TW201437476A - Wind power fault prediction system and method thereof - Google Patents

Wind power fault prediction system and method thereof Download PDF

Info

Publication number
TW201437476A
TW201437476A TW102109498A TW102109498A TW201437476A TW 201437476 A TW201437476 A TW 201437476A TW 102109498 A TW102109498 A TW 102109498A TW 102109498 A TW102109498 A TW 102109498A TW 201437476 A TW201437476 A TW 201437476A
Authority
TW
Taiwan
Prior art keywords
wind power
chaotic
module
power generation
data value
Prior art date
Application number
TW102109498A
Other languages
Chinese (zh)
Other versions
TWI491801B (en
Inventor
Long-Yi Chang
meng-hui Wang
Hung-Cheng Chen
Chich-Kai Fan
Original Assignee
Nat Univ Chin Yi Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Chin Yi Technology filed Critical Nat Univ Chin Yi Technology
Priority to TW102109498A priority Critical patent/TWI491801B/en
Publication of TW201437476A publication Critical patent/TW201437476A/en
Application granted granted Critical
Publication of TWI491801B publication Critical patent/TWI491801B/en

Links

Classifications

    • Y02E10/722

Abstract

A wind power fault prediction system applies to a wind power generator is provided and includes a sensing module, a chaotic synchronization detection module, a gray prediction modules and a diagnostic module. The sensing module senses a features of the wind power generator. The chaotic synchronization detection module is connected to the sensing module, and captures the features to establish a chaotic error scatter plot. The gray prediction module is connected to the chaotic synchronization detection module, and predicts a gravity trajectory of the chaotic error scatter plot. Diagnostic module is connected to the gray prediction module, and diagnoses a predicted error point of the wind power generator based on the trajectory of the chaotic error scatter plot. Therefore, the present invention can effectively predict the trend of the wind power generator failure.

Description

風力發電故障預測系統及其方法 Wind power fault prediction system and method thereof

本發明為一種風力發電故障預測系統,尤其是指一種降低故障資料特徵擷取量之風力發電故障預測系統。 The invention relates to a wind power fault prediction system, in particular to a wind power fault prediction system for reducing fault data feature extraction.

大型風力發電裝置運轉過程中,面對不斷變化的風況,裝置長期承受變化劇烈的負載情況下,其可靠度與可用率難以維持,且風力發電裝置故障成因複雜,涵蓋了電力系統、電子控制、感測器、發電機及風扇葉片等問題,一但風力發電裝置出現故障,維修人員難以從中尋找出故障原因,造成維修上十分困難。因此,設計一套能依裝置運轉紀錄,有效預測故障發生,就能進行預防維修或事先調整運轉方式,且可預防風力發電裝置事故發生及確保發電系統安全穩定之運轉,藉此提高其管理效率和降低營運維修成本,已成為目前風力發電系統研究相當重要的項目之一。 In the operation process of large-scale wind power generation equipment, in the face of ever-changing wind conditions, the reliability and availability of the wind turbine generator are difficult to maintain due to the long-term load with severe load, and the power system and electronic control are covered. Problems such as sensors, generators, and fan blades. Once the wind power generation device fails, it is difficult for maintenance personnel to find the cause of the failure, which makes maintenance difficult. Therefore, by designing a set of equipment operation records, effectively predicting the occurrence of faults, it is possible to prevent or repair or adjust the operation mode in advance, and prevent the occurrence of wind power generation equipment accidents and ensure the safe and stable operation of the power generation system, thereby improving its management efficiency. And reducing operating and maintenance costs has become one of the most important projects in wind power system research.

而一般的風力發電裝置故障診斷分為傳統的診斷方法、數學處理方法與智慧診斷方法。其中傳統的診斷方法包括震動分析法、油質分析法、紅外線測溫法、噪 音與聲波分析法、非破壞檢測法等;數學診斷處理方法包括頻譜分析、軸心軌跡分析、小波分析及短時傅立葉分析等信號處理方法,以機率統計為概念的智慧診斷分析法如隱藏馬克夫理論、貝葉思理論及類神經網路等。 The general fault diagnosis of wind power generation equipment is divided into traditional diagnosis methods, mathematical processing methods and intelligent diagnosis methods. The traditional diagnostic methods include vibration analysis, oil quality analysis, infrared temperature measurement, and noise. Sound and acoustic analysis, non-destructive detection, etc.; mathematical diagnosis methods include spectrum analysis, axial trajectory analysis, wavelet analysis and short-time Fourier analysis, and other signal processing methods, and the concept of intelligent diagnostic analysis such as hidden mark Theory, Bayesian theory and neural networks.

然而上述的智慧診斷分析需建立龐大的數據資料庫,且花費不少時間才能診斷分析出風力發電裝置的故障類別。因此,如何減少診斷所需的數據資料並精確預防風力發電裝置事故發生,確保風力發電裝置安全穩定的運轉及降低維修成本,需要一套更完善的風力發電裝置故障診斷系統。 However, the above-mentioned wisdom diagnosis analysis needs to establish a huge data database, and it takes a long time to diagnose and analyze the fault category of the wind power generation device. Therefore, how to reduce the data required for diagnosis and accurately prevent wind power generation equipment accidents, ensure the safe and stable operation of wind power generation equipment and reduce maintenance costs, a more complete fault diagnosis system for wind power generation equipment is needed.

本發明之一結構態樣之一實施方式是在提供一種風力發電故障預測系統,應用於一風力發電裝置,風力發電故障預測系統包含一感測模組、一混沌同步檢測模組、一灰色預測模組以及一診斷模組。感測模組感測風力發電裝置之一數據值。混沌同步檢測模組連接感測模組,混沌同步檢測模組擷取數據值並建立一混沌誤差散佈圖。灰色預測模組連接混沌同步檢測模組,灰色預測模組依據混沌誤差散佈圖預測混沌誤差散佈圖之一重心軌跡。診斷模組連接灰色預測模組,診斷模組根據混沌誤差散佈圖之重心軌跡診斷風力發電裝置之一預測故障點。藉此,本發明可有效預測風力發電裝置故障之趨勢。 One embodiment of the present invention provides a wind power failure prediction system for a wind power generation device. The wind power failure prediction system includes a sensing module, a chaotic synchronization detection module, and a gray prediction. Module and a diagnostic module. The sensing module senses one of the data values of the wind power generator. The chaotic synchronization detection module is connected to the sensing module, and the chaotic synchronization detection module takes data values and establishes a chaotic error scatter map. The gray prediction module is connected to the chaotic synchronization detection module, and the gray prediction module predicts the center of gravity trajectory of the chaotic error scatter diagram based on the chaotic error scatter plot. The diagnostic module is connected to the gray prediction module, and the diagnostic module diagnoses one of the predicted failure points of the wind power generation device according to the gravity center trajectory of the chaotic error scatter map. Thereby, the present invention can effectively predict the trend of failure of the wind power generation device.

依據本發明一實施例,上述混沌同步檢測模組係使用一混沌動態誤差方程式辨識數據值並建立混沌誤差 散佈圖。風力發電裝置包含一齒輪箱及一發電機,數據值係可為齒輪箱之一振動值、齒輪箱之一油溫或發電機之一振動值。預測故障點可為風力發電裝置之齒輪箱或發電機。 According to an embodiment of the invention, the chaotic synchronization detecting module uses a chaotic dynamic error equation to identify data values and establish chaotic errors. Scatter map. The wind power generation device comprises a gear box and a generator, and the data value can be a vibration value of one of the gear boxes, an oil temperature of the gear box or a vibration value of the generator. The predicted point of failure may be a gearbox or generator of the wind power plant.

本發明之一方法態樣之一實施方式是在提供一種風力發電故障預測方法,應用於一風力發電裝置,風力發電故障預測方法包含以下步驟:感測風力發電裝置之一數據值;擷取數據值並建立一混沌誤差散佈圖;預測混沌誤差散佈圖之一重心軌跡;以及診斷風力發電裝置之一預測故障點。 One embodiment of a method aspect of the present invention provides a wind power failure prediction method for a wind power generation device. The wind power failure prediction method includes the following steps: sensing a data value of one of the wind power generation devices; and extracting data Value and establish a chaotic error scatter plot; predict the center of gravity trajectory of the chaotic error scatter plot; and diagnose the fault point of one of the wind turbines.

依據本發明另一實施例,上述診斷風力發電裝置之預測故障點之步驟係利用一可拓理論。擷取數據值並建立一混沌誤差散佈圖之步驟係利用一混沌動態誤差方程式辨識數據值。數據值係可為風力發電裝置之一發電機之一振動值、風力發電機之一齒輪箱之一振動值、風力發電機之齒輪箱之一油溫。預測故障點可為風力發電機之齒輪箱或發電機。 According to another embodiment of the present invention, the step of diagnosing a predicted fault point of the wind power generator utilizes an extension theory. The step of extracting the data values and establishing a chaotic error scatter plot uses a chaotic dynamic error equation to identify the data values. The data value may be one of the vibration values of one of the generators of the wind power generation device, one of the vibration values of one of the gearboxes of the wind power generator, and one of the oil temperatures of the gearbox of the wind power generator. The predicted point of failure can be a gearbox or generator of the wind turbine.

藉由本發明以混沌同步檢測模組建立的混沌誤差散佈圖之重心為故障診斷之特徵,可有效設定數據值之範圍,藉此減少數據值擷取之數量。 The center of gravity of the chaotic error scatter map established by the chaotic synchronization detection module of the present invention is characterized by fault diagnosis, and the range of data values can be effectively set, thereby reducing the number of data values.

100‧‧‧風力發電裝置 100‧‧‧Wind power plant

110‧‧‧數據值 110‧‧‧data value

200‧‧‧風力發電故障預測系統 200‧‧‧Wind power failure prediction system

210‧‧‧感測模組 210‧‧‧Sense Module

220‧‧‧混沌同步檢測模組 220‧‧‧Chaotic Synchronous Detection Module

221‧‧‧混沌誤差散佈圖 221‧‧‧Chaotic error scatter plot

230‧‧‧灰色預測模組 230‧‧‧ Gray Prediction Module

231‧‧‧重心軌跡 231‧‧‧ center of gravity track

240‧‧‧診斷模組 240‧‧‧Diagnostic Module

241‧‧‧預測故障點 241‧‧‧Predicting the point of failure

300‧‧‧步驟 300‧‧‧Steps

310‧‧‧步驟 310‧‧‧Steps

320‧‧‧步驟 320‧‧‧Steps

330‧‧‧步驟 330‧‧‧Steps

第1圖係繪示依照本發明一實施方式的一種風力發電故障預測系統之方塊圖。 1 is a block diagram of a wind power failure prediction system according to an embodiment of the present invention.

第2圖係繪示依照本發明一實施例之預測及實測之混沌誤 差散佈圖之重心軌跡圖。 Figure 2 is a diagram showing the chaotic error of prediction and actual measurement according to an embodiment of the present invention. The trajectory of the center of gravity of the difference scatter plot.

第3圖係繪示依照本發明一實施方式的一種風力發電故障預測方法之流程圖。 FIG. 3 is a flow chart showing a method for predicting wind power failure according to an embodiment of the present invention.

請參照第1圖,其係繪示依照本發明一實施方式之一種風力發電故障預測系統之方塊圖。風力發電故障預測系統200應用於一風力發電裝置100,風力發電裝置故障預測系統200包含一感測模組210、一混沌同步檢測模組220、一灰色預測模組230以及一診斷模組240。 Please refer to FIG. 1 , which is a block diagram of a wind power failure prediction system according to an embodiment of the present invention. The wind power failure prediction system 200 is applied to a wind power generation device 100. The wind power generation device failure prediction system 200 includes a sensing module 210, a chaotic synchronization detection module 220, a gray prediction module 230, and a diagnostic module 240.

感測模組210用以感測風力發電裝置100之一數據值110。 The sensing module 210 is configured to sense one of the data values 110 of the wind power generating device 100.

混沌同步檢測模組220連接感測模組210,混沌同步檢測模組220擷取數據值110並建立一混沌誤差散佈圖221。 The chaotic synchronization detection module 220 is connected to the sensing module 210, and the chaotic synchronization detection module 220 captures the data value 110 and establishes a chaotic error scatter diagram 221 .

灰色預測模組230連接混沌同步檢測模組220,灰色預測模組230依據混沌誤差散佈圖221預測混沌誤差散佈圖221之一重心軌跡231。 The gray prediction module 230 is connected to the chaotic synchronization detection module 220, and the gray prediction module 230 predicts a gravity center trajectory 231 of the chaotic error dispersion map 221 according to the chaotic error scatter map 221 .

診斷模組240連接灰色預測模組230,診斷模組240根據混沌誤差散佈圖221之重心軌跡231診斷風力發電裝置100之一預測故障點241。 The diagnostic module 240 is coupled to the gray prediction module 230. The diagnostic module 240 diagnoses one of the predicted fault points 241 of the wind power generation device 100 based on the gravity center trajectory 231 of the chaotic error scatter map 221 .

上述風力發電故障預測系統200運作之說明如下:感測模組210感測風力發電裝置100之數據值110,如風力發電裝置100之齒輪箱油溫(未圖示)、風力發電裝置100之齒輪箱振動值(未圖示)或風力發電裝置100之發電機 振動值(未圖示)。藉由混沌同步的原理使混沌同步檢測模組220建立混沌誤差散佈圖221。 The operation of the wind power failure prediction system 200 described above is as follows: the sensing module 210 senses the data value 110 of the wind power generation device 100, such as the gearbox oil temperature of the wind power generation device 100 (not shown), the gear of the wind power generation device 100. Box vibration value (not shown) or generator of wind power generator 100 Vibration value (not shown). The chaotic synchronization detection module 220 establishes a chaotic error scatter plot 221 by the principle of chaotic synchronization.

混沌同步是利用一種混沌系統訊號去控制另種混沌系統訊號,最後使兩種混沌系統訊號同步的一種理論。一般來說,兩個同步之混沌系統分別稱為主混沌系統和僕混沌系統,當主混沌系統與僕混沌系統之初始值不同時,會使兩混沌系統之運作軌跡有所不一樣,而通常會於僕混沌系統後端加上控制器進行追蹤主混沌系統,利用控制器使兩混沌系統在相同時間下能使軌跡運動相等,此種追蹤狀態即為混沌同步如(1-1)式: 其中i=1,2,...,nX Slave,i 代表僕混沌系統,X Master,i 代表主混沌系統。本實施方式即利用此混沌同步方式對風力發電裝置100之訊號進行混沌軌跡檢測,而主混沌系統與僕混沌系統分別如(1-2)式和(1-3)式: Chaotic synchronization is a theory that uses a chaotic system signal to control another chaotic system signal and finally synchronize the two chaotic system signals. Generally speaking, two synchronous chaotic systems are called the main chaotic system and the servant chaotic system respectively. When the initial value of the main chaotic system and the servant chaotic system are different, the trajectory of the two chaotic systems will be different, and usually The controller will be used to track the main chaotic system at the back end of the servant chaotic system, and the controller can make the two chaotic systems equal the trajectory motion at the same time. This tracking state is chaotic synchronization such as (1-1): Where i =1, 2,..., n , X Slave , i represents the servant chaotic system, X Master , i represents the main chaotic system. In this embodiment, the chaotic synchronization method is used to detect the chaotic trajectory of the signal of the wind power generation device 100, and the main chaotic system and the servant chaotic system are respectively (1-2) and (1-3):

其中Fi(i=1,2,...,n)均屬於非線性函數,將(1-2)式和(1-3)式形成誤差狀態如(1-4)式,而動態誤差如(1-5)式: Where F i (i = 1, 2, ..., n) belongs to a nonlinear function, and the equations (1-2) and (1-3) form an error state such as (1-4), and the dynamic error Such as (1-5):

其中G i (i=1,2,...,n)為非線性方程式,然而在本實施方式中利用混沌現象之吸引子的運動軌跡,即混沌動態誤差方程式用來辨識發力發電裝置100狀態的依據;其中動態誤差需為多筆資料,其數據方式表示如(1-6)式: 其中j=1,2,3,...,n-1。 Wherein G i ( i =1, 2, . . . , n ) is a nonlinear equation. However, in the present embodiment, the motion trajectory of the attractor using the chaotic phenomenon, that is, the chaotic dynamic error equation is used to identify the power generating device 100. The basis of the state; the dynamic error needs to be multiple data, and the data mode is expressed as (1-6): Where j=1, 2, 3, ..., n-1.

據此,混沌同步檢測模組220對感測模組210擷取之數據值110進行混沌軌跡之累加運算,做為辨識風力發電裝置100的狀態依據。由於可採用風力發電裝置100之齒輪箱油溫、風力發電裝置100之齒輪箱振動值或風力發電裝置100之發電機振動值作為主特徵之數值輸入混沌動態誤差方程式,三個主特徵經混沌同步檢測模組220形成混沌誤差散佈圖221後,接著進而以混沌誤差散佈圖221之重心當作特徵值,然而一個主特徵所形成之散佈圖有兩個重心,並且須分別記錄重心之X軸與Y軸之值,因此最後共有十二個副特徵。 Accordingly, the chaotic synchronization detection module 220 performs an accumulation operation of the chaotic trajectory on the data value 110 captured by the sensing module 210 as a state basis for identifying the wind power generation device 100. Since the gearbox oil temperature of the wind power generation device 100, the gearbox vibration value of the wind power generation device 100, or the generator vibration value of the wind power generation device 100 can be used as the main characteristic value input chaotic dynamic error equation, the three main features are chaotically synchronized. After the detection module 220 forms the chaotic error scatter plot 221, the center of gravity of the chaotic error scatter plot 221 is then used as the feature value. However, the scatter plot formed by one main feature has two centers of gravity, and the X-axis of the center of gravity must be recorded separately. The value of the Y-axis, so there are a total of twelve sub-features.

請參照附件之圖1所示為不同葉片故障下的齒輪箱油溫之混沌誤差散佈圖,(a)為正常狀態,(b)為一葉片故障,(c)為兩葉片故障。圖2所示為不同漏油狀況下的齒輪箱油溫之混沌誤差散佈圖,(a)為正常狀態,(b)為漏油30%,(c)為漏油50%,(d)為漏油70%,(e)為漏油90%。圖3所示為不同葉片故障下的齒輪箱振動之混沌誤差散佈圖,(a)為正常狀態,(b)為一葉片故障,(c)為兩葉片故障。圖4所示為不同漏油狀況下的齒輪箱振動之混沌誤差散佈圖,(a)為正常狀態,(b)為漏油30%,(c)為漏油50%,(d)為漏油70%,(e)為漏油90%。圖5所示為不同葉片故障下的發電機振動之混沌誤差散佈圖,(a)為正常狀態,(b)為一葉片故障,(c)為兩葉片故障。圖6所示為不同漏油狀況下的發電機振動之混沌誤差散佈圖,(a)為正常狀態,(b)為漏 油30%,(c)為漏油50%,(d)為漏油70%,(e)為漏油90%。附件圖1至圖6中所繪示之三角形標誌表示各混沌誤差散佈圖以x軸正域與負域之重心。 Please refer to the attached figure 1 for the chaotic error scatter diagram of the gearbox oil temperature under different blade failures, (a) for the normal state, (b) for one blade failure, and (c) for two blade failures. Figure 2 shows the chaotic error scatter plot of the gearbox oil temperature under different oil leakage conditions, (a) is the normal state, (b) is the oil leakage 30%, (c) is the oil leakage 50%, (d) is Oil leakage is 70%, and (e) is 90% oil leakage. Figure 3 shows the chaotic error scatter plot of the gearbox vibration under different blade failures, (a) for the normal state, (b) for one blade failure, and (c) for two blade failures. Figure 4 shows the chaotic error scatter diagram of the vibration of the gearbox under different oil leakage conditions, (a) is the normal state, (b) is the oil leakage 30%, (c) is the oil leakage 50%, and (d) is the leakage 70% oil, (e) is 90% oil leakage. Figure 5 shows the chaotic error scatter plot of generator vibration under different blade faults, (a) is the normal state, (b) is a blade fault, and (c) is a two-blade fault. Figure 6 shows the chaotic error scatter diagram of generator vibration under different oil leakage conditions, (a) is the normal state, and (b) is the leakage. 30% oil, (c) is 50% oil leakage, (d) is 70% oil leakage, and (e) is 90% oil leakage. The triangle marks shown in the attached figures 1 to 6 indicate the center of gravity of the x-axis positive and negative domains for each chaotic error scatter plot.

接下來之預測方法利用灰色預測模組230依據混沌誤差散佈圖221之十二個副特徵預測混沌誤差散佈圖221之重心軌跡231的變化,其中灰色預測模組230採用的為灰色理論。首先須利用灰色理論定義出(1-7)式,此為灰色模型(1,1)之微分方程式: 其中t表自變數,a與b為灰色模型的待定參數(a為發展係數與b為灰色控制變數),而x(1)為累加生成之值;此灰色預測建模可分成參數型與矩陣型兩種,而本實施方式係採用矩陣型式建立此灰色模型,其建模之步驟如以下所示:一開始預測係利用(1-7)式擷取一組數列,作為原始之數列;當完成一個週期之後,每次將都會重新取數據中之一組數列,作為新的原始之數列,其中(1-8)式為灰色預測建模之原始數列(x(0))。 The next prediction method uses the gray prediction module 230 to predict the change of the center of gravity trajectory 231 of the chaotic error scatter plot 221 according to the twelve sub-features of the chaotic error scatter plot 221, wherein the gray prediction module 230 adopts a gray theory. First, we must use the grey theory to define the formula (1-7), which is the differential equation of the gray model (1, 1): Where t is the self-variable, a and b are the pending parameters of the gray model (a is the development coefficient and b is the grey control variable), and x (1) is the value generated by the accumulation; this gray prediction modeling can be divided into parametric and matrix There are two types, and this embodiment adopts a matrix type to establish the gray model. The modeling steps are as follows: The first prediction system uses (1-7) to draw a set of series as the original series; After completing a cycle, each time a number of columns in the data will be retrieved as a new original sequence, where (1-8) is the original sequence (x (0) ) modeled by the gray prediction.

x (0)=(x (0)(1),x (0)(2),...,x (0)(k)) (1-8)。其中k=1,2,3,...,mm N。接著將原本雜亂無章法且沒有一定規律的數據,經此累加生成運算處理,可得出一組新的並且較有規律的數列,其累加生成運算式;如(1-9)式所示為新的數列(x(1)): 其中L N。均值生成可以調整數據之權重值α,因此預測權重值α會依不同之根軌跡做改變;其如(1-10)式所示:z (1)(L)=αx 1(L)+(1-α)*x (1)(L-1) (1-10)。其中L>1;L N。求取灰色模型(1,1)待定係數a與b兩值之大小,此步驟採用最小平方法(Least Square)算出兩值大小範圍;如(1-11)式所示:x (0)(L)+az (1)(L)=b (1-11)。其中L N。並將(1-11)式方程式轉換為(1-12)式之矩陣方程,其參數Y、B與â分別以(1-13)、(1-14)與(1-15)式表示: x (0) = ( x (0) (1), x (0) (2),..., x (0) ( k )) (1-8). Where k =1, 2, 3,..., m ; m N. Then, the original data that is disorderly and has no regularity is generated by the accumulation process, and a new and more regular sequence can be obtained, which accumulates the expression; as shown in (1-9) Number of columns (x (1) ): Where L N. The mean generation can adjust the weight value α of the data, so the predicted weight value α will change according to different root trajectories; as shown in (1-10): z (1) ( L ) = α * x 1 ( L ) +(1- α )* x (1) ( L -1) (1-10). Where L >1; L N. To obtain the gray model (1,1) to determine the two values of the coefficients a and b, this step uses the least square method (Least Square) to calculate the range of two values; as shown in (1-11): x (0) ( L )+ az (1) ( L )= b (1-11). Where L N. The equation (1-11) is converted into a matrix equation of (1-12), and the parameters Y, B and â are represented by (1-13), (1-14) and (1-15), respectively:

而(1-15)式之參數a與b兩值可由此(1-16)與(1-17)式求出: The values of the parameters a and b of the formula (1-15) can be obtained from the equations (1-16) and (1-17):

參數a和b求解後,則累加生成的預測值,如式(1-18)所示: 其中L N。經逆累加生成(Inverse Accumulated Generating Operation,IAGO),得出灰色預測之值;如(1-19)式所示。 After the parameters a and b are solved, the generated predicted values are accumulated, as shown in equation (1-18): Where L N. The value of the gray prediction is obtained by Inverse Accumulated Generating Operation (IAGO); as shown in (1-19).

診斷模組240接收上述值後,使用可拓理論之原理診斷風力發電裝置100之預測故障點。可拓理論係運用物元模型與可拓集合分別把事物量化以相關程度之關係作規劃的動作,便能簡易描繪出事物的資訊。物元理論和可拓集合為可拓理論兩大核心,物元理論就是研究物元的 可拓性和物元的變換性質,可拓集合則為事物變化的可能性,而物元的變換為解決問題矛盾而進行物質與量的轉換關係。可拓集合就是可拓模型與模糊數學去處理矛盾與不相容的問題,將模糊集合範圍從<0,1>拓展到<-∞,∞>。若要詳細描述一件事物之物元,則需要具備基本三項要素分別為訂定事物名稱N(Name)、事物特徵C(Characteristic)以及特徵量值V(Value)而所構成之物元;以(1-20)式所示為物元數學表示式:R=(N,C,V) (1-20)。而可拓理論之具體評定步驟由以下步驟表示:先訂定可拓經典域與節域之區間範圍,分別如(1-21)式與(1-22)式所示: After receiving the above values, the diagnostic module 240 diagnoses the predicted fault point of the wind power generator 100 using the principle of the extension theory. The extension theory uses the matter-element model and the extension set to quantify the relationship between the things and the degree of correlation, and can easily describe the information of things. The matter-element theory and extension set are the two cores of extension theory. The matter-element theory is to study the extension of matter-element and the transformation property of matter-element. The extension set is the possibility of change of things, and the transformation of matter-element is Solve the contradiction of the problem and transform the relationship between matter and quantity. The extension set is the extension model and fuzzy mathematics to deal with the contradiction and incompatibility, and expand the fuzzy set range from <0,1> to <-∞,∞>. To describe the matter element of a thing in detail, it is necessary to have the basic three elements to be the object element composed of the thing name N (Name), the thing feature C (Characteristic) and the feature quantity value V (Value); The mathematical expression of the matter element is represented by the formula (1-20): R = ( N , C , V ) (1-20). The specific evaluation step of the extension theory is represented by the following steps: firstly, the range of the extension classical domain and the section is set, as shown by the formulas (1-21) and (1-22):

其中k=1,2,3,...,mp=1,2,3,...,m。輸入待測物元,如(1-23)式所示: 其中t代表待測物元數目,q則為事物名稱,如同(1-20)式之N,n代表特徵數目,x代表特徵值範圍。依重要性訂定各特徵之權重係數,如(1-24)式所示: 計算待測數據與各等級集合間之關聯度大小值,如(1-25)式所示: 其中特徵值xi對於各個經典域Rk之距定義則如(1-26)式所示,而特徵值xi對於節域RP之距定義如(1-27)式所示: Where k = 1, 2, 3, ..., m , p = 1, 2, 3, ..., m . Enter the object to be tested, as shown in (1-23): Where t represents the number of objects to be tested, and q is the name of the thing, as in the formula (1-20), n represents the number of features, and x represents the range of feature values. The weighting factor of each feature is determined according to the importance, as shown in (1-24): Calculate the correlation value between the data to be tested and each level set, as shown in (1-25): The definition of the eigenvalue x i for each classical domain R k is as shown in (1-26), and the eigenvalue x i is defined for the distance of the region R P as shown in (1-27):

計算輸入物元與各類別之關聯度: 其中k=1,2,3,...,m。將關聯度正規化,藉由運算各等級集合之關聯度的相對值,本實施方式利用(1-28)式之正規化方程式讓各等級集合之關聯度值都均落在<1,-1>之間,(1-28)式如下: 等於1時,則可判斷待測物元屬於第r個類別,其他類別之相關性,則由關聯度來度量。藉此判斷風力發電裝置100之現行故障點狀況及預測故障點狀況。 Calculate the relevance of the input matter to each category: Where k =1, 2, 3,..., m . By normalizing the degree of association, by calculating the relative value of the degree of association of each level set, the present embodiment uses the normalized equation of the formula (1-28) to make the correlation values of each level set fall at <1, -1. >Between, (1-28) is as follows: If When it is equal to 1, it can be judged that the object to be tested belongs to the rth category, and the correlation of other categories is measured by the degree of association. Thereby, the current fault point condition of the wind power generator 100 and the predicted fault point condition are determined.

請參照第2圖,其係繪示本發明一實施例之預測及實測之重心軌跡圖。本實施例針對風力發電裝置100之齒輪加速機在不同油位下所對應之齒輪箱振動值所預測之重心軌跡。分別利用齒輪加速機在正常、漏油30%、漏油50%及漏油70%狀況之齒輪箱振動值數據來預測齒輪加速機漏油90%狀況發生,此圖為式(1-5)之計算結果的數值,即證明灰色預測狀況發生之可行性與準確性。 Please refer to FIG. 2, which is a diagram showing the trajectory of the center of gravity of the prediction and actual measurement according to an embodiment of the present invention. This embodiment is directed to the center of gravity trajectory predicted by the gearbox vibration value of the gear accelerator of the wind power generator 100 at different oil levels. The gearbox vibration value data of the normal, oil leakage 30%, oil leakage 50% and oil leakage 70% condition is used to predict the 90% leakage of the gear accelerator. This figure is (1-5). The numerical value of the calculation result proves the feasibility and accuracy of the gray prediction situation.

在風力發電裝置故障診斷及預測之測試中,將資料庫中各特徵(齒輪箱振動值、發電機振動值及齒輪箱油溫等)10000筆資料所形成的混沌散佈圖作為參考,並設定每個狀況下之經典域與節域,然後再利用資料庫中額外5000筆資料作為測試,測試後證明本實施方式之準確率高達98.8%,如表1所示為本實施方式對比各故障診斷方法之準確率比較表。 In the test of fault diagnosis and prediction of wind power generation equipment, the chaotic scatter diagram formed by 10000 data of each feature (gearbox vibration value, generator vibration value, gearbox oil temperature, etc.) in the database is taken as a reference, and each setting is set. The classic domain and the local area under the condition, and then use the additional 5000 data in the database as the test. The test proves that the accuracy rate of this embodiment is as high as 98.8%. As shown in Table 1, the fault diagnosis method for this embodiment is compared. The accuracy comparison table.

其中多層類神經網路I之運算層為9層,多層類神經網路且之運算層為10層,多層類神經網路Ⅲ之運算層為11層。各多層類神經網路之輸入層代表重心之X軸與Y軸之值有12個副特徵,所以選為12,輸出層則代表風力發電裝置故障有7個故障類別。 The computing layer of the multi-layer neural network I is 9 layers, the multi-layer neural network has 10 layers, and the multi-layer neural network III has 11 layers. The input layer of each multi-layer neural network represents 12 sub-features of the X-axis and Y-axis values of the center of gravity, so it is selected as 12, and the output layer represents 7 fault categories for wind turbine failure.

預測部分之實測一樣以資料庫5000筆之資料做預測並測試,而經本研究所提之診斷法辨識後,所預測之故障與實際故障之故障比對準確率有90%以上。如表2所示為各方法故障預測準確率之比較表。 The actual measurement of the forecasting part is predicted and tested with the data of 5000 data in the database. After the identification of the diagnosis method proposed by the research institute, the accuracy of the predicted fault and the actual fault is more than 90%. Table 2 shows a comparison table of the accuracy of each method's fault prediction.

表2.各種故障預測方法之準確率比較表 Table 2. Comparison table of accuracy rates for various failure prediction methods

請參照第3圖,其係繪示依照本發明之一實施方式之一種風力發電故障預測流程,應用於一風力發電裝置,風力發電故障預測流程包含以下步驟:步驟300感測風力發電裝置之一數據值;步驟310擷取數據值並建立一混沌誤差散佈圖;步驟320預測混沌誤差散佈圖之一重心軌跡;以及步驟330診斷風力發電裝置之一預測故障點。 Referring to FIG. 3, a wind power failure prediction process according to an embodiment of the present invention is applied to a wind power generation device. The wind power failure prediction process includes the following steps: Step 300: sensing one of the wind power generation devices Data value; step 310 retrieves the data value and establishes a chaotic error scatter plot; step 320 predicts a center of gravity trajectory of the chaotic error scatter plot; and step 330 diagnoses one of the wind power generator predictive fault points.

由上述本發明實施方式可知,應用本發明具有下列優點: It can be seen from the above embodiments of the present invention that the application of the present invention has the following advantages:

1.本發明提出將初步擷取之風力發電裝置訊號,使用混沌同步檢測模求出混沌誤差分佈,以混沌誤差分佈圖中之重心作為特徵值,並以重心診斷故障類別,藉此可減少特徵擷取之數量,並縮短程式運算之時間。 1. The present invention proposes a preliminary acquisition of a wind power generation device signal, uses a chaotic synchronization detection mode to obtain a chaotic error distribution, uses the center of gravity in the chaotic error distribution map as a feature value, and diagnoses the fault category with a center of gravity, thereby reducing features. Take the number and shorten the time of the program operation.

2.本發明以灰色理論預測下一週期之特徵數值,並已此數值進行故障預測,可在風力發電裝置出現故障前檢出潛在症兆,能提早停止風力發電裝置運轉,藉此降低損害及維修成本。 2. The invention predicts the characteristic value of the next cycle by the grey theory, and has predicted the fault by this value, and can detect the potential symptom before the failure of the wind power generation device, and can stop the operation of the wind power generation device early, thereby reducing the damage and Maintenance costs.

100‧‧‧風力發電裝置 100‧‧‧Wind power plant

110‧‧‧數據值 110‧‧‧data value

200‧‧‧風力發電故障預測系統 200‧‧‧Wind power failure prediction system

210‧‧‧感測模組 210‧‧‧Sense Module

220‧‧‧混沌同步檢測模組 220‧‧‧Chaotic Synchronous Detection Module

221‧‧‧混沌誤差散佈圖 221‧‧‧Chaotic error scatter plot

230‧‧‧灰色預測模組 230‧‧‧ Gray Prediction Module

231‧‧‧重心軌跡 231‧‧‧ center of gravity track

240‧‧‧診斷模組 240‧‧‧Diagnostic Module

241‧‧‧預測故障點 241‧‧‧Predicting the point of failure

Claims (10)

一種風力發電故障預測系統,應用於一風力發電裝置,該風力發電故障預測系統包含:一感測模組,感測該風力發電裝置之一數據值;一混沌同步檢測模組,連接該感測模組,該混沌同步檢測模組擷取該數據值並建立一混沌誤差散佈圖;一灰色預測模組,連接該混沌同步檢測模組,該灰色預測模組依據該混沌誤差散佈圖預測該混沌誤差散佈圖之一重心軌跡;以及一診斷模組,連接該灰色預測模組,該診斷模組根據該混沌誤差散佈圖之該重心軌跡診斷該風力發電裝置之一預測故障點。 A wind power fault prediction system is applied to a wind power generation device, the wind power failure prediction system includes: a sensing module that senses a data value of the wind power generation device; and a chaotic synchronization detection module that connects the sensing The module, the chaotic synchronization detection module takes the data value and establishes a chaotic error scatter diagram; a gray prediction module is connected to the chaotic synchronization detection module, and the gray prediction module predicts the chaos according to the chaotic error scatter diagram a gravity trajectory of the error scatter plot; and a diagnostic module coupled to the gray prediction module, the diagnostic module diagnosing one of the wind power generation devices to predict a fault point according to the gravity trajectory of the chaotic error scatter plot. 如請求項1之風力發電故障預測系統,其中該混沌同步檢測模組係使用一混沌動態誤差方程式辨識該數據值並建立該混沌誤差散佈圖。 The wind power failure prediction system of claim 1, wherein the chaotic synchronization detection module uses a chaotic dynamic error equation to identify the data value and establish the chaotic error scatter map. 如請求項1之風力發電故障預測系統,其中該風力發電裝置更包含一發電機,該數據值係為該發電機之一振動值。 The wind power failure prediction system of claim 1, wherein the wind power generation device further comprises a generator, and the data value is a vibration value of the generator. 如請求項3之風力發電故障預測系統,其中該風力發電機更包含一齒輪箱,該數據值係為該齒輪箱之一振動值或該齒輪箱之一油溫。 The wind power fault prediction system of claim 3, wherein the wind turbine further comprises a gearbox, the data value being a vibration value of the gearbox or an oil temperature of the gearbox. 如請求項4之風力發電故障預測系統,其中該預測 故障點為該風力發電裝置之該齒輪箱或該發電機。 The wind power failure prediction system of claim 4, wherein the prediction The point of failure is the gearbox or the generator of the wind power plant. 一種風力發電故障預測方法,應用於一風力發電裝置,該風力發電故障預測方法包含以下步驟:感測該風力發電裝置之一數據值;擷取該數據值並建立一混沌誤差散佈圖;預測該混沌誤差散佈圖之一重心軌跡;以及診斷該風力發電裝置之一預測故障點。 A wind power failure prediction method is applied to a wind power generation device, the wind power failure prediction method comprising the steps of: sensing a data value of one of the wind power generation devices; extracting the data value and establishing a chaotic error scatter map; predicting the a gravity center trajectory of the chaotic error scatter plot; and diagnosing one of the wind power generation devices to predict a fault point. 如請求項6之風力發電故障預測方法,其中診斷該風力發電裝置之該現行故障點及該預測故障點之步驟係利用一可拓理論。 The wind power failure prediction method of claim 6, wherein the step of diagnosing the current fault point of the wind power generation device and the predicted fault point utilizes an extension theory. 如請求項6之風力發電故障預測方法,其中擷取該數據值並建立一混沌誤差散佈圖之步驟係利用一混沌動態誤差方程式辨識該數據值。 The wind power failure prediction method of claim 6, wherein the step of extracting the data value and establishing a chaotic error scatter plot identifies the data value using a chaotic dynamic error equation. 如請求項6之風力發電故障預測方法,其中該數據值係為該風力發電裝置之一發電機之一振動值。 The wind power failure prediction method of claim 6, wherein the data value is a vibration value of one of the generators of the wind power generation device. 如請求項9之風力發電故障預測方法,其中該數據值係包含該風力發電裝置之一齒輪箱之一振動值或該齒輪箱之一油溫。 The wind power failure prediction method of claim 9, wherein the data value comprises a vibration value of one of the gearboxes of the wind power generation device or an oil temperature of the gearbox.
TW102109498A 2013-03-18 2013-03-18 Wind power fault prediction system and method thereof TWI491801B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102109498A TWI491801B (en) 2013-03-18 2013-03-18 Wind power fault prediction system and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102109498A TWI491801B (en) 2013-03-18 2013-03-18 Wind power fault prediction system and method thereof

Publications (2)

Publication Number Publication Date
TW201437476A true TW201437476A (en) 2014-10-01
TWI491801B TWI491801B (en) 2015-07-11

Family

ID=52113278

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102109498A TWI491801B (en) 2013-03-18 2013-03-18 Wind power fault prediction system and method thereof

Country Status (1)

Country Link
TW (1) TWI491801B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111812460A (en) * 2020-06-04 2020-10-23 杭州电子科技大学 Partial discharge fault type detection method
TWI732660B (en) * 2020-08-20 2021-07-01 國立勤益科技大學 Wind power generator fault diagnosis system and method
CN113411019A (en) * 2021-06-23 2021-09-17 苏州电器科学研究院股份有限公司 Motor master-slave chaotic synchronization control method and system
TWI780434B (en) * 2019-05-14 2022-10-11 日商日立製作所股份有限公司 Abnormal diagnosis device and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111553398B (en) * 2020-04-21 2021-03-26 湖南城市学院 Wind power scene uncertain continuous interval obtaining method based on multidimensional normal distribution

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000259415A (en) * 1999-03-11 2000-09-22 Fuji Electric Co Ltd Method for evaluating reliability of fuzzy inference value
CA2550072C (en) * 2003-12-18 2011-04-19 Lg Chem, Ltd. Apparatus and method for estimating state of charge of battery using neural network
JP5252673B2 (en) * 2005-05-20 2013-07-31 サイバーレーザー株式会社 Laser device failure diagnosis method and failure repair method
TWI365543B (en) * 2007-12-17 2012-06-01 Nat Univ Chin Yi Technology Method for fault diagnosis of photovoltaic power generating system
TW200939055A (en) * 2008-03-10 2009-09-16 Univ Da Yeh Method for forecasting the future status of facility and equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI780434B (en) * 2019-05-14 2022-10-11 日商日立製作所股份有限公司 Abnormal diagnosis device and method
CN111812460A (en) * 2020-06-04 2020-10-23 杭州电子科技大学 Partial discharge fault type detection method
CN111812460B (en) * 2020-06-04 2023-02-03 杭州电子科技大学 Partial discharge fault type detection method
TWI732660B (en) * 2020-08-20 2021-07-01 國立勤益科技大學 Wind power generator fault diagnosis system and method
CN113411019A (en) * 2021-06-23 2021-09-17 苏州电器科学研究院股份有限公司 Motor master-slave chaotic synchronization control method and system

Also Published As

Publication number Publication date
TWI491801B (en) 2015-07-11

Similar Documents

Publication Publication Date Title
CN104698837B (en) A kind of time-varying linear structure operational modal parameter recognition methods, device and application
TWI491801B (en) Wind power fault prediction system and method thereof
Wu et al. A hybrid LSTM-KLD approach to condition monitoring of operational wind turbines
Zhan et al. Abnormal vibration detection of wind turbine based on temporal convolution network and multivariate coefficient of variation
CN102208028A (en) Fault predicting and diagnosing method suitable for dynamic complex system
Lin et al. Wide‐area coherency identification of generators in interconnected power systems with renewables
CN103711645A (en) Wind generating set state evaluation method based on modeling parameter feature analysis
Tan et al. A new sensor fault diagnosis method for gas leakage monitoring based on the naive Bayes and probabilistic neural network classifier
Marugán et al. Multivariable analysis for advanced analytics of wind turbine management
WO2023065580A1 (en) Fault diagnosis method and apparatus for gearbox of wind turbine generator set
Xu et al. RUL prediction of electronic controller based on multiscale characteristic analysis
Shi et al. Study of wind turbine fault diagnosis and early warning based on SCADA data
Pandit et al. Performance assessment of a wind turbine using SCADA based Gaussian Process model
Chen et al. Fault diagnosis of full-hydraulic drilling rig based on RS–SVM data fusion method
Zhang et al. Complementary ensemble adaptive local iterative filtering and its application to rolling bearing fault diagnosis
CN105741184A (en) Transformer state evaluation method and apparatus
Ning et al. A feature selection algorithm based on variable correlation and time correlation for predicting remaining useful life of equipment using rnn
Yi et al. On a Prediction Method for Remaining Useful Life of Rolling Bearings via VMD-Based Dispersion Entropy and GAN
Sheng-Yu et al. Research on Fault Warning of doubly Fed Wind Power Generator based on LS-SVM
CN106324517A (en) Method for predicting performance of battery of new energy automobile
Hayder et al. Applications of artificial neural networks with input and output degradation data for renewable energy systems fault prognosis
Zhou et al. The health status prediction of the wind turbine based on the anomaly analysis and the lstm prediction
Xu et al. A method for predicting the remaining life of equipment based on WTTE-CNN-LSTM
Zhang et al. Optimization of wind power configuration in distribution network based on scenario clustering and power flow entropy
Rogers et al. Digital twinning for condition monitoring of marine propulsion assets

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees