TW201427418A - Sensing apparatus and sensing method - Google Patents

Sensing apparatus and sensing method Download PDF

Info

Publication number
TW201427418A
TW201427418A TW102139832A TW102139832A TW201427418A TW 201427418 A TW201427418 A TW 201427418A TW 102139832 A TW102139832 A TW 102139832A TW 102139832 A TW102139832 A TW 102139832A TW 201427418 A TW201427418 A TW 201427418A
Authority
TW
Taiwan
Prior art keywords
sensing
signal
infrared light
light
generate
Prior art date
Application number
TW102139832A
Other languages
Chinese (zh)
Inventor
Tom Chang
Kao-Pin Wu
Chih-Jen Fang
Shang-Ming Hung
Original Assignee
Eminent Electronic Technology Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eminent Electronic Technology Corp Ltd filed Critical Eminent Electronic Technology Corp Ltd
Priority to US14/106,854 priority Critical patent/US20140168372A1/en
Priority to CN201310695116.7A priority patent/CN103869973A/en
Publication of TW201427418A publication Critical patent/TW201427418A/en

Links

Abstract

A sensing apparatus includes an infrared light generating device, an image sensing unit, a processing circuit and a control circuit. The image sensing unit is arranged for detecting a first infrared light signal reflected from an object to generate a first sensing signal when the infrared light generating device is activated, and detecting a second infrared light signal reflected from the object to generate a second sensing signal when the infrared light generating device is deactivated. The processing circuit is coupled to the image sensing unit, and is arranged for generating three-dimensional image information according to at least the first sensing signal and the second sensing signal. The three-dimensional image information includes depth information. The control circuit is arranged for control activation and deactivation of the infrared light generating device, sensing operations of the image sensing unit, and signal processing operations of the processing circuit.

Description

感測裝置以及感測方法 Sensing device and sensing method

本發明係關於感測裝置,尤指一種透過紅外光感測機制來偵測影像以產生三維影像資訊的感測裝置及其相關的感測方法。 The present invention relates to a sensing device, and more particularly to a sensing device that detects an image through an infrared light sensing mechanism to generate three-dimensional image information and related sensing methods.

傳統的影像感測器(image sensor)係擷取二維(two-dimensional,2D)影像,並無法判斷所感測之物件的影像深淺變化,因此,所擷取之影像會比較單調且容易失真。 The traditional image sensor captures two-dimensional (2D) images and cannot determine the image depth of the sensed object. Therefore, the captured image is monotonous and easily distorted.

另外,傳統的行動裝置(例如,智慧型手機(smart phone)、平板電腦(tablet computer)或筆記型電腦)中係設置影像感測器與其他類型的感測器以偵測物件影像或周遭環境資訊。舉例來說,具有影像感測器之用戶攝像鏡頭(user facing camera)可用於擷取影像,其中用戶攝像鏡頭的附近會安裝環境光感測器(ambient light sensor,ALS)以及近接感測器(proximity sensor,PS)與紅外光發射器(infrared emitter,IR emitter)。環境光感測器會依據環境光的強弱來調整顯示螢幕的亮度,此外,當用戶攝像鏡頭被啟用以擷取影像時,環境光感測器也可用於開啟閃光燈。近接感測器與紅外光發射器則是用來偵測行動裝置是否貼近使用者的耳朵,或偵測行動裝置是否被置於背包內。當行動裝置被偵測出其係貼近使用者的耳朵或被置於背包內時,近接感測器會致使行動裝置關閉背光源以及觸控感測器,以延長行動裝置之電池壽命,並且減少誤觸的情形。然而,行動裝置之中的多種感測器係分別設置不同的模組或積體電路(integrated circuit,IC),這會造成成本與尺寸的 增加。 In addition, traditional mobile devices (such as smart phones, tablet computers, or notebook computers) are equipped with image sensors and other types of sensors to detect object images or surrounding environments. News. For example, a user facing camera with an image sensor can be used to capture an image, wherein an ambient light sensor (ALS) and a proximity sensor are installed in the vicinity of the user's camera lens ( Proximity sensor (PS) and infrared emitter (IR emitter). The ambient light sensor adjusts the brightness of the display screen according to the intensity of the ambient light. In addition, the ambient light sensor can also be used to turn on the flash when the user's camera lens is enabled to capture the image. The proximity sensor and the infrared light emitter are used to detect whether the mobile device is close to the user's ear or to detect whether the mobile device is placed in the backpack. When the mobile device is detected to be attached to the user's ear or placed in the backpack, the proximity sensor causes the mobile device to turn off the backlight and the touch sensor to extend the battery life of the mobile device and reduce Mistaken situation. However, various sensors in the mobile device are respectively provided with different modules or integrated circuits (ICs), which causes cost and size. increase.

因此,需要一種可擷取更為真實的影像資訊(例如,三維(three-dimensional,3D)影像資訊)並將多種感測器整合於單一模組或單一積體電路的感測裝置。 Therefore, there is a need for a sensing device that can capture more realistic image information (eg, three-dimensional (3D) image information) and integrate multiple sensors into a single module or a single integrated circuit.

有鑑於此,本發明的目的之一在於提供一種透過紅外光感測機制來偵測影像以產生三維影像資訊的感測裝置及其相關的感測方法,以解決上述問題。 In view of the above, one of the objects of the present invention is to provide a sensing device that detects an image through an infrared light sensing mechanism to generate three-dimensional image information and related sensing methods to solve the above problem.

本發明的另一目的在於提供一種整合多種感測器於單一模組或單一積體電路的三維影像感測裝置,以利光機系統(optical-mechanical system)的整合及/或光機電系統(optical-mechanical-electrical system)的整合,進而降低成本並提昇性能。 Another object of the present invention is to provide a three-dimensional image sensing device that integrates multiple sensors in a single module or a single integrated circuit to integrate an optical-mechanical system and/or an optical mechanical system (optical). -mechanical-electrical system), which reduces costs and improves performance.

依據本發明之一實施例,其揭示一種感測裝置。該感測裝置包含一紅外光產生元件、一影像感測單元、一處理電路以及一控制電路。該影像感測單元係用以於該紅外光產生元件開啟時,偵測反射自一物件之一第一紅外光訊號以產生一第一感測訊號,以及於該紅外光產生元件關閉時,偵測反射自該物件之一第二紅外光訊號以產生一第二感測訊號。該處理電路係耦接於該影像感測單元,用以至少依據該第一感測訊號以及該第二感測訊號來產生該物件之一三維影像資訊,其中該三維影像資訊包含一深度資訊。該控制電路係耦接於該紅外光產生元件、該影像感測單元以及該處理電路,用以控制該紅外光產生元件之開啟與關閉、該影像感測單元之感測操作,以及該處理電路之訊號處理操作。 In accordance with an embodiment of the present invention, a sensing device is disclosed. The sensing device comprises an infrared light generating component, an image sensing unit, a processing circuit and a control circuit. The image sensing unit is configured to detect a first infrared light signal reflected from an object to generate a first sensing signal when the infrared light generating component is turned on, and to detect when the infrared light generating component is turned off. A second infrared light signal reflected from one of the objects is detected to generate a second sensing signal. The processing circuit is coupled to the image sensing unit for generating a three-dimensional image information of the object based on the first sensing signal and the second sensing signal, wherein the three-dimensional image information includes a depth information. The control circuit is coupled to the infrared light generating component, the image sensing unit, and the processing circuit for controlling the opening and closing of the infrared light generating component, the sensing operation of the image sensing unit, and the processing circuit Signal processing operation.

依據本發明之一實施例,其揭示一種感測方法。該感測方法包含下列步驟:致能一紅外光產生元件,以偵測反射自一物件之一第一紅外光訊號來產生一第一感測訊號;禁能該紅外光產生元件,以偵測反射自該物件之一第二紅外光訊號來產生一第二感測訊號;以及至少依據該第一感測訊號與該第二感測訊號之間的一訊號差來產生該物件之一三維影像資訊,其中該三維影像資訊包含一深度資訊。 In accordance with an embodiment of the present invention, a sensing method is disclosed. The sensing method comprises the steps of: enabling an infrared light generating component to detect a first infrared light signal reflected from an object to generate a first sensing signal; and disabling the infrared light generating component to detect Generating a second sensing signal from the second infrared light signal of the object to generate a second sensing signal; and generating a three-dimensional image of the object based on at least a signal difference between the first sensing signal and the second sensing signal Information, wherein the 3D image information includes a depth information.

本發明所提供之感測裝置與感測方法可得到物件之深度資訊/三維影像資訊,以更真實地呈現影像。另外,本發明所提供之感測裝置係將影像感測、環境光感測(包含環境色彩感測、環境色溫感測)、近接感測、紅外光發射以及手勢辨識整合於單一模組/單一積體電路之中,可大幅降低成本並提昇系統效能。 The sensing device and the sensing method provided by the invention can obtain the depth information/three-dimensional image information of the object to present the image more realistically. In addition, the sensing device provided by the present invention integrates image sensing, ambient light sensing (including ambient color sensing, ambient color temperature sensing), proximity sensing, infrared light emission, and gesture recognition into a single module/single unit. Among the integrated circuits, the cost can be greatly reduced and the system performance can be improved.

100‧‧‧影像處理系統 100‧‧‧Image Processing System

110‧‧‧透鏡 110‧‧‧ lens

120‧‧‧感測裝置 120‧‧‧Sensing device

130‧‧‧影像處理功能方塊 130‧‧‧Image Processing Function Block

132‧‧‧數位影像處理器 132‧‧‧Digital Image Processor

134‧‧‧影像壓縮器 134‧‧‧Image Compressor

136‧‧‧傳輸介面 136‧‧‧Transport interface

138‧‧‧儲存裝置 138‧‧‧ storage device

212‧‧‧紅外光產生元件 212‧‧‧Infrared light generating components

222、722、822‧‧‧影像感測單元 222, 722, 822‧‧‧ image sensing unit

224‧‧‧可見光偵測單元 224‧‧‧ Visible light detection unit

226‧‧‧暗感測單元 226‧‧‧ Dark Sensing Unit

228‧‧‧紅外光偵測單元 228‧‧‧Infrared light detection unit

232‧‧‧處理電路 232‧‧‧Processing circuit

233‧‧‧相關雙取樣電路 233‧‧‧Related double sampling circuit

234‧‧‧放大器 234‧‧Amplifier

235‧‧‧相加電路 235‧‧‧Addition Circuit

236‧‧‧類比數位轉換電路 236‧‧‧ analog digital conversion circuit

237‧‧‧暗階補償電路 237‧‧‧Dark-order compensation circuit

238‧‧‧數位處理電路 238‧‧‧Digital processing circuit

239‧‧‧串列介面 239‧‧‧ Serial interface

242‧‧‧控制電路 242‧‧‧Control circuit

243‧‧‧時序控制器 243‧‧‧Timing controller

244‧‧‧紅外線發光二極體驅動器 244‧‧‧Infrared LED Driver

245‧‧‧電壓調節器 245‧‧‧Voltage regulator

246‧‧‧時脈產生器 246‧‧‧ Clock Generator

247‧‧‧控制暫存器 247‧‧‧Control register

248‧‧‧電源控制電路 248‧‧‧Power Control Circuit

249‧‧‧中斷電路 249‧‧‧ interrupt circuit

522_VR、722_VR‧‧‧可見光感測元件 522_VR, 722_VR‧‧‧ Visible light sensing components

522_IR、722_IR‧‧‧紅外光感測元件 522_IR, 722_IR‧‧‧ Infrared light sensing components

522_R、722_R‧‧‧紅光感測元件 522_R, 722_R‧‧‧ red light sensing components

522_G、722_G‧‧‧綠光感測元件 522_G, 722_G‧‧‧ Green light sensing components

522_B、722_B‧‧‧藍光感測元件 522_B, 722_B‧‧‧Blu-ray sensing components

822_VI‧‧‧紅外光通過且可見光通過感測元件 822_VI‧‧‧Infrared light passes through and visible light passes through the sensing element

822_R‧‧‧紅外光通過且紅光通過感測元件 822_R‧‧‧Infrared light passes through and red light passes through the sensing element

822_G‧‧‧紅外光通過且綠光通過感測元件 822_G‧‧‧Infrared light passes through and the green light passes through the sensing element

822_B‧‧‧紅外光通過且藍光通過感測元件 822_B‧‧‧Infrared light passes through and blue light passes through the sensing element

LED_A、LED_C、GND、RSTB、ADRSEL、D[9:0]、PCLK、HSYNC、VSYNC、SCL、SDA、INTB、PWDN、MCLK、IR_LED、VDD‧‧‧接點 LED_A, LED_C, GND, RSTB, ADRSEL, D[9:0], PCLK, HSYNC, VSYNC, SCL, SDA, INTB, PWDN, MCLK, IR_LED, VDD‧‧‧ contacts

S_R1、S_R2‧‧‧紅外光訊號 S_R1, S_R2‧‧‧ infrared light signal

S_VR‧‧‧可見光反射訊號 S_VR‧‧‧ visible light reflection signal

S_C1、S_C2‧‧‧控制訊號 S_C1, S_C2‧‧‧ control signals

DR1、DR2、DR3‧‧‧感測訊號 DR1, DR2, DR3‧‧‧ sensing signals

R、G、B‧‧‧子像素 R, G, B‧‧ subpixels

D‧‧‧暗像素 D‧‧‧dark pixels

I‧‧‧紅外光偵測器 I‧‧‧Infrared light detector

ST‧‧‧基板 ST‧‧‧Substrate

DL‧‧‧介電層 DL‧‧‧ dielectric layer

D_R、D_G、D_B、D_IR、D_RI、D_GI、 D_BI‧‧‧光偵測器 D_R, D_G, D_B, D_IR, D_RI, D_GI, D_BI‧‧‧Photodetector

F_R‧‧‧紅色濾光片 F_R‧‧‧ red filter

F_G‧‧‧綠色濾光片 F_G‧‧‧Green Filter

F_B‧‧‧藍色濾光片 F_B‧‧‧Blue filter

F_IRP‧‧‧紅外光通過濾光片 F_IRP‧‧‧Infrared light pass filter

F_IRC‧‧‧紅外光截止濾光片 F_IRC‧‧‧Infrared cut-off filter

F_RI‧‧‧紅外光通過且紅光通過濾光片 F_RI‧‧‧Infrared light passes through and the red light passes through the filter

F_GI‧‧‧紅外光通過且綠光通過濾光片 F_GI‧‧‧Infrared light passes through and the green light passes through the filter

F_BI‧‧‧紅外光通過且藍光通過濾光片 F_BI‧‧‧Infrared light passes through and the blue light passes through the filter

T_R、T_G、T_B、T_IRC、T_TRP、T_IRB‧‧‧穿透曲線 T_R, T_G, T_B, T_IRC, T_TRP, T_IRB‧‧‧ penetration curves

T1、T2、T3、T4‧‧‧時間點 T1, T2, T3, T4‧‧‧ time points

910、912、914、916、918、920、922、924、926、928、930、932、934、936、938、1010、1012、1014、1016、1018、1020、1022、1024、1026、1028、1030、1032、1110、1112、1114、1116、1118、1120、1122、1124、1126、1128、1130、1132、1134、1210、1212、1214、1216、1218、1220、1222、1224、1226、1228、1230、1232、1234‧‧‧步驟 910, 912, 914, 916, 918, 920, 922, 924, 926, 928, 930, 932, 934, 936, 938, 1010, 1012, 1014, 1016, 1018, 1020, 1022, 1024, 1026, 1028, 1030, 1032, 1110, 1112, 1114, 1116, 1118, 1120, 1122, 1124, 1126, 1128, 1130, 1132, 1134, 1210, 1212, 1214, 1216, 1218, 1220, 1222, 1224, 1226, 1228, 1230, 1232, 1234‧‧ steps

第1圖為本發明影像處理系統之一實施例的方塊示意圖。 1 is a block diagram showing an embodiment of an image processing system of the present invention.

第2圖為第1圖所示之感測裝置的一實作範例的示意圖。 Fig. 2 is a schematic view showing a practical example of the sensing device shown in Fig. 1.

第3圖為第2圖所示之紅外光產生元件與影像感測單元之控制訊號的訊號時序圖。 Figure 3 is a signal timing diagram of the control signals of the infrared light generating element and the image sensing unit shown in Fig. 2.

第4圖為第2圖所示之影像感測單元、可見光偵測單元、暗感測單元與紅外光偵測單元之一實作範例的示意圖。 FIG. 4 is a schematic diagram showing an example of an image sensing unit, a visible light detecting unit, a dark sensing unit, and an infrared light detecting unit shown in FIG. 2 .

第5圖為第4圖所示之影像感測單元之感測元件架構的截面圖。 Fig. 5 is a cross-sectional view showing the sensing element structure of the image sensing unit shown in Fig. 4.

第6圖為第5圖所示之濾光片之入射光波長與穿透率之間的關係。 Fig. 6 is a graph showing the relationship between the wavelength of incident light and the transmittance of the filter shown in Fig. 5.

第7圖為第4圖所示之影像感測單元之元件架構的另一實作範例的截面圖。 Fig. 7 is a cross-sectional view showing another embodiment of the component structure of the image sensing unit shown in Fig. 4.

第8圖為第4圖所示之影像感測單元之元件架構的另一實作範例的截面圖。 Fig. 8 is a cross-sectional view showing another embodiment of the component structure of the image sensing unit shown in Fig. 4.

第9圖為本發明影像感測操作之一實施例的流程圖。 Figure 9 is a flow chart of an embodiment of an image sensing operation of the present invention.

第10圖為本發明環境光感測操作之一實施例的流程圖。 Figure 10 is a flow chart of one embodiment of an ambient light sensing operation of the present invention.

第11圖為本發明近接感測操作之一實施例的流程圖。 Figure 11 is a flow chart of one embodiment of a proximity sensing operation of the present invention.

第12圖為本發明手勢辨識操作之一實施例的流程圖。 Figure 12 is a flow chart of an embodiment of the gesture recognition operation of the present invention.

為了更真實地呈現物件影像,本發明藉由在紅外光產生元件處於開啟狀態(亦即,發射紅外光)與關閉狀態(亦即,未發射紅外光)下,分別對物件所反射的紅外光訊號進行偵測以得到相對應的感測訊號,並對所得到的感測訊號進行處理,以去除/消弭環境光對感測訊號的影響,進而得到準確的物件深度資訊及/或三維影像資訊。 In order to present the image of the object more realistically, the present invention respectively reflects the infrared light reflected by the object under the state in which the infrared light generating element is in an open state (ie, emitting infrared light) and a closed state (ie, no infrared light is emitted). The signal is detected to obtain a corresponding sensing signal, and the obtained sensing signal is processed to remove/reduce the influence of the ambient light on the sensing signal, thereby obtaining accurate object depth information and/or three-dimensional image information. .

請參閱第1圖,其係為本發明影像處理系統之一實施例的方塊示意圖。由第1圖可知,影像處理系統100包含一透鏡110,一感測裝置120以及一影像處理功能方塊130。以擷取使用者的手之影像為例,透鏡110可將手所反射的光匯集並傳送至感測裝置120,感測裝置120接著可根據所接收的光訊號產生影像資訊予影像處理功能方塊130。影像處理功能方塊130包含一數位影像處理器132、一影像壓縮器134、一傳輸介面136(例如,一並列傳輸介面(parallel interface)或一串列傳輸介面(serial interface))以及一儲存裝置136(例如,儲存完整的影像幀(image frame))。由於熟習技藝者應可了解感測裝置120所產生之影像資訊經由數位影像處理器132、影像壓縮器134、傳輸介面136以及儲存裝置136處理之操作細節,故關於影像處理功能方塊130的進一步說明在此便不再贅述。 Please refer to FIG. 1 , which is a block diagram of an embodiment of an image processing system of the present invention. As can be seen from FIG. 1 , the image processing system 100 includes a lens 110 , a sensing device 120 , and an image processing function block 130 . Taking the image of the user's hand as an example, the lens 110 can collect and transmit the light reflected by the hand to the sensing device 120. The sensing device 120 can then generate image information according to the received optical signal to the image processing function block. 130. The image processing function block 130 includes a digital image processor 132, an image compressor 134, a transmission interface 136 (eg, a parallel interface or a serial interface), and a storage device 136. (For example, storing a complete image frame). Since the skilled artisan should be aware of the operational details of the image information generated by the sensing device 120 via the digital image processor 132, the image compressor 134, the transmission interface 136, and the storage device 136, further description of the image processing function block 130 is provided. I won't go into details here.

值得注意的是,感測裝置120係為一整合式感測裝置,更具體地說,感測裝置120可將影像感測、環境光感測(包含環境色彩感測、環境色溫感測)、近接感測、溫度感測、物件位置偵測及/或手勢辨識等功能整合於單一積體電路(或單一模組)之中。另外,感測裝置120可擷取使用者的手部三維影像,以提供更真實的輸出影像。進一步的說明如下。 It should be noted that the sensing device 120 is an integrated sensing device, and more specifically, the sensing device 120 can perform image sensing, ambient light sensing (including ambient color sensing, ambient color temperature sensing), Functions such as proximity sensing, temperature sensing, object position detection, and/or gesture recognition are integrated into a single integrated circuit (or a single module). In addition, the sensing device 120 can capture a three-dimensional image of the user's hand to provide a more realistic output image. Further explanation is as follows.

請參閱第2圖,其係為第1圖所示之感測裝置120的一實作範例的示意圖。於此實作範例中,感測裝置120可包含(但不限於)一紅外光產生元件212(例如,一紅外線發光二極體(infrared light-emitting diode,IR LED))、一影像感測單元222、一可見光偵測單元224、一暗感測單元226、一紅外光偵測單元228、一處理電路232、一控制電路242以及一溫度感測器252。於此實作範例中,接點(pad)VDD耦接於一電源(未顯示於第2圖中)、接點GND耦接於一接地電壓(未顯示於第2圖中)、紅外光產生元件212係耦接於接點LED_A與LED_C之間,接點RSTB用來接收一重置訊號(未顯示於第2圖中),以及接點ADRSEL用來接收一位址選擇訊號(未顯示於第2圖中)。另外,可見光偵測單元224係設置於影像感測單元222的周邊,用以進行環境光感測(ambient light sensing)與色彩感測(color sensing)之至少其一;暗感測單元226係設置於影像感測單元222的周邊,用以產生一參考訊號(未顯示於第2圖中)供暗階補償(dark/black level compensation)之用;以及紅外光偵測單元228係設置於影像感測單元222的周邊,用以進行近接感測(proximity sensing)、物件位置偵測與手勢偵測之至少其一。於此實施例中,暗感測單元226係設置於可見光偵測單元224的外圍,紅外光偵測單元228係設置於暗感測單元226的外圍,然而,此僅供說明之需,並非用來作為本發明之限制。舉例來說,將紅外光偵測單元228設置於可見光偵測單元224與影像感測單元222之間也是可行的。 Please refer to FIG. 2 , which is a schematic diagram of a practical example of the sensing device 120 shown in FIG. 1 . In this implementation example, the sensing device 120 can include, but is not limited to, an infrared light generating component 212 (eg, an infrared light-emitting diode (IR LED)), an image sensing unit. 222, a visible light detecting unit 224, a dark sensing unit 226, an infrared light detecting unit 228, a processing circuit 232, a control circuit 242, and a temperature sensor 252. In this implementation example, the pad VDD is coupled to a power source (not shown in FIG. 2), the contact GND is coupled to a ground voltage (not shown in FIG. 2), and infrared light is generated. The component 212 is coupled between the contacts LED_A and LED_C, the contact RSTB is used to receive a reset signal (not shown in FIG. 2), and the contact ADRSEL is used to receive the address selection signal (not shown in Figure 2). In addition, the visible light detecting unit 224 is disposed at the periphery of the image sensing unit 222 for performing at least one of ambient light sensing and color sensing; the dark sensing unit 226 is configured. The image sensing unit 222 is configured to generate a reference signal (not shown in FIG. 2) for dark/black level compensation; and the infrared light detecting unit 228 is disposed in the image sense. The periphery of the measuring unit 222 is configured to perform at least one of proximity sensing, object position detection and gesture detection. In this embodiment, the dark sensing unit 226 is disposed on the periphery of the visible light detecting unit 224, and the infrared detecting unit 228 is disposed on the periphery of the dark sensing unit 226. However, this is for illustrative purposes only, and is not used. It is intended to be a limitation of the present invention. For example, it is also feasible to arrange the infrared light detecting unit 228 between the visible light detecting unit 224 and the image sensing unit 222.

控制電路242係耦接於紅外光產生元件212(經由接點IR_LED)、影像感測單元222、可見光偵測單元224、暗感測單元226、紅外光偵測單元228以及處理電路232,其中影像感測單元222與處理電路232亦彼此耦接。另外,控制電路242可用來控制紅外光產生元件212、影像感測單元222、可見光偵測單元224、暗感測單元226、紅外光偵測單元228以及處理電路232 之操作。當紅外光產生元件212開啟時(亦即,發射紅外光),影像感測單元222可偵測反射自一物件(例如,第1圖所示之手)之一第一紅外光訊號S_R1,並據以產生一第一感測訊號DR1(例如,光電流訊號)。由於影像感測單元222所接收之第一紅外光訊號S_R1主要是因為該物件反射紅外光產生元件212所發射的紅外光而產生,因此,可藉由第一紅外光訊號S_R1的能量來判斷該物件與影像感測單元222之間的距離,也就是說,影像感測單元222所產生之第一感測訊號DR1包含該物件與感測裝置120之間的距離資訊。 The control circuit 242 is coupled to the infrared light generating component 212 (via the contact IR_LED), the image sensing unit 222, the visible light detecting unit 224, the dark sensing unit 226, the infrared light detecting unit 228, and the processing circuit 232. The sensing unit 222 and the processing circuit 232 are also coupled to each other. In addition, the control circuit 242 can be used to control the infrared light generating component 212, the image sensing unit 222, the visible light detecting unit 224, the dark sensing unit 226, the infrared light detecting unit 228, and the processing circuit 232. Operation. When the infrared light generating element 212 is turned on (ie, emitting infrared light), the image sensing unit 222 can detect the first infrared light signal S_R1 reflected from an object (for example, the hand shown in FIG. 1), and A first sensing signal DR1 (eg, a photocurrent signal) is generated. The first infrared light signal S_R1 received by the image sensing unit 222 is mainly generated because the object reflects the infrared light emitted by the infrared light generating element 212. Therefore, the energy of the first infrared light signal S_R1 can be used to determine the The distance between the object and the image sensing unit 222, that is, the first sensing signal DR1 generated by the image sensing unit 222 includes the distance information between the object and the sensing device 120.

然而,第一感測訊號DR1可能還包含來自於環境中的紅外光資訊(例如,該物件反射環境中的紅外光所產生之反射訊號),因此,控制電路242另可關閉紅外光產生元件212(亦即,未發射紅外光),並致使影像感測單元222偵測反射自該物件之一第二紅外光訊號S_R2來產生一第二感測訊號DR2,其中第二感測訊號DR2可視為對於該物件反射環境中的紅外光所產生之反射訊號進行感測所得到的感測結果。接下來,處理電路232便可依據第一感測訊號DR1以及第二感測訊號DR2來產生該物件之一三維影像資訊。舉例來說,該三維影像資訊可包含一深度資訊(depth information),其中該深度資訊可指示出該物件與一參考點(或參考面)之間的距離(例如,該物件之表面上的某一點與感測裝置120之間的距離)或者是該物件之影像深淺變化(例如,該物件之三維灰階影像)。 However, the first sensing signal DR1 may further include infrared light information from the environment (for example, the reflected signal generated by the infrared light in the object reflection environment), and therefore, the control circuit 242 may further turn off the infrared light generating element 212. (ie, the infrared light is not emitted), and the image sensing unit 222 detects the second infrared light signal S_R2 reflected from the object to generate a second sensing signal DR2, wherein the second sensing signal DR2 can be regarded as The sensing result obtained by sensing the reflected signal generated by the infrared light in the object reflection environment. Next, the processing circuit 232 can generate one of the three-dimensional image information of the object according to the first sensing signal DR1 and the second sensing signal DR2. For example, the 3D image information may include a depth information, wherein the depth information may indicate a distance between the object and a reference point (or a reference surface) (eg, a certain surface on the object) The distance between the point and the sensing device 120 is either a change in the image depth of the object (for example, a three-dimensional grayscale image of the object).

舉例來說,處理電路232可依據第一感測訊號DR1以及第二感測訊號DR2之間的訊號差來產生該物件之該深度資訊,更具體地說,處理電路232可直接將第一感測訊號DR1與第二感測訊號DR2相減,以去除/消弭環境光對感測結果的影響,進而得到準確的物件深度資訊。然而,此僅供說明之需,並非用來作為本發明之限制。於一設計變化中,處理電路232也可參 照第二感測訊號DR2來調整第一感測訊號DR1,接著再對第一感測訊號DR1進行處理以產生該深度資訊。 For example, the processing circuit 232 can generate the depth information of the object according to the signal difference between the first sensing signal DR1 and the second sensing signal DR2. More specifically, the processing circuit 232 can directly sense the first The signal signal DR1 is subtracted from the second sensing signal DR2 to remove/reduce the influence of the ambient light on the sensing result, thereby obtaining accurate object depth information. However, this is for illustrative purposes only and is not intended to be a limitation of the invention. In a design change, the processing circuit 232 can also participate The first sensing signal DR1 is adjusted according to the second sensing signal DR2, and then the first sensing signal DR1 is processed to generate the depth information.

影像感測單元222另可偵測反射自該物件之一可見光反射訊號S_VR以產生一第三感測訊號DR3,因此,第三感測訊號DR3包含有該物件之色彩資訊。由於處理電路232可依據第一感測訊號DR1與第二感測訊號DR2來產生該物件之該深度資訊(例如,三維灰階影像),因此,處理電路232便可依據第一感測訊號DR1、第二感測訊號DR2以及第三感測訊號DR3來產生該物件之一三維影像資訊(亦即,彩色立體影像資訊)。關於可同時偵測紅外光以及可見光之影像感測單元的實作方式容後再敘。 The image sensing unit 222 can detect the visible light reflection signal S_VR reflected from the object to generate a third sensing signal DR3. Therefore, the third sensing signal DR3 includes the color information of the object. The processing circuit 232 can generate the depth information (for example, a three-dimensional gray-scale image) of the object according to the first sensing signal DR1 and the second sensing signal DR2. Therefore, the processing circuit 232 can be configured according to the first sensing signal DR1. The second sensing signal DR2 and the third sensing signal DR3 are used to generate three-dimensional image information (ie, color stereoscopic image information) of the object. The implementation of the image sensing unit that can simultaneously detect infrared light and visible light is described later.

於一實作範例中,可控制紅外光產生元件212與影像感測單元222的致能時機以得到較佳的訊號品質。請連同第2圖來參閱第3圖。第3圖係為第2圖所示之紅外光產生元件212與影像感測單元222之控制訊號的訊號時序圖。於此實作範例中,控制電路242可產生複數個控制訊號S_C1與S_C2來分別控制紅外光產生元件212之開啟/關閉以及影像感測單元222之感測操作。由第3圖可知,控制電路242在致能紅外光產生元件212之後,會致能影像感測單元222以接收第一紅外光訊號S_R1(例如,時間點T1),以及在紅外光產生元件212與影像感測單元222均被致能之後(例如,對第一感測訊號DR1積分一預定時間之後),控制電路242可同時禁能影像感測單元222與紅外光產生元件212(例如,時間點T2)。於一設計變化中,控制電路242也可以同時致能紅外光產生元件212與影像感測單元222。簡言之,在影像感測單元222進行感測時,紅外光產生元件212會處於啟用的狀態(亦即,發射紅外光),以確保所接收之第一紅外光訊號S_R1係主要來自於紅外光產生元件212所發射之紅外光。 In an implementation example, the enabling timing of the infrared light generating component 212 and the image sensing unit 222 can be controlled to obtain better signal quality. Please refer to Figure 3 together with Figure 2. FIG. 3 is a signal timing diagram of the control signals of the infrared light generating element 212 and the image sensing unit 222 shown in FIG. In this implementation example, the control circuit 242 can generate a plurality of control signals S_C1 and S_C2 to respectively control the on/off of the infrared light generating element 212 and the sensing operation of the image sensing unit 222. As can be seen from FIG. 3, after the infrared light generating element 212 is enabled, the control circuit 242 enables the image sensing unit 222 to receive the first infrared light signal S_R1 (eg, time point T1), and the infrared light generating element 212. After the image sensing unit 222 is enabled (eg, after integrating the first sensing signal DR1 for a predetermined time), the control circuit 242 can simultaneously disable the image sensing unit 222 and the infrared light generating component 212 (eg, time). Point T2). In a design change, the control circuit 242 can also enable the infrared light generating component 212 and the image sensing unit 222 at the same time. In short, when the image sensing unit 222 performs sensing, the infrared light generating element 212 is in an enabled state (ie, emits infrared light) to ensure that the received first infrared light signal S_R1 is mainly from infrared. The infrared light emitted by the light generating element 212.

當紅外光產生元件212關閉時,控制電路242可致能影像感測單元222以接收第二紅外光訊號S_R2(例如,時間點T3),並於一預定時間(例如,第二感測訊號SR2之積分時間)之後,禁能影像感測單元222(例如,時間點T4)。於此實作範例中(但本發明並不侷限於此),當紅外光產生元件212關閉時,控制電路242可致能影像感測單元222以偵測反射自該物件之可見光反射訊號S_VR以產生第三感測訊號DR3(例如,時間點T3~時間點T4),如此一來,影像感測單元222便可同時完成影像深度資訊與影像色彩資訊之偵測。 When the infrared light generating element 212 is turned off, the control circuit 242 can enable the image sensing unit 222 to receive the second infrared light signal S_R2 (eg, time point T3) for a predetermined time (eg, the second sensing signal SR2) After the integration time), the image sensing unit 222 is disabled (for example, time point T4). In this implementation example (but the invention is not limited thereto), when the infrared light generating component 212 is turned off, the control circuit 242 can enable the image sensing unit 222 to detect the visible light reflecting signal S_VR reflected from the object. The third sensing signal DR3 is generated (for example, the time point T3 to the time point T4), so that the image sensing unit 222 can simultaneously perform image depth information and image color information detection.

另外,當控制電路242禁能影像感測單元222時(亦即,處於關閉狀態(turned off)的期間),控制電路242可致能可見光偵測單元224(亦即,處於開啟狀態(turned on))來進行環境光感測或色彩感測之至少其一,以對此整合式感測裝置120進行功率消耗最佳化。相似地,當控制電路242禁能影像感測單元222時(亦即,處於關閉狀態的期間),控制電路242可致能紅外光偵測單元228(亦即,處於開啟狀態)來進行近接感測、物件位置偵測與手勢偵測之至少其一,以對此整合式感測裝置120進行功率消耗最佳化。 In addition, when the control circuit 242 disables the image sensing unit 222 (ie, during the turned off period), the control circuit 242 can enable the visible light detecting unit 224 (ie, in an on state (turned on) And performing at least one of ambient light sensing or color sensing to optimize power consumption of the integrated sensing device 120. Similarly, when the control circuit 242 disables the image sensing unit 222 (ie, during the off state), the control circuit 242 can enable the infrared light detecting unit 228 (ie, in an on state) to perform proximity proximity. At least one of measurement, object position detection and gesture detection to optimize power consumption of the integrated sensing device 120.

於第2圖所示之實作範例中,控制電路242可包含(但不限於)一時序控制器243、一紅外線發光二極體驅動器(IR LED driver)244、一電壓調節器245、一時脈產生器246、一控制暫存器247、一電源控制電路248以及一中斷電路249。時序控制器243可用來產生控制訊號S_C1以控制紅外線發光二極體驅動器244,以及產生控制訊號S_C2以控制影像感測單元222。紅外線發光二極體驅動器244可根據控制訊號S_C1來致能/禁能紅外光產生元件212。時脈產生器246可自接點MCLK接收一外部時脈(例如,主時脈;未顯示於第2圖中)。電源控制電路248可自接點PWDN接收一電源 控制訊號(未顯示於第2圖中)以控制電源操作模式。中斷電路250可自接點INTB接收一中斷訊號(未顯示於第2圖中)。由於熟習技藝者應可了解控制電路242所包含之電路元件的運作細節,故進一步說明在此便不再贅述。 In the implementation example shown in FIG. 2, the control circuit 242 can include, but is not limited to, a timing controller 243, an IR LED driver 244, a voltage regulator 245, and a clock. The generator 246, a control register 247, a power control circuit 248, and an interrupt circuit 249. The timing controller 243 can be used to generate the control signal S_C1 to control the infrared light emitting diode driver 244, and generate the control signal S_C2 to control the image sensing unit 222. The infrared light emitting diode driver 244 can enable/disable the infrared light generating element 212 according to the control signal S_C1. The clock generator 246 can receive an external clock (eg, a primary clock; not shown in FIG. 2) from the contact MCLK. The power control circuit 248 can receive a power source from the contact PWDN. Control signals (not shown in Figure 2) to control the power mode of operation. The interrupt circuit 250 can receive an interrupt signal from the contact INTB (not shown in FIG. 2). Since the skilled artisan should be able to understand the operational details of the circuit components included in the control circuit 242, further description will not be repeated here.

另外,處理電路232可包含(但不限於)一相關雙取樣電路(correlated double sampling circuit,CDS circuit)233、一放大器234、一相加電路235、一類比數位轉換器236、一暗階補償電路(dark/black level compensation circuit)237、一數位處理電路238以及一串列介面(serial interface,serial I/F)239(例如,雙線內部整合電路(two wire inter-integrated circuit,two-wire I2C))。影像感測單元222所輸出之訊號(例如,第一感測訊號DR1與第二感測訊號DR2)可經由相關雙取樣電路233與放大器234所組成的具有可程式增益設定之相關雙取樣架構來處理。相加電路235可將放大器234之輸出與暗階補償電路237之輸出相加為一類比訊號(亦即,相加電路235之輸出),類比數位轉換器236接著會將該類比訊號轉換為一數位訊號(亦即,類比數位轉換器236之輸出),其中暗階補償電路237之輸出係依據該數位訊號而產生。數位處理電路238可對該數位訊號進行後續處理(例如,門檻值比較、磁滯偵測以及其他偵測演算法),並藉由複數個接點D[9:0]、PCLK、HSYNC與VSYNC來將資料傳送第1圖所示之影像處理功能方塊130。串列介面239則可用來晶片之間的同步串列通訊,並耦接於對應串列時脈線(serial clock line,SCL)(未顯示於第2圖中)的接點SCL以及對應串列資料線(serial data line,SDA)(未顯示於第2圖中)的接點SDA。由於熟習技藝者應可了解處理電路232之中各電路元件的運作細節,故進一步的說明在此便不再贅述。 In addition, the processing circuit 232 can include, but is not limited to, a correlated double sampling circuit (CDS circuit) 233, an amplifier 234, an adding circuit 235, an analog-to-digital converter 236, and a dark-order compensation circuit. (dark/black level compensation circuit) 237, a digital processing circuit 238, and a serial interface (serial interface, serial I/F) 239 (for example, two wire inter-integrated circuit, two-wire I 2 C)). The signals output by the image sensing unit 222 (for example, the first sensing signal DR1 and the second sensing signal DR2) can be connected to the correlated double sampling architecture of the programmable double sampling circuit 233 and the amplifier 234 with programmable gain setting. deal with. The summing circuit 235 can add the output of the amplifier 234 and the output of the dark-order compensation circuit 237 to an analog signal (that is, the output of the adding circuit 235), and the analog-to-digital converter 236 then converts the analog signal into one. The digital signal (i.e., the output of the analog to digital converter 236), wherein the output of the dark matrix compensation circuit 237 is generated based on the digital signal. The digital processing circuit 238 can perform subsequent processing on the digital signal (eg, threshold comparison, hysteresis detection, and other detection algorithms) by a plurality of contacts D[9:0], PCLK, HSYNC, and VSYNC. The data is transmitted to the image processing function block 130 shown in FIG. The serial interface 239 can be used for synchronous serial communication between chips, and is coupled to a contact SCL corresponding to a serial clock line (SCL) (not shown in FIG. 2) and a corresponding serial array. The contact SDA of the serial data line (SDA) (not shown in Figure 2). Since the skilled artisan should be able to understand the operational details of the various circuit components in the processing circuit 232, further description will not be repeated here.

請連同第2圖來參閱第4圖與第5圖。第4圖係為第2圖所示之影像感測單元222、可見光偵測單元224、暗感測單元226與紅外光偵測單元 228之一實作範例的示意圖,而第5圖係為第4圖所示之影像感測單元222之感測元件架構的截面圖。於此實作範例中,影像感測單元222可由一M列、N行的感測器陣列(例如,一主動式像素感測器陣列(active pixel sensor array,APS array))來實作出(如第4圖所示),其中M與N係為正整數。另外,由第5圖可知,影像感測單元222可包含至少一紅外光感測元件522_IR以及至少一可見光感測元件522_VR。紅外光感測元件522_IR耦接於處理電路232,用來偵測第一紅外光訊號S_R1與第二紅外光訊號S_R2,以分別產生第一感測訊號DR1與第二感測訊號DR2;可見光感測元件522_VR耦接於處理電路232,用來偵測可見光反射訊號S_VR以產生第三感測訊號DR3。於此實作範例中,第三感測訊號DR3可包含一紅光轉換訊號、一綠光轉換訊號以及一藍光轉換訊號,分別由可見光感測元件522_VR所包含之一紅光感測元件522_R、一綠光感測元件522_G以及一藍光感測元件522_B偵測可見光反射訊號S_VR而產生。 Please refer to Figure 4 and Figure 5 together with Figure 2. 4 is an image sensing unit 222, a visible light detecting unit 224, a dark sensing unit 226, and an infrared light detecting unit shown in FIG. 228 is a schematic diagram of an example of implementation, and FIG. 5 is a cross-sectional view of the sensing element architecture of image sensing unit 222 shown in FIG. In this implementation example, the image sensing unit 222 can be implemented by an array of M columns and N rows of sensors (for example, an active pixel sensor array (APS array)) (eg, Figure 4), where M and N are positive integers. In addition, as can be seen from FIG. 5 , the image sensing unit 222 can include at least one infrared light sensing element 522_IR and at least one visible light sensing element 522_VR. The infrared light sensing component 522_IR is coupled to the processing circuit 232 for detecting the first infrared light signal S_R1 and the second infrared light signal S_R2 to respectively generate the first sensing signal DR1 and the second sensing signal DR2; The measuring component 522_VR is coupled to the processing circuit 232 for detecting the visible light reflecting signal S_VR to generate the third sensing signal DR3. In this implementation example, the third sensing signal DR3 may include a red light conversion signal, a green light conversion signal, and a blue light conversion signal, respectively, and the red light sensing element 522_R included in the visible light sensing element 522_VR, A green light sensing element 522_G and a blue light sensing element 522_B detect the visible light reflecting signal S_VR.

實作上,可將複數個光偵測器D_R、D_G、D_B與D_IR設置於一基板ST上,於複數個光偵測器D_R、D_G、D_B與D_IR上沈積一介電層DL,再於介電層DL上設置/塗布一紅色濾光片F_R、一綠色濾光片F_G、一藍色濾光片F_B以及一紅外光通過濾光片F_IRP,以分別實作出紅光感測元件522_R、綠光感測元件522_G、藍光感測元件522_B以及紅外光感測元件522_IR。 In practice, a plurality of photodetectors D_R, D_G, D_B and D_IR may be disposed on a substrate ST, and a dielectric layer DL is deposited on the plurality of photodetectors D_R, D_G, D_B and D_IR, and then A red filter F_R, a green filter F_G, a blue filter F_B, and an infrared light passing filter F_IRP are disposed/coated on the dielectric layer DL to respectively realize the red light sensing element 522_R, The green light sensing element 522_G, the blue light sensing element 522_B, and the infrared light sensing element 522_IR.

於此實作範例中,各濾光片均可由一薄膜濾光片來實作之(但本發明並不侷限於此),此外,各濾光片之入射光波長與穿透率之間的關係可參閱第6圖。由第6圖可知,可見光可被紅色濾光片F_R、綠色濾光片F_G與藍色濾光片F_B過濾為三個波段,其分別對應於穿透曲線T_R、T_G與T_B,而紅外光可被紅外光通過濾光片F_IRP過濾為對應穿透曲線T_IRP的波段。 因此,當影像感測單元222接收可見光反射訊號S_VR時,光偵測器D_R可透過紅色濾光片F_R來偵測可見光反射訊號S_VR以產生該紅光轉換訊號(例如,一電流訊號),光偵測器D_G可透過綠色濾光片F_G來偵測可見光反射訊號S_VR以產生該綠光轉換訊號,以及光偵測器D_B可透過藍色濾光片F_B來偵測可見光反射訊號S_VR以產生該藍光轉換訊號。另外,光偵測器D_IR可透過紅外光通過濾光片F_IRP來偵測第一紅外光訊號S_R1以及第二紅外光訊號S_R2以分別產生相對應之紅外光轉換訊號(亦即,第一感測訊號DR1以及第二感測訊號DR2)。處理電路232便可依據所產生之紅外光轉換訊號、該紅光轉換訊號、該綠光轉換訊號以及該藍光轉換訊號來產生該物件之彩色的三維影像資訊。 In this implementation example, each filter can be implemented by a thin film filter (but the invention is not limited thereto), and in addition, between the wavelength of the incident light and the transmittance of each filter. See Figure 6 for the relationship. It can be seen from FIG. 6 that the visible light can be filtered into three bands by the red filter F_R, the green filter F_G and the blue filter F_B, which respectively correspond to the penetration curves T_R, T_G and T_B, and the infrared light can be It is filtered by the infrared light through the filter F_IRP into a band corresponding to the penetration curve T_IRP. Therefore, when the image sensing unit 222 receives the visible light reflection signal S_VR, the light detector D_R can detect the visible light reflection signal S_VR through the red color filter F_R to generate the red light conversion signal (for example, a current signal), and the light The detector D_G can detect the visible light reflection signal S_VR through the green filter F_G to generate the green light conversion signal, and the light detector D_B can detect the visible light reflection signal S_VR through the blue filter F_B to generate the Blu-ray conversion signal. In addition, the photodetector D_IR can pass the infrared light through the filter F_IRP to detect the first infrared light signal S_R1 and the second infrared light signal S_R2 to respectively generate corresponding infrared light conversion signals (ie, first sensing) Signal DR1 and second sensing signal DR2). The processing circuit 232 can generate the color three-dimensional image information of the object according to the generated infrared light conversion signal, the red light conversion signal, the green light conversion signal, and the blue light conversion signal.

以上影像感測單元之元件結構係僅供說明之需,並非用來作為本發明之限制。於一設計變化中,第5圖所示之元件結構另可包含一黃色濾光片及其相對應之光偵測器(未顯示於第5圖中),以增加色彩的鮮豔度。於另一設計變化中,也可以採用青色、品紅色、黃色與黑色濾光片(亦即,印刷四原色)及其相對應的光偵測器來取代上述紅色、綠色、藍色濾光片及其相對應的光偵測器。換言之,只要是可同時偵測可見光訊號與紅外光訊號來產生物件之三維影像資訊的影像感測單元,均遵循本發明之發明精神而落入本發明之範疇。 The component structure of the above image sensing unit is for illustrative purposes only and is not intended to be a limitation of the present invention. In a design change, the component structure shown in FIG. 5 may further include a yellow filter and its corresponding photodetector (not shown in FIG. 5) to increase the vividness of the color. In another design change, cyan, magenta, yellow, and black filters (ie, printed four primary colors) and their corresponding photodetectors may be used instead of the red, green, and blue filters described above. And its corresponding photodetector. In other words, as long as the image sensing unit can simultaneously detect the visible light signal and the infrared light signal to generate the three-dimensional image information of the object, it falls within the scope of the present invention in accordance with the inventive spirit of the present invention.

請注意,由於熟習技藝者應可了解第5圖所示之複數個子像素(例如,紅光感測元件522_R、綠光感測元件、藍光感測元件522_B與紅外光感測元件522_IR)於第2圖所示之感測器陣列具有多種的排列方式(例如,條狀排列、三角排列或正方形排列),故在此便不再贅述。另外,第6圖所示之濾光片之穿透曲線係僅供說明之需,舉例來說,紅外光通過濾光片F_IRP所對應之穿透曲線也可以是帶通穿透曲線T_IRB。 Please note that a plurality of sub-pixels (for example, red light sensing element 522_R, green light sensing element, blue light sensing element 522_B, and infrared light sensing element 522_IR) shown in FIG. 5 should be understood by those skilled in the art. The sensor array shown in Fig. 2 has a plurality of arrangements (for example, stripe arrangement, triangle arrangement or square arrangement), and therefore will not be described again here. In addition, the penetration curve of the filter shown in FIG. 6 is for illustrative purposes only. For example, the penetration curve corresponding to the infrared light passing through the filter F_IRP may also be a band pass penetration curve T_IRB.

請參閱第7圖,其係為第4圖所示之影像感測單元222之元件架構的另一實作範例的截面圖。第7圖所示之影像感測單元722之元件架構係基於第5圖所示之影像感測單元222之元件架構,而兩者之間主要的差別在於第7圖所示之感測元件架構另包含一紅外光截止濾光片F_IRC。更具體地說,影像感測單元722所包含之紅外光感測元件722_IR的元件架構與第5圖所示之紅外光感測元件722_IR的元件架構大致相同,而影像感測單元722所包含之可見光感測元件722_VR可以是一紅外光截止而可見光通過感測元件,並可包含一紅光感測元件722_R、一綠光感測元件722_G以及一藍光感測元件722_B。相較於第5圖所示之紅光感測元件522_R/綠光感測元件522_G/藍光感測元件522_B來說,由於紅光感測元件722_R/綠光感測元件722_G/藍光感測元件722_B另具有紅外光截止濾光片F_IRC,故可濾除紅外光波段的訊號,以提昇相對應之光偵測器所產生之轉換訊號(例如,上述之紅光轉換訊號、綠光轉換訊號以及藍光轉換訊號)的品質,其中紅外光截止濾光片F_IRC所對應之入射光波長與穿透率之間的關係可由第6圖所示之穿透曲線T_IRC來表示之。由於熟習技藝者經由閱讀第1圖~第6圖的相關說明之後,應可了解影像感測單元722之運作細節及其設計變化(例如,包含其他顏色的濾光片),故進一步說明在此便不再贅述。 Please refer to FIG. 7 , which is a cross-sectional view showing another embodiment of the component structure of the image sensing unit 222 shown in FIG. 4 . The component structure of the image sensing unit 722 shown in FIG. 7 is based on the component structure of the image sensing unit 222 shown in FIG. 5, and the main difference between the two is the sensing component architecture shown in FIG. Also included is an infrared light cut filter F_IRC. More specifically, the component structure of the infrared light sensing component 722_IR included in the image sensing unit 722 is substantially the same as the component structure of the infrared light sensing component 722_IR shown in FIG. 5, and the image sensing unit 722 includes The visible light sensing element 722_VR may be an infrared light cutoff and the visible light passes through the sensing element, and may include a red light sensing element 722_R, a green light sensing element 722_G, and a blue light sensing element 722_B. Compared with the red light sensing element 522_R/green light sensing element 522_G/blue light sensing element 522_B shown in FIG. 5, since the red light sensing element 722_R/green light sensing element 722_G/blue light sensing element The 722_B also has an infrared cut-off filter F_IRC, so that the signal in the infrared band can be filtered to enhance the conversion signal generated by the corresponding photodetector (for example, the red-light conversion signal, the green-light conversion signal, and the like). The quality of the blue light conversion signal, wherein the relationship between the wavelength of the incident light corresponding to the infrared cut filter F_IRC and the transmittance can be expressed by the penetration curve T_IRC shown in FIG. Since the skilled artisan can understand the operation details of the image sensing unit 722 and the design changes thereof (for example, filters containing other colors) after reading the related descriptions of FIGS. 1 to 6 , further explanation is given here. I won't go into details.

於一設計變化中,第2圖所示之影像感測單元222也可以同時包含第5圖所示之可見光感測元件522_VR以及第7圖所示之可見光感測元件722_VR的元件架構。 In a design change, the image sensing unit 222 shown in FIG. 2 may also include the component structure of the visible light sensing element 522_VR shown in FIG. 5 and the visible light sensing element 722_VR shown in FIG.

請連同第2圖來參閱第8圖。第8圖係為第4圖所示之影像感測單元222之元件架構的另一實作範例的截面圖。第8圖所示之影像感測單元822之元件架構係基於第5圖所示之影像感測單元222之元件架構,而兩者 之間主要的差別在於第8圖所示之感測元件架構係採用雙帶通濾光片(dual band bandpass filter)。更具體地說,影像感測單元822可包含至少一紅外光通過且可見光通過感測元件822_VI,其係耦接於處理電路232,用來偵測第一紅外光訊號S_R1與第二紅外光訊號S_R2以分別產生第一感測訊號DR1與第二感測訊號DR2,以及用來偵測可見光反射訊號S_VR以產生第三感測訊號DR3。於此實作範例中,第三感測訊號DR3可包含一紅光轉換訊號、一綠光轉換訊號以及一藍光轉換訊號,分別由紅外光通過且可見光通過感測元件822_VI所包含之一紅外光通過且紅光通過感測元件822_R、一紅外光通過且綠光通過感測元件822_G以及一紅外光通過且藍光通過感測元件822_B偵測可見光反射訊號S_VR而產生。另外,紅外光通過且紅光通過感測元件822_R、紅外光通過且綠光通過感測元件822_G以及紅外光通過且藍光通過感測元件822_B之至少其一另可偵測第一紅外光訊號S_R1與第二紅外光訊號S_R2以分別產生第一感測訊號DR1與第二感測訊號DR2。 Please refer to Figure 8 together with Figure 2. Fig. 8 is a cross-sectional view showing another embodiment of the component structure of the image sensing unit 222 shown in Fig. 4. The component structure of the image sensing unit 822 shown in FIG. 8 is based on the component structure of the image sensing unit 222 shown in FIG. 5, and both The main difference is that the sensing element architecture shown in Figure 8 uses a dual band bandpass filter. More specifically, the image sensing unit 822 can include at least one infrared light passing through and the visible light passing through the sensing component 822_VI, which is coupled to the processing circuit 232 for detecting the first infrared light signal S_R1 and the second infrared light signal. The S_R2 generates the first sensing signal DR1 and the second sensing signal DR2, and the visible light reflecting signal S_VR to generate the third sensing signal DR3. In this implementation example, the third sensing signal DR3 may include a red light conversion signal, a green light conversion signal, and a blue light conversion signal, respectively, which are passed by the infrared light and the visible light passes through the sensing element 822_VI. The red light is generated by the sensing element 822_R, an infrared light passing through, and the green light passing through the sensing element 822_G and an infrared light and the blue light detecting the visible light reflecting signal S_VR through the sensing element 822_B. In addition, the infrared light passes through and the red light passes through the sensing element 822_R, the infrared light passes through, and the green light passes through the sensing element 822_G and the infrared light passes through and the blue light passes through at least one of the sensing element 822_B to detect the first infrared light signal S_R1 And the second infrared light signal S_R2 to generate the first sensing signal DR1 and the second sensing signal DR2, respectively.

實作上,可將複數個光偵測器D_RI、D_GI與D_BI設置於一基板ST上,於複數個光偵測器D_RI、D_GI與D_BI上沈積一介電層DL,再於介電層DL上設置/塗布一紅外光通過且紅光通過濾光片F_RI、紅外光通過且綠光通過濾光片F_GI以及紅外光通過且藍光通過濾光片F_BI,以分別實作出紅外光通過且紅光通過感測元件822_R、紅外光通過且綠光通過感測元件822_G以及紅外光通過且藍光通過感測元件822_B。於此實作範例中,紅外光通過且紅光通過濾光片F_RI所對應之穿透曲線可以是第6圖所示之穿透曲線T_R與T_IRB的疊加,紅外光通過且綠光通過濾光片F_GI所對應之穿透曲線可以是第6圖所示之穿透曲線T_G與T_IRB的疊加,以及紅外光通過且藍光通過濾光片F_BI所對應之穿透曲線可以是第6圖所示之穿透曲線T_B與T_IRB的疊加。 In practice, a plurality of photodetectors D_RI, D_GI, and D_BI may be disposed on a substrate ST, and a dielectric layer DL is deposited on the plurality of photodetectors D_RI, D_GI, and D_BI, and then the dielectric layer DL is deposited. Setting/coating an infrared light through and red light passes through the filter F_RI, infrared light passes through and the green light passes through the filter F_GI and the infrared light passes through and the blue light passes through the filter F_BI to respectively make infrared light pass and red light The sensing element 822_R passes through the infrared light and the green light passes through the sensing element 822_G and the infrared light passes through and the blue light passes through the sensing element 822_B. In this example, the penetration curve of the infrared light passing through and the red light passing through the filter F_RI may be a superposition of the penetration curves T_R and T_IRB shown in FIG. 6, and the infrared light passes through and the green light passes through the filter. The penetration curve corresponding to the slice F_GI may be the superposition of the penetration curves T_G and T_IRB shown in FIG. 6, and the penetration curve corresponding to the infrared light passing through and the blue light passing filter F_BI may be shown in FIG. The superposition of the penetration curve T_B and T_IRB.

當影像感測單元822接收第2圖所示之第一紅外光訊號S_R1、第二紅外光訊號S_R2以及可見光反射訊號S_VR時,光偵測器D_RI可透過紅外光通過且紅光通過濾光片F_RI來偵測可見光反射訊號S_VR以產生該紅光轉換訊號(例如,一電流訊號);光偵測器D_GI可透過紅外光通過且綠光通過濾光片F_GI來偵測可見光反射訊號S_VR以產生該綠光轉換訊號;以及光偵測器D_BI可透過紅外光通過且藍光通過濾光片F_BI來偵測可見光反射訊號S_VR以產生該藍光轉換訊號。另外,各光偵測器另可透過相對應之雙帶通濾光片來偵測第一紅外光訊號S_R1與第二紅外光訊號S_R2以分別產生相對應之紅外光轉換訊號(例如,第一感測訊號DR1以及第二感測訊號DR2)。處理電路232便可依據所產生之紅外光轉換訊號、該紅光轉換訊號、該綠光轉換訊號以及該藍光轉換訊號來產生該物件之彩色的三維影像資訊。 When the image sensing unit 822 receives the first infrared light signal S_R1, the second infrared light signal S_R2, and the visible light reflection signal S_VR shown in FIG. 2, the light detector D_RI can pass the infrared light and pass the red light through the filter. The F_RI detects the visible light reflection signal S_VR to generate the red light conversion signal (for example, a current signal); the light detector D_GI can pass the infrared light and the green light passes through the filter F_GI to detect the visible light reflection signal S_VR to generate The green light conversion signal; and the light detector D_BI can pass the infrared light and the blue light passes through the filter F_BI to detect the visible light reflection signal S_VR to generate the blue light conversion signal. In addition, each of the photodetectors can detect the first infrared light signal S_R1 and the second infrared light signal S_R2 through the corresponding dual band pass filters to respectively generate corresponding infrared light conversion signals (for example, the first The sensing signal DR1 and the second sensing signal DR2). The processing circuit 232 can generate the color three-dimensional image information of the object according to the generated infrared light conversion signal, the red light conversion signal, the green light conversion signal, and the blue light conversion signal.

請連同第2圖來參閱第4圖。由第4圖可知,可見光偵測單元224可包含複數個像素(由紅色子像素R、綠色子像素G與藍色子像素B所組成)。於一實作範例中,紅色子像素R、綠色子像素G與藍色子像素B可分別採用第5圖所示之紅光感測元件522_R、綠光感測元件522_G與藍光感測元件522_B之元件架構。於另一實作範例中,紅色子像素R、綠色子像素G與藍色子像素B可分別採用第7圖所示之紅光感測元件722_R、綠光感測元件722_G與藍光感測元件722_B之元件架構。於又一實作範例中,為了決定照度計算的係數,可見光偵測單元224可包含具有紅外光截止濾光片的一第一像素(未顯示於第4圖中)以及具有衰減的可見光感測度的一第二像素(未顯示於第4圖中),其中該第一像素會偵測可見光以得到一第一可見光感測訊號,該第二像素會偵測主紅外光光譜以得到一第二可見光感測訊號。處理電路232可依據該第一可見光感測訊號與該第二可見光感測訊號之間的訊號比例來決定照度計算的係數。另外,處理電路232也可以根據可見光偵測單元224之感測結果來調整影像資訊(例如,明度)。 Please refer to Figure 4 together with Figure 2. As can be seen from FIG. 4, the visible light detecting unit 224 can include a plurality of pixels (composed of the red sub-pixel R, the green sub-pixel G, and the blue sub-pixel B). In a practical example, the red sub-pixel R, the green sub-pixel G, and the blue sub-pixel B may respectively adopt the red light sensing element 522_R, the green light sensing element 522_G, and the blue light sensing element 522_B shown in FIG. 5 . The component architecture. In another implementation example, the red sub-pixel R, the green sub-pixel G, and the blue sub-pixel B may respectively adopt the red light sensing element 722_R, the green light sensing element 722_G, and the blue light sensing element shown in FIG. 7 . Component architecture of 722_B. In another implementation example, in order to determine the coefficient of illumination calculation, the visible light detecting unit 224 may include a first pixel (not shown in FIG. 4) having an infrared light cut filter and a visible light sensitivity having attenuation. a second pixel (not shown in FIG. 4), wherein the first pixel detects visible light to obtain a first visible light sensing signal, and the second pixel detects a primary infrared light spectrum to obtain a second Visible light sensing signal. The processing circuit 232 can determine the coefficient of the illuminance calculation according to the signal ratio between the first visible light sensing signal and the second visible light sensing signal. In addition, the processing circuit 232 can also adjust image information (eg, brightness) according to the sensing result of the visible light detecting unit 224.

紅外光偵測單元228可包含複數個紅外光偵測器(IR detector)(標示為「I」)。在紅外光偵測單元228應用於近接感測操作的情形下,當控制電路242致能紅外光產生元件212時,該複數個紅外光偵測器會被致能,以及紅外光偵測單元228會產生一第一紅外光感測訊號;當控制電路242禁能紅外光產生元件212時,該複數個紅外光偵測器仍處於開啟狀態,因此,紅外光偵測單元228另可產生一第二紅外光感測訊號。該第一紅外光感測訊號與該第二紅外光感測訊號之間的訊號準位差可被輸出至處理電路232以供近接感測。在紅外光偵測單元228應用於手勢辨識操作的情形下,當控制電路242致能紅外光產生元件212時,該複數個紅外光偵測器可依據一特定次序來致能,其中在某一時段內僅會有一紅外光偵測器被致能。舉例來說,於一第一時段內,控制電路242可致能一紅外光偵測器,並依序致能與禁能紅外光產生元件212,使該紅外光偵測器可分別產生相對應之一第一感測訊號與一第二感測訊號予處理電路232,處理電路232便可得到該第一感測訊號與該第二感測訊號之一訊號準位差;於一第二時段內,控制電路242可致能另一紅外光偵測器,處理電路232便可得到相對應之另一訊號準位差。以此類推,處理電路232便可依據該特定次序來接收該複數個紅外光偵測器之感測訊號(訊號準位差),進而依據感測訊號強度與時間之間的關係來辨識手勢。另外,處理電路232也可以僅依據單一紅外光偵測器之感測訊號強度與時間之間的關係來辨識手勢(亦即,判斷物件是否遠離或靠近)。 The infrared light detecting unit 228 can include a plurality of IR detectors (labeled "I"). In the case where the infrared light detecting unit 228 is applied to the proximity sensing operation, when the control circuit 242 enables the infrared light generating element 212, the plurality of infrared light detectors are enabled, and the infrared light detecting unit 228 A first infrared light sensing signal is generated. When the control circuit 242 disables the infrared light generating component 212, the plurality of infrared light detectors are still in an on state. Therefore, the infrared light detecting unit 228 can generate a first Two infrared light sensing signals. The signal level difference between the first infrared light sensing signal and the second infrared light sensing signal can be output to the processing circuit 232 for proximity sensing. In the case where the infrared light detecting unit 228 is applied to the gesture recognition operation, when the control circuit 242 enables the infrared light generating element 212, the plurality of infrared light detectors can be enabled according to a specific order, wherein Only one infrared detector will be enabled during the time period. For example, in a first time period, the control circuit 242 can enable an infrared light detector, and sequentially disable and disable the infrared light generating component 212, so that the infrared light detector can respectively generate corresponding a first sensing signal and a second sensing signal are sent to the processing circuit 232, and the processing circuit 232 can obtain a signal level difference between the first sensing signal and the second sensing signal; The control circuit 242 can enable another infrared light detector, and the processing circuit 232 can obtain a corresponding signal level difference. By analogy, the processing circuit 232 can receive the sensing signals (signal level differences) of the plurality of infrared light detectors according to the specific order, and then recognize the gesture according to the relationship between the intensity of the sensing signals and the time. In addition, the processing circuit 232 can also recognize the gesture based on the relationship between the intensity of the sensing signal of the single infrared light detector and the time (ie, determining whether the object is far away or close).

暗感測單元226可包含複數個暗像素(dark pixel)(標示為「D」)。由於該複數個暗像素所產生之感測訊號並非由照光所產生,故可自影像感測單元222/可見光偵測單元224/紅外光偵測單元228所得到的感測訊號中扣除該複數個暗像素所產生之感測訊號,以對影像感測單元222/可見光偵測單元224/紅外光偵測單元228所得到的感測訊號進行補償。 Dark sensing unit 226 can include a plurality of dark pixels (labeled "D"). Since the sensing signals generated by the plurality of dark pixels are not generated by the illumination, the plurality of sensing signals obtained by the image sensing unit 222/visible light detecting unit 224/infrared light detecting unit 228 can be deducted from the plurality of sensing signals. The sensing signal generated by the dark pixel compensates the sensing signal obtained by the image sensing unit 222/visible light detecting unit 224/infrared light detecting unit 228.

於第4圖所示之實施例中,可見光偵測單元224、暗感測單元226與紅外光偵測單元228均可包含複數個感測元件(例如,複數個像素(包含紅、綠、藍子像素)、複數個暗像素以及複數個紅外光偵測器),其中該複數個感測元件係圍繞於影像感測單元222(亦即,上述感測器陣列),以更完整地取得對應於第1圖所示之透鏡110的可視範圍的影像資訊。另外,由於可見光偵測單元224/紅外光偵測單元228可具有與影像感測單元222相同/相似的感測元件架構,因此,可透過相同/相似的製程來實作出整合多種感測功能的感測裝置,並可降低生產成本。 In the embodiment shown in FIG. 4, the visible light detecting unit 224, the dark sensing unit 226, and the infrared light detecting unit 228 may each include a plurality of sensing elements (for example, a plurality of pixels (including red, green, and blue sub-pixels). a pixel, a plurality of dark pixels, and a plurality of infrared light detectors, wherein the plurality of sensing elements surround the image sensing unit 222 (ie, the sensor array) to more completely obtain the corresponding The image information of the visible range of the lens 110 shown in Fig. 1. In addition, since the visible light detecting unit 224/infrared light detecting unit 228 can have the same/similar sensing element structure as the image sensing unit 222, the same/similar process can be used to integrate multiple sensing functions. Sensing devices and reducing production costs.

另外,影像感測單元222、可見光偵測單元224與紅外光偵測單元228可被獨立地致能或禁能。以下簡單說明影像感測、環境光感測、近接感測與手勢辨識的流程。請連同第2圖來參閱第9圖。第9圖為本發明影像感測操作之一實施例的流程圖,其中該影像感測操作可簡單歸納如下。 In addition, the image sensing unit 222, the visible light detecting unit 224, and the infrared light detecting unit 228 can be independently enabled or disabled. The following briefly describes the flow of image sensing, ambient light sensing, proximity sensing, and gesture recognition. Please refer to Figure 9 together with Figure 2. FIG. 9 is a flow chart of an embodiment of an image sensing operation of the present invention, wherein the image sensing operation can be simply summarized as follows.

步驟910:開始。 Step 910: Start.

步驟912:選擇感測裝置120之感測模式(例如,影像感測、環境光感測、近接感測、手勢辨識與溫度感測模式)。 Step 912: Select a sensing mode of the sensing device 120 (eg, image sensing, ambient light sensing, proximity sensing, gesture recognition, and temperature sensing mode).

步驟914:設定感測訊號的積分時間。 Step 914: Set the integration time of the sensing signal.

步驟916:致能相對應的晶片(亦即,感測裝置120,或包含感測裝置120之晶片)。 Step 916: Enable the corresponding wafer (ie, the sensing device 120, or the wafer containing the sensing device 120).

步驟918:將影像感測單元222之感測位址設為第0列。 Step 918: Set the sensing address of the image sensing unit 222 to the 0th column.

步驟920:將影像感測單元222之一感測訊號的一訊號準位(signal level)傳送到相關雙取樣電路233。 Step 920: The signal level of one of the image sensing units 222 is transmitted to the correlated double sampling circuit 233.

步驟922:將該感測訊號重置,以將該感測訊號之一重置準位(reset level)傳送到相關雙取樣電路233。 Step 922: Reset the sensing signal to transmit a reset level of the sensing signal to the correlated double sampling circuit 233.

步驟924:輸出該訊號準位與該重置準位之間的一準位差至放大器234。 Step 924: Output a level difference between the signal level and the reset level to the amplifier 234.

步驟926:將該準位差放大。 Step 926: The potential difference is amplified.

步驟928:利用暗階補償電路237來進行暗階補償。 Step 928: Dark-level compensation circuit 237 is utilized to perform dark-order compensation.

步驟930:利用類比數位轉換器236來將相加電路235所產生之一類比訊號轉換為一數位訊號。 Step 930: The analog digital converter 236 is used to convert an analog signal generated by the adding circuit 235 into a digital signal.

步驟932:利用數位處理電路238來對該數位訊號進行處理,並據以輸出一數位資料輸出。 Step 932: The digital signal processing circuit 238 is used to process the digital signal, and output a digital data output.

步驟934:將影像感測單元222之感測位址增加1列。 Step 934: Increase the sensing address of the image sensing unit 222 by one column.

步驟936:判斷影像感測單元222之感測位址是否為最後一列?若是,執行步驟938;反之,執行步驟920。 Step 936: Determine whether the sensing address of the image sensing unit 222 is the last column. If yes, go to step 938; otherwise, go to step 920.

步驟938:讀取下一影像幀。 Step 938: Read the next image frame.

於步驟920中,可依據不同感測元件的感度來調整積分時間,以得到較佳的感測結果。以上係以對單一影像幀進行處理為例。由於熟習技藝者經由閱讀第1圖~第8圖的相關說明之後,應可了解第9圖所示之每一步驟的操作細節,故進一步的說明在此便不再贅述。 In step 920, the integration time can be adjusted according to the sensitivity of different sensing elements to obtain a better sensing result. The above is an example of processing a single image frame. Since the skilled artisan will understand the operation details of each step shown in FIG. 9 after reading the related descriptions of FIG. 1 to FIG. 8, further description will not be repeated here.

請參閱第10圖,其係為本發明環境光感測操作(或色彩感測操作)之一實施例的流程圖,其中該環境光感測流程可簡單歸納如下。 Please refer to FIG. 10, which is a flowchart of an embodiment of an ambient light sensing operation (or color sensing operation) of the present invention, wherein the ambient light sensing process can be simply summarized as follows.

步驟1010:開始。 Step 1010: Start.

步驟1012:選擇環境光感測模式。 Step 1012: Select an ambient light sensing mode.

步驟1014:設定感測訊號的積分時間。 Step 1014: Set the integration time of the sensing signal.

步驟1016:設定放大增益。 Step 1016: Set the amplification gain.

步驟1018:致能相對應的晶片。 Step 1018: Enable the corresponding wafer.

步驟1020:對一第一像素與(例如,第4圖所示之包含紅色、綠色、藍色子像素之一像素)一第二像素(例如,第4圖所示之包含紅色、綠色、藍色子像素之另一像素)進行偵測,以分別產生一第一感測訊號以及一第二感測訊號。 Step 1020: Pair a first pixel with a second pixel (for example, one of the red, green, and blue sub-pixels shown in FIG. 4) (for example, the red, green, and blue colors shown in FIG. 4 The other pixel of the color sub-pixel is detected to generate a first sensing signal and a second sensing signal, respectively.

步驟1022:對該第一感測訊號進行類比數位轉換處理,以及對該第二感測訊號進行類比數位轉換處理。 Step 1022: Perform analog-to-digital conversion processing on the first sensing signal, and perform analog digital conversion processing on the second sensing signal.

步驟1024:將轉換後之該第一感測訊號與轉換後之該第二感測訊號輸出至一資料暫存器。 Step 1024: Output the converted first sensing signal and the converted second sensing signal to a data buffer.

步驟1026:讀取資料暫存器的資料。 Step 1026: Read the data of the data register.

步驟1028:判斷是否讀取下一筆資料?若是,執行步驟1020;反之,執行步驟1030。 Step 1028: Determine whether to read the next data? If yes, go to step 1020; otherwise, go to step 1030.

步驟1030:禁能相對應的晶片。 Step 1030: Disable the corresponding wafer.

步驟1032:結束。 Step 1032: End.

於步驟1026中,可依據轉換後之該第一感測訊號與轉換後之該第二感測訊號之間的訊號比例來決定照度計算的係數。於步驟1028中,若環境光感測操作持續進行,則回到步驟1020以讀取下一筆資料。由於熟習技藝者經由閱讀第1圖~第9圖的相關說明之後,應可了解第10圖所示之每一步驟的操作細節,故進一步的說明在此便不再贅述。 In step 1026, the coefficient of illuminance calculation may be determined according to the ratio of the signal between the converted first sensing signal and the converted second sensing signal. In step 1028, if the ambient light sensing operation continues, then return to step 1020 to read the next data. Since the skilled artisan will understand the operation details of each step shown in FIG. 10 after reading the related descriptions of FIG. 1 to FIG. 9, further description will not be repeated here.

請參閱第11圖,其係為本發明近接感測操作之一實施例的流程圖,其中該近接感測流程可簡單歸納如下。 Please refer to FIG. 11 , which is a flowchart of an embodiment of the proximity sensing operation of the present invention, wherein the proximity sensing process can be simply summarized as follows.

步驟1110:開始。 Step 1110: Start.

步驟1112:選擇近接感測模式。 Step 1112: Select the proximity sensing mode.

步驟1114:設定積分時間。 Step 1114: Set the integration time.

步驟1116:設定放大增益。 Step 1116: Set the amplification gain.

步驟1118:致能相對應的晶片。 Step 1118: Enable the corresponding wafer.

步驟1120:於一紅外線發光二極體開啟時,偵測一像素(例如,第4圖所示之標示為「I」的一像素)之一第一感測訊號。 Step 1120: When one infrared light emitting diode is turned on, detecting one of the first sensing signals of one pixel (for example, a pixel labeled "I" shown in FIG. 4).

步驟1122:於該紅外線發光二極體關閉時,偵測該像素之一第二感測訊號。 Step 1122: When the infrared light emitting diode is turned off, detecting a second sensing signal of the pixel.

步驟1124:對該第一感測訊號進行類比數位轉換處理,以及對該第二感測訊號進行類比數位轉換處理。 Step 1124: performing analog-to-digital conversion processing on the first sensing signal, and performing analog-to-digital conversion processing on the second sensing signal.

步驟1126:將轉換後之該第一感測訊號與轉換後之該第二感測訊號輸出至一資料暫存器。 Step 1126: Output the converted first sensing signal and the converted second sensing signal to a data buffer.

步驟1128:讀取資料暫存器的資料。 Step 1128: Read the data of the data register.

步驟1130:判斷是否讀取下一筆資料?若是,執行步驟1120;反之,執行步驟1130。 Step 1130: Determine whether to read the next data? If yes, go to step 1120; otherwise, go to step 1130.

步驟1132:禁能相對應的晶片。 Step 1132: Disable the corresponding wafer.

步驟1134:結束。 Step 1134: End.

於步驟1128中,可依據轉換後之該第一感測訊號與轉換後之該第二感測訊號之間的訊號準位差來判斷物件與感測裝置之間的距離。由於熟習技藝者經由閱讀第1圖~第10圖的相關說明之後,應可了解第11圖所示之每一步驟的操作細節,故進一步的說明在此便不再贅述。 In step 1128, the distance between the object and the sensing device can be determined according to the signal level difference between the converted first sensing signal and the converted second sensing signal. Since the skilled artisan will understand the operation details of each step shown in FIG. 11 after reading the related descriptions of FIG. 1 to FIG. 10, further description will not be repeated here.

請參閱第12圖,其係為本發明手勢辨識操作之一實施例的流程圖,其中該手勢辨識流程可簡單歸納如下。 Please refer to FIG. 12, which is a flowchart of an embodiment of the gesture recognition operation of the present invention, wherein the gesture recognition process can be simply summarized as follows.

步驟1210:開始。 Step 1210: Start.

步驟1212:選擇手勢辨識模式。 Step 1212: Select a gesture recognition mode.

步驟1214:設定積分時間。 Step 1214: Set the integration time.

步驟1216:設定放大增益。 Step 1216: Set the amplification gain.

步驟1218:選擇一紅外線發光二極體。 Step 1218: Select an infrared light emitting diode.

步驟1220:於該紅外線發光二極體開啟時,偵測一像素(例如,第4圖所示之標示為「I」的一像素)之一第一感測訊號。 Step 1220: When the infrared light emitting diode is turned on, detecting one of the first sensing signals of one pixel (for example, a pixel labeled "I" shown in FIG. 4).

步驟1222:於該紅外線發光二極體關閉時,偵測該像素之一第二感測訊號。 Step 1222: When the infrared light emitting diode is turned off, detecting a second sensing signal of the pixel.

步驟1224:對該第一感測訊號進行類比數位轉換處理,以及對該第二感測訊號進行類比數位轉換處理。 Step 1224: Perform analog-to-digital conversion processing on the first sensing signal, and perform analog digital conversion processing on the second sensing signal.

步驟1226:將轉換後之該第一感測訊號與轉換後之該第二感測訊號輸出至一資料暫存器。 Step 1226: Output the converted first sensing signal and the converted second sensing signal to a data buffer.

步驟1228:讀取資料暫存器的資料。 Step 1228: Read the data of the data register.

步驟1230:判斷是否讀取下一筆資料?若是,執行步驟1218;反之,執行步驟1232。 Step 1230: Determine whether to read the next data? If yes, go to step 1218; otherwise, go to step 1232.

步驟1232:禁能相對應的晶片。 Step 1232: Disable the corresponding wafer.

步驟1234:結束。 Step 1234: End.

於步驟1228中,可依據感測訊號的強度與時間的關係來辨識手勢。於此實施例中,係以辨識單一像素之感測訊號強度與時間的關係為例。於一設計變化中,也可以同時參照複數個像素個別的感測訊號強度與時間的關係,來辨識物件位置/使用者的手勢。由於熟習技藝者經由閱讀第1圖~第11圖的相關說明之後,應可了解第12圖所示之每一步驟的操作細節,故進一步的說明在此便不再贅述。 In step 1228, the gesture can be identified according to the relationship between the intensity of the sensing signal and time. In this embodiment, the relationship between the intensity of the sensing signal of a single pixel and the time is taken as an example. In a design change, the relationship between the intensity of the individual signal and the time of the plurality of pixels can also be referenced at the same time to identify the position of the object/the gesture of the user. Since the skilled artisan will understand the operation details of each step shown in FIG. 12 after reading the related descriptions of FIG. 1 to FIG. 11, further description will not be repeated here.

值得注意的是,由於第4圖所示之影像感測單元222具有紅外光偵測器/近接感測器(proximity sensor)的元件架構(例如,第5圖所示之紅 外光感測元件522_IR),因此,第2圖所示之感測裝置120也可依據第一感測訊號DR1與一第二感測訊號DR2來判斷物件之位置及/或辨識物件對應之手勢。也就是說,第2圖所示之處理電路232另可依據所得到的深度資訊與時間之間的關係來辨識物件對應之手勢,舉例來說,若所得到的深度資訊指示出物件與感測裝置120之間的距離減少,可代表使用者對感測裝置120施加一靠近手勢。再者,由於第4圖所示之影像感測單元222可偵測物件影像,因此,第2圖所示之感測裝置120也可以直接依據所得到的三維影像資訊來判斷物件之位置及/或辨識物件對應之手勢。於一實作範例中,也可以將複數個近接感測器直接嵌入至紅綠藍影像感測器陣列之中,以實現多功能的整合感測裝置。另外,第2圖所示之影像感測單元222也可以僅透過近接感測器來得到三維影像資訊(例如,灰階三維影像),並可辨識物件位置與相對應之手勢,換言之,第4圖所示之感測器陣列也可以只包含近接感測器的元件架構。 It should be noted that the image sensing unit 222 shown in FIG. 4 has an element structure of an infrared photodetector/proximity sensor (for example, the red image shown in FIG. 5) The external light sensing component 522_IR), therefore, the sensing device 120 shown in FIG. 2 can also determine the position of the object and/or the gesture corresponding to the object according to the first sensing signal DR1 and the second sensing signal DR2. . That is to say, the processing circuit 232 shown in FIG. 2 can further identify the gesture corresponding to the object according to the relationship between the obtained depth information and time, for example, if the obtained depth information indicates the object and the sensing. The distance between the devices 120 is reduced, and a proximity gesture can be applied to the sensing device 120 on behalf of the user. Furthermore, since the image sensing unit 222 shown in FIG. 4 can detect the object image, the sensing device 120 shown in FIG. 2 can also directly determine the position of the object based on the obtained three-dimensional image information and/or Or identify the gesture corresponding to the object. In a practical example, a plurality of proximity sensors can also be directly embedded into the red, green and blue image sensor array to implement a multifunctional integrated sensing device. In addition, the image sensing unit 222 shown in FIG. 2 can also obtain 3D image information (for example, grayscale 3D image) through only the proximity sensor, and can recognize the position of the object and the corresponding gesture, in other words, the 4th. The sensor array shown in the figure can also contain only the component architecture of the proximity sensor.

由上可知,本發明影像處理系統整合了影像感測器、近接感測器與環境光感測器,並利用跨功能感測器(cross-function sensor)(例如,用來偵測影像以及辨識手勢之近接感測器以及用來偵測環境光以及色彩的可見光偵測器)來提昇系統性能。 As can be seen from the above, the image processing system of the present invention integrates an image sensor, a proximity sensor and an ambient light sensor, and utilizes a cross-function sensor (for example, for detecting images and identifying A proximity sensor for gestures and a visible light detector for detecting ambient light and color to improve system performance.

120‧‧‧感測裝置 120‧‧‧Sensing device

212‧‧‧紅外光產生元件 212‧‧‧Infrared light generating components

222‧‧‧影像感測單元 222‧‧‧Image sensing unit

224‧‧‧可見光偵測單元 224‧‧‧ Visible light detection unit

226‧‧‧暗感測單元 226‧‧‧ Dark Sensing Unit

228‧‧‧紅外光偵測單元 228‧‧‧Infrared light detection unit

232‧‧‧處理電路 232‧‧‧Processing circuit

233‧‧‧相關雙取樣電路 233‧‧‧Related double sampling circuit

234‧‧‧放大器 234‧‧Amplifier

235‧‧‧相加電路 235‧‧‧Addition Circuit

236‧‧‧類比數位轉換電路 236‧‧‧ analog digital conversion circuit

237‧‧‧暗階補償電路 237‧‧‧Dark-order compensation circuit

238‧‧‧數位處理電路 238‧‧‧Digital processing circuit

239‧‧‧串列介面 239‧‧‧ Serial interface

242‧‧‧控制電路 242‧‧‧Control circuit

243‧‧‧時序控制器 243‧‧‧Timing controller

244‧‧‧紅外線發光二極體驅動器 244‧‧‧Infrared LED Driver

245‧‧‧電壓調節器 245‧‧‧Voltage regulator

246‧‧‧時脈產生器 246‧‧‧ Clock Generator

247‧‧‧控制暫存器 247‧‧‧Control register

248‧‧‧電源控制電路 248‧‧‧Power Control Circuit

249‧‧‧中斷電路 249‧‧‧ interrupt circuit

LED_A、LED_C、GND、RSTB、ADRSEL、D[9:0]、PCLK、HSYNC、VSYNC、SCL、SDA、INTB、PWDN、MCLK、IR_LED、VDD‧‧‧接點 LED_A, LED_C, GND, RSTB, ADRSEL, D[9:0], PCLK, HSYNC, VSYNC, SCL, SDA, INTB, PWDN, MCLK, IR_LED, VDD‧‧‧ contacts

S_R1、S_R2‧‧‧紅外光訊號 S_R1, S_R2‧‧‧ infrared light signal

S_VR‧‧‧可見光反射訊號 S_VR‧‧‧ visible light reflection signal

S_C1、S_C2‧‧‧控制訊號 S_C1, S_C2‧‧‧ control signals

DR1、DR2、DR3‧‧‧感測訊號 DR1, DR2, DR3‧‧‧ sensing signals

Claims (18)

一種感測裝置,包含:一紅外光產生元件;一影像感測單元,用以於該紅外光產生元件開啟時,偵測反射自一物件之一第一紅外光訊號以產生一第一感測訊號,以及於該紅外光產生元件關閉時,偵測反射自該物件之一第二紅外光訊號以產生一第二感測訊號;一處理電路,耦接於該影像感測單元,用以至少依據該第一感測訊號以及該第二感測訊號來產生該物件之一三維影像資訊,其中該三維影像資訊包含一深度資訊;以及一控制電路,耦接於該紅外光產生元件、該影像感測單元以及該處理電路,用以控制該紅外光產生元件之開啟與關閉、該影像感測單元之感測操作,以及該處理電路之訊號處理操作。 A sensing device includes: an infrared light generating component; an image sensing unit configured to detect a first infrared light signal reflected from an object when the infrared light generating component is turned on to generate a first sensing a signal, and when the infrared light generating component is turned off, detecting a second infrared light signal reflected from the object to generate a second sensing signal; a processing circuit coupled to the image sensing unit for at least And generating, according to the first sensing signal and the second sensing signal, the three-dimensional image information of the object, wherein the three-dimensional image information includes a depth information; and a control circuit coupled to the infrared light generating component, the image The sensing unit and the processing circuit are configured to control the opening and closing of the infrared light generating component, the sensing operation of the image sensing unit, and the signal processing operation of the processing circuit. 如申請專利範圍第1項所述之感測裝置,其中該處理電路係依據該第一感測訊號與該第二感測訊號之間的訊號差來產生該物件之該深度資訊。 The sensing device of claim 1, wherein the processing circuit generates the depth information of the object according to a signal difference between the first sensing signal and the second sensing signal. 如申請專利範圍第1項所述之感測裝置,其中該影像感測單元另偵測反射自該物件之一可見光反射訊號以產生一第三感測訊號,以及該處理電路係依據該第一感測訊號、該第二感測訊號以及該第三感測訊號來產生該物件之該三維影像資訊。 The sensing device of claim 1, wherein the image sensing unit further detects a visible light reflection signal reflected from the object to generate a third sensing signal, and the processing circuit is based on the first The sensing signal, the second sensing signal, and the third sensing signal generate the three-dimensional image information of the object. 如申請專利範圍第3項所述之感測裝置,其中該影像感測單元係於該紅外光產生元件關閉時,偵測反射自該物件之該可見光反射訊號以產生該第三感測訊號。 The sensing device of claim 3, wherein the image sensing unit detects the visible light reflection signal reflected from the object when the infrared light generating element is turned off to generate the third sensing signal. 如申請專利範圍第3項所述之感測裝置,其中該影像感測單元包含:至少一紅外光感測元件,耦接於該處理電路,用來偵測該第一紅外光訊號與該第二紅外光訊號,以分別產生該第一感測訊號與該第二感測訊號;以及至少一可見光感測元件,耦接於該處理電路,用來偵測該可見光反射訊號以產生該第三感測訊號。 The sensing device of claim 3, wherein the image sensing unit comprises: at least one infrared light sensing component coupled to the processing circuit for detecting the first infrared light signal and the first a second infrared light signal for respectively generating the first sensing signal and the second sensing signal; and at least one visible light sensing component coupled to the processing circuit for detecting the visible light reflecting signal to generate the third Sensing signal. 如申請專利範圍第5項所述之感測裝置,其中該第三感測訊號包含一紅光轉換訊號、一綠光轉換訊號以及一藍光轉換訊號,以及該至少一可見光感測元件包含:一紅光感測元件,耦接於該處理電路,用來偵測該可見光反射訊號以產生該紅光轉換訊號;一綠光感測元件,耦接於該處理電路,用來偵測該可見光反射訊號以產生該綠光轉換訊號;以及一藍光感測元件,耦接於該處理電路,用來偵測該可見光反射訊號以產生該藍光轉換訊號。 The sensing device of claim 5, wherein the third sensing signal comprises a red light conversion signal, a green light conversion signal, and a blue light conversion signal, and the at least one visible light sensing element comprises: a red light sensing component coupled to the processing circuit for detecting the visible light reflecting signal to generate the red light converting signal; a green light sensing component coupled to the processing circuit for detecting the visible light reflection The signal is used to generate the green light conversion signal; and a blue light sensing component is coupled to the processing circuit for detecting the visible light reflection signal to generate the blue light conversion signal. 如申請專利範圍第5項所述之感測裝置,其中該至少一可見光感測元件包含至少一紅外光截止而可見光通過感測元件。 The sensing device of claim 5, wherein the at least one visible light sensing element comprises at least one infrared light cutoff and visible light passes through the sensing element. 如申請專利範圍第7項所述之感測裝置,其中該第三感測訊號包含一紅光轉換訊號、一綠光轉換訊號以及一藍光轉換訊號,以及該至少一紅外光截止而可見光通過感測元件包含:一紅外光截止而紅光通過感測元件,耦接於該處理電路,用來偵測該可見光反射訊號以產生該紅光轉換訊號;一紅外光截止而綠光通過感測元件,耦接於該處理電路,用來偵測該可見 光反射訊號以產生該綠光轉換訊號;以及一紅外光截止而藍光通過感測元件,耦接於該處理電路,用來偵測該可見光反射訊號以產生該藍光轉換訊號。 The sensing device of claim 7, wherein the third sensing signal comprises a red light conversion signal, a green light conversion signal, and a blue light conversion signal, and the at least one infrared light is cut off and the visible light passes. The measuring component comprises: an infrared light cut-off and red light passing through the sensing component coupled to the processing circuit for detecting the visible light reflecting signal to generate the red light converting signal; an infrared light cutoff and the green light passing through the sensing component And coupled to the processing circuit for detecting the visible The light reflects the signal to generate the green light conversion signal; and an infrared light is turned off and the blue light passes through the sensing component and is coupled to the processing circuit for detecting the visible light reflecting signal to generate the blue light converting signal. 如申請專利範圍第3項所述之感測裝置,其中該影像感測單元包含:至少一紅外光通過且可見光通過感測元件,耦接於該處理電路,用來偵測該第一紅外光訊號與該第二紅外光訊號以分別產生該第一感測訊號與該第二感測訊號,以及偵測該可見光反射訊號以產生該第三感測訊號。 The sensing device of claim 3, wherein the image sensing unit comprises: at least one infrared light passing through and visible light passing through the sensing component coupled to the processing circuit for detecting the first infrared light The signal and the second infrared light signal respectively generate the first sensing signal and the second sensing signal, and detect the visible light reflecting signal to generate the third sensing signal. 如申請專利範圍第9項所述之感測裝置,其中該第三感測訊號包含一紅光轉換訊號、一綠光轉換訊號以及一藍光轉換訊號,以及該至少一紅外光通過且可見光通過感測元件包含:至少一紅外光通過且紅光通過感測元件,耦接於該處理電路,用來偵測該可見光反射訊號以產生該紅光轉換訊號;至少一紅外光通過且綠光通過感測元件,耦接於該處理電路,用來偵測該可見光反射訊號以產生該綠光轉換訊號;以及至少一紅外光通過且藍光通過感測元件,耦接於該處理電路,用來偵測該可見光反射訊號以產生該藍光轉換訊號;其中該至少一紅外光通過且紅光通過感測元件、該至少一紅外光通過且綠光通過感測元件以及該至少一紅外光通過且藍光通過感測元件之至少其一另偵測該第一紅外光訊號與該第二紅外光訊號以分別產生該第一感測訊號與該第二感測訊號。 The sensing device of claim 9, wherein the third sensing signal comprises a red light conversion signal, a green light conversion signal, and a blue light conversion signal, and the at least one infrared light passes through and the visible light passes The measuring component comprises: at least one infrared light passing through and the red light passing through the sensing component, coupled to the processing circuit, for detecting the visible light reflecting signal to generate the red light converting signal; at least one infrared light passing through and the green light passing The measuring component is coupled to the processing circuit for detecting the visible light reflecting signal to generate the green light converting signal; and the at least one infrared light passing through and the blue light passing through the sensing component is coupled to the processing circuit for detecting The visible light reflects the signal to generate the blue light conversion signal; wherein the at least one infrared light passes through and the red light passes through the sensing element, the at least one infrared light passes through, and the green light passes through the sensing element and the at least one infrared light passes through and the blue light passes through At least one of the measuring elements detects the first infrared light signal and the second infrared light signal to respectively generate the first sensing signal and the second sensing signal . 如申請專利範圍第1項所述之感測裝置,其中該處理電路另依據該深度資訊與時間之間的關係來辨識一靠近手勢與一遠離手勢。 The sensing device of claim 1, wherein the processing circuit further identifies a proximity gesture and a distant gesture according to the relationship between the depth information and time. 如申請專利範圍第1項所述之感測裝置,另包含:一紅外光偵測單元,設置於該影像感測單元的周邊,並由該控制電路所控制以進行近接感測、物件位置偵測、手勢偵測之至少其一,其中近接感測、物件位置偵測、手勢偵測之至少其一係進行於該控制電路禁能該影像感測單元的期間。 The sensing device of claim 1, further comprising: an infrared light detecting unit disposed at a periphery of the image sensing unit and controlled by the control circuit for proximity sensing and object position detection At least one of the sensing and the gesture detection, wherein at least one of the proximity sensing, the object position detection, and the gesture detection is performed during a period in which the control circuit disables the image sensing unit. 如申請專利範圍第1項所述之感測裝置,另包含:一可見光偵測單元,設置於該影像感測單元的周邊,並由該控制電路所控制以進行環境光感測與色彩感測之至少其一,其中環境光感測與色彩感測之至少其一係進行於該控制電路禁能該影像感測單元的期間。 The sensing device of claim 1, further comprising: a visible light detecting unit disposed at a periphery of the image sensing unit and controlled by the control circuit for ambient light sensing and color sensing At least one of the following, wherein at least one of ambient light sensing and color sensing is performed during a period in which the control circuit disables the image sensing unit. 如申請專利範圍第1項所述之感測裝置,另包含:一暗感測單元,設置於該影像感測單元的周邊,並由該控制電路所控制以產生一參考訊號供暗階補償(dark level compensation)之用。 The sensing device of claim 1, further comprising: a dark sensing unit disposed at a periphery of the image sensing unit and controlled by the control circuit to generate a reference signal for dark-order compensation ( Dark level compensation). 一種感測方法,包含:致能一紅外光產生元件,以偵測反射自一物件之一第一紅外光訊號來產生一第一感測訊號;禁能該紅外光產生元件,以偵測反射自該物件之一第二紅外光訊號來產生一第二感測訊號;以及至少依據該第一感測訊號與該第二感測訊號之間的一訊號差來產生該物件之一三維影像資訊,其中該三維影像資訊包含一深度資訊。 A sensing method includes: enabling an infrared light generating component to detect a first infrared light signal reflected from an object to generate a first sensing signal; and disabling the infrared light generating component to detect a reflection Generating a second sensing signal from a second infrared light signal of the object; and generating a 3D image information of the object based on at least a signal difference between the first sensing signal and the second sensing signal The three-dimensional image information includes a depth information. 如申請專利範圍第15項所述之感測方法,另包含:偵測反射自該物件之一可見光反射訊號以產生一第三感測訊號;以及至少依據該第一感測訊號與該第二感測訊號之間的該訊號差來產生該物 件之該三維影像資訊的步驟包含:依據該訊號差以及該第三感測訊號來產生該物件之該三維影像資訊。 The sensing method of claim 15, further comprising: detecting a visible light reflection signal reflected from the object to generate a third sensing signal; and at least according to the first sensing signal and the second Sensing the signal difference between the signals to generate the object The step of the three-dimensional image information includes: generating the three-dimensional image information of the object according to the signal difference and the third sensing signal. 如申請專利範圍第18項所述之感測方法,其中偵測反射自該物件之該可見光反射訊號以產生該第三感測訊號的步驟係進行於禁能該紅外光產生元件的期間。 The sensing method of claim 18, wherein the step of detecting the visible light reflecting signal reflected from the object to generate the third sensing signal is performed during the period in which the infrared light generating element is disabled. 如申請專利範圍第15項所述之感測方法,另包含:依據該深度資訊與時間之間的關係來辨識一靠近手勢與一遠離手勢。 The sensing method of claim 15, further comprising: identifying a proximity gesture and a distant gesture according to the relationship between the depth information and time.
TW102139832A 2012-12-17 2013-11-01 Sensing apparatus and sensing method TW201427418A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/106,854 US20140168372A1 (en) 2012-12-17 2013-12-16 Sensing apparatus and sensing method for generating three-dimensional image information
CN201310695116.7A CN103869973A (en) 2012-12-17 2013-12-17 Sensing device and sensing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201261738374P 2012-12-17 2012-12-17

Publications (1)

Publication Number Publication Date
TW201427418A true TW201427418A (en) 2014-07-01

Family

ID=51725425

Family Applications (2)

Application Number Title Priority Date Filing Date
TW102139832A TW201427418A (en) 2012-12-17 2013-11-01 Sensing apparatus and sensing method
TW102144905A TWI533010B (en) 2012-12-17 2013-12-06 Optical sensing apparatus and method for detecting object near optical sensing apparatus

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW102144905A TWI533010B (en) 2012-12-17 2013-12-06 Optical sensing apparatus and method for detecting object near optical sensing apparatus

Country Status (1)

Country Link
TW (2) TW201427418A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9425227B1 (en) 2015-05-20 2016-08-23 Visera Technologies Company Limited Imaging sensor using infrared-pass filter for green deduction
TWI559767B (en) * 2014-08-14 2016-11-21 義隆電子股份有限公司 Pixel sensing device with zone-selection sensing function and operating method of the same
CN113424448A (en) * 2019-01-31 2021-09-21 ams国际有限公司 Optical proximity sensor system
TWI786403B (en) * 2020-05-14 2022-12-11 瑞士商Ams國際有限公司 Optical proximity sensor module and apparatus including the module, and method for reducing display screen distortion

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10215857B2 (en) * 2014-12-02 2019-02-26 Ams Sensors Singapore Pte. Ltd. Depth sensor module and depth sensing method
EP3519928A4 (en) * 2017-05-23 2020-02-12 Shenzhen Goodix Technology Co., Ltd. Optical touch sensing for displays and other applications

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI559767B (en) * 2014-08-14 2016-11-21 義隆電子股份有限公司 Pixel sensing device with zone-selection sensing function and operating method of the same
US9425227B1 (en) 2015-05-20 2016-08-23 Visera Technologies Company Limited Imaging sensor using infrared-pass filter for green deduction
TWI566391B (en) * 2015-05-20 2017-01-11 采鈺科技股份有限公司 Imaging sensor
CN113424448A (en) * 2019-01-31 2021-09-21 ams国际有限公司 Optical proximity sensor system
TWI786403B (en) * 2020-05-14 2022-12-11 瑞士商Ams國際有限公司 Optical proximity sensor module and apparatus including the module, and method for reducing display screen distortion

Also Published As

Publication number Publication date
TWI533010B (en) 2016-05-11
TW201425968A (en) 2014-07-01

Similar Documents

Publication Publication Date Title
US20140168372A1 (en) Sensing apparatus and sensing method for generating three-dimensional image information
TW201427418A (en) Sensing apparatus and sensing method
KR101887988B1 (en) Image sensor chip, operation method thereof, and system having the same
US9377355B2 (en) Optical sensor apparatus and image sensing apparatus integrating multiple functions
US11301665B2 (en) Fingerprint and proximity sensing apparatus and sensing process thereof
CN101800853B (en) Image sensor capable of judging proximity of a subject
TWI377388B (en)
KR101977711B1 (en) Depth sensor, image capturing method thereof and image processing system having the depth sensor
KR102554675B1 (en) Electronic device and method for sensing ambient light based on display information of the electronic device
TW201403034A (en) Sensor apparatus based on light sensing technology
KR20140056986A (en) Motion sensor array device, depth sensing system and method using the same
RU2456659C2 (en) Image capturing device, image display and capturing device and electronic device
WO2010032539A1 (en) Display panel with built-in optical sensor
TW201512633A (en) Optical sensor sensing illuminance and proximity
WO2013055777A1 (en) Capture of events in space and time
US8937593B2 (en) Interactive projection system and method for calibrating position of light point thereof
US10778915B2 (en) Dual-aperture ranging system
EP2929486A2 (en) Capture of scenes and events in space and time
CN103512655A (en) Information processing apparatus and method, and photoelectric conversion apparatus
KR20210006106A (en) Method of correcting events of dynamic vision sensor and image sensor performing the same
US20220006963A1 (en) Processing circuit analyzing image data and generating final image data
KR102412278B1 (en) Camera module including filter array of complementary colors and electronic device including the camera module
KR20190104796A (en) Method for generating plural information using camera to sense plural wave bandwidth and apparatus thereof
US11852523B2 (en) Optical sensor having directional sensitivity
TWI497041B (en) Optical sensor apparatus and image sensor apparatus