TW201437945A - Distant data classification system and method thereof - Google Patents

Distant data classification system and method thereof Download PDF

Info

Publication number
TW201437945A
TW201437945A TW102111104A TW102111104A TW201437945A TW 201437945 A TW201437945 A TW 201437945A TW 102111104 A TW102111104 A TW 102111104A TW 102111104 A TW102111104 A TW 102111104A TW 201437945 A TW201437945 A TW 201437945A
Authority
TW
Taiwan
Prior art keywords
data
monitoring
network
parameter data
environmental
Prior art date
Application number
TW102111104A
Other languages
Chinese (zh)
Other versions
TWI546759B (en
Inventor
Min-Sheng Liao
Cheng-Long Chuang
Tzu-Shiang Lin
Chia-Pang Chen
xiang-yao Zheng
Po-Tang Chen
Kuo-Chi Liao
Joe-Air Jiang
Original Assignee
Univ Nat Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan filed Critical Univ Nat Taiwan
Priority to TW102111104A priority Critical patent/TWI546759B/en
Publication of TW201437945A publication Critical patent/TW201437945A/en
Application granted granted Critical
Publication of TWI546759B publication Critical patent/TWI546759B/en

Links

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

A distant data classification system and method thereof are provided. The system and method apply to collect the parameter-related data relating to an environment within a remote region. It builds several monitoring results by these parameter-related data via an artificial neural network and a classification model, and provides alarm message corresponding the monitoring results. The system and method enable users to manage the conditions of the distant environment conveniently and efficiently without being present on the spot or performing measurement manually on the spot, and consider all factors at the same time to generate the objective result.

Description

遠距環境資料分類系統及其方法 Remote environmental data classification system and method thereof

本發明係有關一種資料分類系統及其方法,特別是指一種利用人工智慧類神經網路及分類演算法進行分類之遠距環境資料分類系統及其方法。 The invention relates to a data classification system and a method thereof, in particular to a remote environment data classification system and method thereof using an artificial intelligence neural network and a classification algorithm for classification.

世上有四千多種瓜果蠅,在台灣就有148種之多。這些瓜果蠅多為害蟲,大多數針對特定寄生植物產卵。卵敷化之幼蟲會引起寄生植物之攝食損害,特別是幼蟲食用寄生植物之果實部份時。故出現大量蟲害時,意謂著會破壞當地農民的收成,除嚴重影響瓜果產量與品質外,更會因檢疫問題成為我國蔬果外銷的障礙。因此蟲害的防治於農作物栽培之管理與研究上,往往是重要的課題之一。但僅憑紀錄害蟲數目並無法有效判讀其危害程度和分佈情形,必須搭配溫度、相對濕度、日照量、風速、風向、降雨量等耕地環境參數,作進一步的整合分析。 There are more than 4,000 species of melon flies in the world, and there are 148 species in Taiwan. These melon flies are mostly pests, and most of them spawn for specific parasitic plants. The larvae of the egg can cause damage to the feeding of the parasitic plants, especially when the larva eats the fruit part of the parasitic plant. Therefore, when a large number of pests occur, it means that the harvest of local farmers will be destroyed. In addition to seriously affecting the yield and quality of fruits and vegetables, it will become an obstacle to the export of fruits and vegetables in China due to quarantine problems. Therefore, the prevention and control of pests is often one of the important topics in the management and research of crop cultivation. However, only by recording the number of pests can not effectively interpret the degree of damage and distribution, and must be combined with temperature, relative humidity, solar radiation, wind speed, wind direction, rainfall and other arable land environmental parameters for further integration analysis.

蒐集影響農作物生長的環境因素,如單位面積之害蟲數量、害蟲總數量、溫度、相對濕度、日照量、風速、風向、降雨量、全球地理位置等等數據,對於用來栽培農作 物之周遭環境的監測以及農作物栽培之管理,為一項極為重要的工作。管理研究人員可依據此些數據來進行必要的管控。傳統上,這些環境因素的數據蒐集,通常係透過人力方式來進行。舉例來說,害蟲數量的計算,係利用捕蟲網以人工方式捕捉,再以目視計數方式予以統計及估算出單位面積之害蟲數量,或害蟲總數量;其他如溫度、相對濕度、日照量、風量、風速、降雨量、全球地理位置等等數據的蒐集,則是於現場安裝感測器來收集相關數據,再由管理研究人員依據這些數據製作統計報表,藉以依據此報表的內容來對農作物的栽培進行管控工作。 Collect environmental factors that affect crop growth, such as the number of pests per unit area, total number of pests, temperature, relative humidity, amount of sunshine, wind speed, wind direction, rainfall, global geographic location, etc. The monitoring of the surrounding environment and the management of crop cultivation is an extremely important task. Management researchers can use this data to perform the necessary controls. Traditionally, the collection of data for these environmental factors is usually done by human means. For example, the calculation of the number of pests is manually captured by the insect net, and the number of pests per unit area or the total number of pests is counted by visual counting. Others such as temperature, relative humidity, amount of sunshine, The collection of data such as air volume, wind speed, rainfall, global geographical location, etc. is to install sensors on site to collect relevant data, and then management researchers can make statistical reports based on these data, so as to treat crops according to the contents of this report. Cultivation and management work.

然而上述管控方式必須依靠大量人力,頗為費時、費力及效率不彰。這樣的數據蒐集若沒有經過整理統計,則難以進行判讀運用,且僅能事後針對數據所呈現之訊息進行檢討,以至於無法立即針對栽培農作物之周遭環境出現如感測器發生故障、害蟲族群數量激增、蟲害正在發生等情形,即時將警報訊息傳出,讓管理研究人員立即作相對應的處理、或是讓農民作為噴灑農藥之依據。此外,數據蒐集方面,亦無法同時間大量取得環境因素的數據。另管理研究人員以人工方式所為之判讀,其考量之因素有所限制,無法因應較為複雜之各種因素同時考量的情況。人工方式判讀容易因管理研究人員之主觀判斷,有不客觀的結果出現,造成無法做出適當的蟲害控制及管理。而在判讀數據之專業程度需求較高,令一般農民無法輕易使用。 However, the above-mentioned management and control methods must rely on a large amount of manpower, which is quite time-consuming, laborious and inefficient. If such data collection is not sorted out, it is difficult to perform the interpretation, and the information presented by the data can only be reviewed afterwards, so that the surrounding environment of the cultivated crops cannot be immediately detected, such as sensor failure and the number of pest populations. Surge, pests are happening, etc., the alarm message will be sent out immediately, so that the management researchers can immediately respond to the corresponding treatment, or let the farmers as the basis for spraying pesticides. In addition, in terms of data collection, it is also impossible to obtain data on environmental factors in large quantities at the same time. In addition, the management researchers interpret it by manual means, and the factors of consideration are limited, and it is not possible to consider the complicated factors at the same time. Manual interpretation is easy to subject to the subjective judgment of management researchers, and there are unobjective results, resulting in the inability to make appropriate pest control and management. The high level of professionalism in the interpretation of data makes it difficult for average farmers to use.

至此,有必要提供一創新且負進步性之遠距環境資料 分類系統及其方法,使管理研究人員不必親臨現場,亦不必以人工方式進行數據蒐集。該系統及方法能即時依據所蒐集之數據資料,同時考量各種因素來運算出目前現場狀況,以作即時的回報或警示動作,並具備自我學習機制,以提高監控警報之準確度,以及資料蒐集之精準度,來解決前述問題。 At this point, it is necessary to provide an innovative and negatively progressive remote environmental data. The classification system and its methods enable management researchers to visit the site without having to manually collect data. The system and method can calculate the current situation on the spot according to the collected data, and consider various factors to make an immediate reward or warning action, and have a self-learning mechanism to improve the accuracy of the monitoring alarm and data collection. The accuracy is to solve the aforementioned problems.

本發明係提供一種遠距環境資料分類系統,包含:感測網路,其包含複數個感測節點裝置,係分別安置於遠端區域之複數個監測點以感測該些監測點之周圍環境的狀況,俾對應地產生複數個環境監測參數資料;前端閘道裝置,係連結該感測網路,用以接收該些環境監測參數資料,以透過無線通訊系統傳遞該些環境監測參數資料;以及後端主控伺服裝置,其包括:資料庫模組,係透過該無線通訊系統接收並儲存該些環境監測參數資料;類神經網路訓練模組,係連結該資料庫模組以讀取該些環境監測參數資料,俾將該些環境監測參數資料輸入類神經網路進行訓練,以由該類神經網路輸出複數個監測事件;及分類模型訓練模組,係對該些監測事件進行分類訓練以得到複數個監測結果。 The present invention provides a remote environment data classification system, comprising: a sensing network, comprising a plurality of sensing node devices, respectively disposed at a plurality of monitoring points in the remote area to sense the surrounding environment of the monitoring points a situation in which a plurality of environmental monitoring parameter data are generated correspondingly; the front-end gateway device is coupled to the sensing network for receiving the environmental monitoring parameter data to transmit the environmental monitoring parameter data through the wireless communication system; And a back-end main control servo device, comprising: a database module, wherein the environmental monitoring parameter data is received and stored through the wireless communication system; and the neural network training module is connected to the database module to read The environmental monitoring parameter data, the environmental monitoring parameter data is input into the neural network for training, and the plurality of monitoring events are outputted by the neural network; and the classification model training module performs the monitoring events. Classification training to obtain multiple monitoring results.

本發明復提供一種遠距環境資料分類方法,其步驟包含:(a)將複數個環境監測參數資料組成複數組多維座標向量資料,再將該些多維座標向量資料輸入類神經網路中進行訓練,於訓練完成後由該類神經網路輸出複數個監測 事件;(b)依據分類模型對該些監測事件進行分類以產生複數個監測結果;(c)以該些監測結果對未經訓練之環境監測參數資料進行判斷,產生判斷結果;以及(d)產生對應該判斷結果之警示訊息,以將該警示訊息經由無線通訊系統傳送至無線通訊裝置上。 The invention provides a remote environment data classification method, the steps comprising: (a) forming a plurality of environmental monitoring parameter data into a complex array multidimensional coordinate vector data, and then inputting the multidimensional coordinate vector data into a neural network for training. , after the training is completed, the plurality of monitoring is outputted by the neural network (b) classifying the monitored events according to the classification model to generate a plurality of monitoring results; (c) judging the untrained environmental monitoring parameter data with the monitoring results, and generating a judgment result; and (d) A warning message corresponding to the result of the determination is generated to transmit the warning message to the wireless communication device via the wireless communication system.

藉由前述本發明所提供之系統及方法,可將所蒐集到的環境監測參數資料,利用類神經網路進行訓練,再將經類神經網路訓練後之結果經一分類訓練,可得到複數個監測結果。爾後可以此些監測結果對未經訓練之環境監測參數資料進行判斷後,產生對應之警示訊息,並透過連接無線通訊系統之無線通訊模組傳送至一無線通訊裝置上。本發明所提供之系統及方法,不僅能依據所蒐集之數據資料來進行精確之分析,類神經網路亦具備自我學習之機制,而能夠同時考量數據資料中所具備之多種參數,以運算出現場狀況做出即時之警示動作。不僅使研究人員不需親臨現場,數據蒐集亦不需採人工方式進行,且判讀資料方面亦不會有不客觀之情形,簡易自動化之運作亦便於一般農民使用。 According to the system and method provided by the present invention, the collected environmental monitoring parameter data can be trained by using a neural network, and the results of the training through the neural network can be trained by a classification to obtain a plurality of Monitoring results. The monitoring results can be used to determine the untrained environmental monitoring parameters, and corresponding warning messages are generated and transmitted to a wireless communication device via a wireless communication module connected to the wireless communication system. The system and method provided by the invention can not only perform accurate analysis according to the collected data, but also have a self-learning mechanism, and can simultaneously consider various parameters in the data to calculate The situation on the spot makes an immediate warning action. Not only does the researcher not need to visit the site, the data collection does not need to be carried out manually, and there is no unobjective situation in the interpretation of the data. The operation of simple automation is also convenient for ordinary farmers.

10‧‧‧遠距環境資料分類系統 10‧‧‧Remote environmental data classification system

100‧‧‧感測網路 100‧‧‧Sensing network

110‧‧‧感測節點裝置 110‧‧‧Sensor node device

120‧‧‧群集動物數量自動統計裝置 120‧‧‧Automatic statistical device for the number of animals

20‧‧‧無線通訊系統 20‧‧‧Wireless communication system

200‧‧‧前端閘道裝置 200‧‧‧ front-end gateway device

30‧‧‧無線通訊裝置 30‧‧‧Wireless communication device

300‧‧‧後端主控伺服裝置 300‧‧‧Backend master control servo

301‧‧‧資料庫模組 301‧‧‧Database Module

302‧‧‧類神經網路訓練模組 302‧‧‧ class neural network training module

303‧‧‧分類模型訓練模組 303‧‧‧Classification Model Training Module

304‧‧‧警示模組 304‧‧‧ Warning Module

305‧‧‧參數資料正規化模組 305‧‧‧Parameter data normalization module

306‧‧‧無線通訊模組 306‧‧‧Wireless communication module

307‧‧‧參數資料檢查模組 307‧‧‧Parameter data inspection module

308‧‧‧診斷模組 308‧‧‧Diagnostic Module

40‧‧‧網路拓撲 40‧‧‧Network Topology

401‧‧‧超平面 401‧‧‧Superplane

S01~S06‧‧‧步驟 S01~S06‧‧‧Steps

第1圖為本發明之遠距環境資料分類系統之架構示意圖;第2A圖為本發明之後端主控伺服裝置之架構示意圖;第2B圖為本發明之後端主控伺服裝置之另一實施例之架構示意圖; 第3圖為本發明之遠距環境資料分類方法之流程圖;第4A圖為本發明產生複數個監測事件之網路拓撲示意圖;以及第4B及4C圖為本發明將網路拓撲分類成複數個監測結果之示意圖。 1 is a schematic structural diagram of a remote environment data classification system according to the present invention; FIG. 2A is a schematic structural diagram of a rear-end master control servo device; FIG. 2B is another embodiment of a rear-end master control servo device of the present invention; Schematic diagram of the structure; 3 is a flow chart of a method for classifying remote environment data according to the present invention; FIG. 4A is a schematic diagram of a network topology for generating a plurality of monitoring events according to the present invention; and FIGS. 4B and 4C are diagrams for classifying network topologies into plural numbers according to the present invention; A schematic diagram of the monitoring results.

以下即配合圖式,詳細揭露說明本發明之遠距環境資料分類系統及其方法之實施例。 Hereinafter, embodiments of the remote environmental data classification system and method thereof according to the present invention will be described in detail in conjunction with the drawings.

請參閱第1圖,為本發明之遠距環境資料分類系統之架構示意圖。本發明之遠距環境資料分類系統10,於一實際例中,係用於農作物害蟲之監測,特別係指果園之農作物及東方果實蠅此類害蟲,但本發明並不以此為限。該遠距環境資料分類系統10用以讓位於本地端位置之使用者可對一遠端位置的果園進行環境監測,且該遠距環境資料分類系統10可自動診斷出該遠端位置之果園的現場狀況,即時回報給位於本地端位置之使用者。因此,該遠距環境資料分類系統10係包含一無線通訊裝置30、一感測網路100、一前端閘道裝置200及一後端主控伺服裝置300,並整合至一無線通訊系統20。 Please refer to FIG. 1 , which is a schematic diagram of the architecture of the remote environment data classification system of the present invention. The remote environmental data classification system 10 of the present invention is used for the monitoring of crop pests in a practical example, in particular, the crops of the orchard and the oriental fruit fly, but the invention is not limited thereto. The remote environment data classification system 10 is configured to allow a user at a local end location to perform environmental monitoring on an orchard at a remote location, and the remote environmental data classification system 10 can automatically diagnose the orchard at the remote location. The status of the site, instant return to users located at the local end. Therefore, the remote environment data classification system 10 includes a wireless communication device 30, a sensing network 100, a front-end gateway device 200, and a back-end master servo device 300, and is integrated into a wireless communication system 20.

無線通訊系統20可為一標準化之GSM(Global System for Mobile Communications)相容之無線通訊系統,或為CDMA2000、GPRS、LTE、WiMAX、WCDMA等。由於本發明之遠距環境資料分類系統10係基於一分散式之系統架構來建置,包括一本地端位置之後端架構和一遠地端位置 之前端架構,因此採用前述各種不同行動通訊標準之無線通訊系統20,來作為本地端位置之後端架構和遠地端位置之前端架構之間的資料交流之橋樑。 The wireless communication system 20 can be a standardized GSM (Global System for Mobile Communications) compatible wireless communication system, or CDMA2000, GPRS, LTE, WiMAX, WCDMA, and the like. Since the remote environmental data classification system 10 of the present invention is constructed based on a decentralized system architecture, including a local end location rear end architecture and a remote end location The front-end architecture, therefore, uses the wireless communication system 20 of the various mobile communication standards described above as a bridge for data exchange between the local end location rear end architecture and the remote end location front end architecture.

感測網路100可為無線式或有線式,但以無線式之感測網路(Wireless Sensor Network,WSN)為本發明之最佳實施方式(以下將以WSN無線式為例作說明)。該無線式之感測網路100係由複數個感測節點裝置110所構成,而各感測節點裝置110可為一TinyOS作業系統所管控之無線式感測節點裝置,且彼此之間的無線連結係採如標準化之吉克比(ZigBee)或藍芽(bluetooth)等無線網路通訊協定。 The sensing network 100 can be wireless or wired, but a wireless sensor network (WSN) is the preferred embodiment of the present invention (hereinafter, the WSN wireless type will be taken as an example). The wireless sensing network 100 is composed of a plurality of sensing node devices 110, and each sensing node device 110 can be a wireless sensing node device controlled by a TinyOS operating system, and wirelessly connected to each other. The connection is based on a standardized wireless network protocol such as ZigBee or Bluetooth.

該些感測節點裝置110係分別安置在遠端區域中所欲監測之監測點上,例如農田中各植物生長處。於實際應用上,各個感測節點裝置110係用以感測所裝置之監測點之周圍環境的狀況,並對應地產生複數個環境監測參數資料,例如溫度、相對濕度、日照量、風速、降雨量、或全球地理位置等等監測參數。而該些感測節點裝置110可再分別連結至一個群集動物數量自動統計裝置120,用來統計各個感測節點裝置110所在之監測點的群集害蟲數量,例如為東方果實蠅之數量。 The sensing node devices 110 are respectively disposed at monitoring points to be monitored in the distal region, such as the growth sites of the plants in the farmland. In practical applications, each sensing node device 110 is configured to sense the condition of the surrounding environment of the monitoring point of the device, and correspondingly generate a plurality of environmental monitoring parameter data, such as temperature, relative humidity, sunshine amount, wind speed, and rainfall. Monitoring parameters such as volume, or global location. The sensing node devices 110 can be separately connected to a cluster animal automatic counting device 120 for counting the number of cluster pests of the monitoring points where the sensing node devices 110 are located, for example, the number of oriental fruit flies.

該群集動物數量自動統計裝置120可以將東方果實蠅誘引至一陷阱空間加以誘捕,並防止其脫逃,同時逐一計數進入至該陷阱空間中的東方果實蠅之數量。而該群集動物數量自動統計裝置120之詳細構造已揭露於本案申請人 先前所提出之中華民國專利申請案”多關卡感測型群集動物數量自動統計裝置”,故於此不對其詳細構造及功能作進一步之說明。 The cluster animal quantity automatic counting device 120 can induce the oriental fruit fly to a trap space to trap and prevent it from escaping, and count the number of oriental fruit flies entering the trap space one by one. The detailed structure of the cluster animal quantity automatic counting device 120 has been disclosed in the present applicant. The previously proposed Republic of China patent application "multi-level card sensing type of animal automatic counting device", so this detailed structure and function will not be further explained.

於一實施例中,該WSN無線式感測網路100係採多層跳躍式連結及路由方法(multihop linking and routing)來將各個感測節點裝置110所感測到的環境監測參數資料傳送至前端閘道裝置200。此多層跳躍式連結及路由方法係將WSN無線式感測網路100中所有的感測節點裝置110連結成一體之網路架構,例如為環狀、樹狀、星狀等網路架構,本發明並不以此為限。 In an embodiment, the WSN wireless sensing network 100 adopts multi-hop linking and routing method to transmit the environmental monitoring parameter data sensed by each sensing node device 110 to the front gate. Track device 200. The multi-layer hopping and routing method connects all the sensing node devices 110 in the WSN wireless sensing network 100 into an integrated network architecture, such as a ring, tree, star, and other network architecture. The invention is not limited to this.

前端閘道裝置200係用以對該WSN無線式感測網路100和後端主控伺服裝置300之間提供一資料交流的閘道功能;亦可蒐集該WSN無線式感測網路100中各感測節點裝置110所感測到的環境監測參數資料,並將此些環境監測參數資料以無線方式透過該無線通訊系統20來傳送給後端主控伺服裝置300。而後端主控伺服裝置300亦可透過該無線通訊系統20來發出管控指令(包括使用者指定之管控指令和自動產生之管控指令)轉傳至該WSN無線式感測網路100中各感測節點裝置110。 The front-end gateway device 200 is used to provide a gateway function for data exchange between the WSN wireless sensing network 100 and the back-end master servo device 300. The WSN wireless sensing network 100 can also be collected. The environmental monitoring parameter data sensed by each sensing node device 110 is transmitted to the backend master control device 300 through the wireless communication system 20 in a wireless manner. The backend master control device 300 can also transmit control commands (including user-specified control commands and automatically generated control commands) to the WSN wireless sensing network 100 through the wireless communication system 20. Node device 110.

於一實施例中,該前端閘道裝置200可具有一GPS(Global Positioning System)地理定位功能,可自動偵知該前端閘道裝置200所在之處的全球地理位置(即經度和緯度),並對應地產生一組電子型式之地理位置參數資料。另該前端閘道裝置200亦可選擇性地包括本機內建之感測 功能,例如溫度、相對濕度、日照量、風速、降雨量等環境狀況數據之感測。使用者可依據其需求選擇性地設定由前端閘道裝置200或由該WSN無線式感測網路100中各感測節點裝置110來進行環境監測參數資料之蒐集工作。在資料的傳輸上,該前端閘道裝置200係將該些環境監測參數資料整合及格式化成一預定之無線通訊資料傳輸格式之封包,如可為標準化之SMS(Short Message Service)簡訊格式或GPRS(General Packet Radio Service)無線封包格式,藉以透過該無線通訊系統20來將該封包傳送給後端主控伺服裝置300。 In an embodiment, the front-end gateway device 200 can have a GPS (Global Positioning System) geolocation function, which can automatically detect the global geographical position (ie, longitude and latitude) where the front-end gateway device 200 is located, and Correspondingly, a set of electronic type geographic location parameter data is generated. The front-end gateway device 200 can also optionally include the built-in sensing of the machine. Function, such as temperature, relative humidity, amount of sunshine, wind speed, rainfall, and other environmental condition data. The user can selectively set the collection of the environmental monitoring parameter data by the front-end gateway device 200 or the sensing node devices 110 in the WSN wireless sensing network 100 according to the requirements. In the transmission of the data, the front-end gateway device 200 integrates and formats the environmental monitoring parameter data into a predetermined wireless communication data transmission format packet, such as a standardized SMS (Short Message Service) message format or GPRS. The (General Packet Radio Service) wireless packet format is used to transmit the packet to the backend master control device 300 via the wireless communication system 20.

於一實施例中,該前端閘道裝置200需先執行一無線感測網路佈建程序來將WSN無線式感測網路100中所有之感測節點裝置110彼此連結成一體之網路架構(最佳為樹狀網路架構),另各感測節點裝置110可透過該網路架構來以一多層跳躍式連結及路由方法(multihop linking and routing)來將各個感測節點裝置110所感測到的環境監測參數資料傳送至前端閘道裝置200,而前端閘道裝置200與WSN無線式感測網路100中所有感測節點裝置110之間的連線及資料溝通係採S-MAC(Sensor Media Access Control)之感測器媒體存取控制規範。 In an embodiment, the front-end gateway device 200 first executes a wireless sensing network deployment program to connect all the sensing node devices 110 in the WSN wireless sensing network 100 to each other. (preferably a tree network architecture), the other sensing node devices 110 can sense the sensing node devices 110 through a multi-layer linking and routing method through the network architecture. The measured environmental monitoring parameter data is transmitted to the front-end gateway device 200, and the connection and data communication between the front-end gateway device 200 and all the sensing node devices 110 in the WSN wireless sensing network 100 adopts S-MAC. (Sensor Media Access Control) sensor media access control specification.

此外,於另一實施例中,在實際操作前,該前端閘道裝置200可對WSN無線式感測網路100中所有感測節點裝置110執行一時間同步化程序,令所有感測節點裝置110所內建計時功能均設定至同一時間,以提供相同之時間基 準,俾使各感測節點裝置110所產生之環境監測參數資料能位於同一時間基準上。前述之時間同步化程序,係採如RBS(Reference Broadcast Synchronization)或TPSN(Timing-sync Protocol for Sensor Networks)時間同步化方法。 In addition, in another embodiment, the front-end gateway device 200 can perform a time synchronization process on all the sensing node devices 110 in the WSN wireless sensing network 100 before the actual operation, so that all the sensing node devices are used. 110 built-in timing functions are set to the same time to provide the same time base The environmental monitoring parameter data generated by each sensing node device 110 can be located on the same time reference. The foregoing time synchronization program is a time synchronization method such as RBS (Reference Broadcast Synchronization) or TPSN (Timing-sync Protocol for Sensor Networks).

再者,該前端閘道裝置200復包含一自動路由功能,可於WSN無線式感測網路100中的任一感測節點裝置發生故障,而導致連結至該故障之感測節點裝置之其他感測節點裝置無法正常回傳感測資料時,此狀況可被該前端閘道裝置200所偵知,並會執行該自動路由功能,以對該WSN無線式感測網路100目前所佈建之路由途徑執行一重整程序,將連結至該故障之感測節點裝置的其他感測節點裝置之路由路徑改為連結至其他良好之感測節點裝置,即可令該些感測節點裝置能再度正常回傳感測資料給該前端閘道裝置200。 Moreover, the front-end gateway device 200 further includes an automatic routing function, which can cause a fault in any of the sensing node devices in the WSN wireless sensing network 100, thereby causing other devices connected to the faulty sensing node device. When the sensing node device cannot normally return the sensing data, the situation can be detected by the front-end gateway device 200, and the automatic routing function is executed to construct the WSN wireless sensing network 100. The routing method performs a re-routing procedure, and the routing path of the other sensing node devices connected to the faulty sensing node device is changed to be connected to other good sensing node devices, so that the sensing node devices can The sensor data is again normally returned to the front-end gateway device 200.

於一實施例中,該前端閘道裝置200可利用一個人電腦平台或一可程式化之嵌入式微處理器來實現;如採個人電腦平台之實施方式,其優點在於具有較佳之擴充性,但缺點為較耗費電力,如利用可程式化之嵌入式微處理器之實施方式,其優點則在於較為節省電力,但擴充性較個人電腦平台差。 In an embodiment, the front-end gateway device 200 can be implemented by using a personal computer platform or a programmable embedded microprocessor; for example, the implementation of the personal computer platform has the advantages of better scalability, but disadvantages. For more power-consuming implementations, such as the implementation of a programmable embedded microprocessor, the advantage is that it saves power, but the scalability is worse than that of a personal computer platform.

接著請同時參閱第2A圖,為本發明之後端主控伺服裝置之架構示意圖。該後端主控伺服裝置300係為具微處理器之個人電腦平台,其包含一資料庫模組301、一類神 經網路訓練模組302、一分類模型訓練模組303及一參數資料正規化模組305。該資料庫模組301,係透過該無線通訊系統20接收並儲存該些環境監測參數資料。於一實施例中,該資料庫模組301可為一MySQL資料庫。 Please refer to FIG. 2A at the same time, which is a schematic diagram of the architecture of the main control servo device at the rear end of the present invention. The backend master control device 300 is a personal computer platform with a microprocessor, and includes a database module 301, a kind of god The network training module 302, a classification model training module 303 and a parameter data normalization module 305 are provided. The database module 301 receives and stores the environmental monitoring parameter data through the wireless communication system 20. In an embodiment, the database module 301 can be a MySQL database.

該類神經網路訓練模組302連結該資料庫模組301以讀取該些環境監測參數資料,並將該些環境監測參數資料輸入類神經網路進行訓練,以由該類神經網路輸出複數個監測事件。該類神經網路訓練模組302係採一非監督式學習網路(unsupervised Learning Network)之自組織映射圖(self-organizing map,SOM)網路之訓練方式。所謂非監督式學習網路,係由外部資料取得學習範例,從學習範例中去尋找內在的規則,再利用找出之內在規則,運用於新的範例上。而SOM網路係基於競爭式學習(Competitive Learning)法則的一種類神經網路,競爭式學習法則是一種自組織的學習方式,將一群未經標示(Unlabelled)的樣本中,尋找某些相似的特徵聚集成同類。一般類神經網路競爭中,只有一個神經元會被激發成活化狀態,而其他神經元則會被抑制成休止狀態,且當競爭結束後,只有獲勝之神經元可以進行學習。SOM網路在競爭學習後,因SOM加入了鄰近區域(neighborhood)的概念,不只一個獲勝之神經元可以學習,而是獲勝神經元之鄰近區域範圍內的神經元都有資格學習。因此在SOM中,輸出層通常是以矩陣的方式排列於二維空間中(亦可應用於高維度),根據輸入向量相互競爭,以爭取被活化的權利,最後根據輸入向量 的特徵拓撲於輸出空間中。另SOM網路與一般類神經網路最大不同之處在於,SOM網路只有輸入層及輸出層,並無隱藏層。輸入層係輸入用來訓練的資料,於本發明中即是輸入該些環境監測參數資料所組成之複數組多維座標向量資料,於執行維度降低運算後,該輸出層則輸出一具有至少二維以上之網路拓撲,網路拓撲為輸出層類神經元所組成的座標系,代表著輸入向量的聚類所在,即輸出層類神經元的相對位置是有意義的,這使得SOM網路與其他類神經網路有著最大不同之處。故於本發明中,輸出層所輸出之網路拓撲,其包含依據該些環境監測參數資料所聚類出之複數個監測事件,例如正常運作、感測器故障、或蟲害正在發生等等。 The neural network training module 302 is coupled to the database module 301 to read the environmental monitoring parameter data, and input the environmental monitoring parameter data into a neural network for training to be output by the neural network. Multiple monitoring events. The neural network training module 302 adopts a self-organizing map (SOM) network training method of an unsupervised learning network. The so-called unsupervised learning network is to obtain learning examples from external materials, to find intrinsic rules from the learning paradigm, and then to use the internal rules to find new rules. The SOM network is a kind of neural network based on the Competitive Learning rule. The competitive learning method is a self-organizing learning method. It searches for a group of unlabeled samples. Features are integrated into the same class. In a general neural network competition, only one neuron will be activated to an active state, while other neurons will be suppressed to a resting state, and when the competition is over, only the winning neurons can learn. After the SOM network competes for learning, because SOM incorporates the concept of a neighborhood, more than one winning neuron can learn, but neurons in the vicinity of the winning neuron are eligible to learn. Therefore, in SOM, the output layers are usually arranged in a matrix in a two-dimensional space (also applicable to high dimensions), competing with each other according to the input vector, in order to obtain the right to be activated, and finally based on the input vector. The feature is topological in the output space. The biggest difference between the SOM network and the general neural network is that the SOM network has only the input layer and the output layer, and there is no hidden layer. The input layer is used to input the data for training. In the present invention, the complex array multidimensional coordinate vector data composed of the environmental monitoring parameter data is input, and after performing the dimensional reduction operation, the output layer outputs one having at least two dimensions. In the above network topology, the network topology is a coordinate system composed of output layer-like neurons, which represents the clustering of the input vectors, that is, the relative positions of the output layer-like neurons are meaningful, which makes the SOM network and other The neural network has the biggest difference. Therefore, in the present invention, the network topology output by the output layer includes a plurality of monitoring events clustered according to the environmental monitoring parameter data, such as normal operation, sensor failure, or pest occurrence.

由於SOM網路輸出的神經元,係以具有意義之拓撲結構展現在輸出空間,神經元彼此相互競爭以得到被活化的權利。而該SOM網路演算步驟如下,則是先定義輸入資料存在於空間R n 中,輸出層拓撲座標設定為二維(亦可多維),神經元個數為n,並隨機給定初始連結加權值m i =[μ i1,μ i2,...,μ in ] T R n ,同時也從樣本資料中擷取部份資料當作訓練資料x=[λ 1,λ 2,...,λ n ] T R n 。於本發明之一實施例中,輸入向量可為具有時間參數之溫度(temperature)、相對濕度(humidity)、日照量(illumination)及害蟲數量(pest number),定義如x(i,t)=[T(i,t),H(i,t),I(i,t)P(i,t)],而所輸入之溫度範圍可從5~50度C,相對濕度範圍可從35~95%,而日照量可從0~80000流明(Lux)。然由於日照量參數數值相對 於其他數值大,因此在輸入類神經網路訓練模組302前,必須先經一參數資料正規化模組305,將日照量之數值予以對數計算;另本發明係依據害蟲數量以分析蟲害正在發生,可見害蟲數量乃分析過程中最重要的參數之一,為了使最後輸出層所輸出之網路拓撲結果易於分別正常運作或蟲害正在發生之情形,令其特徵更為明顯,該害蟲數量之數值亦必須先經該參數資料正規化模組305將害蟲數量之數值予以平方後,再輸入至類神經網路訓練模組302。因此,本發明之一實施例中所輸入之向量為x(i,t)=[T(i,t),H(i,t),log I(i,t),p 2(i,t)],如此一來,則能更為凸顯經類神經網路運算後之網路拓撲,其代表著輸入向量的聚類所在。於此實施例中僅列舉四個參數作為輸入向量,但本發明並不以此為限。 Since the neurons output by the SOM network are presented in a meaningful topology in the output space, the neurons compete with each other to obtain the activated right. The SOM network calculation step is as follows, firstly, the input data is defined to exist in the space R n , the output layer topological coordinates are set to two dimensions (may also be multi-dimensional), the number of neurons is n , and the initial link weight is randomly given. The value m i =[ μ i 1 , μ i 2 ,..., μ in ] T R n , also extract some data from the sample data as training data x =[ λ 1 , λ 2 ,..., λ n ] T R n . In an embodiment of the present invention, the input vector may be a temperature having a time parameter, a relative humidity, an illumination, and a pest number, and is defined as x ( i , t )= [ T ( i , t ), H ( i , t ), I ( i , t ) P ( i , t )], and the input temperature range can be from 5 to 50 degrees C, and the relative humidity range can be from 35~ 95%, and the amount of sunshine can be from 0 to 80000 lumens (Lux). However, since the value of the sunshine quantity parameter is larger than other values, before inputting the neural network training module 302, the parameter data normalization module 305 must be used to logarithmically calculate the numerical value of the sunshine quantity; According to the number of pests to analyze the pests are occurring, the number of pests is one of the most important parameters in the analysis process. In order to make the network topology results output by the final output layer easy to operate normally or the pests are happening, the characteristics are more To be obvious, the value of the number of pests must first be squared by the parameter data normalization module 305 to the number of pests, and then input to the neural network training module 302. Therefore, the vector input in one embodiment of the present invention is x ( i , t )=[ T ( i , t ), H ( i , t ), log I ( i , t ), p 2 ( i , t )], in this way, it can highlight the network topology after the neural network operation, which represents the clustering of the input vector. Only four parameters are listed as input vectors in this embodiment, but the invention is not limited thereto.

在將經參數資料正規化模組305調整後之參數向量輸入該類神經網路訓練模組302後,網路中的每個神經元均相互比較以求得被活化之權利,比較之基準係以與輸入資料的相似程度為準。而計算輸入之訓練資料與網路拓撲中每一初始連結加權值的距離,其數學式為Dis(x,j)=∥x(i,k)-m j ∥,Dis(x,j)係為歐式距離(Euclidean Distance)此一常用的相似程度量度。而決定優勝神經元的數學式為。其中c為優勝者(Winner),k表示訓練次數,表示與輸入資料x最為相似的神經元,而相似度最高乃表示該輸入向量與對應之神經元的歐式距離為最短。找出優勝者後,將進行連接加權值的更新,即是除優 勝者會更新外,還有優勝者鄰近半徑內所有類神經元的加權值都會更新,其數學式為m j (k+1)=m j (k)+α(k)h cj (k)[x(k)-m j (k)],其中h cj 為鄰近函數,α(k)為學習速率。為達收斂目的,鄰近函數會隨著訓練次數遞減,本發明係以高斯函式作為鄰近函式,定義如下:,其中r j r c 分別係指鄰近區域之其他神經元與獲勝神經元,∥r j -r c ∥則指該兩個神經元之間的距離,σ則為鄰近區域的範圍(region)。因此,訓練的結果會隨著時間的增加,而慢慢縮減鄰近區域的大小。請參照第4A圖,第4A圖為產生複數個監測事件之網路拓撲示意圖。該網路拓撲40包含數個感測區故障(即SF)之區域、數個蟲害正在發生(即PO)之區域及正常運作(NS)之區域。由於經過SOM網路演算之緣故,因此可以看到相同監測事件之區域都會聚集在一起,使該網路拓撲40包含具有意義之結構。 After the parameter vector adjusted by the parameter data normalization module 305 is input into the neural network training module 302, each neuron in the network is compared with each other to obtain the right to be activated, and the reference system is compared. The degree of similarity to the input data shall prevail. And calculating the distance between the input training data and each initial link weight value in the network topology, the mathematical formula is Dis ( x , j )=∥ x ( i , k )- m j ∥, Dis ( x , j ) This is a commonly used measure of similarity for the Euclidean Distance. And the mathematical formula for determining the winning neurons is . Where c is the winner (Winner), k represents the number of trainings, indicating the neuron most similar to the input data x , and the highest similarity indicates that the input vector has the shortest Euclidean distance from the corresponding neuron. After finding the winner, the connection weighting value will be updated, that is, in addition to the winner update, the weighted values of all the neuron in the vicinity of the winner will be updated, and the mathematical expression is m j ( k +1 ) = m j (k) + α (k) h cj (k) [x (k) - m j (k)], which is adjacent to the function h cj, α (k) is the learning rate. For the purpose of convergence, the proximity function decreases with the number of trainings. The present invention uses the Gaussian function as the proximity function, which is defined as follows: Where r j and r c refer to the other neurons in the adjacent region and the winning neurons, respectively, ∥ r j - r c ∥ refers to the distance between the two neurons, and σ is the range of the adjacent region (region) . Therefore, the results of the training will gradually reduce the size of the adjacent area as time goes by. Please refer to FIG. 4A. FIG. 4A is a schematic diagram of a network topology for generating a plurality of monitoring events. The network topology 40 includes areas of several sensing area failures (i.e., SF), areas where several pests are occurring (i.e., PO), and areas of normal operation (NS). Because of the SOM network calculus, it can be seen that the same monitoring events are clustered together, making the network topology 40 contain meaningful structures.

在類神經網路訓練模組302產生可茲辨別之複數個監測事件之網路拓撲後,除了採人為方式進行分辨外,另可採自動化之分類方式,係再利用一分類模型訓練模組303,係對該些監測事件進行分類訓練以得到複數個監測結果。分類模型訓練模組303係採一支援向量機(Support Vector Machine,SVM)之演算方法,該支援向量機係依據具複數個監測事件之網路拓撲進行分類訓練,產生至少一以上具有非線性邊界之超平面(Hyper Plane),以分割該網路拓撲內的複數個監測事件,來得到該些監測結果。 After the neural network training module 302 generates the network topology of the plurality of monitoring events that can be distinguished, in addition to the artificial method, the automatic classification method can be adopted, and the classification model training module 303 is reused. The classification of these monitoring events is conducted to obtain a plurality of monitoring results. The classification model training module 303 adopts a calculation method of a support vector machine (SVM), which performs classification training according to a network topology with a plurality of monitoring events, and generates at least one or more nonlinear boundary. The Hyper Plane is used to segment the plurality of monitoring events within the network topology to obtain the monitoring results.

所謂的支援向量機之演算方法,係針對已轉換之輸入向量及與其有聯繫之輸入向量[r n ,y n ]分別給予”+1”或”-1”之計算,[11]該數學式係為,其中j=1,2,,NN為超平面數量,超平面可將類神經網路訓練模組302產生之網路拓撲分割成數個部份,而w j b j 係權重向量(vector of weight)和第j個之偏移量(bias)。藉由將資料分別列為正類別(+1)或負類別(-1)時,就可藉由超平面將資料分割成兩個類別。另SVM可提出具最大邊界(maxinizing margin)之計算方式:〈r n 〉+b j ±1 for y n =±1 n。於此實施例中,係以三個正常運作、感測器故障、或蟲害正在發生之監測事件為例,藉由支援向量機產生至少一以上具有非線性邊界之超平面,可將該些監測事件予以分割。例如可產生二個不同邊界之超平面,分別如第4B圖及第4C圖所示。請參閱第4B圖,該網路拓撲40即以一超平面401將感測器故障(即SF)之區域分割出,而超平面401分割出的另一區域則包含蟲害正在發生(即PO)及正常運作(即NS)之區域,而該超平面401即為非線性邊界之超平面;請參閱第4C圖,該網路拓撲40即以一超平面401將正常運作(即NS)之區域分割出,而該超平面401分割出的另一區域則包含蟲害正在發生(即PO)及感測器故障(即SF)之區域,而該超平面401亦為非線性邊界之超平面。當然本發明並不以僅分割出上述之監測結果為限,更可進一步將感測器故障之監測結果分割出位於何處之感測節點裝置的感測器故障、或是依據季節分割出不 同之監測結果。由於在輸入類神經網路訓練模組302前之參數資料,有先經參數資料正規化模組305調整過,因此類神經網路訓練模組302所訓練出之網路拓撲,可使分類模型訓練模組303所採之支援向量機能夠更精準的產生至少一以上具非線性邊界之超平面,令分割出的監測結果之誤差值能夠降到最低。藉由該分類模型訓練模組303產生之超平面,令分割出監測結果之網路拓撲可化為一分類模型,該分類模型可作為後續診斷環境監測參數資料之依據。如輸入其他筆尚未經過本系統訓練過之環境監測參數資料,即可診斷出該筆資料係位於分類模型中的哪一種監測結果。而分類模型亦可依據季節來製作不同之分類模型以供應用。 The calculation method of the so-called support vector machine is to calculate the "+1" or "-1" respectively for the converted input vector and its associated input vector [ r n , y n ], [11] Is Where j=1, 2, ... , N , N are the number of hyperplanes, and the hyperplane can divide the network topology generated by the neural network training module 302 into several parts, and w j and b j are weight vectors (vector of weight) and the jth offset. By listing the data as a positive category (+1) or a negative category (-1), the data can be split into two categories by hyperplane. Another SVM can propose a calculation method with a maximum margin (maxinizing margin): . r n 〉+ b j ±1 for y n =±1 n . In this embodiment, the monitoring events of three normal operations, sensor failures, or pests are taken as an example, and the monitoring vector machine generates at least one hyperplane having a nonlinear boundary, which can be monitored. The event is divided. For example, a hyperplane of two different boundaries can be generated, as shown in Figures 4B and 4C, respectively. Referring to FIG. 4B, the network topology 40 divides the area of the sensor fault (ie, SF) with a hyperplane 401, and another area separated by the hyperplane 401 contains the pest (ie, PO). And the area of normal operation (ie, NS), and the hyperplane 401 is a hyperplane of a nonlinear boundary; see FIG. 4C, the network topology 40 is an area that will operate normally (ie, NS) with a hyperplane 401 The other region segmented by the hyperplane 401 contains an area where pests are occurring (i.e., PO) and sensor failure (i.e., SF), and the hyperplane 401 is also a hyperplane of a nonlinear boundary. Of course, the present invention is not limited to the above-mentioned monitoring result, and the monitoring result of the sensor fault can be further divided into the sensor fault of the sensing node device where the device is located, or the segmentation is different according to the season. Monitoring results. Since the parameter data before the input neural network training module 302 is adjusted by the parameter data normalization module 305, the network topology trained by the neural network training module 302 can make the classification model. The support vector machine adopted by the training module 303 can more accurately generate at least one hyperplane with a nonlinear boundary, so that the error value of the segmented monitoring result can be minimized. By the super-plane generated by the classification model training module 303, the network topology segmentation of the monitoring result can be transformed into a classification model, which can be used as a basis for subsequent diagnostic environment monitoring parameter data. If you input other environmental monitoring parameter data that has not been trained by the system, you can diagnose which monitoring result is located in the classification model. The classification model can also produce different classification models for supply according to the season.

而前述非監督式學習網路(unsupervised Learning Network)之自組織映射圖(self-organizing map,SOM)網路之訓練方式及支援向量機(Support Vector Machine,SVM)之演算方法,係採用LabVIEW軟體撰寫而成。藉由LabVIEW搭配MySQL資料庫以及GSM網路,得以完成本發明。另MySQL資料庫亦提供一網頁介面可讓使用者透過網路直接瀏覽或下載所監測到的數據。 The training method of the self-organizing map (SOM) network of the unsupervised learning network and the calculation method of the support vector machine (SVM) are based on the LabVIEW software. Written. The present invention is accomplished with LabVIEW in conjunction with a MySQL database and a GSM network. The MySQL database also provides a web interface that allows users to directly browse or download the monitored data over the network.

於本發明之另一實施例中,請參閱第2B圖,該後端主控伺服裝置300復包含診斷模組308、警示模組304及無線通訊模組306。在分類模型訓練模組303完成分割出複數個監測結果後,連結該分類模型訓練模組303之診斷模組308,就可以依據該些監測結果,將未經訓練之環境 監測參數資料進行判斷,以得到該未經訓練之環境監測參數資料於該些監測結果中所對應之判斷結果,而警示模組304則可依據該判斷結果,產生對應之警示訊息。例如前述分割出一具有蟲害正在發生及正常運作之監測結果,以及另一具有感測器故障之監測結果之分類模型,將未經訓練之環境監測參數資料餵入該分類模型時,若該未經訓練之環境監測參數資料係歸類至「蟲害正在發生」及「感測器故障」之類別,即可產生「蟲害正在發生」及「感測器故障」之警示訊息;例如分割出一具有蟲害正在發生或感測器故障之監測結果,以及另一具有正常運作之監測結果,若該未經訓練之環境監測參數資料係歸類至「系統異常或蟲害正在發生」及「正常運作」之類別時,即可分別產生「系統異常或蟲害正在發生」及「正常運作」之警示訊息,本發明並不以此為限,端看該未經訓練之環境監測參數資料係歸類於哪個類別,即發送該類別所欲傳達之警示訊息。而該警示訊息格式可為標準化之SMS(Short Message Service)簡訊格式或GPRS(General Packet Radio Service)無線封包格式,因此警示模組304就可以透過一連接該無線通訊系統20之無線通訊模組306,將該些警示訊息傳送至一無線通訊裝置30上,進而達到遠端監控、診斷、警示的效果。該無線通訊裝置30可為手機。 In another embodiment of the present invention, referring to FIG. 2B , the back-end main control servo device 300 further includes a diagnostic module 308 , an alert module 304 , and a wireless communication module 306 . After the classification model training module 303 completes the segmentation of the plurality of monitoring results, the diagnostic module 308 of the classification model training module 303 is connected, and the untrained environment can be obtained according to the monitoring results. The monitoring parameter data is judged to obtain the judgment result corresponding to the untrained environmental monitoring parameter data in the monitoring results, and the warning module 304 can generate a corresponding warning message according to the determination result. For example, the foregoing segmentation results of a monitoring result of the occurrence and normal operation of the pest, and another classification model with the monitoring result of the sensor failure, when the untrained environmental monitoring parameter data is fed into the classification model, if The trained environmental monitoring parameter data is classified into the categories of "insect pests are occurring" and "sensor faults", which can generate warning messages such as "pest pests are occurring" and "sensor faults"; for example, segmentation has one Monitoring results of pests or sensor failures and monitoring results of normal operation. If the untrained environmental monitoring parameters are classified as "system anomalies or pests are occurring" and "normal operation" In the case of categories, warning messages of "system anomalies or pests are occurring" and "normal operation" may be generated separately. The present invention is not limited thereto, and it is to be seen which category the untrained environmental monitoring parameter data is classified into. , that is, send a warning message to be conveyed in this category. The warning message format can be a standard SMS (Short Message Service) message format or a GPRS (General Packet Radio Service) wireless packet format, so the alert module 304 can pass through a wireless communication module 306 that is connected to the wireless communication system 20. The warning message is transmitted to a wireless communication device 30, thereby achieving the effects of remote monitoring, diagnosis, and warning. The wireless communication device 30 can be a mobile phone.

於一實施例中,請再參閱第2B圖,該後端主控伺服裝置300復包含一參數資料檢查模組307。該參數資料檢查模組307係檢查從資料庫模組301讀取之環境監測參數 資料是否已經過類神經網路訓練模組302所訓練過、或是檢查有無新資料儲存入資料庫模組301內。若為無訓練過之參數資料,則將該參數資料輸入至類神經網路訓練模組302來加以訓練;若為已訓練過之參數資料,則可透過警示模組304發送警示訊息,以提醒管理者進行檢查;若無新資料儲存入資料庫模組301內,則有可能發生網路斷線、感測器故障等問題,才會導致資料庫模組301無新資料,此時即可透過警示模組304發送警示訊息;若有新資料即可透過診斷模組308來進行分類。這樣的機制可保持類神經網路訓練模組302可依據新的參數資料來進行訓練,亦可以作為資料接收是否有異常之檢查方式,例如原本系統設定每30分鐘會有新資料進入資料庫,若參數資料檢查模組307經過一定時間仍沒從資料庫模組301讀取到新資料,該系統亦可能有發生問題,例如無線通訊系統20斷線、前端閘道裝置200故障等。此時參數資料檢查模組307即可透過警示模組304發送警示訊息,以提醒管理者進行檢查。 In an embodiment, please refer to FIG. 2B again. The backend master control device 300 further includes a parameter data checking module 307. The parameter data checking module 307 checks the environmental monitoring parameters read from the database module 301. Whether the data has been trained by the neural network training module 302 or whether new data is stored in the database module 301. If the parameter data is untrained, the parameter data is input to the neural network training module 302 for training; if the parameter data is trained, the warning module 304 can send a warning message to remind The manager checks; if no new data is stored in the database module 301, there may be problems such as network disconnection, sensor failure, etc., and the database module 301 has no new data. The warning message is sent through the warning module 304; if there is new data, the diagnosis module 308 can be used for classification. Such a mechanism can maintain the neural network training module 302 to perform training according to the new parameter data, and can also be used as a method for checking whether the data is abnormal. For example, the original system sets new data into the database every 30 minutes. If the parameter data checking module 307 has not read the new data from the database module 301 after a certain period of time, the system may also have problems, such as the wireless communication system 20 disconnection, the front-end gateway device 200 failure, and the like. At this time, the parameter data checking module 307 can send an alert message through the alert module 304 to remind the administrator to perform the check.

請參閱第3圖,為本發明之遠距環境資料分類方法之流程圖,該方法係應用於農作物害蟲之監測。步驟S02係將複數個環境監測參數資料組成複數組多維座標向量資料,而該些環境監測參數資料係讀取自一資料庫,該些環境監測參數資料係包含害蟲數量、溫度、相對濕度、日照量、風速、風向、降雨量、或全球地理位置。於本發明之一實施例中,將該複數個環境監測參數資料組成複數組多 維座標向量資料前,必須先將該些環境監測參數資料中的害蟲數量之數值予以平方以及將日照量之數值予以對數計算後,再組成複數組多維座標向量資料,如步驟S01所示。而先將害蟲數量及日照量之數值先行處理,係為了能更凸顯經過類神經網路運算後之網路拓撲中代表著輸入向量之聚類所在。 Please refer to FIG. 3, which is a flow chart of a method for classifying remote environmental data according to the present invention, which is applied to the monitoring of crop pests. Step S02 is to form a plurality of environmental monitoring parameter data into a multi-array multi-dimensional coordinate vector data, and the environmental monitoring parameter data is read from a database, and the environmental monitoring parameter data includes pest quantity, temperature, relative humidity, and sunshine. Volume, wind speed, direction, rainfall, or global location. In an embodiment of the present invention, the plurality of environmental monitoring parameter data is composed of multiple complex arrays Before dimension vector data, the number of pests in the environmental monitoring parameter data must be squared and the value of the sunshine quantity should be logarithmically calculated, and then the multi-dimensional coordinate vector data of the complex array is formed, as shown in step S01. First, the number of pests and the amount of sunshine are processed first, in order to highlight the clustering of the input vectors in the network topology after the neural network operation.

在組成複數組多維座標向量資料後,輸入一類神經網路中進行訓練,訓練完成後由該類神經網路輸出複數個監測事件,如步驟S03所示。於該類神經網路中係採一非監督式學習網路之自組織映射圖網路之訓練方式,對該些多維座標向量資料執行維度降低運算,以降低該些多維座標向量資料之向量維度,產生一具有至少二維以上之網路拓撲,該網路拓撲包含該些監測事件。此一訓練方式之運算公式如前所述,在此不再贅述。 After the complex array multidimensional coordinate vector data is formed, the training is input into a type of neural network, and after the training is completed, the plurality of monitoring events are outputted by the neural network, as shown in step S03. In this type of neural network, a training method of a self-organizing map network of an unsupervised learning network is adopted, and dimension reduction operations are performed on the multidimensional coordinate vector data to reduce the vector dimension of the multidimensional coordinate vector data. Generating a network topology having at least two dimensions, the network topology including the monitoring events. The calculation formula of this training method is as described above, and will not be described again here.

在產生包含複數個監測事件之網路拓撲後,除了採人為方式進行分辨外,另可採自動化之分類方式。於步驟S04中,依據一分類模型,將該些監測事件進行分類,以產生複數個監測結果。該分類模型係採支援向量機之演算方法,依據該些監測事件訓練而得。該分類模型可依據該網路拓撲產生至少一以上具有非線性邊界之超平面,以分割該網路拓撲內的複數個監測事件,來得到該些監測結果, After generating a network topology that includes a plurality of monitoring events, in addition to the artificial way of distinguishing, an automated classification can be adopted. In step S04, the monitoring events are classified according to a classification model to generate a plurality of monitoring results. The classification model is based on the calculation method of the support vector machine and is trained based on the monitoring events. The classification model may generate at least one hyperplane having a nonlinear boundary according to the network topology to segment a plurality of monitoring events in the network topology to obtain the monitoring results.

於本實施例中,係以三個正常運作、感測器故障、或蟲害正在發生之監測事件為例,藉由支援向量機產生至少一以上具有非線性邊界之超平面,將該些監測事件予以分 割,產生一可茲診斷用之分類模型。如第4C圖所示,例如產生一超平面401,係將網路拓撲40分割出一具有蟲害正在發生(即PO)及感測器故障(即SF)之監測結果,以及另一具有正常運作(即NS)之監測結果;或如第4B圖所示,產生另一種超平面401,係將網路拓撲40分割出一具有蟲害正在發生(即PO)及正常運作(即NS)之監測結果,以及另一具有感測器故障(即SF)之監測結果。 In this embodiment, the monitoring events of three normal operations, sensor failures, or pests are taken as an example, and the monitoring vector machine generates at least one hyperplane having a nonlinear boundary, and the monitoring events are performed. Divide Cutting, produces a classification model that can be used for diagnosis. As shown in FIG. 4C, for example, a hyperplane 401 is generated, which divides the network topology 40 into a monitoring result of pest occurrence (ie, PO) and sensor failure (ie, SF), and another has normal operation. (i.e., NS) monitoring results; or as shown in Figure 4B, another hyperplane 401 is generated that separates the network topology 40 from a monitoring result of pest occurrence (i.e., PO) and normal operation (i.e., NS). And another monitoring result with a sensor fault (ie SF).

在得到監測結果後,即可以該些監測結果,對未經訓練之環境監測參數資料進行判斷,產生判斷結果(步驟S05)。對應該判斷結果產生警示訊息,以將該警示訊息經由無線通訊系統傳送至無線通訊裝置上,如步驟S06所示。例如依據「蟲害正在發生」、「感測器故障」或「正常運作」之監測結果之分類模型,對未經訓練之環境監測參數資料進行判斷,產生該筆未經訓練之環境監測參數資料係屬何種監測結果,若該筆未經訓練之環境監測參數資料屬「蟲害正在發生」之監測結果,則會產生「蟲害正在發生」之警示訊息。該警示訊息格式可為標準化之SMS(Short Message Service)簡訊格式或GPRS(General Packet Radio Service)無線封包格式,因此該警示訊息可經由無線通訊系統傳送至如手機之無線通訊裝置上,進而達到遠端監控、診斷、警示的效果。 After the monitoring result is obtained, the monitoring result can be judged, and the untrained environmental monitoring parameter data is judged, and the judgment result is generated (step S05). A warning message is generated corresponding to the result of the judgment, so that the warning message is transmitted to the wireless communication device via the wireless communication system, as shown in step S06. For example, based on the classification model of the monitoring results of "pest disease is occurring", "sensor failure" or "normal operation", the untrained environmental monitoring parameter data is judged to generate the untrained environmental monitoring parameter data system. What kind of monitoring results are used? If the untrained environmental monitoring parameter data is a monitoring result of "pest is happening", a warning message "Pests are occurring" will be generated. The warning message format can be a standardized SMS (Short Message Service) message format or a GPRS (General Packet Radio Service) wireless packet format, so the warning message can be transmitted to a wireless communication device such as a mobile phone via a wireless communication system, thereby reaching a far distance. The effect of monitoring, diagnosis, and warning.

本發明之遠距環境資料分類方法,於另一實施例中,亦可達到自動化診斷、學習之功效。在從資料庫讀取環境監測參數資料時,可針對該些資料進行判斷是否為最新資 料,或是檢查有無資料。若非最新資料或無資料,即可立刻傳送警示訊息至無線通訊裝置,來提示管理者必須注意。若為最新資料,則開始進行如前述步驟S01~S04的類神經網路以及分類模型的訓練,來取得複數個監測結果。該些監測結果包含「蟲害正在發生」、「感測器故障」或「正常運作」等,之後即可進行步驟S05~S06判斷系統是否正常運作,若不正常則傳送警示訊息;或是判斷蟲害是否發生,若正發生則傳送警示訊息。 In another embodiment, the remote environment data classification method of the present invention can also achieve the effects of automatic diagnosis and learning. When reading environmental monitoring parameter data from the database, it can be judged whether it is the latest resource for the data. Material, or check for information. If it is not the latest information or no data, you can immediately send a warning message to the wireless communication device to remind the administrator to pay attention. If it is the latest data, the training of the neural network and the classification model of the above steps S01 to S04 is started to obtain a plurality of monitoring results. The monitoring results include "Pests are happening", "Sensor failure" or "Normal operation", etc., then you can proceed to steps S05~S06 to determine whether the system is operating normally. If not, send warning messages; or judge pests. Whether it occurs or not, if it is happening, send a warning message.

藉由上述本發明之系統與方法,能夠依據所蒐集之數據資料,進行非監督式學習網路之自組織映射圖網路的學習及支援向量機的分類,產生數個監測結果,並依據該些監測結果對未經訓練之環境監測參數資料進行判斷,以產生判斷結果並對應產生警示訊息。而這樣的系統與方法,更適合運用在自動檢測果園內東方果實蠅危害之程度,以發出警報訊息,提供農民更精準的管理資訊,可達農業自動化之功效。而「蟲害正在發生」之警示訊息亦作為農民噴灑農藥之依據,防止東方果實蠅破壞農民之收成,間接提昇及增進瓜果產量與品質。 According to the system and method of the present invention, the self-organizing map network learning of the unsupervised learning network and the classification of the support vector machine can be performed according to the collected data, and several monitoring results are generated, and according to the These monitoring results judge the untrained environmental monitoring parameter data to generate the judgment result and generate a warning message correspondingly. Such a system and method is more suitable for automatically detecting the degree of damage to the oriental fruit fly in the orchard, to issue an alarm message, and to provide farmers with more precise management information, which can achieve the effect of agricultural automation. The warning message "Pests are happening" is also used as a basis for farmers to spray pesticides to prevent the oriental fruit flies from destroying the farmers' crops and indirectly improving and improving the yield and quality of fruits.

上述僅為本發明之較佳實施例,並非用以限制本發明之實質技術內容的範圍。本發明之實質技術內容係廣義地定義於下述之申請專利範圍中。若任何他人所完成之技術實體或方法與下述之申請專利範圍所定義者為完全相同、或是為一種等效之變更,均將被視為涵蓋於本發明之申請專利範圍之中。 The above is only the preferred embodiment of the present invention, and is not intended to limit the scope of the technical content of the present invention. The technical contents of the present invention are broadly defined in the following claims. Any technical entity or method performed by any other person that is identical to, or equivalent to, the ones defined in the scope of the claims below will be considered to be included in the scope of the invention.

300‧‧‧後端主控伺服裝置 300‧‧‧Backend master control servo

301‧‧‧資料庫模組 301‧‧‧Database Module

302‧‧‧類神經網路訓練模組 302‧‧‧ class neural network training module

303‧‧‧分類模型訓練模組 303‧‧‧Classification Model Training Module

304‧‧‧警示模組 304‧‧‧ Warning Module

305‧‧‧參數資料正規化模組 305‧‧‧Parameter data normalization module

306‧‧‧無線通訊模組 306‧‧‧Wireless communication module

307‧‧‧參數資料檢查模組 307‧‧‧Parameter data inspection module

308‧‧‧診斷模組 308‧‧‧Diagnostic Module

Claims (10)

一種遠距環境資料分類系統,包含:感測網路,其包含複數個感測節點裝置,係分別安置於遠端區域之複數個監測點以感測該些監測點之周圍環境的狀況,俾對應地產生複數個環境監測參數資料;前端閘道裝置,係連結該感測網路,用以接收該些環境監測參數資料,以透過無線通訊系統傳遞該些環境監測參數資料;以及後端主控伺服裝置,其包括:資料庫模組,係透過該無線通訊系統接收並儲存該些環境監測參數資料;類神經網路訓練模組,係連結該資料庫模組以讀取該些環境監測參數資料,俾將該些環境監測參數資料輸入類神經網路進行訓練,以由該類神經網路輸出複數個監測事件;及分類模型訓練模組,係對該些監測事件進行分類訓練以得到複數個監測結果。 A remote environment data classification system, comprising: a sensing network, comprising a plurality of sensing node devices, respectively disposed at a plurality of monitoring points in the remote area to sense the condition of the surrounding environment of the monitoring points, Correspondingly generating a plurality of environmental monitoring parameter data; the front-end gateway device is connected to the sensing network for receiving the environmental monitoring parameter data to transmit the environmental monitoring parameter data through the wireless communication system; and the back-end main The control servo device comprises: a database module, which receives and stores the environmental monitoring parameter data through the wireless communication system; the neural network training module connects the database module to read the environmental monitoring Parameter data, the environmental monitoring parameter data is input into the neural network for training, and the plurality of monitoring events are outputted by the neural network; and the classification model training module is used to classify the monitoring events to obtain Multiple monitoring results. 如申請專利範圍第1項所述之遠距環境資料分類系統,其中,該些環境監測參數資料係包含害蟲數量、溫度、相對濕度、日照量、風速、風向、降雨量、或全球地理位置。 The remote environmental data classification system according to claim 1, wherein the environmental monitoring parameter data includes the number of pests, temperature, relative humidity, amount of sunshine, wind speed, wind direction, rainfall, or global geographic location. 如申請專利範圍第2項所述之遠距環境資料分類系統,其中,該後端主控伺服裝置復包含參數資料正規 化模組,該參數資料正規化模組係先將該害蟲數量之數值予以平方以及將該日照量之數值予以對數計算後,再輸入該類神經網路訓練模組。 For example, the remote environmental data classification system described in claim 2, wherein the back-end main control servo device comprises a formal parameter data The parameterization module of the parameter data firstly squares the value of the number of pests and calculates the value of the amount of sunshine, and then inputs the neural network training module. 如申請專利範圍第1項所述之遠距環境資料分類系統,其中,該類神經網路訓練模組係採非監督式學習網路之自組織映射圖網路之訓練方式,該非監督式學習網路之自組織映射圖網路包含輸入層及輸出層,該輸入層係用以輸入該些環境監測參數資料組成之複數組多維座標向量資料,於執行維度降低運算後,該輸出層係輸出具有至少二維以上之網路拓撲,該網路拓撲包含該些監測事件。 For example, the remote environmental data classification system described in claim 1 wherein the neural network training module is a self-organizing map network training mode of an unsupervised learning network, the unsupervised learning The self-organizing map network of the network comprises an input layer and an output layer, wherein the input layer is used to input a multi-array coordinate vector data composed of the environmental monitoring parameter data, and the output layer output is performed after the dimension reduction operation is performed. A network topology having at least two dimensions, the network topology including the monitoring events. 如申請專利範圍第4項所述之遠距環境資料分類系統,其中,該分類模型訓練模組係採支援向量機之演算方法,該支援向量機係依據該網路拓撲,產生至少一以上具有非線性邊界之超平面,以分割該網路拓撲內之該些監測事件,來得到該些監測結果。 The remote environment data classification system according to claim 4, wherein the classification model training module adopts a calculation method of a support vector machine, and the support vector machine generates at least one or more according to the network topology. The hyperplane of the nonlinear boundary is used to segment the monitoring events within the network topology to obtain the monitoring results. 如申請專利範圍第1項所述之遠距環境資料分類系統,其中,該後端主控伺服裝置復包含:診斷模組,係依據該些監測結果將未經訓練之環境監測參數資料進行判斷,以得到該未經訓練之環境監測參數資料於該些監測結果中所對應之判斷結果;以及警示模組,係依據該判斷結果產生對應之警示訊息,並將該警示訊息透過該無線通訊系統傳送至無線 通訊裝置上。 The remote environmental data classification system of claim 1, wherein the back-end main control servo device comprises: a diagnostic module, wherein the untrained environmental monitoring parameter data is determined according to the monitoring results. And obtaining a warning message corresponding to the untrained environmental monitoring parameter data in the monitoring results; and the warning module generates a corresponding warning message according to the determination result, and transmits the warning message to the wireless communication system Transfer to wireless On the communication device. 一種遠距環境資料分類方法,包含:(a)將複數個環境監測參數資料組成複數組多維座標向量資料,再將該些多維座標向量資料輸入類神經網路中進行訓練,於訓練完成後由該類神經網路輸出複數個監測事件;(b)依據分類模型對該些監測事件進行分類以產生複數個監測結果;(c)以該些監測結果對未經訓練之環境監測參數資料進行判斷,產生判斷結果;以及(d)產生對應該判斷結果之警示訊息,以將該警示訊息經由無線通訊系統傳送至無線通訊裝置上。 A remote environment data classification method comprises: (a) composing a plurality of environmental monitoring parameter data into a complex array multidimensional coordinate vector data, and then inputting the multidimensional coordinate vector data into a neural network for training, after the training is completed, The neural network outputs a plurality of monitoring events; (b) classifying the monitoring events according to the classification model to generate a plurality of monitoring results; (c) judging the untrained environmental monitoring parameter data by using the monitoring results And generating a determination message; and (d) generating a warning message corresponding to the result of the determination to transmit the warning message to the wireless communication device via the wireless communication system. 如申請專利範圍第7項所述之遠距環境資料分類方法,其中,步驟(a)中之類神經網路係採非監督式學習網路之自組織映射圖網路之訓練方式,以對該些多維座標向量資料執行維度降低運算,並產生具有至少二維以上之網路拓撲,該網路拓撲包含該些監測事件,且於步驟(b)中之分類模型係採支援向量機之演算方法,並依據該網路拓撲產生至少一以上具有非線性邊界之超平面,以分割該網路拓撲內之該些監測事件,來得到該些監測結果。 For example, the remote environment data classification method described in claim 7 is characterized in that the neural network in step (a) is a training method of the self-organizing map network of the unsupervised learning network, The multidimensional coordinate vector data performs a dimensional reduction operation and generates a network topology having at least two dimensions, the network topology includes the monitoring events, and the classification model in the step (b) adopts a calculation of the support vector machine And obtaining, according to the network topology, at least one hyperplane having a nonlinear boundary to segment the monitoring events in the network topology to obtain the monitoring results. 如申請專利範圍第7項所述之遠距環境資料分類方法,其中,該些環境監測參數資料係包含害蟲數量、溫度、相對濕度、日照量、風速、風向、降雨量、或 全球地理位置。 The method for classifying remote environmental data as described in claim 7 wherein the environmental monitoring parameter data includes the number of pests, temperature, relative humidity, amount of sunshine, wind speed, wind direction, rainfall, or Global location. 如申請專利範圍第9項所述之遠距環境資料分類方法,其中,於該步驟(a)之前更包括:將該害蟲數量之數值予以平方以及將該日照量之數值予以對數計算後,再組成該些多維座標向量資料,以輸入該類神經網路中進行訓練的步驟。 The remote environmental data classification method according to claim 9 , wherein before the step (a), the method further comprises: square the value of the pest and calculating the numerical value of the sunshine amount, and then calculating The multidimensional coordinate vector data is composed to input the steps of training in the neural network of the type.
TW102111104A 2013-03-28 2013-03-28 Distant data classification system and method thereof TWI546759B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102111104A TWI546759B (en) 2013-03-28 2013-03-28 Distant data classification system and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102111104A TWI546759B (en) 2013-03-28 2013-03-28 Distant data classification system and method thereof

Publications (2)

Publication Number Publication Date
TW201437945A true TW201437945A (en) 2014-10-01
TWI546759B TWI546759B (en) 2016-08-21

Family

ID=52113419

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102111104A TWI546759B (en) 2013-03-28 2013-03-28 Distant data classification system and method thereof

Country Status (1)

Country Link
TW (1) TWI546759B (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI618003B (en) * 2016-12-01 2018-03-11 財團法人資訊工業策進會 Sensing data based estimation method and sensing data based estimation system
TWI707562B (en) * 2019-05-24 2020-10-11 安耐美國際智慧節能科技工程有限公司 Intelligent communication gateway device and implementation method thereof
TWI776309B (en) * 2019-12-11 2022-09-01 瑞士商Inait公司 Recurrent artificial neural network, method implemented by a recurrent artificial neural network system, and neural network device
US11569978B2 (en) 2019-03-18 2023-01-31 Inait Sa Encrypting and decrypting information
US11580401B2 (en) 2019-12-11 2023-02-14 Inait Sa Distance metrics and clustering in recurrent neural networks
US11615285B2 (en) 2017-01-06 2023-03-28 Ecole Polytechnique Federale De Lausanne (Epfl) Generating and identifying functional subnetworks within structural networks
US11651210B2 (en) 2019-12-11 2023-05-16 Inait Sa Interpreting and improving the processing results of recurrent neural networks
US11652603B2 (en) 2019-03-18 2023-05-16 Inait Sa Homomorphic encryption
US11663478B2 (en) 2018-06-11 2023-05-30 Inait Sa Characterizing activity in a recurrent artificial neural network
US11816553B2 (en) 2019-12-11 2023-11-14 Inait Sa Output from a recurrent neural network
US11893471B2 (en) 2018-06-11 2024-02-06 Inait Sa Encoding and decoding information and artificial neural networks
US11972343B2 (en) 2018-06-11 2024-04-30 Inait Sa Encoding and decoding information

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109102023A (en) 2018-08-14 2018-12-28 阿里巴巴集团控股有限公司 A kind of method of generating classification model and device, a kind of data identification method and device
TWI752641B (en) * 2020-09-17 2022-01-11 巨鷗科技股份有限公司 Smart flood prevention platform and method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI618003B (en) * 2016-12-01 2018-03-11 財團法人資訊工業策進會 Sensing data based estimation method and sensing data based estimation system
US11615285B2 (en) 2017-01-06 2023-03-28 Ecole Polytechnique Federale De Lausanne (Epfl) Generating and identifying functional subnetworks within structural networks
US11663478B2 (en) 2018-06-11 2023-05-30 Inait Sa Characterizing activity in a recurrent artificial neural network
US11972343B2 (en) 2018-06-11 2024-04-30 Inait Sa Encoding and decoding information
US11893471B2 (en) 2018-06-11 2024-02-06 Inait Sa Encoding and decoding information and artificial neural networks
US11569978B2 (en) 2019-03-18 2023-01-31 Inait Sa Encrypting and decrypting information
US11652603B2 (en) 2019-03-18 2023-05-16 Inait Sa Homomorphic encryption
TWI707562B (en) * 2019-05-24 2020-10-11 安耐美國際智慧節能科技工程有限公司 Intelligent communication gateway device and implementation method thereof
US11651210B2 (en) 2019-12-11 2023-05-16 Inait Sa Interpreting and improving the processing results of recurrent neural networks
US11797827B2 (en) 2019-12-11 2023-10-24 Inait Sa Input into a neural network
US11816553B2 (en) 2019-12-11 2023-11-14 Inait Sa Output from a recurrent neural network
US11580401B2 (en) 2019-12-11 2023-02-14 Inait Sa Distance metrics and clustering in recurrent neural networks
TWI776309B (en) * 2019-12-11 2022-09-01 瑞士商Inait公司 Recurrent artificial neural network, method implemented by a recurrent artificial neural network system, and neural network device

Also Published As

Publication number Publication date
TWI546759B (en) 2016-08-21

Similar Documents

Publication Publication Date Title
TWI546759B (en) Distant data classification system and method thereof
dos Santos et al. AgriPrediction: A proactive internet of things model to anticipate problems and improve production in agricultural crops
US11730162B2 (en) Methods and systems for crop pest management utilizing geospatial images and microclimate data
Shaikh et al. Recent trends in internet-of-things-enabled sensor technologies for smart agriculture
Materne et al. IoT monitoring system for early detection of agricultural pests and diseases
WO2019179270A1 (en) Plant planting data measuring method, working route planning method, device and system
Nabi et al. Wireless sensor network in precision farming for forecasting and monitoring of apple disease: a survey
Sangeetha et al. IOT based smart irrigation management system for environmental sustainability in India
CN112461828A (en) Intelligent pest and disease damage forecasting and early warning system based on convolutional neural network
EP3917315A1 (en) Systems and methods for measuring beehive strength
CN106500775A (en) A kind of effective monitoring of crop growth system
KR20210059561A (en) System and method for pest management of win-win type
Tripathy et al. Data mining and wireless sensor network for groundnut pest/disease precision protection
Vadlamudi Rethinking food sufficiency with smart agriculture using Internet of things
JP2022082636A (en) Information processing device
Refaai et al. Application of iot-based drones in precision agriculture for pest control
Araneta et al. Controlled Environment for Spinach Cultured Plant with Health Analysis using Machine Learning
KR102467508B1 (en) Smart grass infestation management system based on photographic image and gps analysis
Saha et al. A crop-monitoring system using wireless sensor networking
CN105184234B (en) A kind of Wheat Straw burns the measuring method and device of pollutant discharge amount
Balaji et al. Precision Agriculture Crop Recommendation System Using IoT and Machine Learning
Sakkan et al. Disease Assessment in Rice with Pervasive Stationary and Mobile Sensing-Learnings from Rabi 2019-20
Navaneethan et al. Advanced Technologies for Precision Agriculture and Farming
Konde et al. Internet of things (IoT) based technologies in smart agriculture
Deshpande et al. A survey on the role of IoT in agriculture for smart farming

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees