TW201430393A - Polarization conversion mechanism and method - Google Patents

Polarization conversion mechanism and method Download PDF

Info

Publication number
TW201430393A
TW201430393A TW102103555A TW102103555A TW201430393A TW 201430393 A TW201430393 A TW 201430393A TW 102103555 A TW102103555 A TW 102103555A TW 102103555 A TW102103555 A TW 102103555A TW 201430393 A TW201430393 A TW 201430393A
Authority
TW
Taiwan
Prior art keywords
display device
touch display
layer
crystal layer
crystal
Prior art date
Application number
TW102103555A
Other languages
Chinese (zh)
Other versions
TWI493230B (en
Inventor
run-wen Zhong
Original Assignee
Tera Xtal Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tera Xtal Technology Corp filed Critical Tera Xtal Technology Corp
Priority to TW102103555A priority Critical patent/TWI493230B/en
Priority to US13/834,630 priority patent/US9075201B2/en
Priority to DE201310006095 priority patent/DE102013006095A1/en
Publication of TW201430393A publication Critical patent/TW201430393A/en
Application granted granted Critical
Publication of TWI493230B publication Critical patent/TWI493230B/en

Links

Landscapes

  • Polarising Elements (AREA)

Abstract

Disclosed is a polarization conversion mechanism and method, which is suitable for a display device and/or a touch screen display environment. A crystal layer utilizes a birefringent crystal glass for changing phase delay effect in accordance with crystal axial angle thereof. The crystal layer has phase delay characteristics for linear polarization so that the crystal layer can replace a quarter wavelength (1/4 λ) retarder for transforming linear polarization to circular polarized light or elliptical polarized light and emitting the light; emergent light of the display module of the display device and/or touch screen display top-down permeates a polarizing layer with linear polarizer function and the crystal layer to be transformed to a circular polarized light or an elliptical polarized light and emitted.

Description

一種偏光轉換機制及方法 Polarization conversion mechanism and method

本發明係有關於一種偏光轉換機制及方法,更詳而言之,係有關於一種適用於顯示裝置及/或觸控顯示裝置環境的偏光轉換機制及方法,晶體層係採用雙折射晶體玻璃,對於線偏光具有相位延遲的特性,因而晶體層可替代一四分之一波長(1/4 λ)延遲片、且將線偏光轉變成圓偏光或橢圓偏光並出射。 The present invention relates to a polarization conversion mechanism and method, and more particularly to a polarization conversion mechanism and method suitable for use in a display device and/or a touch display device environment, wherein the crystal layer is a birefringent crystal glass. For linear polarization, the phase retardation is such that the crystal layer can replace a quarter-wavelength (1/4 λ) retarder and convert the linearly polarized light into circularly polarized or elliptically polarized light and exit.

用於顯示裝置/觸控顯示裝置/行動裝置之顯示螢幕及/或觸控螢幕,為了在強光環境下的可視性,通常都會貼上線偏光片或圓偏光片(線偏光片加一四分之一波長延遲片)以減少外界光的干擾;而現行的做法是在顯示螢幕及/或觸控螢幕外部貼上結構依序為四分之一波長延遲片/線偏振片/四分之一波長延遲片的偏光片。 Display screens and/or touch screens for display devices/touch display devices/mobile devices. For visibility in bright light environments, linear polarizers or circular polarizers are usually attached (line polarizers plus one quarter) One wavelength retarder) to reduce external light interference; the current practice is to attach a structure to the outside of the display screen and/or the touch screen as a quarter-wave retarder/line polarizer/quarter. A polarizer for a wavelength retarder.

偏光理論,一光線通過一波長相延遲板,其波長相位差(δ) 定義為;其中,n為相延遲板之折射率;d為相延遲板之厚度;λ為通 過相延遲板之光波波長,當δ=π時稱之為線偏光;時稱之為圓偏光; 其餘相位差稱之為橢圓偏光。當之奇數倍,其相位差符合, 此相延遲板稱之為四分之一波長延遲板,線偏光通過此相延遲板會轉成圓偏光出射,當雙折射晶體之△n=n e -n o ,其△n取代n,符合亦稱四分之一波長延遲板;由此可知一可見光波長(λ)包含400nm至700nm之線偏光通過一四分之一波長延遲板,除其中單一波長符合為一圓偏光, 其餘波長皆為接近圓偏光之橢圓偏光,而橢圓偏光通過線偏光片時,會隨線偏角度之變化而有光通量之變化。 In the theory of polarization, a light passes through a wavelength phase retardation plate, and its wavelength phase difference (δ) is defined as Where n is the refractive index of the phase retardation plate; d is the thickness of the phase retardation plate; λ is the wavelength of the light wave passing through the phase retardation plate, and is called linearly polarized light when δ=π; It is called circularly polarized light; the remaining phase difference is called elliptically polarized light. when An odd multiple, the phase difference is consistent The phase retardation plate is called a quarter-wave retardation plate, and the linearly polarized light is converted into a circularly polarized light through the phase retardation plate. When the birefringent crystal is Δ n = n e - n o , its Δ n is substituted for n . meets the Also known as a quarter-wave retardation plate; it can be seen that a visible wavelength ( λ ) contains a linear polarization of 400 nm to 700 nm through a quarter-wave retardation plate, except that a single wavelength is matched. For a circularly polarized light, the remaining wavelengths are elliptically polarized light close to the circularly polarized light, and when the elliptically polarized light passes through the linear polarizer, there is a change in luminous flux with a change in the line deflection angle.

現今隨著科技的進步,以往太陽眼鏡吸收減光以對抗強烈太 陽光照射的方式,逐漸被應用線偏振片技術使光強度衰減一半左右的技術所取代,而當使用者配戴具有線偏振片的太陽眼鏡觀看出射光為線偏振光的顯示裝置時,若顯示裝置出射的線偏振光偏振方向與太陽眼鏡線偏振片的起偏方向垂直時,將使得該顯示裝置的畫面無法辨識,線偏振光偏振方向與線偏振片的起偏方向帶有夾角時,也會有部份光分量無法通過線偏振片,而使顯示裝置的可視度下降。因而發展出於線偏振片之一面上加設波長延遲片之方式,透過波長延遲片將顯示裝置的出射光由線偏光轉變為圓偏光或橢圓偏光,由於圓偏光或橢圓偏光對線偏振片的透過率很高,可避免上述顯示裝置光線無法通過偏光太陽眼鏡或可視度不佳的問題。 Nowadays, with the advancement of technology, the past sunglasses absorb the light to counter the strong too The way of sunlight is gradually replaced by the technique of applying linear polarizing plate technology to attenuate the light intensity by about half. When the user wears a pair of sunglasses with a linear polarizing plate to view the display device that emits light as linearly polarized light, if it is displayed When the polarization direction of the linearly polarized light emitted by the device is perpendicular to the direction of polarization of the polarizing plate of the sunglasses, the screen of the display device is unrecognizable, and when the polarization direction of the linearly polarized light is at an angle with the direction of polarization of the linear polarizing plate, Some of the light components cannot pass through the linear polarizing plate, and the visibility of the display device is lowered. Therefore, a method of adding a wavelength retarder on one side of the linear polarizing plate is developed, and the emitted light of the display device is converted from linearly polarized light to circularly polarized light or elliptically polarized light by a wavelength retarder, due to circularly polarized or elliptically polarized light to the linear polarizing plate. The high transmittance can avoid the problem that the above display device cannot pass the polarized sunglasses or the visibility is poor.

換言之,由以往採吸收減光方式的太陽眼鏡而進步到使用線偏光片或圓偏光片的太陽眼鏡,如此為了使戴著太陽眼鏡可看到螢幕顯示的資訊,顯示螢幕之偏光片採用圓偏光片(線偏振片加一四分之一波長延遲片或是四分之一波長延遲片加線偏振片加四分之一波長延遲片)使入射光反射降低及出射光由線偏光轉成圓偏光,如此不僅厚度增加、偏光片之成本亦增加不少同時因層數增加導致光強度的衰減。 In other words, from the conventional sunglasses that absorb the dimming method, the sunglasses that use the line polarizer or the circular polarizer are advanced, so that the polarizer of the display screen is circularly polarized so that the information displayed on the screen can be seen wearing the sunglasses. A sheet (a linear polarizer plus a quarter-wave retarder or a quarter-wave retarder plus a linear polarizer plus a quarter-wave retarder) reduces incident light reflection and converts the emitted light from linear to circular Polarization, so that not only the thickness is increased, but also the cost of the polarizer is increased. At the same time, the light intensity is attenuated due to the increase in the number of layers.

線偏振片常見的另一個應用方式是設置於一般中小型(觸控)顯示裝置,配合設置於線偏振片內部的波長相延遲片使入射的自然光依序通過線偏振片與波長相延遲片而轉變為圓偏光或橢圓偏光,由於圓偏光或橢圓偏光被顯示裝置內元件間的介面反射後旋轉方向會與入射光相反,通過原先的波長相延遲片後變成偏振方向與線偏振片起偏方向垂直的線偏光而無法通過線偏振片,因此,可減少反射光的射出量,降低對顯示裝置本身出射光的干擾,而可提升於強光環境下的可視性。 Another common application method of the linear polarizer is to provide a small-sized (touch) display device, and a wavelength phase retarder disposed inside the linear polarizer to sequentially pass the incident natural light through the linear polarizer and the wavelength phase retarder. Converted to circularly polarized or elliptically polarized light, since the circularly polarized or elliptically polarized light is reflected by the interface between the elements in the display device, the direction of rotation will be opposite to the incident light, and the original wavelength phase retarder will become the polarization direction and the polarization direction of the linear polarizer. Since the vertical line is polarized and cannot pass through the linear polarizing plate, the amount of reflected light can be reduced, the interference of the light emitted from the display device itself can be reduced, and the visibility in a strong light environment can be improved.

是故,就目前之顯示裝置/觸控顯示裝置而言,多會採用於一線偏振片外部之一面上設置一波長相延遲片以使出射光轉變為圓偏光、於線偏振片內部設置一波長相延遲片以減少反射光或於一線偏振片內部與外部各設置一波長相延遲片以同時將出射光轉變為圓偏光並減少反射光干擾之設計,然,需設置的線偏振片與波長延遲片層數越多、厚度越厚、成本越高且光線的利用率越低。如此,如何使螢幕厚度降低且減少使用價格高昂的偏光片成了一需克服的課題。 Therefore, in the current display device/touch display device, a wavelength phase retarder is disposed on one side of the outer polarizing plate to convert the emitted light into circularly polarized light, and a wavelength is disposed inside the linear polarizing plate. Phase retarder to reduce reflected light or to provide a wavelength phase retarder inside and outside the linear polarizer to simultaneously convert the outgoing light into circularly polarized light and reduce the interference of reflected light. However, the linear polarizer and wavelength delay are required. The more the number of layers, the thicker the thickness, the higher the cost, and the lower the utilization of light. Thus, how to reduce the thickness of the screen and reduce the use of expensive polarizers has become a problem to be overcome.

所以如何尋求一種適用於顯示裝置及/或觸控顯示裝置環境的偏光轉換技術,可產生相延遲效果,對於線偏光具有相延遲特性,可無須利用四分之一波長延遲膜,而使線偏光轉成圓偏光或橢圓偏光而出射,可使用結構簡單之偏光片,使螢幕厚度降低且減少使用價格高昂的偏光片,均是待解決的課題。 Therefore, how to find a polarization conversion technology suitable for the environment of a display device and/or a touch display device can generate a phase delay effect, and has a phase delay characteristic for the linearly polarized light, so that the linear polarization can be eliminated without using a quarter-wave retardation film. When it is converted into circular or elliptically polarized light, it is a problem to be solved by using a polarizer having a simple structure to reduce the thickness of the screen and reducing the use of a polarizing plate which is expensive to use.

本發明之主要目的便是在於提供一種適用於顯示裝置及/或觸控顯示裝置環境的偏光轉換機制及方法,晶體層係採用雙折射晶體玻璃,可隨晶軸軸向角度而產生相位延遲效果變化,由於晶體層對於線偏光具有相位延遲的特性,因而晶體層可替代一四分之一波長延遲片、且將線偏光轉變成圓偏光或橢圓偏光並出射,而透過晶體軸向角度與線偏光片偏光方向的控制,可製造出在偏光視窗下,不隨顯示裝置垂直或水平擺放方向的改變而造成顯示亮度變化的顯示裝置及/或觸控顯示裝置之玻璃視窗顯示。 The main purpose of the present invention is to provide a polarization conversion mechanism and method suitable for the environment of a display device and/or a touch display device. The crystal layer is a birefringent crystal glass, which can produce a phase delay effect along the axial angle of the crystal axis. Variation, because the crystal layer has a phase retardation characteristic for linearly polarized light, the crystal layer can replace a quarter-wave retarder and convert the linearly polarized light into circularly polarized or elliptically polarized light and exit through the crystal axial angle and line. The control of the polarizing direction of the polarizer can produce a glass window display of the display device and/or the touch display device which does not change with the vertical or horizontal display direction of the display device under the polarizing window.

本發明之又一目的便是在於提供一種適用於顯示裝置及/或觸控顯示裝置環境的偏光轉換機制及方法,可無須利用四分之一波長延遲膜,而是利用晶體層使線偏光轉成圓偏光或橢圓偏光,可使用結構簡單之偏光片,進而減薄顯示裝置及/或觸控顯示裝置之厚度,減少使用價格高昂的偏光片,降低成本支出,透過晶體軸向角度與線偏光片偏光方向的控制,可製造出在偏光視窗下,不隨顯示裝置垂直或水平擺放方向的改變而造成顯示亮度變化的玻璃視窗顯示。 Another object of the present invention is to provide a polarization conversion mechanism and method suitable for use in a display device and/or a touch display device environment, without using a quarter-wave retardation film, but using a crystal layer to polarize the line. For circular or elliptically polarized light, a polarizer with a simple structure can be used to reduce the thickness of the display device and/or the touch display device, reduce the use of expensive polarizers, and reduce the cost, through the crystal axial angle and linear polarization. The control of the polarization direction of the sheet can produce a glass window display that changes the display brightness without changing the vertical or horizontal direction of the display device under the polarizing window.

根據以上所述之目的,本發明之偏光轉換機制係包含晶體層、以及偏光層,在此,該偏光轉換機制係可應用於顯示裝置及/或觸控顯示裝置,例如,LCD顯示裝置,OLED顯示裝置,Out-Cell LCD觸控顯示裝置,In-Cell LCD觸控顯示裝置,On-Cell LCD觸控顯示裝置,In-Cell/On-Cell hydride LCD觸控顯示裝置,Out-Cell OLED觸控顯示裝置,On-Cell OLED觸控顯示裝置,In-Cell OLED觸控顯示裝置。 According to the above, the polarization conversion mechanism of the present invention comprises a crystal layer and a polarizing layer. Here, the polarization conversion mechanism can be applied to a display device and/or a touch display device, for example, an LCD display device, and an OLED. Display device, Out-Cell LCD touch display device, In-Cell LCD touch display device, On-Cell LCD touch display device, In-Cell/On-Cell hydride LCD touch display device, Out-Cell OLED touch Display device, On-Cell OLED touch display device, In-Cell OLED touch display device.

晶體層,該晶體層係採用雙折射晶體玻璃,可隨晶軸軸向角 度而產生相延遲效果變化,由於晶體層對於線偏光具有相位延遲的特性,因而晶體層可替代一四分之一波長延遲片,並讓穿過該晶體層的光線具有波長之相延遲,且可將線偏光轉變成圓偏光或橢圓偏光並出射;在此,晶體層使用具特定軸向且△n=n e -n o ≠0之雙折射晶體玻璃當作玻璃視窗,雙折射晶體玻璃為一藍寶石玻璃層或一石英玻璃層,其中,該藍寶石玻璃層之晶體軸向可為C軸、M軸、A軸或R軸,石英玻璃使用左旋結構、右旋結構之C軸晶面。 a crystal layer which uses a birefringent crystal glass to change the phase retardation effect according to the axial angle of the crystal axis. Since the crystal layer has a phase retardation characteristic for linearly polarized light, the crystal layer can replace a quarter wavelength. Delaying the sheet and letting the light passing through the crystal layer have a phase retardation of the wavelength, and converting the linearly polarized light into circularly polarized or elliptically polarized light and exiting; here, the crystal layer is used with a specific axial direction and Δn=n e - The birefringent crystal glass of n o ≠0 is used as a glass window, and the birefringent crystal glass is a sapphire glass layer or a quartz glass layer, wherein the crystal direction of the sapphire glass layer can be C axis, M axis, A axis or For the R-axis, the quartz glass uses a C-axis crystal face of a left-handed structure and a right-handed structure.

偏光層,該偏光層至少具有一線偏振片以具有線偏振片功能,顯示裝置及/或觸控顯示裝置之顯示模組的出射光,依序通過具有線偏振片功能之偏光層、以及晶體層,而轉變為一圓偏振光或一橢圓偏振光並予以出射,而增加出射光之可視度;在此,由於該晶體層係採用雙折射晶體玻璃而具有波長相延遲片的特性,因而晶體層可替代一四分之一波長延遲片,換言之,於該晶體層與該線偏振片之間無須具有如習知技術之一四分之一波長延遲片。 a polarizing layer having at least one linear polarizing plate to have a linear polarizing plate function, and the light emitted from the display module of the display device and/or the touch display device sequentially passes through a polarizing layer having a linear polarizing plate function and a crystal layer And converting into a circularly polarized light or an elliptically polarized light and emitting it, thereby increasing the visibility of the emitted light; here, since the crystal layer is made of a birefringent crystal glass and has the characteristics of a wavelength phase retarder, the crystal layer can be Instead of a quarter-wave retarder, in other words, there is no need to have a quarter-wave retarder as in the prior art between the crystal layer and the linear polarizer.

另,於一些實施例中,就減少入射顯示裝置及/或觸控顯示裝置的入射光反射而言,偏光層可為一圓偏振片而具有圓偏振片功能,為圓偏振片之該偏光層除包含一線偏振片之外,復可包含一四分之一波長延遲片,在此,該線偏振片係位於晶體層與該四分之一波長延遲片之間,且射入顯示裝置及/或觸控顯示裝置的入射光依序通過該線偏振片與該四分之一波長延遲片後,將轉變為一圓偏振光或一橢圓偏振光,並將於反射介面產生出反射光,而反射光先通過該四分之一波長延遲片而成為偏光方向與該線偏振片起偏方向垂直的線偏光,而無法通過該線偏振片,藉此,可降低反射光之強度,而具有降低反射之功能。 In addition, in some embodiments, in order to reduce incident light reflection of the incident display device and/or the touch display device, the polarizing layer may be a circular polarizing plate and have a circular polarizing plate function, and the polarizing layer is divided by the circular polarizing plate. In addition to the one-line polarizer, the complex may comprise a quarter-wave retarder, wherein the linear polarizer is between the crystal layer and the quarter-wave retarder and is incident on the display device and/or The incident light of the touch display device sequentially passes through the linear polarizing plate and the quarter-wave retarder to be converted into a circularly polarized light or an elliptically polarized light, and the reflected light is generated on the reflective interface, and the reflected light is reflected. First, the quarter-wave retarder is used to form a linearly polarized light whose polarization direction is perpendicular to the direction in which the linear polarizing plate is polarized, and the linear polarizing film cannot pass through, thereby reducing the intensity of the reflected light and reducing the reflection. Features.

進行本發明之偏光轉換方法流程時,首先,準備具有顯示模組的顯示裝置,及/或,具有觸控/顯示模組的觸控顯示裝置;接著,於顯示裝置顯示模組上,及/或,觸控顯示裝置的觸控/顯示模組上,設置具有晶體層、以及偏光層的偏光轉換機制。 When performing the process of the polarization conversion method of the present invention, first, a display device having a display module, and/or a touch display device having a touch/display module; and then, on the display device display module, and/or Alternatively, a touch conversion mechanism having a crystal layer and a polarizing layer is disposed on the touch/display module of the touch display device.

為使熟悉該項技藝人士瞭解本發明之目的、特徵及功效,茲藉由下述具體實施例,並配合所附之圖式,對本發明詳 加說明如後: In order to make the person skilled in the art understand the purpose, features and effects of the present invention, the following detailed description and the accompanying drawings Add a note like this:

1‧‧‧偏光轉換機制 1‧‧‧ Polarization conversion mechanism

10‧‧‧液晶顯示模組 10‧‧‧LCD module

101‧‧‧彩色濾光玻璃 101‧‧‧Color filter glass

102‧‧‧彩色濾光片 102‧‧‧Color filters

103‧‧‧液晶層 103‧‧‧Liquid layer

104‧‧‧薄膜電晶體電路 104‧‧‧Thin-film transistor circuit

105‧‧‧玻璃基板 105‧‧‧ glass substrate

106‧‧‧線偏振片 106‧‧‧Line polarizer

107‧‧‧背光源 107‧‧‧Backlight

14‧‧‧觸控模組 14‧‧‧Touch Module

140‧‧‧Y極透明導電膜 140‧‧‧Y transparent conductive film

1401‧‧‧反射介面 1401‧‧‧reflection interface

142‧‧‧絕緣層 142‧‧‧Insulation

144‧‧‧X極透明導電膜 144‧‧‧X transparent conductive film

2‧‧‧晶體層 2‧‧‧ crystal layer

3‧‧‧偏光層 3‧‧‧ polarizing layer

30‧‧‧頂部發光OLED顯示模組 30‧‧‧Top OLED display module

300‧‧‧薄膜電晶體電路 300‧‧‧Thin-film transistor circuit

302‧‧‧OLED層 302‧‧‧OLED layer

304‧‧‧反射層 304‧‧‧reflective layer

306‧‧‧基板 306‧‧‧Substrate

31‧‧‧線偏振片 31‧‧‧Line polarizer

32‧‧‧四分之一波長延遲片 32‧‧‧ Quarter-wave retarder

33‧‧‧線偏振片 33‧‧‧Line polarizer

34‧‧‧觸控模組 34‧‧‧Touch Module

340‧‧‧Y極透明導電膜 340‧‧‧Y transparent conductive film

3401‧‧‧反射介面 3401‧‧‧reflection interface

342‧‧‧絕緣層 342‧‧‧Insulation

344‧‧‧X極透明導電膜 344‧‧‧X transparent conductive film

35‧‧‧線偏振片 35‧‧‧Line polarizer

36‧‧‧四分之一波長延遲片 36‧‧‧ Quarter-wave retarder

37‧‧‧線偏振片 37‧‧‧Line polarizer

4、5、6、7‧‧‧觸控顯示裝置 4, 5, 6, 7‧‧‧ touch display devices

L1‧‧‧出射光 L1‧‧‧Out of light

L2‧‧‧入射光 L2‧‧‧ incident light

L3‧‧‧反射光 L3‧‧‧ reflected light

11、12、21、22、41、42、51、52、61、62‧‧‧步驟 11, 12, 21, 22, 41, 42, 51, 52, 61, 62 ‧ ‧ steps

第1圖為一示意圖,用以顯示說明本發明之偏光轉換機制的架構、以及運作情況;第2圖為一流程圖,用以顯示說明利用如第1圖中之本發明之偏光轉換機制以進行偏光轉換方法的流程步驟;第3圖為一示意圖,用以顯示說明本發明之偏光轉換機制的一實施例的架構、以及運作情況;第4圖為一流程圖,用以顯示說明利用如第3圖中之本發明之偏光轉換機制的實施例以進行偏光轉換方法的流程步驟;第5圖為一示意圖,用以顯示說明本發明之偏光轉換機制的又一實施例的架構、以及運作情況;第6圖為一流程圖,用以顯示說明利用如第5圖中之本發明之偏光轉換機制的實施例以進行偏光轉換方法的流程步驟;第7圖為一示意圖,用以顯示說明本發明之偏光轉換機制的再一實施例的架構、以及運作情況;第8圖為一流程圖,用以顯示說明利用如第7圖中之本發明之偏光轉換機制的實施例以進行偏光轉換方法的流程步驟;第9圖為一示意圖,用以顯示說明本發明之偏光轉換機制的另一實施例的架構、以及運作情況;以及第10圖為一流程圖,用以顯示說明利用如第9圖中之本發明之偏光轉換機制的實施例以進行偏光轉換方法的流程步驟。 1 is a schematic diagram showing the architecture and operation of the polarization conversion mechanism of the present invention; and FIG. 2 is a flow chart for illustrating the use of the polarization conversion mechanism of the present invention as shown in FIG. The flow chart of the polarization conversion method is performed; FIG. 3 is a schematic diagram showing the architecture and operation of an embodiment of the polarization conversion mechanism of the present invention; and FIG. 4 is a flow chart for illustrating the use of The embodiment of the polarization conversion mechanism of the present invention in FIG. 3 is a flow step of performing a polarization conversion method; and FIG. 5 is a schematic diagram showing the architecture and operation of still another embodiment of the polarization conversion mechanism of the present invention. 6 is a flow chart for showing a flow chart for explaining a polarization conversion method using an embodiment of the polarization conversion mechanism of the present invention as shown in FIG. 5; FIG. 7 is a schematic view for explaining the explanation The architecture and operation of a further embodiment of the polarization conversion mechanism of the present invention; FIG. 8 is a flow chart for illustrating the use of the present invention as shown in FIG. Embodiments of the conversion mechanism to perform the flow steps of the polarization conversion method; FIG. 9 is a schematic diagram showing the architecture and operation of another embodiment of the polarization conversion mechanism of the present invention; and FIG. 10 is a flow Figure for illustrating the flow steps of an embodiment for performing a polarization conversion method using an embodiment of the polarization conversion mechanism of the present invention as in Figure 9.

第1圖為一示意圖,用以顯示說明本發明之偏光轉換機制的架構、以及運作情況。如第1圖中所示之,本發明之偏光轉換機制1係包含晶體層2、以及偏光層3,在此,該偏光轉換機制1係可應用於顯示裝置及/或觸控顯示裝置,例如,LCD顯示裝置,OLED顯示裝置,Out-Cell LCD 觸控顯示裝置,In-Cell LCD觸控顯示裝置,On-Cell LCD觸控顯示裝置,In-Cell/On-Cell hydride LCD觸控顯示裝置,Out-Cell OLED觸控顯示裝置,On-Cell OLED觸控顯示裝置,In-Cell OLED觸控顯示裝置。 Figure 1 is a schematic diagram showing the architecture and operation of the polarization conversion mechanism of the present invention. As shown in FIG. 1 , the polarization conversion mechanism 1 of the present invention includes a crystal layer 2 and a polarizing layer 3 . Here, the polarization conversion mechanism 1 can be applied to a display device and/or a touch display device, for example. , LCD display device, OLED display device, Out-Cell LCD Touch display device, In-Cell LCD touch display device, On-Cell LCD touch display device, In-Cell/On-Cell hydride LCD touch display device, Out-Cell OLED touch display device, On-Cell OLED Touch display device, In-Cell OLED touch display device.

晶體層2,該晶體層2係採用雙折射晶體玻璃,可隨晶軸軸向角度而產生相延遲效果變化,由於晶體層2對於線偏光具有波長相位延遲的特性,因而晶體層2可替代一四分之一波長延遲片,不僅可提升硬度及耐磨防刮之特性,並讓穿過該晶體層2的光線產生相延遲,將線偏光轉變成圓偏光或橢圓偏光並出射。 The crystal layer 2 is a birefringent crystal glass, which can change the phase retardation effect according to the axial angle of the crystal axis. Since the crystal layer 2 has a wavelength phase retardation characteristic for the linearly polarized light, the crystal layer 2 can be replaced by a crystal layer 2 The quarter-wave retarder not only enhances the hardness and wear-resistant scratch resistance, but also causes phase delay of the light passing through the crystal layer 2, converting the linearly polarized light into circularly polarized or elliptically polarized light and exiting.

偏光層3,該偏光層3至少具有一線偏振片31,顯示裝置及/或觸控顯示裝置之顯示模組的出射光,依序通過偏光層3的該線偏振片31、以及晶體層2,而轉變為一圓偏振光或一橢圓偏振光並予以出射,而增加出射光之可視度;在此,由於晶體層2係採用雙折射晶體玻璃而具有波長相延遲的特性,因而晶體層2可替代一四分之一波長延遲片,換言之,於該晶體層2與該線偏振片31之間無須具有如習知技術之一四分之一波長延遲片。 The polarizing layer 3 has at least one linear polarizing plate 31, and the light emitted from the display module of the display device and/or the touch display device sequentially passes through the linear polarizing plate 31 of the polarizing layer 3 and the crystal layer 2, And converted into a circularly polarized light or an elliptically polarized light and emitted, thereby increasing the visibility of the outgoing light; here, since the crystal layer 2 is made of birefringent crystal glass and has a wavelength phase retardation characteristic, the crystal layer 2 can be replaced. A quarter-wave retarder, in other words, between the crystal layer 2 and the linear polarizer 31, does not have to have a quarter-wave retarder as in the prior art.

另,於一些實施例中,就減少顯示裝置及/或觸控顯示裝置的入射光反射而言,偏光層3可為一圓偏振片,為圓偏振片之該偏光層3除包含一線偏振片31之外,復可包含一四分之一波長延遲片32,在此,該線偏振片31係位於晶體層2與該四分之一波長延遲片32之間,且入射顯示裝置及/或觸控顯示裝置的入射光依序通過該線偏振片31與該四分之一波長延遲片32後,將轉變為一圓偏振光或一橢圓偏振光,並將於反射介面產生出反射光,而反射光先通過該四分之一波長延遲片32而成為偏光方向與該線偏振片31起偏方向垂直的線偏光,而無法通過該線偏振片31,藉此,可降低反射光之強度,而具抗反射之功能。 In addition, in some embodiments, in order to reduce the reflection of incident light of the display device and/or the touch display device, the polarizing layer 3 may be a circular polarizing plate, and the polarizing layer 3 of the circular polarizing plate includes a linear polarizing plate 31. In addition, the complex may include a quarter-wave retarder 32, where the linear polarizer 31 is located between the crystal layer 2 and the quarter-wave retarder 32, and is incident on the display device and/or touch. The incident light of the control display device sequentially passes through the linear polarizing plate 31 and the quarter-wave retarder 32, and then converts into a circularly polarized light or an elliptically polarized light, and generates reflected light on the reflective interface, and reflects The light first passes through the quarter-wave retarder 32 to become a linearly polarized light whose polarization direction is perpendicular to the direction in which the linear polarizing film 31 is deflected, and cannot pass through the linear polarizing plate 31, whereby the intensity of the reflected light can be reduced. With anti-reflection function.

換言之,配合設置於線偏振片31之一面的四分之一波長延遲片32,使入射顯示裝置及/或觸控顯示裝置的入射光,依序通過該線偏振片31與該四分之一波長延遲片32後,將轉變為圓偏光或橢圓偏光,由於為圓偏光或為橢圓偏光的入射光被顯示裝置及/或觸控顯示裝置內元件間的反射介面反射後所產生出之反射光的旋轉方向會與入射光相反,而反射光通 過四分之一波長延遲片32後變成偏振方向與線偏振片31起偏方向垂直的線偏光而無法通過線偏振片31,因此,可減少反射光的射出量,降低對顯示裝置及/或觸控顯示裝置本身出射光的干擾,而可提升於強光環境下的可視性。 In other words, the quarter-wave retarder 32 disposed on one side of the linear polarizer 31 is used to sequentially pass the incident light of the incident display device and/or the touch display device through the linear polarizer 31 and the quarter. After the wavelength retarder 32, it will be converted into circularly polarized or elliptically polarized light, and the reflected light generated by the reflective device which is circularly polarized or elliptically polarized is reflected by the reflective interface between the display device and/or the components in the touch display device. The direction of rotation will be opposite to the incident light, and the reflected light will pass. After passing through the quarter-wave retarder 32, the linearly polarized light having a direction perpendicular to the polarizing direction of the linear polarizing plate 31 is polarized and cannot pass through the linear polarizing plate 31. Therefore, the amount of reflected light can be reduced, and the display device and/or the display device can be reduced. The touch display device itself emits light interference, and can improve the visibility in a strong light environment.

在此,晶體層2可使用具特定軸向且△n=n e -n o ≠0之雙折射晶體玻璃當作玻璃透光視窗,而晶體層之厚度係為大於100倍的透光波長;雙折射晶體玻璃為一藍寶石玻璃層或一石英玻璃層,其中,該藍寶石玻璃層之晶體軸向可為C軸、M軸、A軸或R軸,石英玻璃使用左旋結構、右旋結構之C軸晶面,端視實際施行情況而定;偏光層3可使用結構簡單的偏光片以降低成本,且偏光片可採正面貼附及背面貼附,及/或,該偏光層3於施行時,可依據實際設計需求,而省略抗刮、防眩的功能層可以省略,端視實際施行情況而定。 Here, the crystal layer 2 can make the birefringent crystal glass having a specific axial direction and Δn=n e -n o ≠0 as a glass light transmission window, and the thickness of the crystal layer is a light transmission wavelength greater than 100 times; The birefringent crystal glass is a sapphire glass layer or a quartz glass layer, wherein the crystal of the sapphire glass layer can be C-axis, M-axis, A-axis or R-axis, and the quartz glass uses a left-handed structure and a right-handed structure. The axial plane depends on the actual implementation; the polarizing layer 3 can use a simple polarizer to reduce the cost, and the polarizer can be attached to the front side and the back side, and/or the polarizing layer 3 is applied. According to the actual design requirements, the functional layer that omits scratch resistance and anti-glare can be omitted, depending on the actual implementation.

第2圖為一流程圖,用以顯示說明利用如第1圖中之本發明之偏光轉換機制以進行偏光轉換方法的流程步驟。如第2圖中所示之,首先,於步驟11,準備具有顯示模組的顯示裝置,及/或,具有觸控/顯示模組的觸控顯示裝置,並進到步驟12。 Fig. 2 is a flow chart for showing the flow of steps for performing a polarization conversion method using the polarization conversion mechanism of the present invention as shown in Fig. 1. As shown in FIG. 2, first, in step 11, a display device having a display module and/or a touch display device having a touch/display module is prepared, and the process proceeds to step 12.

於步驟12,於顯示裝置顯示模組上,及/或,觸控顯示裝置的觸控/顯示模組上,設置具有晶體層、以及偏光層的偏光轉換機制。 In step 12, a polarization conversion mechanism having a crystal layer and a polarizing layer is disposed on the display device display module and/or on the touch/display module of the touch display device.

第3圖為一示意圖,用以顯示說明本發明之偏光轉換機制的一實施例的架構、以及運作情況。如第3圖中所示之,本發明之偏光轉換機制1係包含晶體層2、以及偏光層3,在此,該偏光轉換機制1係可應用於觸控顯示裝置4,例如,外嵌式(On-Cell)LCD觸控顯示裝置。 Figure 3 is a schematic diagram showing the architecture and operation of an embodiment of the polarization conversion mechanism of the present invention. As shown in FIG. 3, the polarization conversion mechanism 1 of the present invention includes a crystal layer 2 and a polarizing layer 3. Here, the polarization conversion mechanism 1 can be applied to the touch display device 4, for example, an external embedded type. (On-Cell) LCD touch display device.

觸控顯示裝置4係包含一液晶顯示模組10、一觸控模組14、以及偏光轉換機制1,其中,液晶顯示模組10由上而下係包含一彩色濾光玻璃101、一彩色濾光片102、一液晶層103、一薄膜電晶體電路104、一玻璃基板105、一線偏振片106以及一背光源107;位於液晶顯示模組10之上的觸控模組14(由上至下)則包含一Y極透明導電膜(ITO)140、一絕緣層142以及一X極透明導電膜144;覆蓋觸控模組14的偏光轉換機制1係包含晶體層2、以及偏光層3,在此,為了減少入射到LCD觸控顯示裝置4之入射光 L2的反射,其中,該偏光層3為一圓偏振片,為圓偏振片之該偏光層3除包含一線偏振片31之外,復包含一四分之一波長延遲片32。 The touch display device 4 includes a liquid crystal display module 10, a touch module 14, and a polarization conversion mechanism 1. The liquid crystal display module 10 includes a color filter glass 101 and a color filter from top to bottom. a light sheet 102, a liquid crystal layer 103, a thin film transistor circuit 104, a glass substrate 105, a linear polarizing film 106, and a backlight 107; the touch module 14 located above the liquid crystal display module 10 (from top to bottom) a Y-transparent conductive film (ITO) 140, an insulating layer 142, and an X-pole transparent conductive film 144; the polarizing conversion mechanism 1 covering the touch module 14 includes a crystal layer 2, and a polarizing layer 3, Therefore, in order to reduce incident light incident on the LCD touch display device 4 The reflection of L2, wherein the polarizing layer 3 is a circular polarizing plate, and the polarizing layer 3 which is a circular polarizing plate comprises a quarter-wave retarder 32 in addition to the linear polarizing plate 31.

觸控顯示裝置4的出射光L1,由下而上,通過偏光層3之線偏振片31、以及晶體層2,而轉變為一圓偏振光或一橢圓偏振光的出射光L1並予以射出,可增加出射光L1之可視度;在此,由於晶體層2係採用雙折射晶體玻璃而具有波長相延遲的特性,因而晶體層2可替代一四分之一波長延遲片,換言之,於該晶體層2與該線偏振片31之間無須具有如習知技術之一四分之一波長延遲片。 The emitted light L1 of the touch display device 4 is converted into a circularly polarized light or an elliptically polarized outgoing light L1 from the bottom to the top, through the linear polarizing plate 31 of the polarizing layer 3, and the crystal layer 2, and is emitted. Increasing the visibility of the outgoing light L1; here, since the crystal layer 2 is characterized by a wavelength phase retardation using a birefringent crystal glass, the crystal layer 2 can replace a quarter-wave retarder, in other words, in the crystal layer There is no need to have a quarter-wave retarder as in the prior art between the linear polarizing plate 31 and the linear polarizing plate 31.

晶體層2,該晶體層2係採用雙折射晶體玻璃而具有波長相延遲的特性,可隨晶軸軸向角度而產生相延遲效果變化,由於晶體層2對於經過線偏振片31之為線偏光的出射光L1具有相位延遲的特性,因而晶體層2可替代一四分之一波長延遲片,並讓穿過該晶體層2的出射光L1具有四分之一波長之相延遲,且可將為線偏光的出射光L1轉變成為圓偏光或為橢圓偏光的出射光L1並予以射出。 The crystal layer 2 is a birefringent crystal glass having a wavelength phase retardation characteristic, which can change a phase retardation effect with respect to the axial angle of the crystal axis, since the crystal layer 2 is linearly polarized for passing through the linear polarizing plate 31. The outgoing light L1 has a phase retardation characteristic, so that the crystal layer 2 can replace a quarter-wave retarder and let the outgoing light L1 passing through the crystal layer 2 have a phase delay of a quarter wavelength, and The outgoing light L1 that is linearly polarized is converted into circularly polarized light or emitted light L1 that is elliptically polarized and emitted.

偏光層3,該偏光層3除包含一線偏振片31之外,復可包含一四分之一波長延遲片32,在此,該線偏振片31係位於晶體層2與該四分之一波長延遲片32之間,且入射觸控顯示裝置4的入射光L2,於通過該線偏振片31與該四分之一波長延遲片32後,將轉變為一圓偏振光或一橢圓偏振光,並將於Y極透明導電膜(ITO)140之反射介面1401產生出反射光L3,而反射光L3先通過該四分之一波長延遲片32而成為偏光方向與該線偏振片31起偏方向垂直的線偏光,因而無法通過該線偏振片31,藉此,可降低反射光L3之強度,而具有抗反射之功能。 The polarizing layer 3, in addition to the linear polarizing plate 31, may further comprise a quarter-wave retarder 32, wherein the linear polarizing film 31 is located in the crystal layer 2 and the quarter-wavelength The incident light L2 incident between the retardation sheets 32 and incident on the touch display device 4 is converted into a circularly polarized light or an elliptically polarized light after passing through the linear polarizing plate 31 and the quarter-wave retarder 32. The reflected light L3 is generated by the reflective interface 1401 of the Y-transparent conductive film (ITO) 140, and the reflected light L3 first passes through the quarter-wave retarder 32 to become a polarization direction perpendicular to the linear polarizing plate 31. The line is polarized and thus cannot pass through the linear polarizing plate 31, whereby the intensity of the reflected light L3 can be reduced, and the anti-reflection function can be achieved.

換言之,配合設置於線偏振片31之一面的四分之一波長延遲片32,使入射觸控顯示裝置4的入射光L2,依序通過該線偏振片31與該四分之一波長延遲片32後,將轉變為圓偏光或橢圓偏光,由於為圓偏光或為橢圓偏光的入射光L2被觸控顯示裝置4內的反射介面1401反射後所產生出之反射光L3的旋轉方向會與入射光L2相反,而反射光L3通過四分之一波長延遲片32後變成偏振方向與線偏振片31起偏方向垂直的線偏光而無法通過線偏振片31,因此,可減少反射光的射出量,降低對觸控顯示裝置4 本身出射光L1的干擾,而可提升於強光環境下的可視性。 In other words, the incident light L2 incident on the touch display device 4 is sequentially passed through the linear polarizing plate 31 and the quarter-wave retarder in cooperation with the quarter-wave retarder 32 disposed on one surface of the linear polarizing film 31. After 32, it will be converted into circularly polarized or elliptically polarized light, and the direction of rotation of the reflected light L3 generated by the incident light L2 which is circularly polarized or elliptically polarized is reflected by the reflective interface 1401 in the touch display device 4 The light L2 is reversed, and the reflected light L3 passes through the quarter-wave retarder 32, and becomes linearly polarized in a direction perpendicular to the polarization direction of the linear polarizing plate 31, and cannot pass through the linear polarizing plate 31. Therefore, the amount of reflected light can be reduced. , reducing the touch display device 4 It emits the interference of the light L1 itself, and can improve the visibility in a strong light environment.

在此,晶體層2可使用具特定軸向且△n=n e -n o ≠0之雙折射晶體玻璃當作玻璃透光視窗,而晶體層之厚度係為大於100倍的透光波長;雙折射晶體玻璃為一藍寶石玻璃層或一石英玻璃層,其中,該藍寶石玻璃層之晶體軸向可為C軸、M軸、A軸或R軸,石英玻璃使用左旋結構、右旋結構之C軸晶面,端視實際施行情況而定;偏光層3可使用結構簡單的偏光片以降低成本,且偏光片可採正面貼附及背面貼附,及/或,該偏光層3於施行時,可依據實際設計需求,而省略抗刮、防眩的功能層可以省略,端視實際施行情況而定。 Here, the crystal layer 2 can make the birefringent crystal glass having a specific axial direction and Δn=n e -n o ≠0 as a glass light transmission window, and the thickness of the crystal layer is a light transmission wavelength greater than 100 times; The birefringent crystal glass is a sapphire glass layer or a quartz glass layer, wherein the crystal of the sapphire glass layer can be C-axis, M-axis, A-axis or R-axis, and the quartz glass uses a left-handed structure and a right-handed structure. The axial plane depends on the actual implementation; the polarizing layer 3 can use a simple polarizer to reduce the cost, and the polarizer can be attached to the front side and the back side, and/or the polarizing layer 3 is applied. According to the actual design requirements, the functional layer that omits scratch resistance and anti-glare can be omitted, depending on the actual implementation.

於本實施例中,偏光轉換機制1係應用於觸控顯示裝置4,而觸控顯示裝置4為外嵌式(On-Cell)LCD觸控顯示裝置,然,對於外掛式(Out-Cell)LCD觸控顯示裝置、內嵌式(In-Cell)LCD觸控顯示裝置而言,其理相同、類似於本實施例中所述之,是故,在此不再贅述;又,雖偏光轉換機制1係應用於觸控顯示裝置4,然,對於偏光轉換機制1係應用於LCD顯示裝置而言,其理相同、類似於本實施例中所述之,是故,在此不再贅述。 In this embodiment, the polarization conversion mechanism 1 is applied to the touch display device 4, and the touch display device 4 is an On-Cell LCD touch display device. However, for the out-cell (Out-Cell) The LCD touch display device and the in-cell (In-Cell) LCD touch display device are the same, similar to those described in the embodiment, and are not described herein again; The mechanism 1 is applied to the touch display device 4. However, the polarized light conversion mechanism 1 is applied to the LCD display device, which is the same as that described in the embodiment, and will not be described herein.

第4圖為一流程圖,用以顯示說明利用如第3圖中之本發明之偏光轉換機制的實施例以進行偏光轉換方法的流程步驟。如第4圖中所示之,首先,於步驟21,準備具有液晶顯示模組10、觸控模組14的觸控顯示裝置4,其中,該觸控模組14係位於液晶顯示模組10之上,並進到步驟22。 Fig. 4 is a flow chart for showing the flow of steps for performing a polarization conversion method using an embodiment of the polarization conversion mechanism of the present invention as shown in Fig. 3. As shown in FIG. 4, first, in step 21, a touch display device 4 having a liquid crystal display module 10 and a touch module 14 is prepared, wherein the touch module 14 is located in the liquid crystal display module 10. Above, and proceed to step 22.

於步驟22,於觸控顯示裝置4之觸控模組14上,設置具有晶體層2、以及偏光層3的偏光轉換機制1。 In step 22, a polarization conversion mechanism 1 having a crystal layer 2 and a polarizing layer 3 is disposed on the touch module 14 of the touch display device 4.

第5圖為一示意圖,用以顯示說明本發明之偏光轉換機制的又一實施例的架構、以及運作情況。如第5圖中所示之,本發明之偏光轉換機制1係包含晶體層2、以及偏光層3,在此,該偏光轉換機制1係可應用於觸控顯示裝置5,例如,外嵌式(On-Cell)LCD觸控顯示裝置。 Figure 5 is a schematic diagram showing the architecture and operation of yet another embodiment of the polarization conversion mechanism of the present invention. As shown in FIG. 5, the polarization conversion mechanism 1 of the present invention includes a crystal layer 2 and a polarizing layer 3. Here, the polarization conversion mechanism 1 can be applied to the touch display device 5, for example, an external embedded type. (On-Cell) LCD touch display device.

觸控顯示裝置5係包含一液晶顯示模組10、一觸控模組14、以及偏光轉換機制1,其中,液晶顯示模組10由上而下係包含一彩色濾光玻璃101、一彩色濾光片102、一液晶層103、一薄膜電晶體電路104、一玻 璃基板105、一線偏振片106以及一背光源107;位於液晶顯示模組10之上的觸控模組14(由上至下)則包含一Y極透明導電膜(ITO)140、一絕緣層142以及一X極透明導電膜144;覆蓋觸控模組14的偏光轉換機制1係包含晶體層2、以及偏光層3,其中,該偏光層3為一線偏振片33。 The touch display device 5 includes a liquid crystal display module 10, a touch module 14, and a polarization conversion mechanism 1. The liquid crystal display module 10 includes a color filter glass 101 and a color filter from top to bottom. Light sheet 102, a liquid crystal layer 103, a thin film transistor circuit 104, a glass a glass substrate 105, a linear polarizing film 106, and a backlight 107; the touch module 14 (top to bottom) on the liquid crystal display module 10 includes a Y-transparent conductive film (ITO) 140 and an insulating layer. 142 and an X-pole transparent conductive film 144; the polarization conversion mechanism 1 covering the touch module 14 includes a crystal layer 2 and a polarizing layer 3, wherein the polarizing layer 3 is a linear polarizing plate 33.

觸控顯示裝置5的出射光L1,由下而上通過線偏振片33、以及晶體層2,而轉變為一圓偏振光或一橢圓偏振光的出射光L1並予以射出,可增加出射光L1之可視度;在此,由於晶體層2係採用雙折射晶體玻璃而具有波長相延遲片的特性,因而晶體層2可替代一四分之一波長延遲片,換言之,於該晶體層2與該線偏振片33之間無須具有如習知技術之一四分之一波長延遲片。 The emitted light L1 of the touch display device 5 passes through the linear polarizing plate 33 and the crystal layer 2 from bottom to top, and is converted into a circularly polarized light or an elliptically polarized outgoing light L1, and is emitted to increase the outgoing light L1. Visibility; here, since the crystal layer 2 is a birefringent crystal glass and has the characteristics of a wavelength phase retarder, the crystal layer 2 can replace a quarter-wave retarder, in other words, the crystal layer 2 and the line It is not necessary to have one quarter-wave retarder as in the prior art between the polarizing plates 33.

晶體層2,該晶體層2係採用雙折射晶體玻璃而具有波長相延遲的特性,可隨晶軸軸向角度而產生相延遲效果變化,由於晶體層2對於經過線偏振片33之為線偏光的出射光L1具有相位延遲的特性,因而晶體層2可替代一四分之一波長延遲片,並讓穿過該晶體層2的出射光L1具有四分之一波長之相延遲,且可將為線偏光的出射光L1轉變成為圓偏光或為橢圓偏光的出射光L1並予以射出。 The crystal layer 2 is a birefringent crystal glass having a wavelength phase retardation characteristic, which can change a phase retardation effect depending on the axial angle of the crystal axis, since the crystal layer 2 is linearly polarized for passing through the linear polarizing plate 33. The outgoing light L1 has a phase retardation characteristic, so that the crystal layer 2 can replace a quarter-wave retarder and let the outgoing light L1 passing through the crystal layer 2 have a phase delay of a quarter wavelength, and The outgoing light L1 that is linearly polarized is converted into circularly polarized light or emitted light L1 that is elliptically polarized and emitted.

在此,晶體層2可使用具特定軸向且△n=n e -n o ≠0之雙折射晶體玻璃當作玻璃透光視窗,而晶體層之厚度係為大於100倍的透光波長;雙折射晶體玻璃為一藍寶石玻璃層或一石英玻璃層,其中,該藍寶石玻璃層之晶體軸向可為C軸、M軸、A軸或R軸,石英玻璃使用左旋結構、右旋結構之C軸晶面,端視實際施行情況而定;偏光層3可使用結構簡單的偏光片以降低成本,且偏光片可採正面貼附及背面貼附,及/或,該偏光層3於施行時,可依據實際設計需求,而省略抗刮、防眩的功能層可以省略,端視實際施行情況而定。 Here, the crystal layer 2 can make the birefringent crystal glass having a specific axial direction and Δn=n e -n o ≠0 as a glass light transmission window, and the thickness of the crystal layer is a light transmission wavelength greater than 100 times; The birefringent crystal glass is a sapphire glass layer or a quartz glass layer, wherein the crystal of the sapphire glass layer can be C-axis, M-axis, A-axis or R-axis, and the quartz glass uses a left-handed structure and a right-handed structure. The axial plane depends on the actual implementation; the polarizing layer 3 can use a simple polarizer to reduce the cost, and the polarizer can be attached to the front side and the back side, and/or the polarizing layer 3 is applied. According to the actual design requirements, the functional layer that omits scratch resistance and anti-glare can be omitted, depending on the actual implementation.

於本實施例中,偏光轉換機制1係應用於觸控顯示裝置5,而觸控顯示裝置5為外嵌式(On-Cell)LCD觸控顯示裝置,然,對於外掛式(Out-Cell)LCD觸控顯示裝置、內嵌式(In-Cell)LCD觸控顯示裝而言,其理相同、類似於本實施例中所述之,是故,在此不再贅述;又,雖偏光轉換機制1係應用於觸控顯示裝置5,然,對於偏光轉換機制1係應用於LCD顯示裝 置而言,其理相同、類似於本實施例中所述之,是故,在此不再贅述。 In this embodiment, the polarization conversion mechanism 1 is applied to the touch display device 5, and the touch display device 5 is an On-Cell LCD touch display device. However, for the out-cell (Out-Cell) The LCD touch display device and the in-cell (In-Cell) LCD touch display device are the same, similar to those described in the embodiment, and are not described herein again; Mechanism 1 is applied to the touch display device 5, however, for the polarization conversion mechanism 1 is applied to the LCD display device The reason is the same, similar to that described in the embodiment, and is not described here.

第6圖為一流程圖,用以顯示說明利用如第5圖中之本發明之偏光轉換機制的實施例以進行雙折射方法的流程步驟。如第6圖中所示之,首先,於步驟41,準備具有液晶顯示模組10、觸控模組14的觸控顯示裝置5,其中,該觸控模組14係位於液晶顯示模組10之上,並進到步驟42。 Figure 6 is a flow chart showing the flow steps for carrying out the birefringence method using an embodiment of the polarization conversion mechanism of the present invention as shown in Figure 5. As shown in FIG. 6 , firstly, in step 41, the touch display device 5 having the liquid crystal display module 10 and the touch module 14 is prepared. The touch module 14 is located in the liquid crystal display module 10 . Above, and proceed to step 42.

於步驟42,於觸控顯示裝置5之觸控模組14上,設置具有晶體層2、以及偏光層3的偏光轉換機制1。 In step 42 , a polarization conversion mechanism 1 having a crystal layer 2 and a polarizing layer 3 is disposed on the touch module 14 of the touch display device 5 .

第7圖為一示意圖,用以顯示說明本發明之偏光轉換機制的再一實施例的架構、以及運作情況。如第7圖中所示之,本發明之偏光轉換機制1係包含晶體層2、以及偏光層3,在此,該偏光轉換機制1係可應用於觸控顯示裝置6,例如,內嵌式(In-Cell)頂部發光有機發光二極體OLED觸控顯示裝置。 Figure 7 is a schematic diagram showing the architecture and operation of a further embodiment of the polarization conversion mechanism of the present invention. As shown in FIG. 7, the polarization conversion mechanism 1 of the present invention includes a crystal layer 2 and a polarizing layer 3. Here, the polarization conversion mechanism 1 can be applied to the touch display device 6, for example, an in-line type. (In-Cell) top-emitting organic light-emitting diode OLED touch display device.

觸控顯示裝置6係包含一頂部發光(Top emission)有機發光二極體(OLED)顯示模組30、一觸控模組34、以及偏光轉換機制1,其中,頂部發光OLED顯示模組30由上而下係包含一薄膜電晶體電路300、一OLED層302、一反射層304以及一基板306;位於頂部發光OLED顯示模組30之下的觸控模組34(由上至下)則包含一Y極透明導電膜(ITO)340、一絕緣層342以及一X極透明導電膜344;覆蓋觸控模組34的偏光轉換機制1係包含晶體層2、以及偏光層3,在此,為了減少入射到觸控顯示裝置6之入射光L2的反射,其中,該偏光層3為一圓偏振片,為圓偏振片之該偏光層3除包含一線偏振片35之外,復包含一四分之一波長延遲片36。 The touch display device 6 includes a top emission organic light emitting diode (OLED) display module 30, a touch module 34, and a polarization conversion mechanism 1. The top light emitting OLED display module 30 is composed of The upper and lower portions include a thin film transistor circuit 300, an OLED layer 302, a reflective layer 304, and a substrate 306; the touch module 34 (from top to bottom) under the top emitting OLED display module 30 includes a Y-transparent conductive film (ITO) 340, an insulating layer 342, and an X-pole transparent conductive film 344; the polarizing conversion mechanism 1 covering the touch module 34 includes a crystal layer 2 and a polarizing layer 3, where The reflection of the incident light L2 incident on the touch display device 6 is reduced, wherein the polarizing layer 3 is a circular polarizing plate, and the polarizing layer 3 which is a circular polarizing plate includes a quarter-polarizing plate 35, and includes a quarter. A wavelength retarder 36.

觸控顯示裝置6的出射光L1,由下而上通過偏光層3之線偏振片35、以及晶體層2,而轉變為一圓偏振光或一橢圓偏振光的出射光L1並予以射出,可增加出射光L1之可視度;在此,由於晶體層2係採用雙折射晶體玻璃而具有波長相延遲的特性,因而晶體層2可替代一四分之一波長延遲片,換言之,於該晶體層2與該線偏振片35之間無須具有如習知技術之一四分之一波長延遲片。 The outgoing light L1 of the touch display device 6 passes through the linear polarizing plate 35 of the polarizing layer 3 and the crystal layer 2 from bottom to top, and is converted into a circularly polarized light or an elliptically polarized outgoing light L1 and emitted, which can be increased. The visibility of the outgoing light L1; here, since the crystal layer 2 is characterized by a wavelength phase retardation using a birefringent crystal glass, the crystal layer 2 can replace a quarter-wave retarder, in other words, the crystal layer 2 There is no need to have a quarter-wave retarder as in the prior art with the linear polarizing plate 35.

晶體層2,該晶體層2係採用雙折射晶體玻璃而具有波長相延遲的特性,可隨晶軸軸向角度而產生相延遲效果變化,由於晶體層2對 於經過線偏振片35之為線偏光的出射光L1具有相位延遲的特性,因而晶體層2可替代一四分之一波長延遲片,並讓穿過該晶體層2的出射光L1具有四分之一波長之相延遲,且可將為線偏光的出射光L1轉變成為圓偏光或為橢圓偏光的出射光L1並予以射出。 Crystal layer 2, which uses birefringent crystal glass and has a wavelength phase retardation characteristic, which can change phase retardation effect with the axial angle of the crystal axis, due to the crystal layer 2 pair The outgoing light L1 which is linearly polarized through the linear polarizing plate 35 has a phase retardation characteristic, so that the crystal layer 2 can replace a quarter-wave retarder and let the outgoing light L1 passing through the crystal layer 2 have four points. The phase of one of the wavelengths is delayed, and the outgoing light L1 that is linearly polarized can be converted into circularly polarized light or emitted light L1 that is elliptically polarized and emitted.

偏光層3,該偏光層3除包含一線偏振片35之外,復可包含一四分之一波長延遲片36,在此,該線偏振片35係位於晶體層2與該四分之一波長延遲片36之間,且入射觸控顯示裝置6的入射光L2,於通過該線偏振片35與該四分之一波長延遲片36後,將轉變為一圓偏振光或一橢圓偏振光,並將於Y極透明導電膜(ITO)340之反射介面3401產生出反射光L3,而反射光L3先通過該四分之一波長延遲片36而成為偏光方向與該線偏振片35起偏方向垂直的線偏光,因而無法通過該線偏振片35,藉此,可降低反射光L3之強度,而具有抗反射之功能。 The polarizing layer 3, in addition to the linear polarizing plate 35, may further comprise a quarter-wave retarder 36, wherein the linear polarizing plate 35 is located in the crystal layer 2 and the quarter-wavelength The incident light L2 incident between the retardation sheets 36 and incident on the touch display device 6 is converted into a circularly polarized light or an elliptically polarized light after passing through the linear polarizing plate 35 and the quarter-wave retarder 36. The reflected light L3 is generated by the reflective interface 3401 of the Y-transparent conductive film (ITO) 340, and the reflected light L3 first passes through the quarter-wave retarder 36 to become a polarization direction perpendicular to the linear polarizing plate 35. The line is polarized and thus cannot pass through the linear polarizing plate 35, whereby the intensity of the reflected light L3 can be reduced and the anti-reflection function can be achieved.

換言之,配合設置於線偏振片35之一面的四分之一波長延遲片36,使入射觸控顯示裝置6的入射光L2,依序通過該線偏振片35與該四分之一波長延遲片36後,將轉變為圓偏光或橢圓偏光,由於為圓偏光或為橢圓偏光的入射光L2被觸控顯示裝置6內的反射介面3401反射後所產生出之反射光L3的旋轉方向會與入射光L2相反,而反射光L3通過四分之一波長延遲片36後變成偏振方向與線偏振片35起偏方向垂直的線偏光而無法通過線偏振片35,因此,可減少反射光的射出量,降低對觸控顯示裝置6本身出射光L1的干擾,而可提升於強光環境下的可視性。 In other words, the quarter-wave retarder 36 disposed on one side of the linear polarizer 35 is used to sequentially pass the incident light L2 incident on the touch display device 6 through the linear polarizer 35 and the quarter-wave retarder. After 36, it will be converted into circularly polarized or elliptically polarized light, and the direction of rotation of the reflected light L3 generated by the incident light L2 which is circularly polarized or elliptically polarized is reflected by the reflective interface 3401 in the touch display device 6 The light L2 is reversed, and the reflected light L3 passes through the quarter-wave retarder 36, and becomes linearly polarized in a direction perpendicular to the polarization direction of the linear polarizing plate 35, and cannot pass through the linear polarizing plate 35. Therefore, the amount of reflected light can be reduced. The interference of the light L1 emitted from the touch display device 6 itself is reduced, and the visibility in a strong light environment can be improved.

於本實施例中,偏光轉換機制1係應用於觸控顯示裝置6,而觸控顯示裝置6為內嵌式(In-Cell)頂部發光有機發光二極體OLED觸控顯示裝置,然,對於外掛式(Out-Cell)OLED觸控顯示裝置、內嵌式(In-Cell)OLED觸控顯示裝而言,其理相同、類似於本實施例中所述之,是故,在此不再贅述;又,雖偏光轉換機制1係應用於觸控顯示裝置6,然,對於偏光轉換機制1係應用於OLED顯示裝置而言,其理相同、類似於本實施例中所述之,是故,在此不再贅述。 In the present embodiment, the polarization conversion mechanism 1 is applied to the touch display device 6, and the touch display device 6 is an in-cell (In-Cell) top-emitting organic light-emitting diode OLED touch display device. The external-type (In-Cell) OLED touch display device and the in-cell (In-Cell) OLED touch display device are the same, similar to those described in the embodiment, and are no longer used herein. Further, although the polarization conversion mechanism 1 is applied to the touch display device 6, the polarization conversion mechanism 1 is applied to the OLED display device, which is the same as the one described in the embodiment. , will not repeat them here.

第8圖為一流程圖,用以顯示說明利用如第7圖中之本發明之偏光轉換機制的實施例以進行偏光轉換方法的流程步驟。如第8圖中所 示之,首先,於步驟51,準備具有頂部發光OLED顯示模組30、觸控模組34的觸控顯示裝置6,其中,該觸控模組34係位於頂部發光OLED顯示模組30之下,並進到步驟52。 Fig. 8 is a flow chart for showing the flow of steps for performing a polarization conversion method using an embodiment of the polarization conversion mechanism of the present invention as shown in Fig. 7. As shown in Figure 8 First, in step 51, the touch display device 6 having the top-emitting OLED display module 30 and the touch module 34 is prepared. The touch module 34 is located under the top-emitting OLED display module 30. And proceeds to step 52.

於步驟52,於觸控顯示裝置6之觸控模組34上,設置具有晶體層2、以及偏光層3的偏光轉換機制1,其中,偏光層3係包含一線偏振片35、以及一四分之一波長延遲片36。 In step 52, a polarizing conversion mechanism 1 having a crystal layer 2 and a polarizing layer 3 is disposed on the touch module 34 of the touch display device 6, wherein the polarizing layer 3 includes a linear polarizing plate 35 and a quarter. One of the wavelength retarders 36.

第9圖為一示意圖,用以顯示說明本發明之偏光轉換機制的另一實施例的架構、以及運作情況。如第9圖中所示之,本發明之偏光轉換機制1係包含晶體層2、以及偏光層3,在此,該偏光轉換機制1係可應用於觸控顯示裝置7,例如,內嵌式(In-Cell)頂部發光有機發光二極體OLED觸控顯示裝置。 Figure 9 is a schematic diagram showing the architecture and operation of another embodiment of the polarization conversion mechanism of the present invention. As shown in FIG. 9, the polarization conversion mechanism 1 of the present invention includes a crystal layer 2 and a polarizing layer 3. Here, the polarization conversion mechanism 1 can be applied to the touch display device 7, for example, an in-line type. (In-Cell) top-emitting organic light-emitting diode OLED touch display device.

觸控顯示裝置7係包含一頂部發光有機發光二極體(OLED)顯示模組30、一觸控模組34、以及偏光轉換機制1,其中,頂部發光OLED顯示模組30由上而下係包含一薄膜電晶體電路300、一OLED層302、一反射層304以及一基板306;位於頂部發光OLED顯示模組30之下的觸控模組34(由上至下)則包含一Y極透明導電膜(ITO)340、一絕緣層342以及一X極透明導電膜344;覆蓋觸控模組34的偏光轉換機制1係包含晶體層2、以及偏光層3,其中,該偏光層3為一線偏振片37。 The touch display device 7 includes a top-emitting organic light-emitting diode (OLED) display module 30, a touch module 34, and a polarization conversion mechanism 1. The top-emitting OLED display module 30 is connected from top to bottom. The invention comprises a thin film transistor circuit 300, an OLED layer 302, a reflective layer 304 and a substrate 306. The touch module 34 (from top to bottom) under the top emitting OLED display module 30 comprises a Y-transparent a conductive film (ITO) 340, an insulating layer 342, and an X-pole transparent conductive film 344; the polarization conversion mechanism 1 covering the touch module 34 includes a crystal layer 2 and a polarizing layer 3, wherein the polarizing layer 3 is a line Polarizing plate 37.

觸控顯示裝置7的出射光L1,由下而上通過為線偏振片37的偏光層3、以及晶體層2,而轉變為一圓偏振光或一橢圓偏振光的出射光L1並予以射出,可增加出射光L1之可視度;在此,由於晶體層2係採用雙折射晶體玻璃而具有波長相延遲片的特性,因而晶體層2可替代一四分之一波長延遲片,換言之,於該晶體層2與該線偏振片37之間無須具有如習知技術之一四分之一波長延遲片。 The light L1 emitted from the touch display device 7 passes through the polarizing layer 3 which is the linear polarizing plate 37 and the crystal layer 2 from bottom to top, and is converted into a circularly polarized light or an elliptically polarized light L1 and emitted. Increasing the visibility of the outgoing light L1; here, since the crystal layer 2 is made of a birefringent crystal glass and has the characteristics of a wavelength phase retarder, the crystal layer 2 can replace a quarter-wave retarder, in other words, the crystal There is no need to have a quarter-wave retarder as in the prior art between the layer 2 and the linear polarizing plate 37.

晶體層2,該晶體層2係採用雙折射晶體玻璃而具有波長相延遲的特性,可隨晶軸軸向角度而產生相延遲效果變化,由於晶體層2對於經過線偏振片37之為線偏光的出射光L1具有相位延遲的特性,因而晶體層2可替代一四分之一波長延遲片,並讓穿過該晶體層2的出射光L1具有四分之一波長之相延遲,且可將為線偏光的出射光L1轉變成為圓偏光或 為橢圓偏光的出射光L1並予以射出。 The crystal layer 2 is a birefringent crystal glass having a wavelength phase retardation characteristic, and a phase retardation effect change occurs depending on the axial angle of the crystal axis, since the crystal layer 2 is linearly polarized for passing through the linear polarizing plate 37. The outgoing light L1 has a phase retardation characteristic, so that the crystal layer 2 can replace a quarter-wave retarder and let the outgoing light L1 passing through the crystal layer 2 have a phase delay of a quarter wavelength, and For the linearly polarized outgoing light L1, it becomes a circularly polarized light or It is an elliptically polarized outgoing light L1 and is emitted.

於本實施例中,偏光轉換機制1係應用於觸控顯示裝置7,而觸控顯示裝置7為內嵌式(In-Cell)頂部發光有機發光二極體OLED觸控顯示裝置,然,對於外掛式(Out-Cell)OLED觸控顯示裝置、內嵌式(In-Cell)OLED觸控顯示裝而言,其理相同、類似於本實施例中所述之,是故,在此不再贅述;又,雖偏光轉換機制1係應用於觸控顯示裝置7,然,對於偏光轉換機制1係應用於OLED顯示裝置而言,其理相同、類似於本實施例中所述之,是故,在此不再贅述。 In the present embodiment, the polarization conversion mechanism 1 is applied to the touch display device 7, and the touch display device 7 is an in-cell (In-Cell) top-emitting organic light-emitting diode OLED touch display device. The external-type (In-Cell) OLED touch display device and the in-cell (In-Cell) OLED touch display device are the same, similar to those described in the embodiment, and are no longer used herein. Further, although the polarization conversion mechanism 1 is applied to the touch display device 7, the polarization conversion mechanism 1 is applied to the OLED display device, which is the same as that described in the embodiment. , will not repeat them here.

第10圖為一流程圖,用以顯示說明利用如第9圖中之本發明之偏光轉換機制的實施例以進行偏光轉換方法的流程步驟。如第10圖中所示之,首先,於步驟61,準備具有頂部發光OLED顯示模組30、觸控模組34的觸控顯示裝置7,其中,該觸控模組34係位於頂部發光OLED顯示模組30之下,並進到步驟62。 Fig. 10 is a flow chart for showing the flow of steps for performing a polarization conversion method using an embodiment of the polarization conversion mechanism of the present invention as shown in Fig. 9. As shown in FIG. 10, first, in step 61, a touch display device 7 having a top-emitting OLED display module 30 and a touch module 34 is prepared, wherein the touch module 34 is located at the top-emitting OLED. Below the display module 30, the process proceeds to step 62.

於步驟62,於觸控顯示裝置7之觸控模組34上,設置具有晶體層2、以及偏光層3的偏光轉換機制1,其中,偏光層3為為一線偏振片37。 In step 62, a polarization conversion mechanism 1 having a crystal layer 2 and a polarizing layer 3 is disposed on the touch module 34 of the touch display device 7, wherein the polarizing layer 3 is a linear polarizing plate 37.

綜合以上之實施例,我們可得到本發明之一種偏光轉換機制及方法,係適用於顯示裝置及/或觸控顯示裝置環境中,晶體層係採用雙折射晶體玻璃,可隨晶軸軸向角度而產生相位延遲效果變化,由於晶體層對於線偏光具有相位延遲的特性,因而晶體層可替代一四分之一波長延遲片、且將線偏光轉變成圓偏光或橢圓偏光並出射;顯示裝置及/或觸控顯示裝置之顯示模組的出射光,由上而下通過具有線偏振片功能之偏光層、以及晶體層,而轉變為一圓偏振光或一橢圓偏振光並予以出射。本發明之偏光轉換機制及方法,由於使用雙折射晶體玻璃的晶體層,因而能減少膜層設置之數量,進而減薄顯示裝置及/或觸控顯示裝置之厚度,降低成本支出,而透過晶體軸向角度與線偏光片偏光方向的控制,可製造出在偏光視窗下,不隨顯示裝置垂直或水平擺放方向改變而造成顯示亮度變化的顯示裝置及/或觸控顯示裝置之玻璃視窗顯示。本發明之偏光轉換機制及方法包含以下優點: In combination with the above embodiments, we can obtain a polarization conversion mechanism and method of the present invention, which is suitable for use in a display device and/or a touch display device environment. The crystal layer is a birefringent crystal glass, and can be axially angled with the crystal axis. The phase delay effect is changed. Since the crystal layer has a phase retardation characteristic for the linearly polarized light, the crystal layer can replace a quarter-wave retarder and convert the linearly polarized light into circularly polarized or elliptically polarized light and exit; the display device and And the light emitted from the display module of the touch display device is converted into a circularly polarized light or an elliptically polarized light and emitted through the polarizing layer having the function of the linear polarizing plate and the crystal layer from top to bottom. The polarization conversion mechanism and method of the present invention can reduce the number of layers provided by using the crystal layer of the birefringent crystal glass, thereby reducing the thickness of the display device and/or the touch display device, and reducing the cost, and transmitting the crystal through the crystal. The axial angle and the polarization direction of the linear polarizer can be used to manufacture a glass window display of the display device and/or the touch display device that does not change with the vertical or horizontal display direction of the display device under the polarizing window. . The polarization conversion mechanism and method of the present invention include the following advantages:

1.提供一種適用於顯示裝置及/或觸控顯示裝置環境的偏光轉換機制及方法,晶體層係採用雙折射晶體玻璃,可隨晶軸軸向角度而產生相位延遲效果變化,由於晶體層對於線偏光具有相位延遲的特性,因而晶體層可替代一四分之一波長延遲片、且將線偏光轉變成圓偏光或橢圓偏光並出射,而透過晶體軸向角度與線偏光片偏光方向的控制,可製造出在偏光視窗下,不隨顯示裝置垂直或水平擺放方向改變而造成顯示亮度變化的顯示裝置及/或觸控顯示裝置之玻璃視窗顯示。 1. Providing a polarization conversion mechanism and method suitable for the environment of a display device and/or a touch display device, wherein the crystal layer is a birefringent crystal glass, which can change the phase retardation effect according to the axial angle of the crystal axis, due to the crystal layer Linear polarized light has a phase retardation characteristic, so the crystal layer can replace a quarter-wave retarder and convert the linearly polarized light into circularly polarized or elliptically polarized light and emit it, and the axial direction of the crystal and the polarization direction of the linear polarizer are controlled. The glass window display of the display device and/or the touch display device can be manufactured under the polarized window without changing the display brightness according to the vertical or horizontal display direction of the display device.

2.可無須利用四分之一波長延遲膜,而是利用晶體層使線偏光轉成圓偏光或橢圓偏光,可使用結構簡單之偏光片,使螢幕厚度降低且減少使用價格高昂的偏光片,透過晶體軸向角度與線偏光片偏光方向的控制,可製造出在偏光視窗下,不隨顯示裝置垂直或水平擺放方向改變而造成顯示亮度變化的玻璃視窗顯示。 2. Instead of using a quarter-wave retardation film, the crystal layer can be used to convert the linearly polarized light into circularly polarized or elliptically polarized light. A simple polarizer can be used to reduce the thickness of the screen and reduce the use of expensive polarizers. Through the control of the crystal axial angle and the polarization direction of the linear polarizer, it is possible to manufacture a glass window display which does not change with the vertical or horizontal display direction of the display device due to the change of the display brightness in the polarizing window.

3.顯示裝置及/或觸控顯示裝置之顯示模組的出射光,由上而下通過具有線偏光片功能之偏光層、以及晶體層,而轉變為一圓偏振光或一橢圓偏振光並予以出射,由於使用雙折射晶體玻璃的晶體層,因而能減少膜層設置之數量,進而減薄顯示裝置及/或觸控顯示裝置之厚度,降低成本支出,而透過晶體軸向角度與線偏光片偏光方向的控制,可製造出不隨顯示裝置擺放方向的改變而造成顯示亮度變化的顯示裝置及/或觸控顯示裝置之玻璃視窗顯示。 3. The light emitted from the display module of the display device and/or the touch display device is converted into a circularly polarized light or an elliptically polarized light by passing through the polarizing layer having the function of the linear polarizing film and the crystal layer from top to bottom. The use of the crystal layer of the birefringent crystal glass can reduce the number of film layers, thereby reducing the thickness of the display device and/or the touch display device, and reducing the cost, while transmitting the crystal axial angle and the line polarizer. The control of the polarization direction can produce a glass window display of the display device and/or the touch display device that does not change in display brightness depending on the direction in which the display device is placed.

以上所述僅為本發明之較佳實施例而已,並非用以限定本發明之範圍;凡其它未脫離本發明所揭示之精神下所完成之等效改變或修飾,均應包含在下述之專利範圍內。 The above are only the preferred embodiments of the present invention, and are not intended to limit the scope of the present invention; all other equivalent changes or modifications which are not departing from the spirit of the present invention should be included in the following patents. Within the scope.

11、12‧‧‧步驟 11, 12 ‧ ‧ steps

Claims (13)

一種偏光轉換機制,係適用於顯示裝置及/或觸控顯示裝置環境中,包含:晶體層,該晶體層係採用雙折射晶體玻璃,可隨晶軸軸向角度而產生相延遲效果變化;以及偏光層,該偏光層至少具有一線偏振片,該顯示裝置及/或該觸控顯示裝置之顯示模組的出射光,依序通過該偏光層的該線偏振片、以及該晶體層,而轉變為一圓偏振光或為一橢圓偏振光的出射光並予以射出其中,該晶體層與該偏光層係位於該顯示裝置及/或該觸控顯示裝置中,並位於該顯示裝置及/或該觸控顯示裝置之該顯示模組之上。 A polarization conversion mechanism is applicable to a display device and/or a touch display device environment, and includes: a crystal layer using a birefringent crystal glass, which can change a phase delay effect according to an axial angle of the crystal axis; a polarizing layer having at least one linear polarizing plate, and the light emitted by the display device and/or the display module of the touch display device sequentially passes through the linear polarizing plate of the polarizing layer and the crystal layer And a light emitted from the circularly polarized light or an elliptically polarized light, wherein the crystal layer and the polarizing layer are located in the display device and/or the touch display device, and are located on the display device and/or the touch Control the display device above the display module. 如申請專利範圍第1項所述之偏光轉換機制,其中,該晶體層對於線偏光具有波長相位延遲的特性,並讓穿過該晶體層的該出射光具有波長之相延遲。 The polarization conversion mechanism of claim 1, wherein the crystal layer has a wavelength phase retardation characteristic for linearly polarized light, and the emitted light passing through the crystal layer has a phase retardation of a wavelength. 如申請專利範圍第1項所述之偏光轉換機制,其中,該偏光層除具有該線偏振片之外,復包含一四分之一波長延遲片,該線偏振片係位於該晶體層與該四分之一波長延遲片之間,該顯示裝置及/或該觸控顯示裝置的出射光依序通過該四分之一波長延遲片、線偏振片與晶體層後,將轉變為一圓偏振光或一橢圓偏振光。 The polarization conversion mechanism of claim 1, wherein the polarizing layer comprises a quarter-wave retarder in addition to the linear polarizer, the linear polarizer is located in the crystal layer and Between the quarter-wave retarder, the output of the display device and/or the touch display device sequentially passes through the quarter-wave retarder, the linear polarizer and the crystal layer, and then converts into a circularly polarized light. Or an elliptically polarized light. 如申請專利範圍第1項所述之偏光轉換機制,其中,該觸控顯示裝置為Out-Cell LCD觸控顯示裝置、In-Cell LCD觸控顯示裝置、On-Cell LCD觸控顯示裝置、In-Cell/On-Cell hybrid LCD觸控顯示裝置、Out-Cell OLED觸控顯示裝置、On-Cell OLED觸控顯示裝置、In-Cell OLED觸控顯示裝置的其中之一。 The polarized light conversion mechanism according to the first aspect of the patent application, wherein the touch display device is an Out-Cell LCD touch display device, an In-Cell LCD touch display device, an On-Cell LCD touch display device, and -Cell/On-Cell hybrid LCD touch display device, Out-Cell OLED touch display device, On-Cell OLED touch display device, and In-Cell OLED touch display device. 如申請專利範圍第1項所述之偏光轉換機制,其中,該晶體層使用具特定軸向且△n=n e -n o ≠0之雙折射晶體玻璃當作玻璃透光視窗,而晶體層之厚度係為大於100倍的透光波長。 The polarization conversion mechanism of claim 1, wherein the crystal layer uses a birefringent crystal glass having a specific axial direction and Δn=n e -n o ≠0 as a glass transparent window, and the crystal layer The thickness is a transmission wavelength greater than 100 times. 如申請專利範圍第5項所述之偏光轉換機制,其中,該雙折射晶體玻璃為一藍寶石玻璃層或一石英玻璃層,該藍寶石玻璃層之晶體軸向為C軸、M軸、A軸、R軸的其中之一,該石英玻璃使用左旋結構、右旋結構之C軸晶面。 The polarization conversion mechanism of claim 5, wherein the birefringent crystal glass is a sapphire glass layer or a quartz glass layer, and the crystal axial direction of the sapphire glass layer is a C axis, an M axis, an A axis, One of the R axes, the quartz glass uses a C-axis crystal face of a left-handed structure and a right-handed structure. 一種偏光轉換方法,係適用於顯示裝置及/或觸控顯示裝置環境中,包含以下程序:準備具有顯示模組的顯示裝置,及/或,具有觸控/顯示模組的觸控顯示裝置;以及於該顯示裝置之該顯示模組上,及/或,該觸控顯示裝置的該觸控/顯示模組上,設置具有晶體層、以及偏光層的偏光轉換機制;其中,該晶體層係採用雙折射晶體玻璃,可隨晶軸軸向角度而產生相延遲效果變化,該偏光層至少具有一線偏振片,該顯示裝置及/或該觸控顯示裝置之該顯示模組的出射光,依序通過該偏光層的該線偏振片、以及該晶體層,而轉變為一圓偏振光或為一橢圓偏振光的出射光並予以射出。 A polarizing conversion method is applicable to a display device and/or a touch display device environment, and includes the following programs: preparing a display device having a display module, and/or a touch display device having a touch/display module; And a polarizing conversion mechanism having a crystal layer and a polarizing layer on the display module of the display device, and/or the touch/display module of the touch display device; wherein the crystal layer is The birefringence crystal glass can be used to change the phase retardation effect according to the axial angle of the crystal axis. The polarizing layer has at least one linear polarizing plate, and the display device and/or the light emitted by the display module of the touch display device The linear polarizing plate of the polarizing layer and the crystal layer are sequentially converted into a circularly polarized light or an elliptically polarized light and emitted. 如申請專利範圍第7項所述之偏光轉換方法,該晶體層與該偏光層係位於該顯示裝置及/或該觸控顯示裝置中,並位於該顯示裝置及/或該觸控顯示裝置之該顯示模組之上。 The polarizing conversion method of the seventh aspect of the invention, wherein the crystal layer and the polarizing layer are located in the display device and/or the touch display device, and are located in the display device and/or the touch display device. Above the display module. 如申請專利範圍第8項所述之偏光轉換方法,其中,該晶體層對於線偏光具有相位延遲的特性,並讓穿過該晶體層的該出射光具有波長之相延遲。 The polarization conversion method of claim 8, wherein the crystal layer has a phase retardation characteristic for linearly polarized light, and the emitted light passing through the crystal layer has a phase retardation of a wavelength. 如申請專利範圍第8項所述之偏光轉換方法,其中,該偏光層除具有該線偏振片之外,復包含一四分之一波長延遲片,該線偏振片係位於該晶體層與該四分之一波長延遲片之間,該顯示裝置及/或該觸控顯示裝置的出射光依序通過該四分之一波長延遲片、線偏振片與晶體層後,將轉變為一圓偏振光或一橢圓偏振光。 The polarization conversion method of claim 8, wherein the polarizing layer comprises a quarter-wave retarder in addition to the linear polarizer, the linear polarizer is located in the crystal layer Between the quarter-wave retarder, the output of the display device and/or the touch display device sequentially passes through the quarter-wave retarder, the linear polarizer and the crystal layer, and then converts into a circularly polarized light. Or an elliptically polarized light. 如申請專利範圍第8項所述之偏光轉換方法,其中,該觸控顯示裝置為Out-Cell LCD觸控顯示裝置、In-Cell LCD觸控顯示裝置、On-Cell LCD觸控顯示裝置、In-Cell/On-Cell hybrid LCD觸控顯示裝置、Out-Cell OLED觸控顯示裝置、On-Cell OLED觸控顯示裝置、In-Cell OLED觸控顯示裝置的其中之一。 The polarized light conversion method of claim 8, wherein the touch display device is an Out-Cell LCD touch display device, an In-Cell LCD touch display device, an On-Cell LCD touch display device, and -Cell/On-Cell hybrid LCD touch display device, Out-Cell OLED touch display device, On-Cell OLED touch display device, and In-Cell OLED touch display device. 如申請專利範圍第7項所述之偏光轉換方法,其中,該晶體層使用具特定軸向且△n=n e -n o ≠0之雙折射晶體玻璃當作玻璃透光視窗,而晶體層之厚度係為大於100倍的透光波長。 The polarized light conversion method according to claim 7, wherein the crystal layer uses a birefringent crystal glass having a specific axial direction and Δn=n e -n o ≠0 as a glass transparent window, and the crystal layer The thickness is a transmission wavelength greater than 100 times. 如申請專利範圍第12項所述之偏光轉換方法,其中,該雙折射晶體玻璃為一藍寶石玻璃層或一石英玻璃層,該藍寶石玻璃層之晶體軸向為C軸、M軸、A軸、R軸的其中之一,該石英玻璃使用左旋結構、右旋結構之C軸晶面。 The polarized light conversion method according to claim 12, wherein the birefringent crystal glass is a sapphire glass layer or a quartz glass layer, and the crystal axial direction of the sapphire glass layer is a C axis, an M axis, and an A axis. One of the R axes, the quartz glass uses a C-axis crystal face of a left-handed structure and a right-handed structure.
TW102103555A 2012-10-04 2013-01-30 A Polarization Conversion Mechanism and Method TWI493230B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW102103555A TWI493230B (en) 2013-01-30 2013-01-30 A Polarization Conversion Mechanism and Method
US13/834,630 US9075201B2 (en) 2012-10-04 2013-03-15 Polarization conversion mechanism and method thereof
DE201310006095 DE102013006095A1 (en) 2012-10-04 2013-04-09 Polarization conversion mechanism and associated method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102103555A TWI493230B (en) 2013-01-30 2013-01-30 A Polarization Conversion Mechanism and Method

Publications (2)

Publication Number Publication Date
TW201430393A true TW201430393A (en) 2014-08-01
TWI493230B TWI493230B (en) 2015-07-21

Family

ID=51796859

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102103555A TWI493230B (en) 2012-10-04 2013-01-30 A Polarization Conversion Mechanism and Method

Country Status (1)

Country Link
TW (1) TWI493230B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110337606A (en) * 2017-02-28 2019-10-15 京瓷株式会社 Outdoor use image illumination device and the moving body for having it

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI661343B (en) * 2018-03-31 2019-06-01 友達光電股份有限公司 Touch display device and method for frabricating touch display device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3133438A1 (en) * 2007-02-09 2017-02-22 Viavi Solutions Inc. Single-layer birefringent crystal optical retarders
DK2141533T3 (en) * 2008-07-02 2011-05-02 Jds Uniphase Corp Contrast compensation of micro-screen panels containing a higher order corrugated board
TWI450139B (en) * 2009-08-11 2014-08-21 Hon Hai Prec Ind Co Ltd Touch-control device and hand-writing input system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110337606A (en) * 2017-02-28 2019-10-15 京瓷株式会社 Outdoor use image illumination device and the moving body for having it
CN110337606B (en) * 2017-02-28 2022-02-08 京瓷株式会社 Outdoor image irradiation device and moving object provided with same

Also Published As

Publication number Publication date
TWI493230B (en) 2015-07-21

Similar Documents

Publication Publication Date Title
CN103713394B (en) Polarization conversion mechanism and method
KR101512581B1 (en) Oled display structure and oled display device
US8274631B2 (en) Controlling polarization for liquid crystal displays
JP4747053B2 (en) Liquid crystal display element and electronic device equipped with the same
TWI544228B (en) Optical Module and Optically Functional Film for Optical Device
US9075201B2 (en) Polarization conversion mechanism and method thereof
TWI599082B (en) Brightness enhanced self-emission type display
KR101474668B1 (en) Transparent display
US20110205471A1 (en) Controlling polarization for liquid crystal displays
US20140132898A1 (en) Display panel and display device
KR20110108697A (en) Polarizer for organic electro luminescence device and oled including the same
WO2016155180A1 (en) Display panel and display device
CN102890362B (en) Display device
WO2017179493A1 (en) Liquid crystal display panel and liquid crystal display device
US11506830B2 (en) Backlight module and display device
TWI506310B (en) Liquid crystal display device
WO2015003460A1 (en) Display panel and transparent display device
TWI493230B (en) A Polarization Conversion Mechanism and Method
WO2018176601A1 (en) Transflective liquid crystal display apparatus
WO2019015244A1 (en) Circular polarizer and display
US20180284539A1 (en) Transflective lcd
CN216622753U (en) Circular polarizer for OLED display and OLED display
TW201535020A (en) Mirror display panel
TWI412844B (en) Reflective liquid crystal display
CN106896566B (en) Backlight structure and liquid crystal display device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees