TW201430909A - Method of forming film on different surfaces - Google Patents

Method of forming film on different surfaces Download PDF

Info

Publication number
TW201430909A
TW201430909A TW102101665A TW102101665A TW201430909A TW 201430909 A TW201430909 A TW 201430909A TW 102101665 A TW102101665 A TW 102101665A TW 102101665 A TW102101665 A TW 102101665A TW 201430909 A TW201430909 A TW 201430909A
Authority
TW
Taiwan
Prior art keywords
substrate
state
manufacturing
gas
reaction gas
Prior art date
Application number
TW102101665A
Other languages
Chinese (zh)
Inventor
Chih-Chung Chen
Tsuo-Wen Lu
Yu-Ren Wang
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW102101665A priority Critical patent/TW201430909A/en
Publication of TW201430909A publication Critical patent/TW201430909A/en

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

A method of forming a film is provided. The method includes at least the following steps. A first substrate and a second substrate are provided in a batch processing system, wherein a first surface of the first substrate is adjacent to a second surface of the second substrate, the first surface of the first substrate has a first surface condition, the second surface of the second substrate has a second surface condition, and the first surface condition is different from the second surface condition. A pretreatment gas is provided to the surfaces of the substrates for transforming the first surface condition and the second surface condition to a third surface condition. A reaction gas is provided to form the film on the surfaces, having the third surface condition, of the substrates.

Description

不同表面上之膜層的製造方法 Method for manufacturing film layers on different surfaces

本發明是有關於一種膜層的製造方法,且特別是有關於一種在不同表面上之膜層的製造方法。 The present invention relates to a method of making a film layer, and more particularly to a method of making a film layer on different surfaces.

在半導體結構中,氮化矽層常用來做為蝕刻阻擋層(etching stop layer)或做為硬式光阻(hard mask)。以原子層沈積法(atomic layer deposition,ALD)製成的氮化矽層具有良好的蝕刻阻擋特性,亦具有良好的單片晶圓內厚度均勻度(within wafer uniformity)。並且,可以製成超薄的膜層,因此大量應用在半導體結構中。 In semiconductor structures, a tantalum nitride layer is commonly used as an etching stop layer or as a hard mask. The tantalum nitride layer made by atomic layer deposition (ALD) has good etch barrier properties and also has good wafer uniformity. Also, an ultra-thin film layer can be formed, and thus it is widely used in a semiconductor structure.

然而,在批次製程(batch process)中,以原子層沈積法製作氮化矽層於多個晶圓上時,經常發生多個晶圓上的形成的氮化矽層彼此之間的膜厚差異太大,也就是晶圓之間的氮化矽層膜厚不均勻。因此,相關業者均致力於研發並解決該問題。 However, in a batch process, when a tantalum nitride layer is formed on a plurality of wafers by atomic layer deposition, a film thickness of a tantalum nitride layer formed on a plurality of wafers often occurs. The difference is too large, that is, the thickness of the tantalum nitride film between the wafers is not uniform. Therefore, relevant industry players are committed to research and development and solve this problem.

本發明係有關於一種在不同表面上之膜層的製造方法。在形成膜層之前,先提供預處理氣體於多個基板表面上,使多個基板的表面均具有實質上相同的表面狀態,進而使膜層於各個基板表面上的生長速率可非常接近或是實質上相同,而能夠達到在不同基板上生成的膜厚之均勻度提升之效果。 The present invention relates to a method of making a film layer on different surfaces. Before forming the film layer, the pretreatment gas is provided on the surface of the plurality of substrates so that the surfaces of the plurality of substrates have substantially the same surface state, so that the growth rate of the film layer on the surface of each substrate can be very close or Substantially the same, the effect of uniformity of film thickness generated on different substrates can be achieved.

根據本發明之一方面,提出一種批次製程(batch process)之膜層的製造方法。製造方法包括:提供一第一基板及一第二基板於一批次製程系統中,其中第一基板係以一第一表面相鄰於第二基板之一第二表面,第一基板之第一表面具有一第一表面狀態,第二基板之第二表面具有一第二表面狀態,第一表面狀態和第二表面狀態係為不同;提供一預處理氣體(pretreatment gas)於該些基板之該些表面上,以轉換第一表面狀態和第二表面狀態至一第三表面狀態;以及提供一反應氣體,以形成一膜層於該些基板之具有第三表面狀態之該些表面上。 According to an aspect of the invention, a method of manufacturing a film layer of a batch process is proposed. The manufacturing method includes: providing a first substrate and a second substrate in a batch processing system, wherein the first substrate is adjacent to a second surface of the second substrate by a first surface, the first substrate The surface has a first surface state, and the second surface of the second substrate has a second surface state, the first surface state and the second surface state being different; providing a pretreatment gas to the substrates Surfaces for converting the first surface state and the second surface state to a third surface state; and providing a reactive gas to form a film on the surfaces of the substrates having the third surface state.

根據本發明之另一方面,提出一種氮化物層的製造方法。製造方法包括:提供一第一基板及一第二基板,其中第一基板係以一第一表面相鄰於第二基板之一第二表面,第一基板之第一表面具有一第一表面狀態,第二基板之第二表面具有一第二表面狀態,第一表面狀態和第二表面狀態係為不同;在一第一操作壓力下,曝露(expose)第一基板之第一表面及第二基板之第二表面於一含氮預處理氣體(nitrogen-containing pretreatment gas)中;以及在一第二操作壓力下,以原子層沈積法形成一氮化物層於第一基板之第一表面及第二基板之第二表面上,其中第二操作壓力係小於第一操作壓力。 According to another aspect of the present invention, a method of fabricating a nitride layer is proposed. The manufacturing method includes: providing a first substrate and a second substrate, wherein the first substrate has a first surface adjacent to a second surface of the second substrate, and the first surface of the first substrate has a first surface state The second surface of the second substrate has a second surface state, the first surface state and the second surface state being different; exposing the first surface and the second surface of the first substrate under a first operating pressure The second surface of the substrate is in a nitrogen-containing pretreatment gas; and a nitride layer is formed on the first surface of the first substrate by atomic layer deposition at a second operating pressure and And a second operating surface of the second substrate, wherein the second operating pressure is less than the first operating pressure.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式,作詳細說明如下: In order to provide a better understanding of the above and other aspects of the present invention, the following detailed description of the embodiments and the accompanying drawings

本發明實施例中,在形成膜層於多個基板的不同表面上之前,先提供預處理氣體於多個基板表面上,使多個基板的表面均具有實質上相同的表面狀態,進而使得膜層於各個基板表面上的生長速率可非常接近或是實質上相同,而能夠達到在不同基板上生成的膜厚之均勻度提升之效果。以下係參照所附圖式詳細敘述本發明之實施例。圖式中相同的標號係用以標示相同或類似之部分。需注意的是,圖式係已簡化以利清楚說明實施例之內容,圖式上的尺寸比例並非按照實際產品等比例繪製,因此並非作為限縮本發明保護範圍之用。 In the embodiment of the present invention, before the film layer is formed on different surfaces of the plurality of substrates, the pretreatment gas is provided on the surface of the plurality of substrates, so that the surfaces of the plurality of substrates have substantially the same surface state, thereby further forming the film. The growth rates of the layers on the surface of each substrate can be very close or substantially the same, and the effect of uniformity of film thickness generated on different substrates can be achieved. Embodiments of the present invention will be described in detail below with reference to the drawings. The same reference numerals are used to designate the same or similar parts. It is to be noted that the drawings have been simplified to clearly illustrate the contents of the embodiments, and the dimensional ratios in the drawings are not drawn to the scale of the actual products, and thus are not intended to limit the scope of the present invention.

第1A~1B圖繪示本發明一實施例之膜層之製造方法的流程圖。請參照第1A圖,提供第一基板110及第二基板120,第一基板110係以第一表面110a相鄰於第二基板120之第二表面120b,第一基板110之第一表面110a具有一第一表面狀態,第二基板120之第二表面120b具有一第二表面狀態,第一表面狀態和第二表面狀態係為不同。 1A to 1B are flow charts showing a method of manufacturing a film layer according to an embodiment of the present invention. Referring to FIG. 1A, a first substrate 110 and a second substrate 120 are provided. The first substrate 110 is adjacent to the second surface 120b of the second substrate 120, and the first surface 110a of the first substrate 110 has In a first surface state, the second surface 120b of the second substrate 120 has a second surface state, and the first surface state and the second surface state are different.

一實施例中,如第1A圖所示,第一基板110之相對於第一表面110a的第二表面110b可亦具有第一表面狀態,第二基板120相對於第二表面120b的第一表面120a可亦具有第二表面狀態。 In an embodiment, as shown in FIG. 1A, the second surface 110b of the first substrate 110 relative to the first surface 110a may also have a first surface state, and the first surface of the second substrate 120 relative to the second surface 120b 120a can also have a second surface state.

接著,如第1A圖所示,提供預處理氣體(pretreatment gas)150於基板110和120之表面110a和120b上,以轉換第一表面狀態和第二表面狀態至一第三表面狀態。 Next, as shown in FIG. 1A, a pretreatment gas 150 is provided on the surfaces 110a and 120b of the substrates 110 and 120 to switch the first surface state and the second surface state to a third surface state.

實施例中,第一表面狀態、第二表面狀態及第三表面狀態分別係為富氧(oxygen rich)狀態、富氮(nitrogen rich)狀態、富碳(carbon rich)狀態及富矽(silicon rich)狀態之其中之一。一實施例中,第一表面狀態、第二表面狀態及第三表面狀態可以彼此完全不同;另一實施例中,第三表面狀態亦可以係與第一表面狀態或第二表面狀態相同。 In an embodiment, the first surface state, the second surface state, and the third surface state are respectively an oxygen rich state, a nitrogen rich state, a carbon rich state, and a rich silicon (silicon rich) One of the states. In one embodiment, the first surface state, the second surface state, and the third surface state may be completely different from each other; in another embodiment, the third surface state may also be the same as the first surface state or the second surface state.

實施例中,富氧狀態例如是指基板表面的材質包括含氧材料,例如是金屬氧化物(metal oxide);富氮狀態例如是指基板表面的材質包括含氮材料,例如是金屬氮化物(metal nitride);富碳狀態例如是指基板表面的材質包括含碳材料,例如是金屬碳化物(metal carbide);富矽狀態例如是指基板表面的材質包括含矽材料,例如是矽化物(silicide)。 In the embodiment, the oxygen-rich state refers to, for example, that the material of the surface of the substrate includes an oxygen-containing material, such as a metal oxide; the nitrogen-rich state refers to, for example, that the material of the surface of the substrate includes a nitrogen-containing material, such as a metal nitride (for example, a metal nitride) The carbon-rich state refers to, for example, that the material of the surface of the substrate includes a carbonaceous material, such as a metal carbide; the state of the rich state refers to, for example, that the material of the surface of the substrate includes a cerium-containing material, such as a silicide. ).

一實施例中,如第1A圖所示,第一基板110例如包括矽層111、圖案層(pattern layer)113及氧化層115,圖案層113形成於矽層111上,氧化層115覆蓋矽層111及圖案層113,圖案層113例如是線路圖案(circuit pattern),氧化層115例如是氧化矽。第二基板120例如包括矽層121及氮化層123,氮化層123形成於矽層121上且覆蓋矽層121,氮化層123例如是氮化矽。本實施例中,第一基板110之氧化層115具有第一表面狀態,第二基板120之氮化層123具有第二表面狀態。也就是說,本實施例中,第一表面狀態是富氧狀態,第二表面狀態是富氮狀態。 In one embodiment, as shown in FIG. 1A, the first substrate 110 includes, for example, a germanium layer 111, a pattern layer 113, and an oxide layer 115. The pattern layer 113 is formed on the germanium layer 111, and the oxide layer 115 covers the germanium layer. 111 and the pattern layer 113, the pattern layer 113 is, for example, a circuit pattern, and the oxide layer 115 is, for example, ruthenium oxide. The second substrate 120 includes, for example, a germanium layer 121 and a nitride layer 123. The nitride layer 123 is formed on the germanium layer 121 and covers the germanium layer 121. The nitride layer 123 is, for example, tantalum nitride. In this embodiment, the oxide layer 115 of the first substrate 110 has a first surface state, and the nitride layer 123 of the second substrate 120 has a second surface state. That is, in the present embodiment, the first surface state is an oxygen-rich state and the second surface state is a nitrogen-rich state.

一實施例中,預處理氣體150係為含氮預處理氣體(nitrogen-containing pretreatment gas),例如是氨氣(NH3)。 如此一來,本實施例中,經氨氣預處理之後形成的第三表面狀態是富氮狀態,經過預處理的基板表面例如是形成一層氮化層。實施例中,基板表面曝露於含氮預處理氣體中的時間大約是10分鐘。 In one embodiment, the pretreatment gas 150 is a nitrogen-containing pretreatment gas, such as ammonia (NH 3 ). In this way, in the embodiment, the third surface state formed after the pretreatment of the ammonia gas is a nitrogen-rich state, and the surface of the pretreated substrate is, for example, a nitride layer. In the embodiment, the surface of the substrate is exposed to the nitrogen-containing pretreatment gas for about 10 minutes.

實施例中,如第1A圖所示,更可提供第三基板130,第三基板130例如係以第一表面130a相鄰於第一基板110之第一表面110a。另一實施例中,第三基板130亦可以第一表面130a相鄰於第二基板120之第二表面120b(未繪示)。第三基板130之第一表面130a具有一第四表面狀態,第四表面狀態至少係不同於第一表面狀態或第二表面狀態。 In the embodiment, as shown in FIG. 1A, a third substrate 130 may be further provided, for example, the first surface 130a is adjacent to the first surface 110a of the first substrate 110. In another embodiment, the third substrate 130 may also be adjacent to the second surface 120b (not shown) of the second substrate 120. The first surface 130a of the third substrate 130 has a fourth surface state, the fourth surface state being at least different from the first surface state or the second surface state.

實施例中,第四表面狀態係為富氧狀態、富氮狀態、富碳狀態及富矽狀態之其中之一。一實施例中,如第1A圖所示,第三基板130例如是矽層。本實施例中,第三基板130之矽層具有第四表面狀態。也就是說,本實施例中,第四表面狀態是富矽狀態。 In the embodiment, the fourth surface state is one of an oxygen-rich state, a nitrogen-rich state, a carbon-rich state, and a rich state. In one embodiment, as shown in FIG. 1A, the third substrate 130 is, for example, a tantalum layer. In this embodiment, the ruthenium layer of the third substrate 130 has a fourth surface state. That is to say, in the present embodiment, the fourth surface state is a rich state.

一實施例中,例如是在一第一操作壓力下,曝露(expose)第一基板110之第一表面110a及第二基板120之第二表面120b於預處理氣體150(例如是含氮預處理氣體)中,以轉換第一表面狀態和第二表面狀態至第三表面狀態。實施例中,第一操作壓力例如係為大於0.2托(torr)。一實施例中,亦可在第一操作壓力下,曝露第三基板130之第一表面130a於預處理氣體150(例如是含氮預處理氣體)中,以轉換第四表面狀態至第三表面狀態。實施例中,第一基板110、第二基板120及第三基板130之表面例如 可同時曝露於預處理氣體150中。 In one embodiment, for example, at a first operating pressure, the first surface 110a of the first substrate 110 and the second surface 120b of the second substrate 120 are exposed to the pretreatment gas 150 (eg, nitrogen-containing pretreatment) In the gas), the first surface state and the second surface state are switched to the third surface state. In an embodiment, the first operating pressure is, for example, greater than 0.2 torr. In an embodiment, the first surface 130a of the third substrate 130 may be exposed to the pretreatment gas 150 (for example, a nitrogen-containing pretreatment gas) to convert the fourth surface state to the third surface under the first operating pressure. status. In the embodiment, the surfaces of the first substrate 110, the second substrate 120, and the third substrate 130 are, for example, It can be exposed to the pretreatment gas 150 at the same time.

接著,如第1B圖所示,提供反應氣體160,以形成膜層180於基板110和120之具有第三表面狀態之表面上,例如是經預處理過的第一基板110之第一表面110a及第二基板120之第二表面120b。實施例中,亦提供反應氣體160以形成膜層180於第三基板130之具有第三表面狀態之表面上,例如是第三基板130經預處理過之第一表面130a。實施例中,反應氣體160可同時提供至第一基板110、第二基板120及第三基板130之具有第三表面狀態之表面。 Next, as shown in FIG. 1B, a reactive gas 160 is provided to form a film layer 180 on the surface of the substrates 110 and 120 having a third surface state, such as the first surface 110a of the pretreated first substrate 110. And a second surface 120b of the second substrate 120. In the embodiment, the reaction gas 160 is also provided to form the film layer 180 on the surface of the third substrate 130 having the third surface state, for example, the first surface 130a of the third substrate 130 which has been pretreated. In an embodiment, the reactive gas 160 may be simultaneously supplied to the surfaces of the first substrate 110, the second substrate 120, and the third substrate 130 having the third surface state.

實施例中,例如係以化學氣相沈積法(chemical vapor deposition,CVD)或原子層沈積法(atomic layer deposition,ALD)將膜層180形成於基板110、120和/或130之表面上。 In the embodiment, the film layer 180 is formed on the surfaces of the substrates 110, 120, and/or 130, for example, by chemical vapor deposition (CVD) or atomic layer deposition (ALD).

一實施例中,例如是在第二操作壓力下提供反應氣體160,且第二操作壓力小於第一操作壓力。實施例中,第一操作壓力例如係為大於0.2托,而第二操作壓力例如係為大約0.2托。換句話說,基板表面之預處理係於相對較高之壓力下進行。 In one embodiment, the reactive gas 160 is provided, for example, at a second operating pressure, and the second operating pressure is less than the first operating pressure. In an embodiment, the first operating pressure is, for example, greater than 0.2 Torr, and the second operating pressure is, for example, about 0.2 Torr. In other words, the pretreatment of the substrate surface is carried out at a relatively high pressure.

一實施例中,例如是在第二操作壓力下,以原子層沈積法形成氮化物層180於基板110、120和/或130之具有第三表面狀態之表面上。 In one embodiment, the nitride layer 180 is formed by atomic layer deposition on the surface of the substrate 110, 120, and/or 130 having a third surface state, for example, under a second operating pressure.

一實施例中,反應氣體160例如包括一第一反應氣體及一第二反應氣體。第一反應氣體和第二反應氣體係為不同。一實施例中,第一反應氣體和第二反應氣體可以同時 提供至基板上。另一實施例中,第一反應氣體和第二反應氣體亦可於不同時間點提供至基板上。 In one embodiment, the reaction gas 160 includes, for example, a first reaction gas and a second reaction gas. The first reaction gas and the second reaction gas system are different. In one embodiment, the first reaction gas and the second reaction gas can be simultaneously Provided to the substrate. In another embodiment, the first reactive gas and the second reactive gas may also be provided to the substrate at different points in time.

一實施例中,以原子層沈積法形成膜層180的操作溫度約為630℃,以原子層沈積法形成膜層180之製造方法例如包括以下步驟。 In one embodiment, the operating temperature at which the film layer 180 is formed by atomic layer deposition is about 630 ° C, and the method of forming the film layer 180 by atomic layer deposition includes, for example, the following steps.

首先,曝露經預處理過的基板110、120表面於第一反應氣體中,例如是第一基板110之第一表面110a及第二基板120之第二表面120b。實施例中,第一反應氣體例如包括一氮源前驅物(nitrogen source precursor),例如是氨氣(NH3)。實施例中,亦曝露經預處理過的第三基板130表面於第一反應氣體中,例如是第三基板130之第一表面130a。實施例中,經預處理過的基板110、120和/或130表面例如是同時曝露於第一反應氣體中。 First, the surface of the pretreated substrate 110, 120 is exposed to the first reaction gas, for example, the first surface 110a of the first substrate 110 and the second surface 120b of the second substrate 120. In an embodiment, the first reactive gas comprises, for example, a nitrogen source precursor, such as ammonia (NH 3 ). In the embodiment, the surface of the pretreated third substrate 130 is also exposed in the first reaction gas, for example, the first surface 130a of the third substrate 130. In an embodiment, the pretreated substrates 110, 120, and/or 130 surfaces are, for example, simultaneously exposed to the first reactive gas.

接著,吹洗(purge)基板110、120和/或130的表面以排淨第一反應氣體,例如是第一基板110之第一表面110a、第二基板120之第二表面120b及第三基板130之第一表面130a。實施例中,係以惰性氣體吹洗基板,例如是氮氣。 Next, the surfaces of the substrates 110, 120, and/or 130 are purged to discharge the first reactive gas, such as the first surface 110a of the first substrate 110, the second surface 120b of the second substrate 120, and the third substrate. The first surface 130a of 130. In an embodiment, the substrate is purged with an inert gas, such as nitrogen.

接著,曝露基板110、120和/或130的表面於第二反應氣體中,例如是前述之已經曝露於第一反應氣體中之第一基板110之第一表面110a、第二基板120之第二表面120b及第三基板130之第一表面130a。第二反應氣體與第一反應氣體係為不同,第二反應氣體例如包括一矽源前驅物(silicon source precursor),例如是二氯矽烷(dichlorosilane,DCS)。 Then, the surface of the substrate 110, 120, and/or 130 is exposed to the second reaction gas, for example, the first surface 110a of the first substrate 110 and the second substrate 120 of the first substrate 110 that have been exposed to the first reaction gas. The surface 120b and the first surface 130a of the third substrate 130. The second reaction gas is different from the first reaction gas system, and the second reaction gas includes, for example, a silicon source precursor such as dichlorosilane (DCS).

接著,再次吹洗基板110、120和/或130的表面以排淨該第二反應氣體。實施例中,係以惰性氣體吹洗基板,例如是氮氣。 Next, the surfaces of the substrates 110, 120, and/or 130 are again purged to drain the second reactive gas. In an embodiment, the substrate is purged with an inert gas, such as nitrogen.

接著,重複上述曝露及吹洗之步驟直到形成膜層180。實施例中,膜層180係為一氮化物層,例如是氮化矽膜(SiN)。 Next, the above steps of exposure and purging are repeated until the film layer 180 is formed. In the embodiment, the film layer 180 is a nitride layer, such as a tantalum nitride film (SiN).

另一實施例中,以原子層沈積法形成膜層180之製造方法,例如包括以下步驟。 In another embodiment, the method of forming the film layer 180 by atomic layer deposition includes, for example, the following steps.

首先,請參照上述實施例所述,曝露經預處理過的基板110、120和/或130的表面於第一反應氣體中,吹洗基板110、120和/或130的表面以排淨第一反應氣體,曝露經預處理過的基板110、120和/或130的表面於第二反應氣體中,以及再次吹洗基板110、120和/或130的表面以排淨該第二反應氣體。 First, referring to the above embodiment, the surface of the pretreated substrates 110, 120, and/or 130 is exposed to the first reaction gas, and the surfaces of the substrates 110, 120, and/or 130 are purged to remove the first The reaction gas is exposed to the surface of the pretreated substrates 110, 120, and/or 130 in the second reaction gas, and the surfaces of the substrates 110, 120, and/or 130 are again purged to drain the second reaction gas.

接著,曝露經預處理過的基板110、120表面於一第三反應氣體中,第三反應氣體與第一反應氣體和第二反應氣體係為不同。第三反應氣體例如包括一碳源前驅物(carbon source precursor),例如是乙烯(C2H4)。實施例中,亦曝露經預處理過的第三基板130表面於第三反應氣體中,例如是第三基板130之第一表面130a。 Next, the surface of the pretreated substrates 110 and 120 is exposed to a third reaction gas, and the third reaction gas is different from the first reaction gas and the second reaction gas system. The third reactive gas includes, for example, a carbon source precursor such as ethylene (C 2 H 4 ). In the embodiment, the surface of the pretreated third substrate 130 is also exposed to the third reaction gas, for example, the first surface 130a of the third substrate 130.

接著,吹洗基板110、120和/或130的表面以排淨該第三反應氣體,例如是第一基板110之第一表面110a、第二基板120之第二表面120b及第三基板130之第一表面130a。實施例中,係以惰性氣體吹洗基板,例如是氮氣。 Then, the surface of the substrate 110, 120, and/or 130 is purged to drain the third reactive gas, for example, the first surface 110a of the first substrate 110, the second surface 120b of the second substrate 120, and the third substrate 130. First surface 130a. In an embodiment, the substrate is purged with an inert gas, such as nitrogen.

接著,重複上述曝露及吹洗之步驟直到形成膜層 180。實施例中,膜層180係為一碳氮化物層(carbon nitride),例如是碳氮化矽膜(SiCN)。 Then, repeat the above steps of exposure and purging until a film layer is formed 180. In the embodiment, the film layer 180 is a carbon nitride, such as a tantalum carbonitride film (SiCN).

一實施例中,經預處理過的基板110、120和/或130的表面亦可同時曝露於第二反應氣體和第三反應氣體中,第三反應氣體與第一反應氣體和第二反應氣體係為不同。 In one embodiment, the surfaces of the pretreated substrates 110, 120, and/or 130 may be simultaneously exposed to the second reactive gas and the third reactive gas, the third reactive gas and the first reactive gas and the second reactive gas. The system is different.

第2圖繪示本發明一實施例之批次製程系統的示意圖。請參照第2圖,本發明之實施例之膜層製造方法可應用於批次製程中。如第2圖所示,批次製程系統100中可設置複數個基板,此些基板可以是不同類型的基板,根據製程的需要而設置在批次製程系統100的不同區域中,例如是區域P、區域M及區域D。實施例中,如第2圖所示,可提供第一基板110、第二基板120及第三基板130於批次製程系統100中,第一基板110例如是設置於區域P,第二基板120例如是設置於區域D,第三基板130例如是設置於區域M。一實施例中,批次製程系統100中例如設置有複數個第一基板110、複數個第二基板120及複數個第三基板130,第一基板110例如是具有線路圖案(circuit pattern)的產品晶圓(production wafer),第二基板120例如是檔片(dummy wafer),第三基板130例如是監測晶片(monitor wafer)。 2 is a schematic view of a batch processing system according to an embodiment of the present invention. Referring to FIG. 2, the film layer manufacturing method of the embodiment of the present invention can be applied to a batch process. As shown in FIG. 2, a plurality of substrates may be disposed in the batch processing system 100. The substrates may be different types of substrates, and are disposed in different areas of the batch processing system 100 according to the needs of the process, for example, the area P. , area M and area D. In the embodiment, as shown in FIG. 2, the first substrate 110, the second substrate 120, and the third substrate 130 may be provided in the batch processing system 100. The first substrate 110 is disposed in the region P, for example, the second substrate 120. For example, it is provided in the area D, and the third substrate 130 is provided, for example, in the area M. In one embodiment, the batch processing system 100 is provided with, for example, a plurality of first substrates 110, a plurality of second substrates 120, and a plurality of third substrates 130. The first substrate 110 is, for example, a product having a circuit pattern. A production wafer, the second substrate 120 is, for example, a dummy wafer, and the third substrate 130 is, for example, a monitor wafer.

第3A~3B圖繪示以原子層沈積法於不同表面上形成膜層之製造方法的流程圖。如第3A圖所示,第一基板110和第二基板120的表面未經過預處理,具有不同的表面狀態。實施例中,第一基板110表面的氧化層115係為二氧 化矽,第二基板120表面的氮化層123係為氮化矽,第一反應氣體160a為氨氣。第一反應氣體160a導入並流向第一基板110和第二基板120的表面之間的間隙G1和G2。氨氣(第一反應氣體160a)流入間隙G1時,間隙G1兩側分別是氮化矽與二氧化矽,氨氣較傾向於二氧化矽(氧化層115)表面形成氮化物單層(nitride monolayer)。當氨氣(第一反應氣體160a)流入間隙G2時,間隙G2兩側均為二氧化矽,氨氣則實質上平均地分散至兩側的二氧化矽(氧化層115)表面分別形成氮化物單層,如此一來,間隙G2兩側二氧化矽表面可反應的氨氣量實質上會少於間隙Gl之一側的二氧化矽表面,造成間隙G1內二氧化矽表面上生成的氮化矽較厚,而間隙G2兩側二氧化矽表面上生成的氮化矽較薄,而發生不同基板上生成的膜厚不同,基板間之生成膜厚不均之狀況。 3A-3B are flow charts showing a manufacturing method for forming a film layer on different surfaces by atomic layer deposition. As shown in FIG. 3A, the surfaces of the first substrate 110 and the second substrate 120 are not pretreated and have different surface states. In an embodiment, the oxide layer 115 on the surface of the first substrate 110 is dioxins. The nitride layer 123 on the surface of the second substrate 120 is tantalum nitride, and the first reaction gas 160a is ammonia gas. The first reaction gas 160a is introduced into and flows into the gaps G1 and G2 between the surfaces of the first substrate 110 and the second substrate 120. When ammonia gas (first reaction gas 160a) flows into gap G1, both sides of gap G1 are tantalum nitride and germanium dioxide, and ammonia gas tends to form a nitride monolayer on the surface of tantalum dioxide (oxidation layer 115). ). When ammonia gas (first reaction gas 160a) flows into the gap G2, both sides of the gap G2 are cerium oxide, and the ammonia gas is substantially evenly dispersed to the surfaces of the cerium oxide (oxidation layer 115) on both sides to form nitrides. In a single layer, the amount of ammonia gas reactive on the surface of the ceria on both sides of the gap G2 is substantially less than the surface of the ceria on one side of the gap G1, causing tantalum nitride formed on the surface of the ceria in the gap G1. It is thicker, and the tantalum nitride formed on the surface of the ceria on both sides of the gap G2 is thinner, and the film thickness generated on the different substrates is different, and the film thickness between the substrates is uneven.

此外,以成長氮化矽膜於不同表面上為例,氮化矽對氮化矽膜前驅物的吸附速率大於矽對氮化矽膜前驅物的吸附速率,矽對前氮化矽膜驅物的吸附速率大於二氧化矽對氮化矽膜前驅物的吸附速率。如第3B圖所示,第一基板110和第二基板120的表面未經過預處理,具有不同的表面狀態。實施例中,第二基板120表面的氮化層123係為氮化矽,第三基板130表面係為矽,第一反應氣體160a為氨氣,第二反應氣體160b為二氯矽烷。因此,流入間隙G3中的氨氣(第一反應氣體160a)及二氯矽烷(第二反應氣體160b)較傾向流向矽表面,使得第三基板130的表面130a生成的氮化矽較厚,而發生不同基板上生成的膜厚不 同,基板間之生成膜厚不均之狀況。 In addition, taking the growth of tantalum nitride film on different surfaces as an example, the adsorption rate of tantalum nitride on the tantalum nitride film precursor is greater than the adsorption rate of the tantalum nitride film precursor, and the tantalum tantalum nitride film precursor The adsorption rate is greater than the adsorption rate of cerium oxide to the cerium nitride film precursor. As shown in FIG. 3B, the surfaces of the first substrate 110 and the second substrate 120 are not pretreated and have different surface states. In the embodiment, the nitride layer 123 on the surface of the second substrate 120 is tantalum nitride, the surface of the third substrate 130 is tantalum, the first reaction gas 160a is ammonia gas, and the second reaction gas 160b is dichlorosilane. Therefore, the ammonia gas (the first reaction gas 160a) flowing into the gap G3 and the dichlorosilane (the second reaction gas 160b) tend to flow toward the surface of the crucible, so that the tantalum nitride generated on the surface 130a of the third substrate 130 is thicker. The film thickness generated on different substrates does not occur In the same manner, the film thickness between the substrates is uneven.

相對地,本發明之實施例中,在形成膜層180之前,先提供預處理氣體150於基板表面上,使預處理後的多個基板的表面均具有實質上相同的表面狀態,因此,各個基板的表面對前驅物的吸附速率可非常接近或實質上相同,進而使得膜層180於各個基板表面上的生長速率實質上可相同,而能夠達到在不同基板上生成的膜厚之均勻度提升之效果。 In contrast, in the embodiment of the present invention, before the film layer 180 is formed, the pretreatment gas 150 is provided on the surface of the substrate, so that the surfaces of the plurality of substrates after the pretreatment have substantially the same surface state. The adsorption rate of the surface of the substrate to the precursors can be very close or substantially the same, so that the growth rate of the film layer 180 on the surface of each substrate can be substantially the same, and the uniformity of the film thickness generated on different substrates can be improved. The effect.

以下係就實施例作進一步說明。然而以下之實施例僅為例示說明之用,而不應被解釋為本揭露內容實施之限制。 The following examples are further described. However, the following examples are for illustrative purposes only and are not to be construed as limiting the implementation of the disclosure.

第4圖繪示本發明一實施例之膜層應用於半導體結構之示意圖。如第4圖所示,半導體結構400中包括閘極結構410及偏移間隙壁(offset spacer)420,其中係應用本發明實施例之膜層180的製造方法形成偏移間隙壁420(膜層180)於閘極結構410側壁上。 4 is a schematic view showing a film layer applied to a semiconductor structure according to an embodiment of the present invention. As shown in FIG. 4, the semiconductor structure 400 includes a gate structure 410 and an offset spacer 420, wherein the offset spacer 420 is formed by applying the method for fabricating the film layer 180 of the embodiment of the present invention. 180) on the sidewall of the gate structure 410.

具有偏移間隙壁420(膜層180)的半導體結構400之製造方法例如包括以下步驟。形成閘極結構410;回(annealing)以活化半導體結構400中的摻雜區;以本發明之實施例的製造方法形成膜層180於閘極結構410上;以及蝕刻膜層180以形成如第4圖所示之偏移間隙壁420。 The method of fabricating the semiconductor structure 400 having the offset spacers 420 (film layer 180) includes, for example, the following steps. Forming a gate structure 410; annealing to activate doped regions in the semiconductor structure 400; forming a film layer 180 on the gate structure 410 by a fabrication method of an embodiment of the present invention; and etching the film layer 180 to form The offset spacer 420 is shown in FIG.

本發明實施例之膜層180的製造方法的應用並不限於製作如第4圖所示之偏移間隙壁420,亦可用於形成硬式光罩(hard mask)。 The application of the method for fabricating the film layer 180 of the embodiment of the present invention is not limited to the fabrication of the offset spacers 420 as shown in FIG. 4, and may be used to form a hard mask.

第5圖繪示本發明一比較例之膜厚(壁厚(sidewall width))分佈,第6圖繪示本發明一實施例之膜厚(壁厚)分佈。以下比較例與實施例中,係將複數個第一基板110、複數個第二基板120及複數個第三基板130以如第2圖所示的方式設置於批次製程系統中,第一基板110、第二基板120及第三基板130分別例如是產品晶圓、檔片及監測晶片。以原子層沈積法形成膜層180於基板(晶圓)表面,經過蝕刻製成之後,形成如第4圖所示之偏移間隙壁,接著量測偏移間隙壁的壁厚。比較例與實施例中,第一基板110表面的氧化層115係為二氧化矽,第二基板120表面的氮化層123係為氮化矽,第三基板130表面係為矽,第一反應氣體160a為氨氣,第二反應氣體160b為二氯矽烷,膜層180為氮化矽層。比較例與實施例的差異在於,實施例中的基板(晶圓)係以氨氣(預處理氣體150)於大於0.2托之壓力進行過預處理,才開始以原子層沈積法在大約0.2托之壓力成長氮化矽,而比較例中的基板(晶圓)未經過預處理。 Fig. 5 is a view showing a film thickness (sidewall width) distribution of a comparative example of the present invention, and Fig. 6 is a view showing a film thickness (wall thickness) distribution according to an embodiment of the present invention. In the following comparative examples and embodiments, a plurality of first substrates 110, a plurality of second substrates 120, and a plurality of third substrates 130 are disposed in the batch processing system in a manner as shown in FIG. 2, the first substrate 110. The second substrate 120 and the third substrate 130 are respectively a product wafer, a film, and a monitoring wafer. The film layer 180 is formed on the surface of the substrate (wafer) by atomic layer deposition, and after etching, an offset spacer as shown in FIG. 4 is formed, and then the wall thickness of the offset spacer is measured. In the comparative example and the embodiment, the oxide layer 115 on the surface of the first substrate 110 is ceria, the nitride layer 123 on the surface of the second substrate 120 is tantalum nitride, and the surface of the third substrate 130 is tantalum, the first reaction The gas 160a is ammonia gas, the second reaction gas 160b is methylene chloride, and the film layer 180 is a tantalum nitride layer. The difference between the comparative example and the embodiment is that the substrate (wafer) in the embodiment is pretreated with ammonia gas (pretreatment gas 150) at a pressure greater than 0.2 Torr, and the atomic layer deposition method is started at about 0.2 Torr. The pressure was increased by tantalum nitride, and the substrate (wafer) in the comparative example was not subjected to pretreatment.

實施例中,壁厚的量測方式例如是對單片基板(晶圓)上的偏移間隙壁420(膜層180)取21個位置點,對此21個位置點共量測到21個壁厚數值。平均壁厚值係將此21個數值平均而得。此外,基板(晶圓)內壁厚變異(within wafer variation)係指此21個壁厚量測數值中,最大值與最小值之差異。 In the embodiment, the wall thickness is measured by, for example, taking 21 position points on the offset spacer 420 (film layer 180) on the single substrate (wafer), and 21 points are detected in the 21 position points. Wall thickness value. The average wall thickness value is obtained by averaging these 21 values. In addition, the in-wafer variation of the substrate (wafer) refers to the difference between the maximum value and the minimum value among the 21 wall thickness measurement values.

如第5圖所示,共繪示四個批次B1~B4的壁厚量測值,各個批次中包括25個晶圓,其中晶圓m表示監測晶 片(第三基板130),其餘晶圓則係為第一基板110和第二基板120。如第5圖所示,比較例中,四個批次B1~B4中,批次成長的偏移間隙壁之壁厚分佈介於約5.37~5.67奈米(nm)之間,其間最大差異大約是0.30奈米。相對地,如第6圖所示,實施例中,晶圓W01~W25係表示於一個批次中所提供的25片晶圓,批次成長於晶圓W01~W25上的偏移間隙壁420(膜層180)之壁厚分佈介於約5.299~5.429奈米之間,其間最大差異大約是0.13奈米。據此,實施例中,具有不同表面狀態的多個晶圓經過預處理之後,在不同晶圓上生成的偏移間隙壁彼此之間的壁厚差異減小。換句話說,根據本發明實施例之製造方法,在不同晶圓上生成的膜層180之膜厚均勻度係提升。 As shown in Figure 5, the wall thickness measurements of four batches B1~B4 are shown, including 25 wafers in each batch, where wafer m represents the monitoring crystal. The sheet (the third substrate 130) and the remaining wafers are the first substrate 110 and the second substrate 120. As shown in Fig. 5, in the comparative example, among the four batches B1 to B4, the wall thickness distribution of the offset growth gap of the batch growth is between about 5.37 and 5.67 nanometers (nm), and the maximum difference between them is about It is 0.30 nm. In contrast, as shown in FIG. 6, in the embodiment, the wafers W01 to W25 represent 25 wafers provided in one batch, and the batch is grown on the offset spacers 420 on the wafers W01 to W25. The wall thickness distribution (film layer 180) is between about 5.299 and 5.429 nm, with a maximum difference of about 0.13 nm. Accordingly, in the embodiment, after the plurality of wafers having different surface states are subjected to pretreatment, the difference in wall thickness between the offset spacers generated on the different wafers is reduced. In other words, according to the manufacturing method of the embodiment of the present invention, the film thickness uniformity of the film layer 180 formed on different wafers is improved.

再者,如第6圖所示,實施例中,晶圓W01~W25上的偏移間隙壁420(膜層180)之基板(晶圓)內壁厚變異值均低於0.102奈米,換句話說,根據本發明實施例之製造方法,單片晶圓內生成的膜層180之膜厚亦較均勻。 Furthermore, as shown in FIG. 6, in the embodiment, the variation of the inner wall thickness of the substrate (wafer) of the offset spacer 420 (film layer 180) on the wafers W01 to W25 is less than 0.102 nm. In other words, according to the manufacturing method of the embodiment of the present invention, the film thickness of the film layer 180 formed in a single wafer is relatively uniform.

以下表格係列出上述比較例及實施例中,偏移間隙壁420(膜層180)的壁厚(膜厚)之均方偏差(sigma)數值及基板(晶圓)內均勻度(within wafer uniformity)數值。基板(晶圓)內均勻度之數值計算方式如下:(均方偏差(sigma)/平均壁厚)*100%。也就是說,基板(晶圓)內均勻度之數值越小,表示其單片晶圓內的壁厚變異越小,基板(晶圓)內均勻度係越高。此外,表格中,A組係根據25片晶圓之所有原始量測的壁厚數值(每片晶圓均具有21個壁厚量測值)計算所得,B組係根據25片晶圓之平均壁厚值計算所得。 The following table series shows the mean square deviation (sigma) value of the wall thickness (film thickness) of the offset spacer 420 (film layer 180) and the uniformity of the substrate (wafer) in the above comparative examples and examples. ) value. The numerical calculation of the uniformity in the substrate (wafer) is as follows: (mean square deviation (sigma) / average wall thickness) * 100%. That is to say, the smaller the value of the uniformity in the substrate (wafer), the smaller the wall thickness variation in the single wafer, and the higher the uniformity in the substrate (wafer). In addition, in the table, Group A is calculated based on all the original measured wall thickness values of 25 wafers (each with a total of 21 wall thickness measurements), and Group B is based on the average of 25 wafers. The wall thickness value is calculated.

由上表可看出,實施例相較於比較例而言,均方偏差值由0.05奈米下降至0.024~0.03奈米,下降了約0.02~0.026奈米,表示不同晶圓上生成的偏移間隙壁(膜層)之壁厚的均勻度係提升。並且,基板內(晶圓)均勻度百分比數值從0.95~0.86%下降至0.63~0.46%,單片晶圓內的壁厚變異減小,表示單片晶圓內的壁厚均勻度也大幅提升。 As can be seen from the above table, compared with the comparative example, the mean square deviation value decreased from 0.05 nm to 0.024 to 0.03 nm, which decreased by about 0.02 to 0.026 nm, indicating the deviation generated on different wafers. The uniformity of the wall thickness of the moving spacer (film layer) is increased. Moreover, the percentage of uniformity in the substrate (wafer) decreased from 0.95 to 0.86% to 0.63 to 0.46%, and the variation in wall thickness in a single wafer was reduced, indicating that the uniformity of wall thickness in a single wafer was also greatly improved. .

綜上所述,雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In conclusion, the present invention has been disclosed in the above embodiments, but it is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

100‧‧‧批次製程系統 100‧‧‧Batch Process System

110‧‧‧第一基板 110‧‧‧First substrate

110a、120a、130a‧‧‧第一表面 110a, 120a, 130a‧‧‧ first surface

110b、120b‧‧‧第二表面 110b, 120b‧‧‧ second surface

111、121‧‧‧矽層 111, 121‧‧ ‧ layer

113‧‧‧圖案層 113‧‧‧pattern layer

115‧‧‧氧化層 115‧‧‧Oxide layer

120‧‧‧第二基板 120‧‧‧second substrate

123‧‧‧氮化層 123‧‧‧ nitride layer

130‧‧‧第三基板 130‧‧‧ Third substrate

150‧‧‧預處理氣體 150‧‧‧Pretreatment gas

160‧‧‧反應氣體 160‧‧‧Reactive gas

160a‧‧‧第一反應氣體 160a‧‧‧First reaction gas

160b‧‧‧第二反應氣體 160b‧‧‧second reaction gas

180‧‧‧膜層 180‧‧‧ film layer

400‧‧‧半導體結構 400‧‧‧Semiconductor structure

410‧‧‧閘極結構 410‧‧‧ gate structure

420‧‧‧偏移間隙壁 420‧‧‧ offset gap

B1~B4‧‧‧批次 Batch of B1~B4‧‧

D、M、P‧‧‧區域 D, M, P‧‧‧ areas

G1、G2、G3‧‧‧間隙 G1, G2, G3‧‧‧ gap

m、W01~W25‧‧‧晶圓 m, W01~W25‧‧‧ wafer

第1A~1B圖繪示本發明一實施例之膜層之製造方法的流程圖。 1A to 1B are flow charts showing a method of manufacturing a film layer according to an embodiment of the present invention.

第2圖繪示本發明一實施例之批次製程系統的示意 圖。 2 is a schematic view of a batch processing system according to an embodiment of the present invention. Figure.

第3A~3B圖繪示以原子層沈積法於不同表面上形成膜層之製造方法的流程圖。 3A-3B are flow charts showing a manufacturing method for forming a film layer on different surfaces by atomic layer deposition.

第4圖繪示本發明一實施例之膜層應用於半導體結構之示意圖。 4 is a schematic view showing a film layer applied to a semiconductor structure according to an embodiment of the present invention.

第5圖繪示本發明一比較例之膜厚分佈。 Fig. 5 is a view showing the film thickness distribution of a comparative example of the present invention.

第6圖繪示本發明一實施例之膜厚分佈。 Figure 6 is a diagram showing the film thickness distribution of an embodiment of the present invention.

110‧‧‧第一基板 110‧‧‧First substrate

110a、120a、130a‧‧‧第一表面 110a, 120a, 130a‧‧‧ first surface

110b、120b‧‧‧第二表面 110b, 120b‧‧‧ second surface

111、121‧‧‧矽層 111, 121‧‧ ‧ layer

113‧‧‧圖案層 113‧‧‧pattern layer

115‧‧‧氧化層 115‧‧‧Oxide layer

120‧‧‧第二基板 120‧‧‧second substrate

123‧‧‧氮化層 123‧‧‧ nitride layer

130‧‧‧第三基板 130‧‧‧ Third substrate

150‧‧‧預處理氣體 150‧‧‧Pretreatment gas

Claims (20)

一種批次製程(batch process)之膜層的製造方法,包括:提供一第一基板及一第二基板於一批次製程系統中,其中該第一基板係以一第一表面相鄰於該第二基板之一第二表面,該第一基板之該第一表面具有一第一表面狀態,該第二基板之該第二表面具有一第二表面狀態,該第一表面狀態和該第二表面狀態係為不同;提供一預處理氣體(pretreatment gas)於該些基板之該些表面上,以轉換該第一表面狀態和該第二表面狀態至一第三表面狀態;以及提供一反應氣體,以形成一膜層於該些基板之具有該第三表面狀態之該些表面上。 A method for manufacturing a film layer of a batch process, comprising: providing a first substrate and a second substrate in a batch process system, wherein the first substrate is adjacent to the first surface a second surface of the second substrate, the first surface of the first substrate has a first surface state, the second surface of the second substrate has a second surface state, the first surface state and the second surface The surface state is different; providing a pretreatment gas on the surfaces of the substrates to convert the first surface state and the second surface state to a third surface state; and providing a reactive gas Forming a film on the surfaces of the substrates having the third surface state. 如申請專利範圍第1項所述之製造方法,其中該第一表面狀態、該第二表面狀態及該第三表面狀態分別係為富氧(oxygen rich)狀態、富氮(nitrogen rich)狀態、富碳(carbon rich)狀態及富矽(silicon rich)狀態之其中之一。 The manufacturing method according to claim 1, wherein the first surface state, the second surface state, and the third surface state are respectively an oxygen rich state, a nitrogen rich state, One of the carbon rich state and the silicon rich state. 如申請專利範圍第1項所述之製造方法,其中該第三表面狀態係與該第一表面狀態或該第二表面狀態相同。 The manufacturing method of claim 1, wherein the third surface state is the same as the first surface state or the second surface state. 如申請專利範圍第1項所述之製造方法,其中在一第一操作壓力下提供該預處理氣體,在一第二操作壓力下提供該反應氣體,該第二操作壓力係小於該第一操作壓力。 The manufacturing method of claim 1, wherein the pretreatment gas is supplied at a first operating pressure, the reaction gas is supplied at a second operating pressure, and the second operating pressure is less than the first operation. pressure. 如申請專利範圍第4項所述之製造方法,其中該 第一操作壓力係為大於0.2托(torr)。 The manufacturing method of claim 4, wherein the method The first operating pressure is greater than 0.2 torr. 如申請專利範圍第1項所述之製造方法,其中該預處理氣體係為氨氣(NH3)。 The manufacturing method of claim 1, wherein the pretreatment gas system is ammonia (NH 3 ). 如申請專利範圍第1項所述之製造方法,其中該膜層係以化學氣相沈積法(chemical vapor deposition,CVD)或原子層沈積法(atomic layer deposition,ALD)形成於該些基板之該些表面上。 The manufacturing method of claim 1, wherein the film layer is formed on the substrates by chemical vapor deposition (CVD) or atomic layer deposition (ALD). Some on the surface. 如申請專利範圍第7項所述之製造方法,其中該反應氣體包括一第一反應氣體及一第二反應氣體,以原子層沈積法形成該膜層之步驟包括:曝露該第一基板之該第一表面及該第二基板之該第二表面於該第一反應氣體中,該第一反應氣體包括一氮源前驅物(nitrogen source precursor);吹洗(purge)該第一基板之該第一表面及該第二基板之該第二表面以排淨該第一反應氣體;曝露該第一基板之該第一表面及該第二基板之該第二表面於該第二反應氣體中,該第二反應氣體與該第一反應氣體係為不同;吹洗該第一基板之該第一表面及該第二基板之該第二表面以排淨該第二反應氣體;以及重複上述曝露及吹洗之步驟直到形成該膜層,其中該膜層係為一氮化物層。 The manufacturing method of claim 7, wherein the reaction gas comprises a first reaction gas and a second reaction gas, and the step of forming the film layer by atomic layer deposition comprises: exposing the first substrate The first surface and the second surface of the second substrate are in the first reaction gas, the first reaction gas includes a nitrogen source precursor; and the first substrate is purged a surface and the second surface of the second substrate to drain the first reactive gas; exposing the first surface of the first substrate and the second surface of the second substrate to the second reactive gas, The second reaction gas is different from the first reaction gas system; the first surface of the first substrate and the second surface of the second substrate are purged to drain the second reaction gas; and the exposure and blowing are repeated The step of washing is until the film layer is formed, wherein the film layer is a nitride layer. 如申請專利範圍第1項所述之製造方法,更包括:提供一第三基板於該批次製程系統中,其中該第三基板係以一第一表面相鄰於該第一基板之該第一表面或該 第二基板之該第二表面,該第三基板之該第一表面具有一第四表面狀態,該第四表面狀態係不同於該第一表面狀態和該第二表面狀態之至少其中之一;提供該預處理氣體於該第三基板之該第一表面上,以轉換該第四表面狀態至該第三表面狀態;以及提供該反應氣體,以形成該膜層於該第三基板之具有該第三表面狀態之該第一表面上。 The manufacturing method of claim 1, further comprising: providing a third substrate in the batch processing system, wherein the third substrate is adjacent to the first substrate by a first surface a surface or the The second surface of the second substrate, the first surface of the third substrate has a fourth surface state, the fourth surface state being different from at least one of the first surface state and the second surface state; Providing the pretreatment gas on the first surface of the third substrate to convert the fourth surface state to the third surface state; and providing the reactive gas to form the film layer on the third substrate The first surface is on the first surface. 如申請專利範圍第9項所述之製造方法,其中該第四表面狀態係為富氧狀態、富氮狀態、富碳狀態及富矽狀態之其中之一。 The manufacturing method according to claim 9, wherein the fourth surface state is one of an oxygen-rich state, a nitrogen-rich state, a carbon-rich state, and a rich state. 一種氮化物層的製造方法,包括:提供一第一基板及一第二基板,其中該第一基板係以一第一表面相鄰於該第二基板之一第二表面,該第一基板之該第一表面具有一第一表面狀態,該第二基板之該第二表面具有一第二表面狀態,該第一表面狀態和該第二表面狀態係為不同;在一第一操作壓力下,曝露(expose)該第一基板之該第一表面及該第二基板之該第二表面於一含氮預處理氣體(nitrogen-containing pretreatment gas)中;以及在一第二操作壓力下,以原子層沈積法形成該氮化物層於該第一基板之該第一表面及該第二基板之該第二表面上,其中該第二操作壓力係小於該第一操作壓力。 A method for manufacturing a nitride layer, comprising: providing a first substrate and a second substrate, wherein the first substrate is adjacent to a second surface of the second substrate by a first surface, the first substrate The first surface has a first surface state, and the second surface of the second substrate has a second surface state, the first surface state and the second surface state being different; under a first operating pressure, Exposing the first surface of the first substrate and the second surface of the second substrate in a nitrogen-containing pretreatment gas; and atomizing at a second operating pressure The layer deposition method forms the nitride layer on the first surface of the first substrate and the second surface of the second substrate, wherein the second operating pressure is less than the first operating pressure. 如申請專利範圍第11項所述之製造方法,其中該第一操作壓力係為大於0.2托。 The manufacturing method of claim 11, wherein the first operating pressure is greater than 0.2 Torr. 如申請專利範圍第11項所述之製造方法,其中 該第二操作壓力係為大約0.2托。 The manufacturing method of claim 11, wherein The second operating pressure is about 0.2 Torr. 如申請專利範圍第11項所述之製造方法,其中該含氮預處理氣體係為氨氣。 The manufacturing method according to claim 11, wherein the nitrogen-containing pretreatment gas system is ammonia gas. 如申請專利範圍第11項所述之製造方法,其中該第一基板之該第一表面及該第二基板之該第二表面係曝露於該含氮預處理氣體中約10分鐘。 The manufacturing method of claim 11, wherein the first surface of the first substrate and the second surface of the second substrate are exposed to the nitrogen-containing pretreatment gas for about 10 minutes. 如申請專利範圍第11項所述之製造方法,其中以原子層沈積法形成該氮化物層之步驟包括:曝露該第一基板之該第一表面及該第二基板之該第二表面於一第一反應氣體中,該第一反應氣體包括一氮源前驅物;吹洗該第一基板之該第一表面及該第二基板之該第二表面以排淨該第一反應氣體;曝露該第一基板之該第一表面及該第二基板之該第二表面於一第二反應氣體中,該第二反應氣體與該第一反應氣體係為不同;吹洗該第一基板之該第一表面及該第二基板之該第二表面以排淨該第二反應氣體;以及重複上述曝露及吹洗之步驟直到形成該氮化物層。 The manufacturing method of claim 11, wherein the step of forming the nitride layer by atomic layer deposition comprises: exposing the first surface of the first substrate and the second surface of the second substrate to In the first reaction gas, the first reaction gas includes a nitrogen source precursor; the first surface of the first substrate and the second surface of the second substrate are purged to drain the first reaction gas; The first surface of the first substrate and the second surface of the second substrate are in a second reaction gas, the second reaction gas is different from the first reaction gas system; and the first substrate is purged a surface and the second surface of the second substrate to drain the second reactive gas; and repeating the steps of exposing and purging until the nitride layer is formed. 如申請專利範圍第16項所述之製造方法,其中該第二反應氣體包括一矽源前驅物(silicon source precursor)。 The manufacturing method of claim 16, wherein the second reactive gas comprises a silicon source precursor. 如申請專利範圍第16項所述之製造方法,其中以原子層沈積法形成該氮化物層之步驟更包括:曝露該第一基板之該第一表面及該第二基板之該第 二表面於一第三反應氣體中,該第三反應氣體與該第一反應氣體和該第二反應氣體係為不同;以及吹洗該第一基板之該第一表面及該第二基板之該第二表面以排淨該第三反應氣體。 The manufacturing method of claim 16, wherein the step of forming the nitride layer by atomic layer deposition further comprises: exposing the first surface of the first substrate and the second substrate The second surface is in a third reaction gas, the third reaction gas is different from the first reaction gas and the second reaction gas system; and the first surface of the first substrate and the second substrate are purged The second surface is to drain the third reactive gas. 如申請專利範圍第18項所述之製造方法,其中該第三反應氣體包括一碳源前驅物(carbon source precursor)。 The manufacturing method of claim 18, wherein the third reactive gas comprises a carbon source precursor. 如申請專利範圍第11項所述之製造方法,更包括:提供一第三基板,該第三基板係以一第一表面相鄰於該第一基板之該第一表面或該第二基板之該第二表面,該第三基板之該第一表面具有一第四表面狀態,該第四表面狀態係不同於該第一表面狀態和該第二表面狀態之至少其中之一;在該第一操作壓力下,曝露該第三基板之該第一表面於該含氮預處理氣體中;以及在該第二操作壓力下,以原子層沈積法形成該氮化物層於該第三基板之該第一表面上。 The manufacturing method of claim 11, further comprising: providing a third substrate, wherein the first substrate is adjacent to the first surface of the first substrate or the second substrate The second surface, the first surface of the third substrate has a fourth surface state, the fourth surface state being different from at least one of the first surface state and the second surface state; Exposing the first surface of the third substrate to the nitrogen-containing pretreatment gas under operating pressure; and forming the nitride layer on the third substrate by atomic layer deposition at the second operating pressure On the surface.
TW102101665A 2013-01-16 2013-01-16 Method of forming film on different surfaces TW201430909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102101665A TW201430909A (en) 2013-01-16 2013-01-16 Method of forming film on different surfaces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102101665A TW201430909A (en) 2013-01-16 2013-01-16 Method of forming film on different surfaces

Publications (1)

Publication Number Publication Date
TW201430909A true TW201430909A (en) 2014-08-01

Family

ID=51797006

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102101665A TW201430909A (en) 2013-01-16 2013-01-16 Method of forming film on different surfaces

Country Status (1)

Country Link
TW (1) TW201430909A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10396256B2 (en) 2017-08-18 2019-08-27 Industrial Technology Research Institute Electronic device package
US10468469B2 (en) 2017-08-18 2019-11-05 Industrial Technology Research Institute Transparent display device with wall structure
US10644259B2 (en) 2017-08-18 2020-05-05 Industrial Technology Research Institute Package of electronic device and display panel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10396256B2 (en) 2017-08-18 2019-08-27 Industrial Technology Research Institute Electronic device package
US10468469B2 (en) 2017-08-18 2019-11-05 Industrial Technology Research Institute Transparent display device with wall structure
TWI678771B (en) * 2017-08-18 2019-12-01 財團法人工業技術研究院 Package of electronic device and display panel
US10644259B2 (en) 2017-08-18 2020-05-05 Industrial Technology Research Institute Package of electronic device and display panel

Similar Documents

Publication Publication Date Title
US11996284B2 (en) Formation of SiOCN thin films
US10510529B2 (en) Formation of SiOCN thin films
US20210351031A1 (en) Selective deposition using hydrophobic precursors
TWI707971B (en) Combined anneal and selective deposition process
US10658181B2 (en) Method of spacer-defined direct patterning in semiconductor fabrication
TWI751151B (en) Combined anneal and selective deposition systems
TWI702303B (en) Process for deposition of titanium oxynitride for use in integrated circuit fabrication
TWI525658B (en) Engineering boron-rich films for lithographic mask applications
US20200075333A1 (en) PECVD Tungsten Containing Hardmask Films And Methods Of Making
US20070111545A1 (en) Methods of forming silicon dioxide layers using atomic layer deposition
TWI737612B (en) Deposition methods for uniform and conformal hybrid titanium oxide films
US20140199854A1 (en) Method of forming film on different surfaces
US10957532B2 (en) Method and apparatus for deposition of low-k films
TWI483396B (en) Semiconductor device with a vertical gate and fabrication thereof
TW201430909A (en) Method of forming film on different surfaces
JP2008047785A (en) Manufacturing method of semiconductor device
TW201829828A (en) TiN TiN-based film and TiN-based film forming method
KR20220058636A (en) film formation method
KR20170056386A (en) Method of manufacturing thin layer of molybdenum disulfide
TWI804787B (en) Manufacturing method of passivation film
US8980742B2 (en) Method of manufacturing multi-level metal thin film and apparatus for manufacturing the same
US20060240678A1 (en) Method of forming a LP-CVD oxide film without oxidizing an underlying metal film
KR100830997B1 (en) Method of fabricating silicon epitaxial wafer with improved flatness
US20240186139A1 (en) Substrate processing method
US20220130657A1 (en) Method for fabricating semiconductor device having etch resistive nitride layer