TW201423883A - Method and apparatus for autonomous tool parameter impact identification system for semiconductor manufacturing - Google Patents
Method and apparatus for autonomous tool parameter impact identification system for semiconductor manufacturing Download PDFInfo
- Publication number
- TW201423883A TW201423883A TW102133453A TW102133453A TW201423883A TW 201423883 A TW201423883 A TW 201423883A TW 102133453 A TW102133453 A TW 102133453A TW 102133453 A TW102133453 A TW 102133453A TW 201423883 A TW201423883 A TW 201423883A
- Authority
- TW
- Taiwan
- Prior art keywords
- tool
- parameter
- parameters
- function
- functions
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 76
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 48
- 239000004065 semiconductor Substances 0.000 title claims abstract description 48
- 230000035945 sensitivity Effects 0.000 claims abstract description 57
- 230000006870 function Effects 0.000 claims description 142
- 238000012545 processing Methods 0.000 claims description 28
- 239000002131 composite material Substances 0.000 claims description 17
- 238000000926 separation method Methods 0.000 claims description 15
- 230000000694 effects Effects 0.000 claims description 12
- 230000015572 biosynthetic process Effects 0.000 claims description 10
- 238000003786 synthesis reaction Methods 0.000 claims description 10
- 230000008859 change Effects 0.000 claims description 6
- 230000004069 differentiation Effects 0.000 claims description 6
- 230000000717 retained effect Effects 0.000 claims description 5
- 238000012163 sequencing technique Methods 0.000 claims description 4
- 230000008569 process Effects 0.000 abstract description 19
- 230000002829 reductive effect Effects 0.000 abstract description 6
- 235000012431 wafers Nutrition 0.000 description 37
- 238000005259 measurement Methods 0.000 description 31
- 238000004891 communication Methods 0.000 description 23
- 238000003860 storage Methods 0.000 description 21
- 238000002955 isolation Methods 0.000 description 17
- 238000004458 analytical method Methods 0.000 description 16
- 230000006399 behavior Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- 238000012423 maintenance Methods 0.000 description 11
- 230000003595 spectral effect Effects 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 8
- 230000032683 aging Effects 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 7
- 230000009471 action Effects 0.000 description 6
- 238000000151 deposition Methods 0.000 description 6
- 230000008021 deposition Effects 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- 230000000670 limiting effect Effects 0.000 description 5
- 238000011068 loading method Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 230000008439 repair process Effects 0.000 description 5
- 238000012549 training Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 238000012706 support-vector machine Methods 0.000 description 4
- 238000013528 artificial neural network Methods 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 238000013441 quality evaluation Methods 0.000 description 3
- 238000002922 simulated annealing Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000003252 repetitive effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000013479 data entry Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000005055 memory storage Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007723 transport mechanism Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
- G05B19/41875—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by quality surveillance of production
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/32—Operator till task planning
- G05B2219/32187—Correlation between controlling parameters for influence on quality parameters
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/45—Nc applications
- G05B2219/45031—Manufacturing semiconductor wafers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/80—Management or planning
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Automation & Control Theory (AREA)
- Quality & Reliability (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- Mathematical Physics (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Data Mining & Analysis (AREA)
- Computing Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- General Factory Administration (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
本發明整體而言係關於用於判定工具參數在一半導體製造系統之經選擇的工具效能指示符上的相對影響之技術。 The present invention is generally directed to techniques for determining the relative impact of tool parameters on a selected tool performance indicator of a semiconductor manufacturing system.
電子及計算器件的進步的技術發展刺激了半導體技術的進展。針對更小的、更高效能且更有效率之電腦器件及電子裝置的持續成長之消費需求已導致半導體器件需要縮小尺度。為了符合器件需求同時限縮成本,已增加了於其上形成半導體器件之矽晶圓的尺寸。 Technological advances in advances in electronics and computing devices have spurred advances in semiconductor technology. The ever-increasing consumer demand for smaller, more efficient, and more efficient computer devices and electronic devices has led to the need for semiconductor devices to scale down. In order to meet the device requirements while limiting the cost, the size of the germanium wafer on which the semiconductor device is formed has been increased.
針對大晶圓尺寸之製造廠係採用自動化來實施及控制晶圓處理。此等工廠資本龐大,且因此有需要維持製造設備之高效率操作以使停機時間最小化且使產量最大化。為了促進這些目標,在晶圓處理期間通常採用測量設備來監控製造設備且用以獲取在設備及已處理晶圓上之測量資訊。該測量資訊接著被分析以最佳化製造設備。 Manufacturers of large wafer sizes use automation to implement and control wafer processing. These plants are capital intensive and there is therefore a need to maintain efficient operation of manufacturing equipment to minimize downtime and maximize throughput. To facilitate these goals, measurement equipment is typically employed during wafer processing to monitor manufacturing equipment and to obtain measurement information on the equipment and processed wafers. This measurement information is then analyzed to optimize the manufacturing equipment.
依照一實例,測量資訊可包括指示製造設備或其一部分之狀態或條件之工具水準資訊、指定待處理晶圓之實體及/或幾何條件的晶圓度量衡資訊、電子文檔資訊等等。此外,亦可收集光譜資料(例如,光譜線強度資訊)以促進製程工程師來識別蝕刻終點。然而,在習知製造環境中,各種不同的測量資料係針對不同目的而彼此獨立處理。因此,在各種測量資料之間的相互關係無法針對製造程序之進一步最佳化來予以制衡。 According to an example, the measurement information may include tool level information indicating the status or condition of the manufacturing device or a portion thereof, wafer metrology information specifying the physical and/or geometric conditions of the wafer to be processed, electronic document information, and the like. In addition, spectral data (eg, spectral line intensity information) can be collected to facilitate process engineers to identify the etch endpoint. However, in conventional manufacturing environments, various measurement data are processed independently of each other for different purposes. Therefore, the interrelationship between various measurement data cannot be balanced against further optimization of the manufacturing process.
現今半導體製造測量及最佳化系統之上述瑕疵僅係提供習知系統之一些問題的概論,而非詳盡說明。習知系統之其他問題及在本文中所述之各種非限制性實施例的相應優點可以在閱讀以下說明後獲得更深入的瞭解。 The above-mentioned details of today's semiconductor manufacturing measurement and optimization systems are merely an introduction to some of the problems of conventional systems, rather than an exhaustive description. Other problems with the conventional system and the corresponding advantages of the various non-limiting embodiments described herein can be gained by reading the following description.
以下呈現簡化的摘要以提供對於在本文中所述之例示性、非限制性實施例之一些態樣的基本且一般性的理解。此摘要並非係延伸性的概述,亦非用以識別主要/重要元件或用以描繪在本文中所述之各種不同態樣之範疇。相反地,此摘要之唯一目的係要以一簡化形式來呈現一些觀念以作為以下各種不同實施例之詳細說明的前序。 The following presents a simplified summary to provide a basic and general understanding of some aspects of the illustrative, non-limiting embodiments described herein. This summary is not an extensive overview of the invention, and is not intended to identify the main/critical elements or the scope of the various aspects described herein. Rather, the abstract is intended to be illustrative of the present invention as a
本發明之一或多個實施例係關於自動化地識別一半導體製造系統中工具參數對經選擇的工具效能指示符之相對影響的技術。為此,提供一參數影響識別系統,其可制衡經測量的工具參數資料與工具效能資料以識別出 會影響一特定工具效能量度之最重要工具參數。該參數影響識別系統亦可基於其對該選擇的工具效能量度之相對影響來排序這些重要參數,提供維護人員有用的引導來識別哪些重要工具參數應係用以最佳化該選擇的工具效能量度之維護工作的重點所在。 One or more embodiments of the present invention are directed to techniques for automatically identifying the relative impact of tool parameters on selected tool performance indicators in a semiconductor manufacturing system. To this end, a parameter impact identification system is provided that can balance the measured tool parameter data and tool performance data to identify The most important tool parameters that affect the efficiency of a particular tool. The parameter impact recognition system can also rank these important parameters based on their relative impact on the selected instrument's efficiency, providing useful guidance to maintenance personnel to identify which important tool parameters should be used to optimize the tool's performance metrics for the selection. The focus of maintenance work.
該參數影響識別系統可藉由獨立地分析每一工具參數來判定各自工具參數之相對影響,且針對每一參數,利用該獨立的參數來嘗試預測一選擇的工具效能指示符之行為。這可以將半導體工具參數之複雜維度減小成一單輸入單輸出(SISO)問題,其中該工具效能指示符可被描述為僅係一單一工具參數之一函數。每一參數對效能指示符之影響接著可基於所得到之函數的分析(例如,藉由計算每一函數之一導數、藉由判定每一函數之預測準確度等等)來予以判定,且工具參數依照相對影響來予以排序。 The parameter impact recognition system can determine the relative impact of the respective tool parameters by independently analyzing each tool parameter, and for each parameter, utilize the independent parameter to attempt to predict the behavior of a selected tool performance indicator. This can reduce the complex dimensions of semiconductor tool parameters to a single input single output (SISO) problem, where the tool performance indicator can be described as being a function of only a single tool parameter. The effect of each parameter on the performance indicator can then be determined based on an analysis of the resulting function (eg, by calculating a derivative of each function, by determining the prediction accuracy of each function, etc.), and the tool Parameters are sorted by relative impact.
在某些實施例中,參數影響識別系統亦可產生一函數,其按照由上述排序所判定之僅最重要的工具參數來特性化經選擇的工具效能指示符。藉由排除對效能指示符具有輕微影響的工具參數,所得到的函數可大大地簡化終端使用者之問題空間且能夠更敏銳地專注在這些重要工具參數上。 In some embodiments, the parameter impact recognition system can also generate a function that characterizes the selected tool performance indicator in accordance with only the most important tool parameters determined by the above ranking. By eliminating tool parameters that have a slight impact on performance indicators, the resulting function greatly simplifies the problem space for end users and enables a sharper focus on these important tool parameters.
為了達成上述及相關目的,在本文中所述之某些繪示說明之態樣係結合以下的說明及所附圖式。這些態樣係指示可以實現的各種不同方法,這些全部都涵蓋在本文中。當配合圖式來閱讀時,其他優點及新穎性特徵 可從以下詳細說明來獲得瞭解。 In order to achieve the above and related ends, some of the illustrative aspects described herein are combined with the following description and the accompanying drawings. These patterns are indicative of the various methods that can be implemented, all of which are covered herein. Other advantages and novelty features when reading with the schema You can get an understanding from the detailed instructions below.
100‧‧‧系統 100‧‧‧ system
102‧‧‧輸入晶圓 102‧‧‧Input wafer
104‧‧‧經處理晶圓 104‧‧‧Processed Wafer
106‧‧‧使用者規範 106‧‧‧User Specifications
108‧‧‧工具參數資料 108‧‧‧Tool parameter data
110‧‧‧半導體製造系統 110‧‧‧Semiconductor Manufacturing System
112‧‧‧工具效能資料 112‧‧‧Tool performance data
120‧‧‧光譜儀 120‧‧‧ Spectrometer
130‧‧‧工具感測器 130‧‧‧Tool Sensor
140‧‧‧器件測量設備 140‧‧‧Device measuring equipment
150‧‧‧報告組件 150‧‧‧Report component
154‧‧‧分析結果 154‧‧‧ Analysis results
160‧‧‧參數影響識別系統 160‧‧‧Parameter Impact Identification System
202‧‧‧參數影響識別系統 202‧‧‧Parameter Impact Identification System
204‧‧‧介面組件 204‧‧‧Interface components
206‧‧‧參數分離組件 206‧‧‧Parameter separation component
208‧‧‧品質評比組件 208‧‧‧Quality appraisal components
210‧‧‧靈敏度組件 210‧‧‧ Sensitivity components
212‧‧‧排序組件 212‧‧‧Sort components
214‧‧‧過濾組件 214‧‧‧Filter components
216‧‧‧合成函數組件 216‧‧‧synthetic function component
218‧‧‧處理器 218‧‧‧ processor
220‧‧‧記憶體 220‧‧‧ memory
302‧‧‧半導體製造系統 302‧‧‧Semiconductor Manufacturing System
304‧‧‧工具參數資料 304‧‧‧Tool parameter data
306‧‧‧工具效能資料 306‧‧‧Tool performance data
308‧‧‧參數影響識別系統 308‧‧‧Parameter Impact Identification System
310‧‧‧參數分離組件 310‧‧‧Parameter separation component
312‧‧‧使用者規範 312‧‧ User specifications
314‧‧‧靈敏度組件 314‧‧‧ Sensitivity component
316‧‧‧過濾組件 316‧‧‧Filter components
318‧‧‧排序組件 318‧‧‧Sort components
320‧‧‧合成函數組件 320‧‧‧Composite function components
322‧‧‧合成函數 322‧‧‧Synthesis function
324‧‧‧介面組件 324‧‧‧Interface components
326‧‧‧品質評比組件 326‧‧‧Quality appraisal components
400‧‧‧介面 400‧‧‧ interface
500‧‧‧介面 500‧‧‧ interface
602‧‧‧隔離參數函數 602‧‧‧Isolation parameter function
702‧‧‧品質評比 702‧‧‧Quality comparison
802‧‧‧靈敏度評比 802‧‧‧ Sensitivity rating
902‧‧‧參數評比 902‧‧‧Parameter evaluation
904‧‧‧經排序的工具參數 904‧‧‧ sorted tool parameters
906‧‧‧較高排序的工具參數 906‧‧‧Higher sorting tool parameters
908‧‧‧較低排序的工具參數 908‧‧‧Lower sorted tool parameters
1002‧‧‧頂端工具參數 1002‧‧‧Top tool parameters
1100‧‧‧使用者介面 1100‧‧‧User interface
1102‧‧‧資料欄位 1102‧‧‧Information field
1104‧‧‧資料欄位 1104‧‧‧Information field
1402‧‧‧資料儲存庫 1402‧‧‧Data repository
1406‧‧‧系統記憶體 1406‧‧‧System Memory
1420‧‧‧應用程式 1420‧‧‧Application
1500‧‧‧方法 1500‧‧‧ method
1502‧‧‧步驟 1502‧‧‧Steps
1504‧‧‧步驟 1504‧‧‧Steps
1506‧‧‧步驟 1506‧‧‧Steps
1508‧‧‧步驟 1508‧‧‧Steps
1510‧‧‧步驟 1510‧‧‧Steps
1600‧‧‧方法 1600‧‧‧ method
1602‧‧‧步驟 1602‧‧‧Steps
1604‧‧‧步驟 1604‧‧‧Steps
1606‧‧‧步驟 1606‧‧‧Steps
1608‧‧‧步驟 1608‧‧‧Steps
1610‧‧‧步驟 1610‧‧‧Steps
1612‧‧‧步驟 1612‧‧‧Steps
1614‧‧‧步驟 1614‧‧‧Steps
1616‧‧‧步驟 1616‧‧‧Steps
1618‧‧‧步驟 1618‧‧‧Steps
1700‧‧‧計算環境 1700‧‧‧ Computing environment
1702‧‧‧電腦 1702‧‧‧ Computer
1704‧‧‧處理單元 1704‧‧‧Processing unit
1706‧‧‧系統記憶體 1706‧‧‧System Memory
1708‧‧‧系統匯流排 1708‧‧‧System Bus
1710‧‧‧非揮發性記憶體 1710‧‧‧ Non-volatile memory
1712‧‧‧隨機存取記憶體 1712‧‧‧ Random access memory
1714‧‧‧磁碟儲存器 1714‧‧‧Disk storage
1716‧‧‧介面 1716‧‧‧ interface
1718‧‧‧作業系統 1718‧‧‧Operating system
1724‧‧‧程式模組 1724‧‧‧Program Module
1726‧‧‧程式資料 1726‧‧‧Program data
1728‧‧‧有線/無線輸入器件 1728‧‧‧Wired/wireless input devices
1730‧‧‧輸入器件(介面)埠 1730‧‧‧Input device (interface)埠
1734‧‧‧輸出(轉接器)埠 1734‧‧‧Output (Adapter)埠
1736‧‧‧周邊輸出器件 1736‧‧‧ peripheral output devices
1738‧‧‧遠端電腦 1738‧‧‧Remote computer
1740‧‧‧記憶體/儲存器件 1740‧‧‧Memory/storage device
1742‧‧‧網路介面 1742‧‧‧Network interface
1744‧‧‧轉接器 1744‧‧‧Adapter
1800‧‧‧計算環境 1800‧‧‧ computing environment
1802‧‧‧用戶端 1802‧‧‧User side
1804‧‧‧伺服器 1804‧‧‧Server
1806‧‧‧通信架構 1806‧‧‧Communication Architecture
1808‧‧‧用戶端資料儲存庫 1808‧‧‧Client Data Repository
1810‧‧‧伺服器資料儲存庫 1810‧‧‧Server Data Repository
第1圖係繪示用於收集及分析有關半導體生產之資訊之一例示性系統的方塊圖。 Figure 1 is a block diagram showing an exemplary system for collecting and analyzing information about semiconductor manufacturing.
第2圖係一例示性參數影響識別系統的方塊圖,該參數影響識別系統可自動化地識別會影響所選擇之工具效能量度之工具參數。 Figure 2 is a block diagram of an exemplary parameter impact identification system that can automatically identify tool parameters that affect the efficiency of the selected tool.
第3圖係繪示由一例示性參數影響識別系統所執行之處理功能的方塊圖。 Figure 3 is a block diagram showing the processing functions performed by an exemplary parameter affecting recognition system.
第4圖繪示用於選擇待分析之一工具效能指示符的例示性介面。 Figure 4 illustrates an exemplary interface for selecting one of the tool performance indicators to be analyzed.
第5圖繪示一用於選擇欲由參數影響識別系統所考慮之一或多個工具參數之例示性介面。 Figure 5 illustrates an exemplary interface for selecting one or more tool parameters to be considered by the parameter-affecting recognition system.
第6圖繪示給定工具參數及效能資料之集合來產生一隔離參數函數集合。 Figure 6 depicts a set of given tool parameters and performance data to produce a set of isolation parameter functions.
第7圖繪示基於隔離參數函數來對各自工具參數指派品質評比。 Figure 7 illustrates the assignment of quality ratings to the respective tool parameters based on the isolation parameter function.
第8圖繪示基於隔離參數函數來對各自工具參數指派靈敏度評比。 Figure 8 illustrates the assignment of sensitivity ratings to the respective tool parameters based on the isolation parameter function.
第9圖繪示依照對一工具效能指示符的相對影響來排序工具參數。 Figure 9 illustrates the sorting of tool parameters in accordance with the relative impact on a tool performance indicator.
第10圖繪示過濾經排序的工具參數以識別對一工具效能指示符具有最高影響之一重要工具參數集合。 Figure 10 illustrates filtering the sorted tool parameters to identify one of the most important tool parameter sets that have the highest impact on a tool performance indicator.
第11圖繪示用於組態工具參數過濾標準之一例示性介面。 Figure 11 illustrates an exemplary interface for configuring tool parameter filtering criteria.
第12圖圖表式地摘要依照參數影響識別系統之一或多個實施例的重要工具參數之識別。 Figure 12 graphically summarizes the identification of important tool parameters in accordance with one or more embodiments of the parameter impact identification system.
第13圖繪示一合成函數的產生,該合成函數係按照一縮減的重要工具參數集合來特性化一工具效能行為。 Figure 13 illustrates the generation of a composite function that characterizes a tool performance behavior in accordance with a reduced set of important tool parameters.
第14圖繪示以連續地反覆方式來更新工具效能函數。 Figure 14 illustrates updating the tool performance function in a continuous manner.
第15圖係用於模型化一半導體製造系統之一工具效能指示符與一工具參數集合之間的函數關係之一實例性方法的流程圖。 Figure 15 is a flow diagram of an exemplary method for modeling a functional relationship between a tool performance indicator and a set of tool parameters of a semiconductor manufacturing system.
第16圖係用於自動化地識別及模型化工具參數對一工具效能量度之影響的實例性方法之一流程圖。 Figure 16 is a flow diagram of an exemplary method for automatically identifying and modeling the effects of tool parameters on a tool's efficiency.
第17圖係一實例性計算環境。 Figure 17 is an example computing environment.
第18圖係一實例性網路連接環境。 Figure 18 is an example network connection environment.
現將參考圖式來說明本發明,其中在諸圖式中相同的元件標號係用以指示相同的元件。在以下的說明中,為了說明之目的,陳述許多特定的細節來提供對本發明之徹底理解。然而,顯然地,本發明可無需這些特定細節而實現。在其他例子中,熟知的結構及器件係以方塊圖形式來展示以有助於對本發明之描述。 The invention will be described with reference to the drawings, in which the same elements are used to indicate the same elements. In the following description, numerous specific details are set forth However, it will be apparent that the invention may be practiced without these specific details. In other instances, well-known structures and devices are shown in the form of a block diagram to facilitate the description of the invention.
在本說明書及圖式中所用的術語「物件」、 「模組」、「介面」、「組件」、「系統」、「平台」、「引擎」、「選擇器」、「管理器」、「單元」、「儲存器」、「網路」、「產生器」等等係用以指稱具有一特定功能之一電腦相關實體或與一操作機器或裝置相關或係其一部分的一實體;此等實體可以係硬體、硬體及韌體之組合、韌體、硬體與軟體之組合、軟體或執行中的軟體。此外,經由上述術語所識別之實體在本文中統稱為「功能元件」。舉例來說,一組件可以係(但不以此為限)在一處理器上運行之程序、一處理器、一物件、一執行檔、一執行緒、一程式及/或一電腦。用於闡釋之目的,在一伺服器上運行之應用程式及該伺服器可以作為一組件。一或多個組件可常駐於一程序及/或執行緒中,且一組件亦可固定在一電腦上及/或分散在兩個或更多個電腦之間。再者,這些組件可從具有各種資料結構儲存於其上之各種電腦可讀儲存媒體來執行。該等組件可經由本端及/或遠端程序而通信,諸如依照具有一或多個資料封包之一信號(例如,來自於一組件與在一本端系統、分散的系統中之另一組件的互動,及/或透過諸如網際網路之一網路經由信號而與其他系統互動之資料)。舉一實例來說,一組件可以係具有藉由電氣或電子電路操作之機械部分所提供之特定功能的一裝置,該電路係藉由一處理器執行之軟體或韌體應用程式所操作,其中該處理器可內接或外接於該裝置且執行該軟體或韌體應用程式之至少一部分。舉另一實例來說,一組件可以係經由電子組件來提供特定功能而無機械部分的裝置,該電子組件於其中可包括一處理器以 執行授予該電子組件之至少部分功能的軟體或韌體。介面可包括輸入/輸出(I/O)組件以及相關的處理器、應用程式或API(應用程式介面)組件。儘管上述呈現的實例係關於一組件,但例示性特徵或態樣亦可應用於物件、模組、介面、系統、平台、引擎、選擇器、管理器、單元、儲存器、網路等等。 The term "object" as used in this specification and drawings, "Module", "Interface", "Component", "System", "Platform", "Engine", "Selector", "Manager", "Unit", "Storage", "Network", " "producer" or the like is used to refer to a computer-related entity having a particular function or an entity associated with or part of an operating machine or device; such entities may be a combination of hardware, hardware, and firmware, Firmware, combination of hardware and software, software or software in execution. Further, entities identified by the above terms are collectively referred to herein as "functional elements." For example, a component can be, but is not limited to, a program running on a processor, a processor, an object, an executable, a thread, a program, and/or a computer. For purposes of explanation, an application running on a server and the server can be used as a component. One or more components can reside in a program and/or thread, and a component can be fixed on a computer and/or distributed between two or more computers. Moreover, these components can be executed from a variety of computer readable storage media having various data structures stored thereon. The components can communicate via the local and/or remote program, such as in accordance with one of the one or more data packets (eg, from one component to another component in a local system, a decentralized system) Interactions and/or information that interacts with other systems via signals such as one of the Internet networks). By way of example, a component can be a device having a specific function provided by a mechanical portion operated by an electrical or electronic circuit, the circuit being operated by a software or firmware application executed by a processor, wherein The processor can be internal or external to the device and execute at least a portion of the software or firmware application. As another example, a component can be a device that provides a particular function via an electronic component without a mechanical portion, which can include a processor therein. A software or firmware that performs at least some of the functions of the electronic component is performed. The interface can include input/output (I/O) components and associated processor, application or API (application interface) components. Although the examples presented above are directed to a component, the illustrative features or aspects are also applicable to objects, modules, interfaces, systems, platforms, engines, selectors, managers, units, storage, networks, and the like.
再者,術語「或」係用以表示一包含性的「或」而非一排他性的「或」。亦即,除非另有指明或可從上下文中看出,否則「X採用A或B」係用以表示任何自然的包含性排列。亦即,若X採用A;X採用B;或X採用A及B兩者,則在任何上述例子的情況下,「X採用A或B」被滿足。此外,在本申請案及隨附申請專利範圍中所使用之冠詞「一(a及an)」應大致上解釋成用以表示「一或多個」,除非另有指明或者從上下文中可以清楚瞭解到係關於單數型式者。 Furthermore, the term "or" is used to mean an inclusive "or" rather than an exclusive "or". That is, "X employs A or B" is used to mean any natural inclusive permutation unless otherwise indicated or can be seen from the context. That is, if X employs A; X employs B; or X employs both A and B, then in the case of any of the above examples, "X employs A or B" is satisfied. In addition, the articles "a" and "an" are used to mean "one or more", unless otherwise specified or clear from the context. Learn about the singular type.
再者,在本文中所採用之術語「集合」係排除空集合;例如,於其中未具有任何元件之集合。因此,在本發明中之一「集合」係包括一或多個元件或實體。作為一闡釋例,一組件集合係包括一或多個組件;一變數集合係包括一或多個變數;依此類推。 Moreover, the term "set" as used herein excludes an empty set; for example, a set that does not have any elements therein. Thus, one of the "collections" in the present invention includes one or more elements or entities. As an illustration, a component set includes one or more components; a variable set includes one or more variables; and so on.
各種態樣或特徵將以系統來呈現,該系統可包括若干個器件、組件、模組等等。應可瞭解且理解的是,各種不同系統可包括額外的器件、組件、模組等等,及/或可不包括結合圖式所討論的所有器件、組件、模組等 等。亦可使用這些方式之組合。 Various aspects or features will be presented in a system that can include several devices, components, modules, and the like. It should be understood and appreciated that various systems may include additional devices, components, modules, etc., and/or may not include all of the devices, components, modules, etc. discussed in connection with the drawings. Wait. A combination of these methods can also be used.
第1圖係方塊圖,其中繪示用於收集及分析有關於半導體生產之資訊的例示性系統100。如第1圖所示,一半導體製造系統110可接收輸入晶圓102及輸出經處理晶圓104。在一例示性、非限制性實施例中,半導體製造系統110可以係蝕刻工具,其經由一蝕刻程序(例如,溼式蝕刻、乾式蝕刻、電漿蝕刻等等)而從輸入晶圓102移除未經遮罩之材料,以產生於其上形成有凹陷及特徵之經處理晶圓104。半導體製造系統110亦可以係一沈積工具(例如,原子層沈積、化學氣相沈積等等),其將材料沈積在輸入晶圓102上以獲得經處理晶圓104。 1 is a block diagram showing an exemplary system 100 for collecting and analyzing information relating to semiconductor manufacturing. As shown in FIG. 1, a semiconductor fabrication system 110 can receive an input wafer 102 and an output processed wafer 104. In an exemplary, non-limiting embodiment, semiconductor fabrication system 110 can be an etch tool that is removed from input wafer 102 via an etch process (eg, wet etch, dry etch, plasma etch, etc.) The unmasked material is produced from a processed wafer 104 having recesses and features formed thereon. Semiconductor fabrication system 110 can also be a deposition tool (eg, atomic layer deposition, chemical vapor deposition, etc.) that deposits material on input wafer 102 to obtain processed wafer 104.
各種不同的測量器件(諸如光譜儀120、工具感測器130及器件測量設備140)可監視由半導體製造系統110執行之程序以獲取有關於該程序之各種態樣、條件或結果的全然不同的資訊。舉一實例而言,光譜儀120可獲取光譜強度資訊,其包括針對由光譜儀120所觀測之各自波長或光譜線之一強度集合。光譜強度資訊可以係時間序列資料,使得光譜儀120以規律間隔(例如,每隔1秒、每隔2秒、每隔100毫秒等等)針對各自波長來測量強度。光譜儀120亦可將光譜強度資訊與由半導體製造系統110處理之指定晶圓相關的晶圓ID相關聯。因此,光譜儀120可針對由半導體製造系統110處理之每一晶圓來個別地獲取光譜強度資訊。 A variety of different measurement devices, such as spectrometer 120, tool sensor 130, and device measurement device 140, can monitor the programs executed by semiconductor fabrication system 110 to obtain completely different information about the various aspects, conditions, or results of the program. . By way of example, spectrometer 120 can acquire spectral intensity information including a set of intensities for each of the respective wavelengths or spectral lines observed by spectrometer 120. The spectral intensity information can be time series data such that the spectrometer 120 measures the intensity for each wavelength at regular intervals (eg, every 1 second, every 2 seconds, every 100 milliseconds, etc.). Spectrometer 120 can also correlate spectral intensity information to wafer IDs associated with a given wafer processed by semiconductor fabrication system 110. Thus, spectrometer 120 can individually acquire spectral intensity information for each wafer processed by semiconductor fabrication system 110.
在半導體製造系統110處理輸入晶圓102 且產生對應的感測器資訊的同時,工具感測器130可監視及測量工具操作特性。工具感測器資訊,類似於由光譜儀120測量之光譜強度資訊,可以係以每一晶圓為基礎之相關聯的時間序列資料。工具感測器資訊可包括來自於各種不同感測器之測量值。此等測量值可包括(但不以此為限)在半導體製造系統110之一或多個腔室中的壓力、針對一或多種不同氣體之氣體流量、溫度、上射頻(RF)功率、自最後溼式清潔後所經歷的時間、工具部分之老化等等。 Processing input wafer 102 at semiconductor fabrication system 110 While the corresponding sensor information is generated, the tool sensor 130 can monitor and measure tool operating characteristics. Tool sensor information, similar to the spectral intensity information measured by spectrometer 120, can be associated with each wafer based on time series data. Tool sensor information can include measurements from a variety of different sensors. Such measurements may include, but are not limited to, pressure in one or more chambers of semiconductor fabrication system 110, gas flow rate for one or more different gases, temperature, upper radio frequency (RF) power, self The time elapsed after the final wet cleaning, the aging of the tool parts, and the like.
器件測量設備140可測量晶圓及/或製造在晶圓上之特徵的實體及幾何特性。例如,器件測量設備140可在晶圓之預定位置或區域處測量顯影檢查臨界尺寸(DI-CD)、最終檢查臨界尺寸(FI-CD)、蝕刻偏差、厚度等等。測量特性可基於每一位置、每一晶圓來予以彙集並且輸出作為器件測量資訊。晶圓之特性通常係在處理前或處理後來予以測量。因此,相較於光譜強度資訊及工具感測器資訊,器件測量資訊通常係以不同間隔所獲取之時間序列資料。 Device measurement device 140 can measure the physical and geometric characteristics of the wafer and/or features that are fabricated on the wafer. For example, device measurement device 140 can measure development inspection critical dimension (DI-CD), final inspection critical dimension (FI-CD), etch bias, thickness, and the like at a predetermined location or region of the wafer. Measurement characteristics can be aggregated and output as device measurement information based on each location, each wafer. The characteristics of the wafer are usually measured before or after processing. Therefore, compared to spectral intensity information and tool sensor information, device measurement information is typically time series data acquired at different intervals.
藉由制衡在晶圓生產期間從測量器件120、130及140所收集的資料,便可以針對半導體製造系統110來測量或導出大量的工具效能指示符。例示性效能指示符可包括整體生產統計,諸如晶圓輸出量、系統停機時間、系統正常運作時間等等。效能指示符亦可包括度量衡輸出,或者由系統生產之最終半導體晶圓的測量特性,包括(但不以此為限)邊緣偏差、沈積厚度、顆粒數(例如, 污染程度)、側壁角度或其他此等測量特性。某些效能指示符亦可考慮半導體製造系統110外部的資料。例如,與系統有關之修理成本可部分基於從一或多個商業級伺服器獲得之已記錄的財務或記帳資料來予以計算。 By balancing the data collected from measurement devices 120, 130, and 140 during wafer production, a large number of tool performance indicators can be measured or derived for semiconductor fabrication system 110. Exemplary performance indicators may include overall production statistics such as wafer throughput, system downtime, system uptime, and the like. The performance indicator may also include a metrology output, or a measurement characteristic of the final semiconductor wafer produced by the system, including, but not limited to, edge deviation, deposition thickness, number of particles (eg, Degree of contamination), sidewall angle or other such measurement characteristics. Certain performance indicators may also consider data external to the semiconductor manufacturing system 110. For example, system-related repair costs may be calculated based in part on recorded financial or billing information obtained from one or more commercial-grade servers.
一給定的工具效能指示符之行為通常係針對該系統測量之一或多個工具參數的一函數。在工具效能上具有影響之工具參數可包括例如腔室壓力、溫度、RF功率、氣體流量或在工具操作期間測量之其他參數。會影響工具效能之其他工具參數包括工具操作特性,諸如零件之老化、處理時間、工具裝設時間、晶圓裝載或卸載時間等等。一些工具效能指示符亦可以係一或多個產品度量衡輸入(例如,傳入的臨界尺寸、沈積厚度、材料之折射率或其他此等度量衡值)之一函數。 The behavior of a given tool performance indicator is typically a function of one or more tool parameters measured for the system. Tool parameters that have an impact on tool performance may include, for example, chamber pressure, temperature, RF power, gas flow, or other parameters measured during tool operation. Other tool parameters that affect tool performance include tool operating characteristics such as part aging, processing time, tool set-up time, wafer loading or unloading time, and more. Some tool performance indicators may also be one of a function of one or more product metrology inputs (eg, incoming critical dimensions, deposited thickness, refractive index of the material, or other such weights).
由於工具效能主要係諸如上述之一或多個工具參數的函數,因此知道哪些工具參數對一給定工具效能量度有最大影響將,可提供使用者對於工具效能有較大的控制程度,且有助於將工具效能指示符維持在所要的限度內。然而,由於工具參數資料通常與工具效能資料僅係輕度相關聯,因此難以取得哪些工具參數對這些工具效能量度具有最高影響。此資訊對於設備擁有者針對識別應將維護工作專注於何處係有用的。 Since tool performance is primarily a function of one or more of the tool parameters described above, knowing which tool parameters have the greatest impact on the efficiency of a given tool will provide the user with a greater degree of control over the performance of the tool, and Helps maintain tool performance indicators within the required limits. However, since tool parameter data is usually only slightly associated with tool performance data, it is difficult to obtain which tool parameters have the highest impact on the efficiency of these tools. This information is useful for device owners to identify where maintenance should be focused.
為了解決這些問題,提供一參數影響識別系統160,其可制衡工具參數資料與工具效能資料,以自動化地識別哪些工具參數對一經選擇的工具效能指示符具 有最大影響。參數影響識別系統160亦可針對經判定對效能指示符具有重大影響之少量的工具參數來特性化工具效能指示符,藉此可藉由減少維度複雜性而簡化分析。 To address these issues, a parameter impact identification system 160 is provided that can balance tool parameter data and tool performance data to automatically identify which tool parameters are associated with a selected tool performance indicator. Have the biggest impact. The parameter impact identification system 160 can also characterize the tool performance indicator for a small number of tool parameters that are determined to have a significant impact on the performance indicator, thereby simplifying the analysis by reducing dimensional complexity.
參數影響識別系統160可接收工具參數資料108及工具效能資料112來作為輸入。在一或多個實施例中,此輸入資料可從工具程序記錄表導出,該記錄表係記錄在半導體製造系統110之各自流程期間所測量之參數及效能資料。工具程序記錄表可包括來自於光譜儀120、工具感測器130或器件測量設備140之一或多者的測量資料。在此等工具程序記錄表中之測量記錄可包括(但不以此為限)感測器讀數(例如,壓力、溫度、功率等等)、與維護相關的讀數(例如,聚焦環之老化、質量流控制器之老化、從上次執行維護後的時間、從上批次裝載光阻劑後的時間,等等),及/或工具與效能統計(例如,處理晶圓的時間、化學物消耗量、氣體消耗量等等)。 The parameter impact identification system 160 can receive the tool parameter data 108 and the tool performance data 112 as inputs. In one or more embodiments, the input data can be derived from a tool program record table that records parameters and performance data measured during the respective processes of semiconductor manufacturing system 110. The tool record table may include measurement data from one or more of spectrometer 120, tool sensor 130, or device measurement device 140. Measurement records in such tool program records may include, but are not limited to, sensor readings (eg, pressure, temperature, power, etc.), maintenance related readings (eg, aging of the focus ring, Aging of the mass flow controller, the time since the last maintenance was performed, the time since the last batch was loaded with the photoresist, etc.), and/or tool and performance statistics (eg, wafer processing time, chemicals) Consumption, gas consumption, etc.).
在一例示性描述中,一工具程序記錄表可在半導體製造系統110之每一處理流程結束時藉由一報告組件150來產生。在一處理流程結束時,來自於光譜儀120、工具感測器130或器件測量設備140之一或多者的資料可提供至報告組件150,該報告組件針對該流程將該等收集的資料彙集於一工具程序記錄表中。一工具程序記錄表可對應於在該流程期間處理之一單一半導體晶圓,或者對應於在該流程期間所製造之一批半導體。工具程序記錄表接著可被儲存以作為報告或歸檔的用途。來自於工具程 序記錄表之工具參數資料108及工具效能資料112可藉由操作員手動地或藉由報告組件150或一相關器件自動地提供給參數影響識別系統160。 In an exemplary depiction, a tool program record table can be generated by a report component 150 at the end of each process flow of semiconductor fabrication system 110. At the end of a process flow, data from one or more of spectrometer 120, tool sensor 130, or device measurement device 140 may be provided to report component 150, which collects the collected data for the process A tool program records the table. A tool program record table may correspond to processing a single semiconductor wafer during the process, or corresponding to a batch of semiconductors fabricated during the process. The utility log can then be stored for use as a report or archive. From the tool The tool parameter data 108 and the tool performance data 112 of the sequence record table can be automatically provided to the parameter impact identification system 160 by an operator manually or by the reporting component 150 or a related device.
雖然上述實例描述工具參數資料108與工具效能資料112係從工具程序記錄表所檢索或擷取,然而應瞭解,此資料亦可藉由其他方式提供給參數影響識別系統160。例如,在一些實施例中,工具參數資料108或工具效能資料112的全部或一子集合可從器件120、130或140直接提供給參數影響識別系統160。 Although the above example describes the tool parameter data 108 and the tool performance data 112 retrieved or retrieved from the tool program record table, it should be understood that this data may also be provided to the parameter impact recognition system 160 by other means. For example, in some embodiments, all or a subset of tool parameter data 108 or tool performance data 112 may be provided directly from device 120, 130 or 140 to parameter impact identification system 160.
工具參數資料108可包含在操作期間針對一或多個工具測量的數值(例如,壓力、溫度、功率、氣體流量等等)、操作效能統計(例如,零件老化或使用次數、處理時間、裝設時間、裝載或卸載時間等等)、或其他此類工具參數。工具效能資料112可包括受到一或多個工具參數(例如,蝕刻偏差、沈積厚度、顆粒數、側壁角度等等)影響之最終半導體晶圓之測量特性、針對工具本身之效能資料(例如,晶圓生產量、停機時間、正常運作時間、修理成本等等)、或工具之操作效能的其他此類量度指示。 Tool parameter data 108 may include values (eg, pressure, temperature, power, gas flow, etc.) measured for one or more tools during operation, operational performance statistics (eg, part aging or usage times, processing time, installation) Time, load or unload time, etc., or other such tool parameters. Tool performance data 112 may include measurement characteristics of the final semiconductor wafer that are affected by one or more tool parameters (eg, etch deviation, deposition thickness, number of particles, sidewall angle, etc.), performance data for the tool itself (eg, crystal Other such metrics for round production volume, downtime, uptime, repair costs, etc., or operational performance of the tool.
參數影響識別系統160鑒於使用者定義之使用者規範106來處理工具參數資料108及工具效能資料112。使用者規範106可指定一或多個處理偏好,包括(但不以此為限)欲分析之工具效能指示符的選擇、欲考量之工具參數(例如,哪些工具參數要與經選擇之工具效能指示符相關聯)、欲由系統識別之頂端工具參數的較佳數量、較佳 學習方法(例如,模擬退火、符號回歸等等)或其他使用者偏好。參數影響識別系統160鑒於使用者規範106來分析工具參數資料108及工具效能資料112以產生分析結果154,此將在下文中更詳細說明。整體而言,分析結果154有助於識別對一給定的工具效能指示符具有最大影響之重要工具參數、將該經選擇的工具效能指示符特性化為該等重要工具參數之一函數,以及預測給出該等經識別工具參數之該工具效能指示符的未來值。 The parameter impact identification system 160 processes the tool parameter data 108 and the tool performance data 112 in view of the user defined user specification 106. The user specification 106 can specify one or more processing preferences, including (but not limited to) the selection of tool performance indicators to be analyzed, the tool parameters to be considered (eg, which tool parameters are to be compared to the selected tool performance). The indicator is associated with) the preferred number of top tool parameters to be recognized by the system, preferably Learning methods (eg, simulated annealing, symbol regression, etc.) or other user preferences. The parameter impact identification system 160 analyzes the tool parameter data 108 and the tool performance data 112 in accordance with the user specification 106 to generate an analysis result 154, which will be described in greater detail below. In general, the analysis results 154 help identify important tool parameters that have the greatest impact on a given tool performance indicator, characterizing the selected tool performance indicator as a function of one of the important tool parameters, and The future value of the tool performance indicator giving the identified tool parameters is predicted.
第2圖係一例示性參數影響識別系統之方塊圖,該參數影響識別系統係自動化地識別會影響經選擇之工具效能行為的工具參數。在本發明中所說明之系統、裝置或程序的態樣可構成在機器中具體實施之機器可執行組件,例如在與一或多個機器相聯結之一或多個電腦可讀媒體(或媒體)中具體實施。此等組件當藉由一或多個機器(例如,電腦、計算器件、自動器件、虛擬機器等等)執行時係可造成機器執行上述的操作。 Figure 2 is a block diagram of an exemplary parameter impact identification system that affects the identification system to automatically identify tool parameters that affect the performance behavior of the selected tool. The aspects of the system, apparatus, or program described in this disclosure may constitute a machine-executable component embodied in a machine, such as one or more computer-readable media (or media) associated with one or more machines. ) specific implementation. Such components, when executed by one or more machines (eg, computers, computing devices, automated devices, virtual machines, etc.), can cause the machine to perform the operations described above.
參數影響識別系統202可包括一介面組件204、一參數分離組件206、一品質評比組件208、一靈敏度組件210、一排序組件212、一過濾組件214、一合成函數組件216、一或多個處理器218及記憶體220。在許多實施例中,介面組件204、參數分離組件206、品質評比組件208、靈敏度組件210、排序組件212、過濾組件214、合成函數組件216、一或多個處理器218及記憶體220之一或多者可電氣地及/或通信地彼此耦接以執行該參數影響識 別系統202之一或多個功能。在某些實施例中,組件204、206、208、210、212、214及216可包含儲存在記憶體220上且由處理器218執行之軟體指令。該參數影響識別系統202亦可與未圖示在第2圖中之其他硬體及/或軟體組件互動。例如,處理器218可與一或多個外部使用者介面器件互動,諸如鍵盤、滑鼠、顯示監視器、觸控螢幕或其他此類介面器件。 The parameter impact identification system 202 can include an interface component 204, a parameter separation component 206, a quality evaluation component 208, a sensitivity component 210, a sequencing component 212, a filtering component 214, a composite function component 216, and one or more processes. The device 218 and the memory 220. In many embodiments, interface component 204, parameter separation component 206, quality rating component 208, sensitivity component 210, sequencing component 212, filtering component 214, synthesis function component 216, one or more processors 218, and one of memory 220 Or more may be electrically and/or communicatively coupled to each other to perform the parameter influence One or more of the functions of system 202. In some embodiments, components 204, 206, 208, 210, 212, 214, and 216 can include software instructions stored on memory 220 and executed by processor 218. The parameter impact identification system 202 can also interact with other hardware and/or software components not shown in FIG. For example, processor 218 can interact with one or more external user interface devices, such as a keyboard, mouse, display monitor, touch screen, or other such interface device.
介面組件204可經組態以接收來自於參數影響識別系統202之使用者的輸入及提供輸出給該使用者。例如,介面組件204可經由任何適當的輸入機構(例如,鍵盤、觸控螢幕等等)來呈現一輸入顯示螢幕給使用者,該輸入顯示螢幕提示使用者規範,且接受來自於使用者之此等規範。參數分離組件206可經組態以產生將每一個別工具參數之作用隔離,以判定每一工具參數對一經選擇的工具效能指示符的影響之功能。嘗試預測該經選擇之工具效能指示符的行為的每一函數係一單一工具參數之函數。品質評比組件208可經組態以依照該參數之函數預測該工具效能指示符之實際行為的準確程度來評比每一工具參數。靈敏度組件210可經組態以部分基於由參數分離組件206所產生之函數來判定該經選擇的工具效能指示符對每一工具參數的靈敏度。排序組件212可經組態以依照工具參數對待分析之工具效能指示符的各自影響(例如,根據品質評比組件208或靈敏度組件210所判定)來排序該等工具參數。過濾組件214可經組態以將經判定對工具效能指 示符具有最小影響的一或多個工具參數排除在考慮之外。合成函數組件216可經組態以產生一函數,其在過濾組件214已排除最小影響性參數之後,將該工具效能指示符描述為該經縮減之工具參數集合之一函數。該一或多個處理器218可執行在本文中參考所揭示之系統及/或方法所述之該等功能的一或多者。記憶體220可以係電腦可讀儲存媒體,其儲存電腦可執行指令及/或資訊,以執行在本文中參考所揭示之系統及/或方法所述之該等功能。 The interface component 204 can be configured to receive input from a user of the parameter impact identification system 202 and provide output to the user. For example, the interface component 204 can present an input display screen to the user via any suitable input mechanism (eg, a keyboard, touch screen, etc.) that displays the screen prompting the user to the specification and accepts the user from the user. And other specifications. The parameter separation component 206 can be configured to generate a function that isolates the effects of each individual tool parameter to determine the effect of each tool parameter on a selected tool performance indicator. Each function that attempts to predict the behavior of the selected tool performance indicator is a function of a single tool parameter. The quality rating component 208 can be configured to evaluate the accuracy of the actual behavior of the tool performance indicator in accordance with the function of the parameter to evaluate each tool parameter. Sensitivity component 210 can be configured to determine the sensitivity of the selected tool performance indicator to each tool parameter based in part on a function generated by parameter separation component 206. The ordering component 212 can be configured to order the tool parameters in accordance with the respective effects of the tool performance indicators to be analyzed by the tool parameters (eg, as determined by the quality rating component 208 or the sensitivity component 210). Filter component 214 can be configured to determine the tool performance One or more tool parameters with the least impact on the indicator are excluded from consideration. The composite function component 216 can be configured to generate a function that describes the tool performance indicator as a function of the reduced set of tool parameters after the filter component 214 has excluded the least impact parameter. The one or more processors 218 can perform one or more of the functions described herein with reference to the systems and/or methods disclosed. The memory 220 can be a computer readable storage medium that stores computer executable instructions and/or information to perform such functions as described herein with reference to the systems and/or methods disclosed.
第3圖係一方塊圖,其中繪示由一例示性參數影響識別系統執行之處理功能。如上文結合第1圖所述,參數影響識別系統308接收與半導體製造系統302之一或多個流程相關之工具參數資料304及工具效能資料306作為輸入。工具參數資料304及工具效能資料306可自動地提供給參數影響識別系統308(例如,藉由第1圖之報告組件150),或者由使用者經由介面組件324手動地提供給系統。 Figure 3 is a block diagram showing the processing functions performed by the recognition system by an exemplary parameter. As described above in connection with FIG. 1, parameter impact identification system 308 receives tool parameter data 304 and tool performance data 306 associated with one or more processes of semiconductor manufacturing system 302 as inputs. Tool parameter data 304 and tool performance data 306 may be provided automatically to parameter impact identification system 308 (e.g., by report component 150 of FIG. 1) or manually provided by the user via interface component 324 to the system.
除了工具參數資料304與工具效能資料306以外,參數影響識別系統308亦接收來自於一使用者經由介面組件324之使用者規範312。如上所述,使用者規範312可指定哪些工具效能指示符欲被分析、哪些工具參數係要以其各自對所選擇之工具效能指示符的影響來考慮、欲由系統識別之一經選擇數量的頂端工具參數(或者,欲被識別及排除之一經選擇數量的最小影響性工具參數)、一較佳學習方法(例如,模擬退火、符號回歸等等),或其他的 使用者偏好。 In addition to tool parameter data 304 and tool performance data 306, parameter impact identification system 308 also receives user specifications 312 from a user via interface component 324. As described above, the user specification 312 can specify which tool performance indicators are to be analyzed, which tool parameters are to be considered in terms of their respective effects on the selected tool performance indicator, and one of the selected number of tops to be identified by the system. Tool parameters (or one of the selected minimum number of influential tool parameters to be identified and excluded), a preferred learning method (eg, simulated annealing, symbol regression, etc.), or other User preferences.
用於定義一或多個使用者規範之例示性非限制性介面將結合第4圖及第5圖來說明。例示性介面400及500可經由介面組件324呈現給一使用者。第4圖之例示性介面400可用以選擇一欲由系統分析之工具效能指示符。第5圖之例示性介面500可用以選擇欲由參數影響識別系統308考慮之一或多個工具參數。亦即,參數影響識別系統308將評估經由例示性介面500選擇之工具參數對經由例示性介面400選擇之工具效能指示符的相對影響。例示性介面400及500允許工具效能指示符及工具參數利用核取方塊(checkbox)來予以選擇;然而,可以採用用於輸入工具效能及工具參數規範之任何適當的技術且這係落在本發明之一或多個實施例的範疇內。 An exemplary non-limiting interface for defining one or more user specifications will be described in conjunction with Figures 4 and 5. Exemplary interfaces 400 and 500 can be presented to a user via interface component 324. The illustrative interface 400 of FIG. 4 can be used to select a tool performance indicator to be analyzed by the system. The exemplary interface 500 of FIG. 5 can be used to select one or more tool parameters to be considered by the parameter impact identification system 308. That is, the parameter impact identification system 308 will evaluate the relative impact of the tool parameters selected via the illustrative interface 500 on the tool performance indicators selected via the illustrative interface 400. The exemplary interfaces 400 and 500 allow tool performance indicators and tool parameters to be selected using a checkbox; however, any suitable technique for inputting tool performance and tool parameter specifications can be employed and this is within the scope of the present invention. Within the scope of one or more embodiments.
現回到第3圖,將說明在工具參數資料304、工具效能資料306及使用者規範312上執行之處理操作。在工具參數資料304、工具效能資料306及使用者規範312已被提供給參數影響識別系統308之後,參數分離組件310將每一工具參數(例如,每一個經選擇由使用者規範312來分析的工具參數)分離且利用每一個分離之個別的工具參數反覆地嘗試預測經選擇的工具效能指示符之行為。此一程序可參考第6圖來更詳細說明。在本實例中,工具參數P0-PN係被考慮的,其中N係大於零的一個整數。因此,工具參數資料304包含針對半導體製造系統302之一或多個處理流程之針對每一個工具參數P0-PN所測量 之參數資料。工具效能資料306包含針對相同的一或多個處理流程之針對一經選擇的工具效能指示符的對應測量資料。 Returning now to Figure 3, the processing operations performed on tool parameter data 304, tool performance data 306, and user specification 312 will be described. After tool parameter data 304, tool performance data 306, and user specification 312 have been provided to parameter impact identification system 308, parameter separation component 310 will each tool parameter (eg, each selected for analysis by user specification 312). The tool parameters are separated and repeatedly attempt to predict the behavior of the selected tool performance indicator using each of the separate individual tool parameters. This procedure can be explained in more detail with reference to Figure 6. In this example, the tool parameters P0-PN are considered, where N is an integer greater than zero. Thus, tool parameter data 304 includes measurements for each tool parameter P0-PN for one or more process flows of semiconductor manufacturing system 302. Parameter data. Tool performance data 306 includes corresponding measurement data for a selected one or more process flows for a selected tool performance indicator.
參數分離組件310制衡工具參數資料304與工具效能資料306以產生一隔離參數函數602的集合,其中每一函數對應於該等工具參數P0-PN之單一者。該等隔離參數函數602之每一者按照一單一工具參數來特性化該工具效能指示符之預測行為(表示為輸出O)。所產生之對應於工具參數P0-PN的隔離參數函數可表示如下:O=f 0 (P0) (1) The parameter separation component 310 checks the tool parameter data 304 and the tool performance data 306 to generate a set of isolation parameter functions 602, each of which corresponds to a single one of the tool parameters P0-PN. Each of the isolation parameter functions 602 characterizes the predicted behavior of the tool performance indicator (denoted as output O) according to a single tool parameter. The resulting isolation parameter function corresponding to the tool parameter P0-PN can be expressed as follows: O=f 0 (P0) (1)
O=f 1 (P1) (2) O=f 1 (P1) (2)
... ...
O=f N-1 (PN-1) (3) O=f N-1 (PN-1) (3)
O=f N (PN) (4) O=f N (PN) (4)
這些函數在經選擇的工具效能指示符(輸出O)與每一工具參數P0-PN之間建立非線性函數關係。針對上述方程式,工具效能指示符輸出O針對每一函數係相同的,但將以不同函數f 0 -f N (各自為工具參數P0-PN之函數)來描述。因此,參數分離組件310將半導體工具參數之複雜維度性縮小成一個單輸入單輸出(SISO)子問題的集合。 These functions establish a non-linear functional relationship between the selected tool performance indicator (output O) and each tool parameter P0-PN. For the above equation, the tool performance indicator output O is the same for each function, but will be described by a different function f 0 -f N (each being a function of the tool parameters P0-PN). Thus, parameter separation component 310 reduces the complex dimensionality of semiconductor tool parameters to a single input single output (SISO) sub-problem.
參數分離組件310可利用任何適當的學習方法來學習針對每一個參數P0-PN之非線性函數關係f,包括(但不以此為限)遺傳程式化、符號回歸、模擬退火、神經網路或其他此類非線性函數識別系統。在一或多個實 施例中,使用者可選擇一較佳學習方法供參數分離組件310使用以導出函數f 0 (P0)…f N (PN)。在此等實施例中,一較佳學習方法之選擇可由介面組件324來完成。參數分離組件310亦可經組態以當新的工具參數資料304及/或工具效能資料306被接收時可反覆地更新函數f 0 (P0)…f N (PN)。 The parameter separation component 310 can utilize any suitable learning method to learn the nonlinear functional relationship f for each parameter P0-PN, including (but not limited to) genetic stylization, symbol regression, simulated annealing, neural networks, or Other such nonlinear function recognition systems. In one or more embodiments, the user may select a preferred learning method for use by parameter separation component 310 to derive functions f 0 (P0)...f N (PN) . In such embodiments, the selection of a preferred method of learning may be accomplished by interface component 324. The parameter separation component 310 can also be configured to repeatedly update the functions f 0 (P0)...f N (PN) when the new tool parameter data 304 and/or the tool performance data 306 are received.
現回到第3圖,在參數分離組件310已建立描述每一工具參數與工具效能指示符之間之函數關係的函數關係f 0 (P0)…f N (PN)後,所產生的函數可針對重要參數識別來予以提交。為了促進對經選擇的工具效能指示符具有最大影響的重要工具參數的識別,參數影響識別系統308可利用品質評比組件326、靈敏度組件314、過濾組件316及排序組件318之一或多者。 Returning now to Figure 3, after the parameter separation component 310 has established a functional relationship f 0 (P0)...f N (PN) describing a functional relationship between each tool parameter and the tool performance indicator, the resulting function may Submit for important parameter identification. To facilitate identification of important tool parameters that have the greatest impact on selected tool performance indicators, parameter impact identification system 308 can utilize one or more of quality rating component 326, sensitivity component 314, filtering component 316, and sequencing component 318.
品質評比組件326將參考第7圖來予以詳細說明。品質評比組件326可針對每一個隔離參數函數f 0 (P0)…f N (PN)藉由將每一函數之一預測輸出O與實際工具效能資料306相比較來判定一品質評比。所產生的品質評比702之集合係指示由每一工具參數之隔離函數匹配實際工具效能資料306所預測之工具效能行為的準確度。例如,當在半導體製造系統302之一新的處理流程之後針對參數P0-PN接收新的工具參數資料304時,品質評比組件326可經由參數之對應的隔離函數f0(P0)而跑出新的參數值P0,以判定由該參數之隔離函數所預測之工具效能指示符的數值(數值O)。品質評比組件326接著可將此一預測值O與由工具效能資料306指示之實際值相比較且對參數 P0指派一品質評比,以指示預測值O有多接近匹配該工具效能指示符之實際值。品質評比組件326針對其餘參數P1-PN之每一者重複此一評比程序以導出一品質評比702集合。在一或多個實施例中,品質評比組件326可隨著新的處理流程資料被接收而以一反覆方式來更新該品質評比702。 The quality evaluation component 326 will be described in detail with reference to FIG. The quality rating component 326 can determine a quality rating for each of the isolation parameter functions f 0 (P0)...f N (PN) by comparing the predicted output O of each function to the actual tool performance data 306. The resulting set of quality ratings 702 indicates that the isolation function of each tool parameter matches the accuracy of the tool performance behavior predicted by the actual tool performance data 306. For example, when a new tool parameter profile 304 is received for a parameter P0-PN after a new processing flow of one of the semiconductor fabrication systems 302, the quality rating component 326 can run out of the new via the corresponding isolation function f0(P0) of the parameter. The parameter value P0 is used to determine the value (value O) of the tool performance indicator predicted by the isolation function of the parameter. The quality rating component 326 can then compare this predicted value O to the actual value indicated by the tool performance data 306 and assign a quality rating to the parameter P0 to indicate how close the predicted value O is to the actual value of the tool performance indicator. . The quality rating component 326 repeats this rating procedure for each of the remaining parameters P1-PN to derive a set of quality ratings 702. In one or more embodiments, the quality rating component 326 can update the quality rating 702 in a repeating manner as new processing flow data is received.
品質評比702可提供用於判定每一參數P0-PN對被分析之工具效能指示符的相對影響程度之一量度。大體而言,其隔離參數函數預測一工具效能輸出O很接近地匹配該實際工具效能指示符的一工具參數可能對該工具效能指示符具有一較高的影響程度。相反地,其隔離函數重複地無法接近地預測實際工具效能之一工具參數係較不可能與該工具參數指示符具有一相關性。因此,品質評比702反映出這些相對影響程度。 The quality rating 702 can provide a measure for determining the relative impact of each parameter P0-PN on the tool performance indicator being analyzed. In general, its isolation parameter function predicts that a tool performance output O closely matches a tool parameter of the actual tool performance indicator may have a higher degree of impact on the tool performance indicator. Conversely, its isolation function repeatedly and incomprehensibly predicts that one of the actual tool performance tool parameters is less likely to have a correlation with the tool parameter indicator. Therefore, quality rating 702 reflects these relative impact levels.
亦可使用其他技術來判定工具參數對工具效能指示符的相對影響。舉例來說,參數影響識別系統308之一些實施例除了品質評比組件326以外尚可包括一靈敏度組件314或作為其替代件。如第8圖所示,靈敏度組件314可評估每一隔離參數函數602且基於此評估來指派靈敏度評比802至各自工具參數P0-PN。類似於品質評比702,靈敏度評比802指示每一工具參數對被分析之工具效能指示符的相對影響程度。大體而言,針對一給定參數之靈敏度評比係該工具效能指示符對該工具參數中之變化的靈敏程度之一測量。 Other techniques can also be used to determine the relative impact of tool parameters on tool performance indicators. For example, some embodiments of the parameter impact identification system 308 may include a sensitivity component 314 or a replacement thereof in addition to the quality evaluation component 326. As shown in FIG. 8, sensitivity component 314 can evaluate each isolation parameter function 602 and assign a sensitivity rating 802 to the respective tool parameters P0-PN based on this evaluation. Similar to quality rating 702, sensitivity rating 802 indicates the relative impact of each tool parameter on the tool performance indicator being analyzed. In general, the sensitivity rating for a given parameter is measured by one of the sensitivity of the tool performance indicator to changes in the tool parameters.
在一或多個實施例中,靈敏度組件314可部分基於數值或符號微分計算來針對每一隔離的參數函數f 0 (P0)…f N (PN)產生該靈敏度評比802。例如,針對對應於一工具參數Pi之一給定的隔離參數函數O=fi(Pi),靈敏度組件314可利用數值或符號微分以計算一微分:
此微分係表示該工具效能指示符之預測值O相應於工具參數Pi中的變化之變化率,其係該工具參數指示符對於工具參數Pi中之變化的靈敏程度的一測量。靈敏度組件314可部分基於針對每一工具參數P0-PN之各自微分計算來產生靈敏度評比802。 This differential system represents the rate of change of the predicted value O of the tool performance indicator corresponding to the change in the tool parameter Pi, which is a measure of the sensitivity of the tool parameter indicator to changes in the tool parameter Pi. Sensitivity component 314 can generate sensitivity rating 802 based in part on respective differential calculations for each tool parameter P0-PN.
由於參數P0-PN通常將代表由不同工程單位所表示且具有不同操作範圍之不同類型的工具參數,因此有需要靈敏度組件314以一些方式來歸一化這些微分,以準確地比較各自的靈敏度。當基於微分而導出一靈敏度評比時,靈敏度組件314亦可考慮每一工具參數的有效操作範圍。例如,若一給定的工具參數已知其上限及下限操作限制,則當計算參數的靈敏度評比時,靈敏度組件314可僅考慮在這兩個操作限制之間的參數之微分曲線的部分。一般而言,用於基於參數之隔離參數函數之微分來針對工具參數導出一靈敏度評比的任何適當的技術或方法係落在本發明之一或多個實施例的範疇內。 Since the parameters P0-PN will typically represent different types of tool parameters represented by different engineering units and having different operating ranges, there is a need for the sensitivity component 314 to normalize these differentials in some way to accurately compare the respective sensitivities. Sensitivity component 314 can also consider the effective operating range of each tool parameter when deriving a sensitivity rating based on differentiation. For example, if a given tool parameter is known for its upper and lower operating limits, sensitivity component 314 may only consider portions of the differential curve of the parameter between the two operational limits when calculating the sensitivity rating of the parameter. In general, any suitable technique or method for deriving a sensitivity estimate for a tool parameter based on the differentiation of a parameter's isolation parameter function is within the scope of one or more embodiments of the present invention.
參數影響識別系統308之一或多個實施例 可僅利用該品質評比組件326或靈敏度組件314中之一者來評比每一參數P0-PN。其他實施例則可包括該品質評比組件326與靈敏度組件兩者,且基於該品質評比與該靈敏度評比之合成而針對每一參數來產生評比。在後者的方案中,參數影響識別系統308可利用任何適當的組合技術來組合該品質與靈敏度評比。例如,參數影響識別系統308可基於參數之靈敏度評比而對一工具參數的品質評比施以一加權因數(或反之亦然)。在另一實例中,該兩個評比係可加總在一起。這些組合技術僅作為例示性,且用於基於該品質及靈敏度評比來產生一合成評比之任何適當的技術係落在本發明之一或多個實施例的範疇中。 One or more embodiments of the parameter impact identification system 308 Each parameter P0-PN can be evaluated using only one of the quality rating component 326 or the sensitivity component 314. Other embodiments may include both the quality rating component 326 and the sensitivity component, and generate a rating for each parameter based on the synthesis of the quality rating and the sensitivity rating. In the latter approach, parameter impact identification system 308 can combine the quality and sensitivity ratings using any suitable combination technique. For example, the parameter impact identification system 308 can apply a weighting factor (or vice versa) to the quality rating of a tool parameter based on the sensitivity rating of the parameter. In another example, the two ratings can be added together. These combined techniques are merely exemplary, and any suitable technique for generating a synthetic rating based on the quality and sensitivity rating is within the scope of one or more embodiments of the present invention.
一旦已獲得一參數評比集合,則排序組件318便可基於這些評比來排序該等工具參數。第9圖繪示由排序組件318執行之一例示性參數排序。針對每一工具參數P0-PN之參數評比902可如上述包含該品質評比、靈敏度評比或該兩評比之一合成。這些評比表示每一工具參數在被分析之工具效能指示符上的相對影響或影響。基於這些評比902,排序組件318依其等對工具效能指示符的影響來排序參數P0-PN。 Once a set of parameter ratings has been obtained, the sorting component 318 can sort the tool parameters based on the ratings. FIG. 9 illustrates an exemplary parameter ordering performed by the ranking component 318. The parameter rating 902 for each tool parameter P0-PN may include the quality rating, sensitivity rating, or one of the two ratings as described above. These ratings represent the relative impact or impact of each tool parameter on the tool performance indicator being analyzed. Based on these ratings 902, the ranking component 318 sorts the parameters P0-PN according to their effect on the tool performance indicator.
所得到的工具參數排序904可用以識別對工具效能指示符具有明顯影響之一較高排序的第一工具參數子集合906,以及對工具效能指示符具有輕微或沒有影響的第二較低排序工具參數子集合908。基於此一判定,參數影響識別系統308可藉由排除其對該工具效能指示符 之影響可忽略之該較低排序工具參數子集合908而降低工具效能指示符分析之維度複雜性。因此,過濾組件316可接收由排序組件318產生之經排序的工具參數904且將該工具參數子集合908排除在考慮之外,如第10圖所示。剩餘的頂端工具參數集合1002則代表被識別為對工具參數指示符具有重大影響的該等工具參數。 The resulting tool parameter ordering 904 can be used to identify a first sort of tool parameter subset 906 that has a significant impact on the tool performance indicator, and a second lower ordering tool that has little or no impact on the tool performance indicator. Parameter subset 908. Based on this determination, the parameter impact identification system 308 can exclude the tool performance indicator by The effect of the lower ordering tool parameter subset 908 can be ignored to reduce the dimensional complexity of the tool performance indicator analysis. Accordingly, filter component 316 can receive the sorted tool parameters 904 generated by sort component 318 and exclude the tool parameter subset 908 from consideration, as shown in FIG. The remaining set of top tool parameters 1002 represents those tool parameters that are identified as having a significant impact on the tool parameter indicator.
參數影響識別系統308之一或多個實施例可讓使用者來指定欲排除的底端排序的工具參數之數量,或者要保留之頂端排序的工具參數之數量。這提供使用者控制後續分析之維度複雜性的程度。第11圖繪示一用以進行此一選擇之例示性使用者介面1100。例示性使用者介面1100可包括可選擇的資料輸入欄位,以供使用者來指定欲保留之頂端參數之數量(資料欄位1102),或者要排除之底端參數之數量(資料欄位1104)。過濾組件316可利用這些選擇組態來相應地過濾經排序的工具參數904且輸出頂端工具參數1002之清單。 One or more embodiments of the parameter impact identification system 308 may allow the user to specify the number of tool parameters for the bottom sort to be excluded, or the number of tool parameters to be retained at the top. This provides the extent to which the user controls the dimensional complexity of subsequent analysis. FIG. 11 illustrates an exemplary user interface 1100 for making this selection. The exemplary user interface 1100 can include a selectable data entry field for the user to specify the number of top parameters to be retained (data field 1102), or the number of bottom parameters to exclude (data field 1104) ). Filter component 316 can utilize these selection configurations to filter the sorted tool parameters 904 and output a list of top tool parameters 1002 accordingly.
第12圖簡要說明由參數影響識別系統308執行之工具參數識別處理。針對考慮的每一工具參數P0-PN,產生一隔離參數函數,其定義工具參數與一被分析的工具效能指示符之間的非線性函數關係。這些函數可被表示為f 0 (P0)…f N (PN)。輸出O將經選擇的工具效能指示符之預測值表示為僅一單一工具參數的一函數。例如,對應於參數Pi之一函數的輸出O將該工具效能指示符之一預測值表示為僅係工具參數Pi之一函數。 Figure 12 briefly illustrates the tool parameter identification process performed by the parameter impact recognition system 308. For each tool parameter P0-PN considered, an isolation parameter function is generated that defines a non-linear functional relationship between the tool parameters and an analyzed tool performance indicator. These functions can be expressed as f 0 (P0)...f N (PN) . Output O represents the predicted value of the selected tool performance indicator as a function of only a single tool parameter. For example, the output O corresponding to one of the functions of the parameter Pi represents the predicted value of one of the tool performance indicators as a function of only one of the tool parameters Pi.
接著基於該對應的工具參數對該工具效能指示符之判定的影響程度或影響力來評比函數f 0 (P0)…f N (PN)。評比可基於針對工具效能指示符之各自輸出O匹配實際測量值的準確程度、針對各自函數f 0 (P0)…f N (PN)之數值或符號微分計算或這些技術之一組合來產生。接著,基於這些評比來排序參數P0-PN。接著可識別出頂端排序的參數906且予以保留以進一步分析,而底端排序之參數908(表示對工具效能參數具有普通或沒有影響的工具參數)則被排除在考慮之外。 The function f 0 (P0)...f N (PN) is then evaluated based on the degree of influence or influence of the corresponding tool parameter on the determination of the tool performance indicator. The rating may be generated based on the accuracy of the respective output O of the tool performance indicator matching the actual measured value, the value of the respective function f 0 (P0)...f N (PN) or the symbolic differential calculation or a combination of these techniques. Next, the parameters P0-PN are ordered based on these ratings. The top ordered parameter 906 can then be identified and retained for further analysis, while the bottom ordered parameter 908 (which represents a tool parameter that has normal or no effect on the tool performance parameter) is excluded from consideration.
一旦識別出頂端排序的工具參數,參數影響識別系統308可將這些結果呈現給使用者(例如,經由介面組件324)。藉由將判定為對工具效能指示符具有最大影響力之工具參數的清單提供給使用者,參數影響識別系統308便可提供對於維護工作應著重在何處之指引,以將工具效能指示符保持在所要的操作限制內。 Once the top-ordered tool parameters are identified, the parameter impact recognition system 308 can present the results to the user (eg, via the interface component 324). By providing the user with a list of tool parameters that are determined to have the greatest impact on the tool performance indicator, the parameter impact identification system 308 can provide guidance on where maintenance should be focused to maintain the tool performance indicator Within the required operational limits.
在一或多個實施例中,參數影響識別系統308在該等頂端排序的工具參數上可執行進一步的分析,以提供在工具參數與工具效能指示符之間關係的額外洞察。詳言之,一旦工具參數P0-PN之數量已被縮減成一被識別的重要參數子集合,則輸出O可根據此一縮減之工具參數集合的改變而藉由此系統來重新學習。為此,該系統可包括一合成函數組件320,其經組態以產生一個新的函數,其將工具效能指示符輸出(ONEW)特性化為由過濾組件316識別之最重要工具參數之一函數。如第13圖所示,合 成函數組件320接收由過濾組件316識別為對工具效能指示符具有最大影響之頂端工具參數1002,且學習一新的合成函數322,其根據該頂端工具參數1002的改變來預測工具影響參數輸出ONEW。例如,針對頂端排序的工具參數之一集合P1、P8、P0…,合成函數組件320可產生具有以下通式之一合成函數322:O NEW =f(P1,P8,P0…) (6) In one or more embodiments, parameter impact recognition system 308 can perform further analysis on the top-ordered tool parameters to provide additional insight into the relationship between tool parameters and tool performance indicators. In particular, once the number of tool parameters P0-PN has been reduced to a identified subset of important parameters, the output O can be re-learned by the system based on the change in the reduced set of tool parameters. To this end, the system can include a composite function component 320 configured to generate a new function that characterizes the tool performance indicator output (O NEW ) to one of the most important tool parameters identified by the filter component 316. function. As shown in FIG. 13, the composition function component 320 receives the top tool parameter 1002 identified by the filter component 316 as having the greatest impact on the tool performance indicator, and learns a new synthesis function 322 that changes based on the top tool parameter 1002. To predict the tool affects the parameter output O NEW . For example, for one of the top-ordered tool parameters set P1, P8, P0..., the composite function component 320 can generate a composite function 322 having one of the following general formulas: O NEW = f(P1, P8, P0...) (6)
合成函數組件320可採用任何適當的非線性函數識別技術以學習合成函數,包括(但不以此為限)遺傳程式化、符號回歸、神經網路、最小平方擬合或其他適當的技術。 The composite function component 320 can employ any suitable non-linear function recognition technique to learn the composite function, including, but not limited to, genetic stylization, symbol regression, neural networks, least squares fit, or other suitable technique.
合成函數322藉由將問題空間縮減成一較小的重要工具參數集合以讓使用者更敏銳地專注在這些重要參數上而大大地簡化工具效能指示符之分析。該合成函數能以許多方式來制衡以促進一選擇的工具效能態樣相對於該工具參數的分析,來判定此效能態樣的行為。例如,新的工具參數資料可基於合成函數322來分析以預測工具效能指示符之未來值。若一或多個工具參數由於退化而開始產生偏差,則這些工具參數之預期未來值可透過合成函數322來運作以判定該工具效能指示符ONEW預期將在何時落在可接受效能限制之外。以此方式,合成函數322以作用為一接近即時初期警報系統之基礎,其可識別何時應執行預防性的維護以及哪些工具參數應該係維護工作的重點所在。合成函數322亦可被更一般性地分析以提供對於重 要工具參數與預測工具效能指示符ONEW之間的關係的洞察。因此,參數影響識別系統308可充當一有效函數模型化系統,其可縮減用於針對一半導體製造系統執行函數關係模型化的搜尋空間。 The compositing function 322 greatly simplifies the analysis of the tool performance indicator by reducing the problem space to a smaller set of important tool parameters to allow the user to focus more on these important parameters. The compositing function can be balanced in a number of ways to facilitate analysis of a selected tool performance aspect relative to the tool parameters to determine the behavior of the performance aspect. For example, the new tool parameter data can be analyzed based on the synthesis function 322 to predict future values of the tool performance indicator. If one or more tool parameters begin to deviate due to degradation, the expected future value of these tool parameters can be manipulated by synthesis function 322 to determine when the tool performance indicator ONEW is expected to fall outside of acceptable performance limits. . In this manner, the synthesis function 322 acts as a basis for approaching the immediate early warning system, which can identify when preventative maintenance should be performed and which tool parameters should be the focus of maintenance work. Synthesis analysis function 322 may also be more generally to provide an important tool for the prediction tool effectiveness indicator parameter insight into the relationship between the O NEW. Thus, the parameter impact identification system 308 can act as an efficient function modeling system that can reduce the search space used to perform functional relationship modeling for a semiconductor manufacturing system.
在一些方案中,參數影響識別系統308可執行合成函數322的一次性、按需求的計算及/或針對提供給系統之一給定的工具程序記錄表之集合(例如,藉由使用者提供給系統之工具流程資料之一集合)來予以排序。然而,參數影響識別系統308亦可經組態以隨著新的工具資料被收集而在一大致即時的基礎上以連續反覆方式來操作。此一反覆處理係如第14圖所示。參數影響識別系統308可經組態以當取得新資料時(例如,在每一工具流程結束時),可直接從一半導體製造系統接收工具參數資料304與工具效能資料306,且基於該新資料而按照使用者規範312來反覆地更新合成函數322。合成函數322可保留在一資料儲存庫1402中且作為用於預測未來工具效能、識別影響工具效能之重要工具參數等等之一持續更新之模型的基礎。除了重新計算合成函數322以外,參數影響識別系統308亦可在接收到新的工具資料時重新估計重要工具參數排序。以此方式,可藉由個別工具參數學習之持續反覆特性來將對工具偏差的參數靈敏度、工具維護以及其他磨損及破裂納入考慮的因素。 In some aspects, parameter impact identification system 308 can perform a one-time, on-demand calculation of synthesis function 322 and/or a collection of tool program records provided for one of the systems (eg, provided by a user) A collection of system tool flow data) to sort. However, the parameter impact identification system 308 can also be configured to operate in a continuous, repetitive manner on a substantially instantaneous basis as new tool data is collected. This repeated processing is shown in Figure 14. The parameter impact identification system 308 can be configured to receive the tool parameter data 304 and the tool performance data 306 directly from a semiconductor manufacturing system when new data is acquired (eg, at the end of each tool flow), and based on the new data The composite function 322 is repeatedly updated in accordance with the user specification 312. The composite function 322 can be retained in a data repository 1402 and serves as the basis for a continuously updated model for predicting future tool performance, identifying important tool parameters that affect tool performance, and the like. In addition to recalculating the composite function 322, the parameter impact identification system 308 can also re-estimate the ordering of important tool parameters upon receipt of new tool material. In this way, the parameter sensitivity to tool deviation, tool maintenance, and other wear and tear can be taken into account by the continuous repetitive nature of individual tool parameter learning.
在本文中所述的參數影響識別系統可自動化地識別及模型化工具參數與工具效能指示符之間的相關 性而不用考慮工具的複雜性。這係藉由將潛在相關之工具參數的較大集合縮減成一個較小的重要工具參數集合且將這些重要參數與工具效能指示符之間的關係模型化而達成。此系統可應用於許多類型的半導體製造工具,包括(但不以此為限)電漿蝕刻工具、原子層沈積工具與化學氣相沈積工具。此系統亦可將多個工具效能輸出一般化(例如,生產量、停機時間、正常運作時間、修理成本、蝕刻偏差、沈積厚度、顆粒數、側壁角度等等)。 The parameter impact recognition system described herein can automatically identify and correlate model tool parameters with tool performance indicators. Sex without regard to the complexity of the tool. This is achieved by reducing the larger set of potentially relevant tool parameters to a smaller set of important tool parameters and modeling the relationship between these important parameters and the tool performance indicators. This system can be applied to many types of semiconductor fabrication tools including, but not limited to, plasma etching tools, atomic layer deposition tools, and chemical vapor deposition tools. This system can also generalize multiple tool performance outputs (eg, throughput, downtime, uptime, repair costs, etch variations, deposition thickness, number of particles, sidewall angles, etc.).
第15-16圖繪示依照本申請案之一或多個實施例的各種方法。雖然為了簡化說明之目的而將本文中所展示之一或多種方法展示且描述為一系列動作,然而應瞭解且理解的是,本發明並未侷限於這些動作的順序,且一些動作依照在本文中所展示及所述係可能以不同順序及/或與其他動作同時地發生。例如,熟習此項技術者將可瞭解且理解的是,一方法可能替代性地被表示為一系列相關聯的狀態或事件,諸如在一狀態圖中。再者,並非需要所有繪示說明的動作來實施依照本發明之一方法。再者,當完全不同的實體實行該方法之完全不同的部分時,互動圖可以代表依照本發明之方法學或方法。又再者,所揭示之例示性方法中之兩種或更多種方法可以彼此組合來實施,以實現在本文中所述之一或多個特徵或優點。 15-16 illustrate various methods in accordance with one or more embodiments of the present application. Although one or more of the methods illustrated herein are shown and described as a series of acts for the purpose of simplifying the description, it should be understood and understood that the invention is not limited to the The embodiments shown and described herein may occur in different orders and/or concurrently with other acts. For example, those skilled in the art will understand and appreciate that a method may alternatively be represented as a series of associated states or events, such as in a state diagram. Furthermore, not all illustrated acts may be required to implement a method in accordance with the invention. Moreover, when a completely different entity implements a completely different portion of the method, the interaction map can represent a methodology or method in accordance with the present invention. Still further, two or more of the disclosed exemplary methods can be implemented in combination with each other to achieve one or more of the features or advantages described herein.
第15圖繪示用於模型化半導體製造系統之一工具效能指示符與一工具參數集合之間的函數關係的例示性方法1500。一開始,在1502中,選擇一半導體製造 系統的一工具效能指示符來分析。經選擇的工具效能指示符可代表工具效能輸出,諸如晶圓生產量、系統停機時間、系統正常運作時間、修理成本等等。該工具效能指示符亦可係一特殊的工具輸出產品特性,諸如蝕刻偏差、沈積厚度、顆粒數、側壁角度等等。 Figure 15 illustrates an exemplary method 1500 for modeling a functional relationship between a tool performance indicator and a set of tool parameters for one of the semiconductor fabrication systems. In the beginning, in 1502, choose a semiconductor manufacturing A tool performance indicator of the system is analyzed. The selected tool performance indicator can represent tool performance output such as wafer throughput, system downtime, system uptime, repair costs, and the like. The tool performance indicator can also be a special tool output product characteristic such as etch deviation, deposition thickness, number of particles, sidewall angle, and the like.
在1504中,選擇欲與工具效能指示符相關聯的一工具參數集合。例示性工具參數可包括用於一或多個製造晶圓之度量衡測量,諸如輸入的CD、沈積厚度、材料的折射率等等。工具參數亦可包括在製程期間所取得之感測器讀數(例如,壓力、溫度、功率、氣體流量等等)及/或工具操作效能測量(例如,在工具上之零件老化、處理時間、裝設時間、晶圓裝載及卸載時間等等)。 In 1504, a set of tool parameters to be associated with the tool performance indicator is selected. Exemplary tool parameters can include metrology measurements for one or more fabrication wafers, such as input CD, deposited thickness, refractive index of the material, and the like. Tool parameters may also include sensor readings taken during the process (eg, pressure, temperature, power, gas flow, etc.) and/or tool performance measurements (eg, part aging on the tool, processing time, loading) Set time, wafer loading and unloading time, etc.).
在1506中,判定每一工具參數對經選擇的工具效能指示符的相對影響。一給定工具參數之影響係該工具效能指示符對於該給定工具參數之靈敏程度的一測量值,或係該給定工具參數在該工具效能指示符之數值上的影響程度。在1508中,經判定對經選擇的工具效能指示符具有最大影響之一工具參數子集合係基於在步驟1506中判定的相對影響來識別。在1510中,將工具效能指示符與在步驟1508中所識別之該工具參數子集合之間的函數關係予以模型化。用於模型化一半導體工具效能指示符之此一方法可藉由將工具參數之數量縮減成被識別為對所選擇之效能指示符具有最大影響的重要參數之一較小集合而大大地簡化了分析。 At 1506, the relative impact of each tool parameter on the selected tool performance indicator is determined. The effect of a given tool parameter is a measure of the sensitivity of the tool's performance indicator to the given tool parameter, or the extent to which the given tool parameter affects the value of the tool's performance indicator. In 1508, one of the tool parameter subsets determined to have the greatest impact on the selected tool performance indicator is identified based on the relative impact determined in step 1506. In 1510, a functional relationship between the tool performance indicator and the subset of tool parameters identified in step 1508 is modeled. This method for modeling a semiconductor tool performance indicator can be greatly simplified by reducing the number of tool parameters to a smaller set of important parameters identified as having the greatest impact on the selected performance indicator. analysis.
第16圖繪示用於自動化地識別及模型化工具參數在一工具效能量度上的影響。首先,在1602中,接收工具參數資料與工具效能資料。該等資料可對應於一半導體製造系統的一或多個處理流程。該工具參數可包括用於一或多個製造晶圓之度量衡測量,諸如輸入的CD、沈積厚度、材料的折射率等等。工具參數亦可包括在製程期間所取得之感測器讀數(例如,壓力、溫度、功率、氣體流量等等)及/或工具操作效能測量(例如,在工具上之零件老化、處理時間、裝設時間、晶圓裝載及卸載時間等等)。工具效能指示符可包含與工具效能輸出有關的資料,諸如生產量、停機時間、正常運作時間、修理成本等等。該工具效能資料亦可包括工具輸出產品特性,諸如蝕刻偏差、沈積厚度、顆粒數、側壁角度等等。 Figure 16 illustrates the effect of automatically identifying and modeling tool parameters on a tool's energy efficiency. First, in 1602, tool parameter data and tool performance data are received. The data may correspond to one or more processing flows of a semiconductor manufacturing system. The tool parameters can include metrology measurements for one or more fabrication wafers, such as input CD, deposited thickness, refractive index of the material, and the like. Tool parameters may also include sensor readings taken during the process (eg, pressure, temperature, power, gas flow, etc.) and/or tool performance measurements (eg, part aging on the tool, processing time, loading) Set time, wafer loading and unloading time, etc.). The tool performance indicator can include information related to tool performance output, such as throughput, downtime, uptime, repair costs, and the like. The tool performance data may also include tool output product characteristics such as etch deviation, deposition thickness, number of particles, sidewall angle, and the like.
在1604,工具參數資料係針對各自N個工具參數而分離。在1606中,一計數器i係設定為1。在1608中,針對第i個工具參數產生特性化一工具效能指示符O與該工具參數Pi之間之關係的一函數O=fi(Pi)。該函數可基於針對Pi的工具參數資料(在步驟1604中被分離)與有關於工具效能指示符之工具效能資料來學習。 At 1604, the tool parameter data is separated for the respective N tool parameters. In 1606, a counter i is set to one. In 1608, a function O = fi(Pi) that characterizes the relationship between the tool performance indicator O and the tool parameter Pi is generated for the i-th tool parameter. The function can be learned based on tool parameter data for Pi (separated in step 1604) and tool performance information about the tool performance indicator.
在1610中,對於是否針對所有N個參數已產生函數來進行一判定。若判定出尚未針對所有N個參數產生函數,則方法移至步驟1612,其中計數器i增值,且針對下一個工具參數來重複步驟1608。或者,若在步驟1510中判定已針對所有N個參數產生函數,則方法移至步 驟1614。 In 1610, a determination is made as to whether a function has been generated for all N parameters. If it is determined that a function has not been generated for all N parameters, then the method moves to step 1612 where counter i is incremented and step 1608 is repeated for the next tool parameter. Alternatively, if it is determined in step 1510 that a function has been generated for all N parameters, the method moves to step Step 1614.
在1614中,由步驟1608-1610所產生之每一函數係基於該預測值O實際工具效能資料的匹配程度及/或基於針對所導出函數測量之靈敏度來予以評比。靈敏度測量描述工具效能指示符對於工具參數中之改變的靈敏度,且可部分基於針對每一函數的數值或符號微分計算來予以判定。 In 1614, each function generated by steps 1608-1610 is evaluated based on the degree of matching of the predicted value O actual tool performance data and/or based on the sensitivity measured for the derived function. The sensitivity measurement describes the sensitivity of the tool performance indicator to changes in the tool parameters and can be determined based in part on numerical or symbolic differential calculations for each function.
在1616中,N個工具參數係依照在1614中判定之評比來排序,且識別M個最高排序的工具參數。這些M個最高排序的工具參數代表經判定具有對工具效能量度最大影響的所有工具參數之子集合。在1618中,產生一新的函數,其將工具效能指示符模型化為在步驟1616中被識別之該等M個最高排序參數的一函數。此新的函數可用於基於工具參數趨勢來預測未來工具效能行為,有助於排程預防性維護且識別出應將維護工作專注於何處,或者其他的應用。 In 1616, the N tool parameters are ordered according to the ratings determined in 1614, and the M highest ranked tool parameters are identified. These M highest ranked tool parameters represent a subset of all tool parameters that have been determined to have the greatest impact on the instrumental energy. In 1618, a new function is generated that models the tool performance indicator as a function of the M highest ranking parameters identified in step 1616. This new function can be used to predict future tool performance behavior based on tool parameter trends, to help schedule preventive maintenance and identify where maintenance should be focused, or other applications.
各種不同態樣(例如,結合接收一或多個選擇、判定該一或多個選擇之意義、區別一選擇與其他動作、實施選擇以滿足請求等等)係可採用各種不同基於人工智慧方案來實施其各種不同態樣。例如,用於判定一特定動作係針對欲執行之一動作的請求或一普通動作(例如,使用者想要手動地執行之動作)的程序係可經由自動分類器系統及程序來實現。 Various different aspects (eg, in combination with receiving one or more choices, determining the meaning of the one or more choices, distinguishing a selection from other actions, implementing a selection to satisfy a request, etc.) may employ a variety of different artificial intelligence based approaches. Implement its various aspects. For example, a program for determining whether a particular action is for a request to perform an action or a normal action (eg, an action that the user wants to perform manually) may be implemented via an automatic classifier system and program.
一分類器係一函數,其將一輸入屬性向量x =(x1,x2,x3,x4,xn)映射成該輸入屬於一類別之一可信度,亦即,f(x)=可信度(類別)。此種分類可採用基於機率及/或統計的分析(例如,將分析因數分解成功效與成本)以判斷預後(prognose)或推斷使用者想要自動地執行之一動作。在選擇的例子中,例如,可識別一主要腔室及/或一參考腔室之屬性以及該類別係滿足請求必須採用之主要腔室及/或參考腔室的標準。 A classifier is a function that takes an input attribute vector x = (x1, x2, x3, x4, xn) maps to one of the trustworthiness of the input, that is, f(x) = confidence (category). Such classification may employ probabilistic and/or statistical based analysis (eg, analysis factor decomposition success and cost) to judge prognosis or to infer that the user wants to perform one of the actions automatically. In selected examples, for example, the attributes of a primary chamber and/or a reference chamber can be identified and the category meets the criteria for the primary chamber and/or reference chamber that must be employed.
一支援向量機(SVM)係可採用之一分類器的一個實例。該SVM係藉由在可能輸入之空間中尋找一超曲面來操作,該超曲面嘗試從非觸發事件中分離該觸發標準。直覺地,這會造成接近但不相同於訓練資料之測試資料的分類校正。可以採用能提供不同的獨立型樣之其他直接或非直接的模型分類方法,例如包括簡單貝氏分類(naïve Bayes)、貝氏網路(Bayesian networks)、神經網路、模糊邏輯模型及機率分類模型。在本文中所用之分類亦可包含統計回歸,其用以發展優先模型。 A support vector machine (SVM) can employ an example of a classifier. The SVM operates by finding a hypersurface in the space of possible inputs that attempts to separate the trigger criteria from non-triggering events. Intuitively, this would result in a classification correction of test data that is close but not identical to the training material. Other direct or indirect model classification methods that provide different independent types can be used, including, for example, naïve Bayes, Bayesian networks, neural networks, fuzzy logic models, and probability classification. model. The classifications used in this paper may also include statistical regression, which is used to develop a priority model.
如從本說明書中可以輕易瞭解,一或多個態樣可採用經顯式訓練(例如,藉由遺傳訓練資料)以及經隱式訓練(例如,藉由觀察使用者行為、接收外來資訊)的分類器。例如,SVM係通過在一分類器建構器及特徵選擇模組中之學習或訓練階段而組態。因此,分類器可用以自動地學習及執行許多函數,包括(但不以此為限)當比較腔室時依照一預定標準來判定哪一個腔室要比較、哪些腔室要群組在一起、腔室之間的關係等等。該標準可包括(但不 以此為限)類似請求、歷史資訊等等。 As can be readily appreciated from this specification, one or more aspects may be subjected to explicit training (eg, by genetic training materials) and by implicit training (eg, by observing user behavior, receiving external information). Classifier. For example, the SVM is configured through a learning or training phase in a classifier builder and feature selection module. Thus, the classifier can be used to automatically learn and perform a number of functions, including, but not limited to, determining which chambers to compare and which chambers to group together, according to a predetermined criterion when comparing chambers. The relationship between the chambers and so on. The standard may include (but not This is limited to requests, historical information, and so on.
現請參考第17圖,其中繪示一電腦的方塊圖,該電腦係可操作以執行所揭示之態樣。為了提供其各種不同態樣的額外背景,第17圖及以下討論係用以提供可以實施各種不同態樣之實施例的一適當計算環境1700之一簡要、一般性的說明。雖然上述說明係以可在一或多個電腦上運行之電腦可執行指令的一般性背景,然而熟習此項技術者將可明白各種不同實施例係可與其他程式模組組合及/或硬體與軟體之一組合來實施。 Referring now to Figure 17, a block diagram of a computer is shown that is operable to perform the disclosed aspects. In order to provide additional context for its various aspects, FIG. 17 and the following discussion are a brief, general description of one suitable computing environment 1700 for providing embodiments in which various aspects may be implemented. Although the above description is in the general context of computer-executable instructions that can be executed on one or more computers, those skilled in the art will appreciate that various embodiments can be combined with other programming modules and/or hardware. Implemented in combination with one of the software.
一般而言,程式模組包括常式、程式、組件、資料結構等等,其執行特定任務或實施特定的摘要資料類型。再者,熟習此項技術者將可瞭解,所揭示的態樣可以與其他電腦系統組態一起來實施,包括單一處理器或多重處理器電腦系統、迷你電腦、大型主機電腦,以及個人電腦、手持式計算器件、基於微處理器或可程式化的消費性電子器件、微控制器、嵌入式控制器、多核心處理器等等,其等各者可操作地耦接至一或多個相關聯的器件。 In general, program modules include routines, programs, components, data structures, and the like that perform specific tasks or implement specific summary data types. Furthermore, those skilled in the art will appreciate that the disclosed aspects can be implemented with other computer system configurations, including single processor or multiprocessor computer systems, minicomputers, mainframe computers, and personal computers, Handheld computing devices, microprocessor-based or programmable consumer electronics, microcontrollers, embedded controllers, multi-core processors, etc., each of which is operatively coupled to one or more related Connected devices.
各種不同實施例所繪示之態樣亦可在分散的計算環境中來實施,其中某些任務可以由透過通信網路而連結之遠端處理器件來執行。在一分散的計算環境中,程式模組可被定位在本端及遠端記憶體儲存器件中。 The aspects depicted in the various embodiments can also be implemented in a decentralized computing environment, some of which can be performed by remote processing devices that are coupled through a communications network. In a decentralized computing environment, the program module can be located in both the local and remote memory storage devices.
計算器件通常包括各種不同的媒體,其可包括電腦可讀儲存媒體及/或通信媒體,在本文中所使用之此兩術語在下文中係彼此不同的。電腦可讀儲存媒體可以 係任何可用的儲存媒體,其可由電腦所存取且包括揮發性及非揮發性媒體、可卸除或不可卸除媒體。舉例來說,但不具限制性,電腦可讀儲存媒體可結合用於資訊儲存的任何方法或技術來實施,諸如電腦可讀指令、程式模組、結構化資料或未經結構化資料。電腦可讀儲存媒體可包括(但不以此為限)RAM、ROM、EEPROM、DRAM、快閃記憶體或其他的記憶體技術、CD-ROM、多用途光碟(DVD)或其他的光碟儲存器、磁卡、磁帶、磁碟儲存器或其他磁性儲存器件、或可用以儲存所要資訊之其他有形的及/或非暫時性的媒體。電腦可讀儲存媒體可針對相對於由媒體儲存之資訊的各種不同操作而由一或多個本端或遠端計算器件所存取,例如經由存取請求、詢問或其他資料檢索協定。 Computing devices typically include a variety of different media, which may include computer readable storage media and/or communication media, the two terms used herein being different from one another hereinafter. Computer readable storage media can Any available storage medium that is accessible by a computer and includes both volatile and non-volatile media, removable or non-removable media. By way of example, and not limitation, the computer-readable storage medium can be implemented in conjunction with any method or technique for information storage, such as computer readable instructions, program modules, structured material, or unstructured material. The computer readable storage medium may include, but is not limited to, RAM, ROM, EEPROM, DRAM, flash memory or other memory technology, CD-ROM, multi-purpose optical disc (DVD) or other optical disc storage , magnetic card, magnetic tape, disk storage or other magnetic storage device, or other tangible and/or non-transitory media that can be used to store the desired information. The computer readable storage medium can be accessed by one or more local or remote computing devices for various operations relative to information stored by the media, such as via an access request, query, or other data retrieval protocol.
通信媒體通常具體實施電腦可讀指令、資料結構、程式模組或在一資料信號中之其他結構化或未經結構化的資料,諸如一調變資料信號,例如一載波或其他傳送機構,且包括任何資訊傳遞或傳送媒體。術語「調變資料信號」係指具有其特性集合之一或多個或者以在一或多個信號中編碼資訊之方式而改變的信號。舉例來說,且不具限制性,通信媒體包括有線媒體,諸如有線網路或固線連接,以及無線媒體,諸如聲波、微波、RF、紅外線及其他無線方法(例如IEEE 802.12X、IEEE 802.15.4)。 Communication media typically embody computer readable instructions, data structures, program modules, or other structured or unstructured material in a data signal, such as a modulated data signal, such as a carrier or other transport mechanism, and Includes any messaging or delivery media. The term "modulated data signal" means a signal that has one or more of its set of characteristics or that changes in the manner in which information is encoded in one or more signals. By way of example and not limitation, communication media includes wired media, such as wired or fixed-line connections, and wireless media such as acoustic, microwave, RF, infrared, and other wireless methods (eg, IEEE 802.12X, IEEE 802.15.4) ).
請再次參考第17圖,所繪示之用於實施各種態樣之計算環境1700係包括一電腦1702,該電腦包括一處理單元1704、一系統記憶體1706及一系統匯流排 1708。該系統匯流排1708係將系統組件(包括,該系統記憶體1706,但不以此為限)耦接至處理單元1704。該處理單元1704可以係任何市面上可購得的處理器。雙微處理器及其他多重處理器架構亦可用以作為該處理單元1704。 Referring again to FIG. 17, the computing environment 1700 for implementing various aspects includes a computer 1702 including a processing unit 1704, a system memory 1706, and a system bus. 1708. The system bus 1708 couples system components (including the system memory 1706, but not limited thereto) to the processing unit 1704. The processing unit 1704 can be any commercially available processor. Dual microprocessors and other multiprocessor architectures can also be used as the processing unit 1704.
該系統匯流排1708可以係任何數種類型的匯流排結構,其可進一步互連至使用各種市面上可購得的匯流排架構之記憶體匯流排(具有或未具有記憶體控制器)、周邊匯流排及本端匯流排。該系統記憶體1406包括唯讀記憶體(ROM)1710及隨機存取記憶體(RAM)1712。一基本輸入/輸出系統(BIOS)係儲存在一非揮發性記憶體1710中,諸如ROM、EPROM、EEPROM,該BIOS含有基本常式以有助於在電腦1702中的元件之間傳輸資訊,諸如在開機期間。該RAM 1712亦可包括一用於快取資料之高速RAM,諸如靜態RAM。 The system busbar 1708 can be any number of types of busbar structures that can be further interconnected to a memory busbar (with or without a memory controller) using various commercially available busbar architectures, peripherals. Bus and local bus. The system memory 1406 includes a read only memory (ROM) 1710 and a random access memory (RAM) 1712. A basic input/output system (BIOS) is stored in a non-volatile memory 1710, such as a ROM, EPROM, EEPROM, which contains basic routines to facilitate the transfer of information between elements in the computer 1702, such as During the boot. The RAM 1712 can also include a high speed RAM for caching data, such as static RAM.
該電腦1702復包括一磁碟儲存器1714,其可包括內部硬碟機(HDD)(例如,EIDE、SATA),該內部硬碟機亦可經組態以外部使用於一適當的機箱(未圖示)中,一磁碟機(FDD)(例如,用以讀取或寫入一可卸除磁卡),及一光碟機(例如,讀取CD-ROM光碟,或用以讀取或寫入諸如DVD之其他高容量光學媒體)。該硬碟機、磁碟機及光碟機可分別地藉由硬碟機介面、磁碟機介面及光碟機而被連接至該系統匯流排1708。用於外部驅動實施方案之介面1716包括通用串列匯流排(USB)及IEEE 1094介面技術之至少一者或兩者。其他外部驅動連接技術係落在本文中所述 之各種不同實施例的想法中。 The computer 1702 includes a disk storage 1714, which may include an internal hard disk drive (HDD) (eg, EIDE, SATA), and the internal hard disk drive may also be configured for external use in a suitable chassis (not In the illustration), a disk drive (FDD) (for example, for reading or writing a removable magnetic card), and an optical disk drive (for example, reading a CD-ROM disc, or for reading or writing) Into other high-capacity optical media such as DVD). The hard disk drive, the magnetic disk drive and the optical disk drive can be connected to the system bus 1708 by a hard disk drive interface, a disk drive interface and an optical disk drive, respectively. Interface 1716 for an external drive implementation includes at least one or both of a universal serial bus (USB) and an IEEE 1094 interface technology. Other external drive connection technologies are described in this article. The idea of various different embodiments.
驅動器及其相關的電腦可讀媒體提供資料、資料結構、電腦可執行指令等等之非揮發性儲存。針對電腦1702,驅動器及媒體能以適當的數位格式來容納任何資料的儲存。雖然上述電腦可讀媒體之說明係參考HDD、可卸除磁碟及可卸除光學媒體(諸如CD或DVD),然而熟習此項技術者應可瞭解,可由電腦讀取之其他類型的媒體,諸如壓縮磁碟、磁卡、快閃記憶卡、匣等等,亦可使用在繪示的操作環境中,且再者,任何此等媒體可含有用於執行所揭示態樣之電腦可執行指令。 The drive and its associated computer readable medium provide non-volatile storage of data, data structures, computer executable instructions, and the like. For computer 1702, the drive and media can accommodate the storage of any data in an appropriate digital format. Although the above description of computer readable media refers to HDDs, removable disks, and removable optical media (such as CDs or DVDs), those skilled in the art will appreciate that other types of media that can be read by a computer, Such as compressed disks, magnetic cards, flash memory cards, ports, etc., may also be used in the illustrated operating environment, and further, any such media may contain computer executable instructions for performing the disclosed aspects.
若干程式模組可被儲存在驅動器及RAM中,包括一作業系統1718、一或多個應用程式1420、其他程式模組1724,及程式資料1726。作業系統、應用程式、模組及/或資料之全部或部分亦可被快取在該RAM中。應瞭解,各種不同實施例能以各種市面上可購得的操作系統或操作系統之組合來實施。 A plurality of program modules can be stored in the drive and RAM, including an operating system 1718, one or more applications 1420, other program modules 1724, and program data 1726. All or part of the operating system, applications, modules and/or materials may also be cached in the RAM. It will be appreciated that the various embodiments can be implemented in various commercially available operating systems or combinations of operating systems.
使用者可經由一或多個有線/無線輸入器件1728(諸如鍵盤及指標器件(諸如滑鼠))來輸入命令及資訊至電腦1702中。其他輸入器件(未圖示)亦可包括麥克風、IR遙控器、搖桿、遊戲墊、觸控筆、觸控螢幕等等。這些及其他輸入器件通常係經由被耦接至系統匯流排1708之一輸入器件(介面)埠1730而連接至處理單元1704,但亦可藉由其他介面來連接,諸如平行埠、IEEE 1094串列埠、遊戲埠、USB埠、IR介面等等。 The user can enter commands and information into the computer 1702 via one or more wired/wireless input devices 1728, such as a keyboard and indicator device (such as a mouse). Other input devices (not shown) may also include a microphone, an IR remote control, a joystick, a game pad, a stylus, a touch screen, and the like. These and other input devices are typically coupled to processing unit 1704 via an input device (interface) 埠 1730 coupled to system bus 1708, but may also be connected by other interfaces, such as parallel 埠, IEEE 1094 series埠, game 埠, USB 埠, IR interface, etc.
一監視器或其他類型的顯示器件亦可經由一輸出(轉接器)埠1734(諸如一視訊轉接器)而連接至系統匯流排1708。除了該監視器外,一電腦通常包括其他的周邊輸出器件1736,諸如揚聲器、印表機等等。 A monitor or other type of display device can also be coupled to system bus 1708 via an output (adapter) 埠 1734, such as a video adapter. In addition to the monitor, a computer typically includes other peripheral output devices 1736, such as speakers, printers, and the like.
電腦1702可經由有線及/或無線通信至一或多個遠端電腦(諸如一遠端電腦1738)而在一網路連接環境中利用邏輯連接來操作。該遠端電腦1738可以係一工作站、一伺服器電腦、一路由器、一個人電腦、可攜式電腦、基於微處理器之娛樂器件、一同級器件或其他共用網路節點,且通常包括針對電腦1702所說明之許多或全部的元件,然而為了簡潔說明起見,僅繪示出一記憶體/儲存器件1740。 The computer 1702 can operate via a logical connection in a networked environment via wired and/or wireless communication to one or more remote computers, such as a remote computer 1738. The remote computer 1738 can be a workstation, a server computer, a router, a personal computer, a portable computer, a microprocessor based entertainment device, a peer device or other shared network node, and typically includes a computer 1702 Many or all of the elements are illustrated, however, for the sake of brevity, only one memory/storage device 1740 is shown.
該遠端電腦可具有一網路介面1742,其可邏輯連接至電腦1702。該邏輯連接包括有線/無線連結至一區域網路(LAN)及/或較大的網路,例如廣域網路(WAN)。此等LAN及WAN網路連接環境常見於辦公室及公司,且促進企業級電腦網路,諸如企業內部網路,所有這些網路可連接至一全球通信網路,例如網際網路。 The remote computer can have a network interface 1742 that can be logically coupled to the computer 1702. The logical connection includes wired/wireless connections to a local area network (LAN) and/or a larger network, such as a wide area network (WAN). These LAN and WAN connectivity environments are common in offices and companies, and promote enterprise-class computer networks, such as corporate intranets, all of which can be connected to a global communications network, such as the Internet.
當使用在一LAN網路連接環境中時,電腦1702係經由有線及/或無線通信網路介面或轉接器(通信連接)1744而連接至區域網路。該轉接器1744可促進有線或無線通信至LAN,其亦可包括一安置於其上以與無線轉接器通信之無線存取點。 When used in a LAN network connection environment, the computer 1702 is connected to the regional network via a wired and/or wireless communication network interface or adapter (communication connection) 1744. The adapter 1744 can facilitate wired or wireless communication to the LAN, and can also include a wireless access point disposed thereon for communicating with the wireless adapter.
當使用在WAN網路連接環境中時,電腦 1702可包括一數據機,或係被連接至WAN上之一通信伺服器,或者具有其他方式來建立與WAN之通信,諸如藉由網際網路。數據機(其可為內部或外部及一有線或無線的器件)係經由串列埠介面而被連接至系統匯流排1708。在一網路連接環境中,關於電腦1702所描述的程式模組或其一部分可儲存在遠端記憶體/儲存器件1740中。應瞭解,所示之網路連接係用以繪示說明,亦可使用其他用以在電腦之間建立一通信鏈路的構件。 When used in a WAN network connection environment, the computer 1702 can include a modem, or be connected to one of the communication servers on the WAN, or have other means to establish communication with the WAN, such as by the Internet. A data machine (which may be internal or external and a wired or wireless device) is coupled to system bus 1708 via a serial port interface. In a networked environment, the program modules described with respect to computer 1702, or portions thereof, may be stored in remote memory/storage device 1740. It should be understood that the network connections shown are for illustration and other means for establishing a communication link between computers.
該電腦1702係可操作以與任何無線器件或以無線通信方式可操作地安置之實體通信,例如印表機、掃描器、桌上型及/或可攜式電腦、可攜式資料助理、通信衛星及與無線可偵測標籤相關聯之設備或地點的任何物件(例如,資訊站、書報攤等等)以及電話。這包括至少Wi-Fi及藍牙(BluetoothTM)無線技術。因此,該通信可以係如一習知網路之預定義結構,或者僅係在至少兩個器件之間的無線隨意網路通信。 The computer 1702 is operable to communicate with any wireless device or entity operatively disposed in a wireless communication manner, such as a printer, scanner, desktop and/or portable computer, portable data assistant, communication Satellite and any objects (such as kiosks, newsstands, etc.) and telephones of the device or location associated with the wirelessly detectable tag. This includes at least Wi-Fi and Bluetooth( TM ) wireless technology. Thus, the communication can be as a predefined structure of a conventional network, or only wireless random network communication between at least two devices.
Wi-Fi或無線相容性而允許無需電線而連接至網際網路。Wi-Fi係一種類似於使用在行動電話中的無線技術,其可使得此等器件(例如電腦)在室內及戶外發送及接收資料;只要在基地台範圍內的任何地方都可以。Wi-Fi網路使用稱之為IEEE 802.11x(a、b、g等等)的無線電技術以提供穩固的、可靠的、快速的無線連結。Wi-Fi網路可用以連接電腦彼此、連接至網際網路及連接至有線網路(其使用IEEE 802.3或乙太網路)。 Wi-Fi or wireless compatibility allows connections to the Internet without wires. Wi-Fi is a wireless technology similar to that used in mobile phones, which enables such devices (such as computers) to send and receive data indoors and outdoors; as long as it is anywhere within the base station. Wi-Fi networks use a radio technology called IEEE 802.11x (a, b, g, etc.) to provide a robust, reliable, fast wireless connection. Wi-Fi networks can be used to connect computers to each other, to the Internet, and to wired networks (which use IEEE 802.3 or Ethernet).
Wi-Fi網路可在未授權的2.4及5GHz無線電頻帶中操作。IEEE 802.11大致上係應用於無線LAN且在2.4GHz頻帶中利用跳頻展頻(FHSS)或直接序列展頻(DSSS)來提供1或2Mbps傳輸率。IEEE 802.11a係IEEE 802.11的延伸,其應用於無線LAN且在5GHz頻帶中提供高達54Mbps的傳輸率。IEEE 802.11a使用正交分頻多工(OFDM)編碼方案而非FHSS或DSSS。IEEE 802.11b(亦稱之為802.11高速率DSSS或Wi-Fi)係802.11的延伸,其應用於無線LAN且在2.4GHz頻帶中提供11Mbps傳輸率(具有5.5、2及1Mbps的後饋)。IEEE 802.11g係應用於無線LAN且在2.4GHz頻帶中提供20+Mbps的傳輸率。產品可包含一個以上的頻帶(例如,雙頻),所以網路可以提供類似於使用在許多辦公室中之基本10BaseT有線乙太網路的真實效能。 Wi-Fi networks operate in the unlicensed 2.4 and 5 GHz radio bands. IEEE 802.11 is generally applied to wireless LANs and utilizes frequency hopping spread spectrum (FHSS) or direct sequence spread spectrum (DSSS) in the 2.4 GHz band to provide a 1 or 2 Mbps transmission rate. IEEE 802.11a is an extension of IEEE 802.11 that is applied to wireless LANs and provides transmission rates of up to 54 Mbps in the 5 GHz band. IEEE 802.11a uses an orthogonal frequency division multiplexing (OFDM) coding scheme instead of FHSS or DSSS. IEEE 802.11b (also known as 802.11 High Rate DSSS or Wi-Fi) is an extension of 802.11 that is applied to wireless LANs and provides 11 Mbps transmission rates (with 5.5, 2, and 1 Mbps back-feed) in the 2.4 GHz band. IEEE 802.11g is applied to a wireless LAN and provides a transmission rate of 20+ Mbps in the 2.4 GHz band. Products can contain more than one frequency band (eg, dual frequency), so the network can provide real-world performance similar to the basic 10BaseT wired Ethernet used in many offices.
現請參考第18圖,其中繪示用於處理依照另一態樣之所揭示架構之一繪示性計算環境1800的架構方塊圖。該計算環境1800包括一或多個用戶端1802。用戶端1802可以係硬體及/或軟體(例如,執行緒、程序、計算器件)。用戶端1802可含納例如關於各種不同實施例之訊錄及/或有關的上下文資訊。 Referring now to Figure 18, there is shown an architectural block diagram of an illustrative computing environment 1800 for processing one of the disclosed architectures in accordance with another aspect. The computing environment 1800 includes one or more clients 1802. Client 1802 can be hardware and/or software (eg, threads, programs, computing devices). The client 1802 can include, for example, information about various different embodiments and/or related contextual information.
計算環境1800亦包括一或多個伺服器1804。伺服器1804亦可以係硬體及/或軟體(例如,執行緒、程序、計算器件)。該伺服器1804可含納例如關於各種不同實施例的執行緒以執行轉換。在用戶端1802與伺服器 1804之間之一可行的通信係呈資料封包的形式,該資料封包係用以在兩個或更多個電腦程序之間被傳輸。資料封包可包括例如訊錄及/或有關的上下文資訊。計算環境1800包括一通信架構1806(例如,全球通信網路,諸如網際網路),其可用以促進用戶端1802與伺服器1804之間的通信。 Computing environment 1800 also includes one or more servers 1804. Server 1804 can also be hardware and/or software (eg, threads, programs, computing devices). The server 1804 can include threads, for example, with respect to various different embodiments to perform the conversion. On the client side 1802 and the server One of the possible communications between 1804 is in the form of a data packet that is transmitted between two or more computer programs. The data packet may include, for example, a message and/or related contextual information. Computing environment 1800 includes a communication infrastructure 1806 (e.g., a global communication network, such as the Internet) that can be used to facilitate communication between client 1802 and server 1804.
通信亦可經由有線(包括光纖)及/或無線技術來促成。用戶端1802可操作地連接至一或多個用戶端資料儲存庫1808,該用戶端資料儲存庫係用以儲存用戶端1802的本端資訊(例如,訊錄及/或有關的上下文資訊)。同樣地,伺服器1804可操作地連接至一或多個伺服器資料儲存庫1810,其用以儲存該伺服器1804的本端資訊。 Communication can also be facilitated via wired (including fiber optic) and/or wireless technologies. The client 1802 is operatively coupled to one or more client data repositories 1808 for storing local information (eg, messages and/or related context information) of the client 1802. Similarly, the server 1804 is operatively coupled to one or more server data repositories 1810 for storing local information of the server 1804.
除了在本文中所述的各種不同實施例外,應瞭解,可以採用其他類似的實施例或者對所述實施例來進行修改及增添,以執行對應實施例之相同或等效的功能而不偏離該等實施例。又再者,多個處理晶片或多個器件可共用在本文中所述之一或多個函數的效能,且同樣地,可透過複數個器件來進行儲存。因此,本發明不應侷限於任何單一實施例,而是應依照後附申請專利範圍之廣義、精神及範疇來解釋。 In addition to the various embodiments described herein, it is understood that other similar embodiments may be employed or modified and added to perform the same or equivalent functions of the corresponding embodiments without departing from the And other embodiments. Still further, multiple processing wafers or multiple devices may share the performance of one or more of the functions described herein, and as such, may be stored through a plurality of devices. Therefore, the present invention should not be limited to any single embodiment, but should be construed in accordance with the scope, spirit and scope of the appended claims.
在本文中所用的用語「例示性」係表示作為一個實例、例子或繪示說明。為了避免混淆,在本文中揭示之標的物並未侷限於此等實例。此外,在本文中敘述為「例示性」之任何態樣或設計並不一定要解釋為比其他態樣或設計係較佳的或具有優點的,且亦不表示排除對本 技藝有普通瞭解之人士所知道的等效的例示性結構及技術。再者,對於所使用的術語「包括」、「具有」、「含有」及其他類似用字,為了避免混淆,此等術語係以類似於術語「包含」的方式為包括性的開放性轉折字而不排除任何額外的或其他的元件。 The term "exemplary" as used herein is used as an example, instance, or illustration. To avoid confusion, the subject matter disclosed herein is not limited to such examples. In addition, any aspect or design described herein as "exemplary" is not necessarily to be construed as preferred or advantageous over other aspects or designs, and does not. The skilled artisan has equivalent exemplary structures and techniques known to those of ordinary skill. Furthermore, to avoid confusion, the terms "including", "having", "containing" and the like are used to refer to the term "comprising" as an open open word. It does not exclude any additional or other components.
上述系統已針對數個組件之間的相互關係來說明。應瞭解,此等系統及組件可包括該等組件或指定的子組件-一些指定的組件或子組件、及/或額外的組件,以及上述之各種不同的排列及組合。子組件亦可被實施為可通信地耦接至其他組件的組件而非包括在主組件中(階層式)。此外,應瞭解,一或多個組件可組合成提供彙集功能的一單一組件或者被分割成數個分離的子組件,且任何一或多個中間層,諸如一管理層,可被提供以通信地耦接至此等子組件以提供整合的功能。在本文中所述之任何組件亦可與未在本文中詳述但為熟習此項技術者普遍知道的一或多個其他組件相互作用。 The above system has been described for the relationship between several components. It should be appreciated that such systems and components can include such components or specified sub-components - some of the specified components or sub-components, and / or additional components, and various arrangements and combinations described above. Sub-components may also be implemented as components communicatively coupled to other components rather than being included in the main component (hierarchical). In addition, it should be appreciated that one or more components can be combined into a single component that provides a collection function or divided into a plurality of separate sub-components, and any one or more intermediate layers, such as a management layer, can be provided in communication. Coupled to these subcomponents to provide integrated functionality. Any of the components described herein may also interact with one or more other components not specifically described herein but generally known to those skilled in the art.
有鑑於上述的例示性系統,可依照上述標的物來實施之方法亦可參考各圖式之流程圖而瞭解。雖然為了簡潔說明之目的,該等方法係以一系列方塊來展示且說明,然而應瞭解且理解的是,各種不同實施例並未侷限於該等方塊的順序,因為一些方塊可能係以不同於在本文中所描繪且說明之順序及/或與其他方塊同時地發生。雖然非順序性的或分歧的流程係經由一流程圖所繪示,然而應瞭解,可以實施該等方塊之各種不同的其他分歧、流程路 徑或順序而達成相同或類似的結果。再者,並非需要所有繪示之方塊來實施在本文中所述的該等方法。 In view of the above exemplary system, the method that can be implemented according to the above-mentioned subject matter can also be understood by referring to the flowchart of each figure. Although the methods are shown and described in a series of blocks for purposes of brevity, it should be understood and understood that the various embodiments are not limited to the order of the blocks, as some blocks may be different The order depicted and described herein and/or occurs concurrently with other blocks. Although non-sequential or divergent processes are illustrated via a flow chart, it should be understood that various other differences and process paths of the blocks may be implemented. The same or similar results are achieved by path or sequence. Furthermore, not all illustrated blocks are required to implement the methods described herein.
1500‧‧‧方法 1500‧‧‧ method
1502‧‧‧步驟 1502‧‧‧Steps
1504‧‧‧步驟 1504‧‧‧Steps
1506‧‧‧步驟 1506‧‧‧Steps
1508‧‧‧步驟 1508‧‧‧Steps
1510‧‧‧步驟 1510‧‧‧Steps
Claims (20)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/673,306 US9746849B2 (en) | 2012-11-09 | 2012-11-09 | Method and apparatus for autonomous tool parameter impact identification system for semiconductor manufacturing |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201423883A true TW201423883A (en) | 2014-06-16 |
TWI604544B TWI604544B (en) | 2017-11-01 |
Family
ID=50682470
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106133133A TWI645484B (en) | 2012-11-09 | 2013-09-16 | Method and apparatus for autonomous tool parameter impact identification system for semiconductor manufacturing |
TW102133453A TWI604544B (en) | 2012-11-09 | 2013-09-16 | Method and apparatus for autonomous tool parameter impact identification system for semiconductor manufacturing |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106133133A TWI645484B (en) | 2012-11-09 | 2013-09-16 | Method and apparatus for autonomous tool parameter impact identification system for semiconductor manufacturing |
Country Status (4)
Country | Link |
---|---|
US (2) | US9746849B2 (en) |
KR (1) | KR102131474B1 (en) |
TW (2) | TWI645484B (en) |
WO (1) | WO2014074221A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI571810B (en) * | 2014-12-01 | 2017-02-21 | 財團法人資訊工業策進會 | Production performance management device and production performance management method thereof |
TWI768092B (en) * | 2017-08-07 | 2022-06-21 | 美商克萊譚克公司 | Inspection-guided critical site selection for critical dimension measurement |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9746849B2 (en) * | 2012-11-09 | 2017-08-29 | Tokyo Electron Limited | Method and apparatus for autonomous tool parameter impact identification system for semiconductor manufacturing |
JP6383522B2 (en) * | 2013-01-30 | 2018-08-29 | 株式会社日立ハイテクノロジーズ | Device for dust generation and dust factor analysis device |
US9396443B2 (en) * | 2013-12-05 | 2016-07-19 | Tokyo Electron Limited | System and method for learning and/or optimizing manufacturing processes |
US10361105B2 (en) * | 2014-12-03 | 2019-07-23 | Kla-Tencor Corporation | Determining critical parameters using a high-dimensional variable selection model |
JP6537277B2 (en) * | 2015-01-23 | 2019-07-03 | キヤノン株式会社 | Imprint apparatus, article manufacturing method |
US10467226B2 (en) * | 2016-04-27 | 2019-11-05 | Tibco Software Inc | Method for in-database feature selection for high-dimensional inputs |
US11443206B2 (en) | 2015-03-23 | 2022-09-13 | Tibco Software Inc. | Adaptive filtering and modeling via adaptive experimental designs to identify emerging data patterns from large volume, high dimensional, high velocity streaming data |
US10228678B2 (en) * | 2015-07-22 | 2019-03-12 | Tokyo Electron Limited | Tool failure analysis using space-distorted similarity |
US10120430B2 (en) * | 2016-09-07 | 2018-11-06 | Advanced Micro Devices, Inc. | Dynamic reliability quality monitoring |
CN108280299B (en) * | 2018-01-24 | 2023-06-02 | 西北工业大学 | Truss structure sensitivity analysis method |
US11157661B2 (en) * | 2018-12-19 | 2021-10-26 | Applied Materials, Inc. | Process development visualization tool |
US11625605B2 (en) * | 2019-12-20 | 2023-04-11 | Nvidia Corporation | Selecting computational kernel variants using neural networks |
US11302545B2 (en) * | 2020-03-20 | 2022-04-12 | Nanya Technology Corporation | System and method for controlling semiconductor manufacturing equipment |
US11675340B2 (en) | 2020-04-08 | 2023-06-13 | Nanya Technology Corporation | System and method for controlling semiconductor manufacturing apparatus |
TWI723861B (en) * | 2020-04-30 | 2021-04-01 | 致伸科技股份有限公司 | Externally-connected shop floor control system |
TWI742709B (en) * | 2020-06-04 | 2021-10-11 | 國立成功大學 | Method for predicting occurrence of tool processing event and virtual metrology application and computer program product thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5351202A (en) * | 1992-02-27 | 1994-09-27 | International Business Machines Corporation | Evaluation and ranking of manufacturing line non-numeric information |
US7401066B2 (en) | 2002-03-21 | 2008-07-15 | Applied Materials, Inc. | Correlation of end-of-line data mining with process tool data mining |
JP2005531927A (en) | 2002-06-28 | 2005-10-20 | 東京エレクトロン株式会社 | Method and system for predicting processing performance using material processing tools and sensor data |
US8725667B2 (en) * | 2008-03-08 | 2014-05-13 | Tokyo Electron Limited | Method and system for detection of tool performance degradation and mismatch |
US8285414B2 (en) | 2009-03-31 | 2012-10-09 | International Business Machines Corporation | Method and system for evaluating a machine tool operating characteristics |
US9746849B2 (en) * | 2012-11-09 | 2017-08-29 | Tokyo Electron Limited | Method and apparatus for autonomous tool parameter impact identification system for semiconductor manufacturing |
-
2012
- 2012-11-09 US US13/673,306 patent/US9746849B2/en active Active
-
2013
- 2013-09-13 KR KR1020157015232A patent/KR102131474B1/en active IP Right Grant
- 2013-09-13 WO PCT/US2013/059715 patent/WO2014074221A1/en active Application Filing
- 2013-09-16 TW TW106133133A patent/TWI645484B/en active
- 2013-09-16 TW TW102133453A patent/TWI604544B/en active
-
2017
- 2017-08-02 US US15/666,765 patent/US10571900B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI571810B (en) * | 2014-12-01 | 2017-02-21 | 財團法人資訊工業策進會 | Production performance management device and production performance management method thereof |
TWI768092B (en) * | 2017-08-07 | 2022-06-21 | 美商克萊譚克公司 | Inspection-guided critical site selection for critical dimension measurement |
Also Published As
Publication number | Publication date |
---|---|
TWI645484B (en) | 2018-12-21 |
US20170329318A1 (en) | 2017-11-16 |
WO2014074221A1 (en) | 2014-05-15 |
WO2014074221A4 (en) | 2014-07-31 |
TWI604544B (en) | 2017-11-01 |
US20140135970A1 (en) | 2014-05-15 |
TW201810485A (en) | 2018-03-16 |
US9746849B2 (en) | 2017-08-29 |
KR102131474B1 (en) | 2020-07-07 |
KR20150084932A (en) | 2015-07-22 |
US10571900B2 (en) | 2020-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI604544B (en) | Method and apparatus for autonomous tool parameter impact identification system for semiconductor manufacturing | |
JP7471312B2 (en) | Sensor measurement data integration | |
KR102039394B1 (en) | Search apparatus and search method | |
TWI616961B (en) | Method and apparatus for autonomous identification of particle contamination due to isolated process events and systematic trends | |
US20190227504A1 (en) | Computer System And Method For Monitoring Key Performance Indicators (KPIs) Online Using Time Series Pattern Model | |
JP2018195308A (en) | Method and system for data-based optimization of performance indicators in process and manufacturing industries | |
US9791855B2 (en) | Semiconductor process management system, semiconductor manufacturing system including the same, and method of manufacturing semiconductor | |
US20230195071A1 (en) | Methods and mechanisms for generating a data collection plan for a semiconductor manufacturing system | |
US20240037442A1 (en) | Generating indications of learning of models for semiconductor processing | |
US11789427B2 (en) | Value-independent situation identification and matching | |
US20240062097A1 (en) | Equipment parameter management at a manufacturing system using machine learning | |
US20230384777A1 (en) | Methods and mechanisms for preventing fluctuation in machine-learning model performance | |
US20240296374A1 (en) | Monitoring of edge- deployed machine learning models | |
TW202349153A (en) | Comprehensive analysis module for determining processing equipment performance |