TW201435372A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
TW201435372A
TW201435372A TW102146062A TW102146062A TW201435372A TW 201435372 A TW201435372 A TW 201435372A TW 102146062 A TW102146062 A TW 102146062A TW 102146062 A TW102146062 A TW 102146062A TW 201435372 A TW201435372 A TW 201435372A
Authority
TW
Taiwan
Prior art keywords
signal
circuit
internal
wafer
core
Prior art date
Application number
TW102146062A
Other languages
Chinese (zh)
Inventor
Masashi Ogasawara
Original Assignee
Ps4 Luxco Sarl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ps4 Luxco Sarl filed Critical Ps4 Luxco Sarl
Publication of TW201435372A publication Critical patent/TW201435372A/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

Provided is a semiconductor device in which the occurrence of timing mismatch in a laminated semiconductor device is suppressed without screening the operation speed of semiconductor chips before lamination. This semiconductor device comprises a first semiconductor chip and a second semiconductor chip. The first semiconductor chip includes: a first internal circuit and a first measurement circuit that generates a first signal indicating the operation speed of the first internal circuit. The second semiconductor chip is laminated on the first semiconductor chip, and includes: a second internal circuit and a second measurement circuit that generates a second signal indicating the operation speed of the second internal circuit. The semiconductor device also comprises: a comparison circuit that is formed on the first semiconductor chip, compares the first signal and the second signal, and generates a comparison result signal and an operation speed adjustment circuit that is formed on either the first or second semiconductor chip and adjusts the first or second operation speed on the basis of the comparison result signal.

Description

半導體裝置 Semiconductor device (關於相關申請案之記載) (about the relevant application record)

本發明,係基於日本專利申請:特願2012-274877號(2012年12月17號申請)而主張優先權,並引用該申請案之全部記載內容而記載在本說明書中。 The present invention claims priority based on Japanese Patent Application No. 2012-274877 (filed on Dec. 17, 2012), the entire disclosure of which is hereby incorporated by reference.

本發明,係有關於半導體裝置。特別是,係有關於在層積複數之半導體晶片的層積型半導體裝置中之晶片間的動作時序之調整。 The present invention relates to a semiconductor device. In particular, there is an adjustment of the operation timing between wafers in a stacked semiconductor device in which a plurality of semiconductor wafers are stacked.

近年來,行動電話或智慧型手機等之電子機器的小型化、高功能化係為顯著。因此,在此些之電子機器所使用的半導體裝置中,將複數之半導體晶片作層積並搭載於1個封裝中的技術之開發係日亦進展。 In recent years, the miniaturization and high functionality of electronic devices such as mobile phones and smart phones have become remarkable. Therefore, in the semiconductor devices used in such electronic devices, the development of a technology in which a plurality of semiconductor wafers are stacked and mounted in one package has progressed.

於此,在專利文獻1中,係揭示有一種層積型半導體裝置,其係包含複數之核心晶片、和對於此些作控制之介面晶片。 Here, in Patent Document 1, a laminated semiconductor device including a plurality of core wafers and an interface wafer for controlling the same is disclosed.

[先前技術文獻] [Previous Technical Literature] [專利文獻] [Patent Literature]

[專利文獻1]日本特開2011-145257號公報 [Patent Document 1] Japanese Laid-Open Patent Publication No. 2011-145257

另外,將上述先前技術文獻之揭示內容在本說明書中反覆引用。以下之分析,係為由本發明者們所進行者。 In addition, the disclosure of the above prior art documents is repeatedly referred to in the present specification. The following analysis is performed by the inventors.

如同在專利文獻1中所揭示一般,在包含介面晶片和複數之核心晶片所構成的層積體半導體裝置中,係有必要以使層積後之半導體裝置能夠正常動作的方式來對於在各個半導體晶片中所包含之各電路的動作速度作設計。 As disclosed in Patent Document 1, in a laminate semiconductor device including an interface wafer and a plurality of core wafers, it is necessary to operate the semiconductor devices in such a manner that the laminated semiconductor devices can operate normally. The operating speed of each circuit included in the wafer is designed.

然而,製造後之半導體晶片的各電路,係會有起因於製造參差之影響而導致動作速度從設計時之規定值而偏離的情況。當將所搭載之電路的動作速度從設計值而偏離之半導體晶片相互作了層積的情況時,係會產生無法取得晶片間之動作時序之同步的問題(時序不良),而會有使層積型半導體裝置無法正常動作之虞。 However, in each circuit of the semiconductor wafer after the manufacture, there is a case where the operation speed deviates from the predetermined value at the time of design due to the influence of the manufacturing variation. When the semiconductor wafers whose operating speeds of the mounted circuits are deviated from the design values are mutually stratified, there is a problem that synchronization of the operation timings between the wafers cannot be obtained (sequence defective), and the layers are caused. The integrated semiconductor device cannot operate normally.

在專利文獻1中,係揭示有對於複數之貫通電極的時間常數之差作測定之內容。但是,在專利文獻1中,針對被搭載於各個半導體晶片中之各電路的動作速度,係並未有任何之提及。 Patent Document 1 discloses the measurement of the difference in time constant between a plurality of through electrodes. However, in Patent Document 1, there is no mention of the operation speed of each circuit mounted in each semiconductor wafer.

因此,本發明者,係對於能夠解決上述之問題的半導體裝置作了檢討。更具體而言,係在複數之半導體晶片的各個處配置動作速度測定用之電路,並在層積前之晶圓階段時對於各個的半導體晶片之動作速度作測定。之後,藉由將動作速度為快之半導體晶片彼此或者是將動作速度為慢之半導體晶片彼此作層積,來作成層積型半導體裝置。但是,在此種於層積前而對於半導體晶片之動作速度作選別的方法中,係會有起因於測試工程之增加而導致半導體裝置之成本上升的問題。 Therefore, the inventors of the present invention reviewed a semiconductor device capable of solving the above problems. More specifically, a circuit for measuring the operation speed is placed at each of a plurality of semiconductor wafers, and the operating speed of each semiconductor wafer is measured at the wafer stage before the lamination. Thereafter, a semiconductor wafer in which the operation speed is fast or a semiconductor wafer having a slow operation speed is laminated with each other to form a stacked semiconductor device. However, in such a method of selecting the operating speed of the semiconductor wafer before the lamination, there is a problem that the cost of the semiconductor device increases due to an increase in the number of test projects.

若依據本發明之第1視點,則係提供一種半導體裝置,其特徵為,具備有:第1半導體晶片,係包含第1內部電路、和產生代表該第1內部電路之動作速度的第1訊號之第1測定電路;和第2半導體晶片,係被與前述第1半導體晶片作層積,並包含第2內部電路、和產生代表該第2動作速度的第2訊號之第2測定電路;和比較電路,係被形成於前述第1半導體晶片處,並對於前述第1訊號和前述第2訊號作比較,而產生比較結果訊號;和動作速度調整電路,係被形成於前述第1或第2半導體晶片之其中一者處,並基於前述比較結果訊號,而對於前述第1或第2動作速度作調整。 According to a first aspect of the invention, there is provided a semiconductor device comprising: a first semiconductor chip including a first internal circuit; and a first signal generating an operation speed representative of the first internal circuit The first measurement circuit; and the second semiconductor wafer are laminated with the first semiconductor wafer, and include a second internal circuit and a second measurement circuit that generates a second signal representing the second operation speed; and a comparison circuit is formed on the first semiconductor wafer, and compares the first signal with the second signal to generate a comparison result signal; and an operation speed adjustment circuit is formed in the first or second One of the semiconductor wafers is adjusted for the first or second operating speed based on the comparison result signal.

若依據本發明之第2視點,則係提供一種半導體裝置,其特徵為,具備有:第1半導體晶片,係包含 產生第1震盪訊號之第1震盪電路、和因應於前述第1震盪訊號而使第1計數值改變之第1計數電路;和第2半導體晶片,係包含產生內部電源電壓之內部電源產生電路、和藉由前述內部電源電壓而動作並產生第2震盪訊號之第2震盪電路、和因應於前述第2震盪訊號而使第2計數值改變之第2計數電路,前述第1半導體晶片,係進而包含有對於前述第1計數值和前述第2計數值作比較並產生比較結果訊號之比較電路,前述內部電源產生電路,係因應於前述比較結果訊號,而對於前述內部電源電壓作調整。 According to a second aspect of the present invention, there is provided a semiconductor device comprising: a first semiconductor wafer; a first oscillating circuit that generates a first oscillating signal, and a first counting circuit that changes a first count value in response to the first oscillating signal; and a second semiconductor wafer that includes an internal power generating circuit that generates an internal power supply voltage, And a second oscillating circuit that operates by the internal power supply voltage and generates a second oscillating signal, and a second counting circuit that changes the second count value in response to the second oscillating signal, wherein the first semiconductor wafer is further And a comparison circuit for comparing the first count value and the second count value to generate a comparison result signal, wherein the internal power generation circuit adjusts the internal power supply voltage according to the comparison result signal.

若依據本發明之各視點,則係能夠提供一種:並不在層積前而進行由半導體晶片之動作速度所致的篩選,便能夠抑制層積型半導體裝置中之時序不良的發生之半導體裝置。 According to the respective viewpoints of the present invention, it is possible to provide a semiconductor device capable of suppressing occurrence of timing defects in a stacked semiconductor device without performing screening by the operating speed of the semiconductor wafer before lamination.

1‧‧‧半導體裝置 1‧‧‧Semiconductor device

10‧‧‧介面晶片 10‧‧‧Interface Wafer

11‧‧‧IF控制電路 11‧‧‧IF control circuit

12‧‧‧資料輸入輸出控制電路 12‧‧‧ Data input and output control circuit

13、25‧‧‧ROSC電路 13, 25‧‧‧ROSC circuit

14‧‧‧ROSC比較電路 14‧‧‧ROSC comparison circuit

20、20-1~20-4‧‧‧核心晶片 20, 20-1~20-4‧‧‧ core chip

21‧‧‧核心控制電路 21‧‧‧ core control circuit

22‧‧‧讀寫控制電路 22‧‧‧Reading and writing control circuit

23‧‧‧SID選擇電路 23‧‧‧SID selection circuit

24‧‧‧開關 24‧‧‧ switch

26‧‧‧記憶體胞陣列 26‧‧‧ Memory Cell Array

27‧‧‧電源電路 27‧‧‧Power circuit

101‧‧‧環狀震盪器 101‧‧‧Circular oscillator

102、401‧‧‧計數器 102, 401‧‧‧ counter

201‧‧‧ROSC暫存器 201‧‧‧ROSC register

202‧‧‧ROSC比較器 202‧‧‧ROSC comparator

301~305‧‧‧加算器 301~305‧‧‧Adder

402‧‧‧鎖存器 402‧‧‧Latch

403‧‧‧解碼器 403‧‧‧Decoder

404‧‧‧基準電壓產生電路 404‧‧‧reference voltage generation circuit

405‧‧‧內部電源產生電路 405‧‧‧Internal power generation circuit

501‧‧‧運算放大器 501‧‧‧Operational Amplifier

AND01~AND06‧‧‧邏輯積電路 AND01~AND06‧‧‧Logical product circuit

FF01~FF05‧‧‧正反器 FF01~FF05‧‧‧Factor

INV01~INV06、INV101~INV164‧‧‧反相電路 INV01~INV06, INV101~INV164‧‧‧Inverter circuit

NAND01~NAND06‧‧‧否定邏輯積電路 NAND01~NAND06‧‧‧negative logic product circuit

NM01‧‧‧N通道型MOS電晶體 NM01‧‧‧N-channel MOS transistor

OR01、OR02‧‧‧邏輯和電路 OR01, OR02‧‧‧ logic and circuit

R01~R64‧‧‧電阻 R01~R64‧‧‧resistance

TG01~TG64‧‧‧傳輸閘極 TG01~TG64‧‧‧Transmission gate

XOR01、XOR02‧‧‧排他性邏輯和電路 XOR01, XOR02‧‧‧Exclusive logic and circuits

[圖1]對於第1實施形態之半導體裝置1的內部構成之其中一例作展示之圖。 Fig. 1 is a view showing an example of the internal configuration of the semiconductor device 1 of the first embodiment.

[圖2]對於ROSC電路13的內部構成之其中一例作展示之圖。 FIG. 2 is a diagram showing an example of the internal configuration of the ROSC circuit 13.

[圖3]對於環狀震盪器101之動作的其中一例作展示之時序表之其中一例。 FIG. 3 is an example of a time chart showing an example of the operation of the ring oscillator 101.

[圖4]對於環狀震盪器101的電路構成之其中一例作展示之圖。 FIG. 4 is a diagram showing an example of the circuit configuration of the ring oscillator 101.

[圖5]對於ROSC比較電路14的內部構成之其中一例作展示之圖。 FIG. 5 is a diagram showing an example of the internal configuration of the ROSC comparison circuit 14.

[圖6]對於ROSC暫存器201的電路構成之其中一例作展示之圖。 FIG. 6 is a diagram showing an example of the circuit configuration of the ROSC register 201.

[圖7]對於ROSC比較器202的電路構成之其中一例作展示之圖。 FIG. 7 is a diagram showing an example of the circuit configuration of the ROSC comparator 202.

[圖8]係為對於圖7中所示之加算器的電路構成之其中一例作展示之圖。 Fig. 8 is a view showing an example of the circuit configuration of the adder shown in Fig. 7.

[圖9]對於電源電路27的內部構成之其中一例作展示之圖。 FIG. 9 is a diagram showing an example of the internal configuration of the power supply circuit 27.

[圖10]對於基準電壓產生電路404的電路構成之其中一例作展示之圖。 FIG. 10 is a diagram showing an example of the circuit configuration of the reference voltage generating circuit 404.

[圖11]對於內部電源產生電路405的電路構成之其中一例作展示之圖。 FIG. 11 is a diagram showing an example of the circuit configuration of the internal power source generating circuit 405.

[圖12]對於半導體裝置1之動作的其中一例作展示之圖。 FIG. 12 is a diagram showing an example of the operation of the semiconductor device 1.

[圖13]對於使在介面晶片10中所包含之ROSC電路13動作並在ROSC暫存器201中保持環狀震盪器101之計數值時的時序表之其中一例作展示之圖。 FIG. 13 is a diagram showing an example of a time chart when the ROSC circuit 13 included in the interface wafer 10 is operated and the count value of the ring oscillator 101 is held in the ROSC register 201.

[圖14]對於使在核心晶片20中所包含之ROSC電路25以及ROSC比較電路14動作時的時序表之其中一例作展示之圖。 FIG. 14 is a view showing an example of a time chart when the ROSC circuit 25 and the ROSC comparison circuit 14 included in the core wafer 20 are operated.

[圖15]對於使在核心晶片20中所包含之電源電路27動作時的時序表之其中一例作展示之圖。 FIG. 15 is a view showing an example of a time chart when the power supply circuit 27 included in the core wafer 20 is operated.

首先,使用第1圖,針對其中一種本實施形態之概要作說明。另外,在此概要中所附記之圖面元件符號,係為作為用以幫助理解之其中一例而對於各要素作附記者,此概要之記載係並非為意圖作任何之限定者。 First, the outline of one embodiment of the present embodiment will be described using FIG. In addition, the symbols of the drawing elements attached to the outlines are attached to each element as an example to help understanding, and the summary is not intended to be any limitation.

如圖1中所示一般,半導體裝置,係具備第1半導體晶片(例如,介面晶片10)、和第2半導體晶片(例如,核心晶片20)。第1半導體晶片,係具備第1內部電路、和產生代表第1內部電路之動作速度的第1訊號之第1測定電路(例如,ROSC電路13)。第2半導體晶片,係被與第1半導體晶片作層積,並具備第2內部電路、和產生代表第2內部電路之動作速度的第2訊號之第2測定電路(例如,ROSC電路25)。進而,半導體裝置,係具備被形成於第1半導體晶片處並對於第1訊號和第2訊號作比較而產生比較結果訊號之比較電路(例如,ROSC比較電路14)、和被形成於第1或第2半導體晶片之其中一者處並基於比較結果訊號而對於第1或第2動作速度作調整之動作速度調整電路(例如,電源電路27)。 As shown in FIG. 1, a semiconductor device generally includes a first semiconductor wafer (for example, an interface wafer 10) and a second semiconductor wafer (for example, a core wafer 20). The first semiconductor wafer includes a first internal circuit and a first measurement circuit (for example, the ROSC circuit 13) that generates a first signal representing the operating speed of the first internal circuit. The second semiconductor wafer is laminated with the first semiconductor wafer, and includes a second internal circuit and a second measurement circuit (for example, the ROSC circuit 25) that generates a second signal representing the operating speed of the second internal circuit. Further, the semiconductor device includes a comparison circuit (for example, the ROSC comparison circuit 14) formed on the first semiconductor wafer and comparing the first signal and the second signal to generate a comparison result signal, and is formed in the first or An operation speed adjustment circuit (for example, the power supply circuit 27) that adjusts the first or second operation speed based on the comparison result signal in one of the second semiconductor wafers.

圖1中所示之半導體裝置,係具備將第1半導體晶片和第2半導體晶片作了層積的構造。故而,在半 導體裝置中,係有必要對於第1半導體晶片之內部電路和第2半導體晶片之內部電路的動作時序作調整,但是,此時,係針對代表第1半導體晶片之第1內部電路的動作速度之訊號和代表第2半導體晶片之第2內部電路的動作速度之訊號作比較,並朝向對於此些之半導體晶片間的時序不良作抑制之方向而調整第1或第2內部電路之動作速度。於此,第1或第2內部電路之動作速度的調整,係能夠在將半導體晶片作了層積之後再實施。其結果,係能夠並不在層積前而進行由半導體晶片之動作速度所致的選別,便能夠抑制層積型半導體裝置中之時序不良的發生。 The semiconductor device shown in FIG. 1 has a structure in which a first semiconductor wafer and a second semiconductor wafer are laminated. Therefore, in the half In the conductor device, it is necessary to adjust the operation timing of the internal circuit of the first semiconductor wafer and the internal circuit of the second semiconductor wafer. However, in this case, the operating speed of the first internal circuit representing the first semiconductor wafer is required. The signal is compared with a signal representing the operating speed of the second internal circuit of the second semiconductor wafer, and the operating speed of the first or second internal circuit is adjusted in a direction to suppress timing failure between the semiconductor wafers. Here, the adjustment of the operating speed of the first or second internal circuit can be performed after the semiconductor wafer is laminated. As a result, it is possible to suppress the occurrence of the timing failure in the laminated semiconductor device without performing the selection by the operation speed of the semiconductor wafer before the lamination.

[第1實施形態] [First Embodiment]

使用圖面,針對第1實施形態作更詳細之說明。 The first embodiment will be described in more detail with reference to the drawings.

圖1,係為對於本實施形態之半導體裝置1的內部構成之其中一例作展示之圖。半導體裝置1,係具備有實現與外部之半導體裝置(例如,記憶體控制器等)之間的介面之介面晶片10、和包含有記憶體胞之核心晶片20-1~20-4。半導體裝置1,係由1枚之介面之介面晶片10和作了層積之4枚的核心晶片20-1~20-4所構成。另外,在以下之說明中,當並不需要特別對於核心晶片20-1~20-4作區別的情況時,係標記為「核心晶片20」。 Fig. 1 is a view showing an example of the internal configuration of the semiconductor device 1 of the present embodiment. The semiconductor device 1 includes an interface wafer 10 for realizing an interface with an external semiconductor device (for example, a memory controller or the like), and core chips 20-1 to 20-4 including memory cells. The semiconductor device 1 is composed of an interface wafer 10 having one interface and four core chips 20-1 to 20-4 laminated. Further, in the following description, when it is not necessary to distinguish the core chips 20-1 to 20-4 in particular, it is referred to as "core wafer 20".

介面晶片10,係經由貫通核心晶片20-1~20-4之基板的貫通電極(TSV;Trough-substrate Via)而與各個核心晶片作電性連接。介面晶片10,係從外部之半 導體裝置而接收時脈訊號CK、指令訊號CMD、位址訊號ADD。又,寫入至在核心晶片20中所包含之記憶體胞中的資料或者是從記憶體胞而讀出的資料,係作為資料訊號DATA而在其與外部之半導體裝置之間進行送受訊。 The interface wafer 10 is electrically connected to each core wafer via a through electrode (TSV; Trough-substrate Via) that penetrates the substrate of the core wafers 20-1 to 20-4. Interface wafer 10, from the outside half The conductor device receives the clock signal CK, the command signal CMD, and the address signal ADD. Further, the data written in the memory cell included in the core wafer 20 or the data read from the memory cell is transmitted and received as a data signal DATA between the semiconductor device and the external semiconductor device.

介面晶片10,係包含有IF(Interface)控制電路11、和資料輸入輸出控制電路12、和ROSC(Ring Oscillator)電路13、以及ROSC比較電路14,而構成之。於此,IF控制電路11、資料輸入輸出控制電路12、ROSC電路13以及ROSC比較電路14之至少一者,係構成本發明之第1內部電路。 The interface wafer 10 includes an IF (Interface) control circuit 11, a data input/output control circuit 12, a ROCS (Ring Oscillator) circuit 13, and a ROSC comparison circuit 14. Here, at least one of the IF control circuit 11, the data input/output control circuit 12, the ROSC circuit 13, and the ROSC comparison circuit 14 constitutes the first internal circuit of the present invention.

IF控制電路11,在通常動作時,係依據從外部所供給而來之位址訊號ADD,而對於作為存取之對象的核心晶片20輸出控制訊號CTL。進而,IF控制電路11,在速度調整動作時,例如於半導體裝置1中之POWER ON時等的電源投入時,係進行核心晶片20之動作速度的調整。更具體而言,IF控制電路11,係為了調整核心晶片20之動作速度,而對於START訊號、END訊號、RESET訊號、SID訊號、TEST_END訊號以及P_IN訊號之各種訊號作控制。針對關於此些之訊號的詳細內容依序作說明。 The IF control circuit 11 outputs a control signal CTL to the core wafer 20 to be accessed in accordance with the address signal ADD supplied from the outside during normal operation. Further, the IF control circuit 11 adjusts the operating speed of the core wafer 20 when the power is turned on, for example, when the power is turned on in the semiconductor device 1 during the speed adjustment operation. More specifically, the IF control circuit 11 controls various signals of the START signal, the END signal, the RESET signal, the SID signal, the TEST_END signal, and the P_IN signal in order to adjust the operating speed of the core chip 20. The details of the signals about these are described in order.

資料輸入輸出控制電路12,係對於在核心晶片20中所包含之讀寫控制電路22和外部的半導體裝置之間的資料傳輸作控制。具體而言,資料輸入輸出控制電路12,在半導體裝置1之讀取動作時,係從核心晶片20之 讀寫控制電路22而接收內部資料訊號i_DATA,並作為資料訊號DATA而供給至外部之半導體裝置處。又,資料輸入輸出控制電路12,係在半導體裝置1為寫入動作時,從外部之半導體裝置而接收資料訊號DATA,並作為內部資料訊號i_DATA而供給至核心晶片20之讀寫控制電路22處。 The data input/output control circuit 12 controls data transfer between the read/write control circuit 22 included in the core wafer 20 and an external semiconductor device. Specifically, the data input/output control circuit 12 is from the core wafer 20 during the read operation of the semiconductor device 1. The read/write control circuit 22 receives the internal data signal i_DATA and supplies it to the external semiconductor device as the data signal DATA. Further, the data input/output control circuit 12 receives the data signal DATA from the external semiconductor device when the semiconductor device 1 is in the address operation, and supplies it to the read/write control circuit 22 of the core wafer 20 as the internal data signal i_DATA. .

ROSC電路13(第1測定電路),係為作為震盪電路而包含有環狀震盪器的震盪電路。ROSC電路13,係接收IF控制電路11所輸出之START訊號、END訊號、RESET訊號以及SID訊號SID_IF。ROSC電路13,係輸出代表使在內部所包含之環狀震盪器的輸出作了雙態互變之次數的RO_IF訊號(第1訊號)。另外,在本實施形態中之RO_IF訊號,由於係為5位元寬幅之訊號,因此係因應於需要而標記為RO_IF〈4:0〉。又,核心晶片20之ROSC電路25(第2測定電路),亦係具備有與ROSC電路13實質性相同之構成。具體而言,核心晶片20之ROSC電路25,係代替SID訊號SID_IF而接收SID訊號SID_CORE,又,係代替RO_IF訊號而輸出RO_CORE訊號(第2訊號)。另外,RO_CORE訊號,係為與RO_IF訊號同種類之訊號,而為5位元寬幅之訊號。RO_CORE訊號,係為代表使在核心晶片20之ROSC電路25中所包含的環狀震盪器於既定之期間中而作了雙態互變的次數之訊號。針對RO_CORE訊號,亦同樣的,係因應於需要而標記為RO_CORE〈4:0〉。以下,參考 圖2~4來對於ROSC電路13之構成以及動作的詳細內容作說明。此詳細內容,係為亦實質性地符合於ROSC電路25者。 The ROSC circuit 13 (first measurement circuit) is an oscillation circuit including an annular oscillator as an oscillation circuit. The ROSC circuit 13 receives the START signal, the END signal, the RESET signal, and the SID signal SID_IF output by the IF control circuit 11. The ROSC circuit 13 outputs an RO_IF signal (first signal) representing the number of times the output of the ring oscillator included in the inside is double-converted. Further, since the RO_IF signal in the present embodiment is a 5-bit wide signal, it is marked as RO_IF<4:0> as needed. Further, the ROSC circuit 25 (second measurement circuit) of the core wafer 20 is also provided with substantially the same configuration as the ROSC circuit 13. Specifically, the ROSC circuit 25 of the core chip 20 receives the SID signal SID_CORE instead of the SID signal SID_IF, and outputs the RO_CORE signal (the second signal) instead of the RO_IF signal. In addition, the RO_CORE signal is a signal of the same type as the RO_IF signal, and is a 5-bit wide signal. The RO_CORE signal is a signal representing the number of times that the ring oscillator included in the ROSC circuit 25 of the core chip 20 is double-state interconverted for a predetermined period of time. For the RO_CORE signal, the same is marked as RO_CORE<4:0> as needed. Below, reference Details of the configuration and operation of the ROSC circuit 13 will be described with reference to Figs. This detail is also substantially in accordance with the ROSC circuit 25.

圖2,係為對於ROSC電路13的內部構成之其中一例作展示之圖。ROSC電路13,係具備有環狀震盪器101(第1震盪電路、第2震盪電路)、和計數器102。 FIG. 2 is a diagram showing an example of the internal configuration of the ROSC circuit 13. The ROSC circuit 13 includes a ring oscillator 101 (first oscillating circuit, second oscillating circuit) and a counter 102.

環狀震盪器101,係接收IF控制電路11所輸出之START訊號、END訊號以及SID訊號SID_IF。將環狀震盪器101之輸出作為RO訊號(第1震盪訊號、第2震盪訊號)。 The ring oscillator 101 receives the START signal, the END signal, and the SID signal SID_IF output by the IF control circuit 11. The output of the ring oscillator 101 is used as the RO signal (the first oscillating signal and the second oscillating signal).

圖3,係為對於環狀震盪器101之動作的其中一例作展示之時序表之其中一例。環狀震盪器101,係因應於START訊號之上揚而開始震盪(時刻T01)。環狀震盪器101,係因應於END訊號之上揚而結束震盪(時刻T02)。 FIG. 3 is an example of a time chart showing an example of the operation of the ring oscillator 101. The ring oscillator 101 starts to oscillate in response to the START signal (time T01). The ring oscillator 101 ends the oscillation in response to the END signal (time T02).

於此,將從START訊號之上揚起直到END訊號之上揚為止的時間(震盪期間;時刻T01~T02)除以RO訊號在震盪期間(第1期間、第2期間)中所作了雙態互變的次數(第1次數、第2次數)後所得到之值,係相當於RO訊號之周期。因此,若是在震盪期間中之RO訊號的雙態互變次數越大,則RO訊號的周期係為越短(RO訊號之頻率係為高),環狀震盪器101之動作速度係為快,亦即是,可以說是內部電路之動作速度為快的 晶片。亦即是,藉由使ROSC電路13之環狀震盪器101所輸出的RO訊號之頻率和ROSC電路25之環狀震盪器101所輸出的RO訊號之頻率相一致,係能夠如同後述一般而將核心晶片20之內部電路的動作速度以對於時序不良作抑制的方式來進行調整。另外,在以下之本實施形態的說明中,係亦有將ROSC電路13之環狀震盪器101所輸出的RO訊號單純記載為介面晶片10之RO訊號的情形。同樣的,係亦有將ROSC電路25之環狀震盪器101所輸出的RO訊號單純記載為核心晶片20之RO訊號的情形。 In this case, the time from the rise of the START signal until the END signal rises (the period of the oscillation; the time T01~T02) is divided by the RO signal during the oscillating period (the first period, the second period). The value obtained after the number of times (the first number of times and the second number of times) corresponds to the period of the RO signal. Therefore, if the number of double-state interconversions of the RO signal during the oscillating period is larger, the period of the RO signal is shorter (the frequency of the RO signal is higher), and the operating speed of the ring oscillator 101 is fast. That is to say, it can be said that the internal circuit is moving at a fast speed. Wafer. In other words, by matching the frequency of the RO signal output from the ring oscillator 101 of the ROSC circuit 13 with the frequency of the RO signal output from the ring oscillator 101 of the ROSC circuit 25, it can be as will be described later. The operating speed of the internal circuit of the core wafer 20 is adjusted in such a manner as to suppress the timing failure. In the following description of the present embodiment, the RO signal output from the ring oscillator 101 of the ROSC circuit 13 is simply referred to as the RO signal of the interface wafer 10. Similarly, the RO signal output from the ring oscillator 101 of the ROSC circuit 25 is simply described as the RO signal of the core chip 20.

環狀震盪器101,例如,係可藉由圖4中所示之電路構成來實現。更詳細而言,環狀震盪器101,係包含有邏輯積電路AND01以及AND02、和否定邏輯積電路NAND01~NAND06、和反相電路INV01,而構成之。反相電路INV01所輸出之訊號,係為RO訊號。 The ring oscillator 101 can be realized, for example, by the circuit configuration shown in FIG. More specifically, the ring oscillator 101 includes the logical product circuits AND01 and AND02, and the negative logical product circuits NAND01 to NAND06 and the inverting circuit INV01. The signal output by the inverting circuit INV01 is an RO signal.

圖2中所示之計數器102,係為對於環狀震盪器101所輸出之RO訊號的雙態互變次數作計數之計數電路。計數器102所計數之結果,係作為5位元寬幅之RO_IF訊號而被輸出。例如,RO訊號的雙態互變次數若是如圖3中所示一般而為6次,則係成為RO_IF〈4:0〉=(L、L、H、H、L)。係能夠根據此RO_IF訊號,而測定RO訊號之頻率。又,計數器102所計數之RO訊號的雙態互變次數,係因應於IF控制電路11所輸出之RESET訊號的活性化,而如同RO_IF〈4:0〉=(L、 L、L、L、L)一般地被初期化。 The counter 102 shown in FIG. 2 is a counting circuit for counting the number of double-state interconversions of the RO signal output from the ring oscillator 101. The result counted by the counter 102 is output as a 5-bit wide RO_IF signal. For example, if the number of two-state interconversions of the RO signal is six times as shown in FIG. 3, it becomes RO_IF<4:0>=(L, L, H, H, L). The frequency of the RO signal can be determined based on the RO_IF signal. Moreover, the number of double-state interconversions of the RO signals counted by the counter 102 is activated by the RESET signal outputted by the IF control circuit 11, and is like RO_IF<4:0>=(L, L, L, L, L) are generally initialized.

圖1中所示之ROSC比較電路14,係對於ROSC電路13所輸出之RO_IF訊號和在核心晶片20中所包含之ROSC電路25所輸出的RO_CORE訊號作比較,並因應於比較結果而輸出P_OUT訊號。 The ROSC comparison circuit 14 shown in FIG. 1 compares the RO_IF signal outputted by the ROSC circuit 13 with the RO_CORE signal outputted by the ROSC circuit 25 included in the core chip 20, and outputs a P_OUT signal in response to the comparison result. .

ROSC比較電路14,係為藉由對於在既定之期間中的被包含於介面晶片10中之環狀震盪器的雙態互變次數和被包含於核心晶片20中之環狀震盪器的雙態互變次數作比較,而產生P_OUT訊號之電路。另外,由於被包含於介面晶片10中之環狀震盪器的雙態互變次數,係代表介面晶片10之內部電路的動作速度,被包含於核心晶片20中之環狀震盪器的雙態互變次數,係代表核心晶片20之內部電路的動作速度,因此,ROSC比較電路14,係可視為對於兩晶片之內部電路的動作速度作比較。 The ROSC comparison circuit 14 is a binary state of the ring oscillator included in the core wafer 20 by the number of double-state interconversions of the ring oscillator included in the interface wafer 10 in a predetermined period. The number of mutual changes is compared to produce a circuit for the P_OUT signal. In addition, since the number of double-state interconversions of the ring oscillator included in the interface wafer 10 represents the operating speed of the internal circuit of the interface wafer 10, the two-state mutual impedance of the ring oscillator included in the core wafer 20 The number of times of change represents the operating speed of the internal circuit of the core wafer 20. Therefore, the ROSC comparison circuit 14 can be regarded as a comparison of the operating speeds of the internal circuits of the two chips.

圖5,係為對於ROSC比較電路14的內部構成之其中一例作展示之圖。ROSC比較電路14,係除了RO_IF訊號以及RO_CORE訊號以外,亦接收SID_IF訊號和TEST_END訊號以及P_IN訊號。 Fig. 5 is a view showing an example of the internal configuration of the ROSC comparison circuit 14. The ROSC comparison circuit 14 receives the SID_IF signal and the TEST_END signal and the P_IN signal in addition to the RO_IF signal and the RO_CORE signal.

如同上述一般,為了對於核心晶片20之內部電路的動作速度作調整,係有必要對於介面晶片10以及核心晶片20-1~20-4中所包含之ROSC電路作選擇並使其動作。用以選擇使其動作之ROSC電路的訊號,係為SID訊號。具體而言,選擇被包含於介面晶片10中之ROSC電路13的訊號,係為SID訊號SID_IF,又,選擇 被包含於核心晶片20中之ROSC電路25的訊號,係為SID訊號SID_CORE。另外,IF控制電路11,係基於從外部之半導體裝置所供給而來之位址訊號ADD,而決定所選擇之核心晶片20。 As described above, in order to adjust the operation speed of the internal circuit of the core wafer 20, it is necessary to select and operate the ROSC circuit included in the interface wafer 10 and the core wafers 20-1 to 20-4. The signal used to select the ROSC circuit to operate is the SID signal. Specifically, the signal selected by the ROSC circuit 13 included in the interface chip 10 is the SID signal SID_IF, and is selected. The signal of the ROSC circuit 25 included in the core chip 20 is the SID signal SID_CORE. Further, the IF control circuit 11 determines the selected core wafer 20 based on the address signal ADD supplied from the external semiconductor device.

當IF控制電路11使ROSC電路13之動作結束(停止環狀震盪器101之震盪)時,從L準位而活性化為H準位之訊號,係為TEST_END訊號。又,當IF控制電路11使END訊號從L準位而活性化為H準位時所產生之單擊的脈衝訊號,係為P_IN訊號。 When the IF control circuit 11 ends the operation of the ROSC circuit 13 (stopping the oscillation of the ring oscillator 101), the signal activated from the L level to the H level is the TEST_END signal. Moreover, the click pulse signal generated when the IF control circuit 11 activates the END signal from the L level to the H level is a P_IN signal.

ROSC比較電路14,係輸出P_OUT訊號。P_OUT訊號,係為因應於被包含在藉由SID_CORE訊號所選擇之核心晶片20中之ROSC電路25所輸出的RO_CORE訊號和被包含在介面晶片10中之ROSC電路13所輸出的RO_IF訊號之比較結果而輸出的訊號。P_OUT訊號,係經由核心晶片20之開關24,而被輸出至電源電路27處。又,如圖1中所示一般,資料輸入輸出控制電路12,係亦可接收P_OUT訊號並將P_OUT訊號輸出至外部。藉由對於外部輸出P_OUT訊號,在測試時係能夠對於P_OUT訊號作觀測。另外,針對P_OUT訊號之詳細內容,係於後再述。 The ROSC comparison circuit 14 outputs a P_OUT signal. The P_OUT signal is a comparison result of the RO_CORE signal outputted by the ROSC circuit 25 included in the core chip 20 selected by the SID_CORE signal and the RO_IF signal outputted by the ROSC circuit 13 included in the interface chip 10. And the output signal. The P_OUT signal is output to the power supply circuit 27 via the switch 24 of the core chip 20. Moreover, as shown in FIG. 1, the data input/output control circuit 12 can also receive the P_OUT signal and output the P_OUT signal to the outside. By outputting the P_OUT signal to the outside, it is possible to observe the P_OUT signal during the test. In addition, the details of the P_OUT signal will be described later.

ROSC比較電路14,係具備有ROSC暫存器201、和ROSC比較器202(參考圖5)。 The ROSC comparison circuit 14 is provided with a ROSC register 201 and a ROSC comparator 202 (refer to FIG. 5).

ROSC暫存器201,係為保持介面晶片10之ROSC電路13所輸出之RO_IF訊號的電路。ROSC暫存器 201所保持之值,係為在進行ROSC比較器202處之比較動作時而成為基準之值。ROSC暫存器201所輸出之值,係設為RO_REG訊號。本訊號,由於係為5位元寬幅之訊號,因此係因應於需要而標記為RO_REG〈4:0〉。 The ROSC register 201 is a circuit for holding the RO_IF signal output from the ROSC circuit 13 of the interface chip 10. ROSC register The value held by 201 is a value that becomes a reference when the comparison operation at the ROSC comparator 202 is performed. The value output by the ROSC register 201 is set to the RO_REG signal. This signal, because it is a 5-digit wide signal, is marked as RO_REG<4:0> as needed.

圖6,係為對於ROSC暫存器201的電路構成之其中一例作展示之圖。例如,ROSC暫存器201,係包含有邏輯積電路AND03和正反器FF01~FF05,而構成之。 FIG. 6 is a diagram showing an example of the circuit configuration of the ROSC register 201. For example, the ROSC register 201 includes a logical product circuit AND03 and a flip-flop FF01 to FF05.

ROSC暫存器201,係概略如同以下一般而被作控制。 The ROSC register 201 is generally controlled as follows.

IF控制電路11,係將SID_IF訊號從L準位而活性化為H準位。之後,IF控制電路11,係使START訊號從L準位而活性化為H準位,並使環狀震盪器101震盪。IF控制電路11,係在使環狀震盪器101震盪既定之時間後,使END訊號從L準位而活性化為H準位。如此一來,從ROSC電路13係輸出代表使環狀震盪器101作了雙態互變的次數之RO_IF訊號。在此種狀態下,IF控制電路11,係將TEST_END訊號從L準位而活性化為H準位。 The IF control circuit 11 activates the SID_IF signal from the L level to the H level. Thereafter, the IF control circuit 11 activates the START signal from the L level to the H level and oscillates the ring oscillator 101. The IF control circuit 11 activates the END signal from the L level to the H level after oscillating the ring oscillator 101 for a predetermined period of time. In this way, the RO_IF signal representing the number of times the ring oscillator 101 is subjected to the two-state interconversion is output from the ROSC circuit 13. In this state, the IF control circuit 11 activates the TEST_END signal from the L level to the H level.

此時,在邏輯積電路AND03處,由於係被供給有H準位之SID_IF訊號以及TEST_END訊號,因此RO_IF訊號係被導入至ROSC暫存器201之正反器FF01~FF05處。在RO_IF訊號被保持於ROSC暫存器201處的階段中,係將SID_IF訊號以及TEST_END訊號一同從 H準位而非活性化為L準位。 At this time, at the logical product circuit AND03, since the SID_IF signal and the TEST_END signal of the H level are supplied, the RO_IF signal is introduced to the flip-flops FF01 to FF05 of the ROSC register 201. In the stage where the RO_IF signal is held in the ROSC register 201, the SID_IF signal and the TEST_END signal are taken together. The H level is not activated as the L level.

圖5中所示之ROSC比較器202,係為對於在介面晶片10和核心晶片20之各者中所包含之環狀震盪器作了雙態互變的次數作比較之電路。ROSC比較器202,係對於從藉由IF控制電路11所選擇了的核心晶片20而供給之RO_CORE訊號和從ROSC暫存器201所供給之RO_REG訊號作比較,並當RO_CORE訊號展現有較RO_REG訊號而更大之值的情況時,產生P_OUT訊號。亦即是,ROSC比較器202,係當核心晶片20之動作速度為較介面晶片10之動作速度更快的情況時,產生P_OUT訊號。 The ROSC comparator 202 shown in FIG. 5 is a circuit for comparing the number of times of double-state interconversion between the ring oscillators included in each of the interface wafer 10 and the core wafer 20. The ROSC comparator 202 compares the RO_CORE signal supplied from the core chip 20 selected by the IF control circuit 11 with the RO_REG signal supplied from the ROSC register 201, and displays the RO_REG signal when the RO_CORE signal is displayed. In the case of a larger value, a P_OUT signal is generated. That is, the ROSC comparator 202 generates a P_OUT signal when the operating speed of the core wafer 20 is faster than the operating speed of the interface wafer 10.

圖7,係為對於ROSC比較器202的電路構成之其中一例作展示之圖。ROSC比較器202,係包含有加算器301~305、和反相電路INV02~INV06、和邏輯和電路OR01、以及邏輯積電路AND04,而構成之。 FIG. 7 is a diagram showing an example of the circuit configuration of the ROSC comparator 202. The ROSC comparator 202 includes an adder 301 to 305, and inverter circuits INV02 to INV06, a logical sum circuit OR01, and a logical product circuit AND04.

加算器301~305,係分別為對於從所選擇了的核心晶片20而供給之RO_CORE訊號和從ROSC暫存器201所供給之RO_REG訊號而以位元單位來作加算之電路。但是,RO_REG訊號,由於係藉由反相電路INV02~INV06而被反轉,因此,加算器301~305,係作為從RO_CORE訊號而將RO_REG訊號以位元單位來作減算的電路而起作用。 The adders 301 to 305 are circuits for adding the RO_CORE signal supplied from the selected core chip 20 and the RO_REG signal supplied from the ROSC register 201 in units of bits. However, since the RO_REG signal is inverted by the inverter circuits INV02 to INV06, the adders 301 to 305 function as a circuit for subtracting the RO_REG signal in units of bits from the RO_CORE signal.

加算器301~305之各者所輸出之OUT0訊號,係為藉由加算器301~305之各者的減算演算所得到 之結果的絕對值。於此,加算器301~305所輸出之OUT0訊號,係分別標記為絕對值S〈0〉…〈S4〉。或者是,係因應於需要,而將此些之訊號統籌標記為絕對值S〈4:0〉。 The OUT0 signals output by each of the adders 301 to 305 are obtained by the subtraction calculation of each of the adders 301 to 305. The absolute value of the result. Here, the OUT0 signals output by the adders 301 to 305 are respectively labeled as absolute values S<0>...<S4>. Or, the signal is co-ordinated to the absolute value S<4:0> as needed.

加算器305,係輸出上述之減算演算的結果中之代表正負的C0訊號。另外,當C0訊號為H準位的情況時,係代表減算演算之結果為正,當為L準位的情況時,係代表減算演算之結果為負。例如,當RO_CORE〈4:0〉=5(L、L、H、L、H)、RO_REG〈4:0〉=7(L、L、H、H、H)的情況時,由於減算演算之結果係成為-2,因此係成為S〈4:0〉=(L、L、L、H、L)、C0=L。 The adder 305 outputs a C0 signal representing positive and negative in the result of the above-mentioned subtraction calculation. In addition, when the C0 signal is the H level, the result of the subtraction calculation is positive, and when it is the L level, the result of the subtraction calculation is negative. For example, when RO_CORE<4:0>=5 (L, L, H, L, H), RO_REG<4:0>=7 (L, L, H, H, H), due to the subtraction calculation The result is -2, so S<4:0>=(L, L, L, H, L) and C0=L.

邏輯和電路OR01,係進行絕對值S〈4:0〉之邏輯和演算。將邏輯和電路OR01所輸出之訊號設為C1。邏輯和電路OR01,係藉由進行絕對值S〈4:0〉之邏輯和演算,而檢測出在RO_CORE訊號和RO_REG訊號之間是否存在有差(兩者是否為一致)。 The logic AND circuit OR01 is the logic and calculation of the absolute value S<4:0>. The signal output by the logic AND circuit OR01 is set to C1. The logic AND circuit OR01 detects whether there is a difference between the RO_CORE signal and the RO_REG signal (whether the two are consistent) by performing the logic and calculation of the absolute value S<4:0>.

邏輯積電路AND04,係進行C0訊號和C1訊號以及P_IN訊號之邏輯積演算。邏輯積電路AND04所輸出之訊號,係為P_OUT訊號。 The logical product circuit AND04 is a logical product calculation of the C0 signal, the C1 signal, and the P_IN signal. The signal output by the logic product circuit AND04 is the P_OUT signal.

於此,介面晶片10之RO訊號的頻率和核心晶片20之RO訊號的頻率之關係,係可分類為以下之3種。 Here, the relationship between the frequency of the RO signal of the interface chip 10 and the frequency of the RO signal of the core chip 20 can be classified into the following three types.

第1,係為核心晶片20之RO訊號的頻率為 較介面晶片10之RO訊號的頻率更高的情況。於此情況,由於C0訊號和C1訊號係均成為H準位,因此P_OUT訊號係與P_IN訊號相一致。 First, the frequency of the RO signal of the core chip 20 is The frequency of the RO signal of the interface chip 10 is higher. In this case, since the C0 signal and the C1 signal system both become the H level, the P_OUT signal is consistent with the P_IN signal.

第2,係為核心晶片20之RO訊號的頻率和介面晶片10之RO訊號的頻率為相等的情況。於此情況,由於邏輯和電路OR01所接收之絕對值S〈4:0〉係為0,因此C1訊號係成為L準位。故而,無關於P_IN訊號,P_OUT訊號均係成為固定為L準位。 Second, the frequency of the RO signal of the core chip 20 and the frequency of the RO signal of the interface chip 10 are equal. In this case, since the absolute value S<4:0> received by the logic AND circuit OR01 is 0, the C1 signal becomes the L level. Therefore, regardless of the P_IN signal, the P_OUT signal is fixed to the L level.

第3,係為核心晶片20之RO訊號的頻率為較介面晶片10之RO訊號的頻率更低的情況。於此情況,由於在加算器301~305中之減算演算的結果係成為負,因此C0訊號係成為L準位。故而,無關於P_IN訊號,P_OUT訊號均係成為固定為L準位。 Thirdly, the frequency of the RO signal of the core wafer 20 is lower than the frequency of the RO signal of the interface wafer 10. In this case, since the result of the subtraction calculation in the adders 301 to 305 is negative, the C0 signal becomes the L level. Therefore, regardless of the P_IN signal, the P_OUT signal is fixed to the L level.

根據上述內容,可以得知,當核心晶片20之RO訊號的頻率為較介面晶片10之RO訊號的頻率更高的情況(第1情況)時,係作為P_OUT訊號而輸出單擊之脈衝訊號。另一方面,在第2以及第3情況時,P_OUT訊號係被固定於L準位。 According to the above, it can be seen that when the frequency of the RO signal of the core chip 20 is higher than the frequency of the RO signal of the interface chip 10 (the first case), the click pulse signal is output as the P_OUT signal. On the other hand, in the second and third cases, the P_OUT signal is fixed to the L level.

另外,例如,加算器301~305,係可藉由圖8中所示之電路構成來實現。圖8中所示之加算器301,係由排他性邏輯和電路XOR01以及XOR02、和邏輯積電路AND05以及AND06、和邏輯和電路OR02,而構成之。加算器301~305,由於係可分別藉由相同之電路構成而實現,因此,係將關於加算器302~305之說明省 略。但是,此係並不代表將加算器301~305之構成限定為圖8中所示之構成。 Further, for example, the adders 301 to 305 can be realized by the circuit configuration shown in FIG. The adder 301 shown in Fig. 8 is constituted by the exclusive logical sum circuits XOR01 and XOR02, and the logical product circuits AND05 and AND06, and the logical sum circuit OR02. The adders 301 to 305 are realized by the same circuit configuration, respectively, and therefore the description about the adders 302 to 305 is omitted. slightly. However, this does not mean that the configuration of the adders 301 to 305 is limited to the configuration shown in FIG.

接著,針對核心晶片20之動作進行說明。 Next, the operation of the core wafer 20 will be described.

圖1中所示之核心晶片20,係包含有核心控制電路21、和讀寫控制電路22、和SID選擇電路23、和開關24、和ROSC電路25、和記憶體胞陣列26、以及電源電路27,而構成之。於此,核心控制電路21、讀寫控制電路22、SID選擇電路23、開關24以及ROSC電路25之至少一者,係構成本發明之第2內部電路。 The core wafer 20 shown in FIG. 1 includes a core control circuit 21, and a read/write control circuit 22, and an SID selection circuit 23, and a switch 24, and a ROSC circuit 25, and a memory cell array 26, and a power supply circuit. 27, and constitute it. Here, at least one of the core control circuit 21, the read/write control circuit 22, the SID selection circuit 23, the switch 24, and the ROSC circuit 25 constitutes the second internal circuit of the present invention.

核心控制電路21,係因應於從IF控制電路11所供給而來之控制訊號CTL,而將控制訊號CCTL供給至自身所被搭載之核心晶片20的讀寫控制電路22處。 The core control circuit 21 supplies the control signal CCTL to the read/write control circuit 22 of the core wafer 20 on which it is mounted in response to the control signal CTL supplied from the IF control circuit 11.

讀寫控制電路22,係因應於控制訊號CCTL而對於核心晶片20之讀寫動作作控制。 The read/write control circuit 22 controls the read and write operations of the core chip 20 in response to the control signal CCTL.

SID選擇電路23,係當IF控制電路11所輸出之SID訊號為對於自身所被搭載之核心晶片作選擇的情況時,將SID_CORE訊號活性化。例如,當IF控制電路11為藉由SID訊號而選擇了核心晶片20-1的情況時,被包含在核心晶片20-1中的SID選擇電路23,係將SID_CORE訊號活性化。但是,被包含在其他之核心晶片20-2~20-4中的SID選擇電路23,係並不將SID_CORE訊號活性化。 The SID selection circuit 23 activates the SID_CORE signal when the SID signal output from the IF control circuit 11 is a selection of the core chip mounted on itself. For example, when the IF control circuit 11 selects the core chip 20-1 by the SID signal, the SID selection circuit 23 included in the core chip 20-1 activates the SID_CORE signal. However, the SID selection circuit 23 included in the other core chips 20-2 to 20-4 does not activate the SID_CORE signal.

開關24,當SID_CORE訊號被活性化的情況時,係將介面晶片10之ROSC比較電路14所輸出的 P_OUT訊號供給至電源電路27處。 The switch 24, when the SID_CORE signal is activated, outputs the output of the ROSC comparison circuit 14 of the interface wafer 10. The P_OUT signal is supplied to the power supply circuit 27.

核心晶片20之ROSC電路25,係如同上述一般而具備有與被包含在介面晶片10中之ROSC電路13實質性相同之構成。 The ROSC circuit 25 of the core wafer 20 has substantially the same configuration as the ROSC circuit 13 included in the interface wafer 10 as described above.

記憶體胞陣列26,係具備有複數之記憶體胞,各個記憶體胞係將資料作保持。 The memory cell array 26 is provided with a plurality of memory cells, each of which holds data.

電源電路27,係為產生內部電源電壓VPERI之電路。圖9,係為對於電源電路27的內部構成之其中一例作展示之圖。 The power supply circuit 27 is a circuit that generates an internal power supply voltage VPERI. Fig. 9 is a view showing an example of the internal configuration of the power supply circuit 27.

電源電路27,係包含有計數器401、和鎖存器402、和解碼器403、和基準電壓產生電路404、和內部電源產生電路405,而構成之。 The power supply circuit 27 includes a counter 401, a latch 402, a decoder 403, a reference voltage generating circuit 404, and an internal power generating circuit 405.

計數器401,係為對於ROSC比較電路14之作為P_OUT訊號所輸出的單擊之脈衝訊號作計數之電路。在本實施形態中,計數器401,係設為使用6位元之計數器者。 The counter 401 is a circuit for counting the click pulse signals output by the ROSC comparison circuit 14 as the P_OUT signal. In the present embodiment, the counter 401 is a counter using a 6-bit counter.

鎖存器402,係將計數器401所輸出之計數值作閂鎖。 The latch 402 latches the count value output by the counter 401.

解碼器403,係基於鎖存器402所輸出之訊號,而產生電壓選擇訊號VSEL。更具體而言,解碼器403,係為將鎖存器402所保持之6位元的計數值轉換為64位元之電壓選擇訊號VSEL的電路。電壓選擇訊號VSEL,係因應於需要而標記為VSEL〈63:0〉。 The decoder 403 generates a voltage selection signal VSEL based on the signal output by the latch 402. More specifically, the decoder 403 is a circuit that converts the count value of the 6-bit held by the latch 402 into a 64-bit voltage selection signal VSEL. The voltage selection signal VSEL is labeled as VSEL<63:0> as needed.

基準電壓產生電路404,係為產生供給至內部 電源產生電路405處之基準電壓VPERI_REF的電路。基準電壓產生電路404,係因應於解碼器403所輸出之電壓選擇訊號VSEL,而產生基準電壓VPERI_REF。 The reference voltage generating circuit 404 is for generating the supply to the inside A circuit of the reference voltage VPERI_REF at the power generation circuit 405. The reference voltage generating circuit 404 generates a reference voltage VPERI_REF in response to the voltage selection signal VSEL output from the decoder 403.

圖10,係為對於基準電壓產生電路404的電路構成之其中一例作展示之圖。在基準電壓產生電路404中,係包含有藉由將複數之電阻R01~R64作串聯連接所形成之電阻梯型電路、和對於將電阻梯型電路之電阻彼此作連接的節點作選擇之傳輸閘極TG01~TG64、以及反相電路INV101~INV164。 FIG. 10 is a diagram showing an example of the circuit configuration of the reference voltage generating circuit 404. The reference voltage generating circuit 404 includes a resistor ladder type circuit formed by connecting a plurality of resistors R01 to R64 in series, and a transmission gate selected for connecting the resistors of the resistor ladder type circuit to each other. The poles TG01 to TG64 and the inverter circuits INV101 to INV164.

基準電壓產生電路404,係因應於電壓選擇訊號VSEL,而將傳輸閘極TG01~TG64之其中一者導通,藉由此,來將電阻梯型電路之各節點(圖10中所示之節點N01~N64)處的電壓作為基準電壓VPERI_REF來輸出。電阻梯型電路,係被與電源VREF_MAX和電源VREF_MIN作連接。例如,若是將電源VREF_MAX設為1.32V,將電源VREF_MIN設為0.68V,則係能夠以0.01V之刻度來產生64階段之基準電壓VPERI_REF。亦即是,藉由通過在電阻梯型電路中所包含之1個電阻,將各電阻作連接之節點的電壓係各降低0.01V。另外,將電源VREF_MAX設為1.32V並將電源VREF_MIN設為0.68V的原因,係在於若是介面晶片10之內部電源電壓為1.00V,則係以介面晶片10之內部電源電壓作為中心來以0.01V之刻度而對於基準電壓VPERI_REF作變更之故。 The reference voltage generating circuit 404 turns on one of the transmission gates TG01 to TG64 in response to the voltage selection signal VSEL, thereby thereby connecting the nodes of the resistor ladder circuit (node N01 shown in FIG. 10). The voltage at ~N64) is output as the reference voltage VPERI_REF. The resistor ladder circuit is connected to the power supply VREF_MAX and the power supply VREF_MIN. For example, if the power supply VREF_MAX is set to 1.32V and the power supply VREF_MIN is set to 0.68V, the 64-stage reference voltage VPERI_REF can be generated on a scale of 0.01V. That is, by passing one resistor included in the resistor ladder type circuit, the voltage system at which the resistors are connected is reduced by 0.01 V each. Further, the reason why the power supply VREF_MAX is set to 1.32 V and the power supply VREF_MIN is set to 0.68 V is that if the internal power supply voltage of the interface wafer 10 is 1.00 V, the internal power supply voltage of the interface wafer 10 is centered at 0.01 V. The scale is changed for the reference voltage VPERI_REF.

於此,在核心晶片20之初期狀態下,被包含在電源電路27中之計數器401亦係為初期狀態。於此情況,係從解碼器403而輸出H準位之電壓選擇訊號VSEL〈0〉,其他之電壓選擇訊號VSEL〈63:1〉係設為L準位。其結果,在初期狀態下,傳輸閘極TG01係導通,基準電壓VERF_REF之電壓係與電源VREF_MAX(例如,1.32V)之電壓相等。在此種狀態下,當核心晶片20之環狀震盪器的頻率為較介面晶片10之環狀震盪器的頻率更高的情況時,計數器401係將計數值作增計。如此一來,由於電壓選擇訊號VSEL〈1〉係成為H準位,其他之電壓選擇訊號VSEL係成為L準位,因此,基準電壓VPERI_REF之電壓係作1個階段的降低(例如,從1.32V而降低0.01V並成為1.31V)。 Here, in the initial state of the core wafer 20, the counter 401 included in the power supply circuit 27 is also in an initial state. In this case, the voltage selection signal VSEL<0> of the H level is output from the decoder 403, and the other voltage selection signals VSEL<63:1> are set to the L level. As a result, in the initial state, the transfer gate TG01 is turned on, and the voltage of the reference voltage VERF_REF is equal to the voltage of the power supply VREF_MAX (for example, 1.32 V). In this state, when the frequency of the ring oscillator of the core wafer 20 is higher than the frequency of the ring oscillator of the interface wafer 10, the counter 401 increments the count value. In this way, since the voltage selection signal VSEL<1> is at the H level, and the other voltage selection signals VSEL are at the L level, the voltage of the reference voltage VPERI_REF is reduced in one stage (for example, from 1.32V). And reduce 0.01V and become 1.31V).

內部電源產生電路405,係為產生供給至被包含在核心晶片20中之電路(例如核心控制電路21、讀寫控制電路22以及ROSC電路25等)處的內部電源電壓VPERI之電路。圖11,係為對於內部電源產生電路405的電路構成之其中一例作展示之圖。內部電源產生電路405,係包含有運算放大器501、和N通道型MOS電晶體NM01,而構成之。運算放大器501,係以使基準電壓VPERI_REF和內部電源電壓VPERI相一致的方式,而對於N通道型MOS電晶體NM01的閘極電壓作控制。 The internal power generation circuit 405 is a circuit that generates an internal power supply voltage VPERI supplied to circuits (for example, the core control circuit 21, the read/write control circuit 22, and the ROSC circuit 25, etc.) included in the core wafer 20. Fig. 11 is a view showing an example of the circuit configuration of the internal power source generating circuit 405. The internal power generation circuit 405 includes an operational amplifier 501 and an N-channel MOS transistor NM01. The operational amplifier 501 controls the gate voltage of the N-channel MOS transistor NM01 such that the reference voltage VPERI_REF and the internal power supply voltage VPERI coincide with each other.

接著,針對半導體裝置1之動作進行說明。 Next, the operation of the semiconductor device 1 will be described.

圖12,係為對於半導體裝置1之動作的其中 一例作展示之圖。參考圖12,對於IF控制電路11在半導體裝置1中之POWER ON時等的電源投入時而進行核心晶片20之動作速度的調整時之動作的其中一例作說明。 Figure 12 is a view of the operation of the semiconductor device 1 An example of a picture for display. With reference to FIG. 12, an example of an operation when the IF control circuit 11 adjusts the operating speed of the core wafer 20 when the power is turned on during the POWER ON in the semiconductor device 1 will be described.

在步驟S01中,IF控制電路11,係選擇介面晶片10之ROSC電路13並使其動作。更具體而言,IF控制電路11,係將SID訊號SID_IF活性化為H準位。進而,IF控制電路11,係使START訊號從L準位而活性化為H準位。因應於START訊號遷移至H準位一事,ROSC電路13之環狀震盪器101係開始震盪。 In step S01, the IF control circuit 11 selects and operates the ROSC circuit 13 of the interface wafer 10. More specifically, the IF control circuit 11 activates the SID signal SID_IF to the H level. Further, the IF control circuit 11 activates the START signal from the L level to the H level. In response to the transition of the START signal to the H level, the ring oscillator 101 of the ROSC circuit 13 begins to oscillate.

在步驟S02中,IF控制電路11,係使ROSC暫存器201保持RO_IF訊號。更具體而言,IF控制電路11,係使END訊號從L準位而活性化為H準位,之後,將TEST_END訊號從L準位而活性化為H準位。其結果,ROSC暫存器201係將RO_IF訊號作保持。 In step S02, the IF control circuit 11 causes the ROSC register 201 to hold the RO_IF signal. More specifically, the IF control circuit 11 activates the END signal from the L level to the H level, and then activates the TEST_END signal from the L level to the H level. As a result, the ROSC register 201 holds the RO_IF signal.

在步驟S03中,IF控制電路11,係選擇被包含在核心晶片20中之ROSC電路25並使其動作。更具體而言,IF控制電路11,係輸出選擇核心晶片20-1~20-4之其中一者的SID訊號。如此一來,被選擇了的核心晶片20之SID選擇電路23,係將SID訊號SID_CORE活性化為H準位。進而,IF控制電路11,係使START訊號從L準位而活性化為H準位。因應於START訊號遷移至H準位一事,環狀震盪器101係開始震盪。被包含於核心晶片20中之ROSC電路25的計數器102,係對於ROSC電路25之環狀震盪器101所輸出之RO訊號所作的雙態互變次 數作計數。 In step S03, the IF control circuit 11 selects and operates the ROSC circuit 25 included in the core wafer 20. More specifically, the IF control circuit 11 outputs an SID signal for selecting one of the core chips 20-1 to 20-4. In this way, the SID selection circuit 23 of the selected core chip 20 activates the SID signal SID_CORE to the H level. Further, the IF control circuit 11 activates the START signal from the L level to the H level. In response to the START signal moving to the H level, the ring oscillator 101 began to oscillate. The counter 102 of the ROSC circuit 25 included in the core chip 20 is a two-state interchanging of the RO signal outputted by the ring oscillator 101 of the ROSC circuit 25. Count the number.

在步驟S04中,ROSC比較電路14,係進行RO_IF訊號和RO_CORE訊號之比較。更具體而言,ROSC比較器202,係進行ROSC暫存器201所保持之RO_REG訊號和從核心晶片20所供給而來之RO_CORE訊號的比較(進行計數值的比較)。此時,若是RO_CORE訊號為展現較RO_REG訊號而更大之值(計數值為更大),則係作為P_OUT訊號而輸出單擊之脈衝訊號。另一方面,當RO_CORE訊號為與RO_REG訊號一致,或者是當RO_REG訊號為展現較大之值的情況時,係並不作為P_OUT訊號而輸出單擊之脈衝訊號。 In step S04, the ROSC comparison circuit 14 performs a comparison of the RO_IF signal and the RO_CORE signal. More specifically, the ROSC comparator 202 performs a comparison of the RO_REG signal held by the ROSC register 201 and the RO_CORE signal supplied from the core chip 20 (comparison of count values). At this time, if the RO_CORE signal is larger than the RO_REG signal (the count value is larger), the click pulse signal is output as the P_OUT signal. On the other hand, when the RO_CORE signal is consistent with the RO_REG signal, or when the RO_REG signal is a large value, the click pulse signal is not output as the P_OUT signal.

當對於兩訊號作了比較的結果,RO_CORE訊號為展現有較RO_REG訊號而更大之值,並作為P_OUT訊號而輸出了單擊之脈衝訊號的情況時(步驟S05、Yes分歧),基準電壓產生電路404,係使基準電壓VPERI_REF之電壓作1個階段的降低(步驟S06)。更具體而言,當作為P_OUT訊號而輸出了單擊之脈衝訊號的情況時,計數器401之計數值係被作增計,解碼器403所輸出之電壓選擇訊號VSEL之值係上升。其結果,基準電壓VPERI_REF係降低0.01V。 When comparing the two signals, the RO_CORE signal is a larger value than the RO_REG signal, and when the pulse signal of the click is output as the P_OUT signal (step S05, Yes divergence), the reference voltage is generated. The circuit 404 lowers the voltage of the reference voltage VPERI_REF in one step (step S06). More specifically, when the click pulse signal is output as the P_OUT signal, the count value of the counter 401 is incremented, and the value of the voltage selection signal VSEL output from the decoder 403 rises. As a result, the reference voltage VPERI_REF is lowered by 0.01V.

另一方面,當並不作為P_OUT訊號而輸出單擊之脈衝訊號的情況時(步驟S05、No分歧),基準電壓產生電路404,係並不變更基準電壓VPERI_REF(並不實行步驟S06)。 On the other hand, when the click pulse signal is not output as the P_OUT signal (step S05, No. divergence), the reference voltage generating circuit 404 does not change the reference voltage VPERI_REF (step S06 is not performed).

在步驟S07中,IF控制電路11,係判定是否將在步驟S05中之比較實施了既定之次數。更具體而言,IF控制電路11,係判斷是否進行了被包含在核心晶片20之電源電路27中的計數器401之最大計數(例如,64次)的次數之比較。 In step S07, the IF control circuit 11 determines whether or not the comparison in step S05 has been performed for a predetermined number of times. More specifically, the IF control circuit 11 determines whether or not the comparison of the maximum count (for example, 64 times) of the counter 401 included in the power supply circuit 27 of the core wafer 20 is performed.

若是並未進行既定之次數的比較(步驟S07,No分歧),則係反覆進行步驟S03之後的處理。若是進行了既定之次數的比較(步驟S07,Yes分歧),則係實行步驟S08之處理。另外,IF控制電路11,當進行了既定之次數的步驟S05之比較的情況時,係使SID訊號SID_CORE從H準位而非活性化為L準位。 If the comparison is not performed for a predetermined number of times (step S07, No divergence), the processing after step S03 is repeatedly performed. If the comparison of the predetermined number of times is performed (step S07, Yes divergence), the processing of step S08 is performed. Further, the IF control circuit 11 causes the SID signal SID_CORE to be activated from the H level instead of the L level when the comparison of the step S05 is performed for a predetermined number of times.

在步驟S08中,IF控制電路11,係判定是否針對全部的核心晶片20而實施了動作速度的調整。若是針對全部的核心晶片20而結束了動作速度之調整(步驟S08,Yes分歧),則係結束圖12中所示之處理。 In step S08, the IF control circuit 11 determines whether or not the adjustment of the operation speed is performed for all of the core chips 20. If the adjustment of the operation speed is completed for all the core chips 20 (step S08, Yes divergence), the processing shown in Fig. 12 is ended.

基準電壓VPERI_REF之降低,係與核心晶片20之內部電源電壓VPERI的降低相等價。若是核心晶片20之內部電源電壓VPERI降低,則核心晶片20之內部電路的動作速度亦係降低。其結果,被包含在核心晶片20中之ROSC電路25所輸出之RO_CORE訊號,係成為朝向被包含在介面晶片10中之ROSC電路13所輸出之RO_IF訊號而接近。 The decrease in the reference voltage VPERI_REF is equivalent to the decrease in the internal power supply voltage VPERI of the core chip 20. If the internal power supply voltage VPERI of the core wafer 20 is lowered, the operating speed of the internal circuit of the core wafer 20 is also lowered. As a result, the RO_CORE signal outputted by the ROSC circuit 25 included in the core wafer 20 is approached toward the RO_IF signal outputted by the ROSC circuit 13 included in the interface wafer 10.

如此這般,若是一面逐漸使核心晶片20之內部電源電壓VPERI降低,一面對於介面晶片10和核心晶 片20處之代表RO訊號的頻率之計數值作比較,則在某一時序處,介面晶片10和核心晶片20處之RO訊號的頻率係為成為一致。或者是,在介面晶片10和核心晶片20處之RO訊號的頻率係會逆轉。如此一來,係並不會作為P_OUT訊號而輸出單擊之脈衝訊號,並被固定於L準位,在計數器401處之增計係停止。其結果,從解碼器403所輸出之電壓選擇訊號VSEL之值亦會被固定,在核心晶片20處之內部電源電壓VPERI亦會被固定。亦即是,基準電壓產生電路404,係為進行基準電壓VPERI_REF之調整,直到被包含在介面晶片10和核心晶片20中之環狀震盪器的雙態互變次數的大小關係相一致或是相互逆轉為止。 In this way, if the internal power supply voltage VPERI of the core wafer 20 is gradually lowered, the interface wafer 10 and the core crystal are gradually removed. The count values of the frequencies representing the RO signals at the slice 20 are compared, and at a certain timing, the frequencies of the RO signals at the interface wafer 10 and the core wafer 20 are identical. Alternatively, the frequency of the RO signal at the interface wafer 10 and the core wafer 20 is reversed. In this way, the pulse signal of the click is not output as the P_OUT signal, and is fixed at the L level, and the increment at the counter 401 is stopped. As a result, the value of the voltage selection signal VSEL outputted from the decoder 403 is also fixed, and the internal power supply voltage VPERI at the core wafer 20 is also fixed. That is, the reference voltage generating circuit 404 adjusts the reference voltage VPERI_REF until the magnitude of the number of double-state interconversions of the ring oscillator included in the interface wafer 10 and the core wafer 20 coincides with each other or Reversed so far.

藉由實行圖12中所示之一連串的動作,而結束介面晶片10和核心晶片20之時序調整。藉由使核心晶片20之內部電源電壓VPERI降低,核心晶片20之內部電路的各種電路之動作速度係降低,介面晶片10和核心晶片20之動作速度係實質性地相一致。另外。圖12之流程圖中所示的動作,係僅為其中一例,而並不代表對於處理之順序作限定者。例如,亦能夠將使介面晶片10之ROSC電路13動作並保持RO_IF訊號之處理(步驟S01、S02)和使核心晶片20之ROSC電路25動作之處理(步驟S03)平行地實施。 The timing adjustment of the interface wafer 10 and the core wafer 20 is terminated by performing a series of operations as shown in FIG. By lowering the internal power supply voltage VPERI of the core wafer 20, the operating speeds of the various circuits of the internal circuit of the core wafer 20 are lowered, and the operating speeds of the interface wafer 10 and the core wafer 20 are substantially identical. Also. The actions shown in the flowchart of Fig. 12 are merely examples, and do not necessarily limit the order of processing. For example, the process of operating the ROSC circuit 13 of the interface wafer 10 and maintaining the RO_IF signal (steps S01 and S02) and the process of operating the ROSC circuit 25 of the core wafer 20 (step S03) can be performed in parallel.

接著,使用時序表,針對半導體裝置1之動作進行說明。圖13,係為對於使在介面晶片10中所包含 之ROSC電路13動作並在ROSC暫存器201中保持環狀震盪器101之計數值時的時序表之其中一例作展示之圖。 Next, the operation of the semiconductor device 1 will be described using a timing chart. Figure 13 is for inclusion in the interface wafer 10 One example of the timing chart when the ROSC circuit 13 operates and holds the count value of the ring oscillator 101 in the ROSC register 201 is shown.

在時刻T11處,IF控制電路11,係將選擇ROSC電路13之SID_IF訊號活性化為H準位。 At time T11, the IF control circuit 11 activates the SID_IF signal of the selected ROSC circuit 13 to the H level.

在時刻T12處,IF控制電路11,係使START訊號從L準位而活性化為H準位。 At time T12, the IF control circuit 11 activates the START signal from the L level to the H level.

在時刻T13處,IF控制電路11,係使END訊號從L準位而活性化為H準位。在時刻T12~T13之間,環狀震盪器101係作5次的雙態互變。因此,在時刻T13之後,計數器102所輸出之RO_IF訊號,係成為RO_IF〈4:0〉=5(L、L、H、L、H)。另外,在圖13中,針對RO_IF〈4〉以及RO_IF〈3〉,由於其係並未從L準位而改變,因此係並未作圖示。 At time T13, the IF control circuit 11 activates the END signal from the L level to the H level. Between time T12 and T13, the ring oscillator 101 is subjected to five-stage inter-state transition. Therefore, after time T13, the RO_IF signal output by the counter 102 becomes RO_IF<4:0>=5 (L, L, H, L, H). In addition, in FIG. 13, RO_IF<4> and RO_IF<3> are not illustrated because the system does not change from the L level.

在時刻T14處,IF控制電路11,係將TEST_END訊號從L準位而活性化為H準位。藉由將TEST_END訊號活性化為H準位,被包含在ROSC暫存器201中之正反器FF01~FF05,係將在時刻T14處之RO_IF訊號導入。正反器FF01~FF05所保持之資料,由於係為RO_REG訊號,因此,在時刻T14以後之RO_REG訊號,係保持身為環狀震盪器101之雙態互變次數的「5」。 At time T14, the IF control circuit 11 activates the TEST_END signal from the L level to the H level. By activating the TEST_END signal to the H level, the flip-flops FF01 to FF05 included in the ROSC register 201 import the RO_IF signal at time T14. Since the data held by the flip-flops FF01 to FF05 is the RO_REG signal, the RO_REG signal after the time T14 maintains the "5" of the number of double-state mutual transitions of the ring oscillator 101.

在時刻T15處,IF控制電路11,係將SID_IF訊號、START訊號、END訊號以及TEST_END訊號非活性化為L準位。 At time T15, the IF control circuit 11 deactivates the SID_IF signal, the START signal, the END signal, and the TEST_END signal to the L level.

圖14,係為對於使在核心晶片20中所包含之ROSC電路25以及ROSC比較電路14動作時的時序表之其中一例作展示之圖。另外,在時刻T21以前,係設為使ROSC暫存器201保持RO_IF訊號。進而,係將ROSC暫存器201所保持之值設為「5」。 FIG. 14 is a view showing an example of a timing chart when the ROSC circuit 25 and the ROSC comparison circuit 14 included in the core wafer 20 are operated. Further, before time T21, it is assumed that the ROSC register 201 holds the RO_IF signal. Further, the value held by the ROSC register 201 is set to "5".

在時刻T21處,IF控制電路11,係將對於使ROSC電路25動作的核心晶片20作選擇之SID訊號從L準位而活性化為H準位(使SID_CORE訊號活性化)。 At time T21, the IF control circuit 11 activates the SID signal for selecting the core chip 20 for operating the ROSC circuit 25 from the L level to the H level (encoding the SID_CORE signal).

在時刻T22處,IF控制電路11,係使START訊號從L準位而活性化為H準位。 At time T22, the IF control circuit 11 activates the START signal from the L level to the H level.

在時刻T23處,IF控制電路11,係使END訊號從L準位而活性化為H準位。在時刻T22~T23之間,環狀震盪器101係作7次的雙態互變。因此,在時刻T23處,計數器102所輸出之RO_CORE訊號,係成為RO_CORE〈4:0〉=7(L、L、H、H、H)。又,在時刻T23處之ROSC比較器202的比較結果,係成為絕對值S〈4:0〉=2(L、L、L、H、L)、C0訊號=H準位、C1訊號=H準位。 At time T23, the IF control circuit 11 activates the END signal from the L level to the H level. Between time T22 and T23, the ring oscillator 101 is subjected to seven-state inter-state transition. Therefore, at time T23, the RO_CORE signal output by the counter 102 becomes RO_CORE<4:0>=7 (L, L, H, H, H). Moreover, the comparison result of the ROSC comparator 202 at the time T23 is an absolute value S<4:0>=2 (L, L, L, H, L), C0 signal = H level, C1 signal = H Level.

在時刻T24處,IF控制電路11,係因應於END訊號之活性化,而產生身為單擊之脈衝訊號的P_IN訊號。此時,被包含在ROSC比較器202中之邏輯積電路AND04,係計算C0訊號、C1訊號以及P_IN訊號之邏輯積。其結果,單擊之脈衝訊號係在P_OUT訊號中發生。 At time T24, the IF control circuit 11 generates a P_IN signal which is a click pulse signal in response to activation of the END signal. At this time, the logical product circuit AND04 included in the ROSC comparator 202 calculates the logical product of the C0 signal, the C1 signal, and the P_IN signal. As a result, the click pulse signal occurs in the P_OUT signal.

在時刻T25處,IF控制電路11,係將 SID_CORE訊號、START訊號以及END訊號非活性化。IF控制電路11,係在將時刻T22~T25之動作反覆進行了64次之後,結束在所選擇了的核心晶片20處之動作速度的調整(結束使用有ROSC比較電路14之比較動作)。 At time T25, the IF control circuit 11 will SID_CORE signal, START signal and END signal are not activated. The IF control circuit 11 repeats the operation of the time T22 to T25 64 times, and then ends the adjustment of the operation speed at the selected core wafer 20 (the comparison operation using the ROSC comparison circuit 14 is completed).

圖15,係為對於使在核心晶片20中所包含之電源電路27動作時的時序表之其中一例作展示之圖。在時刻T31處,係在P_OUT訊號中產生單擊之脈衝訊號。如此一來,計數器401係將計數值作增計。因應於計數器401之增計,電壓選擇訊號VSEL亦係被增計。因應於電壓選擇訊號VSEL之增計,產生被供給至內部電源產生電路405處之基準電壓VPERI_REF的電阻梯型電路之節點係作1個階段的降低。其結果,基準電壓VPERI_REF之電壓亦係降低。 Fig. 15 is a view showing an example of a time chart when the power supply circuit 27 included in the core wafer 20 is operated. At time T31, a click pulse signal is generated in the P_OUT signal. In this way, the counter 401 increments the count value. In response to the increase in counter 401, the voltage selection signal VSEL is also incremented. In response to the increase in the voltage selection signal VSEL, the node of the resistor ladder circuit that generates the reference voltage VPERI_REF supplied to the internal power supply generating circuit 405 is reduced in one stage. As a result, the voltage of the reference voltage VPERI_REF is also lowered.

在圖15所示之例中,係在每次於P_OUT訊號中發生單擊之脈衝訊號時,作0.01V的降低。在P_OUT訊號中之單擊的脈衝訊號,當在介面晶片10和核心晶片20處之環狀震盪器的輸出值相互一致之時序或者是在介面晶片10和核心晶片20處之環狀震盪器的輸出值相互逆轉的時序之後,係並不會發生。故而,在使ROSC比較電路14處之比較動作反覆進行了64次之後(時刻T32之後),計數器401之輸出、電壓選擇訊號VSEL、基準電壓VPERI_REF係並不會有產生變化的情況。亦即是,核心晶片20,係使用藉由在時刻T32之後的基準電壓VPERI_REF所產生之內部電源電壓VPERI而動作。 In the example shown in Fig. 15, a 0.01V reduction is made each time a click pulse signal is generated in the P_OUT signal. The pulse signal clicked in the P_OUT signal, when the output values of the ring oscillator at the interface wafer 10 and the core wafer 20 coincide with each other or the ring oscillator at the interface wafer 10 and the core wafer 20 After the timing of the output values reversing each other, the system does not occur. Therefore, after the comparison operation at the ROSC comparison circuit 14 is repeated 64 times (after time T32), the output of the counter 401, the voltage selection signal VSEL, and the reference voltage VPERI_REF are not changed. That is, the core wafer 20 operates using the internal power supply voltage VPERI generated by the reference voltage VPERI_REF after time T32.

在本實施形態中,雖係針對將記憶體胞陣列26之電源設為Varray,並藉由對於供給至半導體裝置1之周邊電路處的內部電源電壓VPERI作變更來對於動作速度進行調整的構成作了說明,但是,係並不代表將本發明限定為此種構成。 In the present embodiment, the power supply of the memory cell array 26 is set to Varray, and the internal power supply voltage VPERI supplied to the peripheral circuit of the semiconductor device 1 is changed to adjust the operating speed. The description is not intended to limit the invention to such a configuration.

又,在本實施形態中,雖係針對在半導體裝置1之POWERON等的電源投入時而進行核心晶片20之動作速度之調整的情況來作了說明,但是,係並不代表將動作速度之調整限定於此種形態。例如,在電源電路27中,係可考慮搭載將鎖存器402所輸出之計數值非揮發性地作保持之抗熔絲等之記憶手段。於此情況,係在測試時取得核心晶片20之動作速度的調整值(例如,在圖15中之時刻T32以後的計數器401之計數值),並將所得到的調整值儲存在非揮發性之記憶手段中。其結果,係並不需要在每一次之半導體裝置1的實際使用時而對於動作速度進行調整,便可藉由將被儲存在記憶手段中之值讀出,來對於核心晶片20之動作速度作調整。 In the present embodiment, the case where the operation speed of the core wafer 20 is adjusted when the power of the POWERON or the like of the semiconductor device 1 is turned on is described. However, the adjustment of the operation speed is not representative. Limited to this form. For example, in the power supply circuit 27, a memory means for mounting an anti-fuse or the like that holds the count value output from the latch 402 non-volatilely can be considered. In this case, the adjustment value of the operating speed of the core wafer 20 is obtained during the test (for example, the count value of the counter 401 after the time T32 in FIG. 15), and the obtained adjustment value is stored in the non-volatile state. Means of memory. As a result, it is not necessary to adjust the operation speed every time the actual use of the semiconductor device 1 is performed, and the operation speed of the core wafer 20 can be made by reading the value stored in the memory means. Adjustment.

或者是,在本實施形態中,係針對關於以在介面晶片10之ROSC電路13中所包含的環狀震盪器101之雙態互變次數作為基準來對於核心晶片20之內部電源電壓VPERI作變更的方式來進行了說明。但是,核心晶片20之動作速度的基準,係亦可並非依據介面晶片10,而是在核心晶片20之每一者中而將既定之值制定為基準。於此情況,在介面晶片10以及核心晶片20中,係配 置ROSC比較電路和電源電路,並將成為基準之計數值輸入至ROSC暫存器(參考圖5)中,再將介面晶片10以及核心晶片20之各環狀震盪器的雙態互變次數輸入至ROSC比較器202中。如此這般,係亦可對於包含有介面晶片10之各層的每一者而進行動作速度之調整。 Alternatively, in the present embodiment, the internal power supply voltage VPERI of the core wafer 20 is changed with respect to the number of double-state interconversions of the ring oscillator 101 included in the ROSC circuit 13 of the interface wafer 10. The way to illustrate it. However, the reference of the operating speed of the core wafer 20 may be based on the interface wafer 10, but may be set as a reference in each of the core wafers 20. In this case, in the interface wafer 10 and the core wafer 20, the matching is performed. The ROSC comparison circuit and the power supply circuit are placed, and the count value which becomes the reference is input to the ROSC register (refer to FIG. 5), and the two-state inter-variation times of the ring oscillators of the interface wafer 10 and the core wafer 20 are input. To the ROSC comparator 202. In this manner, the speed of operation can also be adjusted for each of the layers including the interface wafer 10.

進而,成為基準之值,係亦可並非為在介面晶片10中所產生之值,而是採用使其與核心晶片20之計數值相一致的方式。例如,亦可構成為與各個核心晶片20中之動作速度為最快或者是最慢的核心晶片之動作速度相合致。在此種情況時,係將在最快(或者是最慢)之核心晶片20中的環狀震盪器之雙態互變次數,輸入至各個核心晶片20中所包含之ROSC比較電路的ROSC暫存器中。 Further, the value to be the reference may be a value that does not match the count value of the core wafer 20, not the value generated in the interface wafer 10. For example, it may be configured to coincide with the operating speed of the core wafer in which the speed of movement of each core wafer 20 is the fastest or slowest. In this case, the number of double-state interconversions of the ring oscillator in the fastest (or slowest) core wafer 20 is input to the ROSC of the ROSC comparison circuit included in each core wafer 20. In the memory.

更進而,在本實施形態中,係以設計為會相較於介面晶片10而使核心晶片20的動作速度成為更快一事作為前提來進行了說明。但是,此係並不代表將介面晶片10和核心晶片20之動作速度的關係限定為上述關係。就算是核心晶片20之動作速度為較介面晶片10之動作速度而更慢的情況時,亦能夠進行核心晶片20之動作速度的調整(半導體裝置1之動作時序的調整)。於此情況,係只要將核心晶片20之電源電路27的構成例如變更為當計數器401每次將計數值作增計時則使基準電壓VPERO_REF上升即可。 Furthermore, in the present embodiment, the description has been made on the premise that the operating speed of the core wafer 20 is made faster than that of the interface wafer 10. However, this does not mean that the relationship between the operating speeds of the interface wafer 10 and the core wafer 20 is limited to the above relationship. Even when the operating speed of the core wafer 20 is slower than the operating speed of the interface wafer 10, the adjustment of the operating speed of the core wafer 20 (adjustment of the operation timing of the semiconductor device 1) can be performed. In this case, the configuration of the power supply circuit 27 of the core wafer 20 is changed, for example, so that the counter 401 can increase the reference voltage VPERO_REF every time the count value is incremented.

如同以上一般,本實施形態之半導體裝置1, 係能夠對於核心晶片20之動作速度作調整。在半導體裝置1中,係反覆進行介面晶片10之動作速度(環狀震盪器之頻率)和核心晶片20之動作速度(環狀震盪器之頻率)的比較,並使核心晶片20之內部電源電壓減少。此時,當在介面晶片10和核心晶片20處之環狀震盪器的頻率為相互一致的情況時、或者是當在介面晶片10處之環狀震盪器的頻率變高的情況時,係停止在核心晶片20處之內部電源電壓的降低。換言之,係以使介面晶片10和核心晶片20中之環狀震盪器的頻率略一致的方式,來決定核心晶片20之內部電源電壓。 As described above, the semiconductor device 1 of the present embodiment, The speed of movement of the core wafer 20 can be adjusted. In the semiconductor device 1, the operating speed of the interface wafer 10 (the frequency of the ring oscillator) and the operating speed of the core chip 20 (the frequency of the ring oscillator) are repeatedly compared, and the internal power supply voltage of the core chip 20 is made. cut back. At this time, when the frequencies of the ring oscillators at the interface wafer 10 and the core wafer 20 are coincident with each other, or when the frequency of the ring oscillator at the interface wafer 10 becomes high, the system stops. The internal supply voltage at the core wafer 20 is reduced. In other words, the internal power supply voltage of the core wafer 20 is determined in such a manner that the frequency of the ring oscillator in the interface wafer 10 and the core wafer 20 is slightly uniform.

又,作為用以調整層積型半導體裝置之時序的參數,係使用核心晶片之內部電源電壓來對於晶片全體之時序作調整。因此,係能夠抑制半導體裝置1之面積增加,並且能夠抑制對於晶片全體所造成的影響。在半導體裝置1中,係能夠於組裝工程之後,對於核心晶片20之動作速度作調整。因此,係成為不需要進行在前置工程中之時序確認工程,而能夠削減成本以及工程數量。 Further, as a parameter for adjusting the timing of the stacked semiconductor device, the internal power supply voltage of the core chip is used to adjust the timing of the entire wafer. Therefore, it is possible to suppress an increase in the area of the semiconductor device 1, and it is possible to suppress the influence on the entire wafer. In the semiconductor device 1, it is possible to adjust the operating speed of the core wafer 20 after the assembly process. Therefore, it is possible to reduce the cost and the number of projects by eliminating the need for timing confirmation work in the pre-engineering.

另外,在上述之實施形態中,雖係針對將介面晶片和核心晶片作了層積的半導體裝置來作了展示,但是,本發明所能夠適用之半導體裝置係並不被限定於此。例如,亦可對於包含有記憶體控制器等之所謂的系統晶片(SOC)晶片和記憶體晶片作了層積的半導體裝置或者是對於將複數之邏輯晶片相互作了層積的半導體裝置等來作適用。又,在上述之實施形態中,雖係針對使用貫通電極 TSV來將複數之晶片間作連接的半導體晶片而作了展示,但是,本發明係並不被限定於此。例如,對於經由打線接合或矽中介板(interposer)等來將被層積之複數的晶片間作電性連接之半導體裝置,亦可適用本發明。 Further, in the above-described embodiment, the semiconductor device in which the interface wafer and the core wafer are laminated is shown. However, the semiconductor device to which the present invention is applicable is not limited thereto. For example, a semiconductor device in which a so-called system chip (SOC) chip or a memory chip including a memory controller or the like is stacked or a semiconductor device in which a plurality of logic chips are stacked with each other may be used. Applicable. Further, in the above embodiment, the use of the through electrode is The TSV is shown as a semiconductor wafer in which a plurality of wafers are connected, but the present invention is not limited thereto. For example, the present invention can also be applied to a semiconductor device in which a plurality of stacked wafers are electrically connected via wire bonding or interposer or the like.

另外,所引用之上述先前技術文獻等的各揭示內容,係在本說明書中反覆引用。在本發明之所有揭示(亦包含申請專利範圍)的範圍內,係可進而基於其之基本的技術思想來進行實施形態乃至實施例之變更、調整。又,係可對於在本發明之申請專利範圍的範圍內之各種揭示要素(包含各請求項之各要素、各實施形態乃至實施例之各要素、各圖面之各要素等),而進行多樣性之組合乃至選擇。亦即是,當然的,本發明,係包含有當業者所能夠基於包括申請專利範圍之所有揭示內容、技術性思想而進行的各種變形、修正。特別是,關於在本說明書中所記載之數值範圍,就算是在說明書中並未特別作記載,亦應將被包含在該範圍內之任意的數值乃至任意的較小範圍解釋為有所記載者。 In addition, the disclosures of the above-mentioned prior art documents and the like cited are referred to in the present specification. Modifications and adjustments of the embodiments and the embodiments may be made based on the basic technical idea of the invention in the scope of the disclosure. Further, various disclosure elements (including each element of each request item, each embodiment, each element of the embodiment, each element of each drawing, etc.) within the scope of the patent application scope of the present invention may be various. Combination of sex and even choice. In other words, the present invention includes various modifications and corrections that can be made by the practitioner based on all the disclosures and technical ideas including the scope of the patent application. In particular, the numerical ranges recited in the present specification are to be construed as any of the numerical values included in the range and even any minor ranges, even if they are not specifically described in the specification. .

1‧‧‧半導體裝置 1‧‧‧Semiconductor device

10‧‧‧介面晶片 10‧‧‧Interface Wafer

11‧‧‧IF控制電路 11‧‧‧IF control circuit

12‧‧‧資料輸入輸出控制電路 12‧‧‧ Data input and output control circuit

13、25‧‧‧ROSC電路 13, 25‧‧‧ROSC circuit

14‧‧‧ROSC比較電路 14‧‧‧ROSC comparison circuit

20-1~20-4‧‧‧核心晶片 20-1~20-4‧‧‧ core chip

21‧‧‧核心控制電路 21‧‧‧ core control circuit

22‧‧‧讀寫控制電路 22‧‧‧Reading and writing control circuit

23‧‧‧SID選擇電路 23‧‧‧SID selection circuit

24‧‧‧開關 24‧‧‧ switch

26‧‧‧記憶體胞陣列 26‧‧‧ Memory Cell Array

27‧‧‧電源電路 27‧‧‧Power circuit

Claims (9)

一種半導體裝置,其特徵為,具備有:第1半導體晶片,係包含第1內部電路、和產生代表該第1內部電路之動作速度的第1訊號之第1測定電路;和第2半導體晶片,係被與前述第1半導體晶片作層積,並包含第2內部電路、和產生代表該第2內部電路之動作速度的第2訊號之第2動作測定電路:和比較電路,係被形成於前述第1半導體晶片處,並對於前述第1訊號和前述第2訊號作比較,而產生比較結果訊號;和動作速度調整電路,係被形成於前述第1或第2半導體晶片之其中一者處,並基於前述比較結果訊號,而對於前述第1或第2動作速度作調整。 A semiconductor device comprising: a first internal circuit including a first internal circuit; and a first measurement circuit for generating a first signal representing an operation speed of the first internal circuit; and a second semiconductor wafer; And a second operation measuring circuit including a second internal circuit and a second signal generating an operating speed of the second internal circuit, and a comparison circuit formed on the first semiconductor wafer. The first semiconductor wafer is compared with the first signal and the second signal to generate a comparison result signal; and the operation speed adjustment circuit is formed on one of the first or second semiconductor wafers. Based on the comparison result signal, the first or second operation speed is adjusted. 如申請專利範圍第1項所記載之半導體裝置,其中,前述第1測定電路,係包含產生第1震盪訊號之第1震盪電路,前述第1訊號,係代表使前述第1震盪訊號在第1期間中而作了雙態互變(toggle)之第1次數,前述第2測定電路,係包含產生第2震盪訊號之第2震盪電路,前述第2訊號,係代表使前述第2震盪訊號在實質性長度為與前述第1期間相等之第2期間中而作了雙態互變之第2次數。 The semiconductor device according to claim 1, wherein the first measuring circuit includes a first oscillating circuit that generates a first oscillating signal, and the first signal represents that the first oscillating signal is at the first During the period, the first number of toggles is toggled. The second measurement circuit includes a second oscillation circuit that generates a second oscillation signal. The second signal represents that the second oscillation signal is The substantial length is the second number of double-state transitions in the second period equal to the first period. 如申請專利範圍第1項或第2項所記載之半導體裝置,其中,前述動作速度調整電路,當前述第2訊號所代 表之前述第2次數為較前述第1訊號所代表之前述第1次數更大的情況時,係朝向使前述第2內部電路之動作速度降低的方向作調整,當前述第2訊號所代表之前述第2次數為較前述第1訊號所代表之前述第1次數更小的情況時,係朝向使前述第2內部電路之動作速度上升的方向作調整。 The semiconductor device according to claim 1 or 2, wherein the operation speed adjustment circuit is replaced by the second signal When the second number of times in the table is larger than the first number of times represented by the first signal, the direction is decreased toward the direction in which the operating speed of the second internal circuit is lowered, and the second signal is represented by the second signal. When the second number of times is smaller than the first number of times represented by the first signal, the direction is increased in a direction in which the operating speed of the second internal circuit is increased. 如申請專利範圍第1項或第2項所記載之半導體裝置,其中,前述動作速度調整電路,係進行前述第1或第2內部電路之動作速度的調整,直到前述第1次數和前述第2次數之大小關係相一致或者是相反轉為止。 The semiconductor device according to the first or second aspect of the invention, wherein the operation speed adjustment circuit adjusts an operation speed of the first or second internal circuit until the first number of times and the second time The magnitude of the number of times is consistent or reversed. 如申請專利範圍第1~4項中之任一項所記載之半導體裝置,其中,前述動作速度調整電路,係藉由使自身所被形成之半導體晶片的內部電源電壓改變,而調整前述第1或第2內部電路之動作速度。 The semiconductor device according to any one of claims 1 to 4, wherein the operation speed adjustment circuit adjusts the first power source by changing an internal power supply voltage of a semiconductor wafer formed by itself Or the operating speed of the second internal circuit. 一種半導體裝置,其特徵為,具備有:第1半導體晶片,係包含產生第1震盪訊號之第1震盪電路、和因應於前述第1震盪訊號而使第1計數值改變之第1計數電路;和第2半導體晶片,係包含產生內部電源電壓之內部電源產生電路、和藉由前述內部電源電壓而動作並產生第2震盪訊號之第2震盪電路、和因應於前述第2震盪訊號而使第2計數值改變之第2計數電路,前述第1半導體晶片,係進而包含有對於前述第1計數值和前述第2計數值作比較並產生比較結果訊號之比較 電路,前述內部電源產生電路,係因應於前述比較結果訊號,而對於前述內部電源電壓作調整。 A semiconductor device comprising: a first semiconductor chip including a first oscillating circuit for generating a first oscillating signal; and a first counting circuit for changing a first count value in response to the first oscillating signal; And the second semiconductor wafer includes an internal power generating circuit that generates an internal power supply voltage, a second oscillating circuit that operates by the internal power supply voltage and generates a second oscillating signal, and a second oscillating signal that is responsive to the second oscillating signal In the second counting circuit in which the count value is changed, the first semiconductor wafer further includes a comparison between the first count value and the second count value to generate a comparison result signal. The circuit, the internal power generating circuit, adjusts the internal power supply voltage according to the comparison result signal. 如申請專利範圍第6項所記載之半導體裝置,其中,前述比較電路,係因應於對前述第1計數值和前述第2計數值作了比較的結果,而產生單擊之脈衝訊號,前述內部電源產生電路,係因應於前述單擊之脈衝訊號的計數值數,而對於前述內部電源電壓作調整。 The semiconductor device according to claim 6, wherein the comparison circuit generates a click pulse signal based on a result of comparing the first count value and the second count value, wherein the internal portion The power generation circuit adjusts the aforementioned internal power supply voltage in response to the count value of the click pulse signal. 如申請專利範圍第7項所記載之半導體裝置,其中,前述內部電源產生電路,當前述第1計數值為較前述第2計數值更大的情況時,係使前述內部電源電壓降低,當前述第1計數值為較前述第2計數值更小的情況時,係使前述內部電源電壓上升。 The semiconductor device according to claim 7, wherein the internal power source generating circuit lowers the internal power source voltage when the first count value is larger than the second count value. When the first count value is smaller than the second count value, the internal power supply voltage is increased. 如申請專利範圍第6~8項中之任一項所記載之半導體裝置,其中,係具備有:基準電壓產生電路,係接收前述比較結果訊號,並對於前述內部電源產生電路而供給產生前述內部電源電壓時之基準電壓,前述基準電壓產生電路,係因應於前述比較結果訊號,而使前述基準電壓改變。 The semiconductor device according to any one of claims 6 to 8, wherein the reference voltage generating circuit receives the comparison result signal and supplies the internal power generating circuit to generate the internal portion. The reference voltage at the time of the power supply voltage, the reference voltage generating circuit changes the reference voltage in response to the comparison result signal.
TW102146062A 2012-12-17 2013-12-13 Semiconductor device TW201435372A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012274877 2012-12-17

Publications (1)

Publication Number Publication Date
TW201435372A true TW201435372A (en) 2014-09-16

Family

ID=50978378

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102146062A TW201435372A (en) 2012-12-17 2013-12-13 Semiconductor device

Country Status (2)

Country Link
TW (1) TW201435372A (en)
WO (1) WO2014098050A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08274603A (en) * 1994-12-27 1996-10-18 Nkk Corp Polyphase clock generation device
DE10013313A1 (en) * 2000-03-20 2001-09-27 Alcatel Sa Synchronization of program modules used in telecommunication, involves adjusting clock generator of second program module based on determined time difference between clock signals of first and second modules
JP2005049970A (en) * 2003-07-30 2005-02-24 Renesas Technology Corp Semiconductor integrated circuit
JP2006039830A (en) * 2004-07-26 2006-02-09 Renesas Technology Corp Semiconductor integrated circuit
JP4733152B2 (en) * 2008-01-31 2011-07-27 日本電信電話株式会社 Frequency control circuit and CDR circuit

Also Published As

Publication number Publication date
WO2014098050A1 (en) 2014-06-26

Similar Documents

Publication Publication Date Title
US10234336B2 (en) Ring oscillators for temperature detection in wideband supply noise environments
US10365318B2 (en) Testing and setting performance parameters in a semiconductor device and method therefor
JP5319012B2 (en) Flicker noise cancellation in oscillators
US10177767B2 (en) Semiconductor device, electronic component, and electronic device
JP2011526091A (en) Clock gating system and method
TW201003660A (en) Testing a memory device having field effect transistors subject to threshold voltage shifts caused by bias temperature instability
US10911032B2 (en) Flip-flop
CN104584431A (en) System and method of adjusting a clock signal
JP2011170950A (en) Information storage device and test method therefor
CN108027414A (en) On piece parameter measurement
WO2007034540A1 (en) Power supply voltage adjusting device
TWI534805B (en) Methods and systems to stress-program an integrated circuit
TW201435372A (en) Semiconductor device
US10394471B2 (en) Adaptive power regulation methods and systems
US8680908B2 (en) On-chip coarse delay calibration
US8081026B1 (en) Method for supplying an output supply voltage to a power gated circuit and an integrated circuit
WO2009139101A1 (en) Electronic equipment system and semiconductor integrated circuit controller
JP2011066317A (en) Semiconductor device
TWI550285B (en) And a storage device and electronic device for electrically correcting parameters of the wafer
JP2013118769A (en) Semiconductor device
JP2012089607A (en) Semiconductor device
JP5012731B2 (en) Semiconductor integrated circuit device and method for adjusting semiconductor integrated circuit device
KR20100045853A (en) Semiconductor device
JPH03142791A (en) Oscillation circuit