recycle low oxygen content gas stream comprising nitrogen.

具體實例186.任何前述具體實例之方法,其 中該當量比(phi,)等於 (燃料mol%/氧化劑mol%)實際/(燃料mol%/氧化劑mol%)化學計量Specific example 186. The method of any preceding embodiment, wherein the equivalence ratio (phi, ) is equal to (fuel mol% / oxidizer mol%) actual / (fuel mol% / oxidizer mol%) stoichiometry .

具體實例187.任何前述具體實例之方法,其包含控制該第一部分的壓縮氧化劑流和該燃料流中之至少一者的流率以達成約1之燃燒當量比,及產生該第一部分的壓縮氧化劑流和該燃料流之實質上化學計量比。 Embodiment 187. The method of any preceding embodiment, comprising controlling a flow rate of the first portion of the compressed oxidant stream and at least one of the fuel streams to achieve a combustion equivalent ratio of about 1, and producing the first portion of the compressed oxidant The flow and the substantial stoichiometric ratio of the fuel stream.

具體實例188.任何前述具體實例之方法,其包含安裝在該再循環迴路中及測量再循環低氧含量流內之組分的感測器。 Embodiment 188. The method of any preceding embodiment, comprising a sensor installed in the recirculation loop and measuring a component within the recycled low oxygen content stream.

具體實例189.任何前述具體實例之方法,其中該測得組分為下列中的至少一者:氧、一氧化碳、氫、氮氧化物和未燃燒的烴類。 The method of any preceding embodiment, wherein the measured component is at least one of the group consisting of oxygen, carbon monoxide, hydrogen, nitrogen oxides, and unburned hydrocarbons.

具體實例190.任何前述具體實例之方法,其包含藉由分析組分測量結果而決定當量比。 Embodiment 190. The method of any preceding embodiment, comprising determining an equivalence ratio by analyzing a component measurement.

具體實例191.任何前述具體實例之方法,其包含至少一個安裝且測量在該第一至少一個氧化觸媒單元之上游、該第一至少一個氧化觸媒單元之下游或二者的經提取之第二部分壓縮的低氧含量氣體流內之組分的感測器。 Embodiment 191. The method of any preceding embodiment, comprising at least one of the extracted and measured upstream of the first at least one oxidation catalyst unit, downstream of the first at least one oxidation catalyst unit, or both A sensor for a component of a two-part compressed low oxygen content gas stream.

具體實例192.任何前述具體實例之方法,其中該測得組分為下列中的至少一者:氧、一氧化碳、氫、氮氧化物和未燃燒的烴類。 The method of any preceding embodiment, wherein the measured component is at least one of the group consisting of oxygen, carbon monoxide, hydrogen, nitrogen oxides, and unburned hydrocarbons.

具體實例193.任何前述具體實例之方法,其包含至少一個用於調整燃燒當量比、第二部分的壓縮氧化 劑流之流率或氧化燃料之流率中的至少一者及達成在第一至少一個氧化觸媒單元的下游之該測得之組分中的至少一者之所要水平的控制器。 Embodiment 193. The method of any preceding embodiment, comprising at least one compression oxidation ratio for adjusting a combustion equivalent ratio, the second portion At least one of a flow rate of the agent stream or a flow rate of the oxidizing fuel and a controller that achieves a desired level of at least one of the measured components downstream of the first at least one oxidation catalyst unit.

具體實例194.任何前述具體實例之方法,其 在該第一至少一個氧化觸媒單元之下游包含第一熱回收單元。 Specific example 194. The method of any of the preceding specific examples, A first heat recovery unit is included downstream of the first at least one oxidation catalyst unit.

具體實例195.任何前述具體實例之方法,其 中該第一熱回收單元包含蒸汽產生器。 Specific example 195. The method of any of the preceding specific examples, The first heat recovery unit includes a steam generator.

具體實例196.任何前述具體實例之方法,其 包含藉由蒸汽產生器產生遞送至至少一個蒸汽渦輪之蒸汽,和驅動產生電力之產生器或另一機械裝置中的至少一者。 Specific example 196. The method of any of the preceding specific examples, Included is a steam generator that produces steam delivered to at least one steam turbine, and at least one of a generator or another mechanical device that drives power generation.

具體實例197.任何前述具體實例之方法,其 在膨脹器段之出口和至燃氣渦輪引擎的壓縮機段的入口之間的再循環迴路中包含第二熱回收單元,和從再循環低氧含量氣體流除去熱。 Specific example 197. The method of any of the preceding specific examples, A second heat recovery unit is included in the recirculation loop between the outlet of the expander section and the inlet to the compressor section of the gas turbine engine, and heat is removed from the recycle low oxygen content gas stream.

具體實例198.任何前述具體實例之方法,其 中該第二熱回收單元包含蒸汽產生器。 Specific example 198. The method of any of the preceding specific examples, The second heat recovery unit includes a steam generator.

具體實例199.任何前述具體實例之方法,其 包含藉由蒸汽產生器產生遞送至至少一個蒸汽渦輪之蒸汽,和驅動產生電力之產生器或另一機械裝置中的至少一者。 Specific example 199. The method of any of the preceding specific examples, Included is a steam generator that produces steam delivered to at least one steam turbine, and at least one of a generator or another mechanical device that drives power generation.

具體實例200.任何前述具體實例之方法,其 包含將第三部分的壓縮低氧含量氣體流從燃氣渦輪引擎的 壓縮機段遞送至渦輪作為二次流之二次流路徑,和在冷卻和密封該渦輪之後將第三部分的壓縮低氧含量氣體流遞送於再循環迴路中。 Specific example 200. The method of any of the preceding specific examples, Containing a third portion of the compressed low oxygen content gas stream from the gas turbine engine The compressor section is delivered to the turbine as a secondary flow path for the secondary flow, and a third portion of the compressed low oxygen content gas stream is delivered to the recirculation loop after cooling and sealing the turbine.

具體實例201.任何前述具體實例之方法,其 在再循環迴路中包含增加第二熱回收單元下游之再循環低氧含量氣體流的壓力之升壓鼓風機。 Specific example 201. The method of any of the preceding specific examples, A booster blower that increases the pressure of the recycled low oxygen content gas stream downstream of the second heat recovery unit is included in the recycle loop.

具體實例202.任何前述具體實例之方法,其 在燃氣渦輪引擎的壓縮機段上游之再循環迴路內包含熱交換器,該熱交換器將再循環低氧含量氣體流在進入燃氣渦輪引擎之壓縮機段的入口之前將其冷卻。 Specific example 202. The method of any of the preceding specific examples, A regenerative circuit upstream of the compressor section of the gas turbine engine includes a heat exchanger that cools the recirculated low oxygen content gas stream prior to entering the inlet of the compressor section of the gas turbine engine.

具體實例203.任何前述具體實例之方法,其 包含用該熱交換器從該再循環低氧含量氣體流冷凝和去除水。 Specific example 203. The method of any of the preceding specific examples, It is included to condense and remove water from the recycled low oxygen content gas stream with the heat exchanger.

具體實例204.任何前述具體實例之方法,其 包含將至少一部分的該低氧含量產物流遞送至用於提高烴回收之地下儲存器。 Specific example 204. The method of any of the preceding specific examples, A delivery of at least a portion of the low oxygen content product stream to an underground reservoir for enhanced hydrocarbon recovery is included.

具體實例205.任何前述具體實例之方法,其 包含在將該至少一部分的該低氧含量產物流遞送至用於提高烴回收之地下儲存器之前,用至少一個惰性氣體產物壓縮機壓縮該至少一部分的該低氧含量產物流。 Specific example 205. The method of any of the preceding specific examples, The at least a portion of the low oxygen content product stream is compressed with at least one inert gas product compressor prior to delivering the at least a portion of the low oxygen content product stream to an underground reservoir for enhanced hydrocarbon recovery.

具體實例206.任何前述具體實例之方法,其 包含藉由第一熱回收單元冷卻該低氧含量產物流。 Specific example 206. The method of any of the preceding specific examples, The cooling of the low oxygen content product stream is comprised by a first heat recovery unit.

具體實例207.任何前述具體實例之方法,其 包含將該至少一部分的該低氧含量產物流遞送至氣體脫水 單元。 Specific example 207. The method of any of the preceding specific examples, Insulating the at least a portion of the low oxygen content product stream to gas dehydration unit.

具體實例208.任何前述具體實例之方法,其 包含將至少一部分的該低氧含量產物流遞送至二氧化碳分離單元以產生貧二氧化碳流和富二氧化碳流。 Specific example 208. The method of any of the preceding specific examples, A method of delivering at least a portion of the low oxygen content product stream to a carbon dioxide separation unit to produce a carbon dioxide lean stream and a carbon dioxide rich stream.

具體實例209.任何前述具體實例之方法,其 包含將至少一部分的該貧二氧化碳流遞送至用於提高烴回收之地下儲存器。 Specific example 209. The method of any of the preceding specific examples, This includes delivering at least a portion of the carbon dioxide lean stream to an underground reservoir for enhanced hydrocarbon recovery.

具體實例210.任何前述具體實例之方法,其 包含將至少一部分的該富二氧化碳流遞送至用於提高烴回收之地下儲存器。 Specific example 210. The method of any of the preceding specific examples, This includes delivering at least a portion of the carbon dioxide rich stream to an underground reservoir for enhanced hydrocarbon recovery.

具體實例211.任何前述具體實例之方法,其 包含將至少一部分的該富二氧化碳流遞送至碳固存單元。 Specific example 211. The method of any of the preceding specific examples, A method of delivering at least a portion of the carbon dioxide rich stream to a carbon sequestration unit.

具體實例212.任何前述具體實例之方法,其 包含在將該至少一部分的貧二氧化碳流遞送至用於提高烴回收之地下儲存器之前,將該至少一部分的該貧二氧化碳流壓縮至至少一個貧產物壓縮機。 Specific example 212. The method of any of the preceding specific examples, The compressing the at least a portion of the carbon dioxide lean stream to at least one lean product compressor is included prior to delivering the at least a portion of the lean carbon dioxide stream to the subterranean reservoir for enhanced hydrocarbon recovery.

具體實例213.任何前述具體實例之方法,其 包含在將該至少一部分的該富二氧化碳流遞送至用於提高烴回收之地下儲存器之前,將該至少一部分的該富二氧化碳流壓縮至至少一個富產物壓縮機。 Specific example 213. The method of any of the preceding specific examples, The at least a portion of the carbon dioxide rich stream is compressed to at least one rich product compressor prior to delivering the at least a portion of the carbon dioxide rich stream to an underground reservoir for enhanced hydrocarbon recovery.

具體實例214.任何前述具體實例之方法,其 包含在將該至少一部分的該富二氧化碳流遞送至碳固存單元之前,將該至少一部分的該富二氧化碳流壓縮至至少一個富產物壓縮機。 Specific example 214. The method of any of the preceding specific examples, The compressing the at least a portion of the carbon dioxide rich stream to at least one rich product compressor is included prior to delivering the at least a portion of the carbon dioxide rich stream to the carbon sequestration unit.

具體實例215.任何前述具體實例之方法,其 包含將至少一部分的該貧二氧化碳流遞送至氣體脫水單元。 Specific example 215. The method of any of the preceding specific examples, A delivery of at least a portion of the carbon dioxide lean stream to the gas dehydration unit is included.

具體實例216.任何前述具體實例之方法,其 包含將至少一部分的該富二氧化碳流遞送至氣體脫水單元。 Specific example 216. The method of any of the preceding specific examples, A method of delivering at least a portion of the carbon dioxide rich stream to a gas dehydration unit.

具體實例217.任何前述具體實例之方法,其 包含將至少一部分的該低氧含量產物流引至膨脹器並膨脹該至少一部分的該低氧含量產物流,驅動產生器或另一機械裝置中的至少一者及產生排放流。 Specific example 217. The method of any of the preceding specific examples, A process comprising introducing at least a portion of the low oxygen content product stream to an expander and expanding the at least a portion of the low oxygen content product stream, driving at least one of the generator or another mechanical device, and generating a discharge stream.

具體實例218.任何前述具體實例之方法,其 包含將至少一部分的該貧二氧化碳流引至膨脹器並膨脹該至少一部分的該貧二氧化碳流,驅動產生器或另一機械裝置中的至少一者及產生排放流。 Specific example 218. The method of any of the preceding specific examples, A process comprising introducing at least a portion of the carbon dioxide lean stream to an expander and expanding the at least a portion of the carbon dioxide stream, driving at least one of the generator or another mechanical device and generating a discharge stream.

具體實例219.任何前述具體實例之方法,其 包含位於該再循環迴路內之第二至少一個氧化觸媒單元,和氧化至少一部分之包含在該再循環低氧含量氣體流中之一氧化碳、氫、未燃燒的烴類或不完全燃燒的類似產物中的至少一者。 Specific example 219. The method of any of the preceding specific examples, Included in the second at least one oxidation catalyst unit located within the recycle loop, and oxidizing at least a portion of a similar product comprising one of carbon monoxide, hydrogen, unburned hydrocarbons or incomplete combustion in the recycle low oxygen content gas stream At least one of them.

具體實例220.任何前述具體實例之方法,其 中該第二至少一個氧化觸媒單元係位於該第二熱回收單元之上游。 Specific example 220. The method of any of the preceding specific examples, The second at least one oxidation catalyst unit is located upstream of the second heat recovery unit.

具體實例221.任何前述具體實例之方法,其 中該第二至少一個氧化觸媒單元係位於該第二熱回收單元 之下游。 Specific example 221. The method of any of the preceding specific examples, The second at least one oxidation catalyst unit is located in the second heat recovery unit Downstream.

具體實例222.任何前述具體實例之方法,其 中該第二至少一個氧化觸媒單元係位於第二熱回收單元內且位於在提供適當操作溫度和提供用於由觸媒反應所產生的熱之適當散熱器的位置。 Specific example 222. The method of any of the preceding specific examples, The second at least one oxidation catalyst unit is located within the second heat recovery unit and is located at a location that provides a suitable operating temperature and provides a suitable heat sink for the heat generated by the catalyst reaction.

具體實例223.任何前述具體實例之方法,其 包含控制該至少第二部分的壓縮低氧含量氣體流之流率。 Specific example 223. The method of any of the preceding specific examples, A flow rate comprising a compressed low oxygen content gas stream controlling the at least a second portion is included.

具體實例224.任何前述具體實例之方法,其 中調整該至少第二部分的壓縮低氧含量氣體流之流率以將再循環迴路內之位置的壓力保持在所要範圍內。 Specific example 224. The method of any of the preceding specific examples, The flow rate of the compressed low oxygen content gas stream of the at least second portion is adjusted to maintain the pressure at the location within the recirculation loop within a desired range.

具體實例225.任何前述具體實例之方法,其 中利用提取閥、提取排放閥、產物壓縮機操作速率、產物壓縮機入口導流片位置或產物壓縮機再循環閥中的至少一者,調整該至少第二部分的壓縮低氧含量氣體流之流率。 Specific example 225. The method of any of the preceding specific examples, Adjusting at least a second portion of the compressed low oxygen content gas stream using at least one of an extraction valve, an extraction bleed valve, a product compressor operating rate, a product compressor inlet baffle position, or a product compressor recirculation valve Flow rate.

具體實例226.任何前述具體實例之方法,其 中該至少一個渦輪燃燒器各自包含多個燃燒器和至少二個分開控制之迴路,而該迴路將燃料流分開供應至兩個個別燃燒器、一個個別燃燒器和一組燃燒器、二組燃燒器、及其組合中之至少一者。 Specific example 226. The method of any of the preceding specific examples, The at least one turbine combustor each includes a plurality of combustors and at least two separately controlled loops that separately supply the fuel stream to two individual combustors, one individual combustor and one set of combustors, and two sets of combustors At least one of a device, and a combination thereof.

具體實例227.任何前述具體實例之方法,其 中該至少二個分開控制之迴路之中,從第一燃料流率至第二燃料流率、第二燃料流率至第三燃料流率及第三燃料流率至第四燃料流率中的至少一者之該燃料流率的減少百分比不相等。 Specific example 227. The method of any of the preceding specific examples, Among the at least two separately controlled circuits, from the first fuel flow rate to the second fuel flow rate, the second fuel flow rate to the third fuel flow rate, and the third fuel flow rate to the fourth fuel flow rate The percentage reduction of the fuel flow rate of at least one of them is not equal.

具體實例228.任何前述具體實例之方法,其 包含:將燃料流流率減少至小於該第一燃料流流率之第五流流率,及將該第一部分的壓縮氧化劑流流率減少至小於該第一壓縮氧化劑流率之第五壓縮氧化劑流率,其中保持該實質上化學計量比,產生小於該第一機械動力之第五機械動力,及產生低氧含量產物流,其包含在目標範圍內之第五低氧含量產物排放物水平及來自第二至少一種氧化觸媒單元之第一熱釋放,其導致在第二至少一種氧化觸媒單元下游的再循環低氧含量氣體流之溫度在目標範圍內;將燃料流流率減少至小於該第五燃料流流率之第六燃料流流率,及將該第一部分的壓縮氧化劑流流率減少至小於該第五壓縮氧化劑流率之第六壓縮氧化劑流率,其中保持該實質上化學計量比,產生小於該第五機械動力之第六機械動力及產生低氧含量產物流,其包含在目標範圍內之第六低氧含量產物排放物水平及來自第二至少一種氧化觸媒單元之第二熱釋放,其導致在第二至少一種氧化觸媒單元下游的再循環低氧含量氣體流之溫度在目標範圍之內;將燃料流流率減少至小於該第六燃料流流率之第七燃料流流率,及將該第一部分的壓縮氧化劑流流率減少至小於該第六壓縮氧化劑流率之第七壓縮氧化劑流率,其中不保持該實質上化學計量比,及達到貧燃料燃燒,產生小於該第六機械動力之第七機械動力及產生高氧含量產物,其包含高氧含量產物排放物水平及來自第二至少一種氧化觸媒單元之第三熱釋放,其導致在第二至少一種氧化觸媒單元下游的再 循環低氧含量氣體流之溫度在目標範圍內。 Specific example 228. The method of any of the preceding specific examples, Included: reducing a fuel flow rate to a fifth flow rate that is less than the first fuel flow rate, and reducing the first portion of the compressed oxidant flow rate to a fifth compressed oxidant that is less than the first compressed oxidant flow rate a flow rate wherein the substantially stoichiometric ratio is maintained, a fifth mechanical power less than the first mechanical power is generated, and a low oxygen content product stream is produced comprising a fifth low oxygen content product effluent level within the target range and a first heat release from the second at least one oxidation catalyst unit, which results in a temperature of the recycled low oxygen content gas stream downstream of the second at least one oxidation catalyst unit being within a target range; reducing the fuel flow rate to less than a sixth fuel flow rate of the fifth fuel flow rate, and reducing the first portion of the compressed oxidant flow rate to a sixth compressed oxidant flow rate less than the fifth compressed oxidant flow rate, wherein the substantially chemical Metering ratio, producing a sixth mechanical power less than the fifth mechanical power and producing a low oxygen content product stream comprising a sixth low oxygen content product effluent within the target range And a second heat release from the second at least one oxidation catalyst unit, the temperature of the recycled low oxygen content gas stream downstream of the second at least one oxidation catalyst unit being within a target range; the fuel flow rate Reducing to a seventh fuel flow rate that is less than the sixth fuel flow rate, and reducing the first portion of the compressed oxidant flow rate to a seventh compressed oxidant flow rate that is less than the sixth compressed oxidant flow rate, wherein The substantially stoichiometric ratio, and achieving lean fuel combustion, producing a seventh mechanical power less than the sixth mechanical power and producing a high oxygen content product comprising a high oxygen content product effluent level and from the second at least one oxidation catalyst a third heat release of the unit which results in a further downstream of the second at least one oxidation catalyst unit The temperature of the circulating low oxygen content gas stream is within the target range.

具體實例229.任何前述具體實例之方法,其 包含:將燃料流流率減少至小於該第一燃料流流率之第八流流率,及將該第一部分的壓縮氧化劑流流率減少至小於該第一壓縮氧化劑流率之第八壓縮氧化劑流率,其中保持該實質上化學計量比,產生小於該第一機械動力之第八機械動力及產生低氧含量產物流,其包含在目標範圍內之第八低氧含量產物排放物水平及來自第一至少一種氧化觸媒單元之第四熱釋放,其導致在第一至少一種氧化觸媒單元下游的低氧含量產物流之溫度在目標範圍內;將燃料流流率減少至小於該第八燃料流流率之第九燃料流流率,及將該第一部分的壓縮氧化劑流流率減少至小於該第八壓縮氧化劑流率之第九壓縮氧化劑流率,其中保持該實質上化學計量比,產生小於該第八機械動力之第九機械動力及產生低氧含量產物流,其包含在目標範圍內之第九低氧含量產物排放物水平及來自第一至少一種氧化觸媒單元之第五熱釋放,其導致在第一至少一種氧化觸媒單元下游的低氧含量產物流之溫度在目標範圍之內;將燃料流流率減少至小於該該第九燃料流流率之第十燃料流流率,及將該第一部分的壓縮氧化劑流流率減少至小於該第九壓縮氧化劑流率之第十壓縮氧化劑流率,其中不保持該實質上化學計量比,及達到貧燃料燃燒,產生小於該第九機械動力之第十機械動力及產生高氧含量產物流,其包含高氧含量產物排放物水平及來自第一至少一種氧化觸媒單元之第六熱釋 放,其導致在第一至少一種氧化觸媒單元下游的高氧含量產物流之溫度在目標範圍內。 Specific example 229. The method of any of the preceding specific examples, The method includes: reducing a fuel flow rate to an eighth flow rate that is less than the first fuel flow rate, and reducing the first portion of the compressed oxidant flow rate to an eighth compressed oxidant that is less than the first compressed oxidant flow rate a flow rate, wherein the substantially stoichiometric ratio is maintained, producing an eighth mechanical power less than the first mechanical power and producing a low oxygen content product stream comprising an eighth low oxygen content product effluent level within the target range and from a fourth heat release of the first at least one oxidation catalyst unit, which results in a temperature of the low oxygen content product stream downstream of the first at least one oxidation catalyst unit being within a target range; reducing the fuel flow rate to less than the eighth a ninth fuel flow rate of the fuel flow rate, and reducing the first portion of the compressed oxidant flow rate to a ninth compressed oxidant flow rate that is less than the eighth compressed oxidant flow rate, wherein the substantially stoichiometric ratio is maintained, Generating a ninth mechanical power less than the eighth mechanical power and producing a low oxygen content product stream comprising a ninth low oxygen content product effluent level within the target range and a fifth heat release of the first at least one oxidation catalyst unit, which results in a temperature of the low oxygen content product stream downstream of the first at least one oxidation catalyst unit being within a target range; reducing the fuel flow rate to less than the a tenth fuel flow rate of the ninth fuel flow rate, and reducing the first portion of the compressed oxidant flow rate to a tenth compressed oxidant flow rate that is less than the ninth compressed oxidant flow rate, wherein the substantially chemistry is not maintained Metering ratio, and achieving lean fuel combustion, producing a tenth mechanical power less than the ninth mechanical power and producing a high oxygen content product stream comprising a high oxygen content product effluent level and a first from at least one oxidation catalyst unit Six heat release Put, which results in a temperature of the high oxygen content product stream downstream of the first at least one oxidation catalyst unit being within the target range.

具體實例230.任何前述具體實例之方法,其 包含第一至少一種氮氧化物還原觸媒單元作為該第一至少一種氧化觸媒單元的部分。 Specific example 230. The method of any of the preceding specific examples, A first at least one nitrogen oxide reduction catalyst unit is included as part of the first at least one oxidation catalyst unit.

具體實例231.任何前述具體實例之方法,其 包含第二至少一種氮氧化物還原觸媒單元作為該第二至少一種氧化觸媒單元的部分。 Specific example 231. The method of any of the preceding specific examples, A second at least one nitrogen oxide reduction catalyst unit is included as part of the second at least one oxidation catalyst unit.

具體實例232.任何前述具體實例之方法,其 在熱交換器的下游包含慣性分離器、聚結過濾器和不透水過濾器之至少一者,且改良除去冷凝水的效能。 Specific example 232. The method of any of the preceding specific examples, Downstream of the heat exchanger includes at least one of an inertial separator, a coalescing filter, and a watertight filter, and improves the efficiency of removing condensed water.

本書面說明使用實例來揭示本發明,包括最佳模式,且亦使任何熟習該項技術者能夠實施本發明,包括製造和使用任何裝置或系統及執行任何結合的方法。本發明的專利範圍由申請專利範圍界定,且可包括對於熟習此項技術者而言會發生的其他實例。若該等其他實例具有無異於申請專利範圍之字面語言的結構要件,或若其包括與申請專利範圍之字面語言無實質差異的等效結構要件,則其意欲在申請專利範圍之範疇內。 The written description uses examples to disclose the invention, including the best mode of the invention, and is to be understood by those skilled in the art, including the manufacture and use of any device or system and any combination. The patentable scope of the invention is defined by the scope of the claims, and may include other examples that may occur to those skilled in the art. If such other examples have structural elements that are no different from the literal language of the patent application, or if they include equivalent structural elements that are not substantially different from the literal language of the patent application, they are intended to be within the scope of the patent application.

100‧‧‧控制系統 100‧‧‧Control system

160‧‧‧燃燒器 160‧‧‧ burner

164‧‧‧燃料噴嘴 164‧‧‧fuel nozzle

166‧‧‧頭端部分 166‧‧‧ head section

168‧‧‧燃燒部分 168‧‧‧ burning part

494‧‧‧室 Room 494‧‧

496‧‧‧第一壁或襯墊 496‧‧‧First wall or liner

498‧‧‧第二壁或流動套管 498‧‧‧Second wall or flow casing

500‧‧‧流動通道 500‧‧‧Flow channel

502‧‧‧孔道或穿孔 502‧‧‧ holes or perforations

506‧‧‧孔道或穿孔 506‧‧ ‧ holes or perforations

508‧‧‧廢氣注入 508‧‧‧Exhaust gas injection

510‧‧‧稀釋劑注入器 510‧‧‧Diluent injector

512‧‧‧稀釋劑注入 512‧‧‧Diluent injection

516‧‧‧火焰 516‧‧‧flame

518‧‧‧流體供應系統(FSS) 518‧‧‧Fluid Supply System (FSS)

554‧‧‧擴散燃料噴嘴 554‧‧‧Diffusion fuel nozzle

556‧‧‧擴散火焰 556‧‧‧Diffuse flame

722‧‧‧流體A通道 722‧‧‧Fluid A channel

724‧‧‧流體B通道 724‧‧‧ Fluid B channel

726‧‧‧流體C通道 726‧‧‧Function C channel

728‧‧‧導管或結構 728‧‧‧catheter or structure

730‧‧‧導管或結構 730‧‧‧catheter or structure

732‧‧‧導管或結構 732‧‧‧catheter or structure

734‧‧‧流體A 734‧‧‧Fluid A

736‧‧‧流體B 736‧‧‧ Fluid B

738‧‧‧流體C 738‧‧‧ Fluid C

740‧‧‧孔道 740‧‧‧ Hole

742‧‧‧孔道 742‧‧‧ Hole

744‧‧‧孔道 744‧‧‧ Hole

746‧‧‧共用平面或下游端 746‧‧‧ shared plane or downstream

760‧‧‧流體D通道 760‧‧‧D fluid channel

762‧‧‧導管或結構 762‧‧‧catheter or structure

764‧‧‧流體D 764‧‧‧ Fluid D

766‧‧‧出口 766‧‧‧Export

770‧‧‧稀釋劑注入系統 770‧‧‧Diluent injection system

772‧‧‧燃燒之熱產物 772‧‧‧Hot products of combustion

774‧‧‧流體E 774‧‧‧Fluid E

776‧‧‧流體F 776‧‧‧Fluid F

778‧‧‧流體G 778‧‧‧ Fluid G

Claims (232)

一種系統,其包含:渦輪燃燒器,其包含第一擴散燃料噴嘴,其中該第一擴散燃料噴嘴係經配置以產生擴散火焰;渦輪,其係由來自渦輪燃燒器中的擴散火焰之燃燒產物驅動;廢氣壓縮機,其中該廢氣壓縮機係經配置以將來自渦輪的廢氣壓縮及沿著廢氣再循環路徑發送至該渦輪燃燒器;及控制系統,其經配置以化學計量的控制模式和非化學計量的控制模式來控制至少一種氧化劑和至少一種燃料至渦輪燃燒器之流率,其中該化學計量的控制模式係經配置以改變該等流率且提供該至少一種燃料與該至少一種氧化劑之實質上化學計量比,及該非化學計量的控制模式係經配置以改變該等流率且提供該至少一種燃料與該至少一種氧化劑之非化學計量比。 A system comprising: a turbine combustor comprising a first diffusion fuel nozzle, wherein the first diffusion fuel nozzle is configured to generate a diffusion flame; the turbine is driven by a combustion product from a diffusion flame in the turbine combustor An exhaust gas compressor, wherein the exhaust gas compressor is configured to compress exhaust gas from the turbine and to be sent to the turbine combustor along an exhaust gas recirculation path; and a control system configured to be in a stoichiometric control mode and non-chemical a metered control mode to control a flow rate of the at least one oxidant and the at least one fuel to the turbine combustor, wherein the stoichiometric control mode is configured to vary the flow rates and provide the essence of the at least one fuel and the at least one oxidant The upper stoichiometric ratio, and the non-stoichiometric control mode, are configured to alter the flow rates and provide a non-stoichiometric ratio of the at least one fuel to the at least one oxidant. 如申請專利範圍第1項之系統,其中該化學計量的控制模式係經配置以提供約1.0的當量比之該實質上化學計量比。 The system of claim 1, wherein the stoichiometric control mode is configured to provide an equivalent stoichiometric ratio of about 1.0. 如申請專利範圍第1項之系統,其中該化學計量的控制模式係經配置以提供介於約0.95和約1.05之間的當量比之該實質上化學計量比。 The system of claim 1, wherein the stoichiometric control mode is configured to provide the substantially stoichiometric ratio of an equivalence ratio between about 0.95 and about 1.05. 如申請專利範圍第1項之系統,其中該非化學計量的控制模式係經配置以提供小於約0.95或大於約1.05 的當量比之該非化學計量比。 The system of claim 1, wherein the non-stoichiometric control mode is configured to provide less than about 0.95 or greater than about 1.05. The equivalent ratio of the non-stoichiometric ratio. 如申請專利範圍第1項之系統,其中該控制系統係經配置以將該等流率從第一組流率改變至第二組流率及改變該化學計量的控制模式和該非化學計量的控制模式之間的轉換。 The system of claim 1, wherein the control system is configured to change the flow rate from the first set of flow rates to the second set of flow rates and to change the stoichiometric control mode and the non-stoichiometric control Conversion between modes. 如申請專利範圍第5項之系統,其中該第二組流率係小於該第一組流率。 The system of claim 5, wherein the second set of flow rates is less than the first set of flow rates. 如申請專利範圍第5項之系統,其中該第二組流率係大於該第一組流率。 The system of claim 5, wherein the second set of flow rates is greater than the first set of flow rates. 如申請專利範圍第1項之系統,其中於化學計量的控制模式之該控制系統係經配置以將該等流率從第一組流率改變至第二組流率同時保持該實質上化學計量比。 The system of claim 1, wherein the control system in the stoichiometric control mode is configured to change the flow rate from the first set of flow rates to the second set of flow rates while maintaining the substantially stoichiometric ratio. 如申請專利範圍第8項之系統,其中該第二組流率係小於該第一組流率。 The system of claim 8 wherein the second set of flow rates is less than the first set of flow rates. 如申請專利範圍第8項之系統,其中該第二組流率係大於該第一組流率。 The system of claim 8 wherein the second set of flow rates is greater than the first set of flow rates. 如申請專利範圍第8項之系統,其中於化學計量的控制模式之該控制系統係經配置以分別藉由將該等流率從第一組流率改變至第二組流率而將該渦輪之功率輸出從第一功率輸出改變至第二功率輸出。 The system of claim 8, wherein the control system in the stoichiometric control mode is configured to respectively change the flow rate from the first set of flow rates to the second set of flow rates The power output changes from a first power output to a second power output. 如申請專利範圍第11項之系統,其中該第二組流率係小於該第一組流率,及該第二功率輸出係小於該第一功率輸出。 The system of claim 11, wherein the second set of flow rates is less than the first set of flow rates, and the second power output is less than the first power output. 如申請專利範圍第11項之系統,其中該第二組 流率係大於該第一組流率,及該第二功率輸出係大於該第一功率輸出。 For example, the system of claim 11 of the patent scope, wherein the second group The flow rate is greater than the first set of flow rates, and the second power output is greater than the first power output. 如申請專利範圍第11項之系統,其中於化學計量的控制模式之該控制系統係經配置以在將該等流率從第一組流率改變至第二組流率之同時將廢氣中的排放保持在一或多個目標排放範圍內。 The system of claim 11, wherein the control system in the stoichiometric control mode is configured to change the flow rate from the first set of flow rates to the second set of flow rates Emissions are maintained within one or more target emissions ranges. 如申請專利範圍第14項之系統,其中該排放包含一氧化碳、氧、氮氧化物、硫氧化物、未燃燒的烴類、氫、或其任何組合。 The system of claim 14, wherein the emissions comprise carbon monoxide, oxygen, nitrogen oxides, sulfur oxides, unburned hydrocarbons, hydrogen, or any combination thereof. 如申請專利範圍第14項之系統,其中該一或多個目標排放範圍包含小於約50體積百萬分之一(ppmv)的氧範圍及/或小於約5000ppmv的一氧化碳範圍。 The system of claim 14, wherein the one or more target emission ranges comprise a range of oxygen of less than about 50 parts per million (ppmv) and/or a range of carbon monoxide of less than about 5000 ppmv. 如申請專利範圍第14項之系統,其中該一或多個目標排放範圍包含小於約10體積百萬分之一(ppmv)的氧範圍及/或小於約1000ppmv的一氧化碳範圍。 The system of claim 14, wherein the one or more target emission ranges comprise an oxygen range of less than about 10 parts per million (ppmv) and/or a range of carbon monoxide of less than about 1000 ppmv. 如申請專利範圍第1項之系統,其中於化學計量的控制模式之該控制系統係經配置以逐漸地改變多組流率中的流率同時保持該實質上化學計量比。 The system of claim 1, wherein the control system in the stoichiometric control mode is configured to gradually change the flow rate in the plurality of sets of flow rates while maintaining the substantially stoichiometric ratio. 如申請專利範圍第18項之系統,其中該多組流率包含至少三組的流率。 The system of claim 18, wherein the plurality of sets of flow rates comprise at least three sets of flow rates. 如申請專利範圍第18項之系統,其中該多組流率包含至少四組的流率。 The system of claim 18, wherein the plurality of sets of flow rates comprise at least four sets of flow rates. 如申請專利範圍第18項之系統,其中於化學計量的控制模式之該控制系統係經配置以保持該實質上化學 計量比,且同時:逐漸地減少該多組流率中之流率;逐漸地減少該渦輪的多個功率輸出中之一功率輸出;及將廢氣中的排放保持在一或多個目標排放範圍內。 The system of claim 18, wherein the control system in the stoichiometric control mode is configured to maintain the substantially chemical Metering ratio, and at the same time: gradually reducing the flow rate in the plurality of sets of flow rates; gradually reducing one of the plurality of power outputs of the turbine; and maintaining emissions in the exhaust gas in one or more target emission ranges Inside. 如申請專利範圍第21項之系統,其中該排放包含一氧化碳、氧、氮氧化物、硫氧化物、未燃燒的烴類、氫、或其任何組合。 The system of claim 21, wherein the emissions comprise carbon monoxide, oxygen, nitrogen oxides, sulfur oxides, unburned hydrocarbons, hydrogen, or any combination thereof. 如申請專利範圍第21項之系統,其中該一或多個目標排放範圍包含小於約50體積百萬分之一(ppmv)的氧範圍及/或小於約5000ppmv的一氧化碳範圍。 The system of claim 21, wherein the one or more target emission ranges comprise an oxygen range of less than about 50 parts per million (ppmv) and/or a range of carbon monoxide of less than about 5000 ppmv. 如申請專利範圍第21項之系統,其中該一或多個目標排放範圍包含小於約10體積百萬分之一(ppmv)的氧範圍及/或小於約1000ppmv的一氧化碳範圍。 The system of claim 21, wherein the one or more target emission ranges comprise a range of oxygen of less than about 10 parts per million (ppmv) and/or a range of carbon monoxide of less than about 1000 ppmv. 如申請專利範圍第21項之系統,其中該控制系統係經配置以在逐漸地減少該流率、逐漸地減少該功率輸出、及保持排放之後從該化學計量的控制模式轉換至該非化學計量的控制模式。 The system of claim 21, wherein the control system is configured to switch from the stoichiometric control mode to the non-stoichiometric amount after gradually reducing the flow rate, gradually reducing the power output, and maintaining emissions. Control mode. 如申請專利範圍第25項之系統,其中在從該化學計量的控制模式轉換至該非化學計量的控制模式之後,該控制系統係經配置以用非化學計量的控制模式之富燃料控制模式操作。 The system of claim 25, wherein after switching from the stoichiometric control mode to the non-stoichiometric control mode, the control system is configured to operate in a fuel rich control mode that is not in a stoichiometric control mode. 如申請專利範圍第25項之系統,其中在從該化學計量的控制模式轉換至該非化學計量的控制模式之後, 該控制系統係經配置而以非化學計量的控制模式之貧燃料控制模式操作。 The system of claim 25, wherein after switching from the stoichiometric control mode to the non-stoichiometric control mode, The control system is configured to operate in a lean fuel control mode of a non-stoichiometric control mode. 如申請專利範圍第25項之系統,其中該控制系統係經配置使當以化學計量的控制模式操作時將廢氣中的排放保持在第一組的目標排放範圍內,該控制系統係經配置使當以非化學計量的控制模式操作時將廢氣中的排放保持在第二組的目標排放範圍內,及該第一和第二組的目標排放範圍係彼此不同。 The system of claim 25, wherein the control system is configured to maintain emissions in the exhaust gas within a target discharge range of the first group when operating in a stoichiometric control mode, the control system being configured to The emissions in the exhaust gas are maintained within the target emission range of the second group when operating in the non-stoichiometric control mode, and the target emission ranges of the first and second groups are different from each other. 如申請專利範圍第28項之系統,其中該非化學計量的控制模式包含具有氧排放之目標排放範圍為至少約1000體積百萬分之一(ppmv)的貧燃料控制模式。 A system of claim 28, wherein the non-stoichiometric control mode comprises a lean fuel control mode having a target emission range of oxygen emissions of at least about 1000 parts per million (ppmv). 如申請專利範圍第28項之系統,其中該非化學計量的控制模式包含具有一氧化碳排放之目標排放範圍為小於約100體積百萬分之一(ppmv)的貧燃料控制模式。 A system of claim 28, wherein the non-stoichiometric control mode comprises a lean fuel control mode having a target emission range of carbon monoxide emissions of less than about 100 parts per million (ppmv). 如申請專利範圍第28項之系統,其中該非化學計量的控制模式包含具有一氧化碳排放之目標排放範圍為小於約20體積百萬分之一(ppmv)的貧燃料控制模式。 A system of claim 28, wherein the non-stoichiometric control mode comprises a lean fuel control mode having a target emission range of carbon monoxide emissions of less than about 20 parts per million (ppmv). 如申請專利範圍第28項之系統,其中該非化學計量的控制模式包含具有氮氧化物排放之目標排放範圍為小於約200體積百萬分之一(ppmv)的貧燃料控制模式。 A system of claim 28, wherein the non-stoichiometric control mode comprises a lean fuel control mode having a target emission range of nitrogen oxide emissions of less than about 200 parts per million (ppmv). 如申請專利範圍第28項之系統,其中該非化學計量的控制模式包含具有氮氧化物排放之目標排放範圍為 小於約100體積百萬分之一(ppmv)的貧燃料控制模式。 For example, the system of claim 28, wherein the non-stoichiometric control mode includes a target emission range with nitrogen oxide emissions of A lean fuel control mode of less than about 100 parts per million (ppmv). 如申請專利範圍第1項之系統,其中該控制系統係經配置以:逐漸地改變該多組流率中之流率;因應該流率之改變,逐漸地改變該渦輪的多個功率輸出中之一功率輸出;在改變流率之前和之後,將該廢氣中的排放保持在一或多個目標排放範圍內;在改變流率之前和之後,將沿著該廢氣再循環路徑之廢氣的溫度保持在目標溫度範圍內;及在改變流率之前和之後,將沿著該廢氣再循環路徑之廢氣的壓力保持在目標溫度範圍內。 The system of claim 1, wherein the control system is configured to: gradually change a flow rate in the plurality of flow rates; gradually change a plurality of power outputs of the turbine due to a change in flow rate One of the power outputs; the emissions in the exhaust gas are maintained within one or more target emission ranges before and after the flow rate is changed; the temperature of the exhaust gases along the exhaust gas recirculation path before and after the flow rate is changed Maintained within the target temperature range; and before and after changing the flow rate, maintain the pressure of the exhaust gas along the exhaust gas recirculation path within the target temperature range. 如申請專利範圍第34項之系統,其中該控制系統係經配置以在至少一個觸媒單元下游沿著該廢氣再循環路徑將該溫度保持在目標溫度範圍內。 A system of claim 34, wherein the control system is configured to maintain the temperature within the target temperature range along the exhaust gas recirculation path downstream of the at least one catalyst unit. 如申請專利範圍第34項之系統,其中該控制系統係經配置以藉由調整廢氣提取閥、廢氣排放閥、廢氣壓縮機或氧化劑壓縮機之操作速率、廢氣壓縮機入口導流片之位置、廢氣壓縮機再循環閥、或其任何組合中的至少一者保持該壓力。 The system of claim 34, wherein the control system is configured to adjust an operating rate of an exhaust gas extraction valve, an exhaust gas discharge valve, an exhaust gas compressor or an oxidant compressor, a position of an exhaust gas compressor inlet baffle, At least one of the exhaust gas compressor recirculation valve, or any combination thereof, maintains the pressure. 如申請專利範圍第1項之系統,其中該渦輪燃燒器包含連接到該第一流體供應迴路之第一組燃料噴嘴和連接到該第二流體供應迴路之第二組燃料噴嘴,第一擴散噴 嘴為第一或第二組燃料噴嘴之一部分,及該控制系統係經配置以透過該第一和第二流體供應迴路獨立地控制流體流。 The system of claim 1, wherein the turbine combustor includes a first set of fuel nozzles coupled to the first fluid supply circuit and a second set of fuel nozzles coupled to the second fluid supply circuit, the first diffusion spray The nozzle is a portion of the first or second set of fuel nozzles, and the control system is configured to independently control fluid flow through the first and second fluid supply circuits. 如申請專利範圍第37項之系統,其中該第一組燃料噴嘴包含單一燃料噴嘴,及該第二組燃料噴嘴包含多個燃料噴嘴。 The system of claim 37, wherein the first set of fuel nozzles comprises a single fuel nozzle, and the second set of fuel nozzles comprises a plurality of fuel nozzles. 如申請專利範圍第37項之系統,其中該第一組燃料噴嘴包含第一多個燃料噴嘴,及該第二組燃料噴嘴包含第二多個燃料噴嘴。 The system of claim 37, wherein the first set of fuel nozzles comprises a first plurality of fuel nozzles, and the second set of fuel nozzles comprises a second plurality of fuel nozzles. 如申請專利範圍第37項之系統,其中該渦輪燃燒器包含連接到第三流體供應迴路之第三組燃料噴嘴,及該控制系統係經配置以透過該第一、第二、和第三流體供應迴路獨立地控制流體流。 The system of claim 37, wherein the turbine combustor includes a third set of fuel nozzles coupled to a third fluid supply circuit, and the control system is configured to transmit the first, second, and third fluids The supply circuit independently controls the fluid flow. 如申請專利範圍第37項之系統,其中該控制系統係經配置以透過第一和第二流體供應迴路而以不同速率獨立地改變該流體。 A system of claim 37, wherein the control system is configured to independently change the fluid at different rates through the first and second fluid supply circuits. 如申請專利範圍第37項之系統,其中該控制系統係經配置以透過第一和第二流體供應迴路而以相同速率獨立地改變該流體。 A system of claim 37, wherein the control system is configured to independently change the fluid at the same rate through the first and second fluid supply circuits. 如申請專利範圍第37項之系統,其中該第一組燃料噴嘴包含至少第一擴散燃料噴嘴,及該第二組燃料噴嘴包含第二擴散燃料噴嘴。 The system of claim 37, wherein the first set of fuel nozzles comprises at least a first diffusion fuel nozzle, and the second set of fuel nozzles comprises a second diffusion fuel nozzle. 如申請專利範圍第37項之系統,其中該第一組燃料噴嘴包含至少第一擴散燃料噴嘴,及該第二組燃料噴 嘴包含第一預混燃料噴嘴。 The system of claim 37, wherein the first set of fuel nozzles comprises at least a first diffusion fuel nozzle, and the second set of fuel sprays The mouth contains a first premixed fuel nozzle. 如申請專利範圍第1項之系統,其包含沿著該廢氣再循環路徑配置之第一觸媒單元。 A system of claim 1, comprising a first catalyst unit disposed along the exhaust gas recirculation path. 如申請專利範圍第45項之系統,其中該第一觸媒單元係經配置以控制廢氣中的氧、一氧化碳、二氧化碳、氮氧化物、未燃燒的烴類、或其任何組合之濃度水平。 The system of claim 45, wherein the first catalyst unit is configured to control a concentration level of oxygen, carbon monoxide, carbon dioxide, nitrogen oxides, unburned hydrocarbons, or any combination thereof in the exhaust. 如申請專利範圍第45項之系統,其中該第一觸媒單元包含氧化觸媒、一氧化碳還原觸媒、氮氧化物還原觸媒、氧化鋁、氧化鋯、氧化矽、氧化鈦、氧化鉑、氧化鈀、氧化鈷、或混合金屬氧化物、或其組合。 The system of claim 45, wherein the first catalyst unit comprises an oxidation catalyst, a carbon monoxide reduction catalyst, a nitrogen oxide reduction catalyst, an alumina, a zirconia, a cerium oxide, a titanium oxide, a platinum oxide, and an oxidation. Palladium, cobalt oxide, or a mixed metal oxide, or a combination thereof. 如申請專利範圍第45項之系統,其中該第一觸媒單元經配置以用廢氣和氧化劑燃料驅動氧化反應。 A system of claim 45, wherein the first catalyst unit is configured to drive an oxidation reaction with an exhaust gas and an oxidant fuel. 如申請專利範圍第48項之系統,其中該控制系統係經配置以調整氧化劑燃料之流量來控制氧化反應系統。 A system of claim 48, wherein the control system is configured to adjust the flow of the oxidant fuel to control the oxidation reaction system. 如申請專利範圍第49項之系統,其中該控制系統係經配置以因應感測器反饋而調整氧化劑燃料之流量,及該感測器反饋包含指示氧、一氧化碳、氫、氮氧化物、未燃燒的烴類、或其任何組合之氣體組成反饋。 The system of claim 49, wherein the control system is configured to adjust the flow of the oxidant fuel in response to sensor feedback, and the sensor feedback includes an indicator of oxygen, carbon monoxide, hydrogen, nitrogen oxides, unburned Gas composition feedback for the hydrocarbons, or any combination thereof. 如申請專利範圍第1項之系統,其包含沿著該廢氣再循環路徑配置之第一熱回收單元、第二熱回收單元、或其組合。 A system of claim 1, comprising a first heat recovery unit, a second heat recovery unit, or a combination thereof disposed along the exhaust gas recirculation path. 如申請專利範圍第51項之系統,其包含沿著該 廢氣再循環路徑配置之第一觸媒單元、第二觸媒單元、或其組合。 Such as the system of claim 51, which includes The first catalyst unit, the second catalyst unit, or a combination thereof of the exhaust gas recirculation path configuration. 如申請專利範圍第52項之系統,其中該第一或第二觸媒單元係配置於上游、下游,或與第一或第二熱回收單元整合。 The system of claim 52, wherein the first or second catalyst unit is configured upstream, downstream, or integrated with the first or second heat recovery unit. 如申請專利範圍第53項之系統,其包含具有第一熱回收蒸汽產生器的第一熱回收單元。 A system of claim 53, comprising a first heat recovery unit having a first heat recovery steam generator. 如申請專利範圍第54項之系統,其包含連接到該第一熱回收蒸汽產生器之第一蒸汽渦輪。 A system of claim 54 comprising a first steam turbine coupled to the first heat recovery steam generator. 如申請專利範圍第54項之系統,其包含具有第二熱回收蒸汽產生器的第二熱回收單元、連接到該第一熱回收蒸汽產生器之第一蒸汽渦輪、及連接到該第二熱回收蒸汽產生器之第二蒸汽渦輪。 A system of claim 54, comprising a second heat recovery unit having a second heat recovery steam generator, a first steam turbine coupled to the first heat recovery steam generator, and a second heat coupled thereto A second steam turbine of the steam generator is recovered. 如申請專利範圍第1項之系統,其包含沿著該廢氣再循環路徑配置之除濕系統及/或除粒系統。 A system of claim 1, comprising a dehumidification system and/or a degranulation system disposed along the exhaust gas recirculation path. 如申請專利範圍第57項之系統,其中該除濕系統包含熱交換器、冷凝器、水氣分離器、第一過濾器、或其任何組合,其中該除粒系統包含慣性分離器、重力分離器、第二過濾器、或其任何組合。 The system of claim 57, wherein the dehumidification system comprises a heat exchanger, a condenser, a water gas separator, a first filter, or any combination thereof, wherein the degranulation system comprises an inertial separator, a gravity separator , a second filter, or any combination thereof. 如申請專利範圍第1項之系統,其包含沿著該廢氣再循環路徑配置之升壓鼓風機。 A system of claim 1, comprising a booster blower disposed along the exhaust gas recirculation path. 如申請專利範圍第1項之系統,其包含沿著該廢氣再循環路徑配置之熱回收單元、升壓鼓風機、除濕單元、及除粒單元。 A system according to claim 1, comprising a heat recovery unit, a booster blower, a dehumidifying unit, and a degranulation unit disposed along the exhaust gas recirculation path. 如申請專利範圍第1項之系統,其中該第一擴散燃料噴嘴包含沿著該第一擴散燃料噴嘴之彼此隔離的第一燃料通道及第一氧化劑通道。 The system of claim 1, wherein the first diffusion fuel nozzle comprises a first fuel passage and a first oxidant passage that are isolated from each other along the first diffusion fuel nozzle. 如申請專利範圍第61項之系統,其中該第一擴散燃料噴嘴包含第一稀釋劑通道。 The system of claim 61, wherein the first diffusion fuel nozzle comprises a first diluent passage. 如申請專利範圍第62項之系統,其中該第一稀釋劑通道係經配置以將一部分的該廢氣流過該第一擴散燃料噴嘴。 The system of claim 62, wherein the first diluent passage is configured to flow a portion of the exhaust gas through the first diffusion fuel nozzle. 如申請專利範圍第63項之系統,其中該稀釋劑通道係經配置以將一部分的該廢氣、蒸汽、氮、另一惰性氣體、或其組合流過該第一擴散燃料噴嘴。 A system of claim 63, wherein the diluent channel is configured to flow a portion of the exhaust gas, steam, nitrogen, another inert gas, or a combination thereof through the first diffusion fuel nozzle. 如申請專利範圍第1項之系統,其中該渦輪燃燒器包含配置於第一擴散燃料噴嘴下游的稀釋劑注入系統。 The system of claim 1, wherein the turbine combustor comprises a diluent injection system disposed downstream of the first diffusion fuel nozzle. 如申請專利範圍第65項之系統,其中該稀釋劑注入系統係經配置以將一部分的廢氣、蒸汽、氮或另一惰性氣體、或其組合注入第一擴散燃料噴嘴下游的渦輪燃燒器之室。 The system of claim 65, wherein the diluent injection system is configured to inject a portion of exhaust gas, steam, nitrogen or another inert gas, or a combination thereof into a turbine combustor chamber downstream of the first diffusion fuel nozzle . 如申請專利範圍第66項之系統,其中該稀釋劑注入系統在渦輪燃燒器之襯墊中包含多個孔道,且該多個孔道係經配置以將該部分的廢氣注入該渦輪燃燒器之室。 The system of claim 66, wherein the diluent injection system comprises a plurality of cells in a liner of the turbine combustor, and the plurality of cells are configured to inject the portion of exhaust gas into the chamber of the turbine combustor . 如申請專利範圍第66項之系統,其中該渦輪燃燒器包含配置在該室周圍的第一壁、配置在該第一壁周圍的第二壁、及配置在該第一和第二壁之間的排氣通道,其中該稀釋劑注入系統包含多個貫穿渦輪燃燒器之第一和第 二壁的稀釋劑注入器。 The system of claim 66, wherein the turbine combustor includes a first wall disposed about the chamber, a second wall disposed about the first wall, and disposed between the first and second walls Exhaust passage, wherein the diluent injection system includes a plurality of first and third through turbine burners A two-wall diluent injector. 如申請專利範圍第68項之系統,其中該多個稀釋劑注入器係經配置以將部分的廢氣、蒸汽、氮、或另一惰性氣體注入渦輪燃燒器之室。 The system of claim 68, wherein the plurality of diluent injectors are configured to inject a portion of the exhaust, steam, nitrogen, or another inert gas into the chamber of the turbine combustor. 如申請專利範圍第1項之系統,其包含經配置以提取一部分的廢氣之廢氣提取系統。 A system as claimed in claim 1, comprising an exhaust gas extraction system configured to extract a portion of the exhaust gas. 如申請專利範圍第70項之系統,其包含經配置以處理該部分的廢氣之廢氣處理系統。 A system of claim 70, comprising an exhaust gas treatment system configured to treat the exhaust of the portion. 如申請專利範圍第71項之系統,其中該廢氣處理系統包含經配置以將部分的廢氣分離成多個氣體流之氣體分離系統。 A system of claim 71, wherein the exhaust gas treatment system comprises a gas separation system configured to separate a portion of the exhaust gas into a plurality of gas streams. 如申請專利範圍第72項之系統,其中該多個氣體流包含富二氧化碳(CO2)之第一流和貧二氧化碳(CO2)之第二流。 The patentable scope of application of the system of 72, wherein the carbon dioxide-rich stream comprises a plurality of gas (CO 2) and the first flow-lean carbon dioxide (CO 2) of the second stream. 如申請專利範圍第73項之系統,其中該廢氣處理系統包含經配置以接收該第一或第二流中的至少一者的氣體壓縮系統、除濕系統、除粒系統、或其組合。 A system of claim 73, wherein the exhaust treatment system comprises a gas compression system, a dehumidification system, a degranulation system, or a combination thereof configured to receive at least one of the first or second streams. 如申請專利範圍第72項之系統,其中該廢氣處理系統包含經配置以純化多個氣體流中的至少一者之氣體純化系統。 The system of claim 72, wherein the exhaust gas treatment system comprises a gas purification system configured to purify at least one of the plurality of gas streams. 如申請專利範圍第72項之系統,其包含經配置以接收該多個流中的至少一者的目標系統,其中該目標系統包含烴產生系統、地下儲存器、碳固存系統、管線、儲存槽、或其任何組合。 A system of claim 72, comprising a target system configured to receive at least one of the plurality of streams, wherein the target system comprises a hydrocarbon generation system, an underground storage, a carbon storage system, a pipeline, a storage Slot, or any combination thereof. 如申請專利範圍第71項之系統,其中該廢氣處理系統包含經配置以壓縮部分的廢氣之壓縮系統。 A system of claim 71, wherein the exhaust treatment system comprises a compression system configured to compress a portion of the exhaust. 如申請專利範圍第71項之系統,其中該廢氣處理系統包含除濕系統及/或除粒系統。 The system of claim 71, wherein the exhaust gas treatment system comprises a dehumidification system and/or a degranulation system. 如申請專利範圍第1項之系統,其包含因應感測器反饋而調整一或多個操作參數來控制在廢氣中的當量比或排放物水平之控制系統。 A system as claimed in claim 1 includes a control system that adjusts one or more operating parameters to control an equivalence ratio or emission level in the exhaust gas in response to sensor feedback. 如申請專利範圍第79項之系統,其中該一或多個操作參數包含至該渦輪燃燒器之氧化劑流率及/或燃料流率。 The system of claim 79, wherein the one or more operational parameters comprise an oxidant flow rate and/or a fuel flow rate to the turbine combustor. 如申請專利範圍第79項之系統,其中該控制系統係經配置以將該當量比保持介於約0.95和1.05之間。 The system of claim 79, wherein the control system is configured to maintain the equivalence ratio between about 0.95 and 1.05. 如申請專利範圍第79項之系統,其中該感測器反饋包含有關氧、一氧化碳、氫、氮氧化物、未燃燒的烴類、或其任何組合之氣體組成反饋。 A system of claim 79, wherein the sensor feedback comprises gas composition feedback relating to oxygen, carbon monoxide, hydrogen, nitrogen oxides, unburned hydrocarbons, or any combination thereof. 如申請專利範圍第79項之系統,其中該控制系統係連接到多個經配置以獲得感測器反饋之感測器,和該多個感測器係沿著該廢氣再循環路徑、渦輪燃燒器、渦輪、廢氣壓縮機、或其組合配置。 The system of claim 79, wherein the control system is coupled to a plurality of sensors configured to obtain sensor feedback, and the plurality of sensors are combusted along the exhaust gas recirculation path, the turbine , turbine, exhaust compressor, or a combination thereof. 如申請專利範圍第1項之系統,其包含從廢氣壓縮機至渦輪之旁路管線,其中該旁路管線包含經配置以冷卻從廢氣壓縮機至渦輪之廢氣的旁路流的熱交換器。 A system of claim 1, comprising a bypass line from the exhaust gas compressor to the turbine, wherein the bypass line includes a heat exchanger configured to cool a bypass flow of exhaust gas from the exhaust gas compressor to the turbine. 如申請專利範圍第1項之系統,其包含具有渦輪燃燒器、渦輪、和廢氣壓縮機之燃氣渦輪引擎,其中該燃 氣渦輪引擎為化學計量廢氣再循環(SEGR)燃氣渦輪引擎。 A system of claim 1, comprising a gas turbine engine having a turbine combustor, a turbine, and an exhaust gas compressor, wherein the combustion The gas turbine engine is a stoichiometric exhaust gas recirculation (SEGR) gas turbine engine. 如申請專利範圍第85項之系統,其包含連接到該燃氣渦輪引擎之廢氣提取系統、連接到該廢氣提取系統之廢氣處理系統、及連接到該廢氣處理系統之烴產生系統。 A system of claim 85, comprising an exhaust gas extraction system coupled to the gas turbine engine, an exhaust gas treatment system coupled to the exhaust gas extraction system, and a hydrocarbon production system coupled to the exhaust gas treatment system. 一種方法,其包含:將至少一種氧化劑和至少一種燃料注入渦輪燃燒器之室,其中該至少一種氧化劑和該至少一種燃料混合和燃燒而成擴散火焰以產生燃燒產物;用該燃燒產物驅動渦輪和輸出廢氣;將該廢氣沿著廢氣再循環路徑再循環至廢氣壓縮機;將廢氣壓縮和發送至該渦輪燃燒器;以化學計量的控制模式控制該至少一種氧化劑和該至少一種燃料至該渦輪燃燒器之流率,其中該化學計量的控制模式係經配置以改變該等流率及提供至少一種燃料與至少一種氧化劑之實質上化學計量比;及以非化學計量的控制模式控制該至少一種氧化劑和該至少一種燃料至該渦輪燃燒器之流率,其中該非化學計量的控制模式係經配置以改變該等流率及提供至少一種燃料與至少一種氧化劑之非化學計量比。 A method comprising: injecting at least one oxidant and at least one fuel into a chamber of a turbine combustor, wherein the at least one oxidant and the at least one fuel are mixed and combusted to form a diffusion flame to produce a combustion product; the combustion product is used to drive the turbine and Exchanging exhaust gas; recirculating the exhaust gas along an exhaust gas recirculation path to an exhaust gas compressor; compressing and transmitting the exhaust gas to the turbine combustor; controlling the at least one oxidant and the at least one fuel to the turbine in a stoichiometric control mode Flow rate, wherein the stoichiometric control mode is configured to vary the flow rate and provide a substantially stoichiometric ratio of at least one fuel to at least one oxidant; and control the at least one oxidant in a non-stoichiometric control mode And a flow rate of the at least one fuel to the turbine combustor, wherein the non-stoichiometric control mode is configured to vary the flow rates and provide a non-stoichiometric ratio of the at least one fuel to the at least one oxidant. 如申請專利範圍第87項之方法,其中於化學計量的控制模式之控制包含提供約1.0的當量比之該實質上化學計量比。 The method of claim 87, wherein the controlling of the stoichiometric control mode comprises providing the substantially stoichiometric ratio of an equivalent ratio of about 1.0. 如申請專利範圍第87項之方法,其中於化學計量的控制模式之控制包含提供介於約0.95和約1.05之間的當量比之該實質上化學計量比。 The method of claim 87, wherein the controlling of the stoichiometric control mode comprises providing the substantially stoichiometric ratio of an equivalence ratio between about 0.95 and about 1.05. 如申請專利範圍第87項之方法,其中於非化學計量的控制模式之控制包含提供小於約0.95或大於約1.05的當量比之該非化學計量比。 The method of claim 87, wherein the controlling of the non-stoichiometric control mode comprises providing the non-stoichiometric ratio of an equivalence ratio of less than about 0.95 or greater than about 1.05. 如申請專利範圍第87項之方法,其包含將該等流率從第一組流率改變至第二組流率及在該化學計量的控制模式和該非化學計量的控制模式之間的轉換。 A method of claim 87, comprising changing the flow rate from the first set of flow rates to the second set of flow rates and converting between the stoichiometric control mode and the non-stoichiometric control mode. 如申請專利範圍第91項之方法,其中該第二組流率係小於該第一組流率。 The method of claim 91, wherein the second set of flow rates is less than the first set of flow rates. 如申請專利範圍第91項之方法,其中該第二組流率係大於該第一組流率。 The method of claim 91, wherein the second set of flow rates is greater than the first set of flow rates. 如申請專利範圍第87項之方法,其中於化學計量的控制模式之控制包含將該等流率從第一組流率改變至第二組流率同時保持該實質上化學計量比。 The method of claim 87, wherein the controlling of the stoichiometric control mode comprises changing the flow rates from the first set of flow rates to the second set of flow rates while maintaining the substantially stoichiometric ratio. 如申請專利範圍第94項之系統,其中該第二組流率係小於該第一組流率。 The system of claim 94, wherein the second set of flow rates is less than the first set of flow rates. 如申請專利範圍第94項之系統,其中該第二組流率係大於該第一組流率。 The system of claim 94, wherein the second set of flow rates is greater than the first set of flow rates. 如申請專利範圍第94項之方法,其中於化學計量的控制模式之控制包含分別藉由將該等流率從第一組流率改變至第二組流率而將該渦輪之功率輸出從第一功率輸出改變至第二功率輸出。 The method of claim 94, wherein the controlling the stoichiometric control mode comprises respectively outputting the power of the turbine from the first set of flow rates to the second set of flow rates A power output is changed to a second power output. 如申請專利範圍第97項之方法,其中該第二組流率係小於該第一組流率,及該第二功率輸出係小於該第一功率輸出。 The method of claim 97, wherein the second set of flow rates is less than the first set of flow rates, and the second power output is less than the first power output. 如申請專利範圍第97項之方法,其中該第二組流率係大於該第一組流率,及該第二功率輸出係大於該第一功率輸出。 The method of claim 97, wherein the second set of flow rates is greater than the first set of flow rates, and the second power output is greater than the first power output. 如申請專利範圍第97項之方法,其中於化學計量的控制模式之控制包含在將該等流率從第一組流率改變至第二組流率之同時將廢氣中的排放保持在一或多個目標排放範圍內。 The method of claim 97, wherein the controlling the stoichiometric control mode comprises maintaining the discharge in the exhaust gas while maintaining the flow rate from the first flow rate to the second flow rate Multiple target emissions. 如申請專利範圍第100項之方法,其中該排放包含一氧化碳、氧、氮氧化物、硫氧化物、未燃燒的烴類、氫、或其任何組合。 The method of claim 100, wherein the emission comprises carbon monoxide, oxygen, nitrogen oxides, sulfur oxides, unburned hydrocarbons, hydrogen, or any combination thereof. 如申請專利範圍第100項之方法,其中該一或多個目標排放範圍包含小於約50體積百萬分之一(ppmv)的氧範圍及/或小於約5000ppmv的一氧化碳範圍。 The method of claim 100, wherein the one or more target emission ranges comprise a range of oxygen of less than about 50 parts per million (ppmv) and/or a range of carbon monoxide of less than about 5000 ppmv. 如申請專利範圍第100項之方法,其中該一或多個目標排放範圍包含小於約10體積百萬分之一(ppmv)的氧範圍及/或小於約1000ppmv的一氧化碳範圍。 The method of claim 100, wherein the one or more target emission ranges comprise an oxygen range of less than about 10 parts per million (ppmv) and/or a range of carbon monoxide of less than about 1000 ppmv. 如申請專利範圍第87項之方法,其中於化學計量的控制模式之控制包含逐漸地改變多組流率中的流率同時保持該實質上化學計量比。 The method of claim 87, wherein the controlling of the stoichiometric control mode comprises gradually changing the flow rate in the plurality of sets of flow rates while maintaining the substantially stoichiometric ratio. 如申請專利範圍第104項之方法,其中該多組流率包含至少三組的流率。 The method of claim 104, wherein the plurality of sets of flow rates comprise at least three sets of flow rates. 如申請專利範圍第104項之方法,其中該多組流率包含至少四組的流率。 The method of claim 104, wherein the plurality of sets of flow rates comprise at least four sets of flow rates. 如申請專利範圍第104項之方法,其中於化學計量的控制模式之控包含保持實質上化學計量比,且同時:逐漸地減少該多組流率中之流率;逐漸地減少該渦輪的多個功率輸出中之一功率輸出;及將排放保持在一或多個目標排放範圍內之廢氣中。 The method of claim 104, wherein controlling the stoichiometric control mode comprises maintaining a substantial stoichiometric ratio, and at the same time: gradually reducing the flow rate in the plurality of sets of flow rates; gradually reducing the number of turbines One of the power outputs is output; and the exhaust is maintained in one or more of the target emissions. 如申請專利範圍第107項之方法,其中該排放包含一氧化碳、氧、氮氧化物、硫氧化物、未燃燒的烴類、氫、或其任何組合。 The method of claim 107, wherein the emission comprises carbon monoxide, oxygen, nitrogen oxides, sulfur oxides, unburned hydrocarbons, hydrogen, or any combination thereof. 如申請專利範圍第107項之方法,其中該一或多個目標排放範圍包含小於約50體積百萬分之一(ppmv)的氧範圍及/或小於約5000ppmv的一氧化碳範圍。 The method of claim 107, wherein the one or more target emission ranges comprise an oxygen range of less than about 50 parts per million (ppmv) and/or a range of carbon monoxide of less than about 5000 ppmv. 如申請專利範圍第107項之方法,其中該一或多個目標排放範圍包含小於約10體積百萬分之一(ppmv)的氧範圍及/或小於約1000ppmv的一氧化碳範圍。 The method of claim 107, wherein the one or more target emission ranges comprise an oxygen range of less than about 10 parts per million (ppmv) and/or a range of carbon monoxide of less than about 1000 ppmv. 如申請專利範圍第107項之方法,其包含在逐漸地減少該等流率、逐漸地減少該功率輸出、保持排放之 後,從該化學計量的控制模式轉換至該非化學計量的控制模式。 The method of claim 107, which comprises gradually reducing the flow rate, gradually reducing the power output, and maintaining the discharge. Thereafter, the stoichiometric control mode is switched to the non-stoichiometric control mode. 如申請專利範圍第111項之方法,其中於非化學計量的控制模式之控制包含在從該化學計量的控制模式轉換至該非化學計量的控制模式之後,以富燃料控制模式操作。 The method of claim 111, wherein the controlling of the non-stoichiometric control mode comprises operating in a fuel rich control mode after switching from the stoichiometric control mode to the non-stoichiometric control mode. 如申請專利範圍第111項之方法,其中於非化學計量的控制模式之控制包含在從該化學計量的控制模式轉換至該非化學計量的控制模式之後,以貧燃料控制模式操作。 The method of claim 111, wherein the controlling of the non-stoichiometric control mode comprises operating in a lean fuel control mode after switching from the stoichiometric control mode to the non-stoichiometric control mode. 如申請專利範圍第111項之方法,其中於化學計量的控制模式之控制包含將廢氣中的排放保持在第一組的目標排放範圍內,其中於非化學計量的控制模式之控制包含將廢氣中的排放保持在第二組的目標排放範圍內,其中該第一和第二組的目標排放範圍係彼此不同。 The method of claim 111, wherein the controlling of the stoichiometric control mode comprises maintaining emissions in the exhaust gas within a target emission range of the first group, wherein the control of the non-stoichiometric control mode comprises exhausting The emissions are maintained within the target emissions range of the second group, wherein the target emission ranges of the first and second groups are different from each other. 如申請專利範圍第114項之方法,其中於非化學計量的控制模式之控制包含以具有氧排放之目標排放範圍為至少約1000體積百萬分之一(ppmv)的貧燃料控制模式操作。 The method of claim 114, wherein the controlling of the non-stoichiometric control mode comprises operating in a lean fuel control mode having a target emission range of oxygen emissions of at least about 1000 parts per million (ppmv). 如申請專利範圍第114項之方法,其中於非化學計量的控制模式之控制包含以具有一氧化碳排放之目標排放範圍為小於約100體積百萬分之一(ppmv)的貧燃料控制模式操作。 The method of claim 114, wherein the controlling of the non-stoichiometric control mode comprises operating in a lean fuel control mode having a target emission range of carbon monoxide emissions of less than about 100 parts per million (ppmv). 如申請專利範圍第114項之方法,其中於非化 學計量的控制模式之控制包含以具有一氧化碳排放之目標排放範圍為小於約20體積百萬分之一(ppmv)的貧燃料控制模式操作。 For example, the method of claim 114, in which Control of the stoichiometric control mode includes operating in a lean fuel control mode having a target emission range of carbon monoxide emissions of less than about 20 parts per million (ppmv). 如申請專利範圍第114項之方法,其中於非化學計量的控制模式之控制包含以具有氮氧化物排放之目標排放範圍為小於約200體積百萬分之一(ppmv)的貧燃料控制模式操作。 The method of claim 114, wherein the controlling of the non-stoichiometric control mode comprises operating in a lean fuel control mode having a target emission range of nitrogen oxide emissions of less than about 200 parts per million (ppmv) . 如申請專利範圍第114項之方法,其中於非化學計量的控制模式之控制包含以具有氮氧化物排放範圍為小於約100體積百萬分之一(ppmv)的目標排放之貧燃料控制模式操作。 The method of claim 114, wherein the controlling of the non-stoichiometric control mode comprises operating in a lean fuel control mode having a target emission having a nitrogen oxide emission range of less than about 100 parts per million (ppmv) . 如申請專利範圍第87項之方法,其包含控制一或多個用於下列之操作參數:逐漸地改變該多組流率中的流率;因應改變該流率,逐漸地改變渦輪的多個功率輸出中之一功率輸出;在改變流率之前和之後,將該廢氣中的排放保持在一或多個目標排放範圍內;在改變流率之前和之後,將沿著該廢氣再循環路徑之廢氣的溫度保持在目標溫度範圍內;及在改變流率之前和之後,將沿著該廢氣再循環路徑之廢氣的壓力保持在目標溫度範圍內。 The method of claim 87, comprising controlling one or more operating parameters for: gradually changing a flow rate in the plurality of sets of flow rates; and gradually changing the plurality of turbines in response to changing the flow rate One of the power outputs; the emissions in the exhaust gas are maintained within one or more target emissions ranges before and after changing the flow rate; along the exhaust gas recirculation path before and after changing the flow rate The temperature of the exhaust gas is maintained within a target temperature range; and the pressure of the exhaust gas along the exhaust gas recirculation path is maintained within a target temperature range before and after the flow rate is changed. 如申請專利範圍第120項之方法,其中控制包含在至少一個觸媒單元下游將該溫度沿著該廢氣再循環路 徑保持在目標溫度範圍內。 The method of claim 120, wherein controlling comprises flowing the temperature along the exhaust gas recirculation path downstream of the at least one catalyst unit The diameter remains within the target temperature range. 如申請專利範圍第120項之方法,其中控制包含藉由調整廢氣提取閥、廢氣排放閥、廢氣壓縮機或氧化劑壓縮機之操作速率、廢氣壓縮機入口導流片之位置、廢氣壓縮機再循環閥、或其任何組合中的至少一者而保持該壓力。 The method of claim 120, wherein the controlling comprises adjusting the operating rate of the exhaust gas extraction valve, the exhaust gas discharge valve, the exhaust gas compressor or the oxidant compressor, the position of the exhaust gas compressor inlet baffle, the exhaust gas compressor recirculation The pressure is maintained by at least one of a valve, or any combination thereof. 如申請專利範圍第87項之方法,其包含透過第一和第二流體供應迴路獨立地控制流體流,其中該渦輪燃燒器包含連接到該第一流體供應迴路之第一組燃料噴嘴和連接到該第二流體供應迴路之第二組燃料噴嘴,其中第一或第二組燃料噴嘴中之至少一者包含經配置以產生擴散火焰之第一擴散燃料噴嘴。 The method of claim 87, comprising independently controlling fluid flow through the first and second fluid supply circuits, wherein the turbine combustor includes a first set of fuel nozzles coupled to the first fluid supply circuit and is coupled to A second set of fuel nozzles of the second fluid supply circuit, wherein at least one of the first or second set of fuel nozzles comprises a first diffusion fuel nozzle configured to generate a diffusion flame. 如申請專利範圍第123項之方法,其中該第一組燃料噴嘴包含單一燃料噴嘴,及該第二組燃料噴嘴包含多個燃料噴嘴。 The method of claim 123, wherein the first set of fuel nozzles comprises a single fuel nozzle, and the second set of fuel nozzles comprises a plurality of fuel nozzles. 如申請專利範圍第123項之方法,其中該第一組燃料噴嘴包含第一多個燃料噴嘴,及該第二組燃料噴嘴包含第二多個燃料噴嘴。 The method of claim 123, wherein the first set of fuel nozzles comprises a first plurality of fuel nozzles, and the second set of fuel nozzles comprises a second plurality of fuel nozzles. 如申請專利範圍第123項之方法,其包含透過第一流體供應迴路、第二流體供應迴路、及第三流體供應迴路獨立地控制流體流,其中該渦輪燃燒器包含連接到該第三流體供應迴路之第三組燃料噴嘴。 The method of claim 123, comprising independently controlling fluid flow through the first fluid supply circuit, the second fluid supply circuit, and the third fluid supply circuit, wherein the turbine combustor comprises a connection to the third fluid supply The third group of fuel nozzles in the circuit. 如申請專利範圍第123項之方法,其包含透過第一和第二流體供應迴路以不同速率獨立地改變該等流體 流。 The method of claim 123, comprising independently changing the fluids at different rates through the first and second fluid supply circuits flow. 如申請專利範圍第123項之方法,其包含透過第一和第二流體供應迴路以相同速率獨立地改變該等流體流。 The method of claim 123, comprising independently varying the fluid streams at the same rate through the first and second fluid supply circuits. 如申請專利範圍第123項之方法,其中該第一組燃料噴嘴包含至少第一擴散燃料噴嘴,及該第二組燃料噴嘴包含第二擴散燃料噴嘴。 The method of claim 123, wherein the first set of fuel nozzles comprises at least a first diffusion fuel nozzle, and the second set of fuel nozzles comprises a second diffusion fuel nozzle. 如申請專利範圍第123項之方法,其中該第一組燃料噴嘴包含至少第一擴散燃料噴嘴,及該第二組燃料噴嘴包含第一預混燃料噴嘴。 The method of claim 123, wherein the first set of fuel nozzles comprises at least a first diffusion fuel nozzle, and the second set of fuel nozzles comprises a first premixed fuel nozzle. 如申請專利範圍第87項之方法,其中注入包含從沿著該第一擴散燃料噴嘴之彼此隔離的個別第一和第二通道分開注入該至少一種氧化劑和該至少一種燃料。 The method of claim 87, wherein the injecting comprises separately injecting the at least one oxidant and the at least one fuel from individual first and second passages that are isolated from each other along the first diffusion fuel nozzle. 如申請專利範圍第131項之方法,其中該第一和第二通道係以同心排列方式配置。 The method of claim 131, wherein the first and second channels are arranged in a concentric arrangement. 如申請專利範圍第131項之方法,其中該第一通道沿著該第二通道周圍延伸。 The method of claim 131, wherein the first passage extends around the second passage. 如申請專利範圍第131項之方法,其中該第二通道沿著該第一通道周圍延伸。 The method of claim 131, wherein the second channel extends around the first channel. 如申請專利範圍第87項之方法,其包含將至少一種稀釋劑注入該室。 A method of claim 87, comprising injecting at least one diluent into the chamber. 如申請專利範圍第135項之方法,其中該至少一種稀釋劑包含一部分的該廢氣、蒸汽、氮、另一惰性氣體、或其組合。 The method of claim 135, wherein the at least one diluent comprises a portion of the offgas, steam, nitrogen, another inert gas, or a combination thereof. 如申請專利範圍第135項之方法,其包含沿著第一擴散燃料噴嘴從彼此隔離的個別第一和第二通道分開注入該至少一種氧化劑和該至少一種燃料,及透過第一擴散燃料噴嘴發送稀釋劑流。 The method of claim 135, comprising separately injecting the at least one oxidant and the at least one fuel from the respective first and second channels isolated from each other along the first diffusion fuel nozzle, and transmitting through the first diffusion fuel nozzle Diluent flow. 如申請專利範圍第135項之方法,其包含將稀釋劑流送入第一擴散燃料噴嘴下游之室。 A method of claim 135, comprising the step of feeding a stream of diluent into a chamber downstream of the first diffusion fuel nozzle. 如申請專利範圍第138項之方法,其包含透過多個在渦輪燃燒器之襯墊中的多個孔道注入稀釋劑流,且該稀釋劑流包含一部分的廢氣。 A method of claim 138, comprising injecting a diluent stream through a plurality of channels in a liner of a turbine combustor, and wherein the diluent stream comprises a portion of the exhaust gas. 如申請專利範圍第138項之方法,其包含透過多個貫穿渦輪燃燒器之至少一個壁的稀釋劑注入器注入稀釋劑流,且該稀釋劑流包含一部分的廢氣、蒸汽、氮、或另一惰性氣體。 The method of claim 138, comprising injecting a diluent stream through a plurality of diluent injectors through at least one wall of the turbine combustor, and the diluent stream comprising a portion of exhaust gas, steam, nitrogen, or another Inert gas. 如申請專利範圍第87項之方法,其包含沿著該廢氣再循環路徑用第一觸媒單元處理該廢氣。 A method of claim 87, comprising treating the exhaust gas with the first catalyst unit along the exhaust gas recirculation path. 如申請專利範圍第141項之方法,其中處理包含控制廢氣中的一氧化碳、二氧化碳、和未燃燒的烴類之濃度水平。 The method of claim 141, wherein the treating comprises controlling the concentration levels of carbon monoxide, carbon dioxide, and unburned hydrocarbons in the exhaust. 如申請專利範圍第141項之方法,其中處理包含用該廢氣和氧化劑燃料驅動氧化反應。 The method of claim 141, wherein the treating comprises driving the oxidation reaction with the exhaust gas and the oxidant fuel. 如申請專利範圍第143項之方法,其包含控制氧化劑燃料至第一觸媒單元之流量以控制該氧化反應。 A method of claim 143, which comprises controlling the flow of oxidant fuel to the first catalyst unit to control the oxidation reaction. 如申請專利範圍第144項之方法,其包含因應感測器反饋而控制氧化劑燃料之流量,和該第二感測器反 饋包含指示氧、一氧化碳、氫、氮氧化物、未燃燒的烴類、或其任何組合之氣體組成反饋。 The method of claim 144, comprising controlling the flow of the oxidant fuel in response to the sensor feedback, and the second sensor is opposite The feed contains gas composition feedback indicative of oxygen, carbon monoxide, hydrogen, nitrogen oxides, unburned hydrocarbons, or any combination thereof. 如申請專利範圍第87項之方法,其包含使用第一熱回收單元、第二熱回收單元、或其組合沿著該廢氣再循環路徑從廢氣回收熱。 The method of claim 87, comprising recovering heat from the exhaust gas along the exhaust gas recirculation path using the first heat recovery unit, the second heat recovery unit, or a combination thereof. 如申請專利範圍第146項之方法,其包含用在該第一或第二熱回收單元之內、上游或下游的該第一觸媒單元驅動第一觸媒反應。 A method of claim 146, comprising the first catalyst unit for driving the first catalyst reaction within, upstream or downstream of the first or second heat recovery unit. 如申請專利範圍第147項之方法,其包含用在該第一或第二熱回收單元之內、上游或下游的該第二觸媒單元驅動第二觸媒反應。 The method of claim 147, wherein the second catalyst unit is used to drive the second catalyst reaction within, upstream or downstream of the first or second heat recovery unit. 如申請專利範圍第146項之方法,其包含用第一熱回收單元之第一熱回收蒸汽產生器產生第一蒸汽、用第二熱回收單元之第二熱回收蒸汽產生器產生第二蒸汽、或其組合。 The method of claim 146, comprising: generating a first steam by a first heat recovery steam generator of the first heat recovery unit, generating a second steam by using a second heat recovery steam generator of the second heat recovery unit, Or a combination thereof. 如申請專利範圍第149項之方法,其包含用該第一蒸汽驅動第一蒸汽渦輪或用該第二蒸汽驅動第二蒸汽渦輪。 The method of claim 149, comprising driving the first steam turbine with the first steam or driving the second steam turbine with the second steam. 如申請專利範圍第87項之方法,其包含用沿著該廢氣再循環路徑配置之除濕系統從廢氣中除去水分。 A method of claim 87, comprising removing moisture from the exhaust gas with a dehumidification system disposed along the exhaust gas recirculation path. 如申請專利範圍第151項之方法,其中該除濕系統包含熱交換器、冷凝器、水氣分離器、過濾器、或其任何組合。 The method of claim 151, wherein the dehumidification system comprises a heat exchanger, a condenser, a water gas separator, a filter, or any combination thereof. 如申請專利範圍第87項之方法,其包含用沿著 該廢氣再循環路徑配置之除粒系統從廢氣中除去顆粒。 For example, the method of claim 87 of the patent scope includes The degranulation system of the exhaust gas recirculation path configuration removes particles from the exhaust gas. 如申請專利範圍第153項之方法,其中該除粒系統包含慣性分離器、重力分離器、過濾器、或其任何組合。 The method of claim 153, wherein the degranulation system comprises an inertial separator, a gravity separator, a filter, or any combination thereof. 如申請專利範圍第87項之方法,其包含用沿著該廢氣再循環路徑配置之升壓鼓風機將廢氣之流升壓。 A method of claim 87, comprising boosting the flow of exhaust gas with a booster blower disposed along the exhaust gas recirculation path. 如申請專利範圍第87項之方法,其包含沿著該廢氣再循環路徑配置之熱回收單元、升壓鼓風機、除濕單元、和除粒單元。 A method of claim 87, comprising a heat recovery unit, a booster blower, a dehumidifying unit, and a degranulation unit disposed along the exhaust gas recirculation path. 如申請專利範圍第87項之方法,其包含用廢氣提取系統提取一部分的廢氣。 A method of claim 87, which comprises extracting a portion of the exhaust gas with an exhaust gas extraction system. 如申請專利範圍第157項之方法,其包含用廢氣處理系統處理該部分的廢氣。 The method of claim 157, which comprises treating the portion of the exhaust with an exhaust gas treatment system. 如申請專利範圍第158項之方法,其中處理該部分的廢氣包含將該部分的廢氣分離成多個氣體流。 The method of claim 158, wherein treating the portion of the off-gas comprises separating the portion of the off-gas into a plurality of gas streams. 如申請專利範圍第159項之方法,其中該多個氣體流包含富二氧化碳(CO2)之第一流和貧二氧化碳(CO2)之第二流。 The method of application of the 159 patents range, wherein the carbon dioxide-rich stream comprises a plurality of gas (CO 2) and the first flow-lean carbon dioxide (CO 2) of the second stream. 如申請專利範圍第160項之方法,其中處理該部分的廢氣包含用氣體壓縮系統壓縮該部分的廢氣、該第一流、或該第二蒸汽。 The method of claim 160, wherein treating the portion of the exhaust gas comprises compressing the portion of the exhaust gas, the first stream, or the second vapor with a gas compression system. 如申請專利範圍第160項之方法,其中處理該部分的廢氣包含用除濕系統從該部分的廢氣、該第一流、或該第二蒸汽除去水分。 The method of claim 160, wherein treating the portion of the off-gas comprises removing moisture from the portion of the off-gas, the first stream, or the second vapor with a dehumidification system. 如申請專利範圍第160項之方法,其中處理該部分的廢氣包含用除粒系統從該部分的廢氣、該第一流、或該第二蒸汽除去微粒。 The method of claim 160, wherein treating the portion of the off-gas comprises removing particles from the portion of the off-gas, the first stream, or the second vapor with a degranulation system. 如申請專利範圍第160項之方法,其包含將該部分的廢氣、該第一流、或該第二蒸汽發送目標系統,其中該目標系統包含烴產生系統、地下儲存器、碳固存系統、管線、儲存槽、或其任何組合。 The method of claim 160, comprising the part of the exhaust gas, the first stream, or the second steam sending target system, wherein the target system comprises a hydrocarbon generating system, an underground storage, a carbon storage system, and a pipeline , storage tank, or any combination thereof. 如申請專利範圍第160項之方法,其包含因應感測器反饋而調整一或多個操作參數以控制廢氣中之當量比或排放物水平。 A method of claim 160, comprising adjusting one or more operating parameters to control an equivalence ratio or an emission level in the exhaust gas in response to sensor feedback. 如申請專利範圍第165項之方法,其包含藉由監測有關氧、一氧化碳、氫、氮氧化物、未燃燒的烴類、或其任何組合之廢氣的氣體組成來獲得感測器反饋。 A method of claim 165, which comprises obtaining sensor feedback by monitoring a gas composition of an exhaust gas relating to oxygen, carbon monoxide, hydrogen, nitrogen oxides, unburned hydrocarbons, or any combination thereof. 如申請專利範圍第166項之方法,其中獲得感測器反饋包含監測多個沿著該廢氣再循環路徑、渦輪燃燒器、渦輪、廢氣壓縮機、或其組合配置之感測器。 The method of claim 166, wherein obtaining sensor feedback comprises monitoring a plurality of sensors along the exhaust gas recirculation path, a turbine combustor, a turbine, an exhaust gas compressor, or a combination thereof. 如申請專利範圍第87項之方法,其包含將該廢氣之旁路流沿著旁路管線從該廢氣壓縮機發送至該渦輪。 A method of claim 87, comprising the bypass flow of the exhaust gas being sent from the exhaust compressor to the turbine along a bypass line. 如申請專利範圍第168項之方法,其包含沿著該旁路管線冷卻該廢氣之旁路流,和使用該廢氣之旁路流冷卻該渦輪。 A method of claim 168, comprising a bypass stream that cools the exhaust gas along the bypass line, and a bypass flow using the exhaust gas to cool the turbine. 如申請專利範圍第87項之方法,其包含操作具有渦輪燃燒器、渦輪、和該廢氣壓縮機之燃氣渦輪引擎以在該化學計量的控制模式期間根據感測器反饋達成實質上 化學計量燃燒。 A method of claim 87, comprising operating a gas turbine engine having a turbine combustor, a turbine, and the exhaust gas compressor to achieve substantial feedback based on sensor feedback during the stoichiometric control mode Stoichiometric combustion. 如申請專利範圍第170項之方法,其包含用連接到該燃氣渦輪引擎之廢氣提取系統提取一部分的廢氣,和將該部分的廢氣發送至烴產生系統、碳固存系統、管線、儲存槽、或其任何組合。 A method of claim 170, comprising extracting a portion of the exhaust gas from an exhaust gas extraction system coupled to the gas turbine engine, and sending the portion of the exhaust gas to a hydrocarbon generation system, a carbon storage system, a pipeline, a storage tank , or any combination thereof. 一種方法,其包含:將氧化劑引至至少一個氧化劑壓縮機以產生壓縮氧化劑流;將再循環低氧含量氣體流引至燃氣渦輪引擎的壓縮機段以產生壓縮低氧含量氣體流;將第一壓縮氧化劑流率之第一部分的壓縮氧化劑流和第一燃料流率之燃料流以實質上化學計量比引至至少一個渦輪燃燒器,並於燃燒點混合該壓縮氧化劑流和該燃料流,及燃燒該壓縮氧化劑流和該燃料流的混合物;將低氧含量氣體流率之第一部分的壓縮低氧含量氣體流引至該至少一個渦輪燃燒器,並在燃燒點之後將其與該壓縮氧化劑和該燃料之燃燒流混合,及產生高溫高壓低氧含量流;將該高溫高壓低氧含量流引至燃氣渦輪引擎的膨脹器段,並膨脹該高溫高壓低氧含量流,以產生第一機械動力以及具有第一再循環低氧含量氣體流率之再循環低氧含量氣體流,其中該再循環低氧含量氣體流含有第一再循環低氧含量氣體排放物水平;使用第一部分的第一機械動力以驅動該燃氣渦輪引擎 的壓縮機段;使用第二部分的第一機械動力以驅動下列中的至少一者:產生器、該至少一個氧化劑壓縮機或至少一個其他機械裝置;以再循環迴路將再循環低氧含量氣體流從膨脹器段之出口再循環至燃氣渦輪引擎的壓縮機段之入口;從該燃氣渦輪引擎提取至少第二部分的壓縮低氧含量氣體流,和將該至少第二部分的壓縮低氧含量氣體流遞送至該第一至少一個氧化觸媒單元,及產生包含第一低氧含量產物排放物水平在目標範圍內之低氧含量產物流;將燃料流流率減少至小於該第一燃料流流率之第二燃料流流率,及將第一部分的該壓縮氧化劑流流率減少至小於該第一壓縮氧化劑流率之第二壓縮氧化劑流率,其中保持該實質上化學計量比,產生小於該第一機械動力之第二機械動力,及產生包含第二低氧含量產物排放物水平在目標範圍內之低氧含量產物流;將燃料流流率減少至小於該第二燃料流流率之第三燃料流流率,及將第一部分的該壓縮氧化劑流流率減少至小於該第二壓縮氧化劑流率之第三壓縮氧化劑流率,其中保持該實質上化學計量比,產生小於該第二機械動力之第三機械動力,及產生包含第三低氧含量產物排放物水平在目標範圍內之低氧含量產物流;及將燃料流流率減少至小於該該第三燃料流流率之第四燃料流流率,及將該第一部分的壓縮氧化劑流流率減少至 小於該第三壓縮氧化劑流率之第四壓縮氧化劑流率,其中不保持該實質上化學計量比,及達到貧燃料燃燒,產生小於該第三機械動力之第四機械動力,及產生包含高氧含量產物排放物水平之高氧含量產物流。 A method comprising: directing an oxidant to at least one oxidant compressor to produce a compressed oxidant stream; directing a recirculated low oxygen content gas stream to a compressor section of a gas turbine engine to produce a compressed low oxygen content gas stream; a first portion of the compressed oxidant flow rate and a first fuel flow rate fuel stream are directed to the at least one turbine combustor at a substantially stoichiometric ratio, and the compressed oxidant stream and the fuel stream are mixed at a point of combustion, and Combusing a mixture of the compressed oxidant stream and the fuel stream; directing a first portion of the compressed low oxygen content gas stream of the low oxygen content gas flow rate to the at least one turbine combustor and combining it with the compressed oxidant after the combustion point Mixing the combustion stream of the fuel and generating a high temperature, high pressure, low oxygen content stream; directing the high temperature, high pressure, low oxygen content stream to the expander section of the gas turbine engine, and expanding the high temperature, high pressure, low oxygen content stream to produce the first machine Power and a recycled low oxygen content gas stream having a first recycled low oxygen content gas flow rate, wherein the recycled low oxygen content gas stream A first gas effluent recirculated low oxygen content level; a first portion of a first mechanical power is used to drive the gas turbine engine Compressor section; using a second portion of the first mechanical power to drive at least one of: a generator, the at least one oxidant compressor, or at least one other mechanical device; the recycle loop will recirculate the low oxygen content gas Flow is recirculated from an outlet of the expander section to an inlet of a compressor section of the gas turbine engine; at least a second portion of the compressed low oxygen content gas stream is withdrawn from the gas turbine engine, and the compression of the at least second portion is low Delivering an oxygen content gas stream to the first at least one oxidation catalyst unit and generating a low oxygen content product stream comprising a first low oxygen content product effluent level within a target range; reducing the fuel flow rate to less than the first a second fuel flow rate of the fuel flow rate, and reducing the first portion of the compressed oxidant flow rate to a second compressed oxidant flow rate that is less than the first compressed oxidant flow rate, wherein the substantially stoichiometric ratio is maintained, Generating a second mechanical power that is less than the first mechanical power and producing a low oxygen content product stream having a second low oxygen content product effluent level within a target range Reducing the fuel flow rate to a third fuel flow rate that is less than the second fuel flow rate, and reducing the first portion of the compressed oxidant flow rate to a third compressed oxidant stream that is less than the second compressed oxidant flow rate a rate wherein the substantially stoichiometric ratio is maintained, a third mechanical power less than the second mechanical power is generated, and a low oxygen content product stream comprising a third low oxygen content product effluent level within a target range is produced; and the fuel is The flow rate is reduced to a fourth fuel flow rate that is less than the third fuel flow rate, and the first portion of the compressed oxidant flow rate is reduced to a fourth compressed oxidant flow rate that is less than the third compressed oxidant flow rate, wherein the substantially stoichiometric ratio is not maintained, and lean fuel combustion is achieved, a fourth mechanical power less than the third mechanical power is generated, and high oxygen is generated A high oxygen content product stream at the level of product effluent. 如申請專利範圍第172項之方法,其中該第一再循環低氧含量氣體排放包含氧、一氧化碳、氫、氮的氧化物、未燃燒的烴類或不完全燃燒之類似產物中的至少一者。 The method of claim 172, wherein the first recycled low oxygen content gas discharge comprises at least one of oxygen, carbon monoxide, hydrogen, nitrogen oxides, unburned hydrocarbons or similar products of incomplete combustion. . 如申請專利範圍第172項之方法,其中該第一、第二和第三低氧含量產物排放包含氧、一氧化碳、氫、氮的氧化物、未燃燒的烴類或不完全燃燒之類似產物中的至少一者。 The method of claim 172, wherein the first, second, and third low oxygen content products emit oxygen, carbon monoxide, hydrogen, nitrogen oxides, unburned hydrocarbons, or similar products incomplete combustion. At least one of them. 如申請專利範圍第172項之方法,其中該高氧含量產物排放包含氧、一氧化碳、氫、氮的氧化物、未燃燒的烴類或不完全燃燒之類似產物中的至少一者。 The method of claim 172, wherein the high oxygen content product discharge comprises at least one of oxygen, carbon monoxide, hydrogen, nitrogen oxides, unburned hydrocarbons or similar products of incomplete combustion. 如申請專利範圍第172項之方法,其中該低氧含量產物排放物水平之限值為50ppmv氧和5000ppmv一氧化碳中的至少一者。 The method of claim 172, wherein the low oxygen content product emission level limit is at least one of 50 ppmv oxygen and 5000 ppmv carbon monoxide. 如申請專利範圍第172項之方法,其中該低氧含量產物排放物水平之限值為10ppmv氧和1000ppmv一氧化碳中的至少一者。 The method of claim 172, wherein the low oxygen content product emission level limit is at least one of 10 ppmv oxygen and 1000 ppmv carbon monoxide. 如申請專利範圍第172項之方法,其中該高氧含量產物排放物水平包含至少1000ppmv氧。 The method of claim 172, wherein the high oxygen content product effluent level comprises at least 1000 ppmv oxygen. 如申請專利範圍第172項之方法,其中該高氧 含量產物排放物水平包含小於100ppmv一氧化碳。 Such as the method of claim 172, wherein the high oxygen The level product effluent level comprises less than 100 ppmv carbon monoxide. 如申請專利範圍第172項之方法,其中該高氧含量產物排放物水平包含小於20ppmv一氧化碳。 The method of claim 172, wherein the high oxygen content product effluent level comprises less than 20 ppmv carbon monoxide. 如申請專利範圍第172項之方法,其中該高氧含量產物排放物水平包含小於200ppmv氮氧化物。 The method of claim 172, wherein the high oxygen content product effluent level comprises less than 200 ppmv oxynitride. 如申請專利範圍第172項之方法,其中該高氧含量產物排放物水平包含小於100ppmv氮氧化物。 The method of claim 172, wherein the high oxygen content product effluent level comprises less than 100 ppmv oxynitride. 如申請專利範圍第172項之方法,其包含將第二部分的壓縮氧化劑流引至該第一至少一個氧化觸媒單元以氧化至少一部分之包含在第二部分的壓縮低氧含量流中的一氧化碳、氫、未燃燒的烴類或不完全燃燒之類似產物中的至少一者。 The method of claim 172, comprising introducing a second portion of the compressed oxidant stream to the first at least one oxidation catalyst unit to oxidize at least a portion of the carbon monoxide contained in the second portion of the compressed low oxygen content stream At least one of hydrogen, unburned hydrocarbons or similar products that are not completely combusted. 如申請專利範圍第172項之方法,其包含將氧化燃料引至該第一至少一個氧化觸媒單元,和減少至少一部分之包含在第二部分的該壓縮低氧含量流中的殘餘氧。 The method of claim 172, comprising introducing an oxidizing fuel to the first at least one oxidation catalyst unit, and reducing at least a portion of the residual oxygen contained in the compressed low oxygen content stream of the second portion. 如申請專利範圍第172項之方法,其中該氧化劑基本上由周圍空氣和包含氮之再循環低氧含量氣體流組成。 The method of claim 172, wherein the oxidant consists essentially of ambient air and a recycled low oxygen content gas stream comprising nitrogen. 如申請專利範圍第172項之方法,其中該當量比(phi,)等於(燃料mol%/氧化劑mol%)實際/(燃料mol%/氧化劑mol%)化學計量For example, the method of claim 172, wherein the equivalent ratio (phi, ) Is equal to (mol% of the fuel / oxidant mol%) Actual / (fuel mol% / oxidant mol%) stoichiometry. 如申請專利範圍第186項之方法,其包含控制該第一部分的壓縮氧化劑流和該燃料流中之至少一者的流 率以達成約1之燃燒當量比,及產生該第一部分的壓縮氧化劑流和該燃料流之實質上化學計量比。 The method of claim 186, comprising controlling the flow of the first portion of the compressed oxidant stream and at least one of the fuel streams The rate is such that a combustion equivalent ratio of about 1 is achieved, and a substantially stoichiometric ratio of the first portion of the compressed oxidant stream to the fuel stream is produced. 如申請專利範圍第187項之方法,其包含安裝在該再循環迴路中及測量再循環低氧含量流內之組分的感測器。 A method of claim 187, comprising a sensor mounted in the recirculation loop and measuring a component of the recycled low oxygen content stream. 如申請專利範圍第188項之方法,其中該測得組分為下列中的至少一者:氧、一氧化碳、氫、氮氧化物和未燃燒的烴類。 The method of claim 188, wherein the measured component is at least one of the group consisting of oxygen, carbon monoxide, hydrogen, nitrogen oxides, and unburned hydrocarbons. 如申請專利範圍第189項之方法,其包含藉由分析組分測量結果而決定當量比。 The method of claim 189, which comprises determining an equivalence ratio by analyzing component measurements. 如申請專利範圍第172項之方法,其包含至少一個安裝且測量在該第一至少一個氧化觸媒單元之上游、該第一至少一個氧化觸媒單元之下游或二者的經提取之第二部分壓縮的低氧含量氣體流內之組分的感測器。 The method of claim 172, comprising at least one second selected and installed upstream of the first at least one oxidation catalyst unit, downstream of the first at least one oxidation catalyst unit, or both A sensor of a component of a partially compressed low oxygen content gas stream. 如申請專利範圍第191項之方法,其中該測得組分為下列中的至少一者:氧、一氧化碳、氫、氮氧化物和未燃燒的烴類。 The method of claim 191, wherein the measured component is at least one of the group consisting of oxygen, carbon monoxide, hydrogen, nitrogen oxides, and unburned hydrocarbons. 如申請專利範圍第192項之方法,其包含至少一個用於調整燃燒當量比、第二部分的壓縮氧化劑流之流率或氧化燃料之流率中的至少一者及達成在第一至少一個氧化觸媒單元的下游之該測得之組分中的至少一者之所要水平的控制器。 The method of claim 192, comprising at least one of adjusting a combustion equivalent ratio, a flow rate of the second portion of the compressed oxidant stream, or a flow rate of the oxidizing fuel and achieving at least one oxidation in the first A controller of a desired level of at least one of the measured components downstream of the catalyst unit. 如申請專利範圍第172項之方法,其在該第一至少一個氧化觸媒單元之下游包含第一熱回收單元。 The method of claim 172, wherein the first heat recovery unit is included downstream of the first at least one oxidation catalyst unit. 如申請專利範圍第194項之方法,其中該第一熱回收單元包含蒸汽產生器。 The method of claim 194, wherein the first heat recovery unit comprises a steam generator. 如申請專利範圍第195項之方法,其包含藉由蒸汽產生器產生遞送至至少一個蒸汽渦輪之蒸汽,和驅動產生電力之產生器或另一機械裝置中的至少一者。 A method of claim 195, comprising generating, by a steam generator, steam delivered to at least one steam turbine, and driving at least one of a generator or another mechanical device that produces electrical power. 如申請專利範圍第172項之方法,其在膨脹器段之出口和至燃氣渦輪引擎的壓縮機段的入口之間的再循環迴路中包含第二熱回收單元,和從再循環低氧含量氣體流除去熱。 A method of claim 172, comprising a second heat recovery unit in the recirculation loop between the outlet of the expander section and the inlet to the compressor section of the gas turbine engine, and recycling low oxygen content The gas stream removes heat. 如申請專利範圍第197項之方法,其中該第二熱回收單元包含蒸汽產生器。 The method of claim 197, wherein the second heat recovery unit comprises a steam generator. 如申請專利範圍第198項之方法,其包含藉由蒸汽產生器產生遞送至至少一個蒸汽渦輪之蒸汽,和驅動產生電力之產生器或另一機械裝置中的至少一者。 A method of claim 198, comprising generating, by a steam generator, steam delivered to at least one steam turbine, and driving at least one of a generator or another mechanical device that produces electrical power. 如申請專利範圍第172項之方法,其包含將第三部分的壓縮低氧含量氣體流從燃氣渦輪引擎的壓縮機段遞送至渦輪作為二次流之二次流路徑,和在冷卻和密封該渦輪之後將第三部分的壓縮低氧含量氣體流遞送於再循環迴路中。 A method of claim 172, comprising delivering a third portion of the compressed low oxygen content gas stream from a compressor section of the gas turbine engine to a turbine as a secondary flow secondary flow path, and cooling and sealing The turbine then delivers a third portion of the compressed low oxygen content gas stream to the recirculation loop. 如申請專利範圍第197項之方法,其在再循環迴路中包含增加第二熱回收單元下游之再循環低氧含量氣體流的壓力之升壓鼓風機。 The method of claim 197, wherein the recirculation loop includes a booster blower that increases the pressure of the recycled low oxygen content gas stream downstream of the second heat recovery unit. 如申請專利範圍第197項之方法,其在燃氣渦輪引擎的壓縮機段上游之再循環迴路內包含熱交換器,該 熱交換器將再循環低氧含量氣體流在進入燃氣渦輪引擎之壓縮機段的入口之前將其冷卻。 A method of claim 197, comprising a heat exchanger in a recirculation loop upstream of a compressor section of the gas turbine engine, The heat exchanger cools the recirculated low oxygen content gas stream prior to entering the inlet of the compressor section of the gas turbine engine. 如申請專利範圍第202項之方法,其包含用該熱交換器從該再循環低氧含量氣體流冷凝和去除水。 A method of claim 202, comprising condensing and removing water from the recycled low oxygen content gas stream using the heat exchanger. 如申請專利範圍第172項之方法,其包含將至少一部分的該低氧含量產物流遞送至用於提高烴回收之地下儲存器。 A method of claim 172, comprising delivering at least a portion of the low oxygen content product stream to an underground reservoir for enhanced hydrocarbon recovery. 如申請專利範圍第204項之方法,其包含在將該至少一部分的該低氧含量產物流遞送至用於提高烴回收之地下儲存器之前,用至少一個惰性氣體產物壓縮機壓縮該至少一部分的該低氧含量產物流。 The method of claim 204, comprising compressing the at least one portion with at least one inert gas product compressor prior to delivering the at least a portion of the low oxygen content product stream to an underground reservoir for enhanced hydrocarbon recovery The low oxygen content product stream. 如申請專利範圍第204項之方法,其包含藉由第一熱回收單元冷卻該低氧含量產物流。 A method of claim 204, comprising cooling the low oxygen content product stream by a first heat recovery unit. 如申請專利範圍第204項之方法,其包含將該至少一部分的該低氧含量產物流遞送至氣體脫水單元。 A method of claim 204, comprising delivering the at least a portion of the low oxygen content product stream to a gas dehydration unit. 如申請專利範圍第172項之方法,其包含將至少一部分的該低氧含量產物流遞送至二氧化碳分離單元以產生貧二氧化碳流和富二氧化碳流。 A method of claim 172, comprising delivering at least a portion of the low oxygen content product stream to a carbon dioxide separation unit to produce a carbon dioxide lean stream and a carbon dioxide rich stream. 如申請專利範圍第208項之方法,其包含將至少一部分的該貧二氧化碳流遞送至用於提高烴回收之地下儲存器。 A method of claim 208, comprising delivering at least a portion of the carbon dioxide lean stream to an underground reservoir for enhanced hydrocarbon recovery. 如申請專利範圍第208項之方法,其包含將至少一部分的該富二氧化碳流遞送至用於提高烴回收之地下儲存器。 A method of claim 208, comprising delivering at least a portion of the carbon dioxide rich stream to an underground reservoir for enhanced hydrocarbon recovery. 如申請專利範圍第208項之方法,其包含將至少一部分的該富二氧化碳流遞送至碳固存單元。 A method of claim 208, comprising delivering at least a portion of the carbon dioxide rich stream to a carbon sequestration unit. 如申請專利範圍第209項之方法,其包含在將該至少一部分的貧二氧化碳流遞送至用於提高烴回收之地下儲存器之前,將該至少一部分的該貧二氧化碳流壓縮至至少一個貧產物壓縮機。 The method of claim 209, comprising compressing the at least a portion of the carbon dioxide lean stream to at least one lean product compression prior to delivering the at least a portion of the carbon dioxide lean stream to the subterranean reservoir for enhanced hydrocarbon recovery machine. 如申請專利範圍第210項之方法,其包含在將該至少一部分的該富二氧化碳流遞送至用於提高烴回收之地下儲存器之前,將該至少一部分的該富二氧化碳流壓縮至至少一個富產物壓縮機。 The method of claim 210, comprising compressing the at least a portion of the carbon dioxide rich stream to at least one rich product prior to delivering the at least a portion of the carbon dioxide rich stream to an underground reservoir for enhanced hydrocarbon recovery. compressor. 如申請專利範圍第211項之方法,其包含在將該至少一部分的該富二氧化碳流遞送至碳固存單元之前,將該至少一部分的該富二氧化碳流壓縮至至少一個富產物壓縮機。 A method of claim 211, comprising compressing the at least a portion of the carbon dioxide rich stream to at least one rich product compressor prior to delivering the at least a portion of the carbon dioxide rich stream to the carbon sequestration unit. 如申請專利範圍第208項之方法,其包含將至少一部分的該貧二氧化碳流遞送至氣體脫水單元。 A method of claim 208, comprising delivering at least a portion of the carbon dioxide lean stream to a gas dehydration unit. 如申請專利範圍第208項之方法,其包含將至少一部分的該富二氧化碳流遞送至氣體脫水單元。 A method of claim 208, comprising delivering at least a portion of the carbon dioxide rich stream to a gas dehydration unit. 如申請專利範圍第172項之方法,其包含將至少一部分的該低氧含量產物流引至膨脹器並膨脹該至少一部分的該低氧含量產物流,驅動產生器或另一機械裝置中的至少一者及產生排放流。 The method of claim 172, comprising introducing at least a portion of the low oxygen content product stream to an expander and expanding the at least a portion of the low oxygen content product stream, driving at least a generator or another mechanical device One and generate a discharge stream. 如申請專利範圍第208項之方法,其包含將至少一部分的該貧二氧化碳流引至膨脹器並膨脹該至少一部 分的該貧二氧化碳流,驅動產生器或另一機械裝置中的至少一者及產生排放流。 The method of claim 208, comprising introducing at least a portion of the carbon dioxide lean stream to an expander and expanding the at least one portion The lean carbon dioxide stream divides at least one of the generator or another mechanical device and produces a discharge stream. 如申請專利範圍第172項之方法,其包含位於該再循環迴路內之第二至少一個氧化觸媒單元,和氧化至少一部分之包含在該再循環低氧含量氣體流中之一氧化碳、氫、未燃燒的烴類或不完全燃燒的類似產物中的至少一者。 The method of claim 172, comprising a second at least one oxidation catalyst unit located in the recycle loop, and oxidizing at least a portion of the carbon monoxide, hydrogen, or not contained in the recycled low oxygen content gas stream At least one of a burning hydrocarbon or a similar product that is not completely combusted. 如申請專利範圍第219項之方法,其中該第二至少一個氧化觸媒單元係位於該第二熱回收單元之上游。 The method of claim 219, wherein the second at least one oxidation catalyst unit is located upstream of the second heat recovery unit. 如申請專利範圍第219項之方法,其中該第二至少一個氧化觸媒單元係位於該第二熱回收單元之下游。 The method of claim 219, wherein the second at least one oxidation catalyst unit is located downstream of the second heat recovery unit. 如申請專利範圍第219項之方法,其中該第二至少一個氧化觸媒單元係位於第二熱回收單元內且位於在提供適當操作溫度和提供用於由觸媒反應所產生的熱之適當散熱器的位置。 The method of claim 219, wherein the second at least one oxidation catalyst unit is located in the second heat recovery unit and is located at a suitable heat supply for providing an appropriate operating temperature and providing heat for reaction by the catalyst. The location of the device. 如申請專利範圍第172項之方法,其包含控制該至少第二部分的壓縮低氧含量氣體流之流率。 A method of claim 172, which comprises controlling the flow rate of the compressed low oxygen content gas stream of the at least second portion. 如申請專利範圍第223項之方法,其中調整該至少第二部分的壓縮低氧含量氣體流之流率以將再循環迴路內之位置的壓力保持在所要範圍內。 The method of claim 223, wherein the flow rate of the compressed low oxygen content gas stream of the at least second portion is adjusted to maintain the pressure at a location within the recirculation loop within a desired range. 如申請專利範圍第223項之方法,其中利用提取閥、提取排放閥、產物壓縮機操作速率、產物壓縮機入口導流片位置或產物壓縮機再循環閥中的至少一者,調整該至少第二部分的壓縮低氧含量氣體流之流率。 The method of claim 223, wherein the at least one of the extraction valve, the extraction discharge valve, the product compressor operating rate, the product compressor inlet baffle position, or the product compressor recirculation valve is adjusted The flow rate of the two-part compressed low oxygen content gas stream. 如申請專利範圍第172項之方法,其中該至少一個渦輪燃燒器各自包含多個燃燒器和至少二個分開控制之迴路,而該迴路將燃料流分開供應至兩個個別燃燒器、一個個別燃燒器和一組燃燒器、二組燃燒器、及其組合中之至少一者。 The method of claim 172, wherein the at least one turbine combustor each comprises a plurality of combustors and at least two separately controlled loops, the loop supplying the fuel stream separately to the two individual combustors, one for individual combustion And at least one of a set of burners, two sets of burners, and combinations thereof. 如申請專利範圍第226項之方法,其中該至少二個分開控制之迴路之中,從第一燃料流率至第二燃料流率、第二燃料流率至第三燃料流率及第三燃料流率至第四燃料流率中的至少一者之該燃料流率的減少百分比不相等。 The method of claim 226, wherein the at least two separately controlled circuits, from the first fuel flow rate to the second fuel flow rate, the second fuel flow rate to the third fuel flow rate, and the third fuel The percentage reduction of the fuel flow rate of at least one of the flow rate to the fourth fuel flow rate is not equal. 如申請專利範圍第172項之方法,其包含:將燃料流流率減少至小於該第一燃料流流率之第五流流率,及將該第一部分的壓縮氧化劑流流率減少至小於該第一壓縮氧化劑流率之第五壓縮氧化劑流率,其中保持該實質上化學計量比,產生小於該第一機械動力之第五機械動力,及產生低氧含量產物流,其包含在目標範圍內之第五低氧含量產物排放物水平及來自第二至少一種氧化觸媒單元之第一熱釋放,其導致在第二至少一種氧化觸媒單元下游的再循環低氧含量氣體流之溫度在目標範圍內;將燃料流流率減少至小於該第五燃料流流率之第六燃料流流率,及將該第一部分的壓縮氧化劑流流率減少至小於該第五壓縮氧化劑流率之第六壓縮氧化劑流率,其中保持該實質上化學計量比,產生小於該第五機械動力之第六機械動力及產生低氧含量產物流,其包含在第六低氧含量 產物排放物水平及來自第二至少一種氧化觸媒單元之第二熱釋放,其導致在第二至少一種氧化觸媒單元下游的再循環低氧含量氣體流之溫度在目標範圍之內;將燃料流流率減少至小於該第六燃料流流率之第七燃料流流率,及將該第一部分的壓縮氧化劑流流率減少至小於該第六壓縮氧化劑流率之第七壓縮氧化劑流率,其中不保持該實質上化學計量比,及達到貧燃料燃燒,產生小於該第六機械動力之第七機械動力及產生高氧含量產物,其包含高氧含量產物排放物水平及來自第二至少一種氧化觸媒單元之第三熱釋放,其導致在第二至少一種氧化觸媒單元下游的再循環低氧含量氣體流之溫度在目標範圍內。 The method of claim 172, comprising: reducing a fuel flow rate to a fifth flow rate that is less than the first fuel flow rate, and reducing the first portion of the compressed oxidant flow rate to less than the a fifth compressed oxidant flow rate of the first compressed oxidant flow rate, wherein the substantially stoichiometric ratio is maintained, a fifth mechanical power less than the first mechanical power is generated, and a low oxygen content product stream is produced, which is included in the target range a fifth low oxygen content product effluent level and a first heat release from the second at least one oxidation catalyst unit, which results in a temperature of the recycled low oxygen content gas stream downstream of the second at least one oxidation catalyst unit at the target Within the range; reducing the fuel flow rate to a sixth fuel flow rate that is less than the fifth fuel flow rate, and reducing the first portion of the compressed oxidant flow rate to a sixth less than the fifth compressed oxidant flow rate Compressing the oxidant flow rate, wherein maintaining the substantially stoichiometric ratio produces a sixth mechanical power that is less than the fifth mechanical power and produces a low oxygen content product stream, which is included in the sixth The oxygen content a product effluent level and a second heat release from the second at least one oxidation catalyst unit, the temperature of the recycled low oxygen content gas stream downstream of the second at least one oxidation catalyst unit being within a target range; The flow rate is reduced to a seventh fuel flow rate that is less than the sixth fuel flow rate, and the first portion of the compressed oxidant flow rate is reduced to a seventh compressed oxidant flow rate that is less than the sixth compressed oxidant flow rate, Not maintaining the substantial stoichiometric ratio, and achieving lean fuel combustion, producing a seventh mechanical power less than the sixth mechanical power and producing a high oxygen content product comprising a high oxygen content product emission level and at least one from the second A third heat release of the oxidation catalyst unit results in a temperature of the recycled low oxygen content gas stream downstream of the second at least one oxidation catalyst unit being within a target range. 如申請專利範圍第172項之方法,其包含:將燃料流流率減少至小於該第一燃料流流率之第八流流率,及將該第一部分的壓縮氧化劑流流率減少至小於該第一壓縮氧化劑流率之第八壓縮氧化劑流率,其中保持該實質上化學計量比,產生小於該第一機械動力之第八機械動力及產生低氧含量產物流,其包含在目標範圍內之第八低氧含量產物排放物水平及來自第一至少一種氧化觸媒單元之第四熱釋放,其導致在第一至少一種氧化觸媒單元下游的低氧含量產物流之溫度在目標範圍內;將燃料流流率減少至小於該第八燃料流流率之第九燃料流流率,及將該第一部分的壓縮氧化劑流流率減少至小於該第八壓縮氧化劑流率之第九壓縮氧化劑流率,其中保持該實質上化學計量比,產生小於該第八機械動力之第九 機械動力及產生低氧含量產物流,其包含在目標範圍內之第九低氧含量產物排放物水平及來自第一至少一種氧化觸媒單元之第五熱釋放,其導致在第一至少一種氧化觸媒單元下游的低氧含量產物流之溫度在目標範圍之內;將燃料流流率減少至小於該該第九燃料流流率之第十燃料流流率,及將該第一部分的壓縮氧化劑流流率減少至小於該第九壓縮氧化劑流率之第十壓縮氧化劑流率,其中不保持該實質上化學計量比,及達到貧燃料燃燒,產生小於該第九機械動力之第十機械動力及產生高氧含量產物流,其包含高氧含量產物排放物水平及來自第一至少一種氧化觸媒單元之第六熱釋放,其導致在第一至少一種氧化觸媒單元下游的高氧含量產物流之溫度在目標範圍內。 The method of claim 172, comprising: reducing a fuel flow rate to an eighth flow rate that is less than the first fuel flow rate, and reducing the first portion of the compressed oxidant flow rate to less than the An eighth compressed oxidant flow rate of the first compressed oxidant flow rate, wherein the substantially stoichiometric ratio is maintained, producing an eighth mechanical power less than the first mechanical power and producing a low oxygen content product stream, which is included in the target range An eighth low oxygen content product effluent level and a fourth heat release from the first at least one oxidation catalyst unit, which results in a temperature of the low oxygen content product stream downstream of the first at least one oxidation catalyst unit being within a target range; Reducing the fuel flow rate to a ninth fuel flow rate that is less than the eighth fuel flow rate, and reducing the first portion of the compressed oxidant flow rate to a ninth compressed oxidant stream that is less than the eighth compressed oxidant flow rate Rate, wherein the substantial stoichiometric ratio is maintained, producing a ninth less than the eighth mechanical power Mechanically motivating and producing a low oxygen content product stream comprising a ninth low oxygen content product effluent level within the target range and a fifth heat release from the first at least one oxidation catalyst unit, which results in the first at least one oxidation a temperature of the low oxygen content product stream downstream of the catalyst unit is within a target range; a fuel flow rate is reduced to a tenth fuel stream flow rate less than the ninth fuel stream flow rate, and the first portion of the compressed oxidant is The flow rate is reduced to a tenth compressed oxidant flow rate that is less than the ninth compressed oxidant flow rate, wherein the substantially stoichiometric ratio is not maintained, and lean fuel combustion is achieved, producing a tenth mechanical power that is less than the ninth mechanical power and Generating a high oxygen content product stream comprising a high oxygen content product effluent level and a sixth heat release from the first at least one oxidation catalyst unit, which results in a high oxygen content product stream downstream of the first at least one oxidation catalyst unit The temperature is within the target range. 如申請專利範圍第172項之方法,其包含第一至少一種氮氧化物還原觸媒單元作為該第一至少一種氧化觸媒單元的部分。 The method of claim 172, comprising the first at least one nitrogen oxide reduction catalyst unit as part of the first at least one oxidation catalyst unit. 如申請專利範圍第219項之方法,其包含第二至少一種氮氧化物還原觸媒單元作為該第二至少一種氧化觸媒單元的部分。 The method of claim 219, comprising the second at least one nitrogen oxide reduction catalyst unit as part of the second at least one oxidation catalyst unit. 如申請專利範圍第203項之方法,其在熱交換器的下游包含慣性分離器、聚結過濾器和不透水過濾器之至少一者,且改良除去冷凝水的效能。 The method of claim 203, comprising at least one of an inertial separator, a coalescing filter, and a watertight filter downstream of the heat exchanger, and improving the efficiency of removing the condensed water.
TW102138891A 2012-11-02 2013-10-28 System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system TWI602986B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201261722111P 2012-11-02 2012-11-02

Publications (2)

Publication Number Publication Date
TW201441479A true TW201441479A (en) 2014-11-01
TWI602986B TWI602986B (en) 2017-10-21

Family

ID=52422828

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102138891A TWI602986B (en) 2012-11-02 2013-10-28 System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system

Country Status (2)

Country Link
AR (1) AR093326A1 (en)
TW (1) TWI602986B (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19619470C1 (en) * 1996-05-14 1997-09-25 Siemens Ag Combined gas-and-steam turbine installation
WO2004072453A1 (en) * 2003-02-11 2004-08-26 Alstom Technology Ltd Method for operating a gas turbine group
EP1819964A2 (en) * 2004-06-11 2007-08-22 Vast Power Systems, Inc. Low emissions combustion apparatus and method
WO2008155242A1 (en) * 2007-06-19 2008-12-24 Alstom Technology Ltd Gas turbine system having exhaust gas recirculation
US8240150B2 (en) * 2008-08-08 2012-08-14 General Electric Company Lean direct injection diffusion tip and related method
EP2246532A1 (en) * 2008-12-24 2010-11-03 Alstom Technology Ltd Power plant with CO2 capture
US9003761B2 (en) * 2010-05-28 2015-04-14 General Electric Company System and method for exhaust gas use in gas turbine engines
US8713947B2 (en) * 2011-08-25 2014-05-06 General Electric Company Power plant with gas separation system

Also Published As

Publication number Publication date
TWI602986B (en) 2017-10-21
AR093326A1 (en) 2015-06-03

Similar Documents

Publication Publication Date Title
US20220282668A1 (en) System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
AU2013337667B2 (en) System and method for diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
WO2014071118A1 (en) System and method for reheat in gas turbine with exhaust gas recirculation
TWI602985B (en) System and method for diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
TWI602986B (en) System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
TWI644016B (en) System and method for diffusion combustion with oxidant-diluent mixing in a stoichiometric exhaust gas recirculation gas turbine system
TWI602987B (en) System and method for diffusion combustion with fuel-diluent mixing in a stoichiometric exhaust gas recirculation gas turbine system

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees