TW201424393A - Hypothetical reference decoder parameters in video coding - Google Patents

Hypothetical reference decoder parameters in video coding Download PDF

Info

Publication number
TW201424393A
TW201424393A TW102134375A TW102134375A TW201424393A TW 201424393 A TW201424393 A TW 201424393A TW 102134375 A TW102134375 A TW 102134375A TW 102134375 A TW102134375 A TW 102134375A TW 201424393 A TW201424393 A TW 201424393A
Authority
TW
Taiwan
Prior art keywords
hrd
operating point
video
parameters
image
Prior art date
Application number
TW102134375A
Other languages
Chinese (zh)
Other versions
TWI533671B (en
Inventor
Ye-Kui Wang
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of TW201424393A publication Critical patent/TW201424393A/en
Application granted granted Critical
Publication of TWI533671B publication Critical patent/TWI533671B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/30Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/12Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • H04N19/152Data rate or code amount at the encoder output by measuring the fullness of the transmission buffer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/184Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being bits, e.g. of the compressed video stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/189Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding
    • H04N19/196Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding being specially adapted for the computation of encoding parameters, e.g. by averaging previously computed encoding parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • H04N19/149Data rate or code amount at the encoder output by estimating the code amount by means of a model, e.g. mathematical model or statistical model
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/30Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
    • H04N19/31Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability in the temporal domain

Abstract

A computing device selects, from among a set of hypothetical reference decoder (HRD) parameters in a video parameter set and a set of HRD parameters in a sequence parameter set, a set of HRD parameters applicable to a particular operation point of a bitstream. The computing device performs, based at least in part on the set of HRD parameters applicable to the particular operation point, an HRD operation on a bitstream subset associated with the particular operation point.

Description

於視訊寫碼中之假想參考解碼器參數 Hypothetical reference decoder parameters in video writing code

本申請案主張2012年9月24日申請之美國臨時專利申請案第61/705,102號之權利,該申請案之全部內容以引用之方式併入本文中。 The present application claims the benefit of U.S. Provisional Patent Application Serial No. 61/705, filed on Sep. 24, 2012, the entire disclosure of which is hereby incorporated by reference.

本發明係關於視訊編碼及解碼(亦即,視訊資料之編碼及/或解碼)。 The present invention relates to video encoding and decoding (i.e., encoding and/or decoding of video data).

數位視訊能力可併入至廣泛範圍之器件中,該等器件包括數位電視、數位直播系統、無線廣播系統、個人數位助理(PDA)、膝上型或桌上型電腦、平板型電腦、電子書閱讀器、數位相機、數位記錄器件、數位媒體播放器、視訊遊戲器件、視訊遊戲主機、蜂巢式或衛星無線電電話、所謂的「智慧型手機」、視訊電話會議器件、視訊串流器件,及其類似者。數位視訊器件實施視訊壓縮技術,諸如由MPEG-2、MPEG-4、ITU-T H.263、ITU-T H.264/MPEG-4第10部分(進階視訊寫碼(AVC))定義之標準、目前在開發中的高效視訊寫碼(HEVC)標準,及此等標準之擴展中描述之彼等技術。視訊器件可藉由實施此等視訊壓縮技術而更高效地傳輸、接收、編碼、解碼及/或儲存數位視訊資訊。 Digital video capabilities can be incorporated into a wide range of devices, including digital TVs, digital live systems, wireless broadcast systems, personal digital assistants (PDAs), laptop or desktop computers, tablet computers, e-books. Readers, digital cameras, digital recording devices, digital media players, video game devices, video game consoles, cellular or satellite radio phones, so-called "smart phones", video teleconferencing devices, video streaming devices, and Similar. Digital video devices implement video compression techniques, such as those defined by MPEG-2, MPEG-4, ITU-T H.263, and ITU-T H.264/MPEG-4 Part 10 (Advanced Video Recording (AVC)). Standards, Efficient Video Recording (HEVC) standards currently under development, and their techniques described in the extension of these standards. Video devices can transmit, receive, encode, decode, and/or store digital video information more efficiently by implementing such video compression techniques.

視訊壓縮技術執行空間(圖像內)預測及/或時間(圖像間)預測,以 減少或移除視訊序列中所固有之冗餘。對於基於區塊之視訊寫碼,視訊圖塊(亦即,視訊圖框或視訊圖框之一部分)可經分割成視訊區塊。使用相對於同一圖像中之相鄰區塊中之參考樣本的空間預測來編碼圖像之框內寫碼(I)圖塊中的視訊區塊。圖像之框間寫碼(P或B)圖塊中之視訊區塊可使用相對於同一圖像中之相鄰區塊中之參考樣本的空間預測或相對於其他參考圖像中之參考樣本的時間預測。圖像可被稱作圖框,且參考圖像可被稱作參考圖框。 Video compression technology performs spatial (intra-image) prediction and/or temporal (inter-image) prediction to Reduce or remove the redundancy inherent in video sequences. For block-based video writing, a video block (ie, a portion of a video frame or video frame) can be segmented into video blocks. The video blocks in the in-frame write code (I) tile of the image are encoded using spatial prediction with respect to reference samples in neighboring blocks in the same image. The video blocks in the inter-frame code (P or B) block of the image may use spatial prediction with respect to reference samples in adjacent blocks in the same image or relative reference samples in other reference images. Time prediction. An image may be referred to as a frame, and a reference image may be referred to as a reference frame.

空間預測或時間預測導致針對待寫碼區塊之預測性區塊。殘餘資料表示待寫碼之原始區塊與預測性區塊之間的像素差。根據指向形成預測性區塊之參考樣本之區塊的運動向量及指示經寫碼區塊與預測性區塊之間的差異之殘餘資料來編碼框間寫碼區塊。根據框內寫碼模式及殘餘資料來編碼框內寫碼區塊。為了進行進一步壓縮,可將殘餘資料自像素域變換至變換域,從而引起殘餘係數,可接著量化殘餘係數。可掃描最初配置成二維陣列之經量化之係數以便產生係數之一維向量,且可應用熵寫碼以達成甚至更多壓縮。 Spatial prediction or temporal prediction results in a predictive block for the block of code to be written. The residual data represents the pixel difference between the original block and the predictive block of the code to be written. The inter-frame write code block is encoded according to a motion vector of a block directed to a reference sample forming a predictive block and a residual data indicating a difference between the coded block and the predictive block. The code block in the frame is coded according to the code writing mode and the residual data in the frame. For further compression, the residual data can be transformed from the pixel domain to the transform domain, causing residual coefficients, which can then be quantized. The quantized coefficients originally configured into a two-dimensional array can be scanned to produce a one-dimensional vector of coefficients, and an entropy write code can be applied to achieve even more compression.

可藉由編碼(例如)來自多個視點之視圖來產生多視圖寫碼位元流。已開發出利用多視圖寫碼態樣的一些三維(3D)視訊標準。舉例而言,不同視圖可傳輸左眼及右眼視圖以支援3D視訊。替代性地,一些3D視訊寫碼程序可應用所謂多視圖加深度寫碼。在多視圖加深度寫碼中,3D視訊位元流可不僅含有紋理視圖分量,而且含有深度視圖分量。舉例而言,每一視圖可包含一個紋理視圖分量及一個深度視圖分量。 The multiview write code bitstream can be generated by encoding, for example, views from multiple viewpoints. Some three-dimensional (3D) video standards have been developed that utilize multi-view coding patterns. For example, different views can transmit left and right eye views to support 3D video. Alternatively, some 3D video code writing programs may apply so-called multi-view plus depth writing. In multi-view plus depth writing, the 3D video bit stream may contain not only texture view components but also depth view components. For example, each view can include one texture view component and one depth view component.

一般而言,本發明描述在視訊寫碼中發信及選擇假想參考解碼器(HRD)參數。更具體而言,一種計算器件可自一視訊參數集(VPS)中的假想參考解碼器(HRD)參數之一集合及一序列參數集(SPS)中的 HRD參數之一集合中選擇適用於一位元流之一特定操作點的HRD參數之一集合。該計算器件至少部分基於適用於該特定操作點的HRD參數之該集合而對與該特定操作點相關聯之一位元流子集執行一HRD操作。 In general, the present invention describes signaling and selecting hypothetical reference decoder (HRD) parameters in a video code. More specifically, a computing device can be derived from a set of hypothetical reference decoder (HRD) parameters in a video parameter set (VPS) and a sequence of parameter sets (SPS) A set of HRD parameters selected for a particular operating point of one of the meta-streams is selected from a set of HRD parameters. The computing device performs an HRD operation on a subset of the bitstreams associated with the particular operating point based at least in part on the set of HRD parameters applicable to the particular operating point.

在一個實例中,本發明描述一種處理視訊資料之方法。該方法包含自一VPS中之HRD參數之一集合及一SPS中之HRD參數的一集合中選擇適用於一位元流之一特定操作點的HRD參數之一集合。該方法亦包含至少部分基於適用於該特定操作點的HRD參數之該所選擇集合而對與該特定操作點相關聯之一位元流子集執行一HRD操作。 In one example, the invention describes a method of processing video material. The method includes selecting a set of HRD parameters suitable for a particular operating point of one of the one-bit streams from a set of HRD parameters in a VPS and a set of HRD parameters in an SPS. The method also includes performing an HRD operation on the subset of bitstreams associated with the particular operating point based at least in part on the selected set of HRD parameters applicable to the particular operating point.

在另一實例中,本發明描述一種包含一或多個處理器之器件,該一或多個處理器經組態以自一VPS中之HRD參數之一集合及一SPS中之HRD參數的一集合中選擇適用於一位元流之一特定操作點的HRD參數之一集合。該一或多個處理器亦經組態以至少部分基於適用於該特定操作點的HRD參數之該所選擇集合而對與該特定操作點相關聯之一位元流子集執行一HRD操作。 In another example, the invention features a device comprising one or more processors configured to assemble from one of a set of HRD parameters in a VPS and one of an HRD parameter in an SPS A set of HRD parameters in a set that applies to a particular operating point of one of the meta-streams is selected. The one or more processors are also configured to perform an HRD operation on a subset of the bitstreams associated with the particular operating point based at least in part on the selected set of HRD parameters applicable to the particular operating point.

在另一實例中,本發明描述一種器件,該器件包含用於自一VPS中之HRD參數之一集合及一SPS中之HRD參數的一集合中選擇適用於一位元流之一特定操作點的HRD參數之一集合的構件。該器件亦包含用於至少部分基於適用於該特定操作點的HRD參數之該所選擇集合而對與該特定操作點相關聯之一位元流子集執行一HRD操作的構件。 In another example, the present invention describes a device that includes a set of HRD parameters in a VPS and a set of HRD parameters in an SPS selected for a particular operating point of a bit stream A component of a collection of one of the HRD parameters. The device also includes means for performing an HRD operation on a subset of the bitstreams associated with the particular operating point based at least in part on the selected set of HRD parameters applicable to the particular operating point.

在另一實例中,本發明描述一種上面儲存有指令之電腦可讀資料儲存媒體,該等指令在由一器件之一或多個處理器執行時組態該器件以自一VPS中之HRD參數之一集合及一SPS中之HRD參數的一集合中選擇適用於一位元流之一特定操作點的HRD參數之一集合。此外,該等指令在執行時組態該器件以至少部分基於適用於該特定操作點的HRD參數之該所選擇集合而對與該特定操作點相關聯之一位元流子集 執行一HRD操作。 In another example, the invention features a computer readable data storage medium having instructions stored thereon that, when executed by one or more processors of a device, configure the device from an HRD parameter in a VPS A set of HRD parameters in one of the sets and one of the SPSs in the SPS selects one of a set of HRD parameters that apply to a particular operating point of the one-bit stream. Moreover, the instructions configure the device at execution time to associate a subset of bitstreams associated with the particular operating point based at least in part on the selected set of HRD parameters applicable to the particular operating point Perform an HRD operation.

在隨附圖式及以下描述中闡明了本發明之一或多個實例的細節。其他特徵、目標及優點將自該描述內容、圖式及申請專利範圍顯而易見。 The details of one or more embodiments of the invention are set forth in the description Other features, objectives, and advantages will be apparent from the description, drawings, and claims.

10‧‧‧實例視訊寫碼系統 10‧‧‧Instance Video Recording System

12‧‧‧源器件 12‧‧‧ source device

14‧‧‧目的地器件 14‧‧‧ Destination device

16‧‧‧通道 16‧‧‧ channel

18‧‧‧視訊源 18‧‧‧Video source

20‧‧‧視訊編碼器 20‧‧‧Video Encoder

21‧‧‧額外器件 21‧‧‧Additional devices

22‧‧‧輸出介面 22‧‧‧Output interface

28‧‧‧輸入介面 28‧‧‧Input interface

30‧‧‧實例視訊解碼器 30‧‧‧Instance Video Decoder

32‧‧‧顯示器件 32‧‧‧Display devices

100‧‧‧預測處理單元 100‧‧‧Predictive Processing Unit

102‧‧‧殘餘產生單元 102‧‧‧Residual generating unit

104‧‧‧變換處理單元 104‧‧‧Transformation Processing Unit

106‧‧‧量化單元 106‧‧‧Quantification unit

108‧‧‧反量化單元 108‧‧‧Anti-quantization unit

110‧‧‧反變換處理單元 110‧‧‧Inverse Transform Processing Unit

112‧‧‧重建構單元 112‧‧‧Reconstruction unit

114‧‧‧濾波單元 114‧‧‧Filter unit

116‧‧‧經解碼圖像緩衝器 116‧‧‧Decoded Image Buffer

118‧‧‧熵編碼單元 118‧‧‧Entropy coding unit

120‧‧‧框間預測處理單元 120‧‧‧Inter-frame prediction processing unit

122‧‧‧運動估計單元 122‧‧‧Sports Estimation Unit

124‧‧‧運動補償單元 124‧‧‧Motion compensation unit

126‧‧‧框內預測處理單元 126‧‧‧ In-frame predictive processing unit

150‧‧‧熵解碼單元 150‧‧‧ Entropy decoding unit

151‧‧‧經寫碼圖像緩衝器(CPB) 151‧‧‧Coded Image Buffer (CPB)

152‧‧‧預測處理單元 152‧‧‧Predictive Processing Unit

154‧‧‧反量化單元 154‧‧‧Anti-quantization unit

156‧‧‧反變換處理單元 156‧‧‧ inverse transform processing unit

158‧‧‧重建構單元 158‧‧‧Reconstruction unit

160‧‧‧濾波單元 160‧‧‧Filter unit

162‧‧‧經解碼圖像緩衝器 162‧‧‧Decoded Image Buffer

164‧‧‧運動補償單元 164‧‧ sports compensation unit

166‧‧‧框內預測處理單元 166‧‧‧In-frame prediction processing unit

200‧‧‧實例操作 200‧‧‧Instance operations

250‧‧‧實例操作 250‧‧‧Instance operations

300‧‧‧實例HRD操作 300‧‧‧Instance HRD operations

圖1為說明可利用本發明中所描述之技術的實例視訊寫碼系統之方塊圖。 1 is a block diagram illustrating an example video write code system that may utilize the techniques described in this disclosure.

圖2為說明可實施本發明中所描述之技術之實例視訊編碼器的方塊圖。 2 is a block diagram illustrating an example video encoder that can implement the techniques described in this disclosure.

圖3為說明可實施本發明中所描述之技術之實例視訊解碼器的方塊圖。 3 is a block diagram illustrating an example video decoder that can implement the techniques described in this disclosure.

圖4係根據本發明之一或多項技術的說明一器件之實例操作的流程圖。 4 is a flow chart illustrating an example operation of a device in accordance with one or more techniques of the present invention.

圖5係根據本發明之一或多項技術的說明一器件之實例操作的流程圖。 Figure 5 is a flow diagram illustrating an example operation of a device in accordance with one or more techniques of the present invention.

圖6係根據本發明之一或多項技術的說明一器件之實例假想參考解碼器(HRD)操作的流程圖。 6 is a flow diagram illustrating an example hypothetical reference decoder (HRD) operation of a device in accordance with one or more techniques of the present invention.

視訊編碼器可產生包括經編碼之視訊資料的位元流。位元流可包含一系列網路抽象層(NAL)單元。位元流之NAL單元可包括視訊寫碼層(VCL)NAL單元及非VCL NAL單元。VCL NAL單元可包括圖像的經寫碼圖塊。非VCL NAL單元可包括視訊參數集(VPS)、序列參數集(SPS)、圖像參數集(PPS)、補充增強資訊(SEI)或其他類型之資料。VPS係可含有語法元素之語法結構,該等語法元素應用至零或零個以上完整的經寫碼之視訊序列。SPS係可含有語法元素之語法結構,該等語法元素應用至零或零個以上完整的經寫碼之視訊序列。單一VPS 可適用於多個SPS。PPS係可含有語法元素之語法結構,該等語法元素應用至零或零個以上完整的經寫碼之圖像。單一SPS可適用於多個PPS。一般而言,可如由HEVC標準所定義而形成VPS、SPS及PPS之各種態樣。 The video encoder can generate a stream of bitstreams including encoded video material. A bitstream may contain a series of Network Abstraction Layer (NAL) units. The NAL unit of the bitstream may include a Video Write Code Layer (VCL) NAL unit and a non-VCL NAL unit. The VCL NAL unit may include a coded tile of the image. Non-VCL NAL units may include Video Parameter Sets (VPS), Sequence Parameter Sets (SPS), Picture Parameter Sets (PPS), Supplemental Enhancement Information (SEI), or other types of data. A VPS system may contain syntax structures for syntax elements that are applied to zero or more complete coded video sequences. The SPS system may contain syntax structures for syntax elements that are applied to zero or more complete coded video sequences. Single VPS Can be applied to multiple SPS. The PPS system may contain syntax structures for syntax elements that are applied to zero or more complete coded images. A single SPS can be applied to multiple PPSs. In general, various aspects of VPS, SPS, and PPS can be formed as defined by the HEVC standard.

諸如內容遞送網路(CDN)器件、媒體感知之網路元件(MANE)或視訊解碼器的器件可自位元流提取子位元流。器件可藉由自位元流移除某些NAL單元而執行子位元流提取程序。所得子位元流包括位元流之剩餘之未經移除NAL單元。作為實例,相較於原始位元流,自子位元流解碼之視訊資料可具有較低圖框速率及/或可表示較少的視圖。 Devices such as content delivery network (CDN) devices, media-aware network elements (MANEs), or video decoders can extract sub-bitstreams from a bitstream. The device may perform a sub-bitstream extraction procedure by removing certain NAL units from the bitstream. The resulting sub-bitstream includes the remaining unremoved NAL units of the bitstream. As an example, video data decoded from a sub-bitstream may have a lower frame rate and/or may represent fewer views than the original bitstream.

視訊寫碼標準可包括各種特徵以支援子位元流提取程序。舉例而言,位元流之視訊資料可被劃分成層之集合。對於該等層中之每一者,可在不參考任何較高層中之資料的情況下解碼較低層中之資料。 個別NAL單元僅囊封單一層之資料。因此,可自位元流移除囊封位元流之最高剩餘層之資料的NAL單元而不影響位元流之剩餘較低層中的資料之可解碼性。在可調式視訊寫碼(SVC)中,較高層可包括增強資料,該等增強資料改良較低層中的圖像的品質(品質可調性),放大較低層中的圖像的空間格式(空間可調性),或增加較低層中的圖像的時間速率(時間可調性)。在多視圖寫碼(MVC)及三維視訊(3DV)寫碼中,較高層可包括額外視圖。 The video writing standard can include various features to support the sub-bit stream extraction procedure. For example, the video data of the bit stream can be divided into a collection of layers. For each of the layers, the data in the lower layer can be decoded without reference to the data in any of the higher layers. Individual NAL units only encapsulate data for a single layer. Thus, the NAL unit of the data of the highest remaining layer of the encapsulated bit stream can be removed from the bit stream without affecting the decodability of the data in the remaining lower layers of the bit stream. In Adjustable Video Recording (SVC), the higher layer may include enhanced data that improves the quality of the image in the lower layer (quality tunability) and magnifies the spatial format of the image in the lower layer (spatial adjustability), or increase the time rate (time adjustability) of images in lower layers. In multi-view code (MVC) and three-dimensional video (3DV) code writing, higher layers may include additional views.

NAL單元可包括標頭及有效負載。NAL單元之標頭包括nuh_reserved_zero_6bits語法元素。若NAL單元係關於多視圖寫碼、3DV寫碼或SVC中之基底層,則NAL單元之nuh_reserved_zero_6bits語法元素等於0。可在不參考位元流之任何其他層中之資料的情況下解碼位元流之基底層中的資料。若NAL單元並非係關於多視圖寫碼、3DV或SVC中之基底層,則nuh_reserved_zero_6bits語法元素可具有非零值。具體而言,若NAL單元並非係關於多視圖寫碼、3DV或SVC中 之基底層,則NAL單元之nuh_reserved_zero_6bits語法元素指定NAL單元的層識別符。 The NAL unit can include a header and a payload. The header of the NAL unit includes the nuh_reserved_zero_6bits syntax element. If the NAL unit is related to a multi-view write code, a 3DV write code, or a base layer in SVC, the nuh_reserved_zero_6bits syntax element of the NAL unit is equal to zero. The data in the base layer of the bitstream can be decoded without reference to data in any other layer of the bitstream. The nuh_reserved_zero_6bits syntax element may have a non-zero value if the NAL unit is not a base layer in multiview code, 3DV or SVC. Specifically, if the NAL unit is not related to multiview code, 3DV or SVC The base layer, the nuh_reserved_zero_6bits syntax element of the NAL unit specifies the layer identifier of the NAL unit.

此外,層內之一些圖像可在不參考同一層內之其他圖像的情況下經解碼。因此,可自位元流移除囊封層之某些圖像之資料的NAL單元而不影響層中其他圖像的可解碼性。舉例而言,可在不參考具有奇數圖像次序計數(POC)值之圖像的情況下解碼具有偶數POC值的圖像。移除囊封此等圖像之資料的NAL單元可減小位元流之圖框速率。本文中,層內之可在不參考層內之其他圖像的情況下經解碼的圖像子集可被稱作子層。 In addition, some of the images within the layer may be decoded without reference to other images within the same layer. Thus, the NAL units of the material of certain images of the encapsulation layer can be removed from the bit stream without affecting the decodability of other images in the layer. For example, an image with even POC values can be decoded without reference to an image with odd image order count (POC) values. Removing the NAL unit that encapsulates the data of such images reduces the frame rate of the bit stream. Herein, a subset of images within a layer that may be decoded without reference to other images within the layer may be referred to as sub-layers.

NAL單元可包括temporal_id語法元素。NAL單元之temporal_id語法元素指定NAL單元的時間識別符。若第一NAL單元之時間識別符小於第二NAL單元的時間識別符,則可在不參考由第二NAL單元囊封之資料的情況下解碼由第一NAL單元囊封之資料。 A NAL unit may include a temporal_id syntax element. The temporal_id syntax element of the NAL unit specifies the time identifier of the NAL unit. If the time identifier of the first NAL unit is less than the time identifier of the second NAL unit, the data encapsulated by the first NAL unit may be decoded without reference to the material encapsulated by the second NAL unit.

位元流之每一操作點係與層識別符之集合(亦即,nuh_reserved_zero_6bits值之集合)及時間識別符相關聯。層識別符之集合可表示為OpLayerIdSet,且時間識別符可表示為TemporalID。若NAL單元之層識別符係在操作點之層識別符集合中且NAL單元之時間識別符小於或等於操作點之時間識別符,則NAL單元係與操作點相關聯。操作點表示係一與操作點相關聯之位元流子集。操作點表示可包括與操作點相關聯的每一NAL單元。操作點表示不包括不與操作點相關聯的VCL NAL單元。 Each operating point of the bitstream is associated with a set of layer identifiers (i.e., a set of nuh_reserved_zero_6bits values) and a time identifier. The set of layer identifiers can be represented as OpLayerIdSet, and the time identifier can be represented as TemporalID. If the layer identifier of the NAL unit is in the layer identifier set of the operating point and the time identifier of the NAL unit is less than or equal to the time identifier of the operating point, the NAL unit is associated with the operating point. The operating point represents a subset of bitstreams associated with the operating point. An operational point representation can include each NAL unit associated with an operating point. The operating point representation does not include VCL NAL units that are not associated with the operating point.

外部源可指定操作點之目標層識別符的集合。舉例而言,諸如CDN器件或MANE之器件可指定目標層識別符的集合。在此實例中,器件可使用目標層識別符的集合來識別操作點。器件可接著提取操作點之操作點表示,且將操作點表示而非原始位元流轉遞至用戶端器件。提取操作點表示及將操作點表示轉遞至用戶端器件可減小位元流 的位元速率。 An external source can specify a collection of target layer identifiers for the operating point. For example, a device such as a CDN device or a MANE can specify a set of target layer identifiers. In this example, the device can use a collection of target layer identifiers to identify the operating point. The device can then extract the operating point representation of the operating point and forward the operating point representation instead of the original bit stream to the client device. Extracting the operand representation and forwarding the operand representation to the client device reduces the bitstream Bit rate.

此外,視訊寫碼標準指定視訊緩衝模型。視訊緩衝模型亦可被稱作「假想參考解碼器」或「HRD」。HRD描述資料如何經緩衝以供解碼且經解碼之資料如何經緩衝以供輸出。舉例而言,HRD描述視訊解碼器中的經寫碼圖像緩衝器(「CPB」)及經解碼圖像緩衝器(「DPB」)的操作。CPB係以由HRD指定之解碼次序含有存取單元的先進先出緩衝器。DPB係保持經解碼圖像以用於參考、輸出重排序或由HRD指定之輸出延遲的緩衝器。 In addition, the video coding standard specifies a video buffer model. The video buffer model can also be referred to as a "hypothetical reference decoder" or "HRD". The HRD describes how the data is buffered for decoding and how the decoded data is buffered for output. For example, the HRD describes the operation of a coded image buffer ("CPB") and a decoded image buffer ("DPB") in a video decoder. The CPB is a FIFO buffer containing access units in the decoding order specified by the HRD. The DPB is a buffer that holds the decoded image for reference, output reordering, or output delay specified by the HRD.

視訊編碼器可發信HRD參數之集合。HRD參數控制HRD之各種態樣。HRD參數包括初始CPB移除延遲、CPB大小、位元速率、初始DPB輸出延遲及DPB大小。此等HRD參數在指定於VPS及/或SPS中之hrd_paramaters( )語法結構中經寫碼。HRD參數亦可指定於緩衝週期補充增強資訊(SEI)訊息或圖像時序SEI訊息中。 The video encoder can send a collection of HRD parameters. The HRD parameters control various aspects of the HRD. The HRD parameters include initial CPB removal delay, CPB size, bit rate, initial DPB output delay, and DPB size. These HRD parameters are coded in the hrd_paramaters( ) syntax structure specified in the VPS and/or SPS. The HRD parameter can also be specified in a Buffer Period Supplemental Enhancement Information (SEI) message or an image timing SEI message.

如上文所解釋,操作點表示可具有不同於原始位元流的圖框速率及/或位元速率。此係因為操作點表示可能不包括原始位元流中之一些圖像及/或資料中的一些。因此,若視訊解碼器在處理原始位元流時將要以特定速率自CPB及/或DPB移除資料,且若視訊解碼器在處理操作點表示時將要以同一速率自CPB及/或DPB移除資料,則視訊解碼器可能自CPB及/或DPB移除過多或過少資料。因而,視訊編碼器可發信用於不同操作點之HRD參數的不同集合。在新興高效率視訊寫碼(HEVC)標準中,視訊編碼器可在VPS中發信HRD參數的集合,或視訊編碼器可在SPS中發信HRD參數的集合。稱作「HEVC工作草案8」之即將來臨之HEVC標準的草案描述於Bross等人之「High Efficiency Video Coding(HEVC)Text Specification Draft 8」(ITU-T SG16 WP3與ISO/IEC JTC1/SC29/WG11之關於視訊寫碼之聯合合作團隊(JCT-VC),2012年7月瑞典斯德哥爾摩第10次會議)中,自2013年5月8日起 該工作草案可自http://phenix.int-evry.fr/jct/doc_end_user/documents/10_Stockholm/wg11/JCTVC-J1003-v8.zip獲得。 As explained above, the operating point representation may have a different frame rate and/or bit rate than the original bit stream. This is because some of the images and/or materials in the original bitstream may not be included because of the operating point representation. Therefore, if the video decoder is to process the original bit stream, it will remove the data from the CPB and/or DPB at a specific rate, and if the video decoder indicates the processing operation point, it will be removed from the CPB and/or DPB at the same rate. Data, the video decoder may remove too much or too little data from the CPB and / or DPB. Thus, the video encoder can signal different sets of HRD parameters for different operating points. In the emerging High Efficiency Video Recording (HEVC) standard, a video encoder can transmit a set of HRD parameters in a VPS, or a video encoder can send a set of HRD parameters in an SPS. The draft of the forthcoming HEVC standard called "HEVC Working Draft 8" is described in Bross et al. "High Efficiency Video Coding (HEVC) Text Specification Draft 8" (ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11) The Joint Collaboration Team on Video Writing (JCT-VC), the 10th meeting in Stockholm, Sweden, July 2012, since May 8, 2013 This working draft is available at http://phenix.int-evry.fr/jct/doc_end_user/documents/10_Stockholm/wg11/JCTVC-J1003-v8.zip.

在HEVC之一些版本中,僅將VPS中的HRD參數之數個集合選擇用於HRD操作。即,儘管HRD參數可提供於SPS中,但SPS中的HRD參數的集合並未被HEVC視訊解碼器選擇用於HRD操作。視訊解碼器總是剖析並解碼位元流的VPS。因此,視訊解碼器總是剖析並解碼VPS之HRD參數的集合。無論位元流是否包括非基底層NAL單元皆為如此。因此,若位元流包括非基底層NAL單元,則剖析並處置SPS中的HRD參數的集合可係對計算資源之浪費。此外,若HRD參數之集合存在於VPS中,則SPS中的HRD參數的集合可係被浪費之位元。 In some versions of HEVC, only a few sets of HRD parameters in the VPS are selected for HRD operations. That is, although the HRD parameters can be provided in the SPS, the set of HRD parameters in the SPS is not selected by the HEVC video decoder for HRD operations. The video decoder always parses and decodes the VPS of the bitstream. Therefore, the video decoder always parses and decodes the set of HRD parameters of the VPS. This is true whether the bit stream includes non-base layer NAL units. Thus, if the bitstream includes non-base layer NAL units, then parsing and handling the set of HRD parameters in the SPS can be a waste of computing resources. Furthermore, if a set of HRD parameters is present in the VPS, the set of HRD parameters in the SPS can be a wasted bit.

根據本發明之技術,視訊編碼器可產生包括適用於圖像序列的SPS之位元流。SPS包括HRD參數之集合。HRD參數之集合適用於位元流的具有與目標層識別符之集合匹配的層識別符集合之每一操作點。因此,SPS中的HRD參數之集合不被浪費,而是可用於HRD操作。舉例而言,器件可自VPS中之HRD參數之集合及SPS中之HRD參數的集合中選擇適用於特定操作點的HRD參數之集合。器件可至少部分基於適用於特定操作點之HRD參數的集合執行位元流一致性測試,該測試對於與特定操作點相關聯之位元流子集是否與視訊寫碼標準一致進行測試。 In accordance with the teachings of the present invention, a video encoder can generate a bit stream that includes an SPS suitable for use in a sequence of images. The SPS includes a collection of HRD parameters. The set of HRD parameters applies to each of the operation points of the set of layer identifiers of the bitstream that match the set of target layer identifiers. Therefore, the set of HRD parameters in the SPS is not wasted, but can be used for HRD operations. For example, the device may select a set of HRD parameters suitable for a particular operating point from a set of HRD parameters in the VPS and a set of HRD parameters in the SPS. The device may perform a bitstream conformance test based at least in part on a set of HRD parameters applicable to a particular operating point, the test testing whether a subset of bitstreams associated with a particular operating point is consistent with a video writing standard.

諸如視訊編碼器、視訊解碼器或另一類型之器件的器件(諸如,CDN器件或MANE)可對操作點之操作點表示執行位元流一致性測試。位元流一致性測試可驗證:操作點表示與諸如HEVC之視訊寫碼標準一致。如上文所提及,目標層識別符之集合及時間識別符可用以識別操作點。目標層識別符之集合可表示為「TargetDecLayerIdSet」。時間識別符可表示為 「TargetDecHighestTid」。有問題地,HEVC工作草案8並未指定在執行位元流一致性測試時如何設定TargetDecLayerIdSet或TargetDecHighestTid。 A device such as a video encoder, video decoder, or another type of device, such as a CDN device or MANE, can perform bitstream conformance testing on the operating point representation of the operating point. The bitstream conformance test verifies that the operating point representation is consistent with a video writing standard such as HEVC. As mentioned above, the set of target layer identifiers and the time identifier can be used to identify the operating point. The set of target layer identifiers can be represented as "TargetDecLayerIdSet". The time identifier can be expressed as "TargetDecHighestTid". Problemly, HEVC Working Draft 8 does not specify how to set the TargetDecLayerIdSet or TargetDecHighestTid when performing a bitstream conformance test.

根據本發明之一或多項技術,器件可執行作為執行位元流一致性測試的部分的解碼程序。執行解碼程序包含執行位元流提取程序以自位元流解碼由層識別符之目標集合及目標最高時間識別符定義之操作點的操作點表示。層識別符之目標集合(亦即,TargetDecLayerIdSet)含有存在於操作點表示中之層識別符語法元素(例如,nuh_reserved_zero_6bits語法元素)的值。層識別符之目標集合係位元流之層識別符語法元素的值的子集。目標最高時間識別符(亦即,TargetDecHighestTid)等於存在於操作點表示中之最大時間識別符。目標最高時間識別符小於或等於存在於位元流中之最大時間識別符。執行解碼程序亦可包含解碼操作點表示的NAL單元。 In accordance with one or more techniques of the present invention, a device can perform a decoding process as part of performing a bitstream conformance test. Executing the decoding program includes executing a bitstream stream extractor to decode the operand representation of the operating point defined by the target set of the layer identifier and the target highest time identifier from the bitstream. The target set of layer identifiers (ie, TargetDecLayerIdSet) contains the value of the layer identifier syntax element (eg, nuh_reserved_zero_6bits syntax element) present in the operation point representation. The target set of layer identifiers is a subset of the values of the layer identifier syntax elements of the bit stream. The target highest time identifier (ie, TargetDecHighestTid) is equal to the maximum time identifier present in the operating point representation. The target highest time identifier is less than or equal to the maximum time identifier present in the bit stream. The execution of the decoding program may also include the NAL unit represented by the decoding operation point.

在HEVC中,SPS可包括表示為sps_max_dec_pic_buffering[i]之語法元素的陣列,其中i在0至位元流中的時間層的最大數目的範圍內。當最高時間識別符(HighestTid)等於i時,sps_max_dec_pic_buffering[i]指示DPB的最大所要求大小。sps_max_dec_pic_buffering[i]指示依據圖像儲存緩衝器之單元的所要求大小。 In HEVC, the SPS may include an array of syntax elements denoted sps_max_dec_pic_buffering[i], where i is in the range of the maximum number of temporal layers in the 0-bit stream. When the highest time identifier (HighestTid) is equal to i , sps_max_dec_pic_buffering[i] indicates the maximum required size of the DPB. Sps_max_dec_pic_buffering[i] indicates the required size of the unit according to the image storage buffer.

此外,在HEVC中,SPS可包括表示為sps_max_num_reorder_pics[i]之語法元素的陣列,其中i在0至位元流中的時間層的最大數目的範圍內。sps_max_num_reorder_pics[i]指示在最高時間識別符(HighestTid)等於i時在解碼次序上先於任一圖像且在輸出次序上在該圖像之後的圖像之最大所允許數目。 Furthermore, in HEVC, the SPS may include an array of syntax elements denoted as sps_max_num_reorder_pics[i], where i is in the range of the maximum number of temporal layers in the 0-bit stream. Sps_max_num_reorder_pics[i] indicates the maximum allowable number of images preceding the image in the decoding order and the image following the image in the output order when the highest time identifier (HighestTid) is equal to i .

在HEVC中,HRD參數之集合可包括表示為cpb_cnt_minus1[i]之語法元素的陣列,其中i在0至位元流中的時間層的最大數目的範圍內。cpb_cnt_minus1[i]指定當最高時間識別符(HighestTid)等於i時經 寫碼視訊序列之位元流中的替代性CPB規範的數目,其中一個替代性CPB規範指代具有CPB參數之特定集合的一個特定CPB操作。 In HEVC, the set of HRD parameters may include an array of syntax elements denoted cpb_cnt_minus1[i], where i is in the range of the maximum number of time layers in the 0-bit stream. Cpb_cnt_minus1[i] specifies the number of alternative CPB specifications in the bitstream of the coded video sequence when the highest time identifier (HighestTid) is equal to i , where an alternative CPB specification refers to a particular set having CPB parameters Specific CPB operation.

在HEVC工作草案8中,在HRD操作、位元流一致性操作及級別限制中未恰當選擇sps_max_dec_pic_buffering[i]、sps_max_num_reorder_pics[i]及cpb_cnt_minus1[i]。此係至少部分因為HEVC工作草案8並未指定最高時間識別符(HighestTid)的意義。 In HEVC Working Draft 8, sps_max_dec_pic_buffering[i], sps_max_num_reorder_pics[i], and cpb_cnt_minus1[i] are not properly selected in HRD operations, bitstream consistency operations, and level restrictions. This is due at least in part to the fact that HEVC Working Draft 8 does not specify the meaning of the highest time identifier (HighestTid).

根據本發明之一或多項技術,諸如視訊編碼器、視訊解碼器或另一器件的器件可判定與位元流之所選擇操作點相關聯之位元流子集的最高時間識別符。此外,器件可基於最高時間識別符自語法元素之陣列(例如,sps_max_dec_pic_buffering[ ]、sps_max_num_reorder_pics[ ]或cpb_cnt_minus1[ ])判定特定語法元素。器件可執行一使用特定語法元素來判定位元流與視訊寫碼標準的一致性或判定視訊解碼器與視訊寫碼標準的一致性的操作。 In accordance with one or more techniques of the present invention, a device such as a video encoder, video decoder or another device can determine the highest temporal identifier of the subset of bitstreams associated with the selected operating point of the bitstream. In addition, the device may determine a particular syntax element based on the highest time identifier from an array of syntax elements (eg, sps_max_dec_pic_buffering[ ], sps_max_num_reorder_pics[ ], or cpb_cnt_minus1[ ]). The device may perform an operation that uses a particular syntax element to determine the consistency of the bitstream with the video writing standard or to determine the consistency of the video decoder with the video writing standard.

圖1為說明一可利用本發明之技術的實例視訊寫碼系統10之方塊圖。如本文中所使用,術語「視訊寫碼器」泛指視訊編碼器及視訊解碼器兩者。在本發明中,術語「視訊寫碼」或「寫碼」可泛指視訊編碼或視訊解碼。 1 is a block diagram illustrating an example video write code system 10 that may utilize the techniques of the present invention. As used herein, the term "video codec" refers broadly to both video encoders and video decoders. In the present invention, the term "video writing code" or "writing code" may generally refer to video encoding or video decoding.

如圖1中所展示,視訊寫碼系統10包括源器件12及目的地器件14。源器件12產生經編碼之視訊資料。因而,源器件12可被稱作視訊編碼器件或視訊編碼裝置。目的地器件14可解碼由源器件12產生之經編碼視訊資料。因而,目的地器件14可被稱作視訊解碼器件或視訊解碼裝置。源器件12及目的地器件14可係視訊寫碼器件或視訊寫碼裝置的實例。 As shown in FIG. 1, video write code system 10 includes source device 12 and destination device 14. Source device 12 produces encoded video material. Thus, source device 12 can be referred to as a video encoding device or a video encoding device. Destination device 14 can decode the encoded video material generated by source device 12. Thus, destination device 14 may be referred to as a video decoding device or a video decoding device. Source device 12 and destination device 14 may be examples of video code writing devices or video code writing devices.

源器件12及目的地器件14可包含廣泛範圍之器件,該等器件包括桌上型電腦、行動計算器件、筆記型(例如,膝上型)電腦、平板電腦、機上盒、諸如所謂「智慧型」手機的電話手機、電視、攝影機、 顯示器件、數位媒體播放器、視訊遊戲主機、車載電腦或其類似者。 Source device 12 and destination device 14 can include a wide range of devices, including desktop computers, mobile computing devices, notebook (eg, laptop) computers, tablets, set-top boxes, such as the so-called "wisdom Phone, mobile phone, TV, camera, Display device, digital media player, video game console, car computer or the like.

目的地器件14可經由通道16自源器件12接收經編碼視訊資料。通道16可包含能夠將經編碼視訊資料自源器件12移動至目的地器件14的一或多個媒體或器件。在一個實例中,通道16可包含使源器件12能夠將經編碼視訊資料即時直接地傳輸至目的地器件14的一或多個通信媒體。在此實例中,源器件12可根據諸如無線通信協定之通信標準調變經編碼視訊資料,且可將經調變之視訊資料傳輸至目的地器件14。一或多個通信媒體可包括無線及/或有線通信媒體,諸如射頻(RF)頻譜或一或多個實體傳輸線。一或多個通信媒體可形成諸如區域網路、廣域網路或全球網路(例如,網際網路)的基於封包之網路的部分。一或多個通信媒體可包括路由器、交換器、基地台或促進自源器件12至目的地器件14之通信的其他設備。 Destination device 14 may receive encoded video material from source device 12 via channel 16. Channel 16 may include one or more media or devices capable of moving encoded video material from source device 12 to destination device 14. In one example, channel 16 can include one or more communication media that enable source device 12 to transmit encoded video material directly to destination device 14 in an instant. In this example, source device 12 can modulate the encoded video material in accordance with a communication standard, such as a wireless communication protocol, and can transmit the modulated video data to destination device 14. The one or more communication media may include wireless and/or wired communication media such as a radio frequency (RF) spectrum or one or more physical transmission lines. One or more communication media may form part of a packet-based network such as a regional network, a wide area network, or a global network (eg, the Internet). The one or more communication media may include a router, a switch, a base station, or other device that facilitates communication from the source device 12 to the destination device 14.

在另一實例中,通道16可包括儲存由源器件12產生之經編碼視訊資料的儲存媒體。在此實例中,目的地器件14可(例如)經由磁碟存取或卡存取來存取儲存媒體。儲存媒體可包括多種本端存取之資料儲存媒體,諸如藍光光碟、DVD、CD-ROM、快閃記憶體或用於儲存經編碼視訊資料的其他合適數位儲存媒體。 In another example, channel 16 can include a storage medium that stores encoded video material generated by source device 12. In this example, destination device 14 can access the storage medium, for example, via disk access or card access. The storage medium may include a variety of locally accessed data storage media such as Blu-ray Disc, DVD, CD-ROM, flash memory or other suitable digital storage medium for storing encoded video material.

在其他實例中,通道16可包括檔案伺服器,或儲存由源器件12產生之經編碼視訊資料的另一中間儲存器件。在此實例中,目的地器件14可經由串流或下載而存取儲存於檔案伺服器或其他中間儲存器件處的經編碼視訊資料。檔案伺服器可係能夠儲存經編碼視訊資料且將經編碼視訊資料傳輸至目的地器件14的一類型之伺服器。實例檔案伺服器包括網頁伺服器(例如,用於網站)、檔案傳送協定(FTP)伺服器、網路附接儲存(NAS)器件及本端磁碟機。在圖1之實例中,通道16包括額外器件21。在一些實例中,額外器件21係CDN器件、MANE或另一類型之器件。 In other examples, channel 16 may include a file server or another intermediate storage device that stores encoded video material generated by source device 12. In this example, destination device 14 may access encoded video material stored at a file server or other intermediate storage device via streaming or downloading. The file server can be a type of server capable of storing encoded video material and transmitting the encoded video data to destination device 14. The example file server includes a web server (for example, for a website), a file transfer protocol (FTP) server, a network attached storage (NAS) device, and a local disk drive. In the example of FIG. 1, channel 16 includes additional devices 21. In some examples, the additional device 21 is a CDN device, a MANE, or another type of device.

目的地器件14可經由標準資料連接(諸如網際網路連接)而存取經編碼視訊資料。資料連接之實例類型可包括無線通道(例如,Wi-Fi連接)、有線連接(例如,數位用戶線(DSL)、纜線數據機等),或兩者之適合於存取儲存於檔案伺服器上之經編碼視訊資料的組合。經編碼視訊資料自檔案伺服器之傳輸可為串流傳輸、下載傳輸,或兩者之組合。 Destination device 14 can access the encoded video material via a standard data connection, such as an internet connection. Example types of data connections may include wireless channels (eg, Wi-Fi connections), wired connections (eg, digital subscriber line (DSL), cable modems, etc.), or both suitable for accessing stored on a file server A combination of encoded video material. The transmission of the encoded video data from the file server may be a streaming transmission, a download transmission, or a combination of the two.

本發明之技術不限於無線應用或設定。技術可應用至支援多種多媒體應用之視訊寫碼,諸如空中電視廣播、有線電視傳輸、衛星電視傳輸、串流視訊傳輸(例如,經由網際網路)、編碼視訊資料以儲存於資料儲存媒體上、解碼儲存於資料儲存媒體上之視訊資料,或其他應用。在一些實例中,視訊寫碼系統10可經組態以支援單向或雙向視訊傳輸以支援諸如視訊串流、視訊播放、視訊廣播及/或視訊電話之應用。 The techniques of the present invention are not limited to wireless applications or settings. The technology can be applied to video writing supports for a variety of multimedia applications, such as aerial television broadcasting, cable television transmission, satellite television transmission, streaming video transmission (eg, via the Internet), encoding video data for storage on a data storage medium, Decode video data stored on the data storage medium, or other applications. In some examples, video code writing system 10 can be configured to support one-way or two-way video transmission to support applications such as video streaming, video playback, video broadcasting, and/or video telephony.

圖1僅係一實例,且本發明之技術可應用至不一定包括編碼器件與解碼器件之間的任何資料通信之視訊寫碼設定(例如,視訊編碼或視訊解碼)。在其他實例中,資料係自本端記憶體擷取,經由網路進行串流,或其類似者。視訊編碼器件可編碼資料並將資料儲存至記憶體,及/或視訊解碼器件可自記憶體擷取資料並解碼該資料。在許多實例中,編碼及解碼由如下器件執行:其並不彼此通信,而是僅編碼至記憶體之資料及/或自記憶體擷取資料並解碼該資料。 1 is merely an example, and the techniques of the present invention are applicable to video code setting (eg, video encoding or video decoding) that does not necessarily include any data communication between the encoding device and the decoding device. In other examples, the data is retrieved from the local memory, streamed over the network, or the like. The video encoding device can encode the data and store the data to the memory, and/or the video decoding device can retrieve the data from the memory and decode the data. In many instances, encoding and decoding are performed by devices that do not communicate with each other, but only encode data to the memory and/or retrieve data from the memory and decode the data.

在圖1之實例中,源器件12包括視訊源18、視訊編碼器20及輸出介面22。在一些實例中,輸出介面22可包括調變器/解調變器(數據機)及/或傳輸器。視訊源18可包括例如視訊攝影機的視訊捕獲器件、含有先前捕獲之視訊資料的視訊存檔、自視訊內容提供者接收視訊資料的視訊饋入介面及/或用於產生視訊資料的電腦圖形系統,或此等視訊資料之源的組合。 In the example of FIG. 1, source device 12 includes a video source 18, a video encoder 20, and an output interface 22. In some examples, output interface 22 can include a modulator/demodulation transformer (data machine) and/or a transmitter. The video source 18 may include, for example, a video capture device of a video camera, a video archive containing previously captured video data, a video feed interface for receiving video data from a video content provider, and/or a computer graphics system for generating video data, or A combination of sources of such video material.

視訊編碼器20可編碼來自視訊源18的視訊資料。在一些實例中,源器件12經由輸出介面22將經編碼視訊資料直接傳輸至目的地器件14。在其他實例中,經編碼視訊資料亦可儲存於儲存媒體上或檔案伺服器上以供目的地器件14稍後存取從而用於解碼及/或播放。 Video encoder 20 can encode video material from video source 18. In some examples, source device 12 transmits encoded video material directly to destination device 14 via output interface 22. In other examples, the encoded video material may also be stored on a storage medium or on a file server for later access by the destination device 14 for decoding and/or playback.

在圖1之實例中,目的地器件14包括輸入介面28、視訊解碼器30及顯示器件32。在一些實例中,輸入介面28包括接收器及/或數據機。輸入介面28可經由通道16接收經編碼視訊資料。顯示器件32可與目的地器件14整合,或可在目的地器件14外部。一般而言,顯示器件32顯示經解碼視訊資料。顯示器件32可包含多種顯示器件,諸如,液晶顯示器(LCD)、電漿顯示器、有機發光二極體(OLED)顯示器或另一類型之顯示器件。 In the example of FIG. 1, destination device 14 includes an input interface 28, a video decoder 30, and a display device 32. In some examples, input interface 28 includes a receiver and/or a data machine. Input interface 28 can receive encoded video material via channel 16. Display device 32 may be integrated with destination device 14, or may be external to destination device 14. In general, display device 32 displays the decoded video material. Display device 32 can include a variety of display devices such as liquid crystal displays (LCDs), plasma displays, organic light emitting diode (OLED) displays, or another type of display device.

視訊編碼器20及視訊解碼器30可各自實施為多種合適電路中之任一者,諸如一或多個微處理器、數位信號處理器(DSP)、特殊應用積體電路(ASIC)、場可程式化閘陣列(FPGA)、離散邏輯、硬體或其任何組合。若該等技術部分地以軟體實施,則一器件可將用於軟體之指令儲存於合適的穩定式電腦可讀儲存媒體中,且可在硬體中使用一或多個處理器來執行該等指令以執行本發明之技術。前述各項(包括硬體、軟體、軟體與硬體之組合等)中之任一者可被視為一或多個處理器。視訊編碼器20及視訊解碼器30中之每一者可包括於一或多個編碼器或解碼器中,其中任一者可整合為各別器件中之組合編碼器/解碼器(編碼解碼器(CODEC))的部分。 Video encoder 20 and video decoder 30 may each be implemented as any of a variety of suitable circuits, such as one or more microprocessors, digital signal processors (DSPs), special application integrated circuits (ASICs), field-receivable Stylized gate array (FPGA), discrete logic, hardware, or any combination thereof. If the techniques are implemented partially in software, a device can store instructions for the software in a suitable stable computer readable storage medium, and one or more processors can be used in the hardware to perform the The instructions are executed to carry out the techniques of the present invention. Any of the foregoing (including hardware, software, a combination of software and hardware, etc.) can be considered one or more processors. Each of video encoder 20 and video decoder 30 may be included in one or more encoders or decoders, either of which may be integrated into a combined encoder/decoder (codec) in a respective device Part of (CODEC)).

本發明可大體上涉及視訊編碼器20將某資訊「發信」至另一器件(諸如視訊解碼器30或額外器件21)。術語「發信」可大體指代用以解碼經壓縮視訊資料之語法元素及/或其他資料的通信。此通信可即時或幾乎即時地發生。替代性地,此通信可在一段時間上發生,諸如可能當於編碼時在經編碼之位元流中將語法元素儲存至電腦可讀儲存 媒體時發生,該等語法元素在儲存至此媒體之後可接著由解碼器件在任何時間進行擷取。 The present invention may generally relate to video encoder 20 "sending" certain information to another device (such as video decoder 30 or additional device 21). The term "sending" may generally refer to communications used to decode syntax elements and/or other materials of compressed video material. This communication can happen instantly or almost instantaneously. Alternatively, this communication may occur over a period of time, such as possibly storing the syntax elements in computer-readable storage in the encoded bitstream when encoding When the media occurs, the syntax elements can then be retrieved by the decoding device at any time after being stored to the media.

在一些實例中,視訊編碼器20及視訊解碼器30根據諸如ISO/IEC MPEG-4 Visual及ITU-T H.264(亦稱作ISO/IEC MPEG-4 AVC)(包括其可調式視訊寫碼(SVC)擴展、多視圖視訊寫碼(MVC)擴展及/或基於MVC之3DV擴展)的視訊壓縮標準操作。在一些個例中,與基於MVC之3DV一致的任何位元流總是含有符合MVC設定檔(例如,立體高設定檔)之子位元流。此外,正在努力產生H.264/AVC的三維視訊(3DV)寫碼擴展(即,基於AVC之3DV)。在其他實例中,視訊編碼器20及視訊解碼器30可根據ITU-T H.261、ISO/IEC MPEG-1 Visual、ITU-T H.262或ISO/IEC MPEG-2 Visual、ITU-T H.263、ISO/IEC MPEG-4 Visual及ITU-T H.264、ISO/IEC Visual操作。 In some examples, video encoder 20 and video decoder 30 are based on, for example, ISO/IEC MPEG-4 Visual and ITU-T H.264 (also known as ISO/IEC MPEG-4 AVC) (including its adjustable video writing code). Video compression standard operation of (SVC) extension, multiview video code (MVC) extension and/or MVC based 3DV extension. In some cases, any bitstream consistent with MVC-based 3DV always contains a sub-bitstream that conforms to the MVC profile (eg, stereo high profile). In addition, efforts are being made to generate a three-dimensional video (3DV) write code extension of H.264/AVC (i.e., AVC-based 3DV). In other examples, video encoder 20 and video decoder 30 may be in accordance with ITU-T H.261, ISO/IEC MPEG-1 Visual, ITU-T H.262, or ISO/IEC MPEG-2 Visual, ITU-T H. .263, ISO/IEC MPEG-4 Visual and ITU-T H.264, ISO/IEC Visual Operations.

在其他實例中,視訊編碼器20及視訊解碼器30可根據目前由ITU-T視訊寫碼專業團體(VCEG)與ISO/IEC動畫專業團體(MPEG)的關於視訊寫碼之聯合合作團隊(JCT-VC)開發的高效視訊寫碼(HEVC)標準來操作。稱作「HEVC工作草案9」之即將來臨之HEVC標準的草案描述於Bross等人之「High Efficiency Video Coding(HEVC)Text Specification Draft 9」(2012年10月中國上海,ITU-T SG16 WP3與ISO/IEC JTC1/SC29/WG11之關於視訊寫碼之聯合合作團隊(JCT-VC)的第11次會議)中,自2013年5月8日起該工作草案在http://phenix.int-evry.fr/jct/doc_end_user/documents/11_Shanghai/wg11/JCTVC-K1003-v13.zip處可獲得。此外,正在努力產生HEVC的SVC、多視圖寫碼及3DV擴展。HEVC之3DV擴展可被稱作基於HEVC之3DV或3D-HEVC。 In other examples, the video encoder 20 and the video decoder 30 may be based on a joint collaboration between the ITU-T Video Recording Professionals Group (VCEG) and the ISO/IEC Animation Professional Group (MPEG) on video writing (JCT). -VC) Developed by the High Efficiency Video Recording (HEVC) standard. The draft of the forthcoming HEVC standard called "HEVC Working Draft 9" is described in Bross et al. "High Efficiency Video Coding (HEVC) Text Specification Draft 9" (October 2012, Shanghai, China, ITU-T SG16 WP3 and ISO) /IEC JTC1/SC29/WG11 at the 11th meeting of the Joint Collaboration Team on Video Code Writing (JCT-VC), the working draft is available at http://phenix.int-evry as of May 8, 2013 Available at .fr/jct/doc_end_user/documents/11_Shanghai/wg11/JCTVC-K1003-v13.zip. In addition, efforts are being made to generate SVC, multiview code, and 3DV extensions for HEVC. The 3DV extension of HEVC can be referred to as HEVC based 3DV or 3D-HEVC.

在HEVC及其他視訊寫碼標準中,視訊序列通常包括一系列圖像。圖像亦可被稱作「圖框」。圖像可包括表示為SL、SCb及SCr的三個樣本陣列。SL係明度樣本之二維陣列(亦即,區塊)。SCb係Cb色度樣 本之二維陣列。SCr係Cr色度樣本之二維陣列。本文中色度樣本亦可被稱作「色度(chroma)」樣本。在其他個例中,圖像可係單色的,且可僅包括明度樣本陣列。 In HEVC and other video writing standards, video sequences typically include a series of images. An image can also be called a "frame." The image may include three sample arrays denoted as S L , S Cb , and S Cr . The S L is a two-dimensional array of brightness samples (ie, blocks). A two-dimensional array of S Cb Cb chromaticity samples. A two-dimensional array of S Cr Cr color samples. The chroma samples in this article can also be referred to as "chroma" samples. In other examples, the image may be monochromatic and may include only a luma sample array.

為了產生圖像之經編碼表示,視訊編碼器20可產生寫碼樹型單元(CTU)的集合。CTU中之每一者可係明度樣本之寫碼樹型區塊、色度樣本之兩個對應寫碼樹型區塊及用以對寫碼樹型區塊之樣本進行寫碼的語法結構。寫碼樹型區塊可係樣本之N×N區塊。CTU亦可稱作「樹型區塊」或「最大寫碼單元」(LCU)。HEVC之CTU可寬泛地類似於諸如H.264/AVC之其他標準的巨集區塊。然而,CTU不一定限於特定大小,且可包括一或多個寫碼單元(CU)。圖塊可包括在光柵掃描中連續地排序的整數數目個CTU。 To generate an encoded representation of the image, video encoder 20 may generate a set of write code tree units (CTUs). Each of the CTUs may be a code tree block of the luma sample, two corresponding code tree blocks of the chroma samples, and a syntax structure for writing samples of the code tree block. The code tree block can be an N x N block of the sample. A CTU may also be referred to as a "tree block" or a "maximum code unit" (LCU). The CTU of HEVC can be broadly similar to macroblocks of other standards such as H.264/AVC. However, the CTU is not necessarily limited to a particular size and may include one or more code writing units (CUs). A tile may include an integer number of CTUs that are consecutively ordered in a raster scan.

為了產生經寫碼CTU,視訊編碼器20可對CTU之寫碼樹型區塊遞歸地執行四分樹分割以將寫碼樹型區塊劃分成寫碼區塊(因此名為「寫碼樹型單元」)。寫碼區塊係樣本之N×N區塊。CU可係具有明度樣本陣列、Cb樣本陣列及Cr樣本陣列的圖像之明度樣本之寫碼區塊及色度樣本的兩個對應寫碼區塊,以及用以對寫碼區塊之樣本進行寫碼的語法結構。視訊編碼器20可將CU之寫碼區塊分割成一或多個預測區塊。預測區塊可係樣本預測應用至之樣本的矩形(亦即,正方形或非正方形)區塊。CU之預測單元(PU)可係明度樣本之預測區塊、圖像之色度樣本的兩個對應預測區塊,及用以預測該等預測區塊樣本的語法結構。視訊編碼器20可產生用於CU之每一PU的明度、Cb及Cr預測區塊的預測性明度、Cb及Cr區塊。 To generate a coded CTU, video encoder 20 may recursively perform quadtree partitioning on the CTU's code tree block to divide the code tree block into code blocks (hence the name "code tree" Type unit"). The code block is an N x N block of the sample. The CU may be a code writing block having a luma sample of the brightness sample array, the Cb sample array, and the Cr sample array, and two corresponding code writing blocks of the chroma sample, and the sample for writing the code block. The syntax structure of the code. Video encoder 20 may partition the code block of the CU into one or more prediction blocks. The prediction block may be a rectangular (i.e., square or non-square) block to which the sample is applied. The prediction unit (PU) of the CU may be a prediction block of the luma sample, two corresponding prediction blocks of the chroma samples of the image, and a syntax structure for predicting the prediction block samples. Video encoder 20 may generate predictive luma, Cb, and Cr blocks for the luma, Cb, and Cr prediction blocks for each PU of the CU.

視訊編碼器20可使用框內預測或框間預測以產生PU的預測性區塊。若視訊編碼器20使用框內預測來產生PU之預測性區塊,則視訊編碼器20可基於與PU相關聯之圖像的經解碼樣本產生PU的預測性區塊。 Video encoder 20 may use intra-frame prediction or inter-frame prediction to generate predictive blocks for the PU. If video encoder 20 uses in-frame prediction to generate a predictive block for the PU, video encoder 20 may generate a predictive block for the PU based on the decoded samples of the image associated with the PU.

若視訊編碼器20使用框間預測來產生PU之預測性區塊,則視訊編碼器20可基於不同於與PU相關聯之圖像的一或多個圖像之經解碼樣本產生PU的預測性區塊。視訊編碼器20可使用單向預測或雙向預測以產生PU的預測性區塊。當視訊編碼器20使用單向預測來產生PU的預測性區塊時,PU可具有單一運動向量。當視訊編碼器20使用雙向預測來產生PU的預測性區塊時,PU可具有兩個運動向量。 If video encoder 20 uses inter-frame prediction to generate a predictive block for a PU, video encoder 20 may generate PU predictability based on decoded samples of one or more images that are different from the image associated with the PU. Block. Video encoder 20 may use one-way prediction or bi-directional prediction to generate predictive blocks for the PU. When video encoder 20 uses unidirectional prediction to generate predictive blocks for a PU, the PU may have a single motion vector. When video encoder 20 uses bi-directional prediction to generate predictive blocks for a PU, the PU may have two motion vectors.

在視訊編碼器20產生CU之一或多個PU的預測性明度、Cb及Cr區塊之後,視訊編碼器20可產生CU的明度殘餘區塊。CU之明度殘餘區塊的每一樣本指示CU之預測性明度區塊中之一者中的明度樣本與CU之原始明度寫碼區塊中之對應樣本之間的差。此外,視訊編碼器20可產生CU之Cb殘餘區塊。CU之Cb殘餘區塊的每一樣本可指示CU之預測性Cb區塊中之一者中的Cb樣本與CU之原始Cb寫碼區塊中之對應樣本之間的差。視訊編碼器20亦可產生CU之Cr殘餘區塊。CU之Cr殘餘區塊的每一樣本可指示CU之預測性Cr區塊中之一者中的Cr樣本與CU之原始Cr寫碼區塊中之對應樣本之間的差。 After the video encoder 20 generates the predictive luma, Cb, and Cr blocks of one or more PUs of the CU, the video encoder 20 may generate a luma residual block of the CU. Each sample of the luma residual block of the CU indicates the difference between the luma sample in one of the predictive luma blocks of the CU and the corresponding sample in the original luma write block of the CU. In addition, video encoder 20 may generate a Cb residual block of the CU. Each sample of the Cb residual block of the CU may indicate a difference between a Cb sample in one of the CU's predictive Cb blocks and a corresponding sample in the original Cb code block of the CU. Video encoder 20 may also generate a Cr residual block of the CU. Each sample of the Cr residual block of the CU may indicate a difference between a Cr sample in one of the CU's predictive Cr blocks and a corresponding sample in the original Cr code block of the CU.

此外,視訊編碼器20可使用四分樹分割以將CU之明度、Cb及Cr殘餘區塊分解成一或多個明度、Cb及Cr變換區塊。變換區塊可係同一變換應用至之樣本的矩形區塊。CU之變換單元(TU)可係明度樣本之變換區塊、色度樣本之兩個對應變換區塊,及用以對變換區塊樣本進行變換的語法結構。因此,CU之每一TU可係與明度變換區塊、Cb變換區塊及Cr變換區塊相關聯。與TU相關聯之明度變換區塊可係CU之明度殘餘區塊的子區塊。Cb變換區塊可係CU之Cb殘餘區塊的子區塊。Cr變換區塊可係CU之Cr殘餘區塊的子區塊。 In addition, video encoder 20 may use quadtree partitioning to decompose the CU's luma, Cb, and Cr residual blocks into one or more luma, Cb, and Cr transform blocks. The transform block can be a rectangular block to which the same transform is applied. The transform unit (TU) of the CU may be a transform block of the luma sample, two corresponding transform blocks of the chroma sample, and a syntax structure for transforming the transform block sample. Thus, each TU of a CU can be associated with a luma transform block, a Cb transform block, and a Cr transform block. The luma transform block associated with the TU may be a sub-block of the luma residual block of the CU. The Cb transform block may be a sub-block of the Cb residual block of the CU. The Cr transform block may be a sub-block of the Cr residual block of the CU.

視訊編碼器20可將一或多個變換應用至TU之明度變換區塊以產生TU的明度係數區塊。係數區塊可係變換係數之二維陣列。變換係數可係純量。視訊編碼器20可將一或多個變換應用至TU之Cb變換區 塊以產生TU的Cb係數區塊。視訊編碼器20可將一或多個變換應用至TU之Cr變換區塊以產生TU的Cr係數區塊。 Video encoder 20 may apply one or more transforms to the luma transform block of the TU to generate a luma coefficient block for the TU. The coefficient block can be a two-dimensional array of transform coefficients. The transform coefficients can be pure quantities. Video encoder 20 may apply one or more transforms to the Cb transform region of the TU The block is to generate a Cb coefficient block of the TU. Video encoder 20 may apply one or more transforms to the Cr transform block of the TU to generate a Cr coefficient block for the TU.

在產生係數區塊(例如,明度係數區塊、Cb係數區塊或Cr係數區塊)之後,視訊編碼器20可量化係數區塊。量化一般指代如下程序:將變換係數量化以可能地減少用以表示該等變換係數之資料的量,從而提供進一步壓縮。在視訊編碼器20量化係數區塊之後,視訊編碼器20可熵編碼語法元素,從而指示經量化之變換係數。舉例而言,視訊編碼器20可對語法元素執行上下文自適應性二進位算術寫碼(CABAC),從而指示經量化之變換係數。視訊編碼器20可在位元流中輸出經熵編碼之語法元素。 After generating a coefficient block (eg, a luma coefficient block, a Cb coefficient block, or a Cr coefficient block), the video encoder 20 may quantize the coefficient block. Quantization generally refers to the process of quantizing transform coefficients to possibly reduce the amount of data used to represent the transform coefficients, thereby providing further compression. After the video encoder 20 quantizes the coefficient block, the video encoder 20 may entropy encode the syntax elements to indicate the quantized transform coefficients. For example, video encoder 20 may perform a context adaptive binary arithmetic write code (CABAC) on the syntax elements to indicate the quantized transform coefficients. Video encoder 20 may output the entropy encoded syntax elements in the bitstream.

視訊編碼器20可輸出一包括位元序列的位元流,該位元序列形成經寫碼圖像及相關聯資料的表示。位元流可包含網路抽象層(NAL)單元之序列。NAL單元可係含有隨後的資料類型的指示及在必要時穿插在仿真防止位元組中的含有呈原始位元組序列有效負載(RBSP)之形式的該資料的位元組之語法結構。亦即,NAL單元中之每一者可包括NAL單元標頭,且囊封RBSP。NAL單元標頭可包括一指示NAL單元類型碼的語法元素。由NAL單元之NAL單元標頭指定的NAL單元類型碼指示NAL單元之類型。RBSP可係含有囊封於NAL單元內之整數數目個位元組的語法結構。在一些個例中,RBSP包括零個位元。 Video encoder 20 may output a stream of bits comprising a sequence of bits that form a representation of the coded image and associated material. The bitstream may contain a sequence of Network Abstraction Layer (NAL) units. The NAL unit may contain an indication of the subsequent data type and, if necessary, a syntax structure of the byte containing the material in the form of the original byte sequence payload (RBSP) interspersed in the simulation prevention byte. That is, each of the NAL units may include a NAL unit header and encapsulate the RBSP. The NAL unit header may include a syntax element indicating a NAL unit type code. The NAL unit type code specified by the NAL unit header of the NAL unit indicates the type of the NAL unit. An RBSP may be a grammatical structure containing an integer number of bytes encapsulated within a NAL unit. In some cases, the RBSP includes zero bits.

不同類型之NAL單元可囊封不同類型之RBSP。舉例而言,第一類型之NAL單元可囊封圖像參數集(PPS)之RBSP,第二類型之NAL單元可囊封經寫碼圖塊之RBSP,第三類型之NAL單元可囊封SEI的RBSP,等等。囊封視訊寫碼資料之RBSP(而非參數集及SEI訊息之RBSP)的NAL單元可被稱作視訊寫碼層(VCL)NAL單元。 Different types of NAL units can encapsulate different types of RBSPs. For example, a NAL unit of a first type may encapsulate an RBSP of a picture parameter set (PPS), a NAL unit of a second type may encapsulate an RBSP of a coded block, and a NAL unit of a third type may encapsulate an SEI RBSP, and so on. The NAL unit of the RBSP (not the parameter set and the RBSP of the SEI message) encapsulating the video write data may be referred to as a Video Write Code Layer (VCL) NAL unit.

視訊解碼器30可接收由視訊編碼器20產生的位元流。此外,視訊解碼器30可剖析位元流以解碼來自位元流的語法元素。視訊解碼器 30可至少部分基於自位元流解碼之語法元素來重建構視訊資料的圖像。重建構視訊資料之程序可大體上與由視訊編碼器20執行之程序互反。舉例而言,視訊解碼器30可使用PU之運動向量來判定當前CU之PU的預測性區塊。此外,視訊解碼器30可反量化與當前CU之TU相關聯的變換係數區塊。視訊解碼器30可對變換係數區塊執行反變換以重建構與當前CU之TU相關聯的變換區塊。視訊解碼器30可藉由將當前CU之PU之預測性區塊的樣本加至當前CU之TU之變換區塊的對應樣本來重建構當前CU的寫碼區塊。藉由重建構圖像之每一CU的寫碼區塊,視訊解碼器30可重建構圖像。 Video decoder 30 can receive the stream of bits generated by video encoder 20. In addition, video decoder 30 may parse the bitstream to decode syntax elements from the bitstream. Video decoder 30 may reconstruct an image of the video material based at least in part on the syntax elements of the bit stream decoding. The process of reconstructing the video data may be substantially reciprocal to the program executed by video encoder 20. For example, video decoder 30 may use the motion vector of the PU to determine the predictive block of the PU of the current CU. In addition, video decoder 30 may inverse quantize the transform coefficient block associated with the TU of the current CU. Video decoder 30 may perform an inverse transform on the transform coefficient block to reconstruct a transform block that is associated with the TU of the current CU. The video decoder 30 may reconstruct the code block of the current CU by adding a sample of the predictive block of the PU of the current CU to the corresponding sample of the transform block of the TU of the current CU. Video decoder 30 may reconstruct the reconstructed image by reconstructing the code blocks of each CU of the reconstructed image.

在多視圖寫碼中,可存在同一場景的來自不同視點之多個視圖。術語「存取單元」用以指代對應於同一時間執行個體之圖像的集合。因此,視訊資料可概念化為隨時間發生之一系列存取單元。「視圖分量」可係單一存取單元中的視圖的經寫碼表示。在本發明中,「視圖」可指代與同一視圖識別符相關聯之視圖分量的序列。 In a multiview code, there may be multiple views from different viewpoints of the same scene. The term "access unit" is used to refer to a collection of images corresponding to an individual performing at the same time. Thus, video data can be conceptualized as a series of access units that occur over time. A "view component" can be a coded representation of a view in a single access unit. In the present invention, a "view" may refer to a sequence of view components associated with the same view identifier.

多視圖寫碼支援視圖間預測。視圖間預測類似於用於H.264/AVC及HEVC中的框間預測,且可使用相同語法元素。然而,當視訊寫碼器對當前視訊單元(諸如,PU)執行視圖間預測時,視訊編碼器20可使用與當前視訊單元在相同之存取單元中但在不同視圖中的圖像作為參考圖像。相對照地,習知框間預測僅使用不同存取單元中之圖像作為參考圖像。 Multi-view writing supports inter-view prediction. Inter-view prediction is similar to inter-frame prediction in H.264/AVC and HEVC, and the same syntax elements can be used. However, when the video codec performs inter-view prediction on the current video unit (such as a PU), the video encoder 20 can use the image in the same access unit as the current video unit but in a different view as a reference picture. image. In contrast, conventional inter-frame prediction uses only images from different access units as reference images.

在多視圖寫碼中,若視訊解碼器(例如,視訊解碼器30)可解碼視圖中之圖像而不參考任何其他視圖中之圖像,則視圖可被稱作「基本視圖」。當寫碼非基本視圖中之一者中的圖像時,若圖像係與視訊寫碼器當前正寫碼之圖像在不同視圖中但係與視訊寫碼器當前正寫碼之圖像在相同的時間執行個體(亦即,存取單元)內,則視訊寫碼器(諸如,視訊編碼器20或視訊解碼器30)可將圖像加至參考圖像清單中。 類似於其他框間預測參考圖像,視訊寫碼器可在參考圖像清單之任何位置處插入視圖間預測參考圖像。 In multi-view code writing, if a video decoder (eg, video decoder 30) can decode an image in a view without reference to an image in any other view, the view may be referred to as a "base view." When writing an image in one of the non-base views, if the image is in a different view from the image currently being written by the video writer, but the image is currently being coded by the video writer. Within the same time execution of the individual (i.e., access unit), a video writer (such as video encoder 20 or video decoder 30) can add the image to the reference image list. Similar to other inter-frame prediction reference images, the video codec can insert an inter-view prediction reference image at any position of the reference image list.

視訊寫碼標準指定視訊緩衝模型。在H.264/AVC及HEVC中,緩衝模型被稱作「假想參考解碼器」或「HRD」。在HEVC工作草案8中,HRD描述於附錄C中。 The video coding standard specifies the video buffer model. In H.264/AVC and HEVC, the buffer model is called "hypothetical reference decoder" or "HRD". In HEVC Working Draft 8, the HRD is described in Appendix C.

HRD描述資料如何經緩衝以供解碼且經解碼之資料如何經緩衝以供輸出。舉例而言,HRD描述經寫碼圖像緩衝器(「CPB」)、經解碼圖像緩衝器(「DPB」)及視訊解碼器的操作。CPB係以由HRD指定之解碼次序含有存取單元的先進先出緩衝器。DPB係保持經解碼圖像以用於參考、輸出重排序或HRD指定之輸出延遲的緩衝器。CPB及DPB之行為可被數學地指定。HRD可對時序、緩衝器大小及位元速率直接強加約束。此外,HRD可對各種位元流特性及統計資料間接強加約束。 The HRD describes how the data is buffered for decoding and how the decoded data is buffered for output. For example, HRD describes the operation of a coded image buffer ("CPB"), a decoded image buffer ("DPB"), and a video decoder. The CPB is a FIFO buffer containing access units in the decoding order specified by the HRD. The DPB is a buffer that holds the decoded image for reference, output reordering, or HRD specified output delay. The behavior of CPB and DPB can be mathematically specified. HRD imposes constraints directly on timing, buffer size, and bit rate. In addition, HRD can impose constraints on various bitstream characteristics and statistics indirectly.

在H.264/AVC及HEVC中,位元流一致性及解碼器一致性被指定作為HRD規範之部分。換言之,HRD模型指定了用以判定位元流是否與標準一致的測試,且指定用以判定解碼器是否與標準一致的測試。 儘管HRD被命名為某種類之解碼器,但視訊編碼器通常使用HRD以保證位元流一致性,而視訊解碼器通常不需要HRD。 In H.264/AVC and HEVC, bitstream consistency and decoder consistency are specified as part of the HRD specification. In other words, the HRD model specifies a test to determine if the bitstream is consistent with the standard and specifies a test to determine if the decoder is consistent with the standard. Although HRD is named as a class of decoders, video encoders typically use HRD to ensure bitstream consistency, while video decoders typically do not require HRD.

H.264/AVC及HEVC兩者皆指定兩種類型之位元流或HRD一致性(即,類型I及類型II)。類型I位元流係僅含有位元流中的所有存取單元之VCL NAL單元及填充符資料NAL單元的NAL單元流。類型II位元流係除位元流中的所有存取單元之VCL NAL單元及填充符資料NAL單元外亦含有以下各者中之至少一者的NAL單元流:不同於填充符資料NAL單元之額外非VCL NAL單元;及自NAL單元流形成位元組流的所有leading_zero_8bits、zero_byte、start_coded_prefix_one_3bytes及trailing_zero_8bits語法元素。 Both H.264/AVC and HEVC specify two types of bitstream or HRD consistency (ie, Type I and Type II). The Type I bitstream stream only contains the VCL NAL unit of all access units in the bitstream and the NAL unit stream of the filler data NAL unit. The Type II bit stream system includes, in addition to the VCL NAL unit and the padding data NAL unit of all access units in the bit stream, a NAL unit stream of at least one of the following: different from the padding data NAL unit Additional non-VCL NAL units; and all leading_zero_8bits, zero_byte, start_coded_prefix_one_3bytes, and trailing_zero_8bits syntax elements forming a byte stream from the NAL unit stream.

當器件執行一判定位元流是否與視訊寫碼標準一致的位元流一致性測試時,器件可選擇位元流的操作點。器件可接著判定可適用於所選擇操作點的HRD參數之集合。器件可使用適用於所選擇操作點的HRD參數之集合來組態HRD的行為。更特定而言,器件可使用HRD參數之適用集合來組態HRD之特定組件(諸如,假想流排程器(HSS)、CPB、解碼程序、DPB等等)的行為。隨後,HSS可根據特定排程將位元流的經寫碼視訊資料注入至HRD之CPB中。 The device may select the operating point of the bitstream when the device performs a bitstream conformance test that determines if the bitstream is consistent with the video writing standard. The device can then determine a set of HRD parameters that are applicable to the selected operating point. The device can configure the behavior of the HRD using a collection of HRD parameters suitable for the selected operating point. More specifically, the device can use the applicable set of HRD parameters to configure the behavior of particular components of the HRD, such as hypothetical stream scheduler (HSS), CPB, decoder, DPB, and the like. The HSS can then inject the coded video data of the bit stream into the CPB of the HRD according to a particular schedule.

此外,器件可調用解碼CPB中的經寫碼視訊資料的解碼程序。解碼程序可將經解碼圖像輸出至DPB。隨著器件使資料移動通過HRD,器件可判定約束之特定集合是否仍被滿足。舉例而言,器件可判定在HRD正解碼所選擇操作點的操作點表示時溢位或欠位條件是否發生於CPB或DPB中。器件可以此方式選擇並處理位元流的每一操作點。若位元流之操作點皆不造成違反約束,則器件可判定位元流與視訊寫碼標準一致。 In addition, the device can invoke a decoding process that decodes the coded video material in the CPB. The decoding program can output the decoded image to the DPB. As the device moves the data through the HRD, the device can determine if a particular set of constraints is still satisfied. For example, the device can determine whether an overflow or underrun condition occurs in the CPB or DPB while the HRD is decoding the operating point representation of the selected operating point. The device can select and process each operating point of the bitstream in this manner. If the operating point of the bit stream does not cause a violation of the constraint, the device can determine that the bit stream is consistent with the video writing standard.

H.264/AVC及HEVC兩者皆指定兩種類型之解碼器一致性,即輸出時序解碼器一致性及輸出次序解碼器一致性。聲稱與特定設定檔、階層及級別之一致性的解碼器能夠成功地解碼與諸如HEVC之視訊寫碼標準之位元流一致性要求一致的所有位元流。在本發明中,「設定檔」可指代位元流語法之子集。可在每一設定檔內指定「階層」及「級別」。階層之級別可係強加於位元流中之語法元素之值的約束之指定集合。此等約束可為對值之簡單限制。替代性地,此等約束可採取對值之算術組合(例如,圖像寬度×圖像高度×每秒解碼之圖像之數目)之約束的形式。針對較低階層所指定之級別相較於針對較高階層指定之級別受到更多約束。 Both H.264/AVC and HEVC specify two types of decoder coherency, namely output timing decoder consistency and output order decoder consistency. Decoders that claim consistency with a particular profile, level, and level are able to successfully decode all bitstreams consistent with bitstream conformance requirements such as HEVC's video coding standard. In the present invention, "profile" may refer to a subset of the meta-stream syntax. "Level" and "Level" can be specified in each profile. The level of the hierarchy may be a specified set of constraints imposed on the values of the syntax elements in the bitstream. These constraints can be a simple limit on the value. Alternatively, such constraints may take the form of a constraint on the arithmetic combination of values (eg, image width x image height x number of images decoded per second). The level specified for the lower level is more constrained than the level specified for the higher level.

當器件執行解碼器一致性測試以判定受測解碼器(DUT)是否與視訊寫碼標準一致時,器件可將與視訊寫碼標準一致的位元流提供至 HRD及DUT兩者。HRD可以上文關於位元流一致性測試描述之方式處理位元流。若DUT輸出之經解碼圖像的次序與由HRD輸出之經解碼圖像的次序匹配,則器件可判定DUT與視訊寫碼標準一致。此外,若DUT輸出經解碼圖像之時序與HRD輸出經解碼圖像之時序匹配,則器件可判定DUT與視訊寫碼標準一致。 When the device performs a decoder conformance test to determine if the D4.1 is consistent with the video write standard, the device can provide a bit stream consistent with the video write standard to Both HRD and DUT. The HRD can process the bitstream in the manner described above with respect to the bitstream conformance test. If the order of the decoded images output by the DUT matches the order of the decoded images output by the HRD, the device can determine that the DUT is consistent with the video writing standard. In addition, if the timing at which the DUT outputs the decoded image matches the timing of the decoded image of the HRD output, the device can determine that the DUT is consistent with the video writing standard.

除位元流一致性測試及解碼器一致性測試外,器件可將HRD參數用於其他用途。舉例而言,初始CPB移除延遲可用以導引系統以設定適當初始端對端延遲,且當經由RTP輸送視訊資料位元流時,DPB輸出時間可用以導出即時協定(RTP)時戳。 In addition to bitstream conformance testing and decoder conformance testing, the device can use HRD parameters for other purposes. For example, an initial CPB removal delay can be used to guide the system to set an appropriate initial end-to-end delay, and when a video data bitstream is delivered via RTP, the DPB output time can be used to derive a Real Time Agreement (RTP) timestamp.

在H.264/AVC及HEVC HRD模型中,解碼或CPB移除可係基於存取單元的。亦即,假定HRD同時解碼完整之存取單元,且自CPB移除完整存取單元。此外,在H.264/AVC及HEVC HRD模型中,假定圖像解碼係瞬時的。視訊編碼器20可在圖像時序SEI訊息中發信解碼時間以開始存取單元的解碼。在實際應用中,若一致之視訊解碼器嚴格地遵循經發信以開始存取單元之解碼的解碼時間,則輸出特定經解碼圖像之最早可能時間等於該特定圖像之解碼時間加上解碼該特定圖像所需要的時間。然而,在真實世界中,解碼圖像所需要之時間無法等於零。 In the H.264/AVC and HEVC HRD models, decoding or CPB removal may be based on access units. That is, it is assumed that the HRD simultaneously decodes the complete access unit and removes the complete access unit from the CPB. Furthermore, in the H.264/AVC and HEVC HRD models, it is assumed that the image decoding is instantaneous. Video encoder 20 may signal the decoding time in the picture timing SEI message to begin decoding of the access unit. In practical applications, if a consistent video decoder strictly follows the decoding time sent to initiate decoding of the access unit, the earliest possible time to output a particular decoded image is equal to the decoding time of the particular image plus decoding. The time required for this particular image. However, in the real world, the time required to decode an image cannot be equal to zero.

HRD參數可控制HRD之各種態樣。換言之,HRD可依賴於HRD參數。HRD參數可包括初始CPB移除延遲、CPB大小、位元速率、初始DPB輸出延遲及DPB大小。視訊編碼器20可在指定於視訊參數集(VPS)及/或序列參數集(SPS)中之hrd_parameters( )語法結構中發信此等HRD參數。個別VPS及/或SPS可包括針對HRD參數之不同集合的多個hrd_parameters( )語法結構。在一些實例中,視訊編碼器20可在緩衝週期SEI訊息或圖像時序SEI訊息中發信HRD參數。 The HRD parameters control various aspects of the HRD. In other words, the HRD can depend on the HRD parameters. The HRD parameters may include an initial CPB removal delay, a CPB size, a bit rate, an initial DPB output delay, and a DPB size. Video encoder 20 may signal these HRD parameters in the hrd_parameters( ) syntax structure specified in the Video Parameter Set (VPS) and/or Sequence Parameter Set (SPS). Individual VPSs and/or SPSs may include multiple hrd_parameters( ) syntax structures for different sets of HRD parameters. In some examples, video encoder 20 may signal HRD parameters in a buffering period SEI message or an image timing SEI message.

如上文所解釋,位元流之操作點係與層識別符之集合(亦即, nuh_reserved_zero_6bits值之集合)及時間識別符相關聯。操作點表示可包括與操作點相關聯的每一NAL單元。操作點表示可具有不同於原始位元流的圖框速率及/或位元速率。此係因為操作點表示可能不包括原始位元流之一些圖像及/或資料中的一些。因此,若視訊解碼器30要在處理原始位元流時以特定速率自CPB及/或DPB移除資料,且若視訊解碼器30要在處理操作點表示時以同一速率自CPB及/或DPB移除資料,則視訊解碼器30可自CPB及/或DPB移除過多或過少資料。因而,視訊編碼器20可發信用於不同操作點之HRD參數的不同集合。舉例而言,視訊編碼器20可在VPS中包括多個hrd_parameters( )語法結構,該等語法結構包括用於不同操作點之HRD參數。 As explained above, the operating point of the bit stream is a set of layer identifiers (ie, The set of nuh_reserved_zero_6bits values is associated with the time identifier. An operational point representation can include each NAL unit associated with an operating point. The operating point representation may have a frame rate and/or a bit rate that is different from the original bit stream. This is because some of the images and/or materials in the original bitstream may not be included because of the operating point representation. Thus, if the video decoder 30 is to remove data from the CPB and/or DPB at a particular rate while processing the original bit stream, and if the video decoder 30 is to process the operating point representation at the same rate from the CPB and/or DPB When the data is removed, the video decoder 30 can remove too much or too little data from the CPB and/or DPB. Thus, video encoder 20 can signal different sets of HRD parameters for different operating points. For example, video encoder 20 may include a plurality of hrd_parameters( ) syntax structures in the VPS that include HRD parameters for different operating points.

在HEVC工作草案8中,HRD參數之集合視需要包括對於所有子層係共同的資訊之集合。換言之,HRD參數之集合視需要可包括適用於包括任何時間子層之操作點的共同語法元素之集合。時間子層係時間可調式位元流的時間可調式層,該時間可調式位元流由具有TemporalId之特定值的VCL NAL單元及相關聯的非VCL NAL單元組成。除了共同資訊之集合外,HRD參數之集合可包括對於個別時間子層特定的語法元素之集合。舉例而言,hrd_parameters( )語法結構可視需要包括對於所有子層係共同的且總是包括子層特定資訊的資訊集合。因為共同資訊之集合對於HRD參數之多個集合係共同的,所以在HRD參數之多個集合中發信共同資訊的集合可係不必要的。確切而言,在HEVC工作草案8中,共同資訊在HRD參數之集合係VPS中的HRD參數的第一集合時可存在於HRD參數的該集合中,或共同資訊在HRD參數之集合係與第一操作點索引相關聯時可存在於HRD參數的該集合中。舉例而言,當hrd_parameters( )語法結構係VPS中之第一hrd_parameters( )語法結構時抑或當hrd_parameters( )語法結構係與第一操作點相關聯時,HEVC工作草案8支援共同資訊的存在。 In HEVC Working Draft 8, the set of HRD parameters needs to include a collection of information common to all sub-layers as needed. In other words, the set of HRD parameters can include a set of common syntax elements that are applicable to the operating points including any temporal sub-layers as desired. The temporal sub-layer is a time-adjustable layer of a time-adjustable bitstream, the time-adjustable bitstream consisting of VCL NAL units with associated values of TemporalId and associated non-VCL NAL units. In addition to the set of common information, the set of HRD parameters may include a collection of syntax elements specific to the individual temporal sub-layers. For example, the hrd_parameters( ) syntax structure may optionally include a collection of information that is common to all sub-layers and that always includes sub-layer specific information. Since the set of common information is common to multiple sets of HRD parameters, it is not necessary to send a set of common information in multiple sets of HRD parameters. Specifically, in the HEVC working draft 8, the common information may exist in the set of HRD parameters in the first set of HRD parameters in the set of VRD parameters, or the common information in the set of HRD parameters and the first An operation point index associated may exist in the set of HRD parameters. For example, when the hrd_parameters( ) syntax structure is the first hrd_parameters( ) syntax structure in the VPS or when the hrd_parameters( ) syntax structure is associated with the first operating point, the HEVC Working Draft 8 supports the existence of common information.

以下表1係HEVC中的hrd_parameters( )語法結構的實例語法結構。 Table 1 below is an example syntax structure of the hrd_parameters( ) syntax structure in HEVC.

在以上表1之實例及本發明之其他語法表中,具有類型描述符ue(v)之語法元素可係使用自左側位元起之0階指數哥倫布(Exp-Golomb)寫碼而編碼的長度可變之無正負號整數。在表1的實例及以下數個表中,具有形式u(n)(其中n係非負整數)之描述符的語法元素係具有長度n之無正負號值。 In the examples of Table 1 above and other grammar tables of the present invention, the syntax element having the type descriptor ue(v) may be the length encoded using the 0-order exponential Columb (Exp-Golomb) code from the left bit. Variable unsigned integer. In the examples of Table 1 and the following tables, the syntax elements of the descriptor having the form u( n ) (where n is a non-negative integer) have an unsigned value of length n .

在表1之實例語法中,「if(commonInfPresentFlag){…}」區塊中之語法元素係HRD參數集合的共同資訊。換言之,HRD參數之集合的共同資訊可包括語法元素timing_info_present_flag、num_units_in_tick、time_scale、nal_hrd_parameters_present_flag、vcl_hrd_parameters_present_flag、sub_pic_cpb_params_present_flag、tick_divisor_minus2、du_cpb_removal_delay_length_minus1、bit_rate_scale、cpb_size_scale、initial_cpb_removal_delay_length_minus1、cpb_removal_delay_length_minus1及dpb_output_delay_length_minus1。 In the example syntax of Table 1, the syntax elements in the "if(commonInfPresentFlag){...}" block are the common information of the HRD parameter set. In other words, a common set of HRD parameters of the information may include syntax elements timing_info_present_flag, num_units_in_tick, time_scale, nal_hrd_parameters_present_flag, vcl_hrd_parameters_present_flag, sub_pic_cpb_params_present_flag, tick_divisor_minus2, du_cpb_removal_delay_length_minus1, bit_rate_scale, cpb_size_scale, initial_cpb_removal_delay_length_minus1, cpb_removal_delay_length_minus1 and dpb_output_delay_length_minus1.

此外,在表1之實例中,語法元素fixed_pic_rate_flag[i]、pic_duration_in_tc_minus1[i]、low_delay_hrd_flag[i]及cpb_cnt_minus1[i]可係子層特定HRD參數的集合。換言之,hrd_parameters( )語法結構之此等語法元素可僅適用於包括特定子層的操作點。因此,hrd_parameters( )語法結構之HRD參數除視需要包括之共同資訊外亦可包括對於位元流之特定子層特定的子層特定HRD參數的集合。 Furthermore, in the example of Table 1, the syntax elements fixed_pic_rate_flag[i], pic_duration_in_tc_minus1[i], low_delay_hrd_flag[i], and cpb_cnt_minus1[i] may be sets of sub-layer specific HRD parameters. In other words, such syntax elements of the hrd_parameters( ) syntax structure may only be applicable to operating points that include a particular sub-layer. Thus, the HRD parameters of the hrd_parameters( ) syntax structure may include a set of sub-layer specific HRD parameters specific to a particular sub-layer of the bit stream, in addition to the common information that needs to be included.

fixed_pic_rate_flag[i]語法元素可指示:在HighestTi等於i時,輸出次序上的任何兩個連續圖像的HRD輸出時間之間的時間距離以特定方式受到約束。HighestTid可係識別(例如,操作點的)最高時間子層的變數。pic_duration_in_tc_minus1[i]語法元素可指定在HighestTid等於i時經寫碼視訊序列中的按輸出次序的任何連續圖像之HRD輸出時間之間的以時脈刻度為單位的時間距離。low_delay_hrd_flag[i]語法元素可指定在HighestTid等於i時的HRD操作模式,如在HEVC工作草案8之附錄C中所指定。cpb_cnt_minus1[i]語法元素可指定在HighestTid等於i時經寫碼視訊序列之位元流中的替代性CPB規範的數目。 The fixed_pic_rate_flag[i] syntax element may indicate that when HighestTi is equal to i, the temporal distance between the HRD output times of any two consecutive images in the output order is constrained in a particular manner. The HighestTid may identify the variable of the highest temporal sub-layer (eg, of the operating point). The pic_duration_in_tc_minus1[i] syntax element may specify the time distance in hours of the HRD output time between any successive images in the output order in the coded video sequence when HighestTid is equal to i. The low_delay_hrd_flag[i] syntax element may specify the HRD mode of operation when HighestTid is equal to i, as specified in Appendix C of HEVC Working Draft 8. The cpb_cnt_minus1[i] syntax element may specify the number of alternative CPB specifications in the bitstream of the coded video sequence when HighestTid is equal to i.

視訊編碼器20可使用SEI訊息以在位元流中包括不被要求用於圖 像之樣本值的正確解碼之後設資料。然而,視訊解碼器30或其他器件可將包括於SEI訊息中的後設資料用於各種其他用途。舉例而言,視訊解碼器30可將SEI訊息中之後設資料用於圖像輸出定時、圖像顯示、損失偵測及錯誤隱藏(error concealment)。 Video encoder 20 may use SEI messages to include in the bitstream that are not required for the map Set the data after the correct decoding of the sample values. However, video decoder 30 or other device may use the post-data included in the SEI message for various other purposes. For example, the video decoder 30 can use the data in the SEI message for image output timing, image display, loss detection, and error concealment.

視訊編碼器20可在存取單元中包括一或多個SEI NAL單元。換言之,任何數目個SEI NAL單元可與一存取單元相關聯。此外,每一SEI NAL單元可含有一或多個SEI訊息。HEVC標準描述各種類型之SEI訊息的語法及語義。然而,HEVC標準並不描述對SEI訊息的處置,此係因為SEI訊息並不影響標準解碼程序。在HEVC標準中具有數個SEI訊息的一個原因係使得能夠在使用HEVC的不同系統中同等地解譯補充資料。使用HEVC之規範及系統可要求視訊編碼器產生某些SEI訊息,或可定義對特定類型之所接收SEI訊息的具體處置。以下表2列出在HEVC中指定之SEI訊息,且簡要地描述其用途。 Video encoder 20 may include one or more SEI NAL units in the access unit. In other words, any number of SEI NAL units can be associated with an access unit. In addition, each SEI NAL unit may contain one or more SEI messages. The HEVC standard describes the syntax and semantics of various types of SEI messages. However, the HEVC standard does not describe the handling of SEI messages because the SEI message does not affect the standard decoding procedure. One reason for having several SEI messages in the HEVC standard is to enable interpretation of supplemental material equally in different systems using HEVC. The HEVC specification and system may require the video encoder to generate certain SEI messages or may define specific handling of a particular type of received SEI message. Table 2 below lists the SEI messages specified in HEVC and briefly describes their use.

用於發信HRD參數以及選擇HRD參數及其他參數的現有技術存在若干問題或缺點。舉例而言,在HEVC工作草案8中,僅VPS中的HRD參數集合被選擇用於HRD操作。亦即,儘管HRD參數可提供於SPS中,但SPS中的HRD參數集合並不被HEVC視訊解碼器選擇用於HRD操作。視訊解碼器總是剖析並解碼位元流的VPS。因此,視訊解碼器總是剖析並解碼VPS之HRD參數集合。 The prior art for signaling HRD parameters and selecting HRD parameters and other parameters has several problems or disadvantages. For example, in HEVC Working Draft 8, only the set of HRD parameters in the VPS is selected for HRD operations. That is, although the HRD parameters can be provided in the SPS, the set of HRD parameters in the SPS is not selected by the HEVC video decoder for HRD operation. The video decoder always parses and decodes the VPS of the bitstream. Therefore, the video decoder always parses and decodes the set of HRD parameters of the VPS.

無論位元流是否包括非基底層NAL單元,此情形皆為真。舉例而言,僅寫碼於VPS中之hrd_parameters( )語法結構可被選擇用於HRD操作,且可能從不選擇SPS中可能存在之hrd_parameters( )語法結構。 此情形可要求對VPS之剖析及處置,即使在解碼並不含有大於0之nuh_reserved_zero_6bits的位元流(亦即,位元流僅含有HEVC之多視圖、3DV或SVC擴展中的基底層)時亦然。 This is true regardless of whether the bit stream includes non-base layer NAL units. For example, the hrd_parameters( ) syntax structure that only writes code in the VPS can be selected for HRD operations, and the hrd_parameters( ) syntax structure that may exist in the SPS may never be selected. This situation may require profiling and handling of the VPS, even if the decoding does not contain a bit stream of nuh_reserved_zero_6bits greater than 0 (ie, the bit stream contains only HEVC multiview, 3DV or SVC extension base layer) Of course.

因此,若位元流包括非基底層NAL單元,則剖析並處置SPS中的HRD參數的集合可係計算資源之浪費。此外,若HRD參數之集合存在於VPS中,則SPS中的HRD參數的集合可係浪費之位元。舉例而言,若hrd_parameters( )語法結構存在於SPS中,則語法結構之經寫碼位元可純粹係位元的浪費。 Thus, if the bitstream includes non-base layer NAL units, then parsing and handling the set of HRD parameters in the SPS can be a waste of computing resources. Furthermore, if a set of HRD parameters is present in the VPS, the set of HRD parameters in the SPS can be a waste of bits. For example, if the hrd_parameters( ) syntax structure exists in the SPS, the coded bits of the grammatical structure can be purely a waste of bits.

根據本發明之一或多項技術,視訊編碼器20可產生包括SPS之位元流,該SPS適用於圖像之序列。SPS包括HRD參數之集合。HRD參數之集合適用於位元流之具有與目標層識別符之集合匹配的層識別符之集合的每一操作點。因此,SPS中的HRD參數之集合不被浪費,而是可用於HRD操作。舉例而言,寫碼於SPS中之hrd_parameters( )語法結構所針對的操作點可被清楚地指定為(例如)在位元流中僅存在nuh_reserved_zero_6bits之一個值(亦即,多視圖、3DV或可調式視訊 寫碼擴展中之層ID)的該等操作點。 In accordance with one or more techniques of the present invention, video encoder 20 may generate a stream of bits comprising an SPS that is suitable for use in a sequence of images. The SPS includes a collection of HRD parameters. The set of HRD parameters applies to each operating point of the set of layer identifiers of the bitstream that match the set of target layer identifiers. Therefore, the set of HRD parameters in the SPS is not wasted, but can be used for HRD operations. For example, the operating point for the hrd_parameters( ) syntax structure written in the SPS can be clearly specified as, for example, only one value of nuh_reserved_zero_6bits in the bitstream (ie, multiview, 3DV, or Tuned video These operating points of the layer ID in the code extension.

舉例而言,諸如視訊編碼器20或視訊解碼器30的器件可自視訊參數集中之HRD參數的集合及SPS中的HRD參數的集合中選擇適用於特定操作點的HRD參數之集合。在此實例中,器件可至少部分基於適用於特定操作點之HRD參數的集合執行位元流一致性測試,該測試對與特定操作點相關聯之位元流子集是否與視訊寫碼標準一致進行測試。位元流一致性測試可驗證:操作點表示與諸如HEVC之視訊寫碼標準一致。 For example, a device such as video encoder 20 or video decoder 30 may select a set of HRD parameters suitable for a particular operating point from a set of HRD parameters in the video parameter set and a set of HRD parameters in the SPS. In this example, the device can perform a bitstream conformance test based at least in part on a set of HRD parameters applicable to a particular operating point, whether the subset of bitstreams associated with a particular operating point is consistent with a video writing standard carry out testing. The bitstream conformance test verifies that the operating point representation is consistent with a video writing standard such as HEVC.

在本發明中,操作點可由表示為OpLayerIdSet之nuh_reserved_zero_6bits值的集合及表示為OpTid的TemporalId值來識別。在OpTid及OpLayerIdSet作為輸入的情況下如HEVC工作草案8之子條款10.1中所指定而導出為子位元流提取程序之輸出的相關聯的位元流子集係可獨立解碼的。HEVC工作草案8之子條款10.1描述用於自位元流提取子位元流(亦即,操作點表示)的操作。具體而言,HEVC工作草案8之子條款10.1規定:藉由自位元流移除具有大於tIdTarget之時間識別符(例如,TemporalID)或並非targetDecLayerIdSet中之值的層識別符(例如,nuh_reserved_zero_6bits)的所有NAL單元來導出子位元流。tIdTarget及targetDecLayerIdSet係位元流提取程序的參數。 In the present invention, the operating point can be identified by a set of nuh_reserved_zero_6bits values represented as OpLayerIdSet and a TemporalId value represented as OpTid. In the case where OpTid and OpLayerIdSet are input as inputs, the associated subset of bitstreams derived as output of the sub-bitstream extraction procedure as specified in sub-clause 10.1 of HEVC Working Draft 8 can be independently decoded. Subclause 10.1 of HEVC Working Draft 8 describes an operation for extracting a sub-bitstream (i.e., an operand representation) from a bitstream. In particular, subclause 10.1 of HEVC Working Draft 8 provides that all of the layer identifiers (eg, nuh_reserved_zero_6bits) having a time identifier greater than tIdTarget (eg, TemporalID) or not a value in targetDecLayerIdSet are removed from the bitstream. The NAL unit is used to derive the sub-bit stream. tIdTarget and targetDecLayerIdSet are parameters of the bit stream extractor.

在用於發信HRD參數之現有技術的另一實例問題或缺點中,諸如視訊編碼器、視訊解碼器或另一類型之器件的器件可對操作點之操作點表示執行位元流一致性測試。如上文所提及,目標層識別符之集合及時間識別符可用以識別操作點。目標層識別符之集合可表示為「TargetDecLayerIdSet」。時間識別符可表示為「TargetDecHighestTid」。有問題地,HEVC工作草案8並不指定在執行位元流一致性測試時如何設定TargetDecLayerIdSet或TargetDecHighestTid。舉例而言,當為了位元流一致性測試調用解碼 程序時,語法元素之語義並未被清楚地指定,此係因為TargetDecLayerIdSet及TargetDecHighestTid的值未被恰當設定。 In another example problem or disadvantage of the prior art for signaling HRD parameters, a device such as a video encoder, video decoder or another type of device can perform bitstream conformance testing on an operating point representation of an operating point. . As mentioned above, the set of target layer identifiers and the time identifier can be used to identify the operating point. The set of target layer identifiers can be represented as "TargetDecLayerIdSet". The time identifier can be expressed as "TargetDecHighestTid". Problemly, HEVC Working Draft 8 does not specify how to set the TargetDecLayerIdSet or TargetDecHighestTid when performing a bitstream conformance test. For example, when calling decoding for bitstream conformance testing In the program, the semantics of the syntax elements are not clearly specified, because the values of TargetDecLayerIdSet and TargetDecHighestTid are not properly set.

本發明之一或多項技術指示在執行位元流一致性測試時如何設定TargetDecLayerIdSet及TargetDecHighestTid。舉例而言,位元流(或操作點表示)之一般解碼程序經修改,使得若在位元流一致性測試中解碼位元流(或操作點表示),則TargetDecLayerIdSet如HEVC標準之子條款C.1中所指定進行設定。類似地,位元流(或操作點表示)之一般解碼程序可經修改,使得若在位元流一致性測試中解碼位元流(或操作點表示),則TargetDecHighestTid如HEVC工作草案8之子條款C.1中所指定進行設定。換言之,器件可判定含有存在於位元流子集中之每一層識別符的特定操作點之目標層識別符集合,且該特定操作點之層識別符集合係存在於位元流中之層識別符的子集。此外,器件可判定特定操作點之等於存在於位元流子集中之最大時間識別符的目標時間識別符,且特定操作點之目標時間識別符小於或等於存在於位元流中的最大時間識別符。 One or more techniques of the present invention indicate how to set the TargetDecLayerIdSet and TargetDecHighestTid when performing a bitstream conformance test. For example, the general decoding procedure of the bitstream (or operand representation) is modified such that if the bitstream (or operand representation) is decoded in a bitstream conformance test, the TargetDecLayerIdSet is as subclause C of the HEVC standard. The settings specified in 1 are set. Similarly, the general decoding procedure for a bitstream (or operand representation) can be modified such that if a bitstream (or operand representation) is decoded in a bitstream conformance test, the TargetDecHighestTid is a subclause of HEVC Working Draft 8. Set as specified in C.1. In other words, the device can determine a target layer identifier set containing a specific operation point existing in each layer identifier of the bit stream subset, and the layer identifier set of the specific operation point is a layer identifier existing in the bit stream a subset of. In addition, the device can determine that the specific operating point is equal to the target time identifier of the largest time identifier present in the subset of bitstreams, and the target time identifier of the particular operating point is less than or equal to the maximum time identification present in the bitstream. symbol.

在HEVC工作草案8之子條款C.1中,TargetDecLayerIdSet被設定為targetOpLayerIdSet。targetOpLayerIdSet含有存在於受測操作點之操作點表示中之nuh_reserved_zero_6bits的值之集合。targetOpLayerIdSet係存在於受測位元流中之nuh_reserved_zero_6bits的值之子集。 In subclause C.1 of HEVC Working Draft 8, TargetDecLayerIdSet is set to targetOpLayerIdSet. The targetOpLayerIdSet contains a collection of values of nuh_reserved_zero_6bits that exist in the representation of the operating point of the operating point under test. The targetOpLayerIdSet is a subset of the values of nuh_reserved_zero_6bits present in the measured bitstream.

此外,變數TargetDecHighestTid識別待解碼之最高時間子層。時間子層係時間可調式位元流的時間可調式層,該時間可調式位元流由具有TemporalId之特定值的VCL NAL單元及相關聯的非VCL NAL單元組成。在HEVC標準之子條款C.1中,TargetDecHighestTid被設定為targetOpTid。targetOpTid等於存在於受測操作點之操作點表示中的最大temporal_id,且小於或等於存在於受測位元流中的最大 temporal_id。因此,當為了位元流一致性測試調用解碼程序時,TargetDecLayerIdSet及TargetDecHighestTid的值被設定為存在於子位元流中之nuh_reserved_zero_6bits值的集合及最大TemporalId值,該子位元流對應於用於特定位元流一致性測試之受測操作點。 In addition, the variable TargetDecHighestTid identifies the highest temporal sublayer to be decoded. The temporal sub-layer is a time-adjustable layer of a time-adjustable bitstream, the time-adjustable bitstream consisting of VCL NAL units with associated values of TemporalId and associated non-VCL NAL units. In subclause C.1 of the HEVC standard, TargetDecHighestTid is set to targetOpTid. targetOpTid is equal to the maximum temporal_id present in the operating point representation of the measured operating point and less than or equal to the maximum present in the measured bitstream Temporal_id. Therefore, when the decoding program is called for bit stream conformance testing, the values of TargetDecLayerIdSet and TargetDecHighestTid are set to the set of nuh_reserved_zero_6bits values present in the sub-bitstream and the maximum TemporalId value corresponding to the specific The measured operating point of the bitstream conformance test.

以此方式,器件(諸如視訊編碼器20、視訊解碼器30、額外器件21或另一器件)可根據本發明之一或多項技術執行解碼程序,作為執行位元流一致性測試的部分。執行解碼程序可包含執行位元流提取程序以自位元流提取由層識別符之目標集合及目標最高時間識別符定義之操作點的操作點表示。層識別符之目標集合(亦即,TargetDecLayerIdSet)含有存在於操作點表示中之層識別符語法元素(例如,nuh_reserved_zero_6bits語法元素)的值。層識別符之目標集合係位元流之層識別符語法元素值的子集。目標最高時間識別符(亦即,TargetDecHighestTid)等於存在於操作點表示中之最大時間識別符。目標最高時間識別符小於或等於存在於位元流中之最大時間識別符。執行解碼程序亦包含解碼操作點表示的NAL單元。 In this manner, a device, such as video encoder 20, video decoder 30, additional device 21, or another device, can perform the decoding process in accordance with one or more techniques of the present invention as part of performing bitstream conformance testing. Executing the decoding program can include performing a bitstream extraction program to extract an operand representation of the operating point defined by the target set of layer identifiers and the target highest time identifier from the bitstream. The target set of layer identifiers (ie, TargetDecLayerIdSet) contains the value of the layer identifier syntax element (eg, nuh_reserved_zero_6bits syntax element) present in the operation point representation. The target set of layer identifiers is a subset of the layer identifier syntax element values of the bit stream. The target highest time identifier (ie, TargetDecHighestTid) is equal to the maximum time identifier present in the operating point representation. The target highest time identifier is less than or equal to the maximum time identifier present in the bit stream. The execution of the decoding program also includes the NAL unit represented by the decoding operation point.

解碼程序並非總是作為執行位元流一致性測試的部分而執行。 確切而言,解碼程序可係用於解碼位元流之一般程序。當解碼程序並非作為位元流一致性測試之部分執行時,外部源可指定操作點的TargetDecLayerIdSet及TargetDecHighestTid。外部源可係位元流外之任何資訊源。舉例而言,CDN器件可基於特定視訊解碼器之組態而程式化地判定且指定TargetDecLayerIdSet及TargetDecHighestTid。執行解碼程序之器件可使用外部指定之TargetDecLayerIdSet及TargetDecHighestTid來自位元流提取操作點表示。執行解碼程序之器件可接著解碼所提取之操作點表示的NAL單元。 The decoding process is not always performed as part of performing a bitstream conformance test. Rather, the decoding program can be used in a general program for decoding bitstreams. When the decoder is not executed as part of the bitstream conformance test, the external source can specify the TargetDecLayerIdSet and TargetDecHighestTid of the operation point. An external source can be any source of information outside of the bit stream. For example, a CDN device can programmatically determine and specify a TargetDecLayerIdSet and a TargetDecHighestTid based on the configuration of a particular video decoder. The device performing the decoding process can extract the operating point representation from the bitstream using the externally specified TargetDecLayerIdSet and TargetDecHighestTid. The device performing the decoding process can then decode the NAL unit represented by the extracted operating point.

因此,當解碼程序並非作為位元流一致性測試之部分執行時,執行解碼程序之器件可自外部源接收層識別符之目標集合及目標最高 時間識別符。層識別符之目標集合含有存在於操作點表示中之層識別符語法元素的值。目標最高時間識別符等於存在於第二操作點表示中之最大時間識別符。此外,執行解碼程序之器件可執行位元流提取程序以自位元流提取操作點表示。執行解碼程序之器件可接著解碼操作點表示的NAL單元。 Therefore, when the decoding program is not executed as part of the bitstream conformance test, the device performing the decoding process can receive the target identifier and the highest target from the external source. Time identifier. The target set of layer identifiers contains the values of the layer identifier syntax elements that are present in the operation point representation. The target highest time identifier is equal to the maximum time identifier present in the second operating point representation. In addition, the device executable bitstream stream extractor executing the decoding process is represented by a bitstream extraction operation point. The device performing the decoding process can then decode the NAL unit represented by the operating point.

在其他個例中,外部源並不指定TargetDecLayerIdSet或TargetDecHighestTid。在此等個例中,解碼程序可對整個位元流執行。舉例而言,器件可執行位元流提取程序以自位元流提取操作點表示。在此實例中,0係存在於操作點表示中之層識別符語法元素(亦即,nuh_reserved_zero_6bits)的唯一值。此外,在此實例中,存在於位元流中之最大時間識別符等於存在於操作點表示中的最大時間識別符。在此實例中,執行解碼程序之器件可解碼操作點表示的NAL單元。 In other cases, the external source does not specify a TargetDecLayerIdSet or a TargetDecHighestTid. In such an example, the decoding program can execute on the entire bit stream. For example, the device executable bitstream stream extractor extracts an operand representation from a bitstream. In this example, 0 is the unique value of the layer identifier syntax element (ie, nuh_reserved_zero_6bits) present in the operation point representation. Moreover, in this example, the maximum time identifier present in the bitstream is equal to the maximum time identifier present in the operand representation. In this example, the device performing the decoding process can decode the NAL unit represented by the operating point.

如上文所指示,SPS可包括表示為sps_max_dec_pic_buffering[i]之語法元素的陣列,其中i在0至位元流中的時間層的最大數目的範圍內。當最高時間識別符(HighestTid)等於i時,sps_max_dec_pic_buffering[i]指示DPB的最大所要求大小。sps_max_dec_pic_buffering[i]指示依據圖像儲存緩衝器之單元的所要求大小。此外,SPS可包括由sps_max_num_reorder_pics[i]表示之語法元素的陣列,其中i在0至位元流中的時間層的最大數目的範圍內。sps_max_num_reorder_pics[i]指示在最高時間識別符(HighestTid)等於i時在解碼次序上先於任何圖像且在輸出次序上在該圖像之後的圖像之最大所允許數目。此外,HRD參數之集合可包括表示為cpb_cnt_minus1[i]之語法元素的陣列,其中i在0至位元流中的時間層的最大數目的範圍內。cpb_cnt_minus1[i]指定在最高時間識別符(HighestTid)等於i時經寫碼視訊序列之位元流中之替代性CPB規範的 數目。 As indicated above, the SPS may include an array of syntax elements represented as sps_max_dec_pic_buffering[i], where i is in the range of the maximum number of temporal layers in the 0-bit stream. When the highest time identifier (HighestTid) is equal to i , sps_max_dec_pic_buffering[i] indicates the maximum required size of the DPB. Sps_max_dec_pic_buffering[i] indicates the required size of the unit according to the image storage buffer. Furthermore, the SPS may comprise an array of syntax elements represented by sps_max_num_reorder_pics[i], where i is in the range of the maximum number of time layers in the 0-bit stream. Sps_max_num_reorder_pics[i] indicates the maximum allowable number of images preceding the image in the decoding order before the highest time identifier (HighestTid) is equal to i and in the output order. Furthermore, the set of HRD parameters may include an array of syntax elements denoted cpb_cnt_minus1[i], where i is in the range of the maximum number of time layers in the 0-bit stream. Cpb_cnt_minus1[i] specifies the number of alternative CPB specifications in the bitstream of the coded video sequence when the highest time identifier (HighestTid) is equal to i.

因為HEVC工作草案8並未指定最高時間識別符(HighestTid)的意義(HEVC工作草案8),所以在HRD操作、位元流一致性操作及級別限制中未恰當選擇sps_max_dec_pic_buffering[i]、sps_max_num_reorder_pics[i]及cpb_cnt_minus1[i]。換言之,並未恰當選擇HRD操作、位元流一致性要求及級別限制中的參數sps_max_num_reorder_pics[i]、sps_max_dec_pic_buffering[i]及cpb_cnt_minus1[i]。 Since HEVC Working Draft 8 does not specify the meaning of the HighestTid (HEVC Working Draft 8), sps_max_dec_pic_buffering[i], sps_max_num_reorder_pics[i] are not properly selected in HRD operations, bitstream consistency operations, and level restrictions. ] and cpb_cnt_minus1[i]. In other words, the parameters sps_max_num_reorder_pics[i], sps_max_dec_pic_buffering[i], and cpb_cnt_minus1[i] in the HRD operation, the bit stream consistency requirement, and the level limit are not properly selected.

根據本發明之一或多項技術,sps_max_dec_pic_buffering[i]經定義,使得在TargetDecHighestTid等於i時sps_max_dec_pic_buffering[i]指示DPB的最大所要求大小。以上文所描述之方式來判定TargetDecHighestTid。此情形可與未定義HighestTid的HEVC工作草案8形成對比。sps_max_dec_pic_buffering[i]之值應係在0至MaxDpbSize(如在HEVC工作草案8之子條款A.4中所指定)之範圍內(包括0及MaxDpbSize)。當i大於0時,sps_max_dec_pic_buffering[i]將等於或大於sps_max_dec_pic_buffering[i-1]。針對i之每一值,sps_max_dec_pic_buffering[i]之值將小於或等於vps_max_dec_pic_buffering[i]。 In accordance with one or more techniques of the present invention, sps_max_dec_pic_buffering[i] is defined such that sps_max_dec_pic_buffering[i] indicates the maximum required size of the DPB when TargetDecHighestTid is equal to i. The TargetDecHighestTid is determined in the manner described above. This situation can be contrasted with HEVC Working Draft 8 which does not define HighestTid. The value of sps_max_dec_pic_buffering[i] shall be in the range of 0 to MaxDpbSize (as specified in subclause A.4 of HEVC Working Draft 8) (including 0 and MaxDpbSize). When i is greater than 0, sps_max_dec_pic_buffering[i] will be equal to or greater than sps_max_dec_pic_buffering[i-1]. For each value of i, the value of sps_max_dec_pic_buffering[i] will be less than or equal to vps_max_dec_pic_buffering[i].

類似地,根據本發明之一或多項技術,sps_max_num_reorder_pics[i]經定義,使得在TargetDecHighestTid等於i時,sps_max_num_reorder_pics[i]指示在解碼次序上先於任何圖像且在輸出次序上在該圖像之後的圖像的最大所允許數目。TargetDecHighestTid係以上文所描述之方式來判定。sps_max_num_reorder_pics[i]之值應係在0至sps_max_dec_pic_buffering[i]的範圍內(包括0及sps_max_dec_pic_buffering[i])。當i大於0時,sps_max_num_reorder_pics[i]將等於或大於sps_max_num_reorder_pics[i- 1]。針對i之每一值,sps_max_num_reorder_pics[i]之值將小於或等於vps_max_num_reorder_pics[i]。 Similarly, according to one or more techniques of the present invention, sps_max_num_reorder_pics[i] is defined such that when TargetDecHighestTid is equal to i, sps_max_num_reorder_pics[i] indicates that any image is preceded in decoding order and after the image in output order The maximum allowed number of images. TargetDecHighestTid is determined in the manner described above. The value of sps_max_num_reorder_pics[i] should be in the range of 0 to sps_max_dec_pic_buffering[i] (including 0 and sps_max_dec_pic_buffering[i]). When i is greater than 0, sps_max_num_reorder_pics[i] will be equal to or greater than sps_max_num_reorder_pics[i- 1]. For each value of i, the value of sps_max_num_reorder_pics[i] will be less than or equal to vps_max_num_reorder_pics[i].

此外,根據本發明之一或多項技術,cpb_cnt_minus1[i]可指定在TargetDecHighestTid等於i時經寫碼視訊序列之位元流中的替代性CPB規範的數目,其中i在0至位元流中的時間層之最大數目的範圍內。以上文所描述之方式來判定TargetDecHighestTid。cpb_cnt_minus1[i]之值係在0至31的範圍內(包括0及31)。當low_delay_hrd_flag[i]等於1時,cpb_cnt_minus1[i]等於0。當cpb_cnt_minus1[i]不存在時,cpb_cnt_minus1[i]被推斷為等於0。 Moreover, in accordance with one or more techniques of the present invention, cpb_cnt_minus1[i] may specify the number of alternative CPB specifications in the bitstream of the coded video sequence when TargetDecHighestTid is equal to i, where i is in the 0-bit stream Within the range of the maximum number of time layers. The TargetDecHighestTid is determined in the manner described above. The value of cpb_cnt_minus1[i] is in the range of 0 to 31 (including 0 and 31). When low_delay_hrd_flag[i] is equal to 1, cpb_cnt_minus1[i] is equal to zero. When cpb_cnt_minus1[i] does not exist, cpb_cnt_minus1[i] is inferred to be equal to zero.

因此,根據本發明之一或多項技術,器件可基於最高時間識別符判定來自語法元素之陣列中的特定語法元素。最高時間識別符經定義,使得最高時間識別符總是識別待解碼之最高時間層。因此,HRD操作、位元流一致性要求及級別限制中之sps_max_num_reorder_pics[i]、sps_max_dec_pic_buffering[i]及cpb_cnt_minus1[i]被始終如一地選擇,其中i等於TargetDecHighestTid之清楚指定的值。 Thus, in accordance with one or more techniques of the present invention, a device can determine a particular syntax element from an array of syntax elements based on a highest time identifier. The highest time identifier is defined such that the highest time identifier always identifies the highest time layer to be decoded. Therefore, sps_max_num_reorder_pics[i], sps_max_dec_pic_buffering[i], and cpb_cnt_minus1[i] in the HRD operation, the bit stream consistency requirement, and the level limit are consistently selected, where i is equal to the clearly specified value of TargetDecHighestTid.

以此方式,器件(此視訊編碼器20、視訊解碼器30、額外器件21或另一器件)可執行HRD操作以判定位元流與視訊寫碼標準之一致性或判定視訊解碼器與視訊寫碼標準的一致性。作為執行HRD操作之部分,器件可判定與位元流之所選擇操作點相關聯之位元流子集的最高時間識別符。此外,器件可基於最高時間識別符判定來自語法元素之陣列(例如,sps_max_num_reorder_pics[i]、sps_max_dec_pic_buffering[i]或cpb_cnt_minus1[i])的特定語法元素。此外,器件可在HRD操作中使用特定語法元素。 In this manner, the device (the video encoder 20, the video decoder 30, the additional device 21, or another device) can perform HRD operations to determine the consistency of the bitstream with the video write standard or to determine the video decoder and video write. Consistency of code standards. As part of performing the HRD operation, the device can determine the highest time identifier of the subset of bitstreams associated with the selected operating point of the bitstream. In addition, the device may determine a particular syntax element from an array of syntax elements (eg, sps_max_num_reorder_pics[i], sps_max_dec_pic_buffering[i], or cpb_cnt_minus1[i]) based on the highest temporal identifier. In addition, the device can use specific syntax elements in HRD operations.

此外,在HEVC工作草案8中,VPS中的hrd_parameters( )語法結構中之每一者可係與operation_point_layer_ids( )語法結構相關聯,基 於該operation_point_layer_ids( )語法結構選擇hrd_parameters( )語法結構以用於HRD操作中。對應於每一所選擇hrd_parameters( )語法結構,在HRD操作中亦可需要緩衝週期SEI訊息與圖像時序SEI訊息的集合。然而,不存在使緩衝週期SEI訊息或圖像時序SEI訊息關聯至hrd_parameters( )語法結構的任何方式,其中該hrd_parameters( )語法結構的相關聯之operation_point_layer_ids( )語法結構包括nuh_reserved_zero_6bits的多個值(亦即,HEVC之多視圖、3DV或可調式視訊寫碼擴展中的多個層ID)。 Furthermore, in HEVC Working Draft 8, each of the hrd_parameters( ) syntax structures in the VPS can be associated with the operation_point_layer_ids( ) syntax structure. The hrd_parameters( ) syntax structure is selected for the operation_point_layer_ids( ) syntax structure for use in HRD operations. Corresponding to each selected hrd_parameters( ) syntax structure, a set of buffering period SEI messages and image timing SEI messages may also be required in the HRD operation. However, there is no way to associate a buffering period SEI message or an image timing SEI message to the hrd_parameters( ) syntax structure, where the associated operation_point_layer_ids( ) syntax structure of the hrd_parameters( ) syntax structure includes multiple values of nuh_reserved_zero_6bits (also That is, multiple views of HEVC, 3DV or multiple layer IDs in an adjustable video write extension).

對此問題之解決方案可係應用如H.264/AVC之附錄H中指定之多視圖寫碼可調式巢套SEI訊息或類似者。然而,多視圖寫碼可調式巢套SEI訊息或類似SEI訊息可具有以下不利之處。首先,由於H.264/AVC中之SEI NAL單元僅具有一位元組NAL單元標頭,因此不可能將攜載於HEVC SEI NAL單元之NAL單元標頭中之nuh_reserved_zero_6bits及temporal_id_plus1中的資訊用於緩衝週期或圖像時序SEI訊息與操作點之關聯。其次,每一巢套SEI訊息可僅與一個操作點相關聯。 The solution to this problem may be to apply a multi-view code-adjustable nested SEI message or the like as specified in Appendix H of H.264/AVC. However, multi-view code-encoded nested SEI messages or similar SEI messages can have the following disadvantages. First, since the SEI NAL unit in H.264/AVC has only one tuple NAL unit header, it is impossible to use the information in nuh_reserved_zero_6bits and temporal_id_plus1 carried in the NAL unit header of the HEVC SEI NAL unit. The buffer period or image timing SEI message is associated with the operating point. Second, each nested SEI message can be associated with only one operating point.

本發明之一或多項技術可經由可攜載於緩衝週期SEI訊息、圖像時序SEI訊息或子圖像時序SEI訊息中的applicable_operation_points( )語法結構而提供清楚地指定緩衝週期SEI訊息、圖像時序SEI訊息或子圖像時序SEI訊息應用至之操作點的機制。該機制可允許使用攜載於SEL NAL單元之NAL單元標頭中之語法元素nuh_reserved_zero_6bits及temporal_id_plus1中的資訊,且可允許多個操作點共用在同一緩衝週期、圖像時序或子圖像時序SEI訊息中傳遞之資訊。 One or more techniques of the present invention can provide a clear designation of a buffering period SEI message, image timing, via an applicable_operation_points() syntax structure that can be carried in a buffering period SEI message, an image timing SEI message, or a sub-picture timing SEI message. The mechanism by which the SEI message or sub-picture timing SEI message is applied to the operating point. This mechanism may allow the use of information in the syntax elements nuh_reserved_zero_6bits and temporal_id_plus1 carried in the NAL unit header of the SEL NAL unit, and may allow multiple operating points to share SEI messages in the same buffer period, picture timing or sub-picture timing. Information passed in.

圖2為說明可實施本發明之技術之實例視訊編碼器20的方塊圖。為了解釋之目的而提供圖2,且其不應被視為限制如在本發明中廣泛 例證且描述之技術。為了解釋,本發明在HEVC寫碼之內容脈絡中描述視訊編碼器20。然而,本發明之技術可適用於其他寫碼標準或方法。 2 is a block diagram illustrating an example video encoder 20 that may implement the techniques of the present invention. Figure 2 is provided for purposes of explanation and should not be construed as limiting as broadly as in the present invention The technique is illustrated and described. For purposes of explanation, the present invention describes video encoder 20 in the context of the HEVC code. However, the techniques of the present invention are applicable to other writing standards or methods.

在圖2之實例中,視訊編碼器20包括預測處理單元100、殘餘產生單元102、變換處理單元104、量化單元106、反量化單元108、反變換處理單元110、重建構單元112、濾波單元114、經解碼圖像緩衝器116及熵編碼單元118。預測處理單元100包括框間預測處理單元120及框內預測處理單元126。框間預測處理單元120包括運動估計單元122及運動補償單元124。在其他實例中,視訊編碼器20可包括較多、較少或不同功能組件。 In the example of FIG. 2, the video encoder 20 includes a prediction processing unit 100, a residual generation unit 102, a transform processing unit 104, a quantization unit 106, an inverse quantization unit 108, an inverse transform processing unit 110, a reconstruction unit 112, and a filtering unit 114. The decoded image buffer 116 and the entropy encoding unit 118. The prediction processing unit 100 includes an inter-frame prediction processing unit 120 and an in-frame prediction processing unit 126. The inter-frame prediction processing unit 120 includes a motion estimation unit 122 and a motion compensation unit 124. In other examples, video encoder 20 may include more, fewer, or different functional components.

視訊編碼器20可接收視訊資料。視訊編碼器20可編碼視訊資料之圖像之圖塊中的每一CTU。CTU中之每一者可與大小相等之明度寫碼樹型區塊(CTB)及圖像的對應CTB相關聯。作為編碼CTU的部分,預測處理單元100可執行四分樹分割以將CTU之CTB劃分成逐漸變小之區塊。較小區塊可係CU之寫碼區塊。舉例而言,預測處理單元100可將與CTU相關聯之CTB分割成四個大小相等的子區塊,將該等子區塊中之一或多者分割成四個大小相等之子子區塊,等等。 Video encoder 20 can receive video material. Video encoder 20 may encode each CTU in the tile of the image of the video material. Each of the CTUs can be associated with a similarly sized luma code tree block (CTB) and a corresponding CTB of the image. As part of encoding the CTU, prediction processing unit 100 may perform quadtree partitioning to divide the CTB of the CTU into progressively smaller blocks. The smaller block can be the code block of the CU. For example, the prediction processing unit 100 may divide the CTB associated with the CTU into four equal-sized sub-blocks, and divide one or more of the sub-blocks into four equal-sized sub-blocks, and many more.

視訊編碼器20可編碼CTU之CU以產生CU之經編碼表示(亦即,經寫碼CU)。作為編碼CU之部分,預測處理單元100可在CU之一或多個PU之間分割與CU相關聯的寫碼區塊。如此,每一PU可與明度預測區塊及對應色度預測區塊相關聯。視訊編碼器20及視訊解碼器30可支援具有各種大小的PU。CU之大小可指代CU之明度寫碼區塊的大小,且PU之大小可指代PU之明度預測區塊的大小。假定特定CU之大小係2N×2N,則視訊編碼器20及視訊解碼器30可支援用於框內預測之2N×2N或N×N的PU大小,及用於框間預測之2N×2N、2N×N、N×2N、N×N或類似大小的對稱PU大小。視訊編碼器20及視訊解碼器30亦可 支援不對稱分割以獲得用於框間預測之2N×nU、2N×nD、nL×2N及nR×2N之PU大小。 Video encoder 20 may encode the CU of the CTU to produce an encoded representation of the CU (ie, the coded CU). As part of encoding the CU, prediction processing unit 100 may partition the write code block associated with the CU between one or more of the CUs. As such, each PU can be associated with a luma prediction block and a corresponding chroma prediction block. Video encoder 20 and video decoder 30 can support PUs of various sizes. The size of the CU may refer to the size of the CU's luma write block, and the size of the PU may refer to the size of the PU's luma prediction block. Assuming that the size of a particular CU is 2N×2N, the video encoder 20 and the video decoder 30 can support a 2N×2N or N×N PU size for intra-frame prediction, and 2N×2N for inter-frame prediction. 2N×N, N×2N, N×N or a symmetric PU size of similar size. Video encoder 20 and video decoder 30 can also Asymmetric splitting is supported to obtain PU sizes of 2N x nU, 2N x nD, nL x 2N, and nR x 2N for inter-frame prediction.

框間預測處理單元120可藉由對CU之每一PU執行框間預測而產生PU的預測性資料。PU之預測性資料可包括PU之預測性區塊及用於PU之運動資訊。框間預測處理單元120可視PU在I圖塊、P圖塊抑或B圖塊中而對CU之PU執行不同操作。在I圖塊中,所有PU經框內預測。因此,若PU係在I圖塊中,則框間預測處理單元120並不對PU執行框間預測。因此,對於以I模式編碼之區塊,使用根據同一圖框內之先前編碼的相鄰區塊的空間預測來形成預測性區塊。 The inter-frame prediction processing unit 120 may generate predictive data for the PU by performing inter-frame prediction on each PU of the CU. The predictive data of the PU may include predictive blocks of the PU and motion information for the PU. The inter-frame prediction processing unit 120 may perform different operations on the PU of the CU by the PU in the I tile, the P tile, or the B tile. In the I tile, all PUs are predicted in-frame. Therefore, if the PU is in the I tile, the inter-frame prediction processing unit 120 does not perform inter-frame prediction on the PU. Thus, for blocks coded in I mode, predictive blocks are formed using spatial prediction from previously coded neighboring blocks within the same frame.

若PU係在P圖塊中,則運動估計單元122可在參考圖像之清單(例如,「RefPicList0」)中搜尋參考圖像以找到用於PU之參考區。用於PU之參考區可係參考圖像內的一區,該區含有最緊密地對應於PU之預測區塊的樣本區塊。運動估計單元122可產生參考索引,該參考索引指示含有用於PU之參考區的參考圖像在RefPicList0中的位置。此外,運動估計單元122可產生運動向量,該運動向量指示PU之預測區塊與關聯於參考區之參考位置之間的空間位移。舉例而言,運動向量可係二維向量,其提供自當前圖像中之座標至參考圖像中之座標的偏移。運動估計單元122可輸出參考索引及運動向量作為PU的運動資訊。運動補償單元124可基於由PU之運動向量指示的參考位置處之實際或內插樣本來產生PU的預測性區塊。 If the PU is in a P tile, motion estimation unit 122 may search the reference image in a list of reference images (eg, "RefPicListO") to find a reference region for the PU. The reference region for the PU may be a region within the reference picture that contains the sample block that most closely corresponds to the predicted block of the PU. Motion estimation unit 122 may generate a reference index indicating the location of the reference picture containing the reference region for the PU in RefPicListO. Moreover, motion estimation unit 122 may generate a motion vector that indicates a spatial displacement between the predicted block of the PU and a reference location associated with the reference region. For example, the motion vector can be a two-dimensional vector that provides an offset from the coordinates in the current image to the coordinates in the reference image. The motion estimation unit 122 may output a reference index and a motion vector as motion information of the PU. Motion compensation unit 124 may generate a predictive block of the PU based on actual or interpolated samples at the reference location indicated by the motion vector of the PU.

若PU係在B圖塊中,則運動估計單元122可執行對於PU之單向預測(uni-prediction)或雙向預測(bi-prediction)。為了執行對於PU之單向預測,運動估計單元122可搜尋RefPicList0或第二參考圖像清單(「RefPicList1」)的參考圖像以找到用於PU之參考區。運動估計單元122可輸出以下各者作為PU之運動資訊:參考索引,其指示含有參考區的參考圖像在RefPicList0或RefPicList1中的位置;運動向量,其指 示PU之樣本區塊與關聯於參考區之參考位置之間的空間位移;及一或多個預測方向指示符,其指示參考圖像係在RefPicList0抑或RefPicList1中。運動補償單元124可至少部分基於由PU之運動向量指示的參考區處之實際或內插樣本來產生PU的預測性區塊。 If the PU is in a B tile, motion estimation unit 122 may perform uni-prediction or bi-prediction for the PU. To perform unidirectional prediction for the PU, motion estimation unit 122 may search for a reference picture of RefPicListO or a second reference picture list ("RefPicListl") to find a reference area for the PU. The motion estimation unit 122 may output the following as the motion information of the PU: a reference index indicating the position of the reference image containing the reference region in RefPicList0 or RefPicList1; the motion vector, which refers to a spatial displacement between a sample block of the PU and a reference location associated with the reference zone; and one or more prediction direction indicators indicating that the reference image is in RefPicList0 or RefPicList1. Motion compensation unit 124 may generate a predictive block of the PU based at least in part on the actual or interpolated samples at the reference region indicated by the motion vector of the PU.

為了執行對於PU之雙向框間預測,運動估計單元122可搜尋RefPicList0中的參考圖像以找到用於PU之參考區,且亦可搜尋RefPicList1中的參考圖像以找到用於PU之另一參考區。運動估計單元122可產生參考索引,該等參考索引指示含有參考區的參考圖像在RefPicList0及RefPicList1中的位置。此外,運動估計單元122可產生運動向量,其指示與參考區相關聯之參考位置與PU之樣本區塊之間的空間位移。PU之運動資訊可包括PU的參考索引及運動向量。運動補償單元124可至少部分基於由PU之運動向量指示的參考區處之實際或內插樣本來產生PU的預測性區塊。 To perform bi-directional inter-frame prediction for the PU, motion estimation unit 122 may search for a reference picture in RefPicListO to find a reference region for the PU, and may also search for a reference picture in RefPicListl to find another reference for the PU. Area. Motion estimation unit 122 may generate reference indices that indicate the locations of reference pictures containing reference regions in RefPicListO and RefPicListl. Moreover, motion estimation unit 122 may generate a motion vector that indicates a spatial displacement between a reference location associated with the reference region and a sample block of the PU. The motion information of the PU may include a reference index of the PU and a motion vector. Motion compensation unit 124 may generate a predictive block of the PU based at least in part on the actual or interpolated samples at the reference region indicated by the motion vector of the PU.

框內預測處理單元126可藉由對PU執行框內預測而產生用於PU的預測性資料。用於PU之預測性資料可包括PU之預測性區塊及各種語法元素。框內預測處理單元126可對I圖塊、P圖塊及B圖塊中之PU執行框內預測。 In-frame prediction processing unit 126 may generate predictive material for the PU by performing in-frame prediction on the PU. Predictive data for the PU may include predictive blocks of the PU and various syntax elements. In-frame prediction processing unit 126 may perform intra-frame prediction on PUs in I-tiles, P-tiles, and B-tiles.

為了對PU執行框內預測,框內預測處理單元126可使用多個框內預測模式來產生用於PU之預測性資料的多個集合。為了使用框內預測模式以產生用於PU之預測性資料的集合,框內預測處理單元126可在與框內預測模式相關聯之方向上越過PU之樣本區塊擴展來自相鄰PU的樣本區塊的樣本。假定針對PU、CU及CTU之左至右、頂部至底部之編碼次序,則相鄰PU可係在該PU之上方、右上方、左上方或左側。框內預測處理單元126可使用各種數目個框內預測模式,例如,33個定向框內預測模式。在一些實例中,框內預測模式之數目可取決於與PU相關聯之區的大小。 In order to perform intra-frame prediction on a PU, in-frame prediction processing unit 126 may use multiple in-frame prediction modes to generate multiple sets of predictive material for the PU. In order to use the intra-frame prediction mode to generate a set of predictive data for the PU, the in-frame prediction processing unit 126 may extend the sample region from the neighboring PU across the sample block of the PU in a direction associated with the in-frame prediction mode. A sample of the block. Assuming that the coding order is left to right and top to bottom for PU, CU, and CTU, the adjacent PUs may be above, to the upper right, to the upper left, or to the left of the PU. In-frame prediction processing unit 126 may use various numbers of in-frame prediction modes, for example, 33 directed in-frame prediction modes. In some examples, the number of in-frame prediction modes may depend on the size of the zone associated with the PU.

預測處理單元100可自由框間預測處理單元120產生之用於PU之預測性資料或由框內預測處理單元126產生的用於PU之預測性資料中選擇用於CU之PU的預測性資料。在一些實例中,預測處理單元100基於預測性資料之集合的速率/失真量度來選擇用於CU之PU的預測性資料。本文中,所選擇之預測性資料的預測性區塊可被稱作所選擇預測性區塊。 The prediction processing unit 100 may select the predictive data for the PU generated by the inter-frame prediction processing unit 120 or the predictive data for the PU of the CU from the predictive data for the PU generated by the in-frame prediction processing unit 126. In some examples, prediction processing unit 100 selects predictive data for the PU of the CU based on the rate/distortion metric of the set of predictive data. Herein, the predictive block of the selected predictive data may be referred to as the selected predictive block.

殘餘產生單元102可基於CU之明度、Cb及Cr寫碼區塊以及CU之PU的所選擇之預測性明度、Cb及Cr區塊而產生CU的明度、Cb及Cr殘餘區塊。舉例而言,殘餘產生單元102可產生CU之殘餘區塊,使得殘餘區塊中之每一樣本具有一值,該值等於CU之寫碼區塊中之樣本與CU之PU之對應所選擇預測性區塊中的對應樣本之間的差。 The residual generation unit 102 may generate the luma, Cb, and Cr residual blocks of the CU based on the luma of the CU, the Cb and Cr write code blocks, and the selected predictive luma, Cb, and Cr blocks of the PU of the CU. For example, the residual generation unit 102 may generate a residual block of the CU such that each sample in the residual block has a value equal to the selected prediction of the sample in the code block of the CU and the PU of the CU. The difference between the corresponding samples in the sex block.

變換處理單元104可執行四分樹分割以將與CU相關聯之殘餘區塊分割成與CU之TU相關聯的變換區塊。因此,TU可與一明度變換區塊及兩個色度變換區塊相關聯。CU之TU的明度及色度變換區塊之大小及位置可能或可能並非基於CU之PU的預測區塊的大小及位置。稱作「殘餘四分樹」(RQT)之四分樹結構可包括與區中之每一者相關聯的節點。CU之TU可對應於RQT之葉節點。 Transform processing unit 104 may perform quadtree partitioning to partition the residual block associated with the CU into transform blocks associated with the TUs of the CU. Thus, a TU can be associated with a luma transform block and two chroma transform blocks. The size and location of the luma and chroma transform blocks of the TU of the CU may or may not be the size and location of the prediction block based on the PU of the CU. A quadtree structure called "Residual Quadtree" (RQT) may include nodes associated with each of the zones. The TU of the CU may correspond to the leaf node of the RQT.

變換處理單元104可藉由將一或多個變換應用至TU之變換區塊而產生針對CU之每一TU的變換係數區塊。變換處理單元104可將各種變換應用至與TU相關聯的變換區塊。舉例而言,變換處理單元104可將離散餘弦變換(DCT)、方向變換或概念上類似之變換應用至變換區塊。在一些實例中,變換處理單元104並不將變換應用至變換區塊。在此等實例中,變換區塊可被當作變換係數區塊。 Transform processing unit 104 may generate transform coefficient blocks for each TU of the CU by applying one or more transforms to the transform blocks of the TU. Transform processing unit 104 may apply various transforms to the transform blocks associated with the TUs. For example, transform processing unit 104 may apply a discrete cosine transform (DCT), a direction transform, or a conceptually similar transform to the transform block. In some examples, transform processing unit 104 does not apply the transform to the transform block. In such examples, the transform block can be treated as a transform coefficient block.

量化單元106可使係數區塊中之變換係數量化。該量化程序可減少與該等變換係數中之一些或全部相關聯的位元深度。舉例而言,在量化期間n位元變換係數可被降值捨位至m位元變換係數,其中n大於 m。量化單元106可基於與CU相關聯之量化參數(QP)值來量化與CU之TU相關聯的係數區塊。視訊編碼器20可藉由調整與CU相關聯之QP值而調整應用至與CU相關聯之係數區塊的量化程度。量化可引入資訊之損失,因此經量化之變換係數相較於原始變換係數可具有較低精度。 Quantization unit 106 may quantize the transform coefficients in the coefficient block. The quantization procedure can reduce the bit depth associated with some or all of the transform coefficients. For example, n- bit transform coefficients can be truncated to m- bit transform coefficients during quantization, where n is greater than m . Quantization unit 106 may quantize the coefficient block associated with the TU of the CU based on the quantization parameter (QP) value associated with the CU. Video encoder 20 may adjust the degree of quantization applied to the coefficient blocks associated with the CU by adjusting the QP value associated with the CU. Quantization can introduce loss of information, so quantized transform coefficients can have lower precision than the original transform coefficients.

反量化單元108及反變換處理單元110可分別將反量化及反變換應用至係數區塊以自係數區塊重建構殘餘區塊。重建構單元112可將經重建構之殘餘區塊加至來自由預測處理單元100產生之一或多個預測性區塊的對應樣本,以產生與TU相關聯的經重建構變換區塊。藉由以此方式重建構針對CU之每一TU的變換區塊,視訊編碼器20可重建構CU的寫碼區塊。 Inverse quantization unit 108 and inverse transform processing unit 110 may apply inverse quantization and inverse transform to the coefficient block, respectively, to reconstruct the residual block from the coefficient block. Reconstruction unit 112 may add the reconstructed residual block to a corresponding sample from one or more predictive blocks generated by prediction processing unit 100 to generate a reconstructed transform block associated with the TU. By reconstructing the transform block for each TU of the CU in this manner, video encoder 20 can reconstruct the code block of the CU.

濾波單元114可執行一或多個解區塊操作以減少與CU相關聯之寫碼區塊中的方塊效應假影。在濾波單元114對經重建構之寫碼區塊執行一或多個解區塊操作之後,經解碼圖像緩衝器116可儲存經重建構之寫碼區塊。框間預測單元120可使用含有經重建構之寫碼區塊的參考圖像以執行對其他圖像之PU的框間預測。此外,框內預測處理單元126可使用經解碼圖像緩衝器116中之經重建構寫碼區塊以對與CU在相同之圖像中的其他PU執行框內預測。 Filtering unit 114 may perform one or more deblocking operations to reduce blockiness artifacts in the code blocks associated with the CU. After the filtering unit 114 performs one or more deblocking operations on the reconstructed code block, the decoded image buffer 116 may store the reconstructed code block. Inter-frame prediction unit 120 may use a reference picture containing reconstructed code blocks to perform inter-frame prediction of PUs of other pictures. Moreover, in-frame prediction processing unit 126 can use the reconstructed composing code blocks in decoded image buffer 116 to perform intra-frame prediction on other PUs in the same image as the CU.

熵編碼單元118可自視訊編碼器20之其他功能組件接收資料。舉例而言,熵編碼單元118可自量化單元106接收係數區塊,且可自預測處理單元100接收語法元素。熵編碼單元118可對資料執行一或多個熵編碼操作以產生經熵編碼之資料。舉例而言,熵編碼單元118可對資料執行上下文自適應性可變長度寫碼(CAVLC)操作、CABAC操作、變數至變數(V2V)長度寫碼操作、基於語法之上下文自適應性二進位算術寫碼(SBAC)操作、機率區間分割熵(PIPE)寫碼操作、指數Golomb編碼操作或另一類型之熵編碼操作。視訊編碼器20可輸出一 包括由熵編碼單元118產生之熵編碼資料的位元流。舉例而言,位元流可包括表示CU之RQT的資料。 Entropy encoding unit 118 may receive data from other functional components of video encoder 20. For example, entropy encoding unit 118 may receive coefficient blocks from quantization unit 106 and may receive syntax elements from prediction processing unit 100. Entropy encoding unit 118 may perform one or more entropy encoding operations on the data to produce entropy encoded material. For example, entropy encoding unit 118 may perform context adaptive variable length write code (CAVLC) operations, CABAC operations, variable-to-variable (V2V) length write code operations, grammar-based context adaptive binary arithmetic on data. Write code (SBAC) operation, probability interval partition entropy (PIPE) write code operation, exponential Golomb coding operation or another type of entropy coding operation. Video encoder 20 can output one A bit stream including the entropy encoded data generated by the entropy encoding unit 118 is included. For example, the bitstream may include data representing the RQT of the CU.

如本發明中其他地方所指示,視訊編碼器20可在位元流中發信VPS。在HEVC工作草案8中,參考並未定義之值HighestTid來定義VPS之特定語法元素(亦即,vps_max_dec_pic_buffering[i]、vps_max_num_reorder_pics[i]及vps_max_latency_increase[i])。根據本發明之一或多項技術,VPS之此等語法元素可參考值TargetDecHighestTid來定義,該值TargetDecHighestTid經定義,使得TargetDecHighestTid係如本發明中其他地方所描述。以下表3說明根據本發明之一或多項技術的VPS之語法。 Video encoder 20 may signal the VPS in the bitstream as indicated elsewhere in the present invention. In HEVC Working Draft 8, the specific syntax elements of the VPS (ie, vps_max_dec_pic_buffering[i], vps_max_num_reorder_pics[i], and vps_max_latency_increase[i]) are defined with reference to the undefined value HighestTid. In accordance with one or more techniques of the present invention, such syntax elements of the VPS may be defined with reference to a value TargetDecHighestTid, which is defined such that the TargetDecHighestTid is as described elsewhere in the present invention. Table 3 below illustrates the syntax of a VPS in accordance with one or more techniques of the present invention.

表3及貫穿本發明的其他語法表或語義描述的斜體部分可指示與HEVC工作草案8的差異。根據本發明之一或多項技術,VPS之以下語 法元素的語義可如下作出改變。VPS之其他語法元素的語義可保持與HEVC工作草案8中之語義相同。 Table 3 and the italicized portions of other grammar tables or semantic descriptions throughout the present invention may indicate differences from HEVC Working Draft 8. According to one or more techniques of the present invention, the following words of VPS The semantics of the law element can be changed as follows. The semantics of the other syntax elements of the VPS can remain the same as in HEVC Working Draft 8.

vps_max_dec_pic_buffering[i]指定在TargetDecHighestTid等於i時經解碼圖像緩衝器的以圖像儲存緩衝器為單位的所要求大小。vps_max_dec_pic_buffering[i]之值應係在0至MaxDpbSize(如在子條款A.4中所指定)之範圍內(包括0及MaxDpbSize)。當i大於0時,vps_max_dec_pic_buffering[i]將等於或大於vps_max_dec_pic_buffering[i-1]。 Vps_max_dec_pic_buffering [i] specifies the required size in the image storage buffer of the decoded image buffer when TargetDecHighestTid is equal to i. The value of vps_max_dec_pic_buffering[i] shall be in the range of 0 to MaxDpbSize (as specified in subclause A.4) (including 0 and MaxDpbSize). When i is greater than 0, vps_max_dec_pic_buffering[i] will be equal to or greater than vps_max_dec_pic_buffering[i-1].

vps_max_num_reorder_pics[i]指示在TargetDecHighestTid等於i時在解碼次序上在任何圖像之前且在輸出次序上在該圖像之後的圖像之最大所允許數目。vps_max_num_reorder_pics[i]之值應係在0至vps_max_dec_pic_buffering[i]的範圍內(包括0及vps_max_dec_pic_buffering[i])。當i大於0時,vps_max_num_reorder_pics[i]將等於或大於vps_max_num_reorder_pics[i-1]。 Vps_max_num_reorder_pics [i] indicates the maximum allowable number of images before the image in the decoding order and after the image in the decoding order when TargetDecHighestTid is equal to i. The value of vps_max_num_reorder_pics[i] should be in the range of 0 to vps_max_dec_pic_buffering[i] (including 0 and vps_max_dec_pic_buffering[i]). When i is greater than 0, vps_max_num_reorder_pics[i] will be equal to or greater than vps_max_num_reorder_pics[i-1].

如藉由將MaxLatencyPictures[i]設定為vps_max_num_reorder_pics[i]+vps_max_latency_increase[i]所指定,不等於0之vps_max_latency_increase[i]被用以計算MaxLatencyPictures[i]之值。當vps_max_latency_increase[i]不等於0時,MaxLatencyPictures[i]之值指定在TargetDecHighestTid等於i時在輸出次序上可先於經寫碼視訊序列中之任何圖像且在解碼次序上在該圖像之後的圖像之最大數目。當vps_max_latency_increase[i]等於0時,不表達對應限制。vps_max_latency_increase[i]之值應係在0至232-2的範圍內(包括0及232-2)。 As by the MaxLatencyPictures [i] is set to vps_max_num_reorder_pics [i] + vps_max_latency_increase [i ] specified, it is not equal to vps_max_latency_increase 0 [i] is used to calculate MaxLatencyPictures [i] of value. When vps_max_latency_increase[i] is not equal to 0, the value of MaxLatencyPictures[i] is specified in the output order before the TargetDecHighestTid is equal to i, before any image in the coded video sequence and in the decoding order after the image. The maximum number of images. When vps_max_latency_increase[i] is equal to 0, the corresponding limit is not expressed. The value of vps_max_latency_increase[i] should be in the range of 0 to 2 32 -2 (including 0 and 2 32 -2).

如上文所展示,可參考TargetDecHighestTid來定義vps_max_dec_buffering[i]、vps_max_num_reorder_pics[i]及 vps_max_latency_increase[i]之語義。相對照地,HEVC工作草案8參考HighestTid來定義vps_max_dec_pic_buffering[i]、vps_max_num_reorder_pics[i]及vps_max_latency_increase[i],其中未定義HighestTid。 As shown above, you can refer to TargetDecHighestTid to define vps_max_dec_buffering[i], vps_max_num_reorder_pics[i] and The semantics of vps_max_latency_increase[i]. In contrast, HEVC Working Draft 8 refers to HighestTid to define vps_max_dec_pic_buffering[i], vps_max_num_reorder_pics[i], and vps_max_latency_increase[i], where HighestTid is not defined.

如表3之實例語法中所展示,VPS包括數對operation_point_layer_ids( )語法結構及hrd_parameters( )語法結構。hrd_parameters( )語法結構包括指定HRD參數之集合的語法元素。operation_point_layer_ids( )語法結構包括識別操作點之集合的語法元素。hrd_parameters( )語法結構中指定之HRD參數之集合可適用於由對應operation_point_layer_ids( )語法結構中之語法元素識別的操作點。以下表4提供operation_point_layer_ids( )語法結構的實例語法。 As shown in the example syntax of Table 3, the VPS includes a number of pairs of operation_point_layer_ids( ) syntax structures and an hrd_parameters( ) syntax structure. The hrd_parameters( ) syntax structure includes syntax elements that specify a collection of HRD parameters. The operation_point_layer_ids( ) syntax structure includes syntax elements that identify a collection of operating points. The set of HRD parameters specified in the hrd_parameters( ) syntax structure may be applied to the operation points identified by the syntax elements in the corresponding operation_point_layer_ids( ) syntax structure. Table 4 below provides an example syntax for the operation_point_layer_ids( ) syntax structure.

HEVC工作草案8之章節7.4.4描述op_point語法結構的語義。根據本發明之一或多項技術,HEVC工作草案8之章節7.4.4可如下作出改變以提供表4之operation_point_layer_ids( )語法結構的語義。 Section 9.4.4 of HEVC Working Draft 8 describes the semantics of the op_point syntax structure. In accordance with one or more techniques of the present invention, Section 7.4.4 of HEVC Working Draft 8 may be modified as follows to provide the semantics of the operation_point_layer_ids( ) syntax structure of Table 4.

operation_point_layer_ids(opIdx)語法結構指定了視訊參數集中之第opIdx個hrd_parameters( )語法結構應用至的操作點之OpLayerIdSet中所包括之nuh_reserved_zero_6bits值的集合。The operation_point_layer_ids(opIdx) syntax structure specifies a set of nuh_reserved_zero_6bits values included in the OpLayerIdSet of the operation point to which the opIdx hrd_parameters( ) syntax structure to which the video parameter set is applied.

op_num_layer_id_values_minus1[opIdx]加1指定了視訊參數集中之第opIdx個hrd_parameters( )語法結構應用至的操作點之OpLayerIdSet中所包括之nuh_reserved_zero_6bits值的數目。op_num_layer_id_values_minus1[opIdx]將小於或等於63。在與此規範一致之位元流中,op_num_layer_id_values_minus1[opIdx]將等於 0。儘管在此規範的此版本中要求op_num_layer_id_values_minus1[opIdx]之值等於0,但解碼器應允許其他值出現於op_num_layer_id_values_minus1[opIdx]語法中。 Op_num_layer_id_values_minus1 [opIdx] plus 1 specifies the number of nuh_reserved_zero_6bits values included in the OpLayerIdSet of the operation point to which the opIdx hrd_parameters( ) syntax structure applied to the video parameter set is applied. Op_num_layer_id_values_minus1[opIdx] will be less than or equal to 63. In a bitstream consistent with this specification, op_num_layer_id_values_minus1[opIdx] will be equal to zero. Although the value of op_num_layer_id_values_minus1[opIdx] is required to be equal to 0 in this version of this specification, the decoder should allow other values to appear in the op_num_layer_id_values_minus1[opIdx] syntax.

op_layer_id[opIdx][i]指定視訊參數集中之第opIdx個hrd_parameters( )語法結構應用至的操作點之OpLayerIdSet中所包括之nuh_reserved_zero_6bits的第i值。當i不等於j且i及j兩者皆在0至op_num_layer_id_values_minus1之範圍內(包括0及op_num_layer_id_values_minus1)時,op_layer_id[opIdx][i]之值不得等於op_layer_id[opIdx][j]。op_layer_id[0][0]被推斷為等於0。 Op_layer_id [opIdx][i] specifies the ith value of nuh_reserved_zero_6bits included in the OpLayerIdSet of the operation point to which the opIdx hrd_parameters( ) syntax structure to which the syntax parameter set is applied . When i is not equal to j and both i and j are in the range of 0 to op_num_layer_id_values_minus1 (including 0 and op_num_layer_id_values_minus1), the value of op_layer_id[opIdx][i] may not be equal to op_layer_id[opIdx][j]. Op_layer_id[0][0] is inferred to be equal to zero.

如上文所指示,op_num_layer_id_values_minus1[opIdx]語法元素加1指定視訊參數集中之第opIdx個hrd_parameters( )語法結構應用至的操作點之OpLayerIdSet中所包括之nuh_reserved_zero_6bits值的數目。相對比地,HEVC工作草案8規定:op_num_layer_id_values_minus1[opIdx]語法元素加1指定包括於由opIdx識別之操作點中之nuh_reserved_zero_6bits值的數目。類似地,在表4之實例中,op_layer_id[opIdx][i]語法元素指定了視訊參數集中之第opIdx個hrd_parameters( )語法結構應用至的操作點之OpLayerIdSet中所包括之nuh_reserved_zero_6bits的第i值。相對照地,HEVC工作草案8規定:op_layer_id[opIdx][i]語法元素指定包括於由opIdx識別之操作點中之nuh_reserved_zero_6bits的第i值。 As indicated above, the op_num_layer_id_values_minus1[opIdx] syntax element plus 1 specifies the number of nuh_reserved_zero_6bits values included in the OpLayerIdSet of the operand to which the opIdx hrd_parameters( ) syntax structure to which the video parameter set is applied. In contrast, HEVC Working Draft 8 specifies that the op_num_layer_id_values_minus1[opIdx] syntax element plus 1 specifies the number of nuh_reserved_zero_6bits values included in the operating point identified by opIdx. Similarly, in the example of Table 4, the op_layer_id[opIdx][i] syntax element specifies the ith value of nuh_reserved_zero_6bits included in the OpLayerIdSet of the operation point to which the opIdx hrd_parameters( ) syntax structure to which the video parameter set is applied. In contrast, HEVC Working Draft 8 states that the op_layer_id[opIdx][i] syntax element specifies the ith value of nuh_reserved_zero_6bits included in the operating point identified by opIdx.

HEVC工作草案8之章節7.4.2.2描述SPS之語義。根據本發明之一或多項技術,可對HEVC工作草案8之章節7.4.2.2進行以下改變。SPS之其他語法元素的語義可與HEVC工作草案8中之語義相同:sps_max_dec_pic_buffering[i]指定在TargetDecHighestTid等於i時以圖像儲存緩衝器為單位的經解碼圖像緩衝器的最大所要求大小。sps_max_dec_pic_buffering[i]之值應係在0至MaxDpbSize(如在子條款 A.4中所指定)之範圍內(包括0及MaxDpbSize)。當i大於0時,sps_max_dec_pic_buffering[i]應等於或大於sps_max_dec_pic_buffering[i-1]。針對i之每一值,sps_max_dec_pic_buffering[i]之值應小於或等於vps_max_dec_pic_buffering[i]。 Section 7.4.2.2 of HEVC Working Draft 8 describes the semantics of SPS. In accordance with one or more techniques of the present invention, the following changes can be made to Section 7.4.2.2 of HEVC Working Draft 8. The semantics of the other syntax elements of the SPS may be the same as the semantics in HEVC Working Draft 8: sps_max_dec_pic_buffering [i] specifies the maximum required size of the decoded image buffer in units of image storage buffers when TargetDecHighestTid is equal to i. The value of sps_max_dec_pic_buffering[i] shall be in the range of 0 to MaxDpbSize (as specified in subclause A.4) (including 0 and MaxDpbSize). When i is greater than 0, sps_max_dec_pic_buffering[i] should be equal to or greater than sps_max_dec_pic_buffering[i-1]. For each value of i, the value of sps_max_dec_pic_buffering[i] should be less than or equal to vps_max_dec_pic_buffering[i].

sps_max_num_reorder_pics[i]指示在TargetDecHighestTid等於i時在解碼次序上在任何圖像之前且在輸出次序上在該圖像之後的圖像之最大所允許數目。sps_max_num_reorder_pics[i]之值應係在0至sps_max_dec_pic_buffering[i](包括0及sps_max_dec_pic_buffering[i])的範圍內。當i大於0時,sps_max_num_reorder_pics[i]應等於或大於sps_max_num_reorder_pics[i-1]。針對i之每一值,sps_max_num_reorder_pics[i]之值應小於或等於vps_max_num_reorder_pics[i]。 Sps_max_num_reorder_pics [i] indicates the maximum allowable number of images before the image in the decoding order and after the image in the decoding order when TargetDecHighestTid is equal to i. The value of sps_max_num_reorder_pics[i] should be in the range of 0 to sps_max_dec_pic_buffering[i] (including 0 and sps_max_dec_pic_buffering[i]). When i is greater than 0, sps_max_num_reorder_pics[i] should be equal to or greater than sps_max_num_reorder_pics[i-1]. For each value of i, the value of sps_max_num_reorder_pics[i] should be less than or equal to vps_max_num_reorder_pics[i].

如藉由將MaxLatencyPictures[i]設定為等於sps_max_num_reorder_pics[i]+sps_max_latency_increase[i]所指定,不等於0之sps_max_latency_increase[i]被用以計算MaxLatencyPictures[i]之值。當sps_max_latency_increase[i]不等於0時,MaxLatencyPictures[i]之值指定在TargetDecHighestTid等於i時在輸出次序上可先於經寫碼視訊序列中之任何圖像且在解碼次序上在該圖像之後的圖像之最大數目。當sps_max_latency_increase[i]等於0時,不表達對應限制。sps_max_latency_increase[i]之值應係在0至232-2的範圍內(包括0及232-2)。針對i之每一值,sps_max_latency_increase[i]之值應小於或等於vps_max_latency_increase[i]。 As by the MaxLatencyPictures [i] is set equal to sps_max_num_reorder_pics [i] + sps_max_latency_increase [i ] specified, it is not equal to sps_max_latency_increase 0 [i] is used to calculate MaxLatencyPictures [i] of value. When sps_max_latency_increase[i] is not equal to 0, the value of MaxLatencyPictures[i] is specified in the output order before the TargetDecHighestTid is equal to i, before any image in the coded video sequence and in the decoding order after the image. The maximum number of images. When sps_max_latency_increase[i] is equal to 0, the corresponding limit is not expressed. The value of sps_max_latency_increase[i] should be in the range of 0 to 2 32 -2 (including 0 and 2 32 -2). For each value of i, the value of sps_max_latency_increase[i] shall be less than or equal to vps_max_latency_increase[i].

如上文所展示,依據TargetDecHighestTid來定義sps_max_dec_pic_buffering[i]、sps_max_num_reorder_pics[i]及sps_max_latency_increase[i]之語義。TargetDecHighestTid係如在本發 明中之其他地方所描述而判定。相對比地,HEVC工作草案8參考未經定義之HighestTid來定義sps_max_dec_pic_buffering[i]、sps_max_num_reorder_pics[i]及sps_max_latency_increase[i]的語義。 As shown above, the semantics of sps_max_dec_pic_buffering[i], sps_max_num_reorder_pics[i], and sps_max_latency_increase[i] are defined according to TargetDecHighestTid. TargetDecHighestTid is as in this issue Determined as described elsewhere in the Ming Dynasty. In contrast, HEVC Working Draft 8 defines the semantics of sps_max_dec_pic_buffering[i], sps_max_num_reorder_pics[i], and sps_max_latency_increase[i] with reference to the undefined HighestTid.

HEVC工作草案8之章節7.4.5.1描述一般圖塊標頭語義。根據本發明之一或多項技術,可對HEVC工作草案8之章節7.4.5.1進行以下改變。HEVC工作草案8之章節7.4.5.1的其他部分可保持為相同的。 Section 7.4.5.1 of HEVC Working Draft 8 describes general tile header semantics. The following changes can be made to section 7.4.5.1 of HEVC Working Draft 8 in accordance with one or more techniques of the present invention. The rest of Section 7.4.5.1 of HEVC Working Draft 8 may remain the same.

no_output_of_prior_pics_flag指定在解碼IDR或BLA圖像之後如何處理經解碼圖像緩衝器中的先前解碼之圖像。參見附錄C。在當前圖像係CRA圖像或當前圖像係為位元流中之第一圖像的IDR或BLA圖像時,no_output_of_prior_pics_flag之值對解碼程序無影響。在當前圖像係並非位元流中之圖像的IDR或BLA圖像,且自作用中序列參數集導出之pic_width_in_luma_samples或pic_height_in_luma_samples或sps_max_dec_pic_buffering[TargetDecHighestTid]的值不同於自針對前一圖像係作用中之序列參數集導出之pic_width_in_luma_samples或pic_height_in_luma_samples或sps_max_dec_pic_buffering[TargetDecHighestTid]的值時,無論no_output_of_prior_pics_flag的實際值如何,解碼器可(但不應)推斷出等於1之no_output_of_prior_pics_flag。 No_output_of_prior_pics_flag specifies how to process previously decoded images in the decoded image buffer after decoding the IDR or BLA image. See Appendix C. When the current image system CRA image or the current image is the IDR or BLA image of the first image in the bit stream, the value of no_output_of_prior_pics_flag has no effect on the decoding process. In the current image system is not the IDR or BLA image of the image in the bit stream, and the value of pic_width_in_luma_samples or pic_height_in_luma_samples or sps_max_dec_pic_buffering[ TargetDecHighestTid ] derived from the sequence parameter set in action is different from that of the previous image system. When the sequence parameter set derives the value of pic_width_in_luma_samples or pic_height_in_luma_samples or sps_max_dec_pic_buffering[ TargetDecHighestTid ], the decoder may (but should not) infer no_output_of_prior_pics_flag equal to 1 regardless of the actual value of no_output_of_prior_pics_flag.

如上文所展示,參考sps_max_dec_pic_buffering[TargetDecHighestTid]來定義no_output_of_prior_pics_flag之語義。TargetDecHighestTid係如在本發明中之其他地方所描述而判定。相對比地,HEVC工作草案8參考sps_max_dec_pic_buffering[HighestTid]來定義no_output_of_prior_pics_flags的語義,其中未定義HighestTid。 As shown above, the semantics of no_output_of_prior_pics_flag is defined with reference to sps_max_dec_pic_buffering[TargetDecHighestTid]. TargetDecHighestTid is determined as described elsewhere in the present invention. In contrast, HEVC Working Draft 8 defines sp__max_dec_pic_buffering[HighestTid] to define the semantics of no_output_of_prior_pics_flags, where HighestTid is not defined.

HEVC工作草案8之章節8.1描述一般解碼程序。根據本發明之一或多項技術,HEVC工作草案8之一般解碼程序可如下作出改變。 Section 8.1 of HEVC Working Draft 8 describes a general decoding procedure. In accordance with one or more techniques of the present invention, the general decoding procedure of HEVC Working Draft 8 can be changed as follows.

此程序之輸入係位元流,且輸出係經解碼圖像之清單。The input to this program is a bit stream, and the output is a list of decoded images.

指定待解碼之VCL NAL單元之nuh_reserved_zero_6bits的值之集Specifies the set of values of nuh_reserved_zero_6bits of the VCL NAL unit to be decoded 合的集合TargetDecLayerIdSet被指定如下:The set of TargetDecLayerIdSet is specified as follows:

- 若未指定於此規範中之某外部構件可用於設定TargetDecLayerIdSet,則藉由該外部構件來設定TargetDecLayerIdSet。 - If an external component not specified in this specification can be used to set the TargetDecLayerIdSet, the TargetDecLayerIdSet is set by the external component.

- 否則,若在如子條款C.1中指定之位元流一致性測試中調用解碼程序,則如子條款C.1中所指定地設定TargetDecLayerIdSet。 - Otherwise, if the decoding procedure is called in the bitstream conformance test as specified in subclause C.1, the TargetDecLayerIdSet is set as specified in subclause C.1.

- 否則,TargetDecLayerIdSet僅含有nuh_reserved_zero_6bits的一個值,其等於0。 - Otherwise, the TargetDecLayerIdSet contains only one value of nuh_reserved_zero_6bits, which is equal to zero.

識別待解碼之最高時間子層的變數TargetDecHighestTid被指定如下:The variable TargetDecHighestTid identifying the highest time sublayer to be decoded is specified as follows:

- 若未指定於此規範中之某外部構件可用於設定TargetDecHighestTid,則藉由該外部構件來設定TargetDecHighestTid。 - If an external component not specified in this specification can be used to set the TargetDecHighestTid, the TargetDecHighestTid is set by the external component.

- 否則,若在如子條款C.1中指定之位元流一致性測試中調用解碼程序,則如子條款C.1中所指定地設定TargetDecHighestTid。 - Otherwise, if the decoding procedure is called in the bitstream conformance test as specified in subclause C.1, the TargetDecHighestTid is set as specified in subclause C.1.

- 否則,將TargetDecHighestTid設定為sps_max_sub_layers_minus1。 - Otherwise, set TargetDecHighestTid to sps_max_sub_layers_minus1.

以TargetDecHighestTid及TargetDecLayerIdSet為輸入來應用如子條款10.1中指定之子位元流提取程序,且將輸出指派給般稱作BitstreamToDecode的位元流。The sub-bitstream extractor as specified in subclause 10.1 is applied with the TargetDecHighestTid and TargetDecLayerIdSet as inputs, and the output is assigned to the bitstream, commonly referred to as BitstreamToDecode.

以下情形適用於BitstreamToDecode中的每一經寫碼圖像(稱作當前圖像,其由變數CurrPic表示)。The following applies to each coded image in BitstreamToDecode (referred to as the current image, which is represented by the variable CurrPic).

取決於chroma_format_idc之值,當前圖像之樣本陣列的數目係如下。 Depending on the value of chroma_format_idc, the number of sample arrays of the current image is as follows.

- 若chroma_format_idc等於0,則當前圖像由1個樣本陣列SL組成。 - If chroma_format_idc is equal to 0, the current image consists of 1 sample array S L .

- 否則(chroma_format_idc不等於0),當前圖像由3個樣本陣列SL、SCb、SCr組成。 - Otherwise (chroma_format_idc is not equal to 0), the current image consists of 3 sample arrays S L , S Cb , S Cr .

當前圖像之解碼程序採用來自條款7之語法元素及大寫字母變數作為輸入。當涉及解譯每一NAL單元及「位元流」或其部分(例如,經寫碼視訊序列中之每一語法元素的語義時,位元流或其部分意謂BitstreamToDecode或其部分。The decoding process of the current image uses the syntax elements from clause 7 and uppercase letter variables as input. When it comes to interpreting each NAL unit and a "bitstream" or portion thereof (eg, the semantics of each syntax element in a coded video sequence, the bitstream or portion thereof means a BitstreamToDecode or portion thereof.

解碼程序經指定,使得所有解碼器應產生數值上相同之結果。 產生相同於本文中所描述之程序之結果的任何解碼程序皆與此規範中之解碼程序要求一致。 The decoding procedure is specified such that all decoders should produce numerically identical results. Any decoding program that produces the same results as the programs described herein is consistent with the decoding program requirements in this specification.

在當前圖像係CRA圖像時,以下情形適用: When the current image is a CRA image, the following applies:

- 若此規範中未指定之某外部構件可用於將變數HandleCraAsBlaFlag設定為一值,則將HandleCraAsBlaFlag設定為由外部構件提供的值。 - If an external component not specified in this specification can be used to set the variable HandleCraAsBlaFlag to a value, HandleCraAsBlaFlag is set to the value provided by the external component.

- 否則,將HandleCraAsBlaFlag之值設定為0。 - Otherwise, set the value of HandleCraAsBlaFlag to 0.

當前圖像係CRA圖像且HandleCraAsBlaFlag等於1時,在每一經寫碼圖塊NAL單元之剖析及解碼程序期間以下情形適用: When the current image is a CRA image and HandleCraAsBlaFlag is equal to 1, the following applies during the parsing and decoding process of each coded tile NAL unit:

- 將nal_unit_type之值設定為BLA_W_LP。 - Set the value of nal_unit_type to BLA_W_LP.

- 將no_output_of_prior_pics_flag之值設定為1。 - Set the value of no_output_of_prior_pics_flag to 1.

註釋1- 解碼器實施可選擇在設定不影響當前圖像及在解碼次序上的隨後圖像之解碼時(例如,當在需要時總是存在可用之圖像儲存緩衝器時)將no_output_of_prior_pics_flag的值設定為0。Note 1 - The decoder implementation may choose to set the value of no_output_of_prior_pics_flag when setting the decoding of subsequent pictures that do not affect the current picture and in decoding order (for example, when there is always an available image storage buffer when needed) Set to 0.

此條款中提及之每一圖像係完整之經寫碼圖像。 Each image mentioned in this clause is a complete coded image.

取決於separate_colour_plane_flag之值,將解碼程序結構化如下。 The decoding procedure is structured as follows depending on the value of separate_colour_plane_flag.

- 若separate_colour_plane_flag等於0,則解碼程序被調用單一次,其中當前圖像為輸出。 - If separate_colour_plane_flag is equal to 0, the decoder is called once, where the current image is the output.

- 否則(separate_colour_plane_flag等於1),解碼程序被調用三次。至解碼程序之輸入係經寫碼圖像之具有colour_plane_id之相同值的所有NAL單元。具有colour_plane_id之特定值的NAL單元之解碼程序經指定,就如同僅有具colour_plane_id之該特定值的單色格式之經寫碼視訊序列將存在於該位元流中一般。三個解碼程序中之每一者的輸出被指派給當前圖像的3個樣本陣列,其中具等於0之colour_plane_id的NAL單元指派給SL,具有等於1之colour_plane_id的NAL單元指派給SCb,且具有等於2之colour_plane_id的NAL單元指派給SCr- Otherwise (separate_colour_plane_flag is equal to 1), the decoding program is called three times. The input to the decoding program is all NAL units of the coded image having the same value of colour_plane_id. The decoding procedure for a NAL unit having a particular value of colour_plane_id is specified as if only a coded video sequence in a monochrome format with that particular value of colour_plane_id would be present in the bitstream. The output of each of the three decoding procedures is assigned to a 3 sample array of the current image, wherein a NAL unit having a colour_plane_id equal to 0 is assigned to S L , and a NAL unit having a colour_plane_id equal to 1 is assigned to S Cb , And a NAL unit having a colour_plane_id equal to 2 is assigned to S Cr .

註釋1- 在separate_colour_plane_flag等於1且chroma_format_idc等於3時,變數ChromaArrayType被導出為0。在解碼程序中,此變數之值經評估,從而導致相同於chroma_format_idc等於0的單色圖像之操作的操作。 Note 1 - When separate_colour_plane_flag is equal to 1 and chroma_format_idc is equal to 3, the variable ChromaArrayType is derived as 0. In the decoding process, the value of this variable is evaluated, resulting in an operation similar to the operation of a monochrome image in which chroma_format_idc is equal to zero.

解碼程序針對當前圖像CurrPic如下操作: The decoding program operates on the current image CurrPic as follows:

1. NAL單元之解碼在子條款8.2中指定。 1. The decoding of the NAL unit is specified in subclause 8.2.

2. 子條款8.3中之程序指定使用圖塊層中之語法元素及以上語法元素的解碼程序: 2. The procedure in subclause 8.3 specifies the decoding procedure using the syntax elements in the tile layer and the above syntax elements:

- 在子條款8.3.1中導出與圖像次序計數相關之變數及功能(僅需要針對圖像之第一圖塊調用其)。 - Deriving variables and functions related to image order count in subclause 8.3.1 (only need to call it for the first tile of the image).

- 調用子條款8.3.2中的針對參考圖像集的解碼程序,其中參考圖像可標註為「不用於參考」或「用於長期參考」(僅需要針對圖像之第一圖塊調用其)。 - Call the decoding procedure for the reference image set in subclause 8.3.2, where the reference image can be marked as "not for reference" or "for long-term reference" (only need to call it for the first tile of the image) ).

- 在當前圖像係BLA圖像或係一為位元流中之第一圖像的CRA圖像時,調用指定於子條款8.3.3中之用於產生不可用的參考圖像的解碼程序(僅需要針對圖像之第一圖塊調用其)。 - when the current image is a BLA image or a CRA image of the first image in the bitstream, the decoding procedure specified in subclause 8.3.3 for generating an unavailable reference image is invoked. (You only need to call it for the first tile of the image).

- PicOutputFlag被設定如下: - PicOutputFlag is set as follows:

- 若當前圖像係TFD圖像且解碼次序上的先前之RAP圖像係BLA圖像或係一為位元流中之第一經寫碼圖像的CRA圖像,則PicOutputFlag被設定為等於0。 - If the current image is a TFD image and the previous RAP image system BLA image in decoding order or the CRA image of the first coded image in the bit stream is set, PicOutputFlag is set equal to 0.

- 否則,PicOutputFlag被設定為等於pic_output_flag。 - Otherwise, PicOutputFlag is set equal to pic_output_flag.

- 在每一P或B圖塊之解碼程序開始時,子條款8.3.4中指定之針對參考圖像清單建構的解碼程序經調用以用於導出參考圖像清單0(RefPicList0),且在解碼B圖塊時調用該解碼程序以用於導出參考圖像清單1(RefPicList1)。 - At the beginning of the decoding procedure for each P or B tile, the decoding procedure specified for the reference picture list specified in subclause 8.3.4 is invoked for deriving reference picture list 0 (RefPicList0) and is decoding The B program is called when the B block is used to derive the reference picture list 1 (RefPicList1).

- 在已解碼了當前圖像之所有圖塊之後,將經解碼圖像標註為「用於短期參考」。 - After all the tiles of the current image have been decoded, the decoded image is marked as "for short-term reference".

3. 子條款8.4、8.5、8.6及8.7中之程序指定使用寫碼樹型單元層中之語法元素及以上語法元素的解碼程序。 3. The procedures in subclauses 8.4, 8.5, 8.6, and 8.7 specify the decoding procedure using the syntax elements in the code tree unit layer and the above syntax elements.

如本發明中其他地方所指示,在HEVC工作草案8中,當針對位元流一致性測試調用解碼程序時,因為TargetDecLayerIdSet及TargetDecHighestTid的值未經恰當設定,故語法元素之語義並未被清楚地指定。上文所展示的對一般解碼程序之修改可補救此問題。如上文所展示,當針對位元流一致性測試調用一般解碼程序時,TargetDecLayerIdSet及TargetDecHighestTid之值係如子條款C.1中所指定而設定。如下文所描述,子條款C.1之經修改版本可將TargetDecLayerIdSet設定為存在於對應於受測操作點之子位元流中的nuh_reserved_zero_6bits值之集合。子條款C.1之經修改版本可將TargetDecHighestTid設定為存在於對應於受測操作點之子位元流中的最大TemporalId值。 As indicated elsewhere in the present invention, in HEVC Working Draft 8, when the decoding procedure is called for the bitstream conformance test, since the values of TargetDecLayerIdSet and TargetDecHighestTid are not properly set, the semantics of the syntax elements are not clearly defined. Specified. The modifications to the general decoding procedure shown above can remedy this problem. As shown above, when a general decoding procedure is invoked for a bitstream conformance test, the values of TargetDecLayerIdSet and TargetDecHighestTid are set as specified in subclause C.1. As described below, the modified version of subclause C.1 may set the TargetDecLayerIdSet to be a set of nuh_reserved_zero_6bits values present in the sub-bitstream corresponding to the tested operating point. The modified version of subclause C.1 may set TargetDecHighestTid to the maximum TemporalId value present in the sub-bitstream corresponding to the tested operating point.

以此方式,諸如視訊解碼器30之器件可執行解碼程序,作為執行位元流一致性測試的部分。執行解碼程序可包含執行位元流提取程序以自位元流提取由層識別符之目標集合及目標最高時間識別符定義 之操作點的操作點表示。層識別符之目標集合可含有存在於操作點表示中之層識別符語法元素的值,層識別符之目標集合係位元流之層識別符語法元素的值之子集。目標最高時間識別符可等於存在於操作點表示中之最大時間識別符,目標最高時間識別符小於或等於存在於位元流中的最大時間識別符。此外,器件可解碼操作點表示之NAL單元。 In this manner, a device such as video decoder 30 can execute a decoding program as part of performing a bitstream conformance test. Executing the decoding program may include performing a bitstream stream extractor to extract from the bitstream stream by the target set of the layer identifier and the target highest time identifier definition The operating point representation of the operating point. The target set of layer identifiers may contain values of layer identifier syntax elements present in the operation point representation, and the target set of layer identifiers is a subset of the values of the layer identifier syntax elements of the bit stream. The target highest time identifier may be equal to the maximum time identifier present in the operation point representation, the target highest time identifier being less than or equal to the maximum time identifier present in the bit stream. In addition, the device can decode the NAL unit represented by the operating point.

如在以上對章節8.1之修改中所指示,解碼程序不必作為位元流一致性測試的部分而執行。在解碼程序並非作為位元流一致性測試之部分而執行的一些個例中,器件可執行位元流提取程序以自位元流提取操作點的操作點表示。在此狀況下,0可係存在於操作點表示中之層識別符語法元素(例如,nuh_reserved_zero_6bits)的唯一值,且存在於位元流中之最大時間識別符等於存在於操作點之操作點表示中的最大時間識別符。器件可解碼第二操作點之操作點表示的NAL單元。 As indicated above in the modification to Section 8.1, the decoding procedure does not have to be performed as part of the bitstream conformance test. In some examples where the decoding process is not performed as part of a bitstream conformance test, the device executable bitstream fetcher is represented by an operand that extracts the operand from the bitstream. In this case, 0 may be a unique value of the layer identifier syntax element (eg, nuh_reserved_zero_6bits) present in the operation point representation, and the maximum time identifier present in the bit stream is equal to the operation point representation present at the operation point The maximum time identifier in . The device can decode the NAL unit represented by the operating point of the second operating point.

替代性地,器件可自外部源接收層識別符之目標集合及目標最高時間識別符。層識別符之目標集合可含有存在於操作點之操作點表示中的層識別符語法元素的值,該操作點由層識別符之目標集合及目標最高時間識別符來定義。目標最高時間識別符可等於存在於操作點之操作點表示中的最大時間識別符。此外,器件可執行位元流提取程序以自位元流提取操作點之操作點表示。此外,器件可解碼操作點之操作點表示的NAL單元。 Alternatively, the device may receive a target set of layer identifiers and a target highest time identifier from an external source. The target set of layer identifiers may contain values of layer identifier syntax elements present in the operand point representation of the operating point, the operation points being defined by the target set of layer identifiers and the target highest time identifier. The target highest time identifier may be equal to the maximum time identifier present in the operating point representation of the operating point. In addition, the device executable bitstream stream extractor represents an operand representation of the operand from the bitstream extraction. In addition, the device can decode the NAL unit represented by the operating point of the operating point.

此外,根據本發明之一或多項技術,在HEVC工作草案8之子條款10.1中描述的子位元流提取程序可如下作出改變。 Moreover, in accordance with one or more techniques of the present invention, the sub-bitstream extraction procedure described in subclause 10.1 of HEVC Working Draft 8 can be changed as follows.

位元流一致性之要求係:包括於在此子條款中指定之程序之輸出中的tIdTarget等於在0至6之範圍內(包括0及6)之任何值且layerIdSetTarget僅含有值0的任何子位元流應與此規範一致。 The requirement for bitstream consistency is that tIdTarget included in the output of the program specified in this subclause is equal to any value in the range of 0 to 6 (including 0 and 6) and layerIdSetTarget contains only any value of 0. The bitstream should be consistent with this specification.

註釋- 一致之位元流含有具有等於0之nuh_reserved_zero_6bits 及等於0之TemporalId的一或多個經寫碼圖塊NAL單元。 Remarks - Consistent bitstreams contain nuh_reserved_zero_6bits equal to 0 And one or more coded tile NAL units of TemporalId equal to zero.

至此程序之輸入係變數tIdTarget及集合layerIdSetTargetAt this point, the input variable tIdTarget and the set layerIdSetTarget of the program .

此程序之輸出係子位元流。 The output of this program is a sub-bit stream.

藉由自位元流移除具有大於tIdTarget之TemporalId或並非在layerIdSetTarget中之值中的nuh_reserved_zero_6bits之所有NAL單元而導出子位元流。 The sub-bitstream is derived by removing all NAL units having a TemporalId greater than tIdTarget or nuh_reserved_zero_6bits that are not in the value in layerIdSetTarget from the bitstream.

在HEVC工作草案8之子條款10.1中,使用變數名稱targetDecLayerIdSet,其中上文使用layerIdSetTarget。使用layerIdSetTarget的上文展示之對HEVC工作草案之子條款10.1的改變可用來闡明:在用於子位元流提取程序中之層識別符的集合與targetDecLayerIdSet之間可存在差異,targetDecLayerIdSet如本發明中於其他地方所描述具有特定定義。 In subclause 10.1 of HEVC Working Draft 8, the variable name targetDecLayerIdSet is used, where layerIdSetTarget is used above. The change to sub-clause 10.1 of the HEVC working draft shown above using layerIdSetTarget can be used to clarify that there may be a difference between the set of layer identifiers used in the sub-bitstream extraction procedure and the targetDecLayerIdSet, as in the present invention Other places are described with specific definitions.

此外,根據本發明之一或多項技術,HEVC工作草案8之章節A.4.1的一般階層及級別規範可如下作出改變。在本發明中,「設定檔」可指代位元流語法之子集。可在每一設定檔內指定「階層」及「級別」。階層之級別可係強加於位元流中之語法元素之值的約束之指定集合。此等約束可為對值之簡單限制。 Moreover, in accordance with one or more techniques of the present invention, the general hierarchy and level specifications of Section A.4.1 of HEVC Working Draft 8 can be changed as follows. In the present invention, "profile" may refer to a subset of the meta-stream syntax. "Level" and "Level" can be specified in each profile. The level of the hierarchy may be a specified set of constraints imposed on the values of the syntax elements in the bitstream. These constraints can be a simple limit on the value.

替代性地,約束可採用對值之算術組合(例如,圖像寬度×圖像高度×每秒解碼之圖像的數目)之約束的形式。針對較低階層所指定之級別相較於針對較高階層指定之級別受到更多約束。根據本發明之實例,HEVC工作草案8之「一般級別規範」章節(亦即,章節A.4.1)被重新加標題為「一般階層及級別規範」,且文字做如下改變。表A-1可保持與HEVC工作草案8中之者相同。 Alternatively, the constraints may take the form of a constraint on the arithmetic combination of values (eg, image width x image height x number of images decoded per second). The level specified for the lower level is more constrained than the level specified for the higher level. In accordance with an example of the present invention, the "General Level Specification" section of HEVC Working Draft 8 (i.e., Section A.4.1) is re-titled as "General Class and Level Specification" and the text is changed as follows. Table A-1 can remain the same as in HEVC Working Draft 8.

為了比較階層能力,相較於具有等於1之general_tier_flag的階層,具有等於0之general_tier_flag的階層應被視為較低階層。 In order to compare hierarchical capabilities, a hierarchy having a general_tier_flag equal to 0 should be considered a lower level than a hierarchy having a general_tier_flag equal to one.

為了比較級別能力,對於特定階層,較低級別具有較低之In order to compare level capabilities, the lower level has a lower level for a particular level. general_level_idc值。General_level_idc value.

為了在此附錄中表達該等約束而指定以下內容。 In order to express these constraints in this appendix, the following is specified.

- 使存取單元n係解碼次序上之第n個存取單元,其中第一存取單元係存取點0(亦即,第0個存取單元)。 - causing the access unit n to be the nth access unit in decoding order, wherein the first access unit is access point 0 (i.e., the 0th access unit).

- 使圖像n係存取單元n之經寫碼圖像或對應經解碼圖像。 - Let the image n be a coded image of the access unit n or a corresponding decoded image.

- 使變數fR設定為1÷300。 - Set the variable fR to 1÷300.

與指定級別處之設定檔一致的位元流應服從針對如在附錄C中指定之每一位元流一致性測試的以下約束: The bitstream consistent with the profile at the specified level shall obey the following constraints for each bitstream conformance test as specified in Appendix C:

a)如子條款C.2.2中指定之存取單元n(其中n>0)自CPB的標稱移除時間對於圖像n-1之PicSizeInSamplesY的值滿足以下約束:tr,n(n)-tr(n-1)等於或大於Max(PicSizeInSamplesY÷MaxLumaSR,fR),其中MaxLumaSR係在表A-1中指定之應用至圖像n-1的值。 a) The nominal removal time from the CPB as specified in subclause C.2.2 (where n > 0) from the CPB. The value of PicSizeInSamplesY for image n-1 satisfies the following constraints: t r,n (n) -t r (n-1) is equal to or greater than Max (PicSizeInSamplesY÷MaxLumaSR, fR), where MaxLumaSR is the value applied to image n-1 specified in Table A-1.

b)如子條款C.3.2中指定之圖像自DPB之連續輸出時間之間的差對於圖像n之PicSizeInSamplesY的值滿足以下約束:△to,dpb(n)>=Max(PicSizeInSamplesY÷MaxLumaSR,fR),其中MaxLumaSR係圖像n之在表A-1中指定的值,其限制條件為圖像n係經輸出的圖像且並非位元流之經輸出之最後圖像。 b) The difference between the continuous output times of the images specified in subclause C.3.2 from DPB for the value of PicSizeInSamplesY of image n satisfies the following constraints: Δt o, dpb (n)>=Max(PicSizeInSamplesY÷MaxLumaSR , fR), where MaxLumaSR is the value specified in Table A-1 for the image n, with the constraint that the image n is the output image and is not the last image of the output of the bit stream.

c)PicSizeInSamplesY<=MaxLumaPS,其中MaxLumaPS指定於表A-1中。 c) PicSizeInSamplesY<=MaxLumaPS, where MaxLumaPS is specified in Table A-1.

d)pic_width_in_luma_samples<=Sqrt(MaxLumaPS * 8) d) pic_width_in_luma_samples<=Sqrt(MaxLumaPS * 8)

e)pic_height_in_luma_samples<=Sqrt(MaxLumaPS * 8) e) pic_height_in_luma_samples<=Sqrt(MaxLumaPS * 8)

f)sps_max_dec_pic_buffering[TargetDecHighestTid]<=MaxDpbSize,其中如以下內容所指定而導出MaxDpbSize:若(PicSizeInSamplesY<=(MaxLumaPS>>2)) f) sps_max_dec_pic_buffering[ TargetDecHighestTid ]<=MaxDpbSize, where MaxDpbSize is derived as specified below: (PicSizeInSamplesY<=(MaxLumaPS>>2))

則MaxDpbSize=Min(4 * MaxDpbPicBuf,16) Then MaxDpbSize=Min(4 * MaxDpbPicBuf,16)

否則若(PicSizeInSamplesY<=(MaxLumaPS>>1)) Otherwise if (PicSizeInSamplesY<=(MaxLumaPS>>1))

則MaxDpbSize=Min(2 * MaxDpbPicBuf,16) Then MaxDpbSize=Min(2 * MaxDpbPicBuf, 16)

否則若(PicSizeInSamplesY<=(MaxLumaPS<<1)/3) Otherwise if (PicSizeInSamplesY<=(MaxLumaPS<<1)/3)

則MaxDpbSize=Min((3 * MaxDpbPicBuf)>>1,16) Then MaxDpbSize=Min((3 * MaxDpbPicBuf)>>1,16)

否則若(PicSizeInSamplesY<=((3 * MaxLumaPS)>>2)) Otherwise if (PicSizeInSamplesY<=((3 * MaxLumaPS)>>2))

則MaxDpbSize=Min((4 * MaxDpbPicBuf)/3,16) Then MaxDpbSize=Min((4 * MaxDpbPicBuf)/3,16)

否則 otherwise

MaxDpbSize=MaxDpbPicBuf MaxDpbSize=MaxDpbPicBuf

其中MaxLumaPS指定於表A-1中,且MaxDpbPicBuf等於6。 Where MaxLumaPS is specified in Table A-1 and MaxDpbPicBuf is equal to 6.

表A-1指定針對每一階層之每一級別的限制。在子條款A.4.2中指定了表A-1之MinCR參數欄的使用。 Table A-1 specifies the limits for each level of each level. The use of the MinCR parameter column of Table A-1 is specified in subclause A.4.2.

位元流與之相一致之階層及級別應由語法元素general_tier_flag及general_level_idc指示如下。 The hierarchy and level to which the bitstream conforms should be indicated by the syntax elements general_tier_flag and general_level_idc as follows.

- 根據表A-1中之階層約束規範,等於0之general_tier_flag指示與主階層之一致性,且等於1之general_tier_flag指示與高階層之一致性。對於級別4以下之級別,general_tier_flag應等於0(對應於表A-1中之標註有「-」的輸入項)。表A-1中之不同於MaxBR及MaxCPB的級別限制對於主階層及高階層兩者為共同的。 - According to the hierarchical constraint specification in Table A-1, the general_tier_flag equal to 0 indicates the identity with the primary hierarchy, and the general_tier_flag equal to 1 indicates the consistency with the upper hierarchy. For levels below level 4, the general_tier_flag shall be equal to 0 (corresponding to the entry labeled "-" in Table A-1). The level limits in Table A-1 that differ from MaxBR and MaxCPB are common to both the main and high levels.

- general_level_idc應設定為等於表A-1中指定之級別數目之30倍的值。 - general_level_idc should be set to a value equal to 30 times the number of levels specified in Table A-1.

如上文在項(f)中所指示,與指定級別處之設定檔一致的位元流服從sps_max_dec_pic_buffering[TargetDecHighestTid]<=MaxDpbSize的約束。可以在本發明中其他地方描述的方式來定義TargetDecHighestTid。相對比地,HEVC工作草案8對於項(f)指示:與指定級別處之設定檔一致的位元流服從sps_max_dec_pic_buffering[sps_max_temporal_layers_minus1]<=MaxDpbSize的約束。如本發明中其他地方所指示,可能未在級別限 制方面恰當選擇參數sps_max_dec_pic_buffering[i]。根據本發明之一或多項技術,用TargetDecHighestTid替換sps_max_temporal_layers_minus1來作為sps_max_dec_pic_buffering[i]的索引i可確保級別限制被始終如一地選擇,其中i等於TargetDecHighestTid的清楚指定之值。 As indicated in item (f) above, the bit stream consistent with the profile at the specified level is subject to the constraint of sps_max_dec_pic_buffering[TargetDecHighestTid]<=MaxDpbSize. The TargetDecHighestTid can be defined in a manner described elsewhere in the present invention. In contrast, HEVC Working Draft 8 indicates for item (f) that the bit stream consistent with the profile at the specified level is subject to the constraint of sps_max_dec_pic_buffering[sps_max_temporal_layers_minus1]<=MaxDpbSize. As indicated elsewhere in the invention, may not be at the level The parameter sps_max_dec_pic_buffering[i] is chosen appropriately. In accordance with one or more techniques of the present invention, replacing sps_max_temporal_layers_minus1 with TargetDecHighestTid as the index i of sps_max_dec_pic_buffering[i] ensures that the level limit is consistently selected, where i is equal to the clearly specified value of TargetDecHighestTid.

以此方式,HRD之解碼程序可自SPS解碼語法元素之陣列(例如,sps_max_dec_pic_buffering[]),其中陣列中的語法元素中之每一者指示HRD之DPB的最大所要求大小。此外,當器件執行HRD操作時,器件可基於目標最高時間識別符(例如,TargetDecHighestTid)判定陣列中之特定語法元素(例如,sps_max_dec_pic_buffering[TargetDecHighestTid])。此外,當特定語法元素之值大於最大DPB大小(例如,MaxDpbSize)時,器件可判定位元流並不與視訊寫碼標準一致。 In this manner, the decoding program of the HRD may decode an array of syntax elements from the SPS (eg, sps_max_dec_pic_buffering[]), where each of the syntax elements in the array indicates the maximum required size of the DPB of the HRD. Moreover, when the device performs an HRD operation, the device can determine a particular syntax element in the array based on the target highest time identifier (eg, TargetDecHighestTid) (eg, sps_max_dec_pic_buffering[TargetDecHighestTid]). Moreover, when the value of a particular syntax element is greater than the maximum DPB size (eg, MaxDpbSize), the device can determine that the bitstream is not consistent with the video writing standard.

此外,根據本發明之一或多個實例技術,HEVC工作草案8之章節A.4.2可如下作出改變。HEVC工作草案8之章節A.4.2描述針對主設定檔之設定檔特定級別限制。表A-2可保持與HEVC工作草案8中之者相同。 Moreover, in accordance with one or more example techniques of the present invention, Section A.4.2 of HEVC Working Draft 8 can be changed as follows. Section A.4.2 of HEVC Working Draft 8 describes the profile-specific level limits for the main profile. Table A-2 can remain the same as in HEVC Working Draft 8.

與指定階層及級別處之主設定檔一致的位元流應服從如在附錄C中指定之對於位元流一致性測試的以下約束: The bitstream consistent with the primary profile at the specified level and level shall obey the following constraints for the bitstream conformance test as specified in Appendix C :

a)圖像中的圖塊之數目(其中dependent_slice_flag等於0或1)小於或等於MaxSlicesPerPicture,其中MaxSlicesPerPicture指定於表A-1中。 a) The number of tiles in the image (where dependent_slice_flag is equal to 0 or 1) is less than or equal to MaxSlicesPerPicture, where MaxSlicesPerPicture is specified in Table A-1.

b)對於VCL HRD參數而言,對於SchedSelIdx的至少一值,BitRate[SchedSelIdx]<=cpbBrVclFactor * MaxBR且CpbSize[SchedSelIdx]<=cpbBrVclFactor * MaxCPB,其中cpbBrVclFactor指定於表A-2中,且BitRate[SchedSelIdx]及 CpbSize[SchedSelIdx]被給定如下。 b) For VCL HRD parameters, for at least one value of SchedSelIdx, BitRate[SchedSelIdx]<=cpbBrVclFactor*MaxBR and CpbSize[SchedSelIdx]<=cpbBrVclFactor*MaxCPB, where cpbBrVclFactor is specified in Table A-2, and BitRate[SchedSelIdx ]and CpbSize[SchedSelIdx] is given as follows.

- 若vcl_hrd_parameters_present_flag等於1,則使用如在子條款C.1中所指定而選擇之語法元素、分別藉由等式E-45及E-46來給出BitRate[SchedSelIdx]及CpbSize[SchedSelIdx]。 - If vcl_hrd_parameters_present_flag is equal to 1, then BitRate[SchedSelIdx] and CpbSize[SchedSelIdx] are given by using the syntax elements selected as specified in subclause C.1, respectively, by equations E-45 and E-46.

- 否則(vcl_hrd_parameters_present_flag等於0),如在子條款E.2.3中針對VCL HRD參數所指定而推斷出BitRate[SchedSelIdx]及CpbSize[SchedSelIdx]。 - Otherwise (vcl_hrd_parameters_present_flag is equal to 0), BitRate[SchedSelIdx] and CpbSize[SchedSelIdx] are inferred as specified in subclause E.2.3 for the VCL HRD parameter.

在表A-1中分別以cpbBrVclFactor位元/s及cpbBrVclFactor位元為單位來指定MaxBR及MaxCPB。對於在0至cpb_cnt_minus1[TargetDecHighestTid]之範圍內(包括0及cpb_cnt_minus1[TargetDecHighestTid])的SchedSelIdx之至少一值,位元流應滿足此等條件。 In Table A-1, MaxBR and MaxCPB are specified in units of cpbBrVclFactor bit/s and cpbBrVclFactor bits, respectively. For at least one value of SchedSelIdx in the range of 0 to cpb_cnt_minus1[ TargetDecHighestTid ] (including 0 and cpb_cnt_minus1[ TargetDecHighestTid ]), the bit stream should satisfy these conditions.

c)對於NAL HRD參數而言,對於SchedSelIdx的至少一值,BitRate[SchedSelIdx]<=cpbBrNalFactor * MaxBR且CpbSize[SchedSelIdx]<=cpbBrNalFactor * MaxCPB,其中cpbBrNalFactor指定於表A-2中,且BitRate[SchedSelIdx]及CpbSize[SchedSelIdx]被給定如下。 c) For NAL HRD parameters, for at least one value of SchedSelIdx, BitRate[SchedSelIdx]<=cpbBrNalFactor*MaxBR and CpbSize[SchedSelIdx]<=cpbBrNalFactor*MaxCPB, where cpbBrNalFactor is specified in Table A-2, and BitRate[SchedSelIdx ] and CpbSize[SchedSelIdx] are given as follows.

- 若nal_hrd_parameters_present_flag等於1,則使用如在子條款C.1中所指定而選擇之語法元素、分別藉由等式E-45及E-46來給出BitRate[SchedSelIdx]及CpbSize[SchedSelIdx]。 - If nal_hrd_parameters_present_flag is equal to 1, then BitRate[SchedSelIdx] and CpbSize[SchedSelIdx] are given by using the syntax elements selected as specified in subclause C.1, respectively, by equations E-45 and E-46.

- 否則(nal_hrd_parameters_present_flag等於0),如在子條款E.2.3中針對NAL HRD參數所指定而推斷出BitRate[SchedSelIdx]及CpbSize[SchedSelIdx]。 - Otherwise (nal_hrd_parameters_present_flag is equal to 0), BitRate[SchedSelIdx] and CpbSize[SchedSelIdx] are inferred as specified in subclause E.2.3 for the NAL HRD parameter.

在表A-1中分別以cpbBrNalFactor位元/s及cpbBrNalFactor位元為單位指定MaxBR及MaxCPB。對於在0至cpb_cnt_minus1[TargetDecHighestTid]之範圍內(包括0及 cpb_cnt_minus1[TargetDecHighestTid])的SchedSelIdx之至少一值,位元流應滿足此等條件。 In Table A-1, MaxBR and MaxCPB are specified in units of cpbBrNalFactor bit/s and cpbBrNalFactor bits, respectively. For at least one value of SchedSelIdx in the range of 0 to cpb_cnt_minus1[ TargetDecHighestTid ] (including 0 and cpb_cnt_minus1[ TargetDecHighestTid ]), the bit stream should satisfy these conditions.

d)存取單元0之NumBytesInNALunit變數的總和對於圖像0之PicSizeInSamplesY的值小於或等於1.5 *(Max(PicSizeInSamplesY,fR * MaxLumaSR)+MaxLumaSR *(tr(0)-tr,n(0)))÷MinCR,其中MaxLumaPR及MinCR係在表A-1中指定之應用至圖像0的值。 d) the sum of the NumBytesInNALunit variables of access unit 0 for the value of PicSizeInSamplesY of image 0 is less than or equal to 1.5 *(Max(PicSizeInSamplesY,fR * MaxLumaSR)+MaxLumaSR *(t r (0)-t r,n (0) )) MinCR, where MaxLumaPR and MinCR are the values applied to Image 0 as specified in Table A-1.

e)存取單元n(其中n>0)之NumBytesInNALunit變數的總和小於或等於1.5 * MaxLumaSR *(tr(n)-tr(n-1))÷MinCR,其中MaxLumaSR及MinCR係在表A-1中指定之應用至圖像n的值。 e) The sum of the NumBytesInNALunit variables of access unit n (where n>0) is less than or equal to 1.5 * MaxLumaSR *(t r (n)-t r (n-1))÷MinCR, where MaxLumaSR and MinCR are in Table A The value applied to image n specified in -1.

f)對於級別5及較高級別,變數CtbSizeY應等於32或64。 f) For level 5 and higher, the variable CtbSizeY should equal 32 or 64.

g)NumPocTotalCurr之值應小於或等於8。 g) The value of NumPocTotalCurr should be less than or equal to 8.

h)num_tile_columns_minus1之值應小於MaxTileCols,且num_tile_rows_minus1應小於MaxTileRows,其中MaxTileCols及MaxTileRows係如表A-1中所指定。 h) The value of num_tile_columns_minus1 shall be less than MaxTileCols, and num_tile_rows_minus1 shall be less than MaxTileRows, where MaxTileCols and MaxTileRows are as specified in Table A-1.

如本發明中其他地方所指示,可能未在級別限制方面恰當選擇參數cpb_cnt_minus1[i]。HEVC工作草案8指定:「對於在0至cpb_cnt_minus1之範圍內(包括0及cpb_cnt_minus1)的SchedSelIdx之至少一值,位元流應滿足此等條件……」。根據本發明之一或多項技術,指定TargetDecHighestTid作為cpb_cnt_minus1[i]的索引i可確保級別限制被始終如一地選擇,其中i等於TargetDecHighestTid的清楚指定之值。 As indicated elsewhere in the present invention, the parameter cpb_cnt_minus1[i] may not be properly selected in terms of level restrictions. HEVC Working Draft 8 specifies: "For at least one value of SchedSelIdx in the range of 0 to cpb_cnt_minus1 (including 0 and cpb_cnt_minus1), the bit stream shall satisfy these conditions...". In accordance with one or more techniques of the present invention, specifying TargetDecHighestTid as the index i of cpb_cnt_minus1[i] ensures that the level limit is consistently selected, where i is equal to the clearly specified value of TargetDecHighestTid.

此外,根據本發明之一或多項技術,HEVC工作草案8之附錄C中的一般子條款C.1可經修改。HEVC工作草案8之子條款C.1的圖C-1及C-2可保持與HEVC WD8中之者相同。HEVC工作草案8之子條款C.1的文字可做如下改變。 Moreover, in accordance with one or more techniques of the present invention, general subclause C.1 in Appendix C of HEVC Working Draft 8 may be modified. Figures C-1 and C-2 of subclause C.1 of HEVC Working Draft 8 may remain the same as those of HEVC WD8. The text of subclause C.1 of HEVC Working Draft 8 can be changed as follows.

此附錄指定假想參考解碼器(HRD)及其檢查位元流與解碼器一致 性的用途。 This appendix specifies the hypothetical reference decoder (HRD) and its check bit stream is consistent with the decoder. Sexual use.

兩種類型之位元流經受此規範之HRD一致性檢查。稱作類型I位元流的第一類型之位元流係僅含有位元流中之所有存取單元的VCL NAL單元及具有等於FD_NUT之nal_unit_type之NAL單元(填充符資料NAL單元)的NAL單元流。稱作類型II位元流的第二類型之位元流除位元流中的所有存取單元的VCL NAL單元及填充符資料NAL單元外亦含有以下內容中之至少一者:- 不同於填充符資料NAL單元的額外非VCL NAL單元,- 形成來自NAL單元流之位元組流的所有leading_zero_8bits、zero_byte、start_code_prefix_one_3bytes及trailing_zero_8bits語法元素(如附錄B中所指定)。 Two types of bitstreams are subject to the HRD consistency check of this specification. A first type of bit stream called a Type I bit stream contains only VCL NAL units of all access units in the bit stream and NAL units with NAL units (filler data NAL units) equal to nal_unit_type of FD_NUT flow. A second type of bitstream, referred to as a Type II bitstream, contains at least one of the following: in addition to the VCL NAL unit and the padding data NAL unit of all access units in the bitstream: - Unlike padding Additional non-VCL NAL units of the data NAL unit, - forming all leading_zero_8bits, zero_byte, start_code_prefix_one_3bytes, and trailing_zero_8bits syntax elements from the byte stream of the NAL unit stream (as specified in Appendix B).

圖C-1展示由HRD檢查之位元流一致性點的類型。 Figure C-1 shows the type of bit stream consistency point checked by HRD.

HRD要求之非VCL NAL單元之語法元素(或語法元素中之一些的預設值)在附錄D及E條款7之語義子條款中指定。 The syntax elements (or default values for some of the syntax elements) required by the HRD for non-VCL NAL units are specified in the semantic subclauses of Appendix D and E clause 7.

使用兩個類型之HRD參數(NAL HRD參數及VCL HRD參數)。經由視訊參數集語法結構或經由如子條款E.1及E.2中指定之視訊可用性資訊來發信HRD參數,視訊可用性資訊係序列參數集語法結構的部分。 Two types of HRD parameters (NAL HRD parameters and VCL HRD parameters) are used. The HRD parameters are sent via the video parameter set syntax structure or via video availability information as specified in subclauses E.1 and E.2, which is part of the sequence structure of the sequence parameter set.

為了檢查位元流之一致性可需要多個測試。對於每一測試,以所列出之次序應用以下步驟:Multiple tests are required to check the consistency of the bitstream. For each test, apply the following steps in the order listed:

1. 選擇表示為TargetOp的受測操作點。TargetOp由等於targetOpLayerIdSet之OpLayerIdSet及等於targetOpTid的OpTid來識別。targetOpLayerIdSet含有存在於與TargetOp相關聯之位元流子集中之nuh_reserved_zero_6bits的值之集合,且應係存在於受測位元流中之nuh_reserved_zero_6bits的值之子集。targetOpTid等於存在於與TargetOp相關聯之位元流子集中的最大TemporalId,且應小於或等於1. Select the operated operating point indicated as TargetOp. TargetOp is identified by an OpLayerIdSet equal to targetOpLayerIdSet and an OpTid equal to targetOpTid. The targetOpLayerIdSet contains a set of values of nuh_reserved_zero_6bits present in the subset of bitstreams associated with TargetOp, and should be a subset of the values of nuh_reserved_zero_6bits present in the measured bitstream. targetOpTid is equal to the maximum TemporalId present in the subset of bitstreams associated with TargetOp and should be less than or equal to 存在於受測位元流中的greatestTemporalId。The greatestTemporalId that exists in the measured bitstream.

2. TargetDecLayerIdSet設定為targetOpLayerIdSet,TargetDecHighestTid設定為targetOpTid,且BitstreamToDecode設定為如子條款10.1中所指定之子位元流提取程序的輸出,其中TargetDecHighestTid及TargetDecLayerIdSet係作為輸入。2. TargetDecLayerIdSet is set to targetOpLayerIdSet, TargetDecHighestTid is set to targetOpTid, and BitstreamToDecode is set to the output of the sub-bitstream extractor as specified in subclause 10.1, where TargetDecHighestTid and TargetDecLayerIdSet are used as inputs.

3. 選擇適用於TargetOp的hrd_parameters( )語法結構及sub_layer_hrd_parameters( )語法結構。若TargetDecLayerIdSet僅含有值0,則選擇作用中序列參數集中之hrd_parameters( )語法結構。否則,選擇滿足以下條件的hrd_parameters( )語法結構:其係在作用中參數集中(或經由外部構件提供)且對於在0至op_num_layer_id_values_minus1[opIdx]之範圍內(包括0及op_num_layer_id_values_minus1[opIdx])的i,由op_layer_id[opIdx][i]指定的值之集合相同於TargetDecLayerIdSet。在所選擇hrd_parameters( )語法結構內,若BitstreamToDecode係類型I位元流,則選擇緊跟在條件「if(vcl_hrd_parameters_present_flag)」之後之sub_layer_hrd_parameters(TargetDecHighestTid)語法結構(在此狀況下,變數NalHrdModeFlag設定為等於0),否則(BitstreamToDecode係類型II位元流),選擇緊跟在條件「if(vcl_hrd_parameters_present_flag)」(在此狀況下,變數NalHrdModeFlag設定為等於0)抑或條件「if(nal_hrd_parameters_present_flag)」(在此狀況下,變數NalHrdModeFlag設定為等於1)之後的sub_layer_hrd_parameters(TargetDecHighestTid)語法結構,且在前一狀況下自BitstreamToDecode捨棄除填充符資料NAL單元外之所有非VCL NAL單元,且將結果指派至BitstreamToDecode。3. Select the hrd_parameters( ) syntax structure and the sub_layer_hrd_parameters( ) syntax structure for TargetOp. If the TargetDecLayerIdSet contains only the value 0, then the hrd_parameters( ) syntax structure in the active sequence parameter set is selected. Otherwise, select the hrd_parameters( ) syntax structure that satisfies the following conditions: it is in the active parameter set (or via external components) and for i in the range 0 to op_num_layer_id_values_minus1[opIdx] (including 0 and op_num_layer_id_values_minus1[opIdx]) The set of values specified by op_layer_id[opIdx][i] is the same as TargetDecLayerIdSet. In the selected hrd_parameters( ) syntax structure, if BitstreamToDecode is a type I bit stream, the sub_layer_hrd_parameters(TargetDecHighestTid) syntax structure immediately following the condition "if(vcl_hrd_parameters_present_flag)" is selected (in this case, the variable NalHrdModeFlag is set equal to 0), otherwise (BitstreamToDecode is a type II bit stream), the selection is immediately followed by the condition "if(vcl_hrd_parameters_present_flag)" (in this case, the variable NalHrdModeFlag is set equal to 0) or the condition "if(nal_hrd_parameters_present_flag)" (in this case) Next, the variable NalHrdModeFlag is set to be equal to the sub_layer_hrd_parameters (TargetDecHighestTid) syntax structure after 1), and all non-VCL NAL units except the filler data NAL unit are discarded from BitstreamToDecode in the previous case, and the result is assigned to BitstreamToDecode.

4. 選擇與適用於TargetOp之緩衝週期SEI訊息相關聯的存取單元4. Select the access unit associated with the buffer period SEI message for TargetOp 作為HRD初始化點,且將其稱作存取單元0。As the HRD initialization point, it is called access unit 0.

5. 選擇包括時序資訊之SEI訊息。選擇緩衝週期SEI訊息,該SEI訊息在存取單元0中經寫碼且應用至如由applicable_operation_points( )語法結構所指示的TargetOp。對於自存取單元0開始之BitstreamToDecode的每一存取單元,選擇係與存取單元相關聯且應用至如由applicable_operation_points( )語法結構指示之TargetOp的圖像時序SEI訊息,且在SubPicCpbFlag等於1且sub_pic_cpb_params_in_pic_timing_sei_flag等於0時,選擇係與存取單元中之解碼單元相關聯且應用至如由applicable_operation_points( )語法結構指示的TargetOp的子圖像時序SEI訊息。5. Select the SEI message that includes the timing information. A buffering period SEI message is selected, which is coded in access unit 0 and applied to TargetOp as indicated by the intellectual_operation_points( ) syntax structure. For each access unit of BitstreamToDecode starting from access unit 0, the selection system is associated with the access unit and applied to the image timing SEI message as TargetOp as indicated by the applicable_operation_points( ) syntax structure, and is equal to 1 in SubPicCpbFlag and When sub_pic_cpb_params_in_pic_timing_sei_flag is equal to 0, the selection is associated with the decoding unit in the access unit and applied to the sub-picture timing SEI message of TargetOp as indicated by the applicable_operation_points() syntax structure.

6. 選擇SchedSelIdx之值。所選擇之SchedSelIdx應在0至cpb_cnt_minus1[TargetDecHighestTid]之範圍內(包括0及cpb_cnt_minus1[TargetDecHighestTid]),其中可在如上文所選擇之sub_layer_hrd_parameters(TargetDecHighestTid)語法結構中找到cpb_cnt_minus1[TargetDecHighestTid]。6. Select the value of SchedSelIdx. The selected SchedSelIdx should be in the range of 0 to cpb_cnt_minus1[TargetDecHighestTid] (including 0 and cpb_cnt_minus1[TargetDecHighestTid]), wherein cpb_cnt_minus1[TargetDecHighestTid] can be found in the sub_layer_hrd_parameters(TargetDecHighestTid) syntax structure as selected above.

7. 選擇初始CPB移除延遲及延遲偏移,且可自BitstreamToDecode捨棄與存取單元0相關聯的TFD存取單元。若存取單元0中之經寫碼圖像具有等於CRA_NUT或BLA_W_LP的nal_unit_type,且所選擇緩衝週期SEI訊息中的rap_cpb_params_present_flag等於1,則選擇由對應於NalHrdModeFlag之initial_cpb_removal_delay[SchedSelIdx]及initial_cpb_removal_delay_offset[SchedSelIdx]表示的預設初始CPB移除延遲及延遲偏移(在此狀況下,變數DefaultInitCpbParamsFlag被設定為等於1)抑或由對應於NalHrdModeFlag之initial_alt_cpb_removal_delay[SchedSelIdx]及initial_alt_cpb_removal_delay_offset[SchedSelIdx]表示的替代性初始7. The initial CPB removal delay and delay offset are selected, and the TFD access unit associated with access unit 0 can be discarded from BitstreamToDecode. If the coded picture in access unit 0 has nal_unit_type equal to CRA_NUT or BLA_W_LP, and rap_cpb_params_present_flag in the selected buffer period SEI message is equal to 1, the selection is represented by initial_cpb_removal_delay[SchedSelIdx] and initial_cpb_removal_delay_offset[SchedSelIdx] corresponding to NalHrdModeFlag Preset initial CPB removal delay and delay offset (in this case, the variable DefaultInitCpbParamsFlag is set equal to 1) or an alternative initial represented by initial_alt_cpb_removal_delay[SchedSelIdx] and initial_alt_cpb_removal_delay_offset[SchedSelIdx] corresponding to NalHrdModeFlag CPB移除延遲及延遲偏移(在此狀況下,變數DefaultInitCpbParamsFlag被設定為等於0),且在後一狀況下自BitstreamToDecode捨棄與存取單元0相關聯之TFD存取單元,且將結果指派至BitstreamToDecode。否則,選擇預設初始CPB移除延遲及延遲偏移(在此狀況下,變數DefaultInitCpbParamsFlag被設定為等於1)。CPB removal delay and delay offset (in this case, the variable DefaultInitCpbParamsFlag is set equal to 0), and in the latter case, the TFD access unit associated with access unit 0 is discarded from BitstreamToDecode and the result is assigned to BitstreamToDecode. Otherwise, the preset initial CPB removal delay and delay offset are selected (in this case, the variable DefaultInitCpbParamsFlag is set equal to 1).

所進行之位元流一致性測試的數目等於N1 * N2 * N3 *(N4 * 2+N5),其中N1、N2、N3、N4及N5的值被指定如下。 The number of bit stream conformance tests performed is equal to N1 * N2 * N3 * (N4 * 2 + N5), where the values of N1, N2, N3, N4, and N5 are specified as follows.

- N1係受測位元流中所含有之操作點的數目。 - N1 is the number of operating points contained in the measured bit stream.

- 若Bitstream ToDecode係類型I位元流,則N2等於1,否則(BitstreamToDecode係類型II位元流),N2等於2。 - If Bitstream ToDecode is a type I bit stream, then N2 is equal to 1, otherwise (BitstreamToDecode is a type II bit stream) and N2 is equal to 2.

- N3等於cpb_cnt_minus1[TargetDecHighestTid]+1。 - N3 is equal to cpb_cnt_minus1[TargetDecHighestTid] + 1.

- N4係與適用於BitstreamToDecode中之TargetOp的緩衝週期SEI訊息相關聯的存取單元之數目,其中此等存取單元中之每一者中的經寫碼圖像具有等於CRA_NUT或BLA_W_LP的nal_unit_type,且適用於TargetOp的相關聯緩衝週期SEI訊息具有等於1的rap_cpb_params_present_flag。 - N4 is the number of access units associated with a buffering period SEI message for TargetOp in BitstreamToDecode, wherein the coded image in each of the access units has a nal_unit_type equal to CRA_NUT or BLA_W_LP, And the associated buffering period SEI message applicable to TargetOp has rap_cpb_params_present_flag equal to one.

- N5係與適用於BitstreamToDecode中之TargetOp的緩衝週期SEI訊息相關聯的存取單元之數目,其中此等存取單元中之每一者中的經寫碼圖像具有不等於CRA_NUT及BLA_W_LP中之一者的nal_unit_type,或適用於TargetOp的相關聯緩衝週期SEI訊息具有等於0的rap_cpb_params_present_flag。 - N5 is the number of access units associated with a buffering period SEI message for TargetOp in BitstreamToDecode, wherein the coded image in each of the access units has a value other than CRA_NUT and BLA_W_LP The nal_unit_type of one, or the associated buffering period SEI message applicable to TargetOp has rap_cpb_params_present_flag equal to zero.

當BitstreamToDecode係類型II位元流時,若選擇緊跟在條件「if(vcl_hrd_parameters_present_flag)」之後的sub_layer_hrd_parameters(TargetDecHighestTid)語法結構,則測試在展示於圖C-1中之類型I一致性點處進行,且針對輸入位元速率及CPBWhen BitstreamToDecode is a type II bit stream, if the sub_layer_hrd_parameters(TargetDecHighestTid) syntax structure immediately following the condition "if(vcl_hrd_parameters_present_flag)" is selected, the test is performed at the type I coincidence point shown in Figure C-1. And for input bit rate and CPB 儲存僅計數VCL及填充符資料NAL單元;否則選擇緊跟在條件「if(nal_hrd_parameters_present_flag)」之後的(sub_layer_hrd_parameters(TargetDecHighestTid)語法結構,測試在展示於圖C-1中之類型II一致性點處進行,且針對輸入位元速率及CPB儲存計數(類型II NAL單元流的)所有NAL單元或(位元組流的)所有位元組。Stores only the VCL and padding data NAL units; otherwise, the sub_layer_hrd_parameters(TargetDecHighestTid) syntax structure immediately following the condition "if(nal_hrd_parameters_present_flag)" is selected, and the test is performed at the type II coincidence point shown in Figure C-1. And for all NAL units or (of a byte stream) all bytes of the input bit rate and CPB store count (of type II NAL unit streams).

註釋3- 對於VBR狀況(cbr_flag[SchedSelIdx]等於0)下之InitCpbRemovalDelay[SchedSelIdx]、BitRate[SchedSelIdx]及CpbSize[SchedSelIdx]的相同值,藉由展示於圖C-1中之類型II一致性點的SchedSelIdx之值建立的NAL HRD參數足以亦建立展示於圖C-1中之類型I一致性點的VCL HRD一致性。此係因為至類型I一致性點中之資料流係至類型II一致性點中之資料流的子集,且因為對於VBR狀況而言CPB被允許變為空的且保持為空直至下一圖像經排程以開始到達的時間為止。舉例而言,當使用指定於條款2至9中之解碼程序解碼與指定於附錄A中之設定檔中之一或多者一致的經寫碼視訊序列時,當對於類型II一致性點提供不僅屬於子條款A.4.2之項c)中為了設定檔一致性而對NAL HRD參數設定的界限內而且屬於子條款A.4.2之項b)中為了設定檔致一性而對VCL HRD參數設定的界限內的NAL HRD參數時,亦確保類型I一致性點之VCL HRD的一致性屬於子條款A.4.2的項b)之界限內。 NOTE 3 – For the same values of InitCpbRemovalDelay[SchedSelIdx], BitRate[SchedSelIdx] and CpbSize[SchedSelIdx] for the VBR condition (cbr_flag[SchedSelIdx] equal to 0), by the type II coincidence point shown in Figure C-1 The NAL HRD parameter established by the value of SchedSelIdx is sufficient to also establish the VCL HRD consistency of the type I consistency point shown in Figure C-1. This is because the data stream in the type I consistency point is tied to a subset of the data stream in the Type II consistency point, and because the CPB is allowed to become empty for the VBR condition and remains empty until the next graph Like the time of scheduling to start arriving. For example, when using a decoding program specified in clauses 2 through 9 to decode a coded video sequence that is consistent with one or more of the profiles specified in Appendix A, when providing not only for type II consistency points In the sub-clause A.4.2, item c), for the purpose of setting the file consistency, within the limits set for the NAL HRD parameter and belonging to sub-clause A.4.2, b), the VCL HRD parameter is set for the purpose of setting the file. The NAL HRD parameters within the limits also ensure that the conformance of the VCL HRD of the Type I consistency point falls within the bounds of item b) of subclause A.4.2.

在VCL NAL單元以及對應緩衝週期及圖像時序SEI訊息中涉及之所有視訊參數集、序列參數集及圖像參數集應在位元流中(藉由非VCL NAL單元)抑或藉由在此規範中未指定的其他構件以及時方式傳遞至HRD。 All video parameter sets , sequence parameter sets, and image parameter sets involved in the VCL NAL unit and corresponding buffer period and picture timing SEI messages shall be in the bit stream (by non-VCL NAL units) or by specification Other components not specified in the time are passed to the HRD in a timely manner.

在附錄C、D及E中,當非VCL NAL單元(或該等NAL單元中之僅一些)藉由未由此規範指定的其他構件傳遞至解碼器(或至HRD)時,彼 等NAL單元之「存在」的規範亦被滿足。為了對位元進行計數,僅計數實際存在於位元流中之適當位元。 In Appendix C, D, and E, when non-VCL NAL units (or only some of the NAL units) are passed to the decoder (or to the HRD) by other components not specified by this specification, The specification of the "presence" of the NAL unit is also satisfied. In order to count the bits, only the appropriate bits actually present in the bitstream are counted.

註釋1- 作為實例,藉由若編碼器決定在位元流中傳遞非VCL NAL單元則指示位元流中之兩個點(非VCL NAL單元將在該兩個點間存在於位元流中),可達成透過不同於在位元流中之存在之手段傳遞之非VCL NAL單元與存在於位元流中之NAL單元的同步。 NOTE 1 As an example, if the encoder decides to pass a non-VCL NAL unit in the bitstream, it indicates two points in the bitstream (non-VCL NAL units will exist in the bitstream between the two points) Synchronization of non-VCL NAL units communicated by means other than the presence in the bit stream with NAL units present in the bit stream can be achieved.

當透過不同於在位元流內之存在之某手段傳遞非VCL NAL單元之內容以供應用時,不要求非VCL NAL單元之內容的表示來使用與此規範中指定之語法相同的語法。 When the content of a non-VCL NAL unit is passed for delivery by some means other than the presence within the bitstream, the representation of the content of the non-VCL NAL unit is not required to use the same syntax as specified in this specification.

註釋2- 當在位元流內含有HRD資訊時,有可能僅基於位元流內所含有之資訊來驗證位元流與此子條款之要求的一致性。當HRD資訊並非存在於位元流中時,如對於所有「獨立」類型I位元流之狀況,可僅在藉由此規範中未指定之某其他手段供應了HRD資料時驗證一致性。 NOTE 2 – When HRD information is contained in a bitstream, it is possible to verify the consistency of the bitstream with the requirements of this subclause based solely on the information contained in the bitstream. When the HRD information does not exist in the bitstream, such as for all "independent" type I bitstream conditions, the consistency can be verified only when the HRD data is supplied by some other means not specified in the specification.

HRD含有經寫碼圖像緩衝器(CPB)、瞬時解碼程序、經解碼圖像緩衝器(DPB)及如圖C-2中所展示的輸出裁切。 The HRD contains a coded image buffer (CPB), an instantaneous decoding program, a decoded image buffer (DPB), and an output crop as shown in Figure C-2.

對於每一位元流一致性測試,CPB大小(位元之數目)係如由等式E-46指定的CpbSize[SchedSelIdx],其中SchedSelIdx及HRD參數係如此子條款中上文所指定而經選擇。DPB大小(圖像儲存緩衝器之數目)係sps_max_dec_pic_buffering[TargetDecHighestTid]。 For each bitstream conformance test, the CPB size (number of bits) is as specified by equation E-46, CpbSize[SchedSelIdx], where the SchedSelIdx and HRD parameters are selected as specified above in these subclauses. . The DPB size (the number of image storage buffers) is sps_max_dec_pic_buffering[TargetDecHighestTid].

變數SubPicCpbPreferredFlag由外部構件指定,抑或在未由外部構件指定時設定為0。 The variable SubPicCpbPreferredFlag is specified by an external component or is set to 0 when not specified by an external component.

變數SubPicCpbFlag被導出如下:SubPicCpbFlag=SubPicCpbPreferredFlag && sub_pic_cpb_params_present_flag (C-1) The variable SubPicCpbFlag is derived as follows: SubPicCpbFlag=SubPicCpbPreferredFlag && sub_pic_cpb_params_present_flag (C-1)

若SubPicCpbFlag等於0,則CPB於存取單元級別操作,且每一解 碼單元係存取單元。否則,CPB於子圖像級別操作,且每一解碼單元係存取單元之子集。 If SubPicCpbFlag is equal to 0, CPB operates at the access unit level, and each solution The code unit is an access unit. Otherwise, the CPB operates at the sub-picture level and each decoding unit is a subset of the access units.

HRD如下操作。與根據指定之到達排程流入CPB中之解碼單元相關聯的資料係由HSS來遞送。在解碼單元之CPB移除時間藉由瞬時解碼程序瞬時地移除並解碼與每一解碼單元相關聯之資料。每一經解碼圖像被置放於DPB中。如子條款C.3.1或子條款C.5.2中所指定自DPB移除經解碼圖像。 HRD operates as follows. The data associated with the decoding unit flowing into the CPB according to the specified arrival schedule is delivered by the HSS. The data associated with each decoding unit is instantaneously removed and decoded by the instantaneous decoding procedure at the CPB removal time of the decoding unit. Each decoded image is placed in the DPB. The decoded image is removed from the DPB as specified in subclause C.3.1 or subclause C.5.2.

在子條款C.2中指定了CPB的針對每一位元流一致性測試的操作。在條款2至9中指定了瞬時解碼器操作。在子條款C.3中指定了DPB的針對每一位元流一致性測試的操作。在子條款C.3.2及子條款C.5.2中指定了用於每一位元流一致性測試之輸出裁切。 The operation of the CPB for each bitstream conformance test is specified in subclause C.2. The instantaneous decoder operation is specified in clauses 2 through 9. The operation of the DPB for each bitstream conformance test is specified in subclause C.3. The output cropping for each bitstream conformance test is specified in subclause C.3.2 and subclause C.5.2.

與列舉之遞送排程之數目及其相關聯位元速率及緩衝器大小相關的HSS及HRD資訊被指定於子條款E.1.1、E.1.2、E.2.1及E.2.2中。如在子條款D.1.1及D.2.1中指定的緩衝週期SEI訊息所指定來初始化HRD。解碼單元自CPB之移除時序及解碼圖像自DPB之輸出時序被指定於如子條款D.1.2及D.2.1中所指定的圖像時序SEI訊息中。與特定解碼單元相關之所有時序資訊應在該解碼單元之CPB移除時間之前到達。 The HSS and HRD information relating to the number of listed delivery schedules and their associated bit rate and buffer size is specified in subclauses E.1.1, E.1.2, E.2.1 and E.2.2. The HRD is initialized as specified by the buffering period SEI message specified in subclauses D.1.1 and D.2.1. The timing of the removal of the decoding unit from the CPB and the output timing of the decoded image from the DPB are specified in the image timing SEI message as specified in subclauses D.1.2 and D.2.1. All timing information associated with a particular decoding unit should arrive before the CPB removal time of the decoding unit.

對位元流一致性之要求指定於子條款C.4中,且如子條款C.5中所指定,將HRD用以檢查解碼器的一致性。 The requirement for bitstream consistency is specified in subclause C.4, and HRD is used to check the consistency of the decoder as specified in subclause C.5.

註釋3- 雖然在假定用以產生位元流之所有圖像速率及時脈與在位元流中發信之值準確匹配的情況下保證一致性,但在真實系統中,此等圖像速率及時脈中之每一者可不同於經發信或指定之值。 Note 3 - Although it is assumed that all image rate and time streams used to generate the bit stream are consistent with the value of the signal transmitted in the bit stream, in real systems, these image rates are timely and timely. Each of them may be different from the value sent or specified.

此附錄中之所有算術以實值進行,使得不可傳播捨入誤差。舉例而言,恰在解碼單元之移除之前或之後的CPB中的位元數目不一定為整數。 All of the arithmetic in this appendix is done with real values so that rounding errors cannot be propagated. For example, the number of bits in the CPB just before or after the removal of the decoding unit is not necessarily an integer.

變數tc被如下導出且被稱作時脈刻度(tick):tc=num_units_in_tick÷time_scale (C-1) The variable t c is derived as follows and is called the tick: t c = num_units_in_tick÷time_scale (C-1)

變數tc_sub被如下導出且被稱作子圖像時脈刻度:tc_sub=tc÷(tick_divisor_minus2+2) (C-2) The variable t c_sub is derived as follows and is referred to as the sub-image clock scale: t c_sub =t c ÷(tick_divisor_minus2+2) (C-2)

在此附錄中為了表達約束而指定以下內容: In this appendix, specify the following to express constraints:

- 使存取單元n係解碼次序上之第n個存取單元,其中第一存取單元係存取單元0(亦即,第0個存取單元)。 - causing the access unit n to be the nth access unit in decoding order, wherein the first access unit is an access unit 0 (i.e., the 0th access unit).

- 使圖像n係存取單元n之經寫碼圖像或經解碼圖像。 - Let the image n be a coded image or a decoded image of the access unit n.

- 使解碼單元m係解碼次序上之第m個解碼單元,其中第一解碼單元係解碼單元0。 - causing the decoding unit m to be the mth decoding unit in decoding order, wherein the first decoding unit is decoding unit 0.

上文對HEVC工作草案8之章節C.1的修改可闡明位元流一致性測試。如上文所指示,當為了HEVC工作草案8中之位元流一致性測試調用解碼程序時,因為TargetDecLayerIdSet及TargetDecHighestTid的值未被恰當設定,故語法元素之語義並未被清楚地指定。對章節C.1之修改闡明了TargetDecLayerIdSet及TargetDecHighestTid的定義。 The above modification of Section C.1 of HEVC Working Draft 8 clarifies the bitstream conformance test. As indicated above, when the decoding program is called for the bitstream conformance test in HEVC Working Draft 8, since the values of TargetDecLayerIdSet and TargetDecHighestTid are not properly set, the semantics of the syntax elements are not clearly specified. The modification of Section C.1 clarifies the definitions of TargetDecLayerIdSet and TargetDecHighestTid.

如在上文對HEVC工作草案8之章節C.1之修改中所展示,器件可執行HRD操作(諸如,位元流一致性測試),該HRD操作選擇操作點,判定操作點的層識別符之目標集合(TargetDecLayerIdSet)及最高時間識別符(TargetDecHighestTid)。此外,在HRD操作中,器件可選擇適用於操作點之HRD參數的集合,且使用HRD參數之所選擇集合來組態執行解碼程序的HRD。適用於特定操作點的HRD參數之集合可包括指定初始CPB移除延遲、CPB大小、位元速率、初始DPB輸出延遲、DPB大小等等的參數。HRD操作可包括執行解碼程序。 As shown above in the modification of section C.1 of HEVC Working Draft 8, the device may perform an HRD operation (such as a bitstream conformance test) that selects an operating point and determines the layer identifier of the operating point. The target set (TargetDecLayerIdSet) and the highest time identifier (TargetDecHighestTid). Further, in HRD operation, the device may select a set of HRD parameters suitable for the operating point and configure the HRD to execute the decoding program using the selected set of HRD parameters. The set of HRD parameters applicable to a particular operating point may include parameters specifying an initial CPB removal delay, a CPB size, a bit rate, an initial DPB output delay, a DPB size, and the like. The HRD operation can include performing a decoding process.

在一些實例中,器件可自VPS中的HRD參數(例如,hrd_parameters( )語法結構)之一或多個集合及SPS中之HRD參數的集合中選擇適用於操作點的HRD參數之集合。在一些實例中,當特定操 作點之層識別符集合含有存在於與SPS相關聯之經寫碼視訊序列中的所有層識別符之集合時,器件可判定SPS中之HRD參數的集合適用於該操作點。此外,在一些實例中,器件可回應於判定操作點之目標層識別符集合(例如,TargetDecLayerIdSet)僅含有值0而選擇SPS中的HRD參數的集合。在一些實例中,器件可回應於判定層識別符(例如,op_layer_id[ ][ ])之集合相同於操作點之目標層識別符集合(例如,TargetDecLayerIdSet)而選擇SPS中的HRD參數之集合。 In some examples, the device may select a set of HRD parameters suitable for the operating point from one or more of the HRD parameters (eg, hrd_parameters( ) syntax structure) in the VPS and the set of HRD parameters in the SPS. In some instances, when specific operations When the set of layer identifiers contains a set of all layer identifiers present in the coded video sequence associated with the SPS, the device can determine that the set of HRD parameters in the SPS is applicable to the operating point. Moreover, in some examples, the device may select a set of HRD parameters in the SPS in response to determining that the target layer identifier set (eg, TargetDecLayerIdSet) of the operating point contains only a value of zero. In some examples, the device may select a set of HRD parameters in the SPS in response to the set of decision layer identifiers (eg, op_layer_id[ ][ ]) being the same as the target layer identifier set of the operating point (eg, TargetDecLayerIdSet).

此外,如在上文對HEVC工作草案8之章節C.1的修改及本發明之其他部分中所展示,器件可自SPS解碼語法元素之陣列(sps_max_dec_pic_buffering[ ]),該等語法元素各自指示HRD之DPB的最大所要求大小。器件可基於目標最高時間識別符而判定陣列中之特定語法元素(亦即,sps_max_dec_pic_buffering[TargetDecHighestTid])。如上文所指示,DPB中的圖像儲存緩衝器之數目由特定語法元素來指示(亦即,DPB大小(圖像儲存緩衝器的數目)係sps_max_dec_pic_buffering[TargetDecHighestTid])。 Moreover, as shown above in the modification of section C.1 of HEVC Working Draft 8 and elsewhere in the present invention, the device may decode an array of syntax elements (sps_max_dec_pic_buffering[ ]) from the SPS, each of which indicates HRD The maximum required size of the DPB. The device can determine a particular syntax element in the array based on the target highest time identifier (ie, sps_max_dec_pic_buffering[TargetDecHighestTid]). As indicated above, the number of image storage buffers in the DPB is indicated by a particular syntax element (ie, the DPB size (the number of image storage buffers) is sps_max_dec_pic_buffering[TargetDecHighestTid]).

此外,解碼程序可解碼包括HRD參數之所選擇集合的HRD參數語法結構(hrd_parameters( ))。HRD參數之所選擇集合包括語法元素之陣列(cbp_cnt_minus1[]),該等語法元素各自指示位元流中之替代性CPB規範的數目。對HEVC工作草案8之章節C.1的修改闡明了當器件執行HRD操作時,器件可基於目標最高時間識別符(TargetDecHighestTid)來選擇陣列中的特定語法元素(cpb_cnt_minus1[TargetDecHighestTid]),且可在0至特定語法元素之值的範圍內選擇一排程器選擇索引(SchedSelIdx)。器件可至少部分基於該排程器選擇索引來判定HRD之CPB的初始CPB移除延遲。 In addition, the decoding program can decode the HRD parameter syntax structure (hrd_parameters( )) that includes the selected set of HRD parameters. The selected set of HRD parameters includes an array of syntax elements (cbp_cnt_minus1[]), each of which indicates the number of alternative CPB specifications in the bitstream. A modification of Section C.1 of HEVC Working Draft 8 clarifies that when the device performs an HRD operation, the device can select a particular syntax element (cpb_cnt_minus1[TargetDecHighestTid]) in the array based on the target highest time identifier (TargetDecHighestTid), and Select a scheduler selection index (SchedSelIdx) from 0 to the value of the specific syntax element. The device can determine an initial CPB removal delay for the CPB of the HRD based at least in part on the scheduler selection index.

HEVC工作草案8之章節C.2.1係關於為了位元流一致性自DPB移除圖像。根據本發明之一或多個實例技術,HEVC工作草案8之章節 C.2.1可如下作出改變:此子條款中之規範獨立地應用至DPB參數的如子條款C.1中所指定而選擇之每一集合。 Section C.2.1 of HEVC Working Draft 8 relates to the removal of images from the DPB for bitstream consistency. According to the present invention, one or more examples of techniques HEVC Working Draft Section C.2.1 8 of changes made as follows: in this subclause is applied independently to the specifications as specified in subclause C.1 selected parameters of DPB Every collection.

在解碼當前圖像之前(但在剖析當前圖像之第一圖塊的圖塊標頭之後)自DPB移除圖像瞬時地發生於存取單元n(含有當前圖像)之第一解碼單元的CPB移除時間,且如下繼續進行。 Removing the image from the DPB before the decoding of the current image (but after parsing the tile header of the first tile of the current image) occurs instantaneously in the first decoding unit of the access unit n (containing the current image) The CPB removal time is continued as follows.

調用如子條款8.3.2中指定之針對參考圖像集的解碼程序。 The decoding procedure for the reference image set as specified in subclause 8.3.2 is invoked.

若當前圖像係IDR或BLA圖像,則以下情形適用: If the current image is an IDR or BLA image, the following applies:

1. 在IDR或BLA圖像並非經解碼之第一圖像且自作用中序列參數集導出之pic_width_in_luma_samples或pic_height_in_luma_samples或sps_max_dec_pic_buffering[TargetDecHighestTid]的值分別不同於自針對前一圖像係作用中之序列參數集導出之pic_width_in_luma_samples或pic_height_in_luma_samples或sps_max_dec_pic_buffering[TargetDecHighestTid]的值時,無論no_output_of_prior_pics_flag的實際值如何,HRD將no_output_of_prior_pics_flag推斷為等於1。 1. The value of pic_width_in_luma_samples or pic_height_in_luma_samples or sps_max_dec_pic_buffering[ TargetDecHighestTid ] derived from the IDR or BLA image that is not the decoded first image and derived from the active sequence parameter set is different from the sequence parameter in the previous image system. When the value of the derived pic_width_in_luma_samples or pic_height_in_luma_samples or sps_max_dec_pic_buffering[ TargetDecHighestTid ] is set, the HRD infers no_output_of_prior_pics_flag equal to 1 regardless of the actual value of the no_output_of_prior_pics_flag.

註釋- 就pic_width_in_luma_samples、pic_height_in_luma_samples或sps_max_dec_pic_buffering[TargetDecHighestTid]之改變而言,解碼器實施應試圖比HRD更得體地處置圖像或DPB大小改變。 Note - In terms of changes to pic_width_in_luma_samples, pic_height_in_luma_samples, or sps_max_dec_pic_buffering[TargetDecHighestTid] , the decoder implementation should attempt to handle image or DPB size changes more appropriately than HRD.

2. 當no_output_of_prior_pics_flag等於1或被推斷為等於1時,DPB中之所有圖像儲存緩衝器被清空而不輸出其含有之圖像,且DPB飽和度被設定為0。 2. When no_output_of_prior_pics_flag is equal to 1 or is inferred to be equal to 1, all image storage buffers in the DPB are emptied without outputting the image it contains, and the DPB saturation is set to zero.

自DPB中移除以下兩條件皆為真的所有圖像k: Remove all images k from the DPB that are true for both of the following conditions:

- 圖像k被標註為「不用於參考」, - Image k is marked as "not for reference".

- 圖像k具有等於0之PicOutputFlag,或其DPB輸出時間小於或等於當前圖像n之第一解碼單元(表示為解碼單元m)的CPB移除時間;亦即,to,dpb(k)<=tr(m) - PicOutputFlag image having k equal to 0, the DPB output time, or less than or equal to the current image n of the first decoding unit (decoding unit denoted as m) CPB removal time; i.e., t o, dpb (k) <=t r (m)

當自DPB移除一圖像時,DPB飽和度被遞減1。 When an image is removed from the DPB, the DPB saturation is decremented by one.

如本發明中其他地方所指示,在HRD操作中可能未恰當選擇參數sps_max_dec_pic_buffering[i]。如上文所展示,HEVC工作草案8僅指示sps_max_dec_pic_buffering[i]而非sps_max_dec_pic_buffering[TargetDecHighestTid]。HEVC工作草案8並不指示在章節C.2.1中的索引i之語義。根據本發明之一或多項技術,將TargetDecHighestTid指定為sps_max_dec_pic_buffering[i]的索引i可確保在執行自DPB移除圖像之HRD操作時在sps_max_dec_pic_buffering[i]中使用等於TargetDecHighestTid之清楚指定之值的i。 As indicated elsewhere in the present invention, the parameter sps_max_dec_pic_buffering[i] may not be properly selected in the HRD operation. As shown above, HEVC Working Draft 8 only indicates sps_max_dec_pic_buffering[i] instead of sps_max_dec_pic_buffering[TargetDecHighestTid]. The HEVC Working Draft 8 does not indicate the semantics of the index i in Section C.2.1. According to one or more techniques of the present invention, specifying the TargetDecHighestTid as the index i of sps_max_dec_pic_buffering[i] ensures that i is equal to the clearly specified value of TargetDecHighestTid in sps_max_dec_pic_buffering[i] when performing the HRD operation of the DPB removal image. .

如上文對HEVC工作草案8之章節C.2.1的修改中所展示,器件可自對於當前圖像在作用中之SPS解碼語法元素之第一陣列(sps_max_dec_pic_buffering[]),該等語法元素各自指示HRD之DPB的最大所要求大小。此外,器件可自對於前一圖像在作用中之SPS解碼語法元素之第二陣列(sps_max_dec_pic_buffering[]),該等語法元素各自指示HRD之DPB的最大所要求大小。器件可基於目標最高時間識別符(TargetDecHighestTid)判定第一陣列中之第一語法元素(sps_max_dec_pic_buffering[TargetDecHighestTid])。此外,器件可基於目標最高時間識別符判定第二陣列中之第二語法元素(sps_max_dec_pic_buffering[TargetDecHighestTid])。在當前圖像係瞬時解碼再新(IDR)圖像或斷鏈存取(BLA)圖像且第一語法元素之值不同於第二語法元素的值時,器件可推斷出第三語法元素(no_output_of_prior_pics_flag)的值而無關於由第三語法元素指示的值。第三語法元素可指定在解碼IDR圖像或BLA圖像之後如何處理DPB中的先前解碼之圖像。 As demonstrated above in the modification of section C.2.1 of HEVC Working Draft 8, the device may be self-instructed from the first array of SPS decoding syntax elements (sps_max_dec_pic_buffering[]) for the current image in effect, each of which indicates HRD The maximum required size of the DPB. In addition, the device may decode a second array of SPS decoding syntax elements (sps_max_dec_pic_buffering[]) from the active SPS for the previous image, each of the syntax elements indicating the maximum required size of the DPB of the HRD. The device may determine a first syntax element (sps_max_dec_pic_buffering[TargetDecHighestTid]) in the first array based on the target highest time identifier (TargetDecHighestTid). Additionally, the device can determine a second syntax element in the second array (sps_max_dec_pic_buffering[TargetDecHighestTid]) based on the target highest time identifier. The device may infer a third syntax element when the current image is an Instantaneous Decoding (IDR) image or a Broken Link Access (BLA) image and the value of the first syntax element is different from the value of the second syntax element ( The value of no_output_of_prior_pics_flag) is independent of the value indicated by the third syntax element. The third syntax element may specify how to process the previously decoded image in the DPB after decoding the IDR image or the BLA image.

IDR圖像可係每一圖塊區段具有等於IDR_W_LP或IDR_N_LP之 nal_unit_type的隨機存取點(RAP)圖像。IDR圖像僅含有I圖塊,且可係位元流中的在解碼次序上之第一圖像,或可出現於位元流中的稍後處。具有等於IDR_N_LP之nal_unit_type的IDR圖像並不具有存在於位元流中的相關聯前置圖像。前置圖像係一在輸出次序上先於相關聯RAP圖像的圖像。具有等於IDR_W_LP之nal_unit_type的IDR圖像並不具有存在於位元流中之相關聯的標記為捨棄(TFD)圖像,但可具有在位元流中之相關聯DLP圖像。 The IDR image may have equal to IDR_W_LP or IDR_N_LP for each tile segment. Random access point (RAP) image of nal_unit_type. The IDR image contains only I tiles and may be the first image in the bitstream in decoding order, or may appear later in the bitstream. An IDR image having nal_unit_type equal to IDR_N_LP does not have an associated preamble image present in the bitstream. The pre-image is an image that precedes the associated RAP image in output order. An IDR image having a nal_unit_type equal to IDR_W_LP does not have an associated mark-off (TFD) image present in the bitstream, but may have an associated DLP image in the bitstream.

BLA圖像係每一圖塊片段具有等於BLA_W_TFD、BLA_W_DLP或BLA_N_LP之nal_unit_type的RAP圖像。具有等於BLA_W_TFD之nal_unit_type的BLA圖像可具有存在於位元流中之相關聯TFD圖像。具有等於BLA_N_LP之nal_unit_type的BLA圖像並不具有存在於位元流中之相關聯前置圖像。具有等於BLA_W_DLP之nal_unit_type的BLA圖像並不具有存在於位元流中之相關聯TFD圖像,但可具有在位元流中的相關聯DLP圖像。 The BLA image system has a RAP image of nal_unit_type equal to BLA_W_TFD, BLA_W_DLP or BLA_N_LP per tile segment. A BLA image having a nal_unit_type equal to BLA_W_TFD may have an associated TFD image present in the bitstream. A BLA image having a nal_unit_type equal to BLA_N_LP does not have an associated preamble image present in the bitstream. A BLA image having a nal_unit_type equal to BLA_W_DLP does not have an associated TFD image present in the bitstream, but may have an associated DLP image in the bitstream.

HEVC工作草案8之章節C.3描述位元流一致性操作。根據本發明之一或多個實例技術,HEVC工作草案8之章節C.3可進行如下修改:與此規範一致之經寫碼資料的位元流應達到此子條款中指定之所有要求。 Section C.3 of HEVC Working Draft 8 describes bitstream consistency operations. In accordance with one or more example techniques of the present invention, Section C.3 of HEVC Working Draft 8 may be modified as follows: The bitstream of the coded material consistent with this specification shall meet all of the requirements specified in this subclause.

應根據在此附錄外的在此規範中指定之語法、語義及約束來建構位元流。 The bitstream should be constructed according to the syntax, semantics, and constraints specified in this specification outside of this appendix.

位元流中之第一經寫碼圖像應係RAP圖像,亦即IDR圖像、CRA圖像或BLA圖像。 The first coded image in the bitstream should be a RAP image, ie an IDR image, a CRA image or a BLA image.

對於經解碼之每一當前圖像,使變數maxPicOrderCnt及minPicOrderCnt分別設定為等於以下圖像之PicOrderCntVal值的最大值及最小值: For each current image decoded, the variables maxPicOrderCnt and minPicOrderCnt are set to be equal to the maximum and minimum values of the PicOrderCntVal values of the following images:

- 當前圖像。 - The current image.

- 具有等於0之TemporalId的按解碼次序的先前圖像。 - A previous image in decoding order with a TemporalId equal to zero.

- 當前圖像之參考圖像集中的短期參考圖像。 - A short-term reference image in the reference image set of the current image.

- 具有等於1之PicOutputFlag且tr(n)<tr(currPic)且to,dpb(n)>=tr(currPic)的所有圖像n,其中currPic係當前圖像。 - all images n with a PicOutputFlag equal to 1 and t r (n) < t r (currPic) and t o,dpb (n)>=t r (currPic), where currPic is the current image.

應針對位元流一致性測試中的每一者而達到所有以下條件: All of the following conditions should be met for each of the bitstream conformance tests:

1. 對於與緩衝週期SEI訊息相關聯之每一存取單元n(其中n>0),其中△tg,90(n)由下式指定 1. for each access unit n associated with a buffering period SEI message (where n > 0), where Δt g,90 (n) is specified by

△tg,90(n)=90000 *(tr,n(n)-taf(n-1)) (C-18) Δt g,90 (n)=90000 *(t r,n (n)-t af (n-1)) (C-18)

InitCpbRemovalDelay[SchedSelIdx]之值應受如下約束。 The value of InitCpbRemovalDelay[SchedSelIdx] shall be subject to the following constraints.

- 若cbr_flag[SchedSelIdx]等於0,則InitCpbRemovalDelay[SchedSelIdx]<=Ceil(△tg,90(n))(C-19) - If cbr_flag[SchedSelIdx] is equal to 0, then InitCpbRemovalDelay[SchedSelIdx]<=Ceil(△t g,90 (n))(C-19)

- 否則(cbr_flag[SchedSelIdx]等於1),Floor(△tg,90(n))<=InitCpbRemovalDelay[SchedSelIdx]<=Ceil(△tg,90(n)) (C-20) - Otherwise (cbr_flag[SchedSelIdx] is equal to 1), Floor(Δt g,90 (n))<=InitCpbRemovalDelay[SchedSelIdx]<=Ceil(△t g,90 (n)) (C-20)

註釋4- 在每一圖像之移除時間CPB中之位元的準確數目可取決於選擇哪一緩衝週期SEI訊息來初始化HRD。編碼器必須將此情形考慮在內以確保所有所指定之約束必須被服從而無關於選擇哪一緩衝週期SEI訊息來初始化HRD,此係由於可在緩衝週期SEI訊息之任一者處初始化HRD。 NOTE 4 - The exact number of bits in the CPB at the removal time of each image may be based on which buffer period SEI message is selected to initialize the HRD. The encoder must take this into account to ensure that all specified constraints must be taken so that the HRD is initialized regardless of which buffering SEI message is selected, since the HRD can be initialized at any of the buffering period SEI messages.

2. 將CPB溢位指定為CPB中的位元的總數大於CPB大小之條件。CPB應從不溢位。 2. Specify the CPB overflow as the condition that the total number of bits in the CPB is greater than the CPB size. The CPB should never overflow.

3. 將CPB欠位指定為對於m之至少一值,解碼單元m之標稱CPB移除時間tr,n(m)小於解碼單元m之最終CPB到達時間taf(m)的條件。當low_delay_hrd_flag等於0時,CPB應從不欠位。 3. The CPB under-bit is specified as at least one value for m, the nominal CPB removal time t r,n (m) of the decoding unit m is less than the condition of the final CPB arrival time t af (m) of the decoding unit m. When low_delay_hrd_flag is equal to 0, CPB should never be under-bited.

4. 當low_delay_hrd_flag等於1時,CPB欠位可發生於解碼單元m 處。在此狀況下,含有解碼單元m之存取單元n的最終CPB到達時間taf(n)應大於含有解碼單元m之存取單元n的標稱CPB移除時間tr,n(n)。 4. When low_delay_hrd_flag is equal to 1, the CPB undershoot can occur at decoding unit m. In this case, the final CPB arrival time t af (n) of the access unit n containing the decoding unit m should be greater than the nominal CPB removal time t r,n (n) of the access unit n containing the decoding unit m.

5. 圖像之自CPB的標稱移除時間(自解碼次序上之第二圖像開始)應滿足在子條款A.4.1至A.4.2中表達之對tr,n(n)及tr(n)的約束。 5. The nominal removal time of the image from the CPB (starting from the second image in the decoding order) shall satisfy the pair of r r,n (n) and t expressed in subclauses A.4.1 to A.4.2. The constraint of r (n).

6. 對於經解碼之每一當前圖像,在調用如子條款C.3.1中指定的自DPB移除圖像的程序之後,包括經標註為「用於參考」或具有等於1之PicOutputFlag且to,dpb(n)>=tr(currPic)(其中currPic係當前圖像)之所有圖像n的DPB中的經解碼圖像之數目應小於或等於Max(0,sps_max_dec_pic_buffering[TargetDecHighestTid]-1)。 6. For each current image that is decoded, after calling a program that removes the image from the DPB as specified in subclause C.3.1, includes a PicOutputFlag labeled "for reference" or having a value equal to 1 and o, dpb (n)>=t r (currPic) (where currPic is the current image) The number of decoded images in the DPB of all images n should be less than or equal to Max (0, sps_max_dec_pic_buffering[TargetDecHighestTid]-1 ).

7. 所有參考圖像在需要用於預測時應存在於DPB中。具有等於1之OutputFlag的每一圖像在其DPB輸出時間處應存在於DPB中,除非該圖像在其輸出時間之前由指定於子條款C.3中之程序中的一者自DPB移除。 7. All reference images should be present in the DPB when needed for prediction. Each image with an OutputFlag equal to 1 shall be present in the DPB at its DPB output time, unless the image is removed from the DPB by one of the procedures specified in subclause C.3 before its output time. .

8. 對於經解碼之每一當前圖像,maxPicOrderCnt-minPicOrderCn之值應小於MaxPicOrderCntLsb/2。 8. For each current image decoded, the value of maxPicOrderCnt-minPicOrderCn should be less than MaxPicOrderCntLsb/2.

9. 係圖像之輸出時間與在輸出次序上在該圖像之後且具有等於1之PicOutputFlag的第一圖像之輸出時間之間的差的如由等式C-17給出之△to,dpb(n)的值應滿足針對位元流中的使用在條款2至9中指定的解碼程序指定之設定檔、階層及級別的在子條款A.4.1中表達的約束。 9. The Δ to given by the difference between the output time of the image and the output time of the first image after the image and having a PicOutputFlag equal to 1 in the output order, as given by Equation C-17 , The value of dpb (n) shall satisfy the constraints expressed in subclause A.4.1 for the profile, hierarchy and level specified in the bitstream using the decoding procedures specified in clauses 2-9.

如本發明中其他地方所指示,在位元流一致性操作中可能未恰當選擇參數sps_max_dec_pic_buffering[i]。在章節C.3之項6中,HEVC工作草案8指示「DPB中的經解碼圖像之數目……應小於或等於Min(0,sps_max_dec_pic_buffering[TemporalId]-1)」,其中未定義TemporalId。根據本發明之一或多項技術,將TargetDecHighestTid指定為sps_max_dec_pic_buffering[i]的索引i可確保在執行位元流一致性 操作時在sps_max_dec_pic_buffering[i]中使用等於TargetDecHighestTid之清楚指定之值的i。 As indicated elsewhere in the present invention, the parameter sps_max_dec_pic_buffering[i] may not be properly selected in the bitstream consistency operation. In item 6 of Section C.3, HEVC Working Draft 8 indicates that "the number of decoded pictures in the DPB ... should be less than or equal to Min (0, sps_max_dec_pic_buffering [TemporalId] - 1)", where TemporalId is not defined. In accordance with one or more techniques of the present invention, specifying the TargetDecHighestTid as the index i of sps_max_dec_pic_buffering[i] ensures that i equal to the clearly specified value of TargetDecHighestTid is used in sps_max_dec_pic_buffering[i] when performing the bitstream consistency operation.

當器件執行作為HRD操作之部分的解碼程序時,器件可自SPS解碼語法元素之陣列(sps_max_dec_pic_buffering[]),該等語法元素各自指示HRD之DPB的最大所要求大小。此外,作為執行HRD操作之部分,器件可基於目標最高時間識別符(TargetDecHighestTid)判定陣列中之特定語法元素。此外,如在上文對HEVC工作草案8之章節C.3的修改中所展示,器件可至少部分基於DPB中的經解碼圖像之數目是否小於或等於0與特定語法元素減去1之值的最大值而判定位元流是否與視訊寫碼標準一致。 When the device performs a decoding process that is part of the HRD operation, the device can decode an array of syntax elements (sps_max_dec_pic_buffering[]) from the SPS, each of which indicates the maximum required size of the DPB of the HRD. In addition, as part of performing the HRD operation, the device can determine a particular syntax element in the array based on the target highest time identifier (TargetDecHighestTid). Furthermore, as shown in the above amendment to section C.3 of HEVC Working Draft 8, the device may be based, at least in part, on whether the number of decoded pictures in the DPB is less than or equal to zero and the value of the specific syntax element minus one. The maximum value determines whether the bit stream is consistent with the video writing standard.

HEVC工作草案8之章節C.4描述解碼器一致性。根據本發明之一或多個實例技術,HEVC工作草案8之章節C.4可做如下改變:與此規範一致之解碼器應達到此子條款中指定之所有要求。 Section C.4 of HEVC Working Draft 8 describes decoder consistency. In accordance with one or more example techniques of the present invention, Section C.4 of HEVC Working Draft 8 may be modified as follows: A decoder consistent with this specification shall meet all of the requirements specified in this subclause.

聲稱與特定設定檔、階層及級別之一致性的解碼器應能夠以指定於附錄A中之方式成功解碼與指定於子條款C.4中之位元流一致性要求一致的所有位元流,其限制條件為VCL NAL單元以及適當緩衝週期及圖像時序SEI訊息中涉及之所有視訊參數集、序列參數集及圖像參數集被以即時方式在位元流中(藉由非VCL NAL單元)抑或藉由此規範中未指定之外部構件傳遞至解碼器。 A decoder claiming consistency with a particular profile, level, and level should be able to successfully decode all bitstreams consistent with the bitstream conformance requirements specified in subclause C.4, as specified in Appendix A. The limitation is that the VCL NAL unit and all video parameter sets , sequence parameter sets, and image parameter sets involved in the appropriate buffering period and image timing SEI message are instantaneously in the bit stream (by non-VCL NAL units). Or pass to the decoder by an external component not specified in this specification.

當位元流含有數個具有指定為保留之值的語法元素且指定了解碼器應忽略該等語法元素之值或含有該等具有保留值之語法元素的NAL單元且位元流在其他方面與此規範一致時,一致之解碼器應以與解碼器將解碼一致之位元流的方式相同之方式解碼位元流,且如指定地忽略語法元素之值或含有該等具有保留值之語法元素的NAL單元。 When a bitstream contains a number of syntax elements having values specified as reserved and specifies that the decoder should ignore the values of the syntax elements or NAL units containing the syntax elements with reserved values and the bitstream is otherwise When this specification is consistent, the consistent decoder shall decode the bitstream in the same manner as the decoder shall consistently decode the bitstream, and if specified, ignore the value of the syntax element or contain such syntax elements with reserved values. NAL unit.

存在可由解碼器聲稱之兩種類型之一致性:輸出時序一致性及輸出次序一致性。 There are two types of consistency that can be claimed by the decoder: output timing consistency and output order consistency.

為了檢查解碼器之一致性,藉由假想流排程器(HSS)將與所聲稱設定檔、階層及級別(如由子條款C.4所指定)一致的測試位元流遞送至HRD及受測解碼器(DUT)兩者。由HRD輸出之所有圖像亦應由DUT輸出,且對於HRD輸出之每一圖像,由DUT針對對應圖像輸出的所有樣本之值應等於由HRD輸出之樣本的值。 In order to check the consistency of the decoder, a test bit stream consistent with the claimed profile, hierarchy and level (as specified in subclause C.4) is delivered to the HRD and tested by a hypothetical stream scheduler (HSS). Both decoders (DUTs). All images output by the HRD should also be output by the DUT, and for each image of the HRD output, the value of all samples output by the DUT for the corresponding image should be equal to the value of the sample output by the HRD.

對於輸出時序解碼器一致性,HSS如上文所描述操作,具有僅選自位元速率及CPB大小對於所指定設定檔、階層及級別如附錄A中所指定地受到限制的SchedSelIdx之值的子集之遞送排程,或具有位元速率及CPB大小如附錄A中所指定地受到限制的如下文所指定的「經內插」遞送排程。將同一遞送排程用於HRD及DUT兩者。 For output timing decoder consistency, the HSS operates as described above with a subset of only the value of the SchedSelIdx selected from the bit rate and CPB size for the specified profile, level, and level as specified in Appendix A. Delivery schedule, or "interpolated" delivery schedule as specified below, with bit rate and CPB size as specified in Appendix A. The same delivery schedule is used for both HRD and DUT.

當存在cpb_cnt_minus1[TargetDecHighestTid]大於0之HRD參數及緩衝週期SET訊息時,解碼器應能夠如下解碼如自使用被指定為具有峰值位元速率r、CPB大小c(r)及初始CPB移除延遲(f(r)÷r)之「內插」遞送排程操作的HSS遞送的位元流:α=(r-BitRate[SchedSelIdx-1])÷(BitRate[SchedSelIdx]-BitRate[SchedSelIdx-1]), (C-22) When there is an HRD parameter and a buffer period SET message with cpb_cnt_minus1[ TargetDecHighestTid ] greater than 0, the decoder should be able to decode as follows: self-use is specified to have peak bit rate r, CPB size c(r), and initial CPB removal delay ( The bit stream of the HSS delivery of the "interpolation" delivery scheduling operation of f(r)÷r): α=(r-BitRate[SchedSelIdx-1])÷(BitRate[SchedSelIdx]-BitRate[SchedSelIdx-1]) , (C-22)

c(r)=α * CpbSize[SchedSelIdx]+(1-α)* CpbSize[SchedSelIdx-1], (C-23) c(r)=α * CpbSize[SchedSelIdx]+(1-α)* CpbSize[SchedSelIdx-1], (C-23)

f(r)=α * InitCpbRemovalDelay[SchedSelIdx]* BitRate[SchedSelIdx]+(1-α)* InitCpbRemovalDelay[SchedSelIdx-1]* BitRate[SchedSelIdx-1] (C-24) f(r)=α * InitCpbRemovalDelay[SchedSelIdx]* BitRate[SchedSelIdx]+(1-α)* InitCpbRemovalDelay[SchedSelIdx-1]* BitRate[SchedSelIdx-1] (C-24)

對於任何SchedSelIdx>0及r,使得BitRate[SchedSelIdx-1]<=r<=BitRate[SchedSelIdx],使得r及c(r)係在如附錄A中對於所指定之設定檔、階層及級別之最大位元速率及緩衝器大小所指定的限制內。 For any SchedSelIdx>0 and r, make BitRate[SchedSelIdx-1]<=r<=BitRate[SchedSelIdx], so that r and c(r) are the largest in the profile, hierarchy and level as specified in Appendix A. Within the limits specified by the bit rate and buffer size.

註釋1- InitCpbRemovalDelay[SchedSelIdx]在緩衝週期之間可不 同,且必須被重新計算。 Note 1 - InitCpbRemovalDelay[SchedSelIdx] is not between buffer cycles Same and must be recalculated.

對於輸出時序解碼器一致性,使用如上文所描述之HRD,且直至固定延遲,圖像輸出之時序(相對於第一位元之遞送時間)對於HRD及DUT兩者為相同的。 For output timing decoder consistency, the HRD as described above is used, and up to a fixed delay, the timing of the image output (relative to the delivery time of the first bit) is the same for both the HRD and the DUT.

對於輸出次序解碼器一致性,以下情形適用。 For output order decoder consistency, the following applies.

- HSS「按來自DUT之命令」將位元流BitstreamToDecode遞送至DUT,從而意謂HSS僅在DUT需要更多位元以繼續其處理時才遞送位元(以解碼次序)。 - HSS "delivers the bitstream ToDecode to the DUT "by command from the DUT", meaning that the HSS delivers the bits (in decoding order) only when the DUT needs more bits to continue its processing.

註釋2- 此情形意謂,對於此測試,DUT之經寫碼圖像緩衝器可小達最大解碼單元的大小。 NOTE 2 – This situation means that for this test, the DUT's coded image buffer can be as small as the maximum decoding unit size.

- 使用如下文所描述之經修改HRD,且HSS藉由指定於位元流BitstreamToDecode中的排程中之一者將位元流遞送至HRD,使得位元速率及CPB大小如附錄A中所指定而受到限制。圖像輸出之次序對於HRD及DUT兩者應係相同的。 - using a modified HRD as described below, and the HSS delivers the bitstream to the HRD by one of the schedules specified in the bitstream ToDecode such that the bitrate and CPB size are as specified in Appendix A limit. The order of image output should be the same for both HRD and DUT.

- 對於輸出次序解碼器一致性,CPB大小係如由等式E-46指定的CpbSize[SchedSelIdx],其中SchedSelIdx及HRD參數係如上文在子條款C.1中所指定而經選擇。DPB大小係sps_max_dec_pic_buffering[TargetDecHighestTid]。用於HRD之自CPB的移除時間等於最終位元到達時間,且解碼係立即的。此HRD之DPB的操作係如子條款C.5.1至C.5.3中所描述。 - For output order decoder consistency, the CPB size is as specified by Equation E-46, CpbSize[SchedSelIdx], where the SchedSelIdx and HRD parameters are selected as specified above in subclause C.1. The DPB size is sps_max_dec_pic_buffering[TargetDecHighestTid]. The removal time from the CPB for the HRD is equal to the final bit arrival time, and the decoding is immediate. The operation of the DPB of this HRD is as described in subclauses C.5.1 to C.5.3.

如本發明中其他地方所指示,在解碼器一致性要求中可能未恰當選擇參數cpb_cnt_minus1[i]及sps_max_dec_pic_buffering[i]。舉例而言,HEVC工作草案8之章節C.4並未指定cpb_cnt_minus1之索引。根據本發明之一或多項技術,指定TargetDecHighestTid為cpb_cnt_minus1[i]及sps_max_dec_pic_buffering[i]的索引i可確保解碼器一致性操作被始終如一地執行,其中i等於TargetDecHighestTid的清 楚指定之值。 As indicated elsewhere in the present invention, the parameters cpb_cnt_minus1[i] and sps_max_dec_pic_buffering[i] may not be properly selected in the decoder conformance requirements. For example, section C.4 of HEVC Working Draft 8 does not specify an index for cpb_cnt_minus1. According to one or more techniques of the present invention, specifying the index i of TargetDecHighestTid to cpb_cnt_minus1[i] and sps_max_dec_pic_buffering[i] ensures that the decoder coherency operation is consistently performed, where i is equal to the clear of TargetDecHighestTid Chu specified value.

此外,HEVC工作草案8之章節C.4.2描述為了解碼器一致性自DPB移除圖像。根據本發明之一或多個實例技術,章節C.4.2之標題可自「自DPB移除圖像」改變至「自DPB輸出及移除圖像」。HEVC工作草案8之章節C.4.2的文字可做如下改變:在解碼當前圖像之前(但在剖析當前圖像之第一圖塊的圖塊標頭之後)自DPB輸出及移除圖像瞬時地發生於自CPB移除含有當前圖像的存取單元之第一解碼單元時,且如下繼續進行。 Furthermore, Section C.4.2 of HEVC Working Draft 8 describes the removal of images from the DPB for decoder consistency. In accordance with one or more example techniques of the present invention, the title of Section C.4.2 can be changed from "Remove Image from DPB" to "Export and Remove Image from DPB". The text of section C.4.2 of HEVC Working Draft 8 can be changed as follows: before decoding the current image (but after parsing the tile header of the first tile of the current image), the image is output and removed from the DPB. This occurs when the first decoding unit of the access unit containing the current picture is removed from the CPB and continues as follows.

調用如子條款8.3.2中指定之針對參考圖像集的解碼程序。 The decoding procedure for the reference image set as specified in subclause 8.3.2 is invoked.

- 若當前圖像係IDR或BLA圖像,則以下情形適用。 - If the current image is an IDR or BLA image, the following applies.

1. 在IDR或BLA圖像並非經解碼之第一圖像,且自作用中序列參數集導出之pic_width_in_luma_samples或pic_height_in_luma_samples或sps_max_dec_pic_buffering[TargetDecHighestTid]的值分別不同於自針對前一圖像係作用中之序列參數集導出之pic_width_in_luma_samples或pic_height_in_luma_samples或sps_max_dec_pic_buffering[TargetDecHighestTid]的值時,HRD將no_output_of_prior_pics_flag推斷為等於1而無關於no_output_of_prior_pics_flag的實際值。 1. The IDR or BLA image is not the decoded first image, and the values of pic_width_in_luma_samples or pic_height_in_luma_samples or sps_max_dec_pic_buffering[ TargetDecHighestTid ] derived from the active sequence parameter set are different from the sequences in the previous image system. When the parameter set derives the value of pic_width_in_luma_samples or pic_height_in_luma_samples or sps_max_dec_pic_buffering[ TargetDecHighestTid ], the HRD infers no_output_of_prior_pics_flag to be equal to 1 regardless of the actual value of no_output_of_prior_pics_flag.

註釋-就pic_width_in_luma_samples、pic_height_in_luma_samples或sps_max_dec_pic_buffering[TargetDecHighestTid]之改變而言,解碼器實施應試圖比HRD更得體地處置圖像或DPB大小改變。 Note - In terms of changes to pic_width_in_luma_samples, pic_height_in_luma_samples, or sps_max_dec_pic_buffering[TargetDecHighestTid] , the decoder implementation should attempt to handle image or DPB size changes more appropriately than HRD.

2. 當no_output_of_prior_pics_flag等於1或被推斷為等於1時,DPB中之所有圖像儲存緩衝器被清空而不輸出其含有之圖像。 2. When no_output_of_prior_pics_flag is equal to 1 or is inferred to be equal to 1, all image storage buffers in the DPB are emptied without outputting the images they contain.

3. 當no_output_of_prior_pics_flag不等於1且並未被推斷為等於1時,含有標註為「不需要用於輸出」及「未用於參考」之圖像的圖像儲存緩衝器被清空(無輸出),且藉由重複地調用指定於子條款3. When no_output_of_prior_pics_flag is not equal to 1 and is not inferred to be equal to 1, the image storage buffer containing images marked as "not required for output" and "not used for reference" is cleared (no output), And by repeatedly calling the sub-clause C.5.2.1中的「提昇」程序來清空DPB中之所有非空圖像儲存緩衝器。The "Up" program in C.5.2.1 clears all non-empty image storage buffers in the DPB.

- 否則(當前圖像並非IDR或BLA圖像),含有標註為「不需要用於輸出」及「不用於參考」之圖像的圖像儲存緩衝器被清空(無輸出)。當以下條件中之一或多者為真時,指定於子條款C.5.2.1中之「提昇」程序被重複調用,直至存在用以儲存當前經解碼圖像的空圖像儲存緩衝器。 - Otherwise (the current image is not an IDR or BLA image), the image storage buffer containing images labeled "Not required for output" and "Not for reference" is cleared (no output). When one or more of the following conditions are true, the "lift" program specified in subclause C.5.2.1 is repeatedly called until there is an empty image storage buffer for storing the currently decoded image.

1. DPB中標註為「需要用於輸出」之圖像的數目大於sps_max_num_reorder_pics[TargetDecHighestTid]。 1. The number of images marked as "need for output" in the DPB is greater than sps_max_num_reorder_pics[ TargetDecHighestTid ].

2. DPB中之圖像的數目等於sps_max_dec_pic_buffering[TargetDecHighestTid]。 2. The number of images in the DPB is equal to sps_max_dec_pic_buffering[ TargetDecHighestTid ].

「提昇」程序"upgrade" procedure

在以下狀況下調用「提昇」程序。 The "lift" program is called under the following conditions.

- 如子條款C.5.2中所指定,當前圖像係IDR或BLA圖像,且no_output_of_prior_pics_flag不等於1且不被推斷為等於1。 - The current picture is an IDR or BLA picture as specified in subclause C.5.2, and no_output_of_prior_pics_flag is not equal to 1 and is not inferred to be equal to 1.

- 如子條款C.5.2中所指定,當前圖像並非IDR或BLA圖像,且DPB中標註為「需要用於輸出」之圖像的數目大於sps_max_num_reorder_pics[TargetDecHighestTid]。 - As specified in subclause C.5.2, the current image is not an IDR or BLA image, and the number of images labeled "need for output" in the DPB is greater than sps_max_num_reorder_pics[ TargetDecHighestTid ].

- 如子條款C.5.2中所指定,當前圖像並非IDR或BLA圖像,且DPB中圖像的數目等於sps_max_dec_pic_buffering[TargetDecHighestTid]。- As specified in subclause C.5.2, the current image is not an IDR or BLA image, and the number of images in the DPB is equal to sps_max_dec_pic_buffering[TargetDecHighestTid].

「提昇」程序由以下經排序之步驟組成: The "Upgrade" program consists of the following sorted steps:

1. 第一個輸出的圖像經選擇為DPB中標註為「需要用於輸出」之所有圖像中的具有PicOrderCntVal之最小值的圖像。 1. The first output image is selected as the image with the minimum value of PicOrderCntVal in all images labeled "need for output" in the DPB.

2. 使用指定於圖像之作用中序列參數集中的裁切矩形來裁切圖像,經裁切之圖像被輸出,且該圖像被標註為「不需要用於輸出」。 2. The image is cropped using the crop rectangle specified in the sequence of parameters in the image, the cropped image is output, and the image is labeled "Not required for output."

3. 若包括經裁切且輸出之圖像的圖像儲存緩衝器含有標註為「不用於參考」的圖像,則清空圖像儲存緩衝器。 3. If the image storage buffer including the cropped and output image contains an image labeled "Not for Reference", the image storage buffer is cleared.

如本發明中其他地方所指示,可能未在HRD操作(諸如,自DPB移除圖像)中恰當選擇參數sps_max_dec_pic_buffering[i]及sps_max_num_reorder_pics[i]。根據本發明之一或多項技術,將TargetDecHighestTid指定為sps_max_dec_pic_buffering[i]及sps_max_num_reorder_pics[i]的索引i可確保在執行自DPB移除圖像之HRD操作時在sps_max_dec_pic_buffering[i]及sps_max_num_reorder_pics[i]中使用等於TargetDecHighestTid之清楚指定之值的i。 As indicated elsewhere in the present invention, the parameters sps_max_dec_pic_buffering[i] and sps_max_num_reorder_pics[i] may not be properly selected in the HRD operation (such as removing images from the DPB). According to one or more techniques of the present invention, specifying the TargetDecHighestTid as the index i of sps_max_dec_pic_buffering[i] and sps_max_num_reorder_pics[i] ensures that in the sps_max_dec_pic_buffering[i] and sps_max_num_reorder_pics[i] when performing the HRD operation of removing the image from the DPB Use an i equal to the clearly specified value of TargetDecHighestTid.

當器件在HRD操作期間執行解碼程序時,器件可自SPS解碼語法元素之陣列(sps_max_dec_pic_buffering[]),該等語法元素各自指示HRD之DPB的最大所要求大小。此外,當器件執行HRD操作時,器件可基於目標最高時間識別符判定陣列中之特定語法元素(sps_max_dec_pic_buffering[TargetDecHighestTid])。此外,在當前圖像並非IDR圖像或BLA圖像且DPB中標註為需要用於輸出之圖像的數目大於特定語法元素之值時,器件可執行清空DPB之一或多個圖像儲存緩衝器的提昇程序。 When the device performs a decoding process during HRD operation, the device can decode an array of syntax elements (sps_max_dec_pic_buffering[]) from the SPS, each of which indicates the maximum required size of the DPB of the HRD. In addition, when the device performs an HRD operation, the device can determine a particular syntax element in the array based on the target highest time identifier (sps_max_dec_pic_buffering[TargetDecHighestTid]). In addition, the device may perform one or more image storage buffers for clearing the DPB when the current image is not an IDR image or a BLA image and the number of images in the DPB that are marked for output is greater than a value of a particular syntax element. Lifting program.

類似地,當器件在HRD操作期間執行解碼程序時,器件可自SPS解碼語法元素之陣列(sps_max_dec_pic_buffering[]),該等語法元素各自指示HRD之DPB的最大所要求大小。此外,當器件執行HRD操作時,器件可基於目標最高時間識別符判定陣列中之特定語法元素(sps_max_dec_pic_buffering[TargetDecHighestTid])。此外,在當前圖像並非IDR圖像或BLA圖像且DPB中圖像的數目等於特定語法元素指示的數目時,器件可執行清空DPB之一或多個圖像儲存緩衝器的提昇程序。 Similarly, when the device performs a decoding process during HRD operation, the device can decode an array of syntax elements (sps_max_dec_pic_buffering[]) from the SPS, each of which indicates the maximum required size of the DPB of the HRD. In addition, when the device performs an HRD operation, the device can determine a particular syntax element in the array based on the target highest time identifier (sps_max_dec_pic_buffering[TargetDecHighestTid]). Further, when the current image is not an IDR image or a BLA image and the number of images in the DPB is equal to the number indicated by the particular syntax element, the device may perform a lifting procedure to clear one or more image storage buffers of the DPB.

此外,根據本發明之一或多項技術,applicable_operation_points( )語法結構及相關聯語義可被添加至 HEVC工作草案8。以下表5展示applicable_operation_points( )語法結構的實例語法。 Furthermore, according to one or more techniques of the present invention, the applicable_operation_points( ) syntax structure and associated semantics can be added to HEVC Working Draft 8. Table 5 below shows an example syntax for the approximate structure of the applicable_operation_points( ).

展示於表5中之applicable_operation_point( )語法結構指定與此語法結構相關聯之SEI訊息應用至的操作點。與applicable_operation_point( )語法結構相關聯之SEI訊息(亦被稱作相關聯SEI訊息)係含有applicable_operation_point( )語法結構的SEI訊息。與applicable_operation_point( )語法結構相關聯之SEI訊息可係緩衝週期SEI訊息、圖像時序SEI訊息或子圖像時序SEI訊息。 The applicable_operation_point() syntax structure shown in Table 5 specifies the point of operation to which the SEI message associated with this syntax structure is applied. The SEI message (also referred to as the associated SEI message) associated with the applicable_operation_point( ) syntax structure is an SEI message containing the applicable structure of the apply_operation_point( ). The SEI message associated with the applicable_operation_point( ) syntax structure may be a buffering period SEI message, an image timing SEI message, or a sub-picture timing SEI message.

預設操作點可被定義為由含有值0至nuh_reserved_zero_6bits(包括0及nuh_reserved_zero_6bits)之OpLayerIdSet識別的操作點,其中在含有相關聯SEI訊息之SEI NAL單元的NAL單元標頭中寫碼nuh_reserved_zero_6bits,且OpTid等於含有相關聯SEI訊息之SEI NAL單元的TemporalId值。替代性地,預設操作點可被定義為由僅含有SEI NAL單元之NAL單元標頭中之nuh_reserved_zero_6bits的OpLayerIdSet識別的操作點,該SEI NAL單元含有相關聯SEI訊息,且OpTid等於含有相關聯SEI訊息之SEI NAL單元的TemporalId值。替代性地,預設操作點可被定義為由僅含有值0之OpLayerIdSet識別的操作點,且OpTid等於含有相關聯SEI訊息之SEI NAL單元的TemporalId值。 The preset operating point may be defined as an operating point identified by an OpLayerIdSet containing a value of 0 to nuh_reserved_zero_6 bits (including 0 and nuh_reserved_zero_6 bits), where the code nuh_reserved_zero_6bits is written in the NAL unit header of the SEI NAL unit containing the associated SEI message, and OpTid Equal to the TemporalId value of the SEI NAL unit containing the associated SEI message. Alternatively, the preset operating point may be defined as an operating point identified by an OpLayerIdSet of nuh_reserved_zero_6bits in the NAL unit header containing only the SEI NAL unit, the SEI NAL unit containing the associated SEI message, and the OpTid being equal to the associated SEI The TemporalId value of the SEI NAL unit of the message. Alternatively, the preset operating point may be defined as an operating point identified by an OpLayerIdSet containing only a value of 0, and the OpTid is equal to the TemporalId value of the SEI NAL unit containing the associated SEI message.

若default_op_applicable_flag等於1,則相關聯SEI訊息應用至之操作點係預設操作點,且由如由operation_point_layer_ids(i)指定的OpLayerIdSet及等於op_temporal_id[i]之OpTid識別的num_applicable_ops_minus1操作點,其中i係在0至num_applicable_ops_minus1之範圍內(包括0及num_applicable_ops_minus1)。否則(default_op_applicable_flag等於0),相關聯SEI訊息應用至之操作點可係由如由operation_point_layer_ids(i)指定的OpLayerIdSet及等於op_temporal_id[i]之OpTid識別之num_applicable_ops_minus1+1操作點,其中i係在0至num_applicable_ops_minus1+1之範圍內(包括0及num_applicable_ops_minus1+1)。 If default_op_applicable_flag is equal to 1, the operating point to which the associated SEI message is applied is the preset operating point, and is operated by OpLayerIdSet as specified by operation_point_layer_ids(i) and num_applicable_ops_minus1 identified by OpTid equal to op_temporal_id[i], where i is in 0 to the range of num_applicable_ops_minus1 (including 0 and num_applicable_ops_minus1). Otherwise (default_op_applicable_flag is equal to 0), the operating point to which the associated SEI message is applied may be the num_applicable_ops_minus1+1 operating point as identified by OpLayerIdSet specified by operation_point_layer_ids(i) and OpTid equal to op_temporal_id[i], where i is at 0 to Within the range of num_applicable_ops_minus1+1 (including 0 and num_applicable_ops_minus1+1).

此外,在表5之實例語法中,num_applicable_ops_minus1語法元素加1指定相關聯SEI訊息應用至之操作點的數目。num_applicable_ops_minus1之值可係在0至63的範圍內(包括0及63)。在表5之實例中,等於1之default_op_applicable_flag語法元素指定相關聯SEI訊息應用至預設操作點。等於0之default_op_applicable_flag語法元素指定相關聯SEI訊息並不應用至預設操作點。op_temporal_id[i]語法元素指定在applicable_operation_point( )語法結構中明確發信的第i個OpTid值。op_temporal_id[i]之值可係在0至6的範圍內(包括0及6)。 Furthermore, in the example syntax of Table 5, the num_applicable_ops_minus1 syntax element plus 1 specifies the number of operating points to which the associated SEI message is applied. The value of num_applicable_ops_minus1 can be in the range of 0 to 63 (including 0 and 63). In the example of Table 5, the default_op_applicable_flag syntax element equal to 1 specifies that the associated SEI message is applied to the preset operating point. The default_op_applicable_flag syntax element equal to 0 specifies that the associated SEI message is not applied to the preset operating point. The op_temporal_id[i] syntax element specifies the ith OpTid value that is explicitly sent in the applicable_operation_point( ) syntax structure. The value of op_temporal_id[i] can be in the range of 0 to 6 (including 0 and 6).

如上文所指示,HEVC工作草案8不提供使緩衝週期SEI訊息或圖像時序SEI訊息關聯至hrd_parameters( )語法結構的任何方式,對於該hrd_parameters( )語法結構,相關聯之operation_point_layer_ids( )語法結構包括nuh_reserved_zero_6bits的多個值(亦即,HEVC之多視圖、3DV或可調式視訊寫碼擴展中的多個層ID)。包括applicable_operation_point( )語法結構可至少部分解決此問題。 applicable_operation_point( )語法結構可清楚地指定緩衝週期SEI訊息、圖像時序SEI訊息或子圖像時序SEI訊息應用至的操作點。此情形可允許使用攜載於SEL NAL單元之NAL單元標頭中之語法元素nuh_reserved_zero_6bits及temporal_id_plus1中的資訊,且可允許共用在同一緩衝週期、圖像時序或子圖像時序SEI訊息中傳遞之資訊以處理與多個操作點相關聯之視訊資料。 As indicated above, HEVC Working Draft 8 does not provide any way to associate a buffering period SEI message or an image timing SEI message to the hrd_parameters( ) syntax structure for which the associated operation_point_layer_ids( ) syntax structure includes Multiple values of nuh_reserved_zero_6bits (ie, multiple layers of HEVC, 3DV or multiple layer IDs in an adjustable video write extension). Including the applicable_operation_point() syntax structure can at least partially solve this problem. The applicable_operation_point( ) syntax structure clearly specifies the operation point to which the buffer period SEI message, the picture timing SEI message, or the sub-picture timing SEI message is applied. This scenario may allow the use of information in the syntax elements nuh_reserved_zero_6bits and temporal_id_plus1 carried in the NAL unit header of the SEL NAL unit, and may allow sharing of information conveyed in the same buffer period, picture timing or sub-picture timing SEI message. To process video material associated with multiple operating points.

HEVC工作草案8之章節D.1.1描述緩衝週期SEI訊息的語法。根據本發明之一或多個實例技術,緩衝週期SEI訊息語法可如以下表6中所展示而改變。對緩衝週期SEI訊息語法的改變可使得緩衝週期SEI訊息能夠包括applicable_operation_points( )語法結構。 Section D.1.1 of HEVC Working Draft 8 describes the syntax of the buffering period SEI message. In accordance with one or more example techniques of the present invention, the buffering period SEI message syntax can be changed as shown in Table 6 below. A change to the buffer period SEI message syntax may enable the buffer period SEI message to include an applicable_operation_points( ) syntax structure.

HEVC工作草案8之章節D.2.1描述緩衝週期SEI訊息之語法元素的語義。根據本發明之一或多項技術,buffering_period(payloadSize)語法結構之語義可做如下改變。未提及之彼等語法元素的語義係與HEVC工作草案8中之語義相同。 Section D.2.1 of HEVC Working Draft 8 describes the semantics of the syntax elements of the buffering period SEI message. According to one or more techniques of the present invention, the semantics of the buffering_period (payloadSize) syntax structure can be changed as follows. The semantics of the grammatical elements not mentioned are the same as those in HEVC Working Draft 8.

緩衝週期SEI訊息提供初始CPB移除延遲及初始CPB移除延遲偏移的資訊。The Buffer Period SEI message provides information on the initial CPB removal delay and the initial CPB removal delay offset.

以下內容適用於緩衝週期SEI訊息語法及語義:The following applies to the buffer period SEI message syntax and semantics:

- 語法元素initial_cpb_removal_delay_length_minus1及sub_pic_cpb_params_present_flag以及變數NalHrdBpPresentFlag、VclHrdBpPresentFlag、CpbSize[SchedSelIdx]、BitRate[SchedSelIdx]及CpbCnt可見於或導出自在適用於緩衝週期SEI訊息應用至之操作點中之任一者的hrd_parameters( )語法結構及sub_layer_hrd_parameters( )語法結構中的語法元素中。 The syntax elements initial_cpb_removal_delay_length_minus1 and sub_pic_cpb_params_present_flag and the variables NalHrdBpPresentFlag, VclHrdBpPresentFlag, CpbSize[SchedSelIdx], BitRate[SchedSelIdx], and CpbCnt can be seen or derived from the hrd_parameters( ) syntax structure applicable to any of the operating points to which the buffer period SEI message is applied. And in the syntax element in the sub_layer_hrd_parameters( ) syntax structure.

- 具有不同OpTid值tIdA及tIdB的緩衝週期SEI訊息應用至之任何兩個操作點指示:寫碼於適用於兩個操作點之hrd_parameters( )語法結構中的cpb_cnt_minus1[tIdA]及cpb_cnt_minus1[tIdB]的值係相同的。 - any two operating point indications to which the buffering period SEI message with different OpTid values tIdA and tIdB is applied: writing cpb_cnt_minus1[tIdA] and cpb_cnt_minus1[tIdB] in the hrd_parameters( ) syntax structure applicable to the two operating points The values are the same.

- 具有不同OpLayerIdSet值layerIdSetA及layerIdSetB的緩衝週期SEI訊息應用至之任何兩個操作點指示:適用於兩個操作點之兩個hrd_parameters( )語法結構的分別的nal_hrd_parameters_present_flag及vcl_hrd_parameters_present_flag的值係相同的。 - Any two operating point points to which the buffering period SEI message with different OpLayerIdSet values of layerIdSetA and layerIdSetB is applied indicates that the values of the respective nal_hrd_parameters_present_flag and vcl_hrd_parameters_present_flag of the two hrd_parameters( ) syntax structures applicable to the two operating points are the same.

- 位元流(或其一部分)指代與緩衝週期SEI訊息應用至之操作點中的任一者相關聯的位元流子集(或其一部分)。 The bit stream (or a portion thereof) refers to a subset of bitstreams (or a portion thereof) associated with any of the operating points to which the buffering period SEI message is applied.

若NalHrdBpPresentFlag或VclHrdBpPresentFlag等於1,則適用於指定操作點之緩衝週期SEI訊息可存在於經寫碼視訊序列中的任何存取單元中,且適用於指定操作點之緩衝週期SEI訊息應存在於每一If NalHrdBpPresentFlag or VclHrdBpPresentFlag is equal to 1, the buffer period SEI message applicable to the specified operation point may exist in any access unit in the coded video sequence, and the buffer period SEI message applicable to the specified operation point shall exist in each RAP存取單元中,及與復原點SEI訊息相關聯的每一存取單元中。否則(NalHrdBpPresentFlag及VclHrdBpPresentFlag皆等於0),經寫碼序列中之存取單元皆不應具有適用於所指定操作點的緩衝週期SEI訊息。In the RAP access unit, and in each access unit associated with the recovery point SEI message. Otherwise (NalHrdBpPresentFlag and VclHrdBpPresentFlag are both equal to 0), the access unit in the code sequence should not have a buffer period SEI message suitable for the specified operating point.

註釋-對於一些應用,緩衝週期SEI訊息的頻繁存在可係所要的。 Note - For some applications, the frequent presence of buffered SEI messages can be desirable.

當含有緩衝週期SEI訊息且具有等於0之nuh_reserved_zero_6bits的SEI NAL單元存在時,SEI NAL單元應在解碼次序上先於存取單元中的第一VCL NAL單元。 When a SEI NAL unit containing a buffer period SEI message and having nuh_reserved_zero_6 bits equal to 0 exists, the SEI NAL unit shall precede the first VCL NAL unit in the access unit in decoding order.

緩衝週期被指定為在解碼次序上連續之緩衝週期SEI訊息之兩個執行個體之間的存取單元之集合。 The buffer period is specified as a set of access units between two execution entities of a consecutive buffering period SEI message in decoding order.

變數CpbCnt被導出為等於cpb_cnt_minus1[tId]+1,其中cpb_cnt_minus1[tId]被寫碼於適用於緩衝週期SEI訊息應用至且具有等於tId之OpTid的操作點中之任一者的hrd_parameters( )語法結構中。 The variable CpbCnt is derived equal to cpb_cnt_minus1[tId] + 1, where cpb_cnt_minus1[tId] is written to the hrd_parameters( ) syntax structure applicable to any of the operating points applied to the buffer period SEI message and having an OpTid equal to tId in.

seq_parameter_set_id指代作用中序列參數集。seq_parameter_set_id之值應等於由與緩衝週期SEI訊息相關聯之經寫碼圖像參考之圖像參數集中的seq_parameter_set_id之值。seq_parameter_set_id之值應係在0至31的範圍內(包括0及31)。 Seq_parameter_set_id refers to the set of active sequence parameters. The value of seq_parameter_set_id shall be equal to the value of seq_parameter_set_id in the image parameter set of the coded image reference associated with the buffering period SEI message. The value of seq_parameter_set_id should be in the range of 0 to 31 (including 0 and 31).

等於1之rap_cpb_params_present_flag指定initial_alt_cpb_removal_delay[SchedSelIdx]及initial_alt_cpb_removal_delay_offset[SchedSelIdx]語法元素的存在。當不存在時,alt_cpb_params_present_flag之值被推斷為等於0。當相關聯圖像既非CRA圖像亦非BLA圖像時,alt_cpb_params_present_flag之值應等於0。 The rap_cpb_params_present_flag equal to 1 specifies the existence of the initial_alt_cpb_removal_delay[SchedSelIdx] and initial_alt_cpb_removal_delay_offset[SchedSelIdx] syntax elements. When not present, the value of alt_cpb_params_present_flag is inferred to be equal to zero. When the associated image is neither a CRA image nor a BLA image, the value of alt_cpb_params_present_flag should be equal to zero.

initial_cpb_removal_delay[SchedSelIdx]及initial_alt_cpb_removal_delay[SchedSelIdx]分別指定第SchedSelIdx 個CPB之預設及替代性初始CPB移除延遲。語法元素具有由initial_cpb_removal_delay_length_minus1+1給出的以位元計之長度,且係以90kHz時脈為單位。語法元素之值不應等於0,且應小於或等於90000 *(CpbSize[SchedSelIdx]÷BitRate[SchedSelIdx]),其為CPB大小的以90kHz時脈為單位的時間當量。 the initial_cpb_removal_delay [SchedSelIdx] and initial_alt_cpb_removal_delay [SchedSelIdx] specify the preset first SchedSelIdx th CPB and CPB alternative initial removal delay. The syntax element has a length in bits given by initial_cpb_removal_delay_length_minus1+1 and is in units of 90 kHz clock. The value of the syntax element should not be equal to 0, and should be less than or equal to 90000 *(CpbSize[SchedSelIdx]÷BitRate[SchedSelIdx]), which is the time equivalent of the CPB size in units of 90 kHz clock.

initial_cpb_removal_delay_offset[SchedSelIdx]及initial_alt_cpb_removal_delay_offset[SchedSelIdx]分別指定第SchedSelIdx個CPB之預設及替代性初始CPB移除偏移。語法元素具有由initial_cpb_removal_delay_length_minus1+1給出的以位元計之長度,且係以90kHz時脈為單位。此等語法元素未由解碼器使用,且可僅需要用於附錄C中指定之遞送排程器(HSS)。 initial_cpb_removal_delay_offset [SchedSelIdx] and initial_alt_cpb_removal_delay_offset [SchedSelIdx] specify the preset first SchedSelIdx th CPB and CPB removal alternative initial offset. The syntax element has a length in bits given by initial_cpb_removal_delay_length_minus1+1 and is in units of 90 kHz clock. These syntax elements are not used by the decoder and may only be used for the Delivery Scheduler (HSS) specified in Appendix C.

緩衝週期SEI訊息可包括HRD參數(例如,initial_cpb_removal_delay[SchedSelIdx]、initial_cpb_removal_delay_offset[SchedSelIdx]、initial_alt_cpb_removal_delay[SchedSelIdx]及initial_alt_cpb_removal_delay_offset[SchedSelIdx])。如上文所指示,HEVC工作草案8不提供使緩衝週期SEI訊息關聯至VPS中之hrd_parameters( )語法結構的任何方式,對於該hrd_parameters( )語法結構,相關聯之operation_point_layer_ids( )語法結構包括nuh_reserved_zero_6bits的多個值(亦即,HEVC之多視圖、3DV或可調式視訊寫碼擴展中的多個層ID)。因此,根據本發明之一或多項技術,緩衝週期SEI訊息中之applicable_operation_points( )語法元素指定緩衝週期SEI訊息應用至的操作點。 The buffering period SEI message may include HRD parameters (eg, initial_cpb_removal_delay[SchedSelIdx], initial_cpb_removal_delay_offset[SchedSelIdx], initial_alt_cpb_removal_delay[SchedSelIdx], and initial_alt_cpb_removal_delay_offset[SchedSelIdx]). As indicated above, HEVC Working Draft 8 does not provide any way to associate a buffering period SEI message to the hrd_parameters( ) syntax structure in the VPS for which the associated operation_point_layer_ids( ) syntax structure includes more nuh_reserved_zero_6bits Values (ie, multiple views of HEVC, 3DV or multiple layer IDs in an adjustable video write extension). Thus, in accordance with one or more techniques of the present invention, the apply_operation_points( ) syntax element in the buffering period SEI message specifies the operating point to which the buffering period SEI message is applied.

HEVC工作草案8之章節D.1.2指示圖像時序SEI訊息的語法。根據本發明之一或多項技術,圖像時序SEI訊息的語法可如以下表7中所展示而改變。對圖像時序SEI訊息語法的改變可使得圖像時序SEI訊息能 夠包括applicable_operation_points( )語法結構。 Section D.1.2 of HEVC Working Draft 8 indicates the syntax of the image timing SEI message. In accordance with one or more techniques of the present invention, the syntax of the image timing SEI message can be changed as shown in Table 7 below. Changes to the image timing SEI message syntax can enable image timing SEI messages to Enough to include the applicable_operation_points() syntax structure.

此外,圖像時序SEI訊息之語義可做如下改變。下文未提及之pic_timing(payloadSize)語法結構之彼等語法元素的語義可與HEVC工作草案8中之彼等語義相同。 In addition, the semantics of the image timing SEI message can be changed as follows. The semantics of the syntax elements of the pic_timing(payloadSize) syntax structure not mentioned below may be identical to their semantics in HEVC Working Draft 8.

圖像時序SEI訊息提供與SEI訊息相關聯之存取單元的CPB移除延遲及DPB輸出延遲之資訊。The picture timing SEI message provides information on the CPB removal delay and DPB output delay of the access unit associated with the SEI message.

以下內容應用於圖像時序SEI訊息語法及語義:The following applies to image timing SEI message syntax and semantics:

- 語法元素sub_pic_cpb_params_present_flag、cpb_removal_delay_length_minus1、dpb_output_delay_length_minus1及du_cpb_removal_delay_length_minus1以及變數CpbDpbDelaysPresentFlag可見於或導出自在適用於圖像時序SEI訊息應用至之操作點中之任一者的hrd_parameters( )語法結構及sub_layer_hrd_parameters( )語法結構中的語法元素中。 The syntax elements sub_pic_cpb_params_present_flag, cpb_removal_delay_length_minus1, dpb_output_delay_length_minus1, and du_cpb_removal_delay_length_minus1 and the variable CpbDpbDelaysPresentFlag may be obtained or derived from the syntax of the hrd_parameters( ) syntax structure and the sub_layer_hrd_parameters( ) syntax structure applicable to the operation point to which the image timing SEI message is applied. In the element.

- 位元流(或其一部分)指代與圖像時序SEI訊息應用至之操作點中的任一者相關聯的位元流子集(或其一部分)。 The bit stream (or a portion thereof) refers to a subset of bitstreams (or a portion thereof) associated with any of the operating points to which the image timing SEI message is applied.

註釋1- 圖像時序SEI訊息之語法取決於適用於圖像時序SEI訊息 應用至之操作點的hrd_parameters( )語法結構之內容。此等hrd_parameters( )語法結構係在對於與圖像時序SEI訊息相關聯之經寫碼圖像係作用中的視訊參數集及/或序列參數集中。當圖像時序SEI訊息係與為位元流中的第一存取單元的CRA存取單元、IDR存取單元,或BLA存取單元相關聯時,除非同一存取單元內之緩衝週期SEI訊息先於該圖像時序SEI訊息,否則視訊參數集及序列參數集之啟動(且對於並非位元流中之第一圖像的IDR或BLA圖像,判定經寫碼圖像係IDR圖像或BLA圖像)並不發生,直至解碼經寫碼圖像之第一經寫碼圖塊NAL單元為止。由於經寫碼圖像之經寫碼圖塊NAL單元在NAL單元次序上在圖像時序SEI訊息之後,因此可存在如下狀況:解碼器有必要儲存含有圖像時序SEI訊息的RBSP直至判定作用中視訊參數集及/或作用中序列參數集為止,且接著執行圖像時序SEI訊息的剖析。 Note 1 - Image Timing The syntax of the SEI message depends on the content of the hrd_parameters( ) syntax structure that applies to the operation point to which the image timing SEI message is applied. These hrd_parameters( ) syntax structures are in a set of video parameter sets and/or sequence parameters in the action of the coded image system associated with the image timing SEI message. When the picture timing SEI message is associated with a CRA access unit, an IDR access unit, or a BLA access unit of a first access unit in a bit stream, unless a buffer period SEI message within the same access unit Prior to the image timing SEI message, otherwise the video parameter set and the sequence parameter set are initiated (and for IDR or BLA images that are not the first image in the bitstream, the coded image IDR image or The BLA image does not occur until the first coded block NAL unit of the coded image is decoded. Since the coded block NAL unit of the coded picture is after the picture timing SEI message in the NAL unit order, there may be a situation in which it is necessary for the decoder to store the RBSP containing the picture timing SEI message until the decision is active. The video parameter set and/or the active sequence parameter set are up, and then the analysis of the image timing SEI message is performed.

圖像時序SEI訊息在位元流中之存在被指定如下。 The presence of the picture timing SEI message in the bit stream is specified as follows.

- 若CpbDpbDelaysPresentFlag等於1,則適用於指定操作點之一個圖像時序SEI訊息應存在於經寫碼視訊序列的每一存取單元中。 - If CpbDpbDelaysPresentFlag is equal to 1, then an image timing SEI message suitable for the specified operating point shall be present in each access unit of the coded video sequence.

- 否則(CpbDpbDelaysPresentFlag等於0),適用於指定操作點之圖像時序SEI訊息皆不應存在於經寫碼視訊序列的任何存取單元中。 - Otherwise (CpbDpbDelaysPresentFlag is equal to 0), the image timing SEI message for the specified operating point should not be present in any access unit of the coded video sequence.

當含有圖像時序SEI訊息且具有等於0之nuh_reserved_zero_6bits的SEI NAL單元存在時,SEI NAL單元應在解碼次序上先於存取單元中的第一VCL NAL單元。 When an SEI NAL unit containing an image timing SEI message and having nuh_reserved_zero_6 bits equal to 0 exists, the SEI NAL unit shall precede the first VCL NAL unit in the access unit in decoding order.

au_cpb_removal_delay_minus1加1在HRD以存取單元級別操作時指定在自CPB移除與前一存取單元中之最近緩衝週期SEI訊息相關聯的存取單元之後、在自緩衝器移除與圖像時序SEI訊息相關聯之存取單元資料之前要等待多少個時脈刻度。此值亦用以計算存取單元資料到達HSS之CPB的最早可能時間。語法元素係固定長度碼,其以位元計之長度由cpb_removal_delay_length_minus1+1給出。 Au_cpb_removal_delay_minus1 plus 1 specifies that the access unit associated with the most recent buffering period SEI message in the previous access unit is removed from the CPB when the HRD is operating at the access unit level, after the self-buffer removal and image timing SEI How many clock ticks to wait before the access unit data associated with the message. This value is also used to calculate the earliest possible time for the access unit data to reach the CPB of the HSS. The syntax element is a fixed length code whose length in bits is given by cpb_removal_delay_length_minus1+1.

註釋2- 判定語法元素au_cpb_removal_delay_minus1之長度(以位元計)的cpb_removal_delay_length_minus1之值係在對於與圖像時序SEI訊息相關聯之經寫碼圖像係作用中之視訊參數集或序列參數集中寫碼的cpb_removal_delay_length_minus1之值,儘管au_cpb_removal_delay_minus1加1指定相對於含有緩衝週期SEI訊息的前一存取單元之移除時間的時脈刻度之數目,該前一存取單元可係不同經寫碼視訊序列中的存取單元。 Note 2 - The value of cpb_removal_delay_length_minus1 of the length (in bits) of the decision syntax element au_cpb_removal_delay_minus1 is written in the video parameter set or sequence parameter set in the action of the coded picture system associated with the image timing SEI message. The value of cpb_removal_delay_length_minus1, although au_cpb_removal_delay_minus1 plus 1 specifies the number of clock scales relative to the removal time of the previous access unit containing the buffer period SEI message, the previous access unit may be stored in different coded video sequences Take the unit.

pic_dpb_output_delay被用以計算圖像之DPB輸出時間。其指定在自CPB移除存取單元中的最後一個解碼單元之後、在自DPB輸出經解碼圖像之前要等待多少個時脈刻度。 Pic_dpb_output_delay is used to calculate the DPB output time of the image. It specifies how many clock scales to wait after outputting the decoded image from the DPB after the last decoding unit in the access unit has been removed from the CPB.

註釋3- 在圖像仍被標註為「用於短期參考」或「用於長期參考」時,並不在該圖像之輸出時間自DPB移除該圖像。 Note 3 - When the image is still marked as "for short-term reference" or "for long-term reference", the image is not removed from the DPB at the output time of the image.

註釋4- 針對經解碼圖像僅指定一個pic_dpb_output_delay。 Note 4 - Specify only one pic_dpb_output_delay for the decoded image.

語法元素pic_dpb_output_delay之長度由dpb_output_delay_length_minus1+1以位元為單位給出。當sps_max_dec_pic_buffering[minTid]等於1時,pic_dpb_output_delay應等於0,其中minTid係圖像時序SEI訊息應用至之所有操作點的OpTid值中之最小值。 The length of the syntax element pic_dpb_output_delay is given in bits by dpb_output_delay_length_minus1+1. When sps_max_dec_pic_buffering[minTid] is equal to 1, pic_dpb_output_delay should be equal to 0, where minTid is the minimum of the OpTid values applied to all operating points by the image timing SEI message.

從自輸出時序一致之解碼器輸出之任何圖像之pic_dpb_output_delay導出的輸出時間應先於從解碼次序上的任何後續經寫碼視訊序列中的所有圖像之pic_dpb_output_delay導出的輸出時間。 The output time derived from pic_dpb_output_delay of any image output from the output timing-consistent decoder shall be prior to the output time derived from pic_dpb_output_delay of all images in any subsequent code-coded video sequence in decoding order.

由此語法元素之值建立的圖像輸出次序應係與由PicOrderCntVal之值建立之次序相同的次序。 The order in which the images are output by the values of the syntax elements should be in the same order as the order established by the value of PicOrderCntVal.

對於未藉由「提昇」程序輸出之圖像,因為該等圖像在解碼次序上先於具有等於1或被推斷為等於1之no_output_of_prior_pics_flag 的IDR或BLA圖像,所以自pic_dpb_output_delay導出之輸出時間應隨著相對於同一經寫碼視訊序列內之所有圖像的PicOrderCntVal之值增加而增加。 For images that are not output by the "lift" program, because the images precede the no_output_of_prior_pics_flag with a value equal to 1 or inferred to be equal to 1 in decoding order. The IDR or BLA image, so the output time derived from pic_dpb_output_delay should increase with increasing value of PicOrderCntVal relative to all images within the same coded video sequence.

等於1之du_common_cpb_removal_delay_flag指定存在語法元素du_common_cpb_removal_delay_minus1。等於0之du_common_cpb_removal_delay_flag指定不存在語法元素du_common_cpb_removal_delay_minus1。 Du_common_cpb_removal_delay_flag equal to 1 specifies the presence of the syntax element du_common_cpb_removal_delay_minus1. Du_common_cpb_removal_delay_flag equal to 0 specifies that the syntax element du_common_cpb_removal_delay_minus1 does not exist.

du_common_cpb_removal_delay_minus1加1指定在自CPB移除解碼次序上的先前之解碼單元之後,在自CPB移除與圖像時序SEI訊息相關聯之存取單元中的每一解碼單元之前要等待多少個子圖像時脈刻度(參見子條款E.2.1)。如附錄C中所指定,此值亦用以計算解碼單元資料到達HSS之CPB的最早可能時間。語法元素係固定長度碼,其長度由du_cpb_removal_delay_length_minus1+1以位元為單位給出。 Du_common_cpb_removal_delay_minus1 plus 1 specifies how many sub-images to wait before each decoding unit in the access unit associated with the image timing SEI message is removed from the CPB after the previous decoding unit in the decoding order is removed from the CPB Pulse scale (see subclause E.2.1). As specified in Appendix C, this value is also used to calculate the earliest possible time for the decoding unit data to reach the CPB of the HSS. The syntax element is a fixed length code whose length is given in units of bits by du_cpb_removal_delay_length_minus1+1.

如上文所指示,HEVC工作草案8不提供使圖像時序SEI訊息關聯至VPS中之hrd_parameters( )語法結構的任何方式,對於該hrd_parameters( )語法結構,相關聯之operation_point_layer_ids( )語法結構包括nuh_reserved_zero_6bits的多個值(亦即,HEVC之多視圖、3DV或可調式視訊寫碼擴展中的多個層ID)。因此,根據本發明之一或多項技術,圖像時序SEI訊息中之applicable_operation_points( )語法元素指定緩衝週期SEI訊息應用至的操作點。 As indicated above, HEVC Working Draft 8 does not provide any way to associate an image timing SEI message to the hrd_parameters( ) syntax structure in the VPS for which the associated operation_point_layer_ids( ) syntax structure includes nuh_reserved_zero_6bits Multiple values (ie, multiple views of HEVC, 3DV or multiple layer IDs in an adjustable video write extension). Thus, in accordance with one or more techniques of the present invention, the apply_operation_points( ) syntax element in the image timing SEI message specifies the operating point to which the buffering period SEI message is applied.

此外,根據本發明之一或多項技術,子圖像時序SEI訊息的語法可如以下表8中所展示而改變。對子圖像時序SEI訊息語法的改變可使得子圖像時序SEI訊息能夠包括applicable_operation_points( )語法結構。在HEVC工作草案8中,子圖像時序SEI訊息並不包括applicable_operation_points( )語法結構。 Moreover, in accordance with one or more techniques of the present invention, the syntax of the sub-picture timing SEI message can be changed as shown in Table 8 below. The change to the sub-picture timing SEI message syntax may enable the sub-picture timing SEI message to include the applicable_operation_points( ) syntax structure. In HEVC Working Draft 8, the sub-picture timing SEI message does not include the applicable_operation_points() syntax structure.

表8- 子圖像時序SEI訊息Table 8 - Sub-image timing SEI messages

HEVC工作草案8之章節D.2.2.2描述子圖像時序SEI訊息的語義。根據本發明之一或多項技術,HEVC工作草案8之章節D.2.2.2可進行如下修改:子圖像時序SEI訊息提供用於與SEI訊息相關聯之解碼單元的CPB移除延遲資訊。 Section D.2.2.2 of HEVC Working Draft 8 describes the semantics of sub-picture timing SEI messages. In accordance with one or more techniques of the present invention, Section D.2.2.2 of HEVC Working Draft 8 may be modified as follows: Sub-picture timing The SEI message provides CPB removal delay information for the decoding unit associated with the SEI message.

以下內容適用於子圖像時序SEI訊息語法及語義:The following applies to sub-picture timing SEI message syntax and semantics:

- 語法元素sub_pic_cpb_params_present_flag及cpb_removal_delay_length_minus1以及變數CpbDpbDelaysPresentFlag可見於或導出自在適用於子圖像時序SEI訊息應用至之操作點中之任一者的hrd_parameters( )語法結構及sub_layer_hrd_parameters( )語法結構中的語法元素中。 The syntax elements sub_pic_cpb_params_present_flag and cpb_removal_delay_length_minus1 and the variable CpbDpbDelaysPresentFlag may be found or derived from syntax elements in the hrd_parameters( ) syntax structure and the sub_layer_hrd_parameters( ) syntax structure applicable to any of the operation points to which the sub-picture timing SEI message is applied.

- 位元流(或其一部分)指代與子圖像時序SEI訊息應用至之操作點中的任一者相關聯的位元流子集(或其一部分)。 The bit stream (or a portion thereof) refers to a subset of bitstreams (or a portion thereof) associated with any of the operating points to which the sub-picture timing SEI message is applied.

子圖像時序SEI訊息在位元流中之存在被指定如下。 The presence of the sub-picture timing SEI message in the bit stream is specified as follows.

- 若CpbDpbDelaysPresentFlag等於1且sub_pic_cpb_params_present_flag等於1,則適用於指定操作點之一個子圖像時序SEI訊息可存在於經寫碼視訊序列中的每一解碼單元中。 - If CpbDpbDelaysPresentFlag is equal to 1 and sub_pic_cpb_params_present_flag is equal to 1, then a sub-picture timing SEI message suitable for the specified operating point may be present in each decoding unit in the coded video sequence.

- 否則(CpbDpbDelaysPresentFlag等於0或sub_pic_cpb_params_present_flag等於0),適用於指定操作點之子圖像時序SEI訊息皆不應存在於經寫碼視訊序列中。 - Otherwise (CpbDpbDelaysPresentFlag is equal to 0 or sub_pic_cpb_params_present_flag is equal to 0), sub-picture timing SEI messages applicable to the specified operating point shall not be present in the coded video sequence.

與子圖像時序SEI訊息相關聯之解碼單元在解碼次序上由含有子圖像時序SEI訊息之SEL NAL單元繼之以不含有子圖像時序SEI訊息的一或多個NAL單元(包括存取單元中之直至(但不包括)含有子圖像時序 SEI訊息之任何後續SEI NAL單元的所有後續NAL單元)組成。在每一解碼單元中應存在至少一VCL NAL單元。與VCL NAL單元相關聯之所有非VCL NAL單元應包括於同一解碼單元中。 The decoding unit associated with the sub-picture timing SEI message is in decoding order by the SEL NAL unit containing the sub-picture timing SEI message followed by one or more NAL units (including access) that do not contain the sub-picture timing SEI message Up to (but not including) sub-image timing in the unit Composed of all subsequent NAL units of any subsequent SEI NAL unit of the SEI message. There should be at least one VCL NAL unit in each decoding unit. All non-VCL NAL units associated with a VCL NAL unit shall be included in the same decoding unit.

du_spt_cpb_removal_delay_minus1加1指定在自CPB移除與前一存取單元中的最近緩衝週期SEI訊息相關聯之存取單元中之最後一個解碼單元之後、在自CPB移除與子圖像時序SEI訊息相關聯之解碼單元之前要等待多少個子圖像時脈刻度。如附錄C中所指定,此值亦用以計算解碼單元資料到達HSS之CPB的最早可能時間。語法元素由固定長度碼來表示,其長度由cpb_removal_delay_length_minus1+1以位元為單位給出。 Du_spt_cpb_removal_delay_minus1 plus 1 specifies that after the CPB removes the last decoding unit in the access unit associated with the most recent buffering period SEI message in the previous access unit, the removal from the CPB is associated with the sub-picture timing SEI message How many sub-image clock scales to wait before decoding the unit. As specified in Appendix C, this value is also used to calculate the earliest possible time for the decoding unit data to reach the CPB of the HSS. The syntax element is represented by a fixed length code whose length is given by cpb_removal_delay_length_minus1+1 in bits.

註釋- 判定語法元素du_spt_cpb_removal_delay_minus1之長度(以位元為單位)的cpb_removal_delay_length_minus1之值係在對於含有與子圖像時序SEI訊息相關聯之解碼單元的存取單元係作用中之視訊參數集或序列參數集中寫碼的cpb_removal_delay_length_minus1之值,儘管du_spt_cpb_removal_delay_minus1加1指定了相對於含有緩衝週期SEI訊息的前一存取單元中之最後一個解碼單元之移除時間的子圖像時脈刻度之數目,該前一存取單元可係不同經寫碼視訊序列中的存取單元。 Remarks - The value of cpb_removal_delay_length_minus1 of the length (in bits) of the decision syntax element du_spt_cpb_removal_delay_minus1 is in the video parameter set or sequence parameter set in the access unit system for the decoding unit associated with the sub-picture timing SEI message. The value of the coded cpb_removal_delay_length_minus1, although du_spt_cpb_removal_delay_minus1 plus 1 specifies the number of sub-image clock scales relative to the removal time of the last decoding unit in the previous access unit containing the buffer period SEI message, the previous save The fetch unit can be an access unit in a different coded video sequence.

HEVC工作草案8之章節E.2.2描述HRD參數語義。根據本發明之一或多項技術,HEVC工作草案8之章節E.2.2可做如下改變。下文未提及之HRD參數之彼等語法元素的語義可與HEVC工作草案8中之彼等語義相同。 Section E.2.2 of HEVC Working Draft 8 describes HRD parameter semantics. In accordance with one or more of the techniques of the present invention, Section E.2.2 of HEVC Working Draft 8 can be changed as follows. The semantics of the grammatical elements of the HRD parameters not mentioned below may be identical to their semantics in HEVC Working Draft 8.

hrd_parameters( )語法結構提供用於HRD操作中的HRD參數。當hrd_parameters( )語法結構包括於視訊參數集中時,包括於語法結構應用至之操作點之OpLayerIdSet中的nuh_reserved_zero_6bits值之數字的集合由視訊參數集中之對應operation_point_layer_ids( )語法結構來The hrd_parameters( ) syntax structure provides HRD parameters for use in HRD operations. When the hrd_parameters( ) syntax structure is included in the video parameter set, the set of numbers of nuh_reserved_zero_6bits values included in the OpLayerIdSet applied to the operation point of the syntax structure is determined by the corresponding operation_point_layer_ids() syntax structure in the video parameter set. 指定抑或被隱含地導出,如子條款7.4.4中所指定。當hrd_parameters( )語法結構包括於序列參數集中時,適用操作點係具有僅含有值0之OpLayerIdSet的所有操作點。替代性地,當hrd_parameters( )語法結構包括於序列參數集中時,適用操作點係具有相/同於TargetDecLayerIdSet之OpLayerIdSet的所有操作點。Specify or implicitly export, as specified in subclause 7.4.4. When the hrd_parameters( ) syntax structure is included in the sequence parameter set, the applicable operating point has all the operating points with only the OpLayerIdSet of value 0. Alternatively, when the hrd_parameters( ) syntax structure is included in the sequence parameter set, the applicable operating point has all the operating points of the OpLayerIdSet that are the same as the TargetDecLayerIdSet.

位元流一致性之一要求係:對於經寫碼視訊序列(視訊參數集抑或序列參數集中)中之所有hrd_parameters( )語法結構,應不存在適用至同一操作點之一個以上hrd_parameters( )語法結構。替代性地,要求在視訊參數集中應不存在適用至同一操作點之一個以上hrd_parameters( )語法結構。替代性地,要求視訊參數集不應包括適用至具有僅含有值0之OpLayerIdSet之操作點的hrd_parameters( )語法結構。One of the requirements for bitstream consistency is that for all hrd_parameters() syntax structures in a coded video sequence (video parameter set or sequence parameter set), there should be no more than one hrd_parameters() syntax structure applicable to the same operating point. . Alternatively, it is required that there should be no more than one hrd_parameters( ) syntax structure applicable to the same operating point in the video parameter set. Alternatively, the set of video parameters is required to not include the hrd_parameters( ) syntax structure applicable to an operation point having an OpLayerIdSet containing only a value of zero.

du_cpb_removal_delay_length_minus1加1指定圖像時序SEI訊息之du_cpb_removal_delay_minus1[i]及du_common_cpb_removal_delay_minus1語法元素之以位元計的長度。 Du_cpb_removal_delay_length_minus1 plus 1 specifies the length of the du_cpb_removal_delay_minus1[i] and du_common_cpb_removal_delay_minus1 syntax elements of the image timing SEI message in bits.

cpb_removal_delay_length_minus1加1指定圖像時序SEI訊息中的au_cpb_removal_delay_minus1語法元素及子圖像時序SEI訊息中的du_spt_cpb_removal_delay_minus1語法元素的以位元計之長度。當cpb_removal_delay_length_minus1語法元素不存在時,其被推斷為等於23。 Cpb_removal_delay_length_minus1 plus 1 specifies the length of the au_cpb_removal_delay_minus1 syntax element in the image timing SEI message and the du_spt_cpb_removal_delay_minus1 syntax element in the sub-picture timing SEI message in bits. When the cpb_removal_delay_length_minus1 syntax element does not exist, it is inferred to be equal to 23.

dpb_output_delay_length_minus1加1指定圖像時序SEI訊息中的pic_dpb_output_delay語法元素之以位元計的長度。當dpb_output_delay_length_minus1語法元素不存在時,其被推斷為等於23。 Dpb_output_delay_length_minus1 plus 1 specifies the length of the pic_dpb_output_delay syntax element in the image timing SEI message in bits. When the dpb_output_delay_length_minus1 syntax element does not exist, it is inferred to be equal to 23.

等於1之fixed_pic_rate_flag[i]指示,在TargetDecHighestTid等於i時,輸出次序上的任何兩個連續圖像之HRD輸出時間之間的時間 距離受如下約束。等於0之fixed_pic_rate_flag[i]指示,無此等約束應用至輸出次序上的任何兩個連續圖像之HRD輸出時間之間的時間距離。 A fixed_pic_rate_flag [i] equal to 1 indicates that when TargetDecHighestTid is equal to i, the time distance between the HRD output times of any two consecutive images in the output order is constrained as follows. A fixed_pic_rate_flag[i] equal to 0 indicates that there is no such time constraint as the time between the HRD output times of any two consecutive images on the output order.

當fixed_pic_rate_flag[i]不存在時,其被推斷為等於0。 When fixed_pic_rate_flag[i] does not exist, it is inferred to be equal to zero.

對於含有圖像n之經寫碼視訊序列,當TargetDecHighestTid等於i且fixed_pic_rate_flag[i]等於1時,如等式C-17中所指定之△to,dpb(n)之所計算值應等於tc *(pic_duration_in_tcs_minus1[i]+1),其中當以下條件中之一或多者對於經指定用於等式C-17中的以下圖像nn為真時,tc係如等式C-1所指定(使用含有圖像n之經寫碼視訊序列的tc值): For a coded video sequence containing image n, when TargetDecHighestTid is equal to i and fixed_pic_rate_flag[i] is equal to 1, the calculated value of Δt o, dpb (n) as specified in Equation C-17 shall be equal to t. c *(pic_duration_in_tcs_minus1[i]+1), wherein when one or more of the following conditions are true for the following image nn specified for use in Equation C-17, t c is as Equation C-1 Specified (using the t c value of the coded video sequence containing image n):

- 圖像nn係與圖像n在相同之經寫碼視訊序列中。 - Image nn is in the same coded video sequence as image n.

- 圖像nn係在不同經寫碼視訊序列中,且在含有圖像nn之經寫碼視訊序列中fixed_pic_rate_flag[i]等於1,num_units_in_tick÷time_scale之值對於兩個經寫碼視訊序列為相同的,且pic_duration_in_tc_minus1[i]之值對於兩個經寫碼視訊序列為相同的。 - Image nn is in a different coded video sequence, and fixed_pic_rate_flag[i] is equal to 1, in the coded video sequence containing image nn, the value of num_units_in_tick÷time_scale is the same for both coded video sequences And the value of pic_duration_in_tc_minus1[i] is the same for the two coded video sequences.

pic_duration_in_tc_minus1[i]加1指定在TargetDecHighestTid等於i時經寫碼視訊序列中按輸出次序的任何兩個連續圖像之HRD輸出時間之間的以時脈刻度為單位的時間距離。pic_duration_in_tc_minus1[i]之值應係在0至2047的範圍內(包括0及2047)。 Pic_duration_in_tc_minus1 [i] plus 1 specifies the time distance in hours of the HRD output time between any two consecutive images in the output order in the coded video sequence when TargetDecHighestTid is equal to i. The value of pic_duration_in_tc_minus1[i] should be in the range of 0 to 2047 (including 0 and 2047).

如附錄C中所指定,當TargetDecHighestTid等於i時,low_delay_hrd_flag[i]指定HRD操作模式。當fixed_pic_rate_flag[i]等於1時,low_delay_hrd_flag[i]應等於0。 As specified in Appendix C, when TargetDecHighestTid is equal to i, low_delay_hrd_flag [i] specifies the HRD mode of operation. When fixed_pic_rate_flag[i] is equal to 1, low_delay_hrd_flag[i] should be equal to zero.

註釋3-當low_delay_hrd_flag[i]等於1時,准許歸因於由存取單元使用之位元的數目而違反標稱CPB移除時間的「大圖像」。預期到但不要求此等「大圖像」僅偶爾發生。 Note 3 - When low_delay_hrd_flag[i] is equal to 1, a "large image" that violates the nominal CPB removal time due to the number of bits used by the access unit is permitted. It is expected that such "big images" will not be required to occur only occasionally.

cpb_cnt_minus1[i]加1指定在TargetDecHighestTid等於i時經寫碼視訊序列之位元流中之替代性CPB規範的數目。cpb_cnt_minus1[i]之值應係在0至31的範圍內(包括0及31)。當low_delay_hrd_flag[i]等於1時,cpb_cnt_minus1[i]應等於0。當cpb_cnt_minus1[i]不存在時,其被推斷為等於0。 Cpb_cnt_minus1 [i] plus 1 specifies the number of alternative CPB specifications in the bitstream of the coded video sequence when TargetDecHighestTid is equal to i. The value of cpb_cnt_minus1[i] should be in the range of 0 to 31 (including 0 and 31). When low_delay_hrd_flag[i] is equal to 1, cpb_cnt_minus1[i] should be equal to zero. When cpb_cnt_minus1[i] does not exist, it is inferred to be equal to zero.

如在本發明中於其他地方所描述,在HEVC工作草案8中,僅VPS中之hrd_parameters( )語法結構可被選擇用於HRD操作,而從不選擇SPS中之hrd_parameters( )語法結構。上文展示之對hrd_parameters( )語法結構之語義的改變闡明:當hrd_parameters( )語法結構包括於SPS中時,hrd_parameters( )語法結構適用於之操作點可係具有相同於TargetDecLayerIdSet之OpLayerIdSet的所有操作點。如上文在經修改之一般解碼程序中所指示,若外部構件可用於設定TargetDecLayerIdSet,則TargetDecLayerIdSet可由外部構件指定。否則,若在位元流一致性測試中調用解碼程序,則TargetDecLayerIdSet可係受測操作點之層識別符的集合。否則,TargetDecLayerIdSet可僅含有一個層識別符(亦即,nuh_reserved_zero_6bits之僅一值),其等於0。在一個實例中,外部構件可係API,該API係終端機實施之部分且提供設定TargetDecLayerIdSet之值的功能。在此實例中,終端機實施可包含解碼器實施及並非解碼器實施之部分的某些功能。 As described elsewhere in the present invention, in HEVC Working Draft 8, only the hrd_parameters( ) syntax structure in the VPS can be selected for HRD operations, and the hrd_parameters( ) syntax structure in the SPS is never selected. The changes to the semantics of the hrd_parameters( ) syntax structure shown above clarify that when the hrd_parameters( ) syntax structure is included in the SPS, the hrd_parameters( ) syntax structure applies to all operating points that have the same OpLayerIdSet as the TargetDecLayerIdSet. . As indicated above in the modified general decoding procedure, if an external component can be used to set the TargetDecLayerIdSet, the TargetDecLayerIdSet can be specified by the external component. Otherwise, if the decoder is called in the bitstream conformance test, the TargetDecLayerIdSet can be the set of layer identifiers of the tested operating points. Otherwise, the TargetDecLayerIdSet may contain only one layer identifier (ie, only one value of nuh_reserved_zero_6bits), which is equal to zero. In one example, the external component can be an API that is part of the terminal implementation and provides the functionality to set the value of the TargetDecLayerIdSet. In this example, the terminal implementation may include certain functions of the decoder implementation and not part of the decoder implementation.

以此方式,器件(諸如視訊編碼器20、視訊解碼器30、額外器件21或另一器件)可自視訊參數集中的HRD參數之集合及SPS中的HRD參數的集合中選擇適用於特定操作點之HRD參數的集合。此外,器件可至少部分基於適用於特定操作點之HRD參數的集合執行位元流一致性測試,該測試對與特定操作點相關聯之位元流子集是否與視訊寫碼標準一致進行測試。 In this manner, the device (such as video encoder 20, video decoder 30, additional device 21, or another device) can be selected from a set of HRD parameters in the video parameter set and a set of HRD parameters in the SPS for a particular operating point. A collection of HRD parameters. In addition, the device can perform a bitstream conformance test based at least in part on a set of HRD parameters suitable for a particular operating point, the test testing whether a subset of bitstreams associated with a particular operating point is consistent with a video writing standard.

如上文所指示,HEVC工作草案8之章節E.2.2可經修改以指示在 hrd_parameters( )語法結構包括於序列參數集中時適用操作點係具有相同於TargetDecLayerIdSet之OpLayerIdSet的所有操作點。此外,如上文所描述,TargetDecLayerIdSet被設定為targetOpLayerIdSet,其含有存在於與TargetOp相關聯之位元流子集中的nuh_reserved_zero_6bits之值的集合。TargetOp係HRD操作中之受測操作點。此外,HRD操作(例如,位元流一致性測試及解碼器一致性測試)可調用一般解碼程序。 As indicated above, Section E.2.2 of HEVC Working Draft 8 may be modified to indicate The hrd_parameters( ) syntax structure is included in the sequence parameter set. The operating points are all operating points with the same OpLayerIdSet of TargetDecLayerIdSet. Furthermore, as described above, the TargetDecLayerIdSet is set to targetOpLayerIdSet, which contains a set of values of nuh_reserved_zero_6bits present in the subset of bitstreams associated with TargetOp. TargetOp is the measured operating point in HRD operation. In addition, HRD operations (eg, bitstream conformance testing and decoder conformance testing) can invoke a general decoding procedure.

如上文所解釋,HEVC工作草案8之章節8.1可經修改以規定:在TargetDecHighestTid及TargetDecLayerIdSet作為輸入的情況下應用如子條款10.1中指定之子位元流提取程序,且將輸出指派給稱作BitstreamToDecode的位元流。因此,存在於BitstreamToDecode中之僅有的nuh_reserved_zero_6bits值係TestDecLayerIdSet中的nuh_reserved_zero_6bits的值(亦即,存在於與TargetOp相關聯之位元流子集中的nuh_reserved_zero_6bits之值的集合)。章節8.1進一步解釋,當涉及解譯每一NAL單元及「位元流」或其部分(例如,經寫碼視訊序列)中之每一語法元素的語義時,位元流或其部分意謂BitstreamToDecode或其部分。 As explained above, Section 8.1 of HEVC Working Draft 8 can be modified to specify that the sub-bitstream extractor as specified in subclause 10.1 is applied with TargetDecHighestTid and TargetDecLayerIdSet as inputs, and the output is assigned to a call called BitstreamToDecode. Bit stream. Therefore, the only nuh_reserved_zero_6bits value present in BitstreamToDecode is the value of nuh_reserved_zero_6bits in TestDecLayerIdSet (ie, the set of values of nuh_reserved_zero_6bits present in the subset of bitstreams associated with TargetOp). Section 8.1 further explains that when it comes to interpreting the semantics of each syntax element in each NAL unit and "bitstream" or part thereof (eg, a coded video sequence), the bitstream or part thereof means BitstreamToDecode. Or part thereof.

因此,當解譯描述HRD參數之語義的章節(例如,HEVC工作草案8之章節E.2.2)時,術語「經寫碼視訊序列」意謂BitstreamToDecode之部分。TargetDecLayerIdSet等效於存在於BitstreamToDecode中的nuh_reserved_zero_6bits之所有值的集合。因而斷定,描述HRD參數之語義之章節中的片語「當hrd_parameters( )語法結構包括於序列參數集中時,適用操作點係具有相同於TargetDecLayerIdSet之OpLayerIdSet的所有操作點」等效於「當hrd_parameters( )語法結構包括於序列參數集中時,適用操作點係具有相同於存在於BitstreamToDecode中之nuh_reserved_zero_6bits之值的集合之 OpLayerIdSet的所有操作點」。 Thus, when interpreting a section describing the semantics of an HRD parameter (eg, section E.2.2 of HEVC Working Draft 8), the term "coded video sequence" means part of BitstreamToDecode. TargetDecLayerIdSet is equivalent to a collection of all values of nuh_reserved_zero_6bits present in BitstreamToDecode. Therefore, it is concluded that the phrase "When the hrd_parameters( ) syntax structure is included in the sequence parameter set, the applicable operation point has all the operation points of the OpLayerIdSet identical to the TargetDecLayerIdSet" is equivalent to "when hrd_parameters (when the hrd_parameters() syntax structure is included in the sequence parameter set" When the grammatical structure is included in the sequence parameter set, the applicable operation point has the same set of values as nuh_reserved_zero_6bits existing in the BitstreamToDecode. All operating points of OpLayerIdSet".

因為「經寫碼視訊序列」係BitstreamToDecode之部分,所以存在於經寫碼視訊序列中之nuh_reserved_zero_6bits的集合係存在於BitstreamToDecode中之nuh_reserved_zero_6bits之集合的子集。因此,片語「當hrd_parameters( )語法結構包括於序列參數集中時,適用操作點係具有相同於存在於BitstreamToDecode中之nuh_reserved_zero_6bits之值的集合之OpLayerIdSet的所有操作點」必然要求「當hrd_parameters( )語法結構包括於序列參數集中時,適用操作點係具有含有存在於經寫碼視訊序列中之nuh_reserved_zero_6bits之所有值的OpLayerIdSet之所有操作點」。換言之,若操作點之nuh_reserved_zero_6bits之集合相同於存在於BitstreamToDecode中之nuh_reserved_zero_6bits的集合,則操作點之nuh_reserved_zero_6bits的集合必然含有存在於BitstreamToDecode之經寫碼視訊序列中的所有nuh_reserved_zero_6bits值。在此片語中,「經寫碼視訊序列」可指代與特定SPS相關聯之經寫碼視訊序列。 Since the "coded video sequence" is part of BitstreamToDecode, the set of nuh_reserved_zero_6bits present in the coded video sequence is present in a subset of the set of nuh_reserved_zero_6bits in BitstreamToDecode. Therefore, the phrase "When the hrd_parameters() syntax structure is included in the sequence parameter set, the applicable operation point is all the operation points of the OpLayerIdSet having the same set of values of nuh_reserved_zero_6bits existing in the BitstreamToDecode"" when the hrd_parameters() syntax is required. When the structure is included in the sequence parameter set, the applicable operating point has all the operating points of the OpLayerIdSet containing all the values of nuh_reserved_zero_6bits present in the coded video sequence. In other words, if the set of nuh_reserved_zero_6bits of the operation point is the same as the set of nuh_reserved_zero_6bits existing in BitstreamToDecode, the set of nuh_reserved_zero_6bits of the operation point necessarily contains all the nuh_reserved_zero_6bits values existing in the coded video sequence of BitstreamToDecode. In this phrase, a "coded video sequence" may refer to a coded video sequence associated with a particular SPS.

當執行HRD操作時,器件可自指示於VPS中之hrd_parameters()語法結構及指示於SPS中之hrd_parameters()語法結構判定適用於TargetOp的hrd_parameters()語法結構。若TargetOp之層id集合與指定於VPS中之針對特定hrd_parameters()語法結構的層識別符的集合匹配,則VPS中之該特定hrd_parameters()語法結構適用於TargetOp。若TargetOp之層id集合(亦即,TargetDecHighestTid)(亦即,存在於BitstreamToDecode中之nuh_reserved_zero_6bits的集合)含有存在於SPS之經寫碼視訊序列中之所有nuh_reserved_zero_6bits(其係BitstreamToDecode中的nuh_reserved_zero_6bits之集合的子集),則SPS中之hrd_parameters()語法結構可適用於TargetOp。因為TargetOp之nuh_reserved_zero_6bits的集合可必然含有存在於與SPS相關聯之經 寫碼視訊序列中的所有nuh_reserved_zero_6bits值,因此SPS中之hrd_parameters()語法結構可總是適用於TargetOp。然而,並非所有SPS具有hrd_parameters()語法結構。若SPS並不具有hrd_parameters()語法結構且存在於BitstreamToDecode中之nuh_reserved_zero_6bits的集合含有存在於SPS之經寫碼視訊序列中的所有nuh_reserved_zero_6bits,則應使用SPS之hrd_parameters()語法結構。 因為並非所有SPS皆具有hrd_parameters()語法結構,所以仍可選擇VPS。 When performing the HRD operation, the device can determine the hrd_parameters() syntax structure applicable to TargetOp from the hrd_parameters() syntax structure in the VPS and the hrd_parameters() syntax structure indicated in the SPS. If the layer id set of TargetOp matches the set of layer identifiers specified in the VPS for a particular hrd_parameters() syntax structure, then the particular hrd_parameters() syntax structure in the VPS applies to TargetOp. If the TargetOp layer id set (ie, TargetDecHighestTid) (ie, the set of nuh_reserved_zero_6bits present in BitstreamToDecode) contains all of the nuh_reserved_zero_6bits (which are the set of nuh_reserved_zero_6bits in the BitstreamToDecode) present in the SPS coded video sequence. Set), the hrd_parameters() syntax structure in SPS can be applied to TargetOp. Because the set of nuh_reserved_zero_6bits of TargetOp may necessarily contain the existence of the association associated with SPS. All nuh_reserved_zero_6bits values in the coded video sequence are written, so the hrd_parameters() syntax structure in SPS can always be applied to TargetOp. However, not all SPSs have the hrd_parameters() syntax structure. If the SPS does not have the hrd_parameters() syntax structure and the set of nuh_reserved_zero_6bits present in the BitstreamToDecode contains all of the nuh_reserved_zero_6bits present in the SPS codec video sequence, the SPS's hrd_parameters() syntax structure should be used. Since not all SPSs have the hrd_parameters() syntax structure, the VPS can still be selected.

此外,如上文在對HEVC工作草案8之章節E.2.2之修改中所展示,當器件執行位元流一致性測試時,視訊解碼器可在對於經寫碼視訊序列中的HRD參數之所有集合而言HRD參數之一個以上集合適用至同一操作點時判定位元流不與視訊寫碼標準一致。此外,當器件執行位元流一致性測試時,視訊解碼器可在VPS中的HRD參數之一個以上集合適用至同一操作點時判定位元流不與視訊寫碼標準一致。此外,當器件執行位元流解碼測試時,器件可在VPS包括適用至具有僅含有值0之層id集合之操作點的HRD參數之集合時判定位元流不與視訊寫碼標準一致。 Furthermore, as shown above in the modification of section E.2.2 of HEVC Working Draft 8, when the device performs bitstream conformance testing, the video decoder can be in all sets of HRD parameters in the coded video sequence. In the case where one or more sets of HRD parameters are applied to the same operating point, the bit stream is determined not to conform to the video writing standard. In addition, when the device performs bitstream conformance testing, the video decoder can determine that the bitstream is not consistent with the video writing standard when more than one set of HRD parameters in the VPS is applied to the same operating point. In addition, when the device performs a bitstream decoding test, the device can determine that the bitstream does not conform to the video writing standard when the VPS includes a set of HRD parameters applicable to an operating point having a layer id set containing only a value of zero.

圖3為說明經組態以實施本發明之技術的實例視訊解碼器30的方塊圖。圖3係為了解釋之目的而提供,且不限制如在本發明中廣泛例證且描述之技術。為了解釋,本發明在HEVC寫碼之內容脈絡中描述視訊解碼器30。然而,本發明之技術可適用於其他寫碼標準或方法。 3 is a block diagram illustrating an example video decoder 30 that is configured to implement the techniques of the present invention. 3 is provided for purposes of explanation and does not limit the techniques as broadly illustrated and described in the present invention. For purposes of explanation, the present invention describes video decoder 30 in the context of the HEVC code. However, the techniques of the present invention are applicable to other writing standards or methods.

在圖3之實例中,視訊解碼器30包括熵解碼單元150、預測處理單元152、反量化單元154、反變換處理單元156、重建構單元158、濾波單元160及經解碼圖像緩衝器162。預測處理單元152包括運動補償單元164及框內預測處理單元166。在其他實例中,視訊解碼器30可包括較多、較少或不同功能組件。 In the example of FIG. 3, video decoder 30 includes an entropy decoding unit 150, a prediction processing unit 152, an inverse quantization unit 154, an inverse transform processing unit 156, a reconstruction unit 158, a filtering unit 160, and a decoded image buffer 162. The prediction processing unit 152 includes a motion compensation unit 164 and an in-frame prediction processing unit 166. In other examples, video decoder 30 may include more, fewer, or different functional components.

經寫碼圖像緩衝器(CPB)151可接收並儲存位元流之經編碼視訊資料(例如,NAL單元)。熵解碼單元150可自CPB 151接收NAL單元且剖析NAL單元以解碼語法元素。熵解碼單元150可熵解碼NAL單元中的經熵編碼之語法元素。預測處理單元152、反量化單元154、反變換處理單元156、重建構單元158及濾波單元160可基於提取自位元流之語法元素而產生經解碼視訊資料。 The coded image buffer (CPB) 151 can receive and store the encoded video material (e.g., NAL unit) of the bit stream. Entropy decoding unit 150 may receive NAL units from CPB 151 and parse the NAL units to decode syntax elements. Entropy decoding unit 150 may entropy decode the entropy encoded syntax elements in the NAL unit. Prediction processing unit 152, inverse quantization unit 154, inverse transform processing unit 156, reconstruction unit 158, and filtering unit 160 may generate decoded video material based on the extracted syntax elements from the bitstream.

位元流之NAL單元可包括經寫碼圖塊NAL單元。作為解碼位元流之部分,熵解碼單元150可自經寫碼圖塊NAL單元提取語法元素並熵解碼該等語法元素。經寫碼圖塊中之每一者可包括圖塊標頭及圖塊資料。圖塊標頭可含有關於圖塊之語法元素。圖塊標頭中之語法元素可包括一識別與含有該圖塊的圖像相關聯之PPS的語法元素。 The NAL unit of the bitstream may include a coded tile NAL unit. As part of the decoded bitstream, entropy decoding unit 150 may extract the syntax elements from the coded tile NAL unit and entropy decode the syntax elements. Each of the coded tiles may include a tile header and tile data. A tile header can contain syntax elements about a tile. The syntax element in the tile header may include a syntax element that identifies the PPS associated with the image containing the tile.

除了解碼來自位元流之語法元素外,視訊解碼器30亦可對非經分割CU執行重建構操作。為了對非經分割CU執行重建構操作,視訊解碼器30可對CU之每一TU執行重建構操作。藉由對於CU之每一TU執行重建構操作,視訊解碼器30可重建構CU之殘餘區塊。 In addition to decoding syntax elements from the bitstream, video decoder 30 may also perform reconstruction operations on the non-segmented CUs. In order to perform a reconstruction operation on a non-segmented CU, video decoder 30 may perform a reconstruction operation on each TU of the CU. By performing a reconstruction operation for each TU of the CU, video decoder 30 may reconstruct the residual block of the CU.

作為對CU之TU執行重建構操作的部分,反量化單元154可反量化(亦即,解量化)與TU相關聯的係數區塊。反量化單元154可使用與TU之CU相關聯的QP值來判定量化程度,且同樣地判定反量化單元154要應用的反量化程度。亦即,可藉由在量化變換係數時調整所使用之QP的值來控制壓縮比(亦即,用以表示初始序列之位元數目與經壓縮序列之位元數目的比率)。壓縮比亦可取決於所使用之熵寫碼的方法。 As part of performing a reconstruction operation on the TU of the CU, inverse quantization unit 154 may inverse quantize (ie, dequantize) the coefficient block associated with the TU. The inverse quantization unit 154 may determine the degree of quantization using the QP value associated with the CU of the TU, and similarly determine the degree of inverse quantization to be applied by the inverse quantization unit 154. That is, the compression ratio (i.e., the ratio of the number of bits used to represent the initial sequence to the number of bits of the compressed sequence) can be controlled by adjusting the value of the QP used when quantizing the transform coefficients. The compression ratio may also depend on the method of entropy writing used.

在反量化單元154反量化係數區塊之後,反變換處理單元156可將一或多個反變換應用至係數區塊以便產生與TU相關聯的殘餘區塊。舉例而言,反變換處理單元156可將反DCT、反整數變換、反卡忽南-拉維變換(Karhunen-Loeve transform,KLT)、反旋轉變換、反方 向變換或另一反變換應用至係數區塊。 After inverse quantization unit 154 inverse quantizes the coefficient block, inverse transform processing unit 156 can apply one or more inverse transforms to the coefficient block to generate a residual block associated with the TU. For example, the inverse transform processing unit 156 can perform inverse DCT, inverse integer transform, Karhunen-Loeve transform (KLT), inverse rotation transform, and inverse Apply a transform or another inverse transform to the coefficient block.

若PU係使用框內預測來編碼,則框內預測處理單元166可執行框內預測以產生PU的預測性區塊。框內預測處理單元166可使用框內預測模式以基於空間相鄰PU之預測區塊產生PU的預測性明度、Cb及Cr區塊。框內預測處理單元166可基於自位元流解碼之一或多個語法元素而判定PU的框內預測模式。 If the PU is encoded using intra-frame prediction, in-frame prediction processing unit 166 may perform in-frame prediction to generate a predictive block for the PU. In-frame prediction processing unit 166 may use the in-frame prediction mode to generate predictive luma, Cb, and Cr blocks for the PU based on the predicted blocks of spatially neighboring PUs. In-frame prediction processing unit 166 may determine an intra-frame prediction mode for the PU based on decoding one or more syntax elements from the bit stream.

預測處理單元152可基於自位元流提取之語法元素而建構第一參考圖像清單(RefPicList0)及第二參考圖像清單(RefPicList1)。此外,若PU係使用框間預測來編碼,則熵解碼單元150可提取針對PU之運動資訊。運動補償單元164可基於PU之運動資訊判定PU的一或多個參考區。運動補償單元164可基於PU之一或多個參考區塊處的樣本區塊產生針對PU的預測性明度、Cb及Cr區塊。 The prediction processing unit 152 may construct a first reference image list (RefPicList0) and a second reference image list (RefPicList1) based on the syntax elements extracted from the bit stream. Furthermore, if the PU is encoded using inter-frame prediction, the entropy decoding unit 150 may extract motion information for the PU. Motion compensation unit 164 can determine one or more reference regions of the PU based on the motion information of the PU. Motion compensation unit 164 may generate predictive luma, Cb, and Cr blocks for the PU based on the one or more reference blocks at the PU.

重建構單元158可使用與CU之TU相關聯的明度、Cb及Cr變換區塊以及CU之PU的預測性明度、Cb及Cr區塊(亦即,框內預測資料抑或框間預測資料,在適用時)來重建構CU的明度、Cb及Cr寫碼區塊。舉例而言,重建構單元158可將明度、Cb及Cr變換區塊之樣本加至預測性明度、Cb及Cr區塊的對應樣本以重建構CU的明度、Cb及Cr寫碼區塊。 Reconstruction unit 158 may use the luma, Cb, and Cr transform blocks associated with the TU of the CU and the predictive luma, Cb, and Cr blocks of the PU of the CU (ie, in-frame prediction data or inter-frame prediction data, When applicable, to reconstruct the CU's brightness, Cb, and Cr code blocks. For example, reconstruction unit 158 may add samples of luma, Cb, and Cr transform blocks to corresponding samples of predictive luma, Cb, and Cr blocks to reconstruct the luma, Cb, and Cr code blocks of the CU.

濾波單元160可執行解區塊操作以減少與CU之明度、Cb及Cr寫碼區塊相關聯的方塊效應假影。視訊解碼器30可將CU之明度、Cb及Cr寫碼區塊儲存於經解碼圖像緩衝器162中。經解碼圖像緩衝器162可提供參考圖像以用於隨後運動補償、框內預測及在顯示器件(諸如,圖1之顯示器件32)上的呈現。舉例而言,視訊解碼器30可基於經解碼圖像緩衝器162中之明度、Cb及Cr區塊對其他CU之PU執行框內預測或框間預測操作。以此方式,視訊解碼器30可自位元流解碼有效明度係數區塊的變換係數級別,反量化變換係數級別,將變換應用至變換係 數級別以產生變換區塊,至少部分基於變換區塊產生寫碼區塊,且輸出寫碼區塊以供顯示。 Filtering unit 160 may perform a deblocking operation to reduce blockiness artifacts associated with the CU's brightness, Cb, and Cr code blocks. Video decoder 30 may store the CU's luma, Cb, and Cr code blocks in decoded image buffer 162. The decoded image buffer 162 can provide a reference image for subsequent motion compensation, in-frame prediction, and rendering on a display device, such as display device 32 of FIG. For example, video decoder 30 may perform intra-frame prediction or inter-frame prediction operations on PUs of other CUs based on the luma, Cb, and Cr blocks in decoded image buffer 162. In this manner, video decoder 30 can decode the transform coefficient level of the effective luma coefficient block from the bit stream, inverse quantize the transform coefficient level, and apply the transform to the transform system. The number level is to generate a transform block, the write code block is generated based at least in part on the transform block, and the write code block is output for display.

圖4係根據本發明之一或多項技術的說明一器件之實例操作200的流程圖。操作200可由視訊編碼器20、視訊解碼器30、額外器件21或另一器件執行。如圖4之實例中所說明,器件可自VPS中之假想HRD參數(例如,hrd_parameters語法結構)之集合及SPS中的HRD參數之集合中選擇適用於位元流之特定操作點的HRD參數之集合(202)。 此外,器件可至少部分基於適用於特定操作點的HRD參數之集合而對與特定操作點相關聯之位元流子集執行HRD操作(204)。舉例而言,器件可執行位元流一致性測試或解碼器一致性測試。 4 is a flow diagram illustrating an example operation 200 of a device in accordance with one or more techniques of the present invention. Operation 200 may be performed by video encoder 20, video decoder 30, additional device 21, or another device. As illustrated in the example of FIG. 4, the device may select an HRD parameter suitable for a particular operating point of the bitstream from a set of hypothetical HRD parameters (eg, hrd_parameters syntax structure) in the VPS and a set of HRD parameters in the SPS. Collection (202). Moreover, the device can perform an HRD operation on the subset of bitstreams associated with a particular operating point based at least in part on a set of HRD parameters suitable for a particular operating point (204). For example, the device may perform bitstream conformance testing or decoder conformance testing.

圖5係根據本發明之一或多項技術的說明一器件之實例操作250的流程圖。操作200可由視訊編碼器20、視訊解碼器30、額外器件21或另一器件執行。如圖5之實例中所說明,器件可執行一判定位元流是否與視訊寫碼標準一致的位元流一致性測試(252)。器件可執行作為執行位元流一致性測試的部分的解碼程序(254)。 FIG. 5 is a flow diagram illustrating an example operation 250 of a device in accordance with one or more techniques of the present invention. Operation 200 may be performed by video encoder 20, video decoder 30, additional device 21, or another device. As illustrated in the example of FIG. 5, the device can perform a bitstream conformance test (252) that determines if the bitstream is consistent with the video writing standard. The device can execute a decoding program (254) as part of performing a bitstream conformance test.

如圖5之實例中所說明,當執行解碼程序時,器件可執行位元流提取程序以自位元流提取由層識別符之目標集合及目標最高時間識別符定義之操作點的操作點表示(256)。層識別符之目標集合可含有存在於操作點表示中之層識別符語法元素的值。層識別符之目標集合可係位元流之層識別符語法元素值的子集。目標最高時間識別符可等於存在於操作點表示中之最大時間識別符,目標最高時間識別符小於或等於存在於位元流中的最大時間識別符。此外,器件可解碼操作點表示之NAL單元(258)。 As illustrated in the example of FIG. 5, when performing the decoding process, the device executable bitstream extraction program extracts the operation point representation of the operation point defined by the target set of the layer identifier and the target highest time identifier from the bit stream. (256). The target set of layer identifiers may contain values of layer identifier syntax elements that are present in the operation point representation. The target set of layer identifiers may be a subset of the layer identifier syntax element values of the bit stream. The target highest time identifier may be equal to the maximum time identifier present in the operation point representation, the target highest time identifier being less than or equal to the maximum time identifier present in the bit stream. In addition, the device can decode the NAL unit represented by the operating point (258).

圖6係根據本發明之一或多項技術的說明一器件之實例HRD操作300的流程圖。HRD操作300可由視訊編碼器20、視訊解碼器30、額外器件21或另一器件執行。其他器件可包括一致性位元流檢查器,該檢 查器將位元流取作為輸入,且輸出該輸入位元流是否係一致之位元流的指示。在一些實例中,HRD操作300可判定位元流與視訊寫碼標準的一致性。在其他實例中,HRD操作300可判定解碼器與視訊寫碼標準的一致性。作為執行HRD操作300之部分,器件可判定與位元流之所選擇操作點相關聯之位元流子集的最高時間識別符(302)。此外,器件可基於最高時間識別符判定來自語法元素之陣列(例如,sps_max_num_reorder_pics[i]、sps_max_dec_pic_buffering[i]及cpb_cnt_minus1[i])的特定語法元素(304)。器件可在HRD操作中使用特定語法元素(306)。 6 is a flow diagram illustrating an example HRD operation 300 of a device in accordance with one or more techniques of the present invention. HRD operation 300 may be performed by video encoder 20, video decoder 30, additional device 21, or another device. Other devices may include a consistent bitstream checker, which checks The inspector takes the bit stream as an input and outputs an indication of whether the input bit stream is a consistent bit stream. In some examples, HRD operation 300 can determine the consistency of the bitstream with the video coding standard. In other examples, HRD operation 300 can determine the consistency of the decoder with the video writing standard. As part of performing HRD operation 300, the device can determine the highest time identifier (302) of the subset of bitstreams associated with the selected operating point of the bitstream. In addition, the device may determine a particular syntax element (304) from an array of syntax elements (eg, sps_max_num_reorder_pics[i], sps_max_dec_pic_buffering[i], and cpb_cnt_minus1[i]) based on the highest temporal identifier. The device may use a particular syntax element (306) in the HRD operation.

在一或多個實例中,所描述之功能可以硬體、軟體、韌體或其任何組合來實施。若以軟體實施,則功能可作為一或多個指令或程式碼而儲存於電腦可讀媒體上或經由電腦可讀媒體而傳輸,且由基於硬體之處理單元執行。電腦可讀媒體可包括電腦可讀儲存媒體(其對應於諸如資料儲存媒體之有形媒體)或通信媒體,通信媒體包括(例如)根據通信協定促進電腦程式自一處傳送至另一處的任何媒體。以此方式,電腦可讀媒體大體上可對應於(1)穩定式的有形電腦可讀儲存媒體,或(2)諸如信號或載波之通信媒體。資料儲存媒體可為可由一或多個電腦或一或多個處理器存取以擷取指令、程式碼及/或資料結構以用於實施本發明中所描述之技術的任何可用媒體。電腦程式產品可包括一電腦可讀媒體。 In one or more examples, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored as one or more instructions or code on or transmitted through a computer readable medium and executed by a hardware-based processing unit. The computer readable medium can include a computer readable storage medium (which corresponds to a tangible medium such as a data storage medium) or communication medium including, for example, any medium that facilitates transfer of the computer program from one location to another in accordance with a communication protocol . In this manner, computer readable media generally may correspond to (1) a tangible, tangible computer readable storage medium, or (2) a communication medium such as a signal or carrier. The data storage medium can be any available media that can be accessed by one or more computers or one or more processors to capture instructions, code, and/or data structures for use in carrying out the techniques described in the present invention. The computer program product can include a computer readable medium.

藉由實例而非限制,此等電腦可讀儲存媒體可包含RAM、ROM、EEPROM、CD-ROM或其他光碟儲存器、磁碟儲存器或其他磁性儲存器件、快閃記憶體,或可用以儲存呈指令或資料結構之形式的所要程式碼且可由電腦存取之任何其他媒體。又,任何連接可恰當地稱為電腦可讀媒體。舉例而言,若使用同軸電纜、光纜、雙絞線、數位用戶線(DSL)或無線技術(諸如,紅外線、無線電及微波)而自網 站、伺服器或其他遠端源傳輸指令,則同軸電纜、光纜、雙絞線、DSL或無線技術(諸如,紅外線、無線電及微波)包括於媒體之定義中。然而,應理解,電腦可讀儲存媒體及資料儲存媒體不包括連接、載波、信號或其他瞬間媒體,而是替代地係針對非瞬間有形儲存媒體。如本文中所使用,磁碟及光碟包括緊密光碟(CD)、雷射光碟、光學光碟、數位影音光碟(DVD)、軟性磁碟及藍光光碟,其中磁碟通常以磁性方式再生資料,而光碟藉由雷射以光學方式再生資料。以上各物之組合亦應包括於電腦可讀媒體之範疇內。 By way of example and not limitation, such computer-readable storage media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage or other magnetic storage device, flash memory, or may be used for storage Any other medium that is in the form of an instruction or data structure and that is accessible by a computer. Also, any connection is properly termed a computer-readable medium. For example, if you use coaxial cable, fiber optic cable, twisted pair cable, digital subscriber line (DSL), or wireless technology (such as infrared, radio, and microwave) Coax, fiber optic cable, twisted pair, DSL, or wireless technologies (such as infrared, radio, and microwave) are included in the definition of the media when the station, server, or other remote source transmits instructions. However, it should be understood that computer readable storage media and data storage media do not include connections, carrier waves, signals, or other transient media, but instead are directed to non-transitory tangible storage media. As used herein, magnetic disks and optical disks include compact discs (CDs), laser compact discs, optical compact discs, digital audio and video discs (DVDs), flexible magnetic discs, and Blu-ray discs, in which magnetic discs are typically magnetically regenerated, while optical discs are used. Optically regenerating data by laser. Combinations of the above should also be included in the context of computer readable media.

可由諸如一或多個數位信號處理器(DSP)、通用微處理器、特殊應用積體電路(ASIC)、場可程式化邏輯陣列(FPGA)或其他等效整合或離散邏輯電路之一或多個處理器來執行指令。因而,本文中所使用之術語「處理器」可指代上述結構或適於實施本文中所描述之技術的任何其他結構中之任一者。此外,在一些態樣中,可將本文中所描述之功能性提供於經組態以用於編碼及解碼之專用硬體及/或軟體模組內,或併入於組合式編碼解碼器中。又,該等技術可完全以一或多個電路或邏輯元件來實施。 One or more of such equivalent integrated or discrete logic circuits, such as one or more digital signal processors (DSPs), general purpose microprocessors, special application integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other equivalent integrated or discrete logic circuits Processors to execute instructions. Thus, the term "processor" as used herein may refer to any of the above structures or any other structure suitable for implementing the techniques described herein. Moreover, in some aspects, the functionality described herein may be provided within dedicated hardware and/or software modules configured for encoding and decoding, or incorporated in a combined codec. . Moreover, the techniques can be implemented entirely in one or more circuits or logic elements.

本發明之技術可以廣泛之多種器件或裝置予以實施,該等器件或裝置包括無線手機、積體電路(IC)或IC集合(例如,晶片集)。在本發明中描述各種組件、模組或單元以強調經組態以執行所揭示技術的器件之功能態樣,但未必要求藉由不同硬體單元來實現。確切而言,如上文所描述,可將各種單元組合於編碼解碼器硬體單元中,或藉由結合合適軟體及/或韌體的互操作性硬體單元(包括如上文所描述之一或多個處理器)之集合來提供該等單元。 The techniques of the present invention can be implemented in a wide variety of devices or devices, including wireless handsets, integrated circuits (ICs), or sets of ICs (e.g., wafer sets). Various components, modules or units are described in this disclosure to emphasize functional aspects of devices configured to perform the disclosed techniques, but are not necessarily required to be implemented by different hardware units. Rather, as described above, various units may be combined in a codec hardware unit, or by interoperable hardware units incorporating suitable software and/or firmware (including one as described above or A collection of multiple processors) to provide such units.

已描述各種實例。此等及其他實例屬於以下申請專利範圍之範疇內。 Various examples have been described. These and other examples are within the scope of the following claims.

200‧‧‧實例操作 200‧‧‧Instance operations

Claims (26)

一種處理視訊資料之方法,該方法包含:自一視訊參數集(VPS)中之假想參考解碼器(HRD)參數之一集合及一序列參數集(SPS)中之HRD參數的一集合中選擇適用於一位元流之一特定操作點的HRD參數之一集合;及至少部分基於適用於該特定操作點的HRD參數之該所選擇集合而對與該特定操作點相關聯之一位元流子集執行一HRD操作。 A method for processing video data, the method comprising: selecting from a set of hypothetical reference decoder (HRD) parameters in a video parameter set (VPS) and a set of HRD parameters in a sequence parameter set (SPS) a set of HRD parameters for a particular operating point of a one-bit stream; and one of the bitstreams associated with the particular operating point based at least in part on the selected set of HRD parameters applicable to the particular operating point The set performs an HRD operation. 如請求項1之方法,其中選擇適用於該特定操作點的HRD參數之該集合包含在該特定操作點之一層識別符集合含有存在於該位元流子集中之所有層識別符的一集合時判定該SPS中的HRD參數之該集合適用於該特定操作點。 The method of claim 1, wherein the set of HRD parameters selected for the particular operating point is included when a set of layer identifiers of the particular operating point contains a set of all layer identifiers present in the subset of bitstreams It is determined that the set of HRD parameters in the SPS is applicable to the particular operating point. 如請求項1之方法,其中適用於該特定操作點之HRD參數的該集合包括指定以下各者的參數:一初始寫碼圖像緩衝器(CPB)移除延遲、一CPB大小、一位元速率、一初始經解碼圖像緩衝器(DPB)輸出延遲及一DPB大小。 The method of claim 1, wherein the set of HRD parameters applicable to the particular operating point comprises parameters specifying: an initial write code image buffer (CPB) removal delay, a CPB size, a bit element Rate, an initial decoded image buffer (DPB) output delay, and a DPB size. 如請求項1之方法,其進一步包含:判定該特定操作點之含有存在於該位元流子集中之每一層識別符的一目標層識別符集合,其中該特定操作點之該目標層識別符集合係存在於該位元流中的層識別符之一子集,及判定該特定操作點之等於存在於該位元流子集中之一最大時間識別符的一目標時間識別符,其中該特定操作點之該目標時間識別符小於或等於存在於該位元流中的該最大時間識別符。 The method of claim 1, further comprising: determining that the specific operating point contains a target layer identifier set of each layer identifier present in the subset of bit streams, wherein the target layer identifier of the specific operating point A set is a subset of the layer identifiers present in the bitstream, and a target time identifier equal to one of the maximum time identifiers present in the subset of bitstreams is determined to be the specific operating point, wherein the specific The target time identifier of the operating point is less than or equal to the maximum time identifier present in the bit stream. 如請求項4之方法,其中選擇HRD參數之該集合包含回應於判定該特定操作點之該目標層識別符集合僅含有值0而選擇該SPS中 的HRD參數之該集合。 The method of claim 4, wherein the selecting the set of HRD parameters comprises selecting the SPS in response to determining that the target layer identifier set of the particular operating point contains only a value of 0 This set of HRD parameters. 如請求項4之方法,其中選擇HRD參數之該集合包含回應於判定指定於該SPS中之層識別符的一集合相同於該特定操作點之該目標層識別符集合而選擇該SPS中的HRD參數之該集合。 The method of claim 4, wherein the selecting the set of HRD parameters comprises selecting the HRD in the SPS in response to determining that the set of layer identifiers specified in the SPS is the same as the target layer identifier set of the particular operating point This collection of parameters. 如請求項1之方法,其中執行該HRD操作包含執行一位元流一致性測試,該測試判定該位元流是否與一視訊寫碼標準一致。 The method of claim 1, wherein performing the HRD operation comprises performing a one-bit stream conformance test that determines whether the bit stream is consistent with a video write standard. 如請求項7之方法,其中執行該位元流一致性測試包含在對於一經寫碼視訊序列中之HRD參數的所有集合而言HRD參數之一個以上集合應用至同一操作點時判定該位元流與該視訊寫碼標準不一致。 The method of claim 7, wherein performing the bitstream conformance test comprises determining the bitstream when more than one set of HRD parameters are applied to the same operating point for all sets of HRD parameters in a coded video sequence It is inconsistent with the video writing standard. 如請求項7之方法,其中執行該位元流一致性測試包含在該VPS中之HRD參數之一個以上集合應用至同一操作點時判定該位元流與該視訊寫碼標準不一致。 The method of claim 7, wherein performing the bitstream conformance test comprises determining that the bitstream is inconsistent with the video coding standard when one or more sets of HRD parameters in the VPS are applied to the same operating point. 如請求項7之方法,其中執行該位元流一致性測試包含在該VPS包括應用至具有僅含有值0之層識別符集合的操作點的HRD參數之一集合時判定該位元流與該視訊寫碼標準不一致。 The method of claim 7, wherein performing the bitstream conformance test comprises determining the bitstream and the VPS when the VPS includes applying to a set of HRD parameters having an operation point having only a layer identifier set of value 0 The video writing standard is inconsistent. 一種包含一或多個處理器之器件,該一或多個處理器經組態以:自一視訊參數集(VPS)中之假想參考解碼器(HRD)參數之一集合及一序列參數集(SPS)中之HRD參數的一集合中選擇適用於一位元流之一特定操作點的HRD參數之一集合;及至少部分基於適用於該特定操作點的HRD參數之該所選擇集合而對與該特定操作點相關聯之一位元流子集執行一HRD操作。 A device comprising one or more processors configured to: from a set of hypothetical reference decoder (HRD) parameters in a video parameter set (VPS) and a sequence of parameter sets ( Selecting a set of HRD parameters applicable to a particular operating point of one of the meta-streams in a set of HRD parameters in the SPS); and at least partially based on the selected set of HRD parameters applicable to the particular operating point A subset of the bitstreams associated with the particular operating point performs an HRD operation. 如請求項11之器件,其中該一或多個處理器經組態以在該特定操作點之一層識別符集合含有存在於該位元流子集中之所有層識 別符的一集合時判定該SPS中的HRD參數之該集合適用於該特定操作點。 The device of claim 11, wherein the one or more processors are configured to have a layer identifier set at the particular operating point containing all of the layers present in the subset of bit streams The set of HRD parameters in the SPS is determined to be applicable to the particular operating point. 如請求項11之器件,其中適用於該特定操作點之HRD參數的該集合包括指定以下各者的參數:一初始寫碼圖像緩衝器(CPB)移除延遲、一CPB大小、一位元速率、一初始經解碼圖像緩衝器(DPB)輸出延遲及一DPB大小。 The device of claim 11, wherein the set of HRD parameters applicable to the particular operating point includes parameters specifying: an initial write code image buffer (CPB) removal delay, a CPB size, a bit element Rate, an initial decoded image buffer (DPB) output delay, and a DPB size. 如請求項11之器件,其中該一或多個處理器經組態以:判定該特定操作點之含有存在於該位元流子集中之每一層識別符的一目標層識別符集合,其中該特定操作點之該目標層識別符集合係存在於該位元流中的層識別符之一子集,及判定該特定操作點之等於存在於該位元流子集中之一最大時間識別符的一目標時間識別符,其中該特定操作點之該目標時間識別符小於或等於存在於該位元流中的該最大時間識別符。 The device of claim 11, wherein the one or more processors are configured to: determine that the particular operating point contains a set of target layer identifiers present in each of the layer identifiers in the subset of bitstreams, wherein The target layer identifier set of the specific operation point is a subset of the layer identifiers present in the bit stream, and determining that the specific operation point is equal to one of the maximum time identifiers present in the bit stream subset A target time identifier, wherein the target time identifier of the particular operating point is less than or equal to the maximum time identifier present in the bit stream. 如請求項14之器件,其中該一或多個處理器經組態以回應於判定該特定操作點之該目標層識別符集合僅含有值0而選擇該SPS中的HRD參數之該集合。 The device of claim 14, wherein the one or more processors are configured to select the set of HRD parameters in the SPS in response to determining that the target layer identifier set for the particular operating point contains only a value of zero. 如請求項14之器件,其中該一或多個處理器經組態以回應於判定指定於該SPS中之層識別符的一集合相同於該特定操作點之該目標層識別符集合而選擇該SPS中的HRD參數之該集合。 The device of claim 14, wherein the one or more processors are configured to select the set in response to determining that the set of layer identifiers specified in the SPS is the same as the target layer identifier set for the particular operating point This set of HRD parameters in the SPS. 如請求項11之器件,其中該一或多個處理器經組態以執行一位元流一致性測試,該測試判定該位元流是否與一視訊寫碼標準一致。 The device of claim 11, wherein the one or more processors are configured to perform a one-bit stream conformance test that determines whether the bit stream is consistent with a video write standard. 如請求項17之器件,其中該一或多個處理器經組態以在對於一經寫碼視訊序列中之HRD參數的所有集合而言HRD參數之一個以上集合應用至同一操作點時判定該位元流與該視訊寫碼標準不一致。 The device of claim 17, wherein the one or more processors are configured to determine the bit when more than one set of HRD parameters are applied to the same operating point for all sets of HRD parameters in a coded video sequence The meta stream is inconsistent with the video writing standard. 如請求項17之器件,其中該一或多個處理器經組態以在該VPS中之HRD參數之一個以上集合應用至同一操作點時判定該位元流與該視訊寫碼標準不一致。 The device of claim 17, wherein the one or more processors are configured to determine that the bitstream is inconsistent with the video write code criteria when one or more sets of HRD parameters in the VPS are applied to the same operating point. 如請求項17之器件,其中該一或多個處理器經組態以在該VPS包括應用至具有僅含有值0之層識別符集合的操作點的HRD參數之一集合時判定該位元流與該視訊寫碼標準不一致。 The device of claim 17, wherein the one or more processors are configured to determine the bitstream when the VPS includes a set of HRD parameters applied to an operating point having a set of layer identifiers having only a value of 0 It is inconsistent with the video writing standard. 一種器件,其包含:用於自一視訊參數集(VPS)中之假想參考解碼器(HRD)參數之一集合及一序列參數集(SPS)中之HRD參數的一集合中選擇適用於一位元流之一特定操作點的HRD參數之一集合的構件;及用於至少部分基於適用於該特定操作點的HRD參數之該所選擇集合而對與該特定操作點相關聯之一位元流子集執行一HRD操作的構件。 A device comprising: for selecting from a set of hypothetical reference decoder (HRD) parameters in a video parameter set (VPS) and a set of HRD parameters in a sequence parameter set (SPS) for one bit a component of one of a set of HRD parameters of a particular operating point; and a bitstream associated with the particular operating point based at least in part on the selected set of HRD parameters applicable to the particular operating point A subset of components that perform an HRD operation. 如請求項21之器件,其包含用於在該特定操作點之一層識別符集合含有存在於該位元流子集中之所有層識別符的一集合時判定該SPS中的HRD參數之該集合適用於該特定操作點的構件。 The device of claim 21, comprising: determining, for a set of HRD parameters in the SPS, when the set of layer identifiers of the particular operating point contains a set of all layer identifiers present in the subset of bitstreams The component at this particular operating point. 如請求項21之器件,其進一步包含:用於判定該特定操作點之含有存在於該位元流子集中之每一層識別符的一目標層識別符集合之構件,其中該特定操作點之該目標層識別符集合係存在於該位元流中的層識別符之一子集;用於判定該特定操作點之等於存在於該位元流子集中之一最大時間識別符的一目標時間識別符之構件,其中該特定操作點之該目標時間識別符小於或等於存在於該位元流中的該最大時間識別符;及用於回應於判定指定於該SPS中之層識別符的一集合相同於該 特定操作點之該目標層識別符集合而選擇該SPS中的HRD參數之該集合的構件。 The device of claim 21, further comprising: means for determining that the particular operating point contains a target layer identifier set of each layer identifier present in the subset of bitstreams, wherein the specific operating point The target layer identifier set is a subset of the layer identifiers present in the bit stream; a target time identification for determining that the specific operating point is equal to one of the maximum time identifiers present in the bit stream subset a component, wherein the target time identifier of the particular operating point is less than or equal to the maximum time identifier present in the bitstream; and a set responsive to determining a layer identifier assigned to the SPS Same as this The set of target layer identifiers for a particular operating point and the components of the set of HRD parameters in the SPS are selected. 一種上面儲存有指令之電腦可讀資料儲存媒體,該等指令在由一器件之一或多個處理器執行時組態該器件以:自一視訊參數集(VPS)中之假想參考解碼器(HRD)參數之一集合及一序列參數集(SPS)中之HRD參數的一集合中選擇適用於一位元流之一特定操作點的HRD參數之一集合;及至少部分基於適用於該特定操作點的HRD參數之該所選擇集合而對與該特定操作點相關聯之一位元流子集執行一HRD操作。 A computer readable data storage medium having stored thereon instructions for configuring the device when executed by one or more processors of a device: from a hypothetical reference decoder in a video parameter set (VPS) ( Selecting one of a set of HRD parameters in a set of HRD) parameters and a set of HRD parameters in a sequence of parameter sets (SPS) for selecting a set of HRD parameters for a particular operating point of a one-bit stream; and based at least in part on the particular operation The selected set of HRD parameters of the point performs an HRD operation on a subset of bitstreams associated with the particular operating point. 如請求項24之電腦可讀資料儲存媒體,其中該等指令進一步組態該器件以在該特定操作點之一層識別符集合含有存在於該位元流子集中之所有層識別符的一集合時判定該SPS中的HRD參數之該集合適用於該特定操作點。 The computer readable material storage medium of claim 24, wherein the instructions further configure the device to have a set of layer identifiers at a particular operating point containing a set of all layer identifiers present in the subset of bitstreams It is determined that the set of HRD parameters in the SPS is applicable to the particular operating point. 如請求項24之電腦可讀資料儲存媒體,其中該等指令組態該器件以:判定該特定操作點之含有存在於該位元流子集中之每一層識別符的一目標層識別符集合,其中該特定操作點之該目標層識別符集合係存在於該位元流中的層識別符之一子集;判定該特定操作點之等於存在於該位元流子集中之一最大時間識別符的一目標時間識別符,其中該特定操作點之該目標時間識別符小於或等於存在於該位元流中的該最大時間識別符;及回應於判定指定於該VPS中之層識別符的一集合相同於該特定操作點之該目標層識別符集合而選擇該VPS中的HRD參數之該集合。 The computer readable data storage medium of claim 24, wherein the instructions configure the device to: determine that the particular operating point contains a target layer identifier set of each layer identifier present in the subset of bitstreams, The target layer identifier set of the specific operation point is a subset of the layer identifiers present in the bit stream; determining that the specific operation point is equal to one of the maximum time identifiers present in the bit stream subset a target time identifier, wherein the target time identifier of the specific operating point is less than or equal to the maximum time identifier present in the bit stream; and responsive to determining one of the layer identifiers specified in the VPS The set of HRD parameters in the VPS is selected by collecting the set of target layer identifiers that are identical to the particular operating point.
TW102134375A 2012-09-24 2013-09-24 Method, device, and computer-readable data storage medium for processing video data TWI533671B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261705102P 2012-09-24 2012-09-24
US13/918,041 US10021394B2 (en) 2012-09-24 2013-06-14 Hypothetical reference decoder parameters in video coding

Publications (2)

Publication Number Publication Date
TW201424393A true TW201424393A (en) 2014-06-16
TWI533671B TWI533671B (en) 2016-05-11

Family

ID=50338834

Family Applications (3)

Application Number Title Priority Date Filing Date
TW102134376A TWI504238B (en) 2012-09-24 2013-09-24 Method and device of processing video data, and computer-readable storage medium
TW102134381A TWI536809B (en) 2012-09-24 2013-09-24 Methods, devices, and computer-readable storage media for hypothetical reference decoder parameters in video coding
TW102134375A TWI533671B (en) 2012-09-24 2013-09-24 Method, device, and computer-readable data storage medium for processing video data

Family Applications Before (2)

Application Number Title Priority Date Filing Date
TW102134376A TWI504238B (en) 2012-09-24 2013-09-24 Method and device of processing video data, and computer-readable storage medium
TW102134381A TWI536809B (en) 2012-09-24 2013-09-24 Methods, devices, and computer-readable storage media for hypothetical reference decoder parameters in video coding

Country Status (24)

Country Link
US (3) US9351005B2 (en)
EP (3) EP2898679A1 (en)
JP (3) JP6258333B2 (en)
KR (3) KR101965027B1 (en)
CN (3) CN104641648B (en)
AR (3) AR093238A1 (en)
AU (3) AU2013318193B2 (en)
BR (3) BR112015006451B1 (en)
CA (3) CA2884277C (en)
DK (1) DK2898680T3 (en)
ES (1) ES2758503T3 (en)
HK (3) HK1206526A1 (en)
HU (1) HUE045592T2 (en)
IL (3) IL237404A (en)
MY (3) MY182240A (en)
PH (3) PH12015500477A1 (en)
PT (1) PT2898680T (en)
RU (3) RU2649297C2 (en)
SG (4) SG11201501421YA (en)
SI (1) SI2898680T1 (en)
TW (3) TWI504238B (en)
UA (2) UA113334C2 (en)
WO (3) WO2014047175A1 (en)
ZA (2) ZA201502304B (en)

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104661038B (en) * 2009-12-10 2018-01-05 Sk电信有限公司 Use the decoding apparatus of tree structure
JP2015510354A (en) * 2012-02-08 2015-04-02 トムソン ライセンシングThomson Licensing Method and apparatus for using very low delay mode of virtual reference decoder
WO2014006921A1 (en) * 2012-07-06 2014-01-09 Sharp Kabushiki Kaisha Electronic devices for signaling sub-picture based hypothetical reference decoder parameters
US9351005B2 (en) 2012-09-24 2016-05-24 Qualcomm Incorporated Bitstream conformance test in video coding
US9654802B2 (en) 2012-09-24 2017-05-16 Qualcomm Incorporated Sequence level flag for sub-picture level coded picture buffer parameters
US9992490B2 (en) 2012-09-26 2018-06-05 Sony Corporation Video parameter set (VPS) syntax re-ordering for easy access of extension parameters
CN105025303B (en) * 2012-09-28 2018-05-29 瑞典爱立信有限公司 The decoding of video sequence image and coding
US20140092961A1 (en) * 2012-09-28 2014-04-03 Sharp Laboratories Of America, Inc. Signaling decoder picture buffer information
US9380317B2 (en) 2012-10-08 2016-06-28 Qualcomm Incorporated Identification of operation points applicable to nested SEI message in video coding
US9374585B2 (en) * 2012-12-19 2016-06-21 Qualcomm Incorporated Low-delay buffering model in video coding
US10419778B2 (en) * 2013-01-04 2019-09-17 Sony Corporation JCTVC-L0227: VPS_extension with updates of profile-tier-level syntax structure
US10219006B2 (en) 2013-01-04 2019-02-26 Sony Corporation JCTVC-L0226: VPS and VPS_extension updates
US9402076B2 (en) * 2013-01-07 2016-07-26 Qualcomm Incorporated Video buffering operations for random access in video coding
US9591321B2 (en) 2013-04-07 2017-03-07 Dolby International Ab Signaling change in output layer sets
MX361490B (en) 2013-04-07 2018-12-07 Dolby Int Ab Signaling change in output layer sets.
TWI676389B (en) 2013-07-15 2019-11-01 美商內數位Vc專利控股股份有限公司 Method for encoding and method for decoding a colour transform and corresponding devices
WO2015052935A1 (en) * 2013-10-11 2015-04-16 Sharp Kabushiki Kaisha Color information and chromaticity signaling
KR102246546B1 (en) * 2013-10-12 2021-04-30 삼성전자주식회사 Method and apparatus for multi-layer video encoding, method and apparatus for multi-layer video decoding
KR102233430B1 (en) * 2013-10-12 2021-03-29 삼성전자주식회사 Decoding Picture Buffer Managing Method and Apparatus for multi-layer video encoding and video Decoding
US20150103895A1 (en) * 2013-10-13 2015-04-16 Sharp Laboratories Of America, Inc. Electronic devices for signaling multiple initial buffering parameters
EP3058747B1 (en) * 2013-10-15 2019-11-20 Nokia Technologies Oy Scalable video encoding and decoding using syntax element
WO2015102042A1 (en) * 2014-01-02 2015-07-09 Sharp Kabushiki Kaisha Parameter set signaling
US10547834B2 (en) * 2014-01-08 2020-01-28 Qualcomm Incorporated Support of non-HEVC base layer in HEVC multi-layer extensions
US20170171563A1 (en) * 2014-02-24 2017-06-15 Sharp Kabushiki Kaisha Restrictions on signaling
WO2015138979A2 (en) * 2014-03-14 2015-09-17 Sharp Laboratories Of America, Inc. Dpb capacity limits
US10390087B2 (en) * 2014-05-01 2019-08-20 Qualcomm Incorporated Hypothetical reference decoder parameters for partitioning schemes in video coding
JP2017522792A (en) * 2014-06-18 2017-08-10 シャープ株式会社 Slice type and decoder compatibility
US10356415B2 (en) * 2014-06-20 2019-07-16 Qualcomm Incorporated Systems and methods for constraining representation format parameters for a parameter set
US10264286B2 (en) * 2014-06-26 2019-04-16 Qualcomm Incorporated Bitstream conformance constraints in scalable video coding
WO2016098056A1 (en) * 2014-12-18 2016-06-23 Nokia Technologies Oy An apparatus, a method and a computer program for video coding and decoding
US20160234522A1 (en) * 2015-02-05 2016-08-11 Microsoft Technology Licensing, Llc Video Decoding
US10715574B2 (en) 2015-02-27 2020-07-14 Divx, Llc Systems and methods for frame duplication and frame extension in live video encoding and streaming
US20160330453A1 (en) * 2015-05-05 2016-11-10 Cisco Technology, Inc. Parameter Set Header
US10003813B2 (en) * 2015-06-25 2018-06-19 Samsung Electronics Co., Ltd. Method and system for decoding by enabling optimal picture buffer management
JP6738413B2 (en) * 2015-09-23 2020-08-12 アリス エンタープライジズ エルエルシーArris Enterprises Llc Transmission of high dynamic range and wide color gamut content in transport streams
US10582201B2 (en) * 2016-05-19 2020-03-03 Qualcomm Incorporated Most-interested region in an image
JP7275284B2 (en) * 2018-12-31 2023-05-17 華為技術有限公司 Video encoder, video decoder and corresponding method
CN111435989B (en) * 2019-01-15 2023-11-17 华为技术有限公司 Video encoding and decoding methods, devices and computer storage medium
US11159795B2 (en) * 2019-03-04 2021-10-26 Tencent America LLC Max transform size control
CN113826390B (en) * 2019-05-16 2024-03-08 字节跳动有限公司 Intra-frame block copy for screen content codec
US11303913B2 (en) * 2019-06-19 2022-04-12 Qualcomm Incorporated Decoded picture buffer indexing
EP3987816A4 (en) * 2019-06-20 2023-06-21 Nokia Technologies Oy An apparatus, a method and a computer program for video encoding and decoding
MX2022000139A (en) * 2019-07-05 2022-02-17 Huawei Tech Co Ltd Video coding bitstream extraction with identifier signaling.
EP4030764A4 (en) * 2019-09-11 2022-11-23 Panasonic Intellectual Property Corporation of America Encoding device, decoding device, encoding method, and decoding method
CN114424553A (en) * 2019-09-22 2022-04-29 北京字节跳动网络技术有限公司 Inter-frame prediction scaling method based on sub-blocks
EP4022929A4 (en) * 2019-09-24 2022-11-23 Huawei Technologies Co., Ltd. An encoder, a decoder with support of sub-layer picture rates
KR20220063269A (en) * 2019-09-24 2022-05-17 후아웨이 테크놀러지 컴퍼니 리미티드 Decoded picture buffer operation for resolution changes
CN114503547B (en) * 2019-09-24 2023-09-22 华为技术有限公司 HRD parameters for layers
WO2021071183A1 (en) * 2019-10-06 2021-04-15 현대자동차주식회사 Method and device for performing inverse transformation on transform coefficients of current block
CN114514751B (en) * 2019-10-07 2024-03-15 华为技术有限公司 Avoiding redundant indications in multi-layer video streams
CN110636372B (en) * 2019-10-08 2022-02-25 未来电视有限公司 Video decoding method, video playing device, electronic equipment and storage medium
MX2022004409A (en) 2019-10-18 2022-05-18 Beijing Bytedance Network Tech Co Ltd Syntax constraints in parameter set signaling of subpictures.
US20230362412A1 (en) * 2019-12-19 2023-11-09 Telefonaktiebolaget Lm Ericsson (Publ) Output process disable indicator
CN114846786A (en) 2019-12-26 2022-08-02 字节跳动有限公司 Constraints on signaling of hypothetical reference decoder parameters in a video bitstream
KR20220114558A (en) 2019-12-26 2022-08-17 바이트댄스 아이엔씨 Display Profiles, Tiers and Hierarchies in Video Coding
CN114902567A (en) 2019-12-27 2022-08-12 字节跳动有限公司 Sub-picture signaling in video coding and decoding
JP7460774B2 (en) * 2020-01-09 2024-04-02 バイトダンス インコーポレイテッド Processing filler data units in video streams
US11889091B2 (en) * 2020-02-21 2024-01-30 Alibaba Group Holding Limited Methods for processing chroma signals
US11743503B2 (en) * 2020-05-14 2023-08-29 Qualcomm Incorporated Reference picture list constraints and signaling in video coding
KR20230017236A (en) * 2020-05-18 2023-02-03 엘지전자 주식회사 Image or video coding based on picture output related information
CN115715466A (en) * 2020-05-22 2023-02-24 抖音视界有限公司 Filler payload in sub-bitstream extraction process
US11523137B2 (en) * 2020-06-09 2022-12-06 FG Innovation Company Limited Device and method for decoding video data using general constraints information
WO2021252973A1 (en) * 2020-06-12 2021-12-16 Bytedance Inc. Picture header constraints for multi-layer video coding
US11831921B2 (en) * 2020-09-17 2023-11-28 Lemon Inc. Video operating points record syntax and semantics
EP4047824A1 (en) * 2021-02-17 2022-08-24 STMicroelectronics Austria GmbH Method for managing communication between contactless devices, and corresponding system
US11930222B1 (en) * 2021-03-30 2024-03-12 Amazon Technologies, Inc. Encoding video for film grain synthesis
EP4138401A1 (en) * 2021-08-17 2023-02-22 Nokia Technologies Oy A method, an apparatus and a computer program product for video encoding and video decoding
WO2024049269A1 (en) * 2022-09-03 2024-03-07 엘지전자 주식회사 Image encoding/decoding method and device for signaling hrd parameters, and computer-readable recording medium onto which bitstream is stored
US11695965B1 (en) 2022-10-13 2023-07-04 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Video coding using a coded picture buffer

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003247605A1 (en) 2002-07-02 2004-01-23 Conexant Systems, Inc. Hypothetical reference decoder for compressed image and video
MY134659A (en) 2002-11-06 2007-12-31 Nokia Corp Picture buffering for prediction references and display
US20050254575A1 (en) 2004-05-12 2005-11-17 Nokia Corporation Multiple interoperability points for scalable media coding and transmission
US8615038B2 (en) 2004-12-06 2013-12-24 Nokia Corporation Video coding, decoding and hypothetical reference decoder
JP2009512306A (en) 2005-10-11 2009-03-19 ノキア コーポレイション Efficient buffer management of decoded pictures for scalable video coding
RU2406254C2 (en) 2006-03-29 2010-12-10 Квэлкомм Инкорпорейтед Video processing with scalability
US20070230564A1 (en) 2006-03-29 2007-10-04 Qualcomm Incorporated Video processing with scalability
CA3006093C (en) 2006-10-16 2022-07-19 Nokia Technologies Oy System and method for implementing efficient decoded buffer management in multi-view video coding
CN100530122C (en) 2006-12-12 2009-08-19 中兴通讯股份有限公司 Method for guarantying consistency of data in embedded system
MX2009007272A (en) 2007-01-05 2009-10-08 Thomson Licensing Hypothetical reference decoder for scalable video coding.
BRPI0809916B1 (en) 2007-04-12 2020-09-29 Interdigital Vc Holdings, Inc. METHODS AND DEVICES FOR VIDEO UTILITY INFORMATION (VUI) FOR SCALABLE VIDEO ENCODING (SVC) AND NON-TRANSITIONAL STORAGE MEDIA
US8761265B2 (en) 2007-04-17 2014-06-24 Thomson Licensing Hypothetical reference decoder for multiview video coding
US20100142613A1 (en) 2007-04-18 2010-06-10 Lihua Zhu Method for encoding video data in a scalable manner
WO2008130500A2 (en) 2007-04-18 2008-10-30 Thomson Licensing Coding systems
US20090003431A1 (en) * 2007-06-28 2009-01-01 Lihua Zhu Method for encoding video data in a scalable manner
US8396082B2 (en) * 2007-06-05 2013-03-12 Core Wireless Licensing S.A.R.L. Time-interleaved simulcast for tune-in reduction
US8059788B2 (en) 2007-06-27 2011-11-15 Avaya Inc. Telephone software testing system and method
US20110038424A1 (en) 2007-10-05 2011-02-17 Jiancong Luo Methods and apparatus for incorporating video usability information (vui) within a multi-view video (mvc) coding system
US8345774B2 (en) 2008-01-11 2013-01-01 Apple Inc. Hypothetical reference decoder
JP5462259B2 (en) 2008-07-16 2014-04-02 シズベル インターナショナル エス.アー. Method and apparatus for track and track subset grouping
EP2392138A4 (en) 2009-01-28 2012-08-29 Nokia Corp Method and apparatus for video coding and decoding
US8767832B2 (en) 2009-03-10 2014-07-01 Mediatek Inc. Method and apparatus for processing a multimedia bitstream
JP5267886B2 (en) 2009-04-08 2013-08-21 ソニー株式会社 REPRODUCTION DEVICE, RECORDING MEDIUM, AND INFORMATION PROCESSING METHOD
US8948241B2 (en) 2009-08-07 2015-02-03 Qualcomm Incorporated Signaling characteristics of an MVC operation point
US8724710B2 (en) 2010-02-24 2014-05-13 Thomson Licensing Method and apparatus for video encoding with hypothetical reference decoder compliant bit allocation
US9131033B2 (en) 2010-07-20 2015-09-08 Qualcomm Incoporated Providing sequence data sets for streaming video data
JP5738434B2 (en) 2011-01-14 2015-06-24 ヴィディオ・インコーポレーテッド Improved NAL unit header
US10034009B2 (en) 2011-01-14 2018-07-24 Vidyo, Inc. High layer syntax for temporal scalability
US20130170561A1 (en) 2011-07-05 2013-07-04 Nokia Corporation Method and apparatus for video coding and decoding
US9635355B2 (en) 2011-07-28 2017-04-25 Qualcomm Incorporated Multiview video coding
US10237565B2 (en) 2011-08-01 2019-03-19 Qualcomm Incorporated Coding parameter sets for various dimensions in video coding
KR101649207B1 (en) 2011-08-31 2016-08-19 노키아 테크놀로지스 오와이 Multiview video coding and decoding
US20130287093A1 (en) * 2012-04-25 2013-10-31 Nokia Corporation Method and apparatus for video coding
KR101678321B1 (en) * 2012-07-02 2016-11-21 노키아 테크놀로지스 오와이 Method and apparatus for video coding
US20140003534A1 (en) 2012-07-02 2014-01-02 Sony Corporation Video coding system with temporal scalability and method of operation thereof
US9380289B2 (en) * 2012-07-20 2016-06-28 Qualcomm Incorporated Parameter sets in video coding
US9351005B2 (en) 2012-09-24 2016-05-24 Qualcomm Incorporated Bitstream conformance test in video coding
US9654802B2 (en) 2012-09-24 2017-05-16 Qualcomm Incorporated Sequence level flag for sub-picture level coded picture buffer parameters
US9661341B2 (en) * 2013-01-07 2017-05-23 Microsoft Technology Licensing, Llc Syntax and semantics for buffering information to simplify video splicing
US20140301477A1 (en) * 2013-04-07 2014-10-09 Sharp Laboratories Of America, Inc. Signaling dpb parameters in vps extension and dpb operation

Also Published As

Publication number Publication date
JP2015533053A (en) 2015-11-16
CA2884280A1 (en) 2014-03-27
BR112015006450B1 (en) 2022-09-13
AU2013318108A1 (en) 2015-03-19
US9351005B2 (en) 2016-05-24
WO2014047183A1 (en) 2014-03-27
JP6258333B2 (en) 2018-01-10
SG11201501414WA (en) 2015-05-28
IL237405A0 (en) 2015-04-30
IL237453A (en) 2016-07-31
CN104662914A (en) 2015-05-27
MY181727A (en) 2021-01-05
WO2014047175A1 (en) 2014-03-27
RU2015115439A (en) 2016-11-20
WO2014047178A1 (en) 2014-03-27
RU2015115522A (en) 2016-11-20
JP6009679B2 (en) 2016-10-19
KR101706878B1 (en) 2017-02-14
IL237404A (en) 2017-01-31
MY182240A (en) 2021-01-18
TWI533671B (en) 2016-05-11
SG11201501421YA (en) 2015-04-29
UA116996C2 (en) 2018-06-11
CA2884277A1 (en) 2014-03-27
JP2015533052A (en) 2015-11-16
TW201417584A (en) 2014-05-01
PT2898680T (en) 2019-12-02
TWI536809B (en) 2016-06-01
ZA201502639B (en) 2017-09-27
SG11201501416PA (en) 2015-05-28
US10021394B2 (en) 2018-07-10
ZA201502304B (en) 2017-11-29
ES2758503T3 (en) 2020-05-05
AR093285A1 (en) 2015-05-27
US20140086331A1 (en) 2014-03-27
PH12015500508B1 (en) 2015-04-27
BR112015006450A2 (en) 2017-07-04
AR093284A1 (en) 2015-05-27
EP2898679A1 (en) 2015-07-29
AU2013318190A1 (en) 2015-03-19
UA113334C2 (en) 2017-01-10
BR112015006452B1 (en) 2022-09-13
AU2013318193A1 (en) 2015-03-19
KR20150063432A (en) 2015-06-09
TW201429254A (en) 2014-07-16
US9241158B2 (en) 2016-01-19
SG10201702329SA (en) 2017-04-27
KR101965027B1 (en) 2019-04-02
AU2013318108B2 (en) 2017-09-14
BR112015006451A2 (en) 2017-07-04
SI2898680T1 (en) 2019-12-31
HK1206525A1 (en) 2016-01-08
HUE045592T2 (en) 2020-01-28
JP2015533054A (en) 2015-11-16
CN104662914B (en) 2018-04-20
IL237404A0 (en) 2015-04-30
CA2884280C (en) 2019-11-26
HK1207229A1 (en) 2016-01-22
AU2013318193B2 (en) 2017-06-01
RU2015115519A (en) 2016-11-20
AR093238A1 (en) 2015-05-27
BR112015006452A2 (en) 2017-07-04
RU2649297C2 (en) 2018-03-30
KR20150063431A (en) 2015-06-09
AU2013318190B2 (en) 2017-07-13
MY170158A (en) 2019-07-09
US20140086336A1 (en) 2014-03-27
DK2898680T3 (en) 2019-11-11
PH12015500478B1 (en) 2015-04-20
US20140086303A1 (en) 2014-03-27
IL237453A0 (en) 2015-04-30
PH12015500477B1 (en) 2015-04-20
PH12015500478A1 (en) 2015-04-20
PH12015500477A1 (en) 2015-04-20
CA2884278A1 (en) 2014-03-27
EP2898680B1 (en) 2019-08-21
KR101669778B1 (en) 2016-10-27
BR112015006451B1 (en) 2022-09-13
EP2898680A1 (en) 2015-07-29
KR20150063430A (en) 2015-06-09
EP2898678A1 (en) 2015-07-29
TWI504238B (en) 2015-10-11
CN104641648A (en) 2015-05-20
RU2613737C2 (en) 2017-03-21
CA2884277C (en) 2017-07-04
CN104662913B (en) 2018-07-20
PH12015500508A1 (en) 2015-04-27
CN104662913A (en) 2015-05-27
CA2884278C (en) 2017-10-17
HK1206526A1 (en) 2016-01-08
CN104641648B (en) 2018-09-25
RU2642359C2 (en) 2018-01-24
JP6092397B2 (en) 2017-03-08
IL237405B (en) 2018-06-28

Similar Documents

Publication Publication Date Title
TWI533671B (en) Method, device, and computer-readable data storage medium for processing video data
TWI533674B (en) Method of processing video data and encoding video data, video processing device, video encoding device, and computer-readable storage medium thereof
KR101776448B1 (en) Non-nested sei messages in video coding
JP2015533053A5 (en)