TW201425969A - Attitude data fusion method without pulsed interference - Google Patents

Attitude data fusion method without pulsed interference Download PDF

Info

Publication number
TW201425969A
TW201425969A TW101149153A TW101149153A TW201425969A TW 201425969 A TW201425969 A TW 201425969A TW 101149153 A TW101149153 A TW 101149153A TW 101149153 A TW101149153 A TW 101149153A TW 201425969 A TW201425969 A TW 201425969A
Authority
TW
Taiwan
Prior art keywords
attitude data
satellite
satellite attitude
data
fusion method
Prior art date
Application number
TW101149153A
Other languages
Chinese (zh)
Other versions
TWI467205B (en
Inventor
Ying-Wen Zhan
Ming-Yu Ye
Chen-Zong Lin
yong-wei Wu
Original Assignee
Nat Applied Res Laboratories
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Applied Res Laboratories filed Critical Nat Applied Res Laboratories
Priority to TW101149153A priority Critical patent/TW201425969A/en
Publication of TW201425969A publication Critical patent/TW201425969A/en
Application granted granted Critical
Publication of TWI467205B publication Critical patent/TWI467205B/zh

Links

Abstract

The present invention provides an attitude data fusion method, in which, after each inertial attitude estimation device acquires its satellite attitude data for a plurality of inertial attitude estimation devices and before the satellite attitude data fusion is performed, one of the inertial attitude estimation devices, i.e., the planetarium, is set as the main planetarium, and the swirl error between the main satellite attitude data obtained from the main planetarium and the sub satellite attitude data obtained from other planetariums is calculated. Then, a stable error is acquired from the swirl error through a low pass filter to correct the sub satellite attitude data. When the corrected satellite attitude data obtained by the attitude data fusion method of this invention is applied to the fusion of plural satellite attitude data, especially in the conversion among fusion models of different numbers of satellite attitude data, the problem of pulsed interference can be eliminated.

Description

無脈衝式干擾之姿態資料融合方法 Attitude data fusion method without pulse interference

本發明涉及一種姿態資料融合方法,更詳而言之,是應用於太空衛星中,用以消除融合多組衛星姿態資料時,尤其是消除在不同數量的衛星姿態資料的融合模式間轉換時所產生之脈衝式干擾的姿態資料融合方法。 The invention relates to a method for merging posture data, and more specifically, it is applied to a space satellite to eliminate the fusion of multiple sets of satellite attitude data, especially when converting between different modes of satellite attitude data fusion modes. An attitude data fusion method for generating pulsed interference.

在太空衛星領域中,用於估測衛星姿態的系統大都是利用慣性姿態估測裝置來進行衛星的姿態估測,在此,慣性姿態估測裝置即為星象儀。一般而言,安裝在一穩定的光學平台上的三個星象儀會負責提供與衛星座標系統相對應的衛星慣性姿態資料,而這些衛星慣性姿態資料一般是以四元數(quaternion)的形式提供。然而,三個星象儀所分別提供之衛星姿態資料仍然需要經過即時融合的步驟,才能被轉換為所需之最佳的衛星姿態資料。 In the field of space satellites, most of the systems used to estimate the attitude of the satellite use the inertial attitude estimation device to estimate the attitude of the satellite. Here, the inertial attitude estimation device is the asteroid. In general, three asteroids mounted on a stable optical platform are responsible for providing satellite inertial attitude data corresponding to the satellite coordinate system, and these satellite inertial attitude data are generally provided in the form of quaternions. . However, the satellite attitude data provided by the three satellite cameras still need to be merged in order to be converted into the best satellite attitude data required.

L.Roman在2003年提出一種最佳地結合由不同星象儀所提供之衛星姿態資料之方法。在此方法中,可在三個星象儀都有提供衛星姿態資料之情形,或是任何其中兩個星象儀提供衛星姿態資料的情形下融合並得出所需之衛星姿態資料。雖然在安裝星象儀時,各個星象儀的方位角(Orientation),亦即星象儀安裝時相對於衛星本體之位置、方向及角度,均有經過調 整,然而除了方法本身所產生之雜訊以及偏差外,由於安裝時關於各個星象儀之方位角的量測上的誤差,或是由於衛星在太空運行中所受到的環境因素干擾而對星象儀本身所產生之形變等因素,各個星象儀會產生一方位角差,因此,透過此方法的即時衛星資料融合在不同數量的衛星姿態資料之模式的運算間轉換時仍然會產生姿態資料的脈衝式干擾情形。 In 2003, L. Roman proposed a method to best combine the satellite pose data provided by different asteroids. In this method, the satellite attitude data can be integrated and obtained in the case where the three satellite cameras provide satellite attitude data, or any two of the satellite cameras provide satellite attitude data. Although the azimuth of each asteroid is installed when the asteroid is installed, that is, the position, direction and angle of the satellite with respect to the satellite body are adjusted. In addition, except for the noise and deviation generated by the method itself, due to the measurement error on the azimuth of each asteroid, or the environmental factors interfered by the satellite in space operation, the satellite instrument Each asteroid will produce an azimuth difference due to factors such as deformation caused by itself. Therefore, the real-time satellite data fusion through this method will still generate the pulse of the attitude data when the operation of the mode of different numbers of satellite attitude data is converted. Interference situation.

在美國專利號7,124,001中,其發明人提出了一種方法,可以利用一相對姿態資料估計參數來計算主姿態資料跟子姿態資料之間的相對姿態資料,並將相對姿態資料用來調整子姿態資料,以改善所取得之衛星姿態資料。然而,此方法中所取得之相對姿態資料除了並未經過最佳化外,其也並未針對結合多個衛星姿態資料時,當多個星象儀之一失效而必須在不同數量的衛星姿態資料之融合模式間轉換時所產生之姿態資料的脈衝式干擾提出解決方法。 In U.S. Patent No. 7,124,001, the inventor proposes a method for calculating a relative pose data between a main pose data and a sub-attribute data using a relative pose data estimation parameter, and using the relative pose data to adjust sub-pose data. To improve the satellite attitude data obtained. However, the relative attitude data obtained in this method is not optimized. However, it is not aimed at combining multiple satellite attitude data. When one of the multiple satellite instruments fails, it must be in different numbers of satellite attitude data. A solution to the pulsed interference of the pose data generated during the transition between the fusion modes is proposed.

因此,如何尋求一種方法,以解決在融合多個衛星姿態資料時所產生之偏差,另,以解決由於量測上的誤差,或是受到環境因素干擾而對星象儀本身所產生之形變等因素,所造成的各個慣性姿態估測裝置的方位角差,進而造成在融合不同數量的衛星姿態資料的資料融合模式之間轉換時所產生之脈衝式干擾,乃是待解決的問題。 Therefore, how to find a way to solve the deviation caused by the fusion of multiple satellite attitude data, and to solve the deformation caused by the measurement, or the deformation caused by environmental factors, etc. The azimuth difference caused by each inertial attitude estimating device, which causes the pulsed interference generated when the data fusion mode of the different amount of satellite attitude data is converted, is a problem to be solved.

基於上述理由,本發明的目的,係提供一種無脈衝式干擾之姿態資料融合方法,係應用於太空衛星領域中,用以針對多組慣性姿態估測裝置取得之衛星姿態資料進行錯位校正,使得在融合多組衛星姿態資料,以及在融合不同數量的衛星姿態資料的模式間轉換時,不會產生脈衝式干擾的姿態資料融合方法。 Based on the above reasons, the object of the present invention is to provide a non-pulse interference attitude data fusion method, which is applied to the space satellite field, and is used for misalignment correction of satellite attitude data obtained by multiple sets of inertial attitude estimation devices, so that In the fusion of multiple sets of satellite attitude data, and between modes that fuse different numbers of satellite attitude data, there is no attitude data fusion method that generates pulse interference.

本發明的特徵,在於提供一種用於消除脈衝式干擾的姿態資料融合方法,在多組慣性姿態估測裝置各自取得衛星姿態資料後,以及在進行衛星姿態資料融合之前,將其中一組慣性姿態估測裝置,亦即星象儀,設定為主星象儀,並計算自主星象儀取得之主衛星姿態資料與自其他星象儀所取得的子衛星姿態資料之間的旋轉差,接著通過一低通濾波器自旋轉差中取得一穩定差,用以校正子衛星姿態資料。透過本發明的姿態資料融合方法所校正過的衛星姿態資料,在被使用至多組衛星姿態融合時,尤其是在不同數量的衛星姿態資料的融合模式間轉換時,不會有產生脈衝式干擾的問題。 A feature of the present invention is to provide an attitude data fusion method for eliminating pulsed interference, in which a plurality of sets of inertial attitude estimation devices obtain satellite attitude data, and before performing satellite attitude data fusion, one set of inertial postures The estimation device, that is, the astrological instrument, is set as the main astrological instrument, and calculates the rotation difference between the main satellite attitude data obtained by the autonomous star image and the subsatellite attitude data obtained from other astronomical instruments, and then passes through a low pass filter. A stable difference is obtained from the rotation difference to correct the sub-satellite attitude data. The satellite attitude data corrected by the attitude data fusion method of the present invention does not generate pulse-like interference when being used for multi-group satellite attitude fusion, especially when switching between different modes of satellite attitude data fusion modes. problem.

本發明的技術手段,包括以下步驟:在複數組慣性姿態估測裝置中取得相對應數量的衛星姿態資料;將該等衛星姿態資料自慣性姿態估測裝置座標系統轉換至衛星座標系統;將其中一組衛星姿態資料設定為一主衛星姿態資料,並且將其餘的衛星姿態資料分別設定為一子衛星姿態資料;校正該等子衛星姿態資料與主衛星姿態資料之間的錯位。其中,錯位校正的步 驟進一步包括:自該等子衛星姿態資料中選取一組子衛星姿態資料;計算主衛星姿態資料與子衛星姿態資料之間的一旋轉差△Q;通過低通濾波器以取得旋轉差△Q中之一穩定差△Qf;使用所取得之穩定差△Qf來校正子衛星姿態資料。最後,融合校正過之該等子衛星姿態資料以及主衛星姿態資料。 The technical means of the present invention comprises the steps of: obtaining a corresponding number of satellite attitude data in a complex array inertial attitude estimating device; converting the satellite attitude data from the inertial attitude estimating device coordinate system to a satellite coordinate system; A set of satellite attitude data is set as a main satellite attitude data, and the remaining satellite attitude data are respectively set as a sub-satellite attitude data; and the misalignment between the sub-satellite attitude data and the main satellite attitude data is corrected. The step of misalignment correction further comprises: selecting a set of sub-satellite attitude data from the sub-satellite attitude data; calculating a rotation difference ΔQ between the main satellite attitude data and the sub-satellite attitude data; and passing the low-pass filter One of the rotational differences ΔQ is obtained as a stable difference ΔQ f ; the obtained stability difference ΔQ f is used to correct the subsatellite attitude data. Finally, the corrected sub-satellite attitude data and the main satellite attitude data are fused.

本發明的複數組慣性姿態估測裝置可為一第一星象儀、一第二星象儀以及一第三星象儀。其中,第一星象儀被設定為主星象儀,且上述的主衛星姿態資料係從主星象儀中所取得。此外,應用於本方法的兩組衛星姿態資料,其中之一必須包括自主星象儀所取得之主衛星姿態資料Q1,而另一組該衛星姿態資料可為從該第二星象儀或是該第三星象儀中任一星象儀所取得之Q2或Q3The complex array inertial attitude estimating device of the present invention can be a first star imager, a second star imager, and a third star imager. Among them, the first astronomical instrument is set as the main astrological instrument, and the above-mentioned main satellite attitude data is obtained from the main astrological instrument. In addition, one of the two sets of satellite attitude data applied to the method must include the main satellite attitude data Q 1 obtained by the autonomous satellite image, and the other set of the satellite attitude data can be from the second satellite image or the Q 2 or Q 3 obtained by any of the stars in the Samsung Imager.

此外,各個慣性姿態估測裝置分別具有一方位角,本發明中所校正之錯位,係指由安裝複數組慣性姿態估測裝置時,分別因量測上之誤差而造成各個慣性姿態估測裝置之一方位角差所造成之錯位,以及因複數組慣性姿態估測裝置受太空中環境因素影響所造成之錯位。 In addition, each of the inertial attitude estimating devices has an azimuth angle, and the misalignment corrected in the present invention refers to each inertial attitude estimating device caused by the error in the measurement when the complex array inertial attitude estimating device is installed. The misalignment caused by one azimuth difference and the misalignment caused by the complex array inertial attitude estimation device affected by environmental factors in space.

以下配合圖式及元件符號對本發明的實施方式做更詳細的說明,俾使熟習該項技藝者在研讀本說明書後能據以實施。 The embodiments of the present invention will be described in more detail below with reference to the drawings and the <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt;

第一圖所顯示的為根據本發明之姿態資料融合方法的流 程圖。如第一圖所示,本發明之應用於消除融合多組衛星姿態資料時所產生之脈衝式干擾的姿態資料融合方法,主要包括三個步驟。首先,於步驟S11,需從安裝於衛星上的複數組慣性姿態估測裝置中取得多組衛星姿態資料,在此,所述的慣性姿態估測裝置即為星象儀;接著,於步驟S12,則針對所取得的多衛星姿態資料進行校正。最後,於步驟S13,則將校正過後的衛星姿態資料進行融合。下文中將針對本較佳實施例中的各步驟進行詳細的說明。 The first figure shows the flow of the attitude data fusion method according to the present invention. Cheng Tu. As shown in the first figure, the attitude data fusion method of the present invention for eliminating the pulsed interference generated when merging a plurality of sets of satellite attitude data mainly comprises three steps. First, in step S11, a plurality of sets of satellite attitude data are acquired from a complex array inertial posture estimating device installed on a satellite, where the inertial attitude estimating device is a star image device; then, in step S12, Then, the obtained multi-satellite attitude data is corrected. Finally, in step S13, the corrected satellite attitude data is merged. The steps in the preferred embodiment will be described in detail hereinafter.

第二圖所顯示的為根據本發明較佳實施例之步驟S11的詳細流程圖。如第二圖所示,在較佳實施例中,步驟S11進一步包括三個步驟S111、S112以及S113。在本發明的較佳實施例中,所述的複數組慣性姿態估測裝置總共包括第一星象儀CHU1、第二星象儀CHU2以及第三星象儀CHU3,其中第一星象儀CHU1為主星象儀;在此,設定為主星象儀的第一星象儀CHU1為在三個星象儀中具有最精確的測量結果的星象儀。因此,在此前提下,於步驟S111中所取得多組衛星姿態資料之其中一組必須為自主星象儀中所取得之第一衛星姿態資料Q1,而其餘的衛星姿態資料可以為分別自第二星象儀CHU2或是第三星象儀CHU3中所取得之第二或第三衛星姿態資料Q2或Q3。此外,雖然可以以任何一個座標系統來計算衛星姿態資料,在本較佳實施例中,所採用的為衛星本身的座標系統,因此,在步驟S112中,係將所取得之該等衛星姿態資料Q1、Q2及Q3從各自 的星象儀座標系統轉換自衛星座標系統。 The second figure shows a detailed flow chart of step S11 in accordance with a preferred embodiment of the present invention. As shown in the second figure, in the preferred embodiment, step S11 further includes three steps S111, S112, and S113. In a preferred embodiment of the present invention, the complex array inertial attitude estimating device comprises a first star imager CHU1, a second star imager CHU2, and a third star imager CHU3, wherein the first star imager CHU1 is the main star image. Here, the first star imager CHU1 set as the main star imager is the star image instrument with the most accurate measurement results among the three star instruments. Therefore, under this premise, one of the plurality of sets of satellite attitude data acquired in step S111 must be the first satellite attitude data Q 1 obtained in the autonomous star instrument, and the remaining satellite attitude data may be separately from the first The second or third satellite attitude data Q 2 or Q 3 obtained by the second star imager CHU2 or the third star imager CHU3. In addition, although the satellite attitude data can be calculated by any coordinate system, in the preferred embodiment, the coordinate system of the satellite itself is used, and therefore, in step S112, the acquired satellite attitude data is obtained. Q 1 , Q 2 and Q 3 are converted from the satellite coordinate system from their respective satellite image coordinate systems.

接著,在步驟S113中,將自主星象儀CHU1中所取得之第一衛星姿態資料Q1設定為主衛星姿態資料,而自第二星象儀CHU2以及第三星象儀CHU3中所取得之第二或第三衛星姿態資料Q2或Q3設定為子衛星姿態資料。由於在本方法中,將主星象儀CHU1設定為具有最精確的測量結果之星象儀,因此,在之後的錯位校正中,係以主衛星姿態資料Q1為主,針對子衛星姿態資料Q2以及Q3進行校正。 Next, in step S113, the first satellite attitude data Q 1 obtained in the autonomous star imager CHU1 is set as the main satellite attitude data, and the second satellite image CHU2 and the third star image instrument CHU3 are obtained. Or the third satellite attitude data Q 2 or Q 3 is set as the subsatellite attitude data. In this method, the main star imager CHU1 is set as the star image instrument with the most accurate measurement result. Therefore, in the subsequent misalignment correction, the main satellite attitude data Q 1 is mainly used, and the subsatellite attitude data Q 2 is used. And Q 3 for correction.

步驟S12的校正必須先選定一組子衛星姿態資料來進行,因此,以下將先針對Q1以及Q2之間的錯位校正進行說明。 The correction of step S12 must first select a set of sub-satellite attitude data to be performed. Therefore, the following will first explain the misalignment correction between Q 1 and Q 2 .

各個星象儀本身皆具有一方位角,而在本發明中所校正之錯位,係由安裝複數組星象儀時,分別因量測上之誤差而造成各個慣性姿態估測裝置之一方位角差所造成之錯位,以及因複數組慣性姿態估測裝置受太空中環境因素影響所造成之錯位。第三圖為顯示根據本發明較佳實施例之步驟S12的詳細流程圖。如第三圖所示,在本較佳實施例中,針對衛星姿態資料進行校正的步驟S12進一步包括三個步驟S121、S122以及S123。首先,在步驟S121中,計算主衛星姿態資料Q1以及子衛星姿態資料Q2之間的一旋轉差△Q。接著,在步驟S122中,利用一低通濾波器,自旋轉差△Q中獲得一穩定差△Qf。其中,透過低通濾波器所獲得的穩定差△Qf,已經將溫度、衛星旋轉以及太陽等其他因素造成的雜訊排除在外,因此,在接下來的 步驟S123中,可直接利用所獲得的穩定差△Qf來校正子衛星姿態資料Q2Each of the asteroids has an azimuth angle, and the misalignment corrected in the present invention is caused by the error of the measurement, and the azimuth difference of each of the inertial attitude estimating devices is caused by the installation of the complex array of asteroids. The resulting misalignment and the misalignment caused by the complex array of inertial attitude estimation devices affected by environmental factors in space. The third figure is a detailed flow chart showing step S12 in accordance with a preferred embodiment of the present invention. As shown in the third figure, in the preferred embodiment, the step S12 of correcting the satellite attitude data further includes three steps S121, S122, and S123. First, in step S121, a rotation difference ΔQ between the main satellite attitude data Q 1 and the sub-satellite attitude data Q 2 is calculated. Next, in step S122, a stable difference ΔQ f is obtained from the spin difference ΔQ using a low pass filter. Among them, the stability difference ΔQ f obtained by the low-pass filter has excluded the noise caused by temperature, satellite rotation, and other factors such as the sun, and therefore, in the next step S123, the obtained result can be directly utilized. The stability difference ΔQ f is used to correct the subsatellite attitude data Q 2 .

雖然在本較佳實施例中,係使用低通濾波器自旋轉差△Q中獲得一穩定差△Qf,然而其他任何具有相同效果的濾波器皆在本發明之保護範疇中。 Although in the preferred embodiment, a low-pass filter is used to obtain a stable difference ΔQ f from the rotational difference ΔQ, any other filter having the same effect is in the protection scope of the present invention.

第四圖所顯示的為應用上述步驟所進行之衛星姿態資料融合的詳細流程圖。在上述的步驟中,可將自第三星象儀CHU3中所取得之另一子衛星姿態資料Q3與子衛星姿態資料Q2進行替換,並重複相同的步驟,以獲得一校正過的子衛星姿態資料Q3’。透過步驟S121、S122以及S123所獲得之校正過的子衛星姿態資料Q2’以及Q3’,可在步驟S13中被使用來與主衛星姿態資料Q1進行資料融合,以獲得一完整的衛星姿態資料。 The fourth figure shows a detailed flow chart of the satellite attitude data fusion performed by applying the above steps. In the above steps, another sub-satellite attitude data Q 3 obtained from the third horoscope CHU3 and the sub-satellite attitude data Q 2 may be replaced, and the same steps are repeated to obtain a corrected sub-routine. Satellite attitude data Q 3 '. The corrected subsatellite pose data Q 2 ' and Q 3 ' obtained through steps S121, S122, and S123 can be used in step S13 to perform data fusion with the main satellite attitude data Q 1 to obtain a complete satellite. Attitude information.

在本較佳實施例中所使用的資料融合方法,為L.Roman所揭露的「最佳地結合由不同星象儀所提供之衛星姿態資料之方法」。由於該方法為習知之方法,且其並非為本發明之特徵所在處,因此本說明書內並不針對該方法內容進行詳細說明。 The data fusion method used in the preferred embodiment is the method of "best combination of satellite pose data provided by different asteroids" as disclosed by L. Roman. Since the method is a conventional method and it is not the feature of the present invention, the content of the method is not described in detail in the present specification.

第五圖為兩個測試組的假設數值,其所假設的為三個星象儀分別在三個方向中的錯位數值。為了驗證本發明之姿態資料融合方法的可靠性,以下將利用第五圖中所示的數值,來比較經過本發明之姿態資料融合方法校正過的衛星姿態資料進行資料融合的結果,以及未經過本發明之姿態資料融合方法校正過的衛星姿態資料進行資料融合的結果。 The fifth graph is the assumed value of the two test groups, which assumes the misalignment values of the three satellites in three directions. In order to verify the reliability of the pose data fusion method of the present invention, the numerical values shown in the fifth figure will be used to compare the results of the data fusion of the satellite pose data corrected by the pose data fusion method of the present invention, and The data of the satellite attitude data corrected by the attitude data fusion method of the present invention is used for data fusion.

經過資料融合的衛星姿態資料,其總姿態誤差可經由下列算式計算: The total attitude error of the satellite attitude data after data fusion can be calculated by the following formula:

其中,roll_err為滾動誤差,pitch_err為俯仰誤差,yaw_err為偏擺誤差,而RSI_FOV則為2度。 Among them, roll_err is the rolling error, pitch_err is the pitch error, yaw_err is the yaw error, and RSI_FOV is 2 degrees.

第六圖所顯示的為根據第一測試組之數值,且未經過本發明之姿態資料融合方法就直接進行資料融合的衛星姿態資料之總姿態誤差;第八圖所顯示的為根據第二測試組之數值,且同樣未經過本發明之姿態資料融合方法就直接進行資料融合的衛星姿態資料之總姿態誤差。由於在衛星運行的過程中,星象儀有可能會暴露於如太陽等星球所發出之強光中,而使星象儀失效。此時,及時的衛星姿態融合系統就會從融合三個衛星姿態資料的模式切換至融合兩個衛星姿態資料的模式;在這切換的過程中,會造成如第六圖以及第八圖所顯示之脈衝式誤差,而本發明之目的就在於消除這些脈衝式誤差。 The sixth figure shows the total attitude error of the satellite attitude data directly based on the value of the first test group and without the attitude data fusion method of the present invention; the eighth figure shows the second test according to the second test. The value of the group, and also the total attitude error of the satellite attitude data directly subjected to data fusion without the attitude data fusion method of the present invention. Because the satellite image may be exposed to the strong light emitted by a planet such as the sun during the operation of the satellite, the star instrument will be disabled. At this time, the timely satellite attitude fusion system will switch from the mode of combining three satellite attitude data to the mode of combining two satellite attitude data; in the process of switching, it will be displayed as shown in the sixth figure and the eighth figure. The pulsed error, and the object of the present invention is to eliminate these pulsed errors.

根據本發明之較佳實施例的姿態資料融合方法,係被利用C++語言撰寫為一演算法,透過電腦程式來校正三組衛星姿態資料Q1、Q2以及Q3之間的錯位。第七圖所顯示的為根據第一測試組之數值,且經過本發明之姿態資料融合方法校正後進行資料融合的衛星姿態資料之總姿態誤差;第九圖所顯示的為根據第二測試組之數值,且同樣經過本發明之姿態資料融合方法校 正後進行資料融合的衛星姿態資料之總姿態誤差。如第七圖以及第九圖所示,經過本發明之姿態資料融合方法校正後之衛星姿態資料,其進行資料融合後之總誤差,不會出現如第六圖以及第八圖中所示之脈衝式誤差。因此,從此模擬結果可以得知,根據本發明的姿態資料融合方法,可以有效的消除融合多組衛星姿態之資料時所產生之脈衝式干擾。 The pose data fusion method according to the preferred embodiment of the present invention is written as an algorithm using C++ language, and the misalignment between the three sets of satellite pose data Q 1 , Q 2 and Q 3 is corrected by a computer program. The seventh figure shows the total attitude error of the satellite attitude data according to the value of the first test group and corrected by the attitude data fusion method of the present invention; the ninth figure shows the second test group according to the second test group. The value of the total attitude error of the satellite attitude data after the data fusion is also corrected by the attitude data fusion method of the present invention. As shown in the seventh and ninth diagrams, the total error of the satellite pose data corrected by the pose data fusion method of the present invention after data fusion does not appear as shown in the sixth and eighth figures. Pulsed error. Therefore, it can be known from the simulation results that the attitude data fusion method according to the present invention can effectively eliminate the pulse type interference generated when the data of the plurality of sets of satellite poses is integrated.

第十圖所顯示的為一種衛星姿態估測方法。圖中所示的方法係依據台灣發明專利申請號第97119874號之內容所進行之衛星姿態估測方法3,該方法可以利用陀螺儀或是星象儀所提供的資料來估測衛星的姿態。如第十圖所示,在取得星象儀的資料21之後,並且在進行衛星姿態估測3之前,可利用本發明的姿態資料融合方法210,在融合自星象儀所取得的衛星姿態資料時將結果最佳化,藉此得到更精確的衛星姿態估測結果。 The tenth figure shows a satellite attitude estimation method. The method shown in the figure is a satellite attitude estimation method 3 according to the contents of Taiwan Patent Application No. 97119874, which can estimate the attitude of the satellite by using the information provided by the gyroscope or the star imager. As shown in the tenth figure, after acquiring the data 21 of the asteroid instrument and before performing the satellite attitude estimation 3, the attitude data fusion method 210 of the present invention can be used to fuse the satellite attitude data obtained from the asteroid instrument. The results are optimized to obtain a more accurate estimate of the attitude of the satellite.

综上所述,本發明所提供的姿態資料融合方法,可以計算出任何一對星象儀之間的錯位值,並將所計算出的錯位值即時的運用到衛星姿態資料中,以在使用Roman所提供之結合多組衛星姿態資料的方法之前,校正星象儀之間的錯位。經由本姿態資料融合方法校正後的衛星姿態資料,可避免在轉換資料融合模式時所造成之脈衝式干擾。 In summary, the attitude data fusion method provided by the present invention can calculate the misalignment value between any pair of asteroids, and apply the calculated misplacement value to the satellite attitude data in real time to use Roman. Prior to the method of combining multiple sets of satellite attitude data, the misalignment between the asteroids is corrected. The satellite attitude data corrected by the attitude data fusion method can avoid the pulse interference caused by the conversion of the data fusion mode.

以上之敘述僅為本發明之較佳實施例說明,凡精於此項技藝者當可依據上述之說明而作其它種種之改良,惟這些改變仍 屬於本發明之精神及以下所界定之專利範圍中。 The above description is only for the preferred embodiment of the present invention, and those skilled in the art can make other improvements according to the above description, but these changes are still It is within the spirit of the invention and the scope of the patents defined below.

CHU1‧‧‧第一星象儀 CHU1‧‧‧First Star Imager

CHU2‧‧‧第二星象儀 CHU2‧‧‧Second Star Imager

CHU3‧‧‧第三星象儀 CHU3‧‧‧ Third Star Imager

Q1‧‧‧第一衛星姿態資料 Q 1 ‧‧‧First satellite attitude data

Q2‧‧‧第二衛星姿態資料 Q 2 ‧‧‧Second satellite attitude data

Q3‧‧‧第三衛星姿態資料 Q 3 ‧‧‧3rd satellite attitude data

Q2’‧‧‧校正後之第二衛星姿態資料 Q 2 '‧‧‧corrected second satellite attitude data

Q3’‧‧‧校正後之第三衛星姿態資料 Q 3 '‧‧‧corrected third satellite attitude data

△Q‧‧‧旋轉差 △Q‧‧‧rotation difference

△Qf‧‧‧穩定差 △Q f ‧‧‧stable stability

S11 S111 S112 S113 S12 S121 S122 S123 S13 21 210 22 3‧‧‧步驟 S11 S111 S112 S113 S12 S121 S122 S123 S13 21 210 22 3‧‧‧Steps

第一圖為顯示根據本發明之姿態資料融合方法的流程圖;第二圖為顯示根據本發明較佳實施例之步驟S11的詳細流程圖;第三圖為顯示根據本發明較佳實施例之步驟S12的詳細流程圖;第四圖為顯示根據本發明較佳實施例之衛星姿態資料融合的詳細流程圖;第五圖為顯示兩個測試組的三個星象儀在三個方向中假設的錯位數值;第六圖所顯示的為根據第一測試組之數值,且未經過本發明之姿態資料融合方法就直接進行資料融合的衛星姿態資料之總姿態誤差;第七圖所顯示的為根據第一測試組之數值,且經過本發明之姿態資料融合方法校正後進行資料融合的衛星姿態資料之總姿態誤差;第八圖所顯示的為根據第二測試組之數值,且未經過本發明之姿態資料融合方法就直接進行資料融合的衛星姿態資料之總姿態誤差;第九圖所顯示的為根據第二測試組之數值,且經過本發明之姿態資料融合方法校正後進行資料融合的衛星姿態資料之總姿態誤差; 第十圖所顯示的為一種衛星姿態估測方法。 The first figure is a flow chart showing a posture data fusion method according to the present invention; the second figure is a detailed flow chart showing step S11 according to a preferred embodiment of the present invention; and the third figure is a display according to a preferred embodiment of the present invention. Detailed flow chart of step S12; fourth figure is a detailed flow chart showing satellite attitude data fusion according to a preferred embodiment of the present invention; fifth figure is assuming that three star instruments of two test groups are assumed in three directions The misalignment value; the sixth figure shows the total attitude error of the satellite attitude data directly based on the value of the first test group and without the attitude data fusion method of the present invention; the seventh figure shows the basis The value of the first test group, and the total attitude error of the satellite attitude data after data fusion by the attitude data fusion method of the present invention; the eighth figure shows the value according to the second test group, and has not been subjected to the present invention. The attitude data fusion method directly performs the total attitude error of the satellite attitude data of the data fusion; the ninth figure shows the value according to the second test group. And after the posture information of the present invention for the total fusion of satellite attitude data the attitude information of the error correction method after fusion; The tenth figure shows a satellite attitude estimation method.

S11‧‧‧取得多組衛星姿態資料 S11‧‧‧ obtained multiple sets of satellite attitude data

S12‧‧‧校正多組衛星姿態資料之間的錯位 S12‧‧‧Correct misalignment between multiple sets of satellite attitude data

S13‧‧‧融合校正後的衛星姿態資料 S13‧‧‧Harmonized corrected satellite attitude data

Claims (8)

一種無脈衝式干擾之姿態資料融合方法,用以消除融合多組衛星姿態之資料時,在不同數量的衛星姿態資料融合模式間轉換所產生之脈衝式干擾,所述姿態資料融合方法包括以下步驟:在複數組慣性姿態估測裝置中取得相對應數量的衛星姿態資料;將其中一組衛星姿態資料設定為一主衛星姿態資料,並且將其餘的衛星姿態資料分別設定為一子衛星姿態資料;校正該等子衛星姿態資料與該主衛星姿態資料之間的一錯位;融合校正過之該等子衛星姿態資料以及該主衛星姿態資料。 A non-pulse interference attitude data fusion method for eliminating pulsed interference generated by converting a plurality of satellite attitude data fusion modes when merging data of a plurality of satellite attitudes, the attitude data fusion method comprising the following steps Obtaining a corresponding number of satellite attitude data in the complex array inertial attitude estimation device; setting one of the satellite attitude data as a main satellite attitude data, and setting the remaining satellite attitude data as a sub-satellite attitude data; Correcting a misalignment between the sub-satellite attitude data and the main satellite attitude data; and merging the corrected sub-satellite attitude data and the main satellite attitude data. 依據申請專利範圍第1項所述之姿態資料融合方法,其中,所述校正該等子衛星姿態資料與該主衛星姿態資料之間的該錯位之步驟進一步包括:自該等子衛星姿態資料中選取一組子衛星姿態資料。 According to the attitude data fusion method of claim 1, wherein the step of correcting the misalignment between the sub-satellite posture data and the main satellite attitude data further comprises: from the sub-satellite posture data Select a set of subsatellite pose data. 依據申請專利範圍第2項所述之姿態資料融合方法,其中,所述校正該等子衛星姿態資料與該主衛星姿態資料之間的該錯位進一步包括:計算該主衛星姿態資料以及該子衛星姿態資料之間的一旋轉差△Q; 通過一濾波器以取得該旋轉差△Q中之一穩定差△Qf;以及使用所取得之該穩定差△Qf來校正該子衛星姿態資料。 The attitude data fusion method according to claim 2, wherein the correcting the misalignment between the sub-satellite attitude data and the main satellite attitude data further comprises: calculating the main satellite attitude data and the sub-satellite A rotation difference ΔQ between the attitude data; a filter to obtain a stability difference ΔQ f of the rotation difference ΔQ; and the obtained stability difference ΔQ f to correct the sub-satellite attitude data. 根據申請專利範圍第3項所述之姿態資料融合方法,其中,該濾波器為一低通濾波器。 The attitude data fusion method according to claim 3, wherein the filter is a low pass filter. 根據申請專利範圍第1項所述之姿態資料融合方法,其中,在取得該等衛星姿態資料之後,將該等衛星姿態資料自慣性姿態估測裝置座標系統轉換至衛星座標系統。 The attitude data fusion method according to claim 1, wherein after acquiring the satellite attitude data, the satellite attitude data is converted from the inertial attitude estimation device coordinate system to the satellite coordinate system. 根據申請專利範圍第1項所述之姿態資料融合方法,其中,該複數組慣性姿態估測裝置為一第一星象儀CHU1、一第二星象儀CHU2以及一第三星象儀CHU3,其中該第一星象儀為主星象儀。 The attitude data fusion method according to claim 1, wherein the complex array inertial posture estimating device is a first star imager CHU1, a second star imager CHU2, and a third star imager CHU3, wherein the The first astrological instrument is the main astrological instrument. 依據申請專利範圍第7項所述之姿態資料融合方法,其中,所取得的該等衛星姿態資料,其中之一必須為自主星象儀中所取得之第一衛星姿態資料Q1,而另一組該衛星姿態資料可為從該第二星象儀或是該第三星象儀中任一星象儀所取得之第二衛星姿態資料Q2或第三衛星姿態資料Q3According to the attitude data fusion method described in claim 7, wherein one of the satellite attitude data obtained must be the first satellite attitude data Q 1 obtained in the autonomous star instrument, and the other group The satellite attitude data may be the second satellite attitude data Q 2 or the third satellite attitude data Q 3 obtained from the second asteroid or the third satellite. 依據申請專利範圍第1項所述之姿態資料融合方法,其中,該複數組慣性姿態估測裝置分別具有一方位角(Orientation),且該錯位係指各個慣性姿態估測裝置之一方位角差。 The attitude data fusion method according to claim 1, wherein the complex array inertial posture estimating device has an azimuth angle, and the misalignment refers to an azimuth difference of each inertial posture estimating device. .
TW101149153A 2012-12-21 2012-12-21 Attitude data fusion method without pulsed interference TW201425969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101149153A TW201425969A (en) 2012-12-21 2012-12-21 Attitude data fusion method without pulsed interference

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101149153A TW201425969A (en) 2012-12-21 2012-12-21 Attitude data fusion method without pulsed interference

Publications (2)

Publication Number Publication Date
TW201425969A true TW201425969A (en) 2014-07-01
TWI467205B TWI467205B (en) 2015-01-01

Family

ID=51725426

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101149153A TW201425969A (en) 2012-12-21 2012-12-21 Attitude data fusion method without pulsed interference

Country Status (1)

Country Link
TW (1) TW201425969A (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003247873A1 (en) * 2002-07-16 2004-02-02 The Charles Stark Draper Laboratory, Inc. Integrated inertial stellar attitude sensor
US7124001B2 (en) * 2003-07-11 2006-10-17 The Boeing Company Relative attitude estimator for multi-payload attitude determination
TWI497034B (en) * 2008-05-29 2015-08-21 Applied Res Lab A Satellite Attitude Estimation System and Method
IT1404537B1 (en) * 2011-02-25 2013-11-22 Sisvel Technology Srl METHOD FOR ESTIMATING THE DISTANCE OF A RECEIVER FROM A RADIO TRANSMITTER, RELATED METHODS FOR CALCULATING THE POSITION OF A MOBILE TERMINAL, MOBILE TERMINAL AND DEVICE.
TWM439800U (en) * 2012-01-19 2012-10-21 Systems & Technology Corp Position estimation device for calibration of distance and direction

Also Published As

Publication number Publication date
TWI467205B (en) 2015-01-01

Similar Documents

Publication Publication Date Title
US7822572B2 (en) Method and device for calibration of digital celestial sensor
CN100348460C (en) Star sensor calibrating method based on star field
US20090012731A1 (en) Method and device for calibration of digital sun sensor
CN106767673B (en) A kind of direction measurement method of satellite high-precision optical sensitive load
CN103245364B (en) Method for testing dynamic performance of star sensor
CN105806369B (en) A kind of in-orbit aberration modification method of star sensor
CN104406607A (en) Multi-visual field composite optical sensor calibration device and method
CN110849331B (en) Monocular vision measurement and ground test method based on three-dimensional point cloud database model
CN105698764A (en) Error modeling compensation method and system of optical remote sensing satellite image time-varying system
CN102426025A (en) Simulation analysis method for drift correction angle during remote sensing satellite attitude maneuver
CN106052713B (en) A kind of star sensor aberration amendment ground validation method
CN107246883A (en) A kind of Rotating Platform for High Precision Star Sensor installs the in-orbit real-time calibration method of matrix
CN105444780A (en) System and processing method for verifying image location of satellite-borne whisk broom optical camera
CN103778612B (en) A kind of satellite tremor detection based on panchromatic image and compensation method
Zhou et al. Novel autonomous on-orbit calibration method for star sensors
US20200122863A1 (en) Satellite attitude data fusion system and method thereof
CN103344872A (en) Test method of installation polarity of star sensor
CN105547286B (en) A kind of compound three visual fields star sensor star map simulation method
Abrashkin et al. Determining the rotational motion of the Bion M-1 satellite with the GRAVITON instrument
JP5619866B2 (en) Calibration method of alignment error for earth observation system using symmetrical exposure photograph
CN102116633A (en) Simulation checking method for deep-space optical navigation image processing algorithm
TW201425969A (en) Attitude data fusion method without pulsed interference
CN107228683B (en) Slow-variation error real-time on-orbit correction method among multiple star sensors
Enright et al. Rolling shutter compensation for star trackers
CN109655080A (en) A kind of digital sun sensor on-orbit calibration method