TW201424232A - Single switch zero-voltage switching resonant converter - Google Patents

Single switch zero-voltage switching resonant converter Download PDF

Info

Publication number
TW201424232A
TW201424232A TW101145220A TW101145220A TW201424232A TW 201424232 A TW201424232 A TW 201424232A TW 101145220 A TW101145220 A TW 101145220A TW 101145220 A TW101145220 A TW 101145220A TW 201424232 A TW201424232 A TW 201424232A
Authority
TW
Taiwan
Prior art keywords
resonant
current
zero
voltage
power switch
Prior art date
Application number
TW101145220A
Other languages
Chinese (zh)
Other versions
TWI465025B (en
Inventor
Ying-Jun Zhuang
yong-chang Zhang
Jian-Liang Pan
Original Assignee
Univ Kun Shan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Kun Shan filed Critical Univ Kun Shan
Priority to TW101145220A priority Critical patent/TWI465025B/en
Publication of TW201424232A publication Critical patent/TW201424232A/en
Application granted granted Critical
Publication of TWI465025B publication Critical patent/TWI465025B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

The invention provides a single switch zero-voltage switching resonant converter. An input power is connected to the stored energy inductance series power switch. The power switch is paralleled to the bypass capacitor and serial to a set of resonance trough. The resonance trough is composed of the resonance capacitor series connected to the resonance inductance. Back end of the resonance trough is paralleled to the bypass inductance and serial to the rectifier diode. Finally, it is paralleled to the filtering capacitor and load. In this way, a single power switch is used for being operated in the zero-voltage switching state so as to reduce the switching loss and obtain the soft switching characteristic. The operational efficiency of converter is raised simultaneously.

Description

單開關零電壓切換共振式轉換器 Single switch zero voltage switching resonant converter

本發明係有關於一種單開關零電壓切換共振式轉換器,特別係設有輸入電源連接儲能電感串聯功率開關,再於功率開關上並聯分流電容及串聯一組共振槽,共振槽係由共振電容串聯共振電感所組成,共振槽後端並聯有分流電感及串聯整流二極體,最後並聯濾波電容及負載;如此,利用單一個功率開關在零電壓切換狀態下操作,可降低其切換損失,並具有柔性切換的特性,同時提高轉換器的操作效率。 The invention relates to a single-switch zero-voltage switching resonant converter, in particular to an input power supply connected to an energy storage inductor series power switch, and then a shunt capacitor and a series of resonant tanks connected in series on the power switch, the resonance channel is resonated The capacitor is composed of a series resonant inductor. The shunt inductor and the series rectifying diode are connected in parallel at the rear end of the resonant tank. Finally, the parallel filter capacitor and the load are connected. Thus, by using a single power switch to operate in a zero voltage switching state, the switching loss can be reduced. It also has the characteristics of flexible switching while improving the operating efficiency of the converter.

現今科技的日新月異,帶給人類生活極大的便利與進步,相對的也帶來了許多的污染及傷害,然而在當下人們無法立即體驗到這些便利的科技背後所造成的環境迫害,而人類大量開採石油、天然氣、煤礦的資源已經所剩無幾,再加上近年來各國的環保意識抬頭,以及本國提倡節能減碳的同時,我們必須大幅降低對於石油的依賴,且同時開發出其他最有利的替代能源,才能夠符合現今社會的需求,所以電能是一種可以替代石油的能源,其可使用環保方式的生產,例如利用太陽能、潮汐能、風力、地熱等方式來取得電力,而且它不像石油燃燒時會產生廢氣,更不會污染環境,算是一種取之不盡的能源,尤其在電力電子相關領域中,該如何提升效率同時降低成本和損失更為重要,而在電力電子轉換器當中,E類共振式電路已經被廣泛的運用於換流器上,但是使用E類共振式電路卻較少運用於直流轉直流的轉換器上,由於共振式的電路可以使開關在切換時,達到零電壓切換(Zero Voltage Switching;ZVS)或零電流切換(Zero Current Switching;ZCS),擁有柔性 切換的特性,可以有效降低切換時的損失,所以如何將E類共振式的電路運用於轉換器上,提高電源的轉換效率,將是在直流轉直流的轉換器上的一個突破;緣此,本發明人有鑑於習知存在有如上述之缺失,乃潛心研究、改良,遂得以首先發明本發明。 The rapid development of today's technology has brought great convenience and progress to human life, and it has brought a lot of pollution and harm. However, in the moment, people cannot immediately experience the environmental persecution caused by these convenient technologies, and humans are exploiting a lot. The resources of oil, natural gas and coal mines are running low. Coupled with the rising awareness of environmental protection in recent years and the promotion of energy conservation and carbon reduction in the country, we must significantly reduce our dependence on oil and at the same time develop other most advantageous alternatives. Energy can meet the needs of today's society, so electric energy is an alternative energy source for oil. It can be produced in an environmentally friendly way, such as using solar energy, tidal energy, wind power, geothermal heat, etc., and it is not like oil burning. It will generate exhaust gas and will not pollute the environment. It is an inexhaustible source of energy. Especially in the field of power electronics, how to improve efficiency while reducing cost and loss is more important. In power electronic converters, E Resonant-like circuits have been widely used on inverters, but It is a type E resonant circuit that is less used in DC-to-DC converters. Because the resonant circuit allows the switch to switch to zero voltage switching (Zero Voltage Switching; ZVS) or zero current switching (Zero Current) Switching; ZCS), flexible The switching characteristics can effectively reduce the loss during switching. Therefore, how to apply the E-type resonant circuit to the converter to improve the conversion efficiency of the power supply will be a breakthrough in the DC-to-DC converter; The present inventors have invented the present invention firstly in view of the above-mentioned drawbacks as described above.

本發明之主要目的,係在提供一種利用單一個功率開關在零電壓切換狀態下操作,可降低其切換損失,並具有柔性切換的特性,同時提高轉換器的操作效率之單開關零電壓切換共振式轉換器。 The main object of the present invention is to provide a single-switch zero-voltage switching resonance that utilizes a single power switch to operate in a zero-voltage switching state, can reduce its switching loss, and has the characteristics of flexible switching while improving the operating efficiency of the converter. Converter.

本發明之特徵係在:輸入電源連接儲能電感串聯功率開關,再於功率開關上並聯分流電容及串聯一組共振槽,共振槽係由共振電容串聯共振電感所組成,共振槽後端並聯有分流電感及串聯整流二極體,最後並聯濾波電容及負載。 The invention is characterized in that: the input power is connected to the energy storage inductor series power switch, and then the power switch is connected in parallel with the shunt capacitor and a series of resonant tanks, the resonant tank is composed of a resonant capacitor series resonant inductor, and the rear end of the resonant tank is connected in parallel. Shunt inductor and series rectifier diode, and finally parallel filter capacitor and load.

有關本發明為達上述之使用目的與功效,所採用之技術手段,茲舉出較佳可行之實施例,並配合圖式所示,詳述如下:本發明之實施例,請參閱第一、二圖所示,主要係設有輸入電源V in 連接儲能電感L f 串聯功率開關S,再於功率開關S上並聯分流電容C s 及串聯一組共振槽1,共振槽1係由共振電容C p 串聯共振電感L s 所組成,共振槽1後端並聯有分流電感L p 及串聯整流二極體D,整流二極體D係為快速恢復(Fast Recovery)二極體或者是蕭特基(Schottky)二 極體,最後並聯濾波電容C o 及負載RFor the purpose of the present invention, the preferred embodiments of the present invention are set forth in the accompanying drawings. In the second figure, the main input power supply V in is connected to the energy storage inductor L f series power switch S , and then the power switch S is connected in parallel with the shunt capacitor C s and a series of resonant tanks 1 in series, and the resonant tank 1 is composed of a resonant capacitor. The C p series resonant inductor L s is composed of a shunt inductor L p and a series rectifying diode D in parallel with the rear end of the resonant tank 1 , and the rectifying diode D is a Fast Recovery diode or a Schottky (Schottky) diode, finally parallel filter capacitor C o and load R.

使用時,請參閱第一、二圖所示,首先在輸入電源V in (電源側)輸入一直流電壓,經過儲能電感L f 後將直流電壓轉換成電流源,再驅動功率開關S切換導通,功率開關S係選擇MOSFET電晶體開關,其內寄生之反向二極體可配合電路動作時流經功率開關S之逆向電流,功率開關S上並聯分流電容C s 及串聯一組共振槽1,而共振槽1係由共振電容C p 串聯共振電感L s 所組成,共振槽1後端並聯有分流電感L p 及串聯整流二極體D,經由整流二極體D整流,最後濾波電容C o 將高頻雜訊濾除,得到一穩定的直流電壓提供給負載RWhen using, please refer to the first and second figures. First, input the DC voltage on the input power source V in (power supply side), and convert the DC voltage into a current source after the energy storage inductor L f Then, the power switch S is switched to conduct, and the power switch S selects the MOSFET transistor switch, and the anti-parasitic reverse diode can cooperate with the reverse current flowing through the power switch S when the circuit operates, and the shunt capacitor C s is connected in parallel with the power switch S. And a series of resonant tanks 1 are connected, and the resonant tank 1 is composed of a resonant capacitor C p series resonant inductor L s , and a shunt inductor L p and a series rectifying diode D are connected in parallel at the rear end of the resonant tank 1 through the rectifying diode D rectification, and finally the filter capacitor C o filters the high frequency noise to obtain a stable DC voltage to be supplied to the load R.

本發明之工作模式分別為: The working modes of the present invention are as follows:

一、工作模式一(ωt 0 ω t <ωt 1 ),如第三圖所示:當驅動電壓V Gs 由低電位轉為高電位,功率開關S開始切換導通,分流電容電流i Cs 為零,由於小於零,所以電流反向流進功率開關S,功率開關電流i S 由負值開始上升,而共振槽1的共振電容電流i Cp 由正值開始下降為零,共振槽1的共振電感電流也由正值開始下降至零,分流電感電流i Lp 為負值,整流二極體D形成順向偏壓而導通,與功率開關S並聯之分流電容電流i Cs 由負值上升至零後,由於存在雜散電容的關係,產生高頻振盪影響分流電容電流i Cs ,當功率開關電流i S 由負值開始上升至零,與共振電容 電流i Cp 、分流電感電流i Lp 降為零時,進入工作模式二。 First, the working mode one ( ωt 0 ω t < ωt 1 ), as shown in the third figure: When the driving voltage V Gs changes from a low potential to a high potential, the power switch S starts to switch on, and the shunt capacitor current i Cs is zero due to Less than zero, so the current flows backward into the power switch S , the power switch current i S starts to rise from a negative value, and the resonant capacitor current i Cp of the resonant tank 1 starts to decrease to zero by a positive value, and the resonant inductor current of the resonant tank 1 It also drops from zero to zero, the shunt inductor current i Lp is negative, the rectifying diode D forms a forward bias and conducts, and the shunt capacitor current i Cs in parallel with the power switch S rises from a negative value to zero. Due to the existence of stray capacitance, the high frequency oscillation affects the shunt capacitor current i Cs . When the power switch current i S starts to rise from a negative value to zero, and the resonant capacitor current i Cp and the shunt inductor current i Lp fall to zero, Enter work mode two.

二、工作模式二(ωt 1 ωt<ωt 2 ),如第四圖所示:當驅動電壓v GS 維持高電位,功率開關S導通,分流電容電流i Cs 為零,大於零,電流流進功率開關S,功率開關電流i S 持續往上提升,而共振槽1的共振電容電流i Cp 由零持續下降,共振槽1的共振電感電流也由零開始持續下降,分流電感電流i Lp 保持為負值,整流二極體D下降至零時,進入工作模式三。 Second, the working mode two ( ωt 1 Ωt < ωt 2 ), as shown in the fourth figure: when the driving voltage v GS is maintained at a high potential, the power switch S is turned on, and the shunt capacitor current i Cs is zero. If it is greater than zero, the current flows into the power switch S , the power switch current i S continues to rise upward, and the resonant capacitor current i Cp of the resonant tank 1 continues to decrease from zero, and the resonant inductor current of the resonant tank 1 It also continues to decrease from zero, the shunt inductor current i Lp remains at a negative value, and when the rectifying diode D drops to zero, it enters the operating mode three.

三、工作模式三(ωt 2 ωt<ωt 3 ),如第五圖所示:當驅動電壓v GS 維持高電位,功率開關S導通,分流電容電流i Cs 為零,大於零,電流流進功率開關S,功率開關電流i S 持續往上提升,而共振槽1的共振電容電流i Cp 持續下降,共振槽1的共振電感電流也持續下降,分流電感電流i Lp 保持為負值,整流二極體D為零,當驅動電壓v GS 降至零、功率開關電壓v DS 導通、當功率開關電流i S 等於零、且分流電容電流i Cs 上升時,進入工作模式四。 Third, the working mode three ( ωt 2 Ωt < ωt 3 ), as shown in the fifth figure: when the driving voltage v GS is maintained at a high potential, the power switch S is turned on, and the shunt capacitor current i Cs is zero. If it is greater than zero, the current flows into the power switch S , the power switch current i S continues to rise upward, and the resonant capacitor current i Cp of the resonant tank 1 continues to decrease, and the resonant inductor current of the resonant tank 1 It also continues to decrease, the shunt inductor current i Lp remains at a negative value, the rectifying diode D is zero, when the driving voltage v GS drops to zero, the power switching voltage v DS turns on, when the power switching current i S is equal to zero, and the shunt capacitor current When i Cs rises, it enters working mode four.

四、工作模式四(ωt 3 ωt<ωt 4 ),如第六圖所示:當驅動電壓v GS 由高電位轉為低電位,此時功率開關S截止,電流流經分流電容C s ,分流電容電流i Cs 大於零,大於零,而共振槽1的共振電容電流i Cp 持續下降,共振槽1的共振電感電流也持續下降,分流電感電流i Lp 保持為負值,整流二極體D為零,當整流二極體D進入順 向導通時,進入工作模式五。 Fourth, the working mode four ( ωt 3 Ωt < ωt 4 ), as shown in the sixth figure: when the driving voltage v GS changes from high potential to low potential, the power switch S is turned off, the current flows through the shunt capacitor C s , and the shunt capacitor current i Cs is greater than zero. Greater than zero, and the resonant capacitor current i Cp of the resonant tank 1 continues to decrease, and the resonant inductor current of the resonant tank 1 It also continues to decrease, the shunt inductor current i Lp remains at a negative value, the rectifying diode D is zero, and when the rectifying diode D enters the forward conduction, it enters the working mode five.

五、工作模式五(ωt 4 ωt<ωt 5 ),如第七圖所示:當驅動電壓v GS 保持在低電位,功率開關S截止,分流電容電流i Cs 大於零,大於零,而共振槽1的共振電容電流i Cp 由負值開始上升,共振槽1的共振電感電流也由負值開始上升,分流電感電流i Lp 保持為負值,整流二極體D順向導通,當共振電容電流i Cp 上升至零、共振電感電流上升至零,進入工作模式六。 Five, working mode five ( ωt 4 Ωt < ωt 5 ), as shown in the seventh figure: when the driving voltage v GS is kept at a low potential, the power switch S is turned off, and the shunt capacitor current i Cs is greater than zero. Greater than zero, and the resonant capacitor current i Cp of the resonant tank 1 starts to rise from a negative value, and the resonant inductor current of the resonant tank 1 It also starts to rise from a negative value, the shunt inductor current i Lp remains at a negative value, and the rectifying diode D is turned on, when the resonant capacitor current i Cp rises to zero, the resonant inductor current Rise to zero and enter working mode six.

六、工作模式六(ωt 5 ωt<ωt 6 ),如第八圖所示:當驅動電壓v GS 保持在低電位,功率開關S截止,分流電容電流i Cs 大於零,大於零,而共振槽1的共振電容電流i Cp 為正值電流持續上升,共振槽1的共振電感電流也為正直電流持續上升,分流電感電流i Lp 保持為負值,整流二極體D順向導通,當電流降為零、分流電容電流i Cs 等於零時,進入工作模式七。 Sixth, work mode six ( ωt 5 Ωt < ωt 6 ), as shown in the eighth figure: when the driving voltage v GS is kept at a low potential, the power switch S is turned off, and the shunt capacitor current i Cs is greater than zero. Greater than zero, and the resonant capacitor current i Cp of the resonant tank 1 is a positive value continuously rising, and the resonant inductor current of the resonant tank 1 Also for the positive current continues to rise, the shunt inductor current i Lp remains negative, and the rectifying diode D is forward-passed. When the current drops to zero and the shunt capacitor current i Cs is equal to zero, it enters the operating mode VII.

七、工作模式七(ωt 6 ωt<ωt 7 ),如第九圖所示:當驅動電壓v GS 保持在低電位,分流電容電流i Cs 為負值,分流電容電流i Cs 下降後上升,由零開始下降後再上升,而共振槽1的共振電容電流i Cp 持續上升後下降,共振槽1的共振電感電流也持續上升後下降,分流電感電流i Lp 保持為負值,整流二極體D順向導通,當功率開關電流i S 降為負值、分流電容電流i Cs 為零,進入工作模式八。 Seven, working mode seven ( ωt 6 Ωt < ωt 7 ), as shown in the ninth figure: when the driving voltage v GS is kept at a low potential, the shunt capacitor current i Cs is a negative value, and the shunt capacitor current i Cs is decreased and then rises. After falling from zero, it rises again, and the resonant capacitor current i Cp of the resonant tank 1 continues to rise and then falls, and the resonant inductor current of the resonant tank 1 It also continues to rise and then fall, the shunt inductor current i Lp is kept at a negative value, and the rectifying diode D is turned on. When the power switch current i S is reduced to a negative value and the shunt capacitor current i Cs is zero, it enters the working mode eight.

八、工作模式八(ω t7 ω t<2 π),如第十圖所示:當驅動電壓v GS 保持在低電位,功率開關電流i S 短暫下降後上升,分流電容電流i Cs 為零,由零開始下降後再上升,而共振槽1的共振電容電流i Cp 持續上升後下降,共振槽1的共振電感電流也持續上升後下降,分流電感電流i Lp 保持為負值,整流二極體D順向導通,當功率開關電壓v DS 降至零、驅動電壓v GS 上升,此時電路動作重新回到工作模式一。 Eight, working mode eight ( ω t 7 ω t<2 π), as shown in the tenth figure: when the driving voltage v GS is kept at a low potential, the power switch current i S rises briefly and then rises, and the shunt capacitor current i Cs is zero. After falling from zero, it rises again, and the resonant capacitor current i Cp of the resonant tank 1 continues to rise and then falls, and the resonant inductor current of the resonant tank 1 It also rises and then falls, the shunt inductor current i Lp remains negative, and the rectifying diode D is turned on. When the power switching voltage v DS drops to zero and the driving voltage v GS rises, the circuit action returns to the working mode. One.

本發明利用單一個功率開關在零電壓切換狀態下操作,可降低其切換損失,並具有柔性切換的特性,同時提高轉換器的操作效率。 The invention utilizes a single power switch to operate in a zero voltage switching state, can reduce its switching loss, and has the characteristics of flexible switching, and at the same time improve the operating efficiency of the converter.

而儲能電感電壓與儲能電感電流之實測波形圖,如第十一圖所示,其CH1:X軸:5μs/div、Y軸:50V/div;CH2:X軸:5μs/div、Y軸:100mA/div。 Energy storage inductor voltage Energy storage inductor current The measured waveform diagram, as shown in the eleventh figure, has CH1: X axis: 5 μs/div, Y axis: 50 V/div; CH2: X axis: 5 μs/div, Y axis: 100 mA/div.

而驅動電壓v GS 與功率開關電壓v DS 之實測波形圖,如第十二圖所示,其CH1:X軸:5μs/div、Y軸:10V/div;CH2:X軸:5μs/div、Y軸:50V/div。 The measured waveform of the driving voltage v GS and the power switching voltage v DS , as shown in the twelfth figure, has CH1: X axis: 5 μs/div, Y axis: 10 V/div; CH2: X axis: 5 μs/div, Y axis: 50V/div.

而功率開關電壓v DS 與功率開關電流i S 之實測波形圖,如第十三圖所示,其CH1:X軸:5μs/div、Y軸:50V/div;CH2:X軸:5μs/div、Y軸:1A/div。 The measured waveform of the power switch voltage v DS and the power switch current i S , as shown in the thirteenth figure, has CH1: X axis: 5 μs/div, Y axis: 50 V/div; CH2: X axis: 5 μs/div , Y axis: 1A / div.

而分流電容電壓v Cs 與分流電容電流i Cs 之實測波形圖,如第十四圖所示,其CH1:X軸:5μs/div、Y軸:50V/div; CH2:X軸:5μs/div、Y軸:1A/div。 The measured waveform of the shunt capacitor voltage v Cs and the shunt capacitor current i Cs is as shown in the fourteenth figure, and its CH1:X axis: 5 μs/div, Y axis: 50 V/div; CH2: X axis: 5 μs/div , Y axis: 1A / div.

而共振電容電壓v Cp 與共振電容電流i Cp 之實測波形圖,如第十五圖所示,其CH1:X軸:5μs/div、Y軸:50V/div;CH2:X軸:5μs/div、Y軸:500mA/div。 The measured waveform of the resonant capacitor voltage v Cp and the resonant capacitor current i Cp is as shown in the fifteenth figure, and its CH1: X axis: 5 μs/div, Y axis: 50 V/div; CH2: X axis: 5 μs/div , Y axis: 500mA / div.

而共振電感電壓v Ls 與共振電感電流i Ls 之實測波形圖,如第十六圖所示,其CH1:X軸:5μs/div、Y軸:100V/div;CH2:X軸:5μs/div、Y軸:500mA/div。 The measured waveform of the resonant inductor voltage v Ls and the resonant inductor current i Ls , as shown in the sixteenth figure, has CH1: X axis: 5 μs/div, Y axis: 100 V/div; CH2: X axis: 5 μs/div , Y axis: 500mA / div.

而共振槽1的輸入電壓v a 與共振槽1的輸出電壓v b 之實測波形圖,如第十七圖所示,其CH1:X軸:5μs/div、Y軸:50V/div;CH2:X軸:5μs/div、Y軸:10V/div。 The measured waveform of the input voltage v a of the resonant tank 1 and the output voltage v b of the resonant tank 1 is as shown in FIG. 17 , and its CH1:X axis: 5 μs/div, Y axis: 50 V /div; CH2: X axis: 5 μs/div, Y axis: 10 V/div.

而分流電感電壓v Lp 與分流電感電流i Lp 之實測波形圖,如第十八圖所示,其CH1:X軸:5μs/div、Y軸:100V/div;CH2:X軸:5μs/div、Y軸:500mA/div。 The measured waveform of the shunt inductor voltage v Lp and the shunt inductor current i Lp is as shown in the eighteenth figure, and its CH1:X axis: 5 μs/div, Y axis: 100 V/div; CH2: X axis: 5 μs/div , Y axis: 500mA / div.

而整流二極體電壓v D 與整流二極體電流i D 之實測波形圖,如第十九圖所示,其CH1:X軸:5μs/div、Y軸:100V/div;CH2:X軸:5μs/div、Y軸:1A/div。 The measured waveform of the rectified diode voltage v D and the rectified diode current i D , as shown in the nineteenth figure, has CH1: X axis: 5 μs/div, Y axis: 100 V/div; CH2: X axis : 5 μs/div, Y-axis: 1 A/div.

而濾波電容電壓v Co 與濾波電容電流i Co 之實測波形圖,如第二十圖所示,其CH1:X軸:5μs/div、Y軸:10V/div;CH2:X軸:5μs/div、Y軸:500mA/div。 The measured waveform of the filter capacitor voltage v Co and the filter capacitor current i Co , as shown in the twentieth diagram, has CH1: X axis: 5 μs/div, Y axis: 10 V/div; CH2: X axis: 5 μs/div , Y axis: 500mA / div.

而輸入電源V in 與輸入電流i in 之實測波形圖,如第二十一圖所示,其CH1:X軸:5μs/div、Y軸:20V/div;CH2:X軸:5μs/div、Y軸:100mA/div。 The measured waveform of the input power V in and the input current i in , as shown in the twenty-first figure, has CH1: X axis: 5 μs/div, Y axis: 20 V /div; CH2: X axis: 5 μs/div, Y axis: 100 mA/div.

而輸出電壓V o 與輸出電流I o 之實測波形圖,如第二十二圖所示,其CH1:X軸:5μs/div、Y軸:10V/div; CH2:X軸:5μs/div、Y軸:500mA/div。 The measured waveform of the output voltage V o and the output current I o , as shown in the twenty-second diagram, has CH1: X axis: 5 μs/div, Y axis: 10 V/div; CH2: X axis: 5 μs/div, Y axis: 500 mA / div.

本發明利用單一個功率開關在零電壓切換狀態下操作,可降低其切換損失,並具有柔性切換的特性,同時提高轉換器的操作效率。 The invention utilizes a single power switch to operate in a zero voltage switching state, can reduce its switching loss, and has the characteristics of flexible switching, and at the same time improve the operating efficiency of the converter.

綜上所述,本發明實施例確實已能達到所預期之目的及使用功效,且未見有相同結構特徵公知、公用在先者,故本發明當能符合發明專利之申請要件,爰依法提出申請,懇請早日審結,並核賜專利,實深任感荷。 In summary, the embodiments of the present invention have indeed achieved the intended purpose and the efficacy of use, and the same structural features are not known and commonly used, so the present invention can meet the requirements of the invention patent, and is proposed according to law. Apply, please apply for an early conclusion, and grant a patent, and I am deeply impressed.

1‧‧‧共振槽 1‧‧‧Resonance slot

V in ‧‧‧輸入電源 V in ‧‧‧Input power supply

L f ‧‧‧儲能電感 L f ‧‧‧ storage inductor

S‧‧‧功率開關 S ‧‧‧Power switch

C s ‧‧‧分流電容 C s ‧ ‧ shunt capacitor

C p ‧‧‧共振電容 C p ‧‧‧Resonance capacitor

L s ‧‧‧共振電感 L s ‧‧‧Resonance inductance

L p ‧‧‧分流電感 L p ‧‧‧Shunt Inductance

D‧‧‧整流二極體 D ‧‧‧Rectifier diode

C o ‧‧‧濾波電容 C o ‧‧‧Filter Capacitor

R‧‧‧負載 R ‧‧‧load

‧‧‧儲能電感電壓 ‧‧‧Energy storage inductor voltage

v GS ‧‧‧驅動電壓 v GS ‧‧‧ drive voltage

v DS ‧‧‧功率開關電壓 v DS ‧‧‧Power Switch Voltage

v Cs ‧‧‧分流電容電壓 v Cs ‧‧‧Shunt capacitor voltage

v Cp ‧‧‧共振電容電壓 v Cp ‧‧‧resonant capacitor voltage

v Ls ‧‧‧共振電感電壓 v Ls ‧‧‧Resonance inductor voltage

v Lp ‧‧‧分流電感電壓 v Lp ‧‧‧Shunt Inductor Voltage

v D ‧‧‧整流二極體電壓 v D ‧‧‧Rected Diode Voltage

v Co ‧‧‧濾波電容電壓 v Co ‧‧‧Filter capacitor voltage

V o ‧‧‧輸出電壓 V o ‧‧‧output voltage

v a ‧‧‧共振槽的輸入電壓 v a ‧‧‧input tank input voltage

v b ‧‧‧共振槽的輸出電壓 v b ‧‧‧Output voltage of the resonant tank

i in ‧‧‧輸入電流 i in ‧‧‧Input current

‧‧‧儲能電感電流 ‧‧‧Storage inductor current

i S ‧‧‧功率開關電流 i S ‧‧‧Power Switch Current

i Cs ‧‧‧分流電容電流 i Cs ‧‧‧Shunt Capacitor Current

i Cp ‧‧‧共振電容電流 i Cp ‧‧‧resonant capacitor current

i Ls ‧‧‧共振電感電流 i Ls ‧‧‧Resonance inductor current

i Lp ‧‧‧分流電感電流 i Lp ‧‧‧Split inductor current

i D ‧‧‧整流二極體電流 i D ‧‧‧ rectifying diode current

i Co ‧‧‧濾波電容電流 i Co ‧‧‧Filter Capacitor Current

I o ‧‧‧輸出電流 I o ‧‧‧Output current

第一圖所示係為本發明實施例之電路圖。 The first figure is a circuit diagram of an embodiment of the present invention.

第二圖所示係為本發明實施例之方塊圖。 The second figure is a block diagram of an embodiment of the present invention.

第三圖所示係為本發明實施例工作模式一之等效電路圖。 The third figure is an equivalent circuit diagram of the working mode 1 of the embodiment of the present invention.

第四圖所示係為本發明實施例工作模式二之等效電路圖。 The fourth figure is an equivalent circuit diagram of the working mode 2 of the embodiment of the present invention.

第五圖所示係為本發明實施例工作模式三之等效電路圖。 The fifth figure is an equivalent circuit diagram of the working mode 3 of the embodiment of the present invention.

第六圖所示係為本發明實施例工作模式四之等效電路圖。 The sixth figure is an equivalent circuit diagram of the working mode 4 of the embodiment of the present invention.

第七圖所示係為本發明實施例工作模式五之等效電路圖。 The seventh figure is an equivalent circuit diagram of the working mode 5 of the embodiment of the present invention.

第八圖所示係為本發明實施例工作模式六之等效電路圖。 The eighth figure is an equivalent circuit diagram of the working mode 6 of the embodiment of the present invention.

第九圖所示係為本發明實施例工作模式七之等效電路圖。 The ninth figure is an equivalent circuit diagram of the working mode 7 of the embodiment of the present invention.

第十圖所示係為本發明實施例工作模式八之等效電路圖。 The tenth figure shows an equivalent circuit diagram of the eighth mode of operation of the embodiment of the present invention.

第十一圖所示係為本發明實施例儲能電感電壓與儲能電感電流之實測波形圖。 The eleventh figure shows the energy storage inductor voltage of the embodiment of the present invention. Energy storage inductor current The measured waveform.

第十二圖所示係為本發明實施例驅動電壓v GS 與功率開關電壓v DS 之實測波形圖。 FIG. 12 is a measured waveform diagram of a driving voltage v GS and a power switching voltage v DS according to an embodiment of the present invention.

第十三圖所示係為本發明實施例功率開關電壓v DS 與功率開關電流i S 之實測波形圖。 FIG. 13 is a measured waveform diagram of the power switch voltage v DS and the power switch current i S according to an embodiment of the present invention.

第十四圖所示係為本發明實施例分流電容電壓v Cs 與分流 電容電流i Cs 之實測波形圖。 FIG. 14 is a measured waveform diagram of the shunt capacitor voltage v Cs and the shunt capacitor current i Cs according to an embodiment of the present invention.

第十五圖所示係為本發明實施例共振電容電壓v Cp 與共振電容電流i Cp 之實測波形圖。 The fifteenth figure is a measured waveform diagram of the resonant capacitor voltage v Cp and the resonant capacitor current i Cp according to the embodiment of the present invention.

第十六圖所示係為本發明實施例共振電感電壓v Ls 與共振電感電流i Ls 之實測波形圖。 Figure 16 is a measured waveform diagram of the resonant inductor voltage v Ls and the resonant inductor current i Ls according to an embodiment of the present invention.

第十七圖所示係為本發明實施例共振槽的輸入電壓v a 與共振槽的輸出電壓v b 之實測波形圖。 Figure 17 is a graph showing measured waveforms of the input voltage v a of the resonant tank and the output voltage v b of the resonant tank in the embodiment of the present invention.

第十八圖所示係為本發明實施例分流電感電壓v Lp 與分流電感電流i Lp 之實測波形圖。 FIG. 18 is a measured waveform diagram of the shunt inductor voltage v Lp and the shunt inductor current i Lp according to an embodiment of the present invention.

第十九圖所示係為本發明實施例整流二極體電壓v D 與整流二極體電流i D 之實測波形圖。 FIG. 19 is a measured waveform diagram of a rectified diode voltage v D and a rectified diode current i D according to an embodiment of the present invention.

第二十圖所示係為本發明實施例濾波電容電壓v Co 與濾波電容電流i Co 之實測波形圖。 FIG. 20 is a measured waveform diagram of a filter capacitor voltage v Co and a filter capacitor current i Co according to an embodiment of the present invention.

第二十一圖所示係為本發明實施例輸入電源V in 與輸入電流i in 之實測波形圖。 A twenty-first embodiment of a waveform diagram of FIG. Found i V in input power to the input current embodiment of the system shown in the present invention.

第二十二圖所示係為本發明實施例輸出電壓V o 與輸出電流I o 之實測波形圖。 The twenty-second figure shows a measured waveform of the output voltage V o and the output current I o according to the embodiment of the present invention.

1‧‧‧共振槽 1‧‧‧Resonance slot

V in ‧‧‧輸入電源 V in ‧‧‧Input power supply

L f ‧‧‧儲能電感 L f ‧‧‧ storage inductor

S‧‧‧功率開關 S ‧‧‧Power switch

C s ‧‧‧分流電容 C s ‧ ‧ shunt capacitor

C p ‧‧‧共振電容 C p ‧‧‧Resonance capacitor

L s ‧‧‧共振電感 L s ‧‧‧Resonance inductance

L p ‧‧‧分流電感 L p ‧‧‧Shunt Inductance

D‧‧‧整流二極體 D ‧‧‧Rectifier diode

C o ‧‧‧濾波電容 C o ‧‧‧Filter Capacitor

R‧‧‧負載 R ‧‧‧load

‧‧‧儲能電感電壓 ‧‧‧Energy storage inductor voltage

v GS ‧‧‧驅動電壓 v GS ‧‧‧ drive voltage

v DS ‧‧‧功率開關電壓 v DS ‧‧‧Power Switch Voltage

v Cs ‧‧‧分流電容電壓 v Cs ‧‧‧Shunt capacitor voltage

v Cp ‧‧‧共振電容電壓 v Cp ‧‧‧resonant capacitor voltage

v Ls ‧‧‧共振電感電壓 v Ls ‧‧‧Resonance inductor voltage

v Lp ‧‧‧分流電感電壓 v Lp ‧‧‧Shunt Inductor Voltage

v D ‧‧‧整流二極體電壓 v D ‧‧‧Rected Diode Voltage

v Co ‧‧‧濾波電容電壓 filter capacitor voltage v Co ‧‧‧

V o ‧‧‧輸出電壓 V o ‧‧‧output voltage

v a ‧‧‧共振槽的輸入電壓 v a ‧‧‧input tank input voltage

v b ‧‧‧共振槽的輸出電壓 v b ‧‧‧Output voltage of the resonant tank

i in ‧‧‧輸入電流 i in ‧‧‧Input current

‧‧‧儲能電感電流 ‧‧‧Storage inductor current

i S ‧‧‧功率開關電流 i S ‧‧‧Power Switch Current

i Cs ‧‧‧分流電容電流 i Cs ‧‧‧Shunt Capacitor Current

i Cp ‧‧‧共振電容電流 i Cp ‧‧‧resonant capacitor current

i Ls ‧‧‧共振電感電流 i Ls ‧‧‧Resonance inductor current

i Lp ‧‧‧分流電感電流 i Lp ‧‧‧Split inductor current

i D ‧‧‧整流二極體電流 i D ‧‧‧Rected Diode Current

i Co ‧‧‧濾波電容電流 i Co ‧‧‧Filter Capacitor Current

I o ‧‧‧輸出電流 I o ‧‧‧Output current

Claims (2)

一種單開關零電壓切換共振式轉換器,主要係設有輸入電源連接儲能電感串聯功率開關,再於功率開關上並聯分流電容及串聯一組共振槽,共振槽係由共振電容串聯共振電感所組成,共振槽後端並聯有分流電感及串聯整流二極體,最後並聯濾波電容及負載;如此,利用單一個功率開關在零電壓切換狀態下操作,可降低其切換損失,並具有柔性切換的特性,同時提高轉換器的操作效率。 A single-switch zero-voltage switching resonant converter is mainly provided with an input power supply connected to an energy storage inductor series power switch, and then a shunt capacitor is connected in parallel with the power switch and a series of resonant tanks are connected in series, and the resonant tank is composed of a resonant capacitor series resonant inductor. The rear end of the resonant tank is connected with a shunt inductor and a series rectifying diode in parallel, and finally parallel filter capacitor and load; thus, using a single power switch to operate in a zero voltage switching state, the switching loss can be reduced, and the switching is flexible. Features while improving the operating efficiency of the converter. 如申請專利範圍第1項所述之單開關零電壓切換共振式轉換器,其中整流二極體係為快速恢復二極體或蕭特基二極體。 The single-switch zero-voltage switching resonant converter according to claim 1, wherein the rectifying diode system is a fast recovery diode or a Schottky diode.
TW101145220A 2012-12-03 2012-12-03 Single Switch Zero Voltage Switching Resonant Converter TWI465025B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101145220A TWI465025B (en) 2012-12-03 2012-12-03 Single Switch Zero Voltage Switching Resonant Converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101145220A TWI465025B (en) 2012-12-03 2012-12-03 Single Switch Zero Voltage Switching Resonant Converter

Publications (2)

Publication Number Publication Date
TW201424232A true TW201424232A (en) 2014-06-16
TWI465025B TWI465025B (en) 2014-12-11

Family

ID=51394209

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101145220A TWI465025B (en) 2012-12-03 2012-12-03 Single Switch Zero Voltage Switching Resonant Converter

Country Status (1)

Country Link
TW (1) TWI465025B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI715328B (en) * 2019-12-04 2021-01-01 宏碁股份有限公司 Boost converter
CN113346771A (en) * 2020-02-18 2021-09-03 宏碁股份有限公司 Boost converter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7986535B2 (en) * 2007-07-17 2011-07-26 Raytheon Company Methods and apparatus for a cascade converter using series resonant cells with zero voltage switching
TW201246768A (en) * 2011-05-04 2012-11-16 Univ Kun Shan Mixed resonant converter of single-switch current source

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI715328B (en) * 2019-12-04 2021-01-01 宏碁股份有限公司 Boost converter
US11205957B2 (en) 2019-12-04 2021-12-21 Acer Incorporated Boost converter
CN113346771A (en) * 2020-02-18 2021-09-03 宏碁股份有限公司 Boost converter
CN113346771B (en) * 2020-02-18 2023-07-21 宏碁股份有限公司 Boost converter

Also Published As

Publication number Publication date
TWI465025B (en) 2014-12-11

Similar Documents

Publication Publication Date Title
CN105846682B (en) Novel hybrid control mode of forward and reverse converter
CN102570861B (en) High-power-factor LED (Light Emitting Diode) constant-current driving power supply without electrolytic capacitor
CN203775058U (en) LED driving power supply based on single-end flyback transformer leakage inductor energy utilization
CN105391287A (en) Zero-input current ripple high-gain converter based on double coupling inductors and single switch
CN102510218A (en) Direct current to direct current (DC-DC) power converter with high boost ratio
CN104202862A (en) Single-stage type LED drive power supply without electrolytic capacitor
TWI465025B (en) Single Switch Zero Voltage Switching Resonant Converter
TWI482411B (en) Current fed single load switch series resonant converter doubler
CN104201874B (en) The lossless absorption circuit and Switching Power Supply of a kind of Switching Power Supply output rectifying tube
CN203645540U (en) A high-efficiency high-gain DC-DC converter with coupling inductors
CN204578353U (en) Secondary commutation absorbing circuit in DC converter used for electric vehicle
CN101662209B (en) Soft switching buck DC-DC converter
CN103441668A (en) High-gain boost DC-DC converter allowing pseudo continuous work
TW201325055A (en) Zero voltage switch DC power supply
TWI437807B (en) Single Switch Zero Voltage Switching Load Resonant Converter
CN202616991U (en) Soft switching synchronous rectification BUCK converter for small power
TWI568130B (en) Staggered high frequency chord pulse electric vehicle charger
CN205566125U (en) Novel digital power supply
TWI506938B (en) Single - switch - type load - sharing resonator
Valipour et al. High efficiency LC resonant boost topology: Analysis and design
CN204205958U (en) A kind of Zero-voltage switch flyback converter
CN203691247U (en) High-efficiency high-gain DC-DC converter with double coupling inductors
TWI430555B (en) Class E DC - to - DC converter
CN100346563C (en) Isolation boost transformer of boosting induction adopting LCD non-loss absorption circuit and having coupled winding
CN202335019U (en) High-efficiency low-power single-ended flyback type LED (Light Emitting Diode) driving power supply

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees