TW201422818A - Method for determining the rice cultivars from taiwan and foreign countries - Google Patents
Method for determining the rice cultivars from taiwan and foreign countries Download PDFInfo
- Publication number
- TW201422818A TW201422818A TW101146175A TW101146175A TW201422818A TW 201422818 A TW201422818 A TW 201422818A TW 101146175 A TW101146175 A TW 101146175A TW 101146175 A TW101146175 A TW 101146175A TW 201422818 A TW201422818 A TW 201422818A
- Authority
- TW
- Taiwan
- Prior art keywords
- seq
- taichung
- primer set
- kaohsiung
- taikeng
- Prior art date
Links
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
本發明係關於一種利用分子標誌作為稻米品種鑑定之方法,特別是關於一種利用新穎引子組多重單一核苷酸多型性聚合酶鏈鎖反應(Multiplex SNP PCR)偵測單一核苷酸多型性(single nucleotide polymorphism,SNP)以鑑別國內外稻米品種之方法。 The invention relates to a method for identifying rice varieties by using molecular markers, in particular to detecting single nucleotide polymorphism by using a novel single primer polymorphic polymerase chain reaction (Multiplex SNP PCR). (single nucleotide polymorphism, SNP) to identify domestic and foreign rice varieties.
稻米是國人的主食,也是種植面積最廣、農戶數最多的產業。台灣自2002年加入世界貿易組織(WTO)後,國外稻米可依關稅配額進口上市銷售,市售白米種類越來越多,對國內的稻米產業產生相當程度的衝擊。現階段政府積極推動稻米產業以「品種、品質、品牌」之三品策略,以提高國產稻米競爭力;三品策略中,稻米之「品種」純度是源頭,最為重要。因此,目前國內稻作為維持稻米優良品種之遺傳性及品質,農委會設有三級繁種制度以確保稻米種子的優良性,即透過原原種、原種、採種,計畫性的逐級增加優良種子數。 Rice is the staple food of the Chinese people, and it is also the industry with the widest area of cultivation and the largest number of farmers. Since Taiwan joined the World Trade Organization (WTO) in 2002, foreign rice can be imported and sold according to tariff quotas. There are more and more types of white rice sold in the market, which has a considerable impact on the domestic rice industry. At this stage, the government actively promotes the rice industry's three-product strategy of “variety, quality and brand” to enhance the competitiveness of domestic rice. Among the three-product strategy, the purity of “variety” of rice is the source and the most important. Therefore, at present, domestic rice is used to maintain the heritability and quality of rice varieties. The COA has a three-level breeding system to ensure the superiority of rice seeds, that is, through the original species, original species, and seed collection. Excellent seed count.
在田間造成品種內的變異性除來自突變、花粉汙染、種內異質性經多代後分離與種子混雜,在三級繁殖制度下亦可能產生遺傳變異。而農民整地後向育苗場購買秧苗進行插秧,之後經過補植、雜草防除、施肥、排灌水以及病蟲害防治等田間操作。稻穀田間收穫後運送至由碾米廠進行低溫乾燥、低溫倉儲、壟穀、色彩選別、精白和包裝等調製過程,最後上市販售,這些人為操作與調製的過程都有可能造成稻米品種的混雜。另外,有些不削的商人為提高銷售價格,刻意將價格較高的稻米品種內混雜其他較低廉的品種以增加收入。 In the field, the variability within the variety may be caused by mutation, pollen pollution, intraspecific heterogeneity after multiple generations and separation of seeds, and genetic variation may occur under the tertiary reproductive system. After the land preparation, the farmers purchased the seedlings from the nursery for transplanting, and then carried out field operations such as replanting, weed control, fertilization, drainage and pest control. After the rice field is harvested, it is transported to the rice mill for low-temperature drying, low-temperature storage, ridge valley, color sorting, whitening and packaging. Finally, it is sold on the market. These man-made operations and modulation processes may cause mixed rice varieties. . In addition, some uncut traders deliberately mix high-priced rice varieties with other lower-priced varieties to increase sales.
過去稻米品種之鑑定多仰賴外觀表型,種子蛋白的組成、同功酶或酵素活性的區別等。然而由於此些型態、生理以及生化上的指標易受品種、環境乃至品種與環境間交錯之影響並不穩定,再現性也差。因此,針對品種間之遺傳組成相關的分子標記技術具有較佳之重複性及再現性,遂成為許多作物於種子純度檢查和品種鑑定的最佳工具。 In the past, the identification of rice varieties relied on the appearance phenotype, the composition of seed proteins, the difference in isozyme or enzyme activity. However, because these patterns, physiology, and biochemical indicators are susceptible to the effects of interlacing between varieties, environments, and even varieties and environments, reproducibility is also poor. Therefore, the molecular marker technology related to the genetic composition of varieties has better reproducibility and reproducibility, and it has become the best tool for many crops in seed purity inspection and variety identification.
隨著遺傳學的進展和分子生物學的興起,分子標記技術不斷演化改進,包括有限制片段長度多型性分析法(restriction fragment length polymorphism,RFLP)、隨機增幅多型性核酸分子分析法(random amplified polymorphic DNA,RAPD)、增幅片段長度多型性分析法(amplified fragment length polymorphism,AFLP)、單一重覆性序列法(microsatellite或simple sequence repeat,SSR)、簡單序列重複區間(Inter-Simple Sequence Repeat,ISSR)以及序列插入與刪除標記(insertion/deletion,In/Del)等,其中以SSR/ISSR分子標記相關技術最為普遍,主要是以1至5個核苷酸為基本單位的串聯重複序列,其長度多在100至200 bps。微衛星(microsatellite)DNA分佈於整個基因組的不同位點,因重複單位的大小和序列不同以及重複數不同,從而構成豐富的多型性。但由於核心序列重複數目不同,因而增幅出不同長度的PCR產物,是現今檢測DNA多型性的常用方法之一。該技術雖可判定國內外不同稻米品種,其係利用不同引子對經PCR反應後,針對各稻米品種因其基因體的簡單序列重複(simple sequence repeat)之數量不同所致產物大小的差異,進行高解析度電泳分析,由於生物體內相同類型之簡單重複序列多會普遍存在於基因體中,因此進行PCR時這些辨別簡單重複序列之引子可能會同時黏合在基因體之不同位置上,因此該分析過程極易發生非特異性(nonspecific)PCR產物的出現,使得電 泳膠的背景複雜而干擾電泳帶(band)的判斷、有些品種間其重複數量差異太少或是混米小於10%導致無法以肉眼觀看並區別電泳膠片上DNA片段長度的差別等問題,而導致誤判稻米品種之情況。另一方面,國內米由於育種過程使用之親本極為接近,尤其是梗稻,由於早期台灣稻種多自日本引種,且主要親本多有侷限,親緣關係甚為接近,遺傳多樣性(genetic diversity)約為4/1000(0.4%),以傳統SSR分子標誌並不容易加以區分出親緣關係相近之稻米品種,以致時有誤判之情形發生。因此該些分子標誌在稻米品種判別上仍有親緣太近之品種不易區分以及無法百分之百確認所測米樣品種等缺點。 With the advancement of genetics and the rise of molecular biology, molecular marker technology has evolved and improved, including restriction fragment length polymorphism (RFLP), random amplified polymorphic nucleic acid molecular analysis (random) Amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), single repeat sequence method (microsatellite or simple sequence repeat (SSR), simple sequence repeat interval (Inter-Simple Sequence Repeat) , ISSR) and sequence insertion and deletion markers (insertion/deletion, In/Del), etc., among which SSR/ISSR molecular marker correlation techniques are most common, mainly tandem repeats with 1 to 5 nucleotides as the basic unit. It is more than 100 to 200 bps in length. Microsatellite DNA is distributed at different sites throughout the genome. Due to the size and sequence of repeating units and the number of repeats, it is rich in polymorphism. However, due to the different number of core sequence repeats, the amplification of PCR products of different lengths is one of the commonly used methods for detecting DNA polymorphism. Although this technique can determine different rice varieties at home and abroad, the strains are subjected to PCR reaction using different primer pairs, and the difference in product size due to the difference in the number of simple sequence repeats of each rice variety is performed for each rice variety. In high-resolution electrophoresis analysis, since simple repeat sequences of the same type in a living body are ubiquitously present in the genome, these primers for distinguishing simple repeat sequences may be bonded to different positions of the genome at the same time in PCR, so the analysis The process is highly prone to the appearance of nonspecific PCR products that make electricity The background of the swimming gel is complicated and interferes with the judgment of the electrophoresis band. The difference in the number of repetitions between some varieties is too small or the mixed rice is less than 10%, which makes it impossible to visually distinguish and distinguish the difference in the length of the DNA fragments on the electrophoretic film. Leading to misjudgment of rice varieties. On the other hand, the domestic rice is very close to the parents used in the breeding process, especially the stalked rice. Because the early Taiwanese rice species are mostly introduced from Japan, and the main parents are limited, the genetic relationship is very close, genetic diversity ( The genetic diversity is about 4/1000 (0.4%). It is not easy to distinguish the rice varieties with similar genetic relations by the traditional SSR molecular markers, so that there are cases of misjudgment. Therefore, these molecular markers are still difficult to distinguish among the varieties that are too close in the identification of rice varieties, and cannot be 100% confirmed for the defects of the sampled rice samples.
單一核苷酸多型性(Single nucleotide polymorphism,SNP)是指同一位點的不同等位基因之間個別核苷酸的差異,這種差異包括單個鹼基的缺失或插入,最常見的是單一核苷酸的置換,且常發生在嘌呤(A與G)或嘧啶(C與T)之間。SNP標記可區分兩個個體間遺傳物質的差異,被認為是應用前景最好的遺傳標記。SNP正迅速的取代SSR作為DNA分子標記在植物育種和遺傳學應用的首選技術,因為SNP具有豐富、穩定、適合自動化、高效,而且越來越具有成本效益等諸多優勢。近期逐漸發展出高通量和多重單一核苷酸多型性(Multiplex SNP)的方法,以SNP的技術為背景,將多個相容的標記合併,將多對SNP引子於單一反應中完成增幅,也就是於一個PCR反應中同時偵測多個位點的多型性,高通量且適合自動化分析。在先前技術中,已發展出10個SNP多重引子組(10-plex)和15個SNP多重引子組(15-plex),但10-plex引子組主要是針對國內稉稻品種篩選SNP分子標記,所以對國內秈稻品種鑑別力較差。而15-plex引子組是以四引子擴增受阻突變體系聚合酶鏈鎖反應(Tetra-primer ARMS-PCR)進行偵測,是刻意將 偵測同一位點SNP變化得到之PCR產物,使其中產物之等位基因特異性(allele specific)DNA電泳帶大小差異至少相差1.5倍以上以利SNP的判別,但是由需要對15個位點分別進行聚合酶連鎖反應後才能完全判別待測稻米品種,頗為耗時。而10-plex引子組15-plex引子組皆有無法鑑別之品種,兩者必需互相搭配使用。 Single nucleotide polymorphism (SNP) refers to the difference in individual nucleotides between different alleles at the same locus. This difference includes the deletion or insertion of a single base, the most common being a single Nucleotide substitutions, and often occur between purines (A and G) or pyrimidines (C and T). The SNP marker distinguishes the difference in genetic material between two individuals and is considered to be the best genetic marker for application. SNPs are rapidly replacing SSR as the technology of choice for DNA molecular markers in plant breeding and genetics applications, because SNPs are rich, stable, suitable for automation, efficient, and increasingly cost-effective. Recently, a method of high-throughput and multiple single-nucleotide polymorphism (Multiplex SNP) has been developed. Based on the technology of SNP, multiple compatible markers are combined, and multiple pairs of SNP primers are added in a single reaction. That is, multiple types of sites are simultaneously detected in a single PCR reaction, which is high-throughput and suitable for automated analysis. In the prior art, 10 SNP multiple primers (10-plex) and 15 SNP multiple primers (15-plex) have been developed, but the 10-plex primer group mainly screens SNP molecular markers for domestic indica rice varieties, so The identification of domestic japonica rice varieties is poor. The 15-plex primer set is detected by Tetra-primer ARMS-PCR, which is a four-primer amplification hindered mutant system. The PCR product obtained by detecting the SNP of the same site is detected, so that the difference in the size of the allele specific DNA electrophoresis band of the product is at least 1.5 times different to facilitate the discrimination of the SNP, but it is necessary to separately identify 15 sites. It is quite time consuming to fully identify the rice varieties to be tested after performing a polymerase chain reaction. The 15-plex primer group 15-plex primer group has unidentifiable varieties, and the two must be used together.
據此,本發明提供一種鑑定國內外稻米品種之方法,係利用新穎的12個SNP多重引子組,其引子組於單一反應中進行多重單一核苷酸點圖變多型性聚合酶鏈鎖反應,更加便利且提升稻米鑑定技術之準確性及靈敏度,可同時鑑定國內外50種稻米品種。本發明可獎勵優良米廠生產高品種純率的良質品種標示米;同時由於稻米品種檢測技術之開發,配合市售稻米之抽檢及標示,逐步使稻米市場走向分級銷售制度,也有利稻米產銷專業區之建立,提昇國產米之區隔性和競爭力。 Accordingly, the present invention provides a method for identifying rice varieties at home and abroad, using a novel 12 SNP multiplex primer set, the primer set of which performs multiple single nucleotide dot diagram polymorphic polymerase chain reaction in a single reaction. It is more convenient and enhances the accuracy and sensitivity of rice identification technology, and can identify 50 kinds of rice varieties at home and abroad. The invention can reward the excellent rice factory to produce the high-quality variety of the high-quality variety labeled rice; at the same time, due to the development of the rice variety detection technology, with the sampling and labeling of the commercially available rice, the rice market is gradually moved to the grading sales system, and also beneficial to the rice production and marketing profession. The establishment of the district will enhance the separation and competitiveness of domestic rice.
為達上述目的,本發明提供一種鑑定國內外稻米品種之方法,其步驟包含:(1)利用一引子組並藉由多重單一核苷酸多型性聚合酶鏈鎖反應(Multiplex SNP PCR)增幅(amplify)複數種已知品種稻米之基因體DNA中包含SEQ ID NO:1至SEQ ID NO:12所示核酸序列中具有一單一核苷酸多型性(single nucleotide polymorphism,SNP)位點之片段,以獲得該些已知品種稻米經該引子組增幅所得各PCR產物之片段長度;(2)利用一引子組並藉由多重單一核苷酸多型性聚合酶鏈鎖反應(Multiplex SNP PCR)增幅(amplify)一待測稻米之基因體DNA,以獲得該待測稻米經該引子組增幅所得各PCR產物之片段長 度;以及(3)以該待測稻米經該引子組增幅所得各PCR產物之片段長度比對步驟(1)該些已知品種稻米經該引子組增幅所得各PCR產物之片段長度,藉以鑑別出該待測稻米之品種,其中,該引子組係選自由第一引子組(SEQ ID NO:13與SEQ ID NO:14)、第二引子組(SEQ ID NO:15與SEQ ID NO:16)、第三引子組(SEQ ID NO:17與SEQ ID NO:18)、第四引子組(SEQ ID NO:19與SEQ ID NO:20)、第五引子組(SEQ ID NO:21與SEQ ID NO:22)、第六引子組(SEQ ID NO:23與SEQ ID NO:24)、第七引子組(SEQ ID NO:25與SEQ ID NO:26)、第八引子組(SEQ ID NO:27與SEQ ID NO:28)、第九引子組(SEQ ID NO:29與SEQ ID NO:30)、第十引子組(SEQ ID NO:31與SEQ ID NO:32)、第十一引子組(SEQ ID NO:33與SEQ ID NO:34)以及第十二引子組(SEQ ID NO:35與SEQ ID NO:36)所組成之族群;其中該已知品種稻米係選自由台稉2號(Taikeng 2,TK2)、台稉4號(Taikeng 4,TK4)、台稉5號(Taikeng 5,TK5)、台稉8號(Taikeng 8,TK8)、台稉9號(Taikeng 9,TK9)、台稉14號(Taikeng 14,TK14)、台稉16號(Taikeng 16,TK16)、高雄139號(Kaohsiung 139,KH139)、高雄145號(Kaohsiung 145,KH145)、桃園1號(Taoyuan 1,TY1)、桃園3號(Taoyuan 3,TY3)、台南11號(Tainan 11,TN11)、台農71號(Tainung 71,TNG71)、花蓮19號(Hualien 19,HL19)、花蓮20號(Hualien 20,HL20)、日本越光(Koshihikari)、桃園糯2號(Taoyuan glutinous 2,TYW2)、台秈2號(Taichung sen 2,TS2)、台中秈10號(Taichung sen10,TCS10)、台農秈22號(Tainung sen 22,TNGS22)、台中再來一號(Taichung Native 1,TN1)、泰國 Jasmine85、高雄141號(Kaohsiung 141,KH141)、高雄142號(Kaohsiung 142,KH142)、高雄143號(Kaohsiung 143,KH143)、高雄144號(Kaohsiung 144,KH144)、高雄146號(Kaohsiung 146,KH146)、高雄147號(Kaohsiung 147,KH147)、桃園4號(Taoyuan 4,TY4)、台南13號(Tainan 13,TN13)、台南14號(Tainan 14,TN14)、台東30號(Taitung 30,TT30)、台東32號(Taitung 32,TT32)、台農74號(Tainung 74,TNG74)、台農75號(Tainung 75,TNG75)、台農84號(Tainung 84,TNG84)、台中192號(Taichung 192,TC192)、台中194號(Taichung 194,TC194)、花蓮21號(Hualien 21,HL21)、苗栗1號(Miaoli 1,ML1)、台稉糯1號、(Taikeng glutinous 1,TKW1)、台稉糯3號(Taikeng glutinous 3,TKW3)、台稉糯12號(Taikeng glutinous 12,TKW12)、台東糯31號(Taitung glutinous 31,TTW31)、台農糯73號(Tainung glutinous 73,TNGW73)、台中秈17號(Taichung sen17,TCS17)、台農秈14號(Tainung sen 14,TNGS14)、台農秈糯21號(Tainung sen glutinous 21,TNGSW21)、台中秈糯1號(Taichung sen glutinous 1,TCSW1)及台中秈糯2號(Taichung sen glutinous 2,TCSW2)所組成之族群。 To achieve the above object, the present invention provides a method for identifying domestic and foreign rice varieties, the steps comprising: (1) using a primer set and increasing by a multiple single nucleotide polymorphic polymerase chain reaction (Multiplex SNP PCR) (amplify) the genomic DNA of a plurality of known varieties of rice comprising a single nucleotide polymorphism (SNP) site in the nucleic acid sequence of SEQ ID NO: 1 to SEQ ID NO: 12. Fragment to obtain the fragment length of each PCR product obtained by increasing the amplitude of the known varieties of rice; (2) using a primer set and by multiple single nucleotide polymorphic polymerase chain reaction (Multiplex SNP PCR) Amplifying a genetic DNA of a rice to be tested to obtain a fragment length of each PCR product obtained by increasing the amplitude of the rice to be tested; and (3) obtaining PCR by the amplification of the rice to be tested by the primer set The length of the fragment of the product is compared with the length of the fragment of each PCR product obtained by the amplification of the known variety rice by the primer group in step (1), thereby identifying the variety of the rice to be tested, wherein the primer set is selected from the first primer Group (SEQ ID NO 13 and SEQ ID NO: 14), second primer set (SEQ ID NO: 15 and SEQ ID NO: 16), third primer set (SEQ ID NO: 17 and SEQ ID NO: 18), fourth primer set ( SEQ ID NO: 19 and SEQ ID NO: 20), fifth primer set (SEQ ID NO: 21 and SEQ ID NO: 22), sixth primer set (SEQ ID NO: 23 and SEQ ID NO: 24), Seven primer sets (SEQ ID NO: 25 and SEQ ID NO: 26), eighth primer set (SEQ ID NO: 27 and SEQ ID NO: 28), ninth primer set (SEQ ID NO: 29 and SEQ ID NO: 30), a tenth introduction group (SEQ ID NO: 31 and SEQ ID NO: 32), an eleventh introduction group (SEQ ID NO: 33 and SEQ ID NO: 34), and a twelfth introduction group (SEQ ID NO: 35 and SEQ ID NO: 36); wherein the known variety of rice is selected from Taikeng 2 (TK2), Taikeng 4 (TK4), Taichung No. 5 (Taikeng) 5, TK5), Taikeng No. 8 (Taikeng 8, TK8), Taichung No. 9 (Taikeng 9, TK9), Taichung No. 14 (Taikeng 14, TK14), Taichung No. 16 (Taikeng 16, TK16), Kaohsiung No. 139 (Kaohsiung 139, KH139), Kaohsiung 145 (Kaohsiung 145, KH145), Taoyuan No. 1 (Taoyuan 1, TY1), Taoyuan No. 3 (Taoyuan 3, TY3) ), Tainan 11, TN11, Tainung 71 (TNG71), Hualien 19 (HL19), Hualien 20 (HL20), Koshihikari, Japan Taoyuan glutinous 2 (TYW2), Taichung sen 2 (TS2), Taichung sen10 (T C S10), Tainung sen 22 (TNGS22), Taichung Native 1, TN1, Thailand Jasmine 85, Kaohsiung 141 (KH141), Kaohsiung 142 (KH142), Kaohsiung 143 (KH143), Kaohsiung 144 (Kaohsiung 143, KH143) Kaohsiung 144, KH144), Kaohsiung 146 (KH146), Kaohsiung 147 (Kahsiung 147, KH147), Taoyuan 4 (TY4), Tainan 13 (Tainan 13, TN13), Tainan 14 (Tainan 14) Tainan 14, TN14), Taitung 30 (TT30), Taitung 32 (Taitung 32, TT32), Tai Nong 74 (Tainung 74, TNG74), Tai Nong 75 (Tainung 75, TNG75), Tai Nong No. 84 (Tainung 84, TNG84), Taichung No. 192 (Taichung 192, TC192), Taichung No. 194 (Taichung 194, TC194), Hualien 21 (Hualien 21, HL21), Miaoli No. 1 ( Miaoli 1, ML1), Taichung No. 1, (Taikeng glutinous 1, TKW1), Taikeng glutinous 3 (TKW3), Taikeng glutinous 12 (TKW12), Taitung No. 31 (Taitung glutinous 31, TTW31), Tainung glutinous 73 (TNGW73), Taichung sen17 (T C S17), Tai Nong 籼 14, TNGS14, Tai Nong Tainung sen glutinous 21 (TNGSW21), Taichung sen glutinous 1, TCSW1, and Taichung sen glutinous 2 (TCSW2).
本發明提供一種鑑定國內外稻米品種之方法,利用一引子組並藉由多重單一核苷酸多型性聚合酶鏈鎖反應增幅一待測稻米之基因體DNA,其中該引子組之濃度為:第一引子組(SEQ ID NO:13與SEQ ID NO:14)係為1.0 μM、第二引子組(SEQ ID NO:15與SEQ ID NO:16)係為1.0 μM、第三引子組(SEQ ID NO:17與SEQ ID NO:18)係為1.6 μM、第四引子組(SEQ ID NO:19與SEQ ID NO:20) 係為3.0 μM、第五引子組(SEQ ID NO:21與SEQ ID NO:22)係為1.0 μM、第六引子組(SEQ ID NO:23與SEQ ID NO:24)係為2.0 μM、第七引子組(SEQ ID NO:25與SEQ ID NO:26)係為4.0 μM、第八引子組(SEQ ID NO:27與SEQ ID NO:28)係為2.0 μM、第九引子組(SEQ ID NO:29與SEQ ID NO:30)係為4.0 μM、第十引子組(SEQ ID NO:31與SEQ ID NO:32)係為2.0 μM、第十一引子組(SEQ ID NO:33與SEQ ID NO:34)係為2.0 μM以及第十二引子組(SEQ ID NO:35與SEQ ID NO:36)係為3.0 μM。且之反應條件為先以94℃反應15分鐘,再以94℃,30秒、55℃,90秒、72℃,90秒為一循環,並重複此循29次後,溫度調整至60℃反應30分鐘。且稻米之基因組DNA係來自稻米之種子之胚乳或稻米種子萌芽後之植株。 The invention provides a method for identifying domestic and foreign rice varieties, which utilizes a primer set and increases the genetic DNA of the rice to be tested by a multiple single nucleotide polymorphic polymerase chain reaction, wherein the concentration of the primer group is: The first primer set (SEQ ID NO: 13 and SEQ ID NO: 14) is 1.0 μM, and the second primer set (SEQ ID NO: 15 and SEQ ID NO: 16) is 1.0 μM, and the third primer set (SEQ) ID NO: 17 and SEQ ID NO: 18) are 1.6 μM, and the fourth primer set (SEQ ID NO: 19 and SEQ ID NO: 20) The system is 3.0 μM, the fifth primer set (SEQ ID NO: 21 and SEQ ID NO: 22) is 1.0 μM, and the sixth primer set (SEQ ID NO: 23 and SEQ ID NO: 24) is 2.0 μM. The seven primer set (SEQ ID NO: 25 and SEQ ID NO: 26) was 4.0 μM, and the eighth primer set (SEQ ID NO: 27 and SEQ ID NO: 28) was 2.0 μM, and the ninth primer set (SEQ ID) NO:29 and SEQ ID NO:30) are 4.0 μM, the tenth primer set (SEQ ID NO:31 and SEQ ID NO:32) is 2.0 μM, and the eleventh primer set (SEQ ID NO:33 and SEQ) ID NO: 34) is 2.0 μM and the twelfth primer set (SEQ ID NO: 35 and SEQ ID NO: 36) is 3.0 μM. The reaction conditions are first to react at 94 ° C for 15 minutes, and then at 94 ° C, 30 seconds, 55 ° C, 90 seconds, 72 ° C, 90 seconds for a cycle, and repeat this cycle 29 times, the temperature is adjusted to 60 ° C reaction 30 minutes. And the genomic DNA of rice is derived from the endosperm of rice seeds or the plants after germination of rice seeds.
本發明又提供一種可鑑別國內外稻米品種之引子組,係以一稻米之基因體DNA為模板(template)並經由藉由一聚合酶連鎖反應而獲得具有單一核苷酸多型(SNP)位點之片段長度,其中該引子組係選自由第一引子組(SEQ ID NO:13與SEQ ID NO:14)、第二引子組(SEQ ID NO:15與SEQ ID NO:16)、第三引子組(SEQ ID NO:17與SEQ ID NO:18)、第四引子組(SEQ ID NO:19與SEQ ID NO:20)、第五引子組(SEQ ID NO:21與SEQ ID NO:22)、第六引子組(SEQ ID NO:23與SEQ ID NO:24)、第七引子組(SEQ ID NO:25與SEQ ID NO:26)、第八引子組(SEQ ID NO:27與SEQ ID NO:28)、第九引子組(SEQ ID NO:29與SEQ ID NO:30)、第十引子組(SEQ ID NO:31與SEQ ID NO:32)、第十一引子組(SEQ ID NO: 33與SEQ ID NO:34)以及第十二引子組(SEQ ID NO:35與SEQ ID NO:36)所組成之族群,且該些引子組分析數種已知稻米品種及一待測待測稻米後進行比對,藉以鑑別出該待測稻米之品種。其中該已知品種稻米係上述50種稻米品種。且該聚合酶連鎖反應係使用該引子組分別進行聚合酶連鎖反應或使用該引子組同時進行多重單一核苷酸多型性聚合酶鏈鎖反應(Multiplex SNP PCR)。 The invention further provides a primer group capable of identifying domestic and foreign rice varieties, which adopts a rice DNA as a template and obtains a single nucleotide polymorphism (SNP) position by a polymerase chain reaction. Fragment length of the spot, wherein the primer set is selected from the group consisting of a first primer set (SEQ ID NO: 13 and SEQ ID NO: 14), a second primer set (SEQ ID NO: 15 and SEQ ID NO: 16), and a third Primers (SEQ ID NO: 17 and SEQ ID NO: 18), fourth primer set (SEQ ID NO: 19 and SEQ ID NO: 20), and fifth primer set (SEQ ID NO: 21 and SEQ ID NO: 22) ), sixth primer set (SEQ ID NO: 23 and SEQ ID NO: 24), seventh primer set (SEQ ID NO: 25 and SEQ ID NO: 26), eighth primer set (SEQ ID NO: 27 and SEQ) ID NO: 28), ninth primer set (SEQ ID NO: 29 and SEQ ID NO: 30), tenth primer set (SEQ ID NO: 31 and SEQ ID NO: 32), eleventh primer set (SEQ ID) NO: a population consisting of 33 and SEQ ID NO: 34) and a twelfth primer set (SEQ ID NO: 35 and SEQ ID NO: 36), and the primer sets are analyzed for several known rice varieties and one is to be tested The rice is then compared to identify the variety of the rice to be tested. Among them, the known variety of rice is the above 50 rice varieties. And the polymerase chain reaction reaction system uses the primer set to perform a polymerase chain reaction separately or simultaneously uses the primer set to perform multiple single nucleotide polymorphic polymerase chain reaction (Multiplex SNP PCR).
本發明另提供一種可鑑別國內外稻米品種方法,其步驟包含:(1)分析數種已知品種稻米之基因組DNA,以一聚合酶鏈鎖反應檢測12個單一核苷酸多型性之基因型,該些單一核苷酸多型性係位SEQ ID NO:1至SEQ ID NO:12所組成之核酸序列中;(2)分析一待測稻米之基因組DNA,以一聚合酶鏈鎖反應檢測12個單一核苷酸多型性之基因型,該些單一核苷酸多型性係位於SEQ ID NO:1至SEQ ID NO:12所組成之之核酸序列中;以及(3)該待測稻米經所得該12個單一核苷酸多型性之基因型比對步驟1該些已知品種稻米的該12個單一核苷酸多型性之基因型,藉以鑑別出該待測稻米之品種,其中SEQ ID NO:1所示核酸序列之第23個鹼基為A/T基因型、SEQ ID NO:2所示核酸序列之第21個鹼基為A/G基因型、SEQ ID NO:3所示核酸序列之第483個鹼基為A/G基因型、SEQ ID NO:4所示核酸序列之第20個鹼基為G/A基因型、SEQ ID NO:5所示核酸序列之第21個鹼基為C/T基因型、SEQ ID NO:6所示核酸序列之第21個鹼基為G/A基因型、SEQ ID NO:7所示核酸序列之第367個鹼基為G/A基因型、SEQ ID NO:8所示核酸序列之第22個鹼基為A/C基因型、SEQ ID NO:9所示核酸序列之第267個鹼基為G/A基因型、SEQ ID NO:10所示核酸序列之第20個鹼基為A/G 基因型、SEQ ID NO:11所示核酸序列之第20個鹼基為A/G基因型、SEQ ID NO:12所示核酸序列之第20個鹼基為T/C基因型。且該聚合酶鏈鎖反應係使用與該SEQ ID NO:1至SEQ ID NO:12之核酸序列互補之引子對進行。且該引子對可用於以該些稻米品種之基因組DNA為模板,增幅出帶有該些基因型之核酸片段。且稻米之基因組DNA係來自稻米之種子之胚乳或稻米種子萌芽後之植株。 The invention further provides a method for identifying domestic and foreign rice varieties, the steps comprising: (1) analyzing genomic DNA of several known varieties of rice, and detecting 12 single nucleotide polymorphic genes by a polymerase chain reaction; a single nucleotide polymorphism in the nucleic acid sequence consisting of SEQ ID NO: 1 to SEQ ID NO: 12; (2) analyzing a genomic DNA of a rice to be tested, using a polymerase chain reaction Detecting 12 single nucleotide polytype genotypes, the single nucleotide polymorphisms are located in the nucleic acid sequence consisting of SEQ ID NO: 1 to SEQ ID NO: 12; and (3) The 12 single nucleotide polymorphism genotypes obtained by measuring the rice are compared with the 12 single nucleotide polymorphism genotypes of the known varieties of rice in step 1 to identify the rice to be tested. a variety in which the 23rd base of the nucleic acid sequence shown by SEQ ID NO: 1 is the A/T genotype, and the 21st base of the nucleic acid sequence shown by SEQ ID NO: 2 is the A/G genotype, SEQ ID NO The 483th base of the nucleic acid sequence indicated by 3 is the A/G genotype, and the 20th base of the nucleic acid sequence shown by SEQ ID NO: 4 is the G/A genotype. The 21st base of the nucleic acid sequence shown by SEQ ID NO: 5 is a C/T genotype, and the 21st base of the nucleic acid sequence shown by SEQ ID NO: 6 is a G/A genotype, SEQ ID NO: 7. The 367th base of the nucleic acid sequence shown is the G/A genotype, the 22nd base of the nucleic acid sequence shown by SEQ ID NO: 8 is the A/C genotype, and the nucleic acid sequence shown by SEQ ID NO: 9. 267 bases are G/A genotype, and the 20th base of the nucleic acid sequence shown by SEQ ID NO: 10 is A/G The genotype, the 20th base of the nucleic acid sequence shown by SEQ ID NO: 11 is the A/G genotype, and the 20th base of the nucleic acid sequence shown by SEQ ID NO: 12 is the T/C genotype. And the polymerase chain reaction is carried out using a primer pair complementary to the nucleic acid sequences of SEQ ID NO: 1 to SEQ ID NO: 12. And the primer pair can be used to use the genomic DNA of the rice varieties as a template to increase the nucleic acid fragments carrying the genotypes. And the genomic DNA of rice is derived from the endosperm of rice seeds or the plants after germination of rice seeds.
本發明之國內外稻米品種之鑑別方法,該第一引子組至第十二引子組係可以上列該些稻米核單酸為模板(template),並由「單一微量試管」或「單一反應」中進行多重單一核苷酸點突變多型性聚合酶鏈鎖反應,獲得具有單一核苷酸多型性位點之核酸序列片段,藉以區別國內外稻米品種。因此,本發明可有效鑑定國內不同梗/梗或秈/秈稻米品種之係為差異,因大部分梗稻米品種之基因組成與標準品台農67號極為相似,因此本發明特別選取國內品種與台農67不同或具特殊性(如單一品種具有)之SNPs,利用該些SNP位點前後序列設計適合之SNP專一性引子對,之後進一步組合多組不同SNP專一引子對進行Multiplex SNP PCR反應及品種鑑定。 In the method for identifying domestic and foreign rice varieties of the present invention, the first to the twelfth introduction group can list the rice nuclear monoacids as a template, and the "single micro-test tube" or "single reaction" Multiple single nucleotide point mutation polymorphic polymerase chain reaction is performed to obtain a nucleic acid sequence fragment having a single nucleotide polymorphic site, thereby distinguishing domestic and foreign rice varieties. Therefore, the present invention can effectively identify different strains of domestic stalk/stalk or sorghum/salt rice varieties, because the genetic composition of most stalk rice varieties is very similar to the standard product Tainong 67, so the present invention specifically selects domestic varieties and SNPs of different or specific (such as single species) of Tai Nong 67, using the SNP specific sequence primer pairs designed by these SNP sites, and then further combining multiple sets of different SNP specific primer pairs to carry out Multiplex SNP PCR reaction and Variety identification.
本發明之引子設計時依照SNP性質,設計3’端第3個鹼基為錯誤鹼基,已增加引子的專一性。其基本原則為強烈錯誤配對(strong mismatch):G/A及C/T;微弱錯誤配對(weak mismatch):C/A及G/T;中間錯誤配對(medium mismatch):A/A、C/C、G/G及T/T,其中引子長度約為20~25 mers左右。此外,為了該電泳帶於瓊脂膠上辨識方便,在引子設計上刻意將偵測同一各位點SNP變化得到之PCR產物,使其最終之DNA電泳帶大小差異至少相差15bps以上,並調整適當之黏合溫度、GC鹼基含量、引子 長度等條件後,該條件會以程式自動進行引子對之設計,最後挑選最適合之一組序列進行SNP專一性引子對合成,以防止引子在PCR反應中相互競爭而導致錯誤的黏合產生雜訊。因此,本案12-plex引子組相較於先前技術15-plex引子組之以四引子擴增受阻突變體系聚合酶鏈鎖反應(Tetra-primer ARMS-PCR),更加方便且易於推廣應用,同時又提升稻米鑑定技術之準確性及靈敏度。 The primer of the present invention is designed according to the nature of the SNP, and the third base at the 3' end is designed to be an incorrect base, and the specificity of the primer has been increased. The basic principles are strong mismatch: G/A and C/T; weak mismatch: C/A and G/T; medium mismatch: A/A, C/ C, G/G and T/T, in which the length of the primer is about 20~25 mers. In addition, in order to facilitate the identification of the electrophoresis band on the agarose gel, the PCR product obtained by detecting the SNP changes at the same point is deliberately designed to make the difference of the size of the final DNA electrophoresis band at least 15 bps or more, and the appropriate adhesion is adjusted. Temperature, GC base content, primer After the length and other conditions, the condition will be automatically designed by the program. Finally, the most suitable sequence of SNPs will be selected for SNP-specific primer pair synthesis to prevent the primers from competing in the PCR reaction and causing false bonding to generate noise. . Therefore, the 12-plex primer set of this case is more convenient and easy to popularize and apply, compared with the prior art 15-plex primer set, which is a four-primer amplification of the polymerase chain reaction (Tetra-primer ARMS-PCR). Improve the accuracy and sensitivity of rice identification techniques.
本發明之另一特點為所有SNP位點皆位於具功能性表現的基因即外顯子(exon)上,相較於先前技術SNP位點位於內含子(intron),本發明之基因標記具功能性而影響稻米的外表現,因此,也可利用在育種選拔方面。 Another feature of the present invention is that all SNP sites are located on a gene having a functional expression, that is, an exon, and the gene marker of the present invention is located in an intron compared to the prior art SNP site. Functionality affects the external performance of rice and, therefore, can also be used in breeding selection.
本發明之國內外稻米品種之鑑別方法,合成完畢之引子全數些先以TAKARA DICE梯度聚合酶連鎖反應器進行台農67號與具有該SNP多型性品種之梯度(gradient)PCR,確認其專一性並尋找最適合之聚合溫度。最後以各SNP專一性引子組之平均溫度當作多重PCR之聚合溫度,優化最佳條件以利日後品種判別之應用。PCR反應時將各SNP專一性引子依比例加入單一微量試管或單一反應內,並使用市售多重試劑組(multiplex kit),按照建議之PCR反應即可。因此,本發明之國內外稻米品種之鑑別方法,僅需一般性分生實驗室所擁有之設備,主要為聚合酶鏈鎖反應器(PCR machine)即可完成,具節省時間、成本且便利、快速及容易操作等優點。另,本發明為少量樣品(1ng gDNA)即可分析具有高靈敏度,且在植株生育期間任何階段皆可取樣分析;另外,樣品可以長期保存,鑑定結果穩定性及再現性高。 The identification method of the domestic and foreign rice varieties of the present invention, all of the synthesized primers are firstly carried out by TAKARA DICE gradient polymerase chain reactor, and the gradient PCR of the SNP polymorphic variety is confirmed by the TAKARA DICE gradient polymerase chain reactor. And look for the most suitable polymerization temperature. Finally, the average temperature of each SNP-specific primer group is taken as the polymerization temperature of multiplex PCR, and the optimal conditions are optimized to facilitate the application of future varieties. In the PCR reaction, each SNP-specific primer is added to a single microtube or a single reaction in proportion, and a commercially available multiplex kit is used according to the recommended PCR reaction. Therefore, the identification method of the domestic and foreign rice varieties of the present invention only needs the equipment possessed by the general meristem laboratory, and is mainly completed by a PCR machine, which saves time, cost and convenience. Fast and easy to operate. In addition, the present invention is capable of analyzing a small amount of sample (1 ng gDNA) with high sensitivity, and can be sampled and analyzed at any stage during plant growth; in addition, the sample can be stored for a long period of time, and the stability and reproducibility of the identification result are high.
本發明之國內外稻米品種之鑑別方法,可應用於開放稻米貿易後,本國及外國稻米品種之鑑定之判別;稻米履歷認證制度之建立,建立市場稻米品質管制機制;配合糧食管理辦法。因應市 售稻米品種標示之需求;提供農試單位,一般育種者對新育成或既有稻米種純度之維持,並提供政府管理單位即秧苗業者就水道良種繁殖制度之運作;可供農單位育種上親本品種鑑定,優良稻米品種種子繁殖之偵測維繫,市售稻米品種判定,米穀人員業者之稻米品種交易流通即施政單位對市售稻米之管理等。本發明之國內外稻米品種之鑑別方法,非再以SSR分子標記所依賴之重覆性DNA序列長度之變異(variable number tandem repeat,VNTR)為基礎,而是針對不同稻米品種之單一核苷酸多型性,利用各引子組所測得不同稻米品種之SNP組合,可提高稻米品種判別之靈敏度、穩定度以及精準度上皆較有現有稻米品種DNA指紋鑑定技術為佳,尤其是親緣關係甚為接近之本國稻米品種(例如台東32號(TT32)及台稉16號(TK16)),同時本發明之12組引子組之每個SNP位點樣品出現的對偶基因頻率(allelic frequency)為0.24至0.64之間,相較於先前技術的對偶基因頻率0.0143至0.471提升很多。 The identification method of the domestic and foreign rice varieties of the invention can be applied to the identification of domestic and foreign rice varieties after the open rice trade; the establishment of the rice history certification system, the establishment of a market rice quality control mechanism; and the food management method. In response to the city The demand for the labeling of rice varieties for sale; the provision of agricultural testing units, the general breeders to maintain the purity of new or existing rice varieties, and the operation of the government management unit, namely the seedling industry, on the breeding system of improved waterways; The identification of this variety, the detection and maintenance of seed breeding of excellent rice varieties, the determination of commercially available rice varieties, the trading of rice varieties of rice farmers, that is, the management of commercial rice by the administrative units. The identification method of the domestic and foreign rice varieties of the present invention is based on the variable number tandem repeat (VNTR) of the SSR molecular marker, but is a single nucleotide for different rice varieties. Multi-type, using the SNP combination of different rice varieties measured by each primer group, can improve the sensitivity, stability and accuracy of rice varieties. It is better than the DNA fingerprinting technology of existing rice varieties, especially the relationship. For the close domestic rice varieties (such as Taitung 32 (TT32) and Taiwanese No. 16 (TK16)), the dual gene frequency (allelic frequency) of each of the 12 SNP sites of the present invention is 0.24. Between 0.64, it is much improved compared to the prior art dual gene frequency of 0.0143 to 0.471.
透過本發明,熟習此技藝者可運用任何已知的方法,對本發明所述之12個SNP位點對該50個稻米品種進行鑑定。具體而言,可是使用的方法包括,但是不限於,高分辨溶解曲線(high-resolution melt,HRM)、MALDI-TOF質譜分析(matrix assisted laser desertion/ionization time-of-flight mass spectrometry)以及各種定序法(Sequencing)等。 Through the present invention, those skilled in the art can identify the 50 rice varieties for the 12 SNP sites described in the present invention by any known method. Specifically, the methods used include, but are not limited to, high-resolution melt (HRM), MALDI-TOF mass spectrometry (matrix assisted laser desertion/ionization time-of-flight mass spectrometry), and various Sequencing, etc.
以下將配合圖式進一步說明本發明的實施方式,下述所列舉的實施例係用以闡明本發明,並非用以限定本發明之範圍,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可做些許更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 The embodiments of the present invention are further described in the following description, and the embodiments of the present invention are set forth to illustrate the present invention, and are not intended to limit the scope of the present invention. In the scope of the invention, the scope of protection of the invention is defined by the scope of the appended claims.
首先收集國內外稻米樣品包含:台稉2號(Taikeng 2,TK2)、台稉4號(Taikeng 4,TK4)、台稉5號(Taikeng 5,TK5)、台稉8號(Taikeng 8,TK8)、台稉9號(Taikeng 9,TK9)、台稉14號(Taikeng 14,TK14)、台稉16號(Taikeng 16,TK16)、高雄139號(Kaohsiung 139,KH139)、高雄145號(Kaohsiung 145,KH145)、桃園1號(Taoyuan 1,TY1)、桃園3號(Taoyuan 3,TY3)、台南11號(Tainan 11,TN11)、台農71號(Tainung 71,TNG71)、花蓮19號(Hualien 19,HL19)、花蓮20號(Hualien 20,HL20)、日本越光(Koshihikari)、桃園糯2號(Taoyuan glutinous 2,TYW2)、台秈2號(Taichung sen 2,TS2)、台中秈10號(Taichung sen10,TCS10)、台農秈22號(Tainung sen 22,TNGS22)、台中再來一號(Taichung Native 1,TN1)、泰國Jasmine85、高雄141號(Kaohsiung 141,KH141)、高雄142號(Kaohsiung 142,KH142)、高雄143號(Kaohsiung 143,KH143)、高雄144號(Kaohsiung 144,KH144)、高雄146號(Kaohsiung 146,KH146)、高雄147號(Kaohsiung 147,KH147)、桃園4號(Taoyuan 4,TY4)、台南13號(Tainan 13,TN13)、台南14號(Tainan 14,TN14)、台東30號(Taitung 30,TT30)、台東32號(Taitung 32,TT32)、台農74號(Tainung 74,TNG74)、台農75號(Tainung 75,TNG75)、台農84號(Tainung 84,TNG84)、台中192號(Taichung 192,TC192)、台中194號(Taichung 194,TC194)、花蓮21號(Hualien 21,HL21)、苗栗1號(Miaoli 1,ML1)、台稉糯1號、(Taikeng glutinous 1,TKW1)、台稉糯3號(Taikeng glutinous 3,TKW3)、台稉糯12號(Taikeng glutinous 12,TKW12)、台東糯31號(Taitung glutinous 31,TTW31)、台農糯73號(Tainung glutinous 73,TNGW73)、台中秈17號(Taichung sen17,TCS17)、台農秈14號(Tainung sen 14,TNGS14)、台農秈 糯21號(Tainung sen glutinous 21,TNGSW21)、台中秈糯1號(Taichung sen glutinous 1,TCSW1)及台中秈糯2號(Taichung sen glutinous 2,TCSW2),共50種品種,除日本越光及泰國Jasmine85外其他皆為國內育成品種。 The first collection of domestic and foreign rice samples includes: Taikeng 2 (TK2), Taikeng 4 (Tik4, TK4), Taikeng 5 (TK5), Taichung 8 (Taikeng 8, TK8) ), Taikeng 9, TK9, Taikeng 14, TK14, Taikeng 16, TK16, Kaohsiung 139 (KH139), Kaohsiung 145 (Kaohsiung) 145, KH145), Taoyuan 1 (TY1), Taoyuan 3 (Taoyuan 3, TY3), Tainan 11 (Tainan 11, TN11), Tainong 71 (Tainung 71, TNG71), Hualien 19 ( Hualien 19, HL19), Hualien 20 (HL20), Koshihikari, Taoyuan glutinous 2 (TYW2), Taichung sen 2 (TS2), Taichung 籼 10 No. (Taichung sen10, T C S10), Tainung sen 22 (TNGS22), Taichung Native 1, TN1, Jasmine 85, Kaohsiung 141 (KH141), Kaohsiung No. 142 (Kaohsiung 142, KH142), Kaohsiung 143 (Kahsiung 143, KH143), Kaohsiung 144 (Kaohsiung 144, KH144), Kaohsiung 146 (Kaohsiung 146, KH146), Kaohsiung 147 (Kaohsiung 147) KH147), Taoyuan 4 (TY4), Tainan 13 (Tainan 13, TN13), Tainan 14 (Tainan 14, TN14), Taitung 30 (Taitung 30, TT30), Taitung 32 (Taitung 32, TT32), Tainung 74 (TNG74), Tainung 75 (TNG75), Tainong 84 (TNG84), Taichung No. 192 (Taichung 192, TC192), Taichung No. 194 ( Taichung 194, TC194), Hualien 21 (HL21), Miaoli 1, ML1, Taikeng glutinous 1, TKW1, Taikeng glutinous 3, TKW3), Taikeng glutinous 12 (TKW12), Taitung glutinous 31 (TTW31), Tainung glutinous 73 (TNGW73), Taichung sen17 (Taizhong sen17, T C S17), Tainung sen 14, TNGS14, Tainung sen glutinous 21 (TNGSW21), Taichung sen glutinous 1, TCSW1 and Taichung 籼糯 2 No. (Taichung sen glutinous 2, TCSW2), a total of 50 varieties, except for Japan's Koshihikari and Thailand's Jasmine85 are all domestic breeds.
接著抽取各稻米樣品之基因組DNA(genomic DNA),並以特定引子組經多重單一核苷酸多型性聚合酶鏈鎖反應(Multiplex SNP PCR)偵測各稻米樣品之單一核苷酸多型性(single nucleotide polymorphism,SNP),藉由聚合酶鏈鎖反應產物大小(亦即電泳帶長短)判別稻米樣品是否具有該單一核苷酸多型性位點,進而得知該稻米樣品之品種,如第1圖所示。茲對前述實施方式詳盡說明如下: Next, the genomic DNA of each rice sample was extracted, and the single nucleotide polymorphism of each rice sample was detected by multiple single nucleotide polymorphism polymerase chain reaction (Multiplex SNP PCR) with a specific primer set. (single nucleotide polymorphism, SNP), by determining the size of the polymerase chain reaction reaction product (that is, the length of the electrophoresis band), whether the rice sample has the single nucleotide polymorphism site, and further know the variety of the rice sample, such as Figure 1 shows. The foregoing embodiment is described in detail as follows:
取約10粒白米,使用Thermo Fisher QSP的2 mL微量離心管並加入研磨用鋼珠(7 mm),使用均質機以14000 rpm將米粒研磨成細粉狀。DNA的萃取方式使用溴化十六烷基三甲基銨(cetyl-trimethyl ammonium bromide,CTAB)的方法加以修飾。每管加入750 μL 1% CTAB,置於65℃中20分鐘後,每管加入10 μL proteinase K(20 mg/mL)搖晃均勻,置於65℃中反應30分鐘(每10分鐘搖晃均勻一次)。加入800 μL phenol/chloroform/isoamyl alcohol(25:24:1),搖勻3分鐘再以14000 rpm離心10分鐘。取上清液置入另一離心管,加入400 μL chloroform/isoamyl alcohol(24:1),14000 rpm離心5分鐘後再取上清液,加入2/3體積的isopropanol,室溫下靜置20分鐘。以14000 rpm離心10分鐘,使用70% EtOH脫水,離心數秒,倒掉廢液將沈澱物置於40℃下30 分鐘得到初步產物。初步產物加入200 μL 1X TE緩衝液(Tris-HCl 10 mM,EDTA 1 mM,pH為8.0)後於40℃下1小時使之完全溶解,加入10 μL RNase(500 μg/mL),混和均勻後置於37℃反應40分鐘以上。加入450 μL之95% EtOH,於-20℃下沉澱30分鐘以上,以14000 rpm離心10分鐘,去除廢液後風乾,即可得DNA產物。產物加入50 μL TE緩衝液將DNA充分溶解後定量並保存於-20℃,將定量後DNA稀釋為1 ng/μL,進行後續PCR反應分析。DNA定量以Qubit®螢光測定儀(Invitrogen,美國)及Qubit® dsDNA HS Assay Kit進行濃度測定(步驟10或步驟40)。 Approximately 10 grains of white rice were used, and a 2 mL microcentrifuge tube of Thermo Fisher QSP was used and a steel ball (7 mm) for grinding was added, and the rice was ground to a fine powder at 14,000 rpm using a homogenizer. The DNA extraction method was modified by cetyl-trimethyl ammonium bromide (CTAB). Add 750 μL of 1% CTAB to each tube and place at 65 °C for 20 minutes. Add 10 μL of proteinase K (20 mg/mL) to each tube and shake evenly. Allow to react at 65 °C for 30 minutes (shake evenly every 10 minutes) . 800 μL of phenol/chloroform/isoamyl alcohol (25:24:1) was added, shaken for 3 minutes and centrifuged at 14,000 rpm for 10 minutes. Place the supernatant into another centrifuge tube, add 400 μL of chloroform/isoamyl alcohol (24:1), centrifuge at 14000 rpm for 5 minutes, then take the supernatant, add 2/3 volume of isopropanol, and let stand at room temperature. minute. Centrifuge at 14000 rpm for 10 minutes, dehydrate with 70% EtOH, centrifuge for a few seconds, pour off the waste and place the pellet at 40 °C. Minutes get the preliminary product. The preliminary product was added to 200 μL of 1X TE buffer (Tris-HCl 10 mM, EDTA 1 mM, pH 8.0) and completely dissolved at 40 ° C for 1 hour. Add 10 μL of RNase (500 μg/mL) and mix well. The reaction was carried out at 37 ° C for more than 40 minutes. 450 μL of 95% EtOH was added, precipitated at -20 ° C for 30 minutes or more, centrifuged at 14,000 rpm for 10 minutes, and the waste liquid was removed and air-dried to obtain a DNA product. The product was fully dissolved in 50 μL of TE buffer, quantified and stored at -20 ° C, and the quantified DNA was diluted to 1 ng/μL for subsequent PCR reaction analysis. DNA quantification was performed using a Qubit® fluorometer (Invitrogen, USA) and a Qubit® dsDNA HS Assay Kit (step 10 or step 40).
稻米種子萌芽後生長至2周大,剪取植株地上部後冷凍乾燥保存。乾燥後稻米植株採快速萃取DNA的方法,冷凍乾燥後的稻米葉片剪用約2~3 mm大小2片,加入20 mL葉部DNA萃取溶液(QuickExtractTM,EPICENTRE® Biotechnologies,美國),並以65℃加熱6分鐘,緊接著98℃ 2分鐘加熱處理,即可快速提取DNA。注意此方法乃犧牲品質的快速DNA萃取方式,因此DNA無法長時間保存。DNA定量後亦稀釋為1 ng/μL,再進行後續PCR反應分析(步驟10或步驟40)。 The rice seeds were grown to 2 weeks after germination, and the aboveground parts of the plants were cut and stored in a freeze-dried manner. The method of rice plants rapid extraction of DNA collected was dried, freeze-dried rice shear blade for about 2 ~ 3 mm 2 size, 20 mL of leaf DNA extraction solution (QuickExtract TM, EPICENTRE® Biotechnologies, USA), and 65 The DNA was quickly extracted by heating at ° C for 6 minutes followed by heat treatment at 98 ° C for 2 minutes. Note that this method is a fast DNA extraction method that sacrifices quality, so DNA cannot be stored for long periods of time. The DNA was also diluted to 1 ng/μL after quantification, followed by subsequent PCR reaction analysis (step 10 or step 40).
利用多重單一核苷酸多型性聚合酶鏈鎖反應(Multiplex SNP PCR)偵測各稻米樣品之單一核苷酸多型性(步驟20)。本發明實施例2中找出可區隔前述50種國內外稻米之SNP差異位點,該些SNP位點係包含SEQ ID NO:1所示核酸序列之第23個鹼基為A/T基因型、SEQ ID NO:2所示核酸序列之第21個鹼基為A/G 基因型、SEQ ID NO:3所示核酸序列之第483個鹼基為A/G基因型、SEQ ID NO:4所示核酸序列之第20個鹼基為G/A基因型、SEQ ID NO:5所示核酸序列之第21個鹼基為C/T基因型、SEQ ID NO:6所示核酸序列之第21個鹼基為G/A基因型、SEQ ID NO:7所示核酸序列之第367個鹼基為G/A基因型、SEQ ID NO:8所示核酸序列之第22個鹼基為A/C基因型、SEQ ID NO:9所示核酸序列之第267個鹼基為G/A基因型、SEQ ID NO:10所示核酸序列之第20個鹼基為A/G基因型、SEQ ID NO:11所示核酸序列之第20個鹼基為A/G基因型、SEQ ID NO:12所示核酸序列之第20個鹼基為T/C基因型,共計12個SNP位點(步驟30)。 Single nucleotide polymorphisms of each rice sample were detected using multiple single nucleotide polymorphic polymerase chain reaction (Multiplex SNP PCR) (step 20). In the second embodiment of the present invention, SNP difference sites which can distinguish the above 50 domestic and foreign rice lines are identified, and the SNP sites comprise the 23rd base of the nucleic acid sequence represented by SEQ ID NO: 1 as the A/T gene. Type, the 21st base of the nucleic acid sequence shown by SEQ ID NO: 2 is A/G The genotype, the 483th base of the nucleic acid sequence shown by SEQ ID NO: 3 is the A/G genotype, and the 20th base of the nucleic acid sequence shown by SEQ ID NO: 4 is the G/A genotype, SEQ ID NO The 21st base of the nucleic acid sequence shown in 5 is a C/T genotype, the 21st base of the nucleic acid sequence shown by SEQ ID NO: 6 is a G/A genotype, and the nucleic acid sequence shown by SEQ ID NO: 7. The 367th base is the G/A genotype, the 22nd base of the nucleic acid sequence shown by SEQ ID NO: 8 is the A/C genotype, and the 267th base of the nucleic acid sequence shown by SEQ ID NO: 9. The G/A genotype, the 20th base of the nucleic acid sequence shown by SEQ ID NO: 10 is the A/G genotype, and the 20th base of the nucleic acid sequence shown by SEQ ID NO: 11 is the A/G genotype. The 20th base of the nucleic acid sequence shown by SEQ ID NO: 12 is a T/C genotype, and a total of 12 SNP sites (step 30).
多重聚合酶連鎖反應使用多重聚合酶連鎖反應試劑組(Multiplex PCR Kit,QIAGEN®,德國),各成分反應體積依照該試劑組使用手冊做調整。12組引子組(12-plex)因引子專一性表現強弱不同,因此每一引子稀釋比例不相同,故在多重SNP聚合酶連鎖反應中的DNA量、Q緩衝液(Q buffer)的添加量與循環次數亦有所調整。Q buffer為該試劑組中添加至PCR反應,降低非專一性產物電泳帶生成的藥品。 The multiplex polymerase chain reaction uses a multiplex polymerase chain reaction reagent set (Multiplex PCR Kit, QIAGEN®, Germany), and the reaction volume of each component is adjusted according to the reagent set manual. The 12-plex introduction group (12-plex) differs in the specificity of the primers. Therefore, the dilution ratio of each primer is different. Therefore, the amount of DNA in the multiple SNP polymerase chain reaction, the addition amount of Q buffer (Q buffer) and The number of cycles has also been adjusted. Q buffer is added to the PCR reaction in this reagent group to reduce the production of non-specific product electrophoresis bands.
各品種參考標準品12組引子組多重單一核苷酸多型性聚合酶鏈鎖反應,反應總體積為10 μL,包含5 μL 2X QIAGEN multiplex PCR master mix、1 μL 10X引子混合液(primer mix)、1 μL Q buffer、2 μL RNase-free water及1 μL的DNA(ng/μL)樣品。聚合酶連鎖反應使用熱循環反應器(PCR Thermal Cycler,Takara,日本)進行,其反應條件為:94℃反應15分鐘,再以94℃,30秒、55℃,90秒、72℃,90秒為一循環,並重複此循29次後,溫度 調整至60℃反應30分鐘,1個循環,最後降至25℃結束反應(步驟50)。 Multiple reference nucleotide polymorphic polymerase chain reaction of 12 sets of reference standards for each variety. The total reaction volume is 10 μL, including 5 μL 2X QIAGEN multiplex PCR master mix, 1 μL 10X primer mix (primer mix) 1 μL Q buffer, 2 μL RNase-free water, and 1 μL DNA (ng/μL) samples. The polymerase chain reaction was carried out using a thermal cycler (PCR Thermal Cycler, Takara, Japan) under the reaction conditions of 94 ° C for 15 minutes, followed by 94 ° C, 30 seconds, 55 ° C, 90 seconds, 72 ° C, 90 seconds. For a cycle, and repeat this cycle after 29 times, the temperature The reaction was adjusted to 60 ° C for 30 minutes, 1 cycle, and finally to 25 ° C to end the reaction (step 50).
其中引子混合液為每一引子組之正向與反向之混合液,每一引子需稀釋至不相同濃度,參閱表1:
進行PCR後產物以e-GENE HAD-GT12TM DNA分析儀(QIAGEN®,德國)搭配高解析度毛細管電泳試劑組(QIAxcel DNAHigh Resolution Kit)進行毛細管電泳,內含QIAxcel DNA High Resolution Cartridge卡夾,將卡夾放入儀器內並搭配使用QIAxcel BioCalculator軟體。依照使用步驟以96孔樣品盤盛裝待測物體積約需15 μL,而PCR總體積約10 μL,因此需以Kit內附的QX DNA Dilution緩衝液將反應物稀釋至15 μL進行PCR產物分析。使用15 bp/1 kb之QX alignment marker,方法選擇廠商協助建立之OM820.mtd(單一樣本分析時間820秒),並視當時氣溫狀況調整Adjust separation time 0-120秒。結果的判讀方法與常規膠體電泳判讀方法相似,其餘細節參照QIAxcel® DNA Handbook(步驟30或步驟60)。 After PCR, the product was subjected to capillary electrophoresis using an e-GENE HAD-GT12 TM DNA Analyzer (QIAGEN®, Germany) with a high-resolution capillary electrophoresis reagent kit (QIAxcel DNA High Resolution Kit) containing a QIAxcel DNA High Resolution Cartridge clip. The clips are placed in the instrument and used with the QIAxcel BioCalculator software. According to the procedure of use, it takes about 15 μL to hold the volume of the sample in a 96-well sample disk, and the total volume of the PCR is about 10 μL. Therefore, the reaction product should be diluted to 15 μL with QX DNA Dilution buffer attached to Kit for PCR product analysis. Using the 15 bp/1 kb QX alignment marker, select the OM820.mtd that the manufacturer assisted in (single sample analysis time 820 seconds), and adjust the Adjust separation time 0-120 seconds depending on the temperature. The interpretation method of the results is similar to the conventional colloidal electrophoresis interpretation method, and the rest of the details refer to the QIAxcel® DNA Handbook (step 30 or step 60).
參閱第2圖,利用本發明之鑑定國內外稻米品種之方法以Qiaxcel毛細管電泳進行12-plex SNP PCR之12組引子產物大小相對位置波峰圖,其每一個波峰即代表PCR產物之片段長度。參閱第3圖,為不同稻米品種台稉16號(Taikeng 16,TK16)、台農秈糯21號(Tainung sen glutinous 21,TNGSW21)及高雄142號(Kaohsiung 142,KH142),利用本發明之鑑定國內外稻米品種之方法進行12-plex SNP PCR分析之Qiaxcel毛細管電泳波峰圖。以TK16為例,在第十二引子組(117bp)此位點野生型為A表現因此進行PCR時無法擴增產物,若117bp為G表現型則進行PCR反應則會有擴增產物作出,並於進行毛細管電泳時會有波峰表現,代表此品種在該等位基因有單一核苷酸多型性(SNP)。經由上述結果,每個片段結果都清晰易於判讀,且雜訊少,證實本發明使用之12組引子之專一性高。 Referring to Fig. 2, the relative position peaks of 12 sets of primers of 12-plex SNP PCR were analyzed by Qiaxcel capillary electrophoresis using the method for identifying rice varieties at home and abroad according to the present invention, and each peak represents the fragment length of the PCR product. Referring to Figure 3, the identification of the present invention is made for different rice varieties, Taikeng 16, TK16, Tainung sen glutinous 21 (TNGSW21) and Kaohsiung 142 (KH142). The method of Qiacelcel capillary electrophoresis of 12-plex SNP PCR analysis was carried out by domestic and foreign rice varieties. Taking TK16 as an example, in the twelfth primer group (117 bp), the wild type is A, so the product cannot be amplified when PCR is performed. If the 117 bp is G phenotype, the amplification reaction is performed by PCR. There is a peak performance when performing capillary electrophoresis, which means that the variety has a single nucleotide polymorphism (SNP) in the allele. Through the above results, the results of each segment are clear and easy to interpret, and the amount of noise is small, which proves that the 12 sets of primers used in the present invention have high specificity.
以3%瓊脂膠(AMRESCO Agarose SFRTM,序號AM-J234,美國)進行電泳分析。以微波爐加熱至膠徹底溶解成完全透明狀,加入4 μL EtBr(10 mg/mL)後搖晃均勻。放置10分鐘後倒入製膠槽(長14.8 cm,寬13.8 cm),將氣泡趕至邊緣,放上需要孔數之齒梳。靜置40分鐘以上待其凝固。所有PCR後的產物加入1μL 6X dye混和均勻後依序注入齒槽內。Loadingmarker使用GeneDirex®的2 μL 50bp DNA Ladder,以120V進行電泳,待膠片上下方之染劑(checking dye)跑至整片膠片最下緣處即可停止電泳,最後以UV觀察膠片上之DNA指紋條帶,拍照存檔以供分析(步驟30或步驟60)。 Analyzed by electrophoresis in 3% agarose gel (AMRESCO Agarose SFR TM, No. AM-J234, USA). Heat in a microwave oven until the gel is completely dissolved into a completely transparent form. Shake evenly after adding 4 μL of EtBr (10 mg/mL). After standing for 10 minutes, pour into the glue tank (length 14.8 cm, width 13.8 cm), drive the bubble to the edge, and put the tooth comb that requires the number of holes. Allow to stand for more than 40 minutes to be solidified. All PCR products were mixed with 1 μL of 6X dye and uniformly injected into the alveolar. Loadingmarker uses GeneDirex®'s 2 μL 50bp DNA Ladder to perform electrophoresis at 120V. The dye is stopped by the recording dye from the top and bottom of the film to the lowest edge of the film. Finally, the DNA fingerprint on the film is observed by UV. Strips, photo archived for analysis (step 30 or step 60).
參閱第4圖,以本發明之12-plex SNP PCR分析2012台灣稻米推薦品種之電泳圖結果,1為TCS10、2為TK2、3為TK8、4為TK9、5為TK14、6為TK16、7為TNG71、8為KH139、9為KH145、10為TN11、11為TC192、12為HL21、13為TT30、14為Koshihikari、15為台農67(TNG67)、16為水、17為混合。以TCS10為例,在第二引子組556bp此位點通常為A表現因此進行PCR時無法擴增產物,若556bp為G表現型代表此品種在該等位基因有單一核苷酸多型性(SNP),等位基因特異性引子會與此位點黏合,在PCR反應時擴增出產物,電泳分析時即可產生電泳帶。選用台農67號作為野生型標準品設計為無條帶表現之對照品種;17為TN11、KH139及KH142品種之混合,作為12組引子產物大小相對位置之對照組。 Referring to Fig. 4, the electrophoresis results of the 2012 Taiwan rice recommended varieties were analyzed by the 12-plex SNP PCR of the present invention, 1 being TCS10, 2 being TK2, 3 being TK8, 4 being TK9, 5 being TK14, and 6 being TK16, 7 It is TNG71, 8 is KH139, 9 is KH145, 10 is TN11, 11 is TC192, 12 is HL21, 13 is TT30, 14 is Koshihikari, 15 is Tai Nong 67 (TNG67), 16 is water, and 17 is mixed. Taking TCS10 as an example, the position of 556 bp in the second introduction group is usually A. Therefore, the product cannot be amplified when PCR is performed. If 556 bp is G phenotype, the cultivar has a single nucleotide polymorphism in the allele ( SNP), an allele-specific primer will bind to this site, and the product will be amplified during the PCR reaction, and the electrophoresis band will be generated by electrophoresis. Tainong 67 was selected as the wild type standard design as the control variety without strip performance; 17 was the mixture of TN11, KH139 and KH142 varieties, which was used as the control group of the relative positions of the 12 groups of primers.
將50個品種間不同SNP位點的多型性整理於表2,作為12組引子組多重單一核苷酸多型性聚合酶鏈鎖反應之品種鑑定的參
考標準(步驟70):
本發明係提供一種利用多重單一核苷酸多型性聚合酶鏈鎖反應(Multiplex SNP PCR)偵測單一核苷酸多型性以鑑別國內外稻米品種之方法,其係於單一反應中可同時完成多個位點的偵測具有快速且降低成本的優點,若搭配毛細管電泳的使用不啻可成為自動化分析的省時工具。 The present invention provides a method for detecting single nucleotide polymorphism by using multiple single nucleotide polymorphic polymerase chain reaction (Multiplex SNP PCR) to identify domestic and foreign rice varieties, which can be simultaneously used in a single reaction. The detection of multiple sites is fast and cost-effective, and the use of capillary electrophoresis can be a time-saving tool for automated analysis.
目前國內尚無可有效鑑別臺灣不同稻米品種及區分臺灣稻米品種與國外稻米品種的方法,本發明可建立我國稻米品種的準確鑑定判別方法,以作為進行市場管理的依據,同時可解決農民與水稻秧苗業者之品種認定之爭議,以確保品種之純正優良利於稻米產業永續發展。另外,市售小包裝白米將走向高品質及高單價之趨勢,本發明亦可作為商品認證之用,加強國人對國內品牌之信心,並提升我國稻米之品質。 At present, there is no method for effectively identifying different rice varieties in Taiwan and distinguishing between Taiwan rice varieties and foreign rice varieties. The invention can establish an accurate identification and discrimination method for rice varieties in China, as a basis for market management, and at the same time solve farmers and The controversy over the variety identification of rice seedlings to ensure the purity of the variety is conducive to the sustainable development of the rice industry. In addition, the commercially available small package white rice will move toward high quality and high unit price. The invention can also be used as a commodity certification to strengthen the confidence of Chinese people in domestic brands and improve the quality of rice in China.
10~70‧‧‧流程圖步驟 10~70‧‧‧ Flowchart steps
第1圖為本發明之鑑定國內外稻米品種之方法之流程圖。 Figure 1 is a flow chart of a method for identifying rice varieties at home and abroad according to the present invention.
第2圖為利用本發明之鑑定國內外稻米品種之方法以Qiaxcel毛細管電泳進行12-plex SNP PCR之波峰圖。 Fig. 2 is a peak diagram of 12-plex SNP PCR using Qiaxcel capillary electrophoresis using the method for identifying domestic and foreign rice varieties of the present invention.
第3圖為不同稻米品種(TK16、TCSW21及KH142)利用本發明之鑑定國內外稻米品種之方法進行12-plex SNP PCR分析之Qiaxcel毛細管電泳波峰圖。 Fig. 3 is a peak diagram of Qiaxcel capillary electrophoresis of 12-plex SNP PCR analysis using different rice varieties (TK16, TCSW21 and KH142) by the method for identifying domestic and foreign rice varieties.
第4圖為利用本發明之鑑定國內外稻米品種之方法以膠體電泳分析進行12-plex SNP PCR之電泳圖;1為TCS10、2為TK2、3為TK8、4為TK9、5為TK14、6為TK16、7為TNG71、8為KH139、9為KH145、10為TN11、11為TC192、12為HL21、13為TT30、14為Koshihikari、15為TNG67、16為水、17為混合。 Figure 4 is a diagram showing the electrophoresis pattern of 12-plex SNP PCR by colloidal electrophoresis using the method for identifying domestic and foreign rice varieties; 1 is TCS10, 2 is TK2, 3 is TK8, 4 is TK9, and 5 is TK14, 6 TK16, 7 is TNG71, 8 is KH139, 9 is KH145, 10 is TN11, 11 is TC192, 12 is HL21, 13 is TT30, 14 is Koshihikari, 15 is TNG67, 16 is water, and 17 is mixed.
<110> 國立台灣大學 <110> National Taiwan University
<120> 鑑定國內外稻米品種之方法 <120> Method for identifying domestic and foreign rice varieties
<130> 101B0555-I1 <130> 101B0555-I1
<160> 36 <160> 36
<170> PatentIn version 3.3 <170> PatentIn version 3.3
<210> 1 <210> 1
<211> 646 <211> 646
<212> DNA <212> DNA
<213> 水稻(Oryza sativa) <213> Rice (Oryza sativa)
<400> 1 <400> 1
<210> 2 <210> 2
<211> 556 <211> 556
<212> DNA <212> DNA
<213> 水稻(Oryza sativa) <213> Rice (Oryza sativa)
<400> 2 <400> 2
<210> 3 <210> 3
<211> 503 <211> 503
<212> DNA <212> DNA
<213> 水稻(Oryza sativa) <213> Rice (Oryza sativa)
<400> 3 <400> 3
<210> 4 <210> 4
<211> 477 <211> 477
<212> DNA <212> DNA
<213> 水稻(Oryza sativa) <213> Rice (Oryza sativa)
<400> 4 <400> 4
<210> 5 <210> 5
<211> 446 <211> 446
<212> DNA <212> DNA
<213> 水稻(Oryza sativa) <213> Rice (Oryza sativa)
<400> 5 <400> 5
<210> 6 <210> 6
<211> 402 <211> 402
<212> DNA <212> DNA
<213> 水稻(Oryza sativa) <213> Rice (Oryza sativa)
<400> 6 <400> 6
<210> 7 <210> 7
<211> 385 <211> 385
<212> DNA <212> DNA
<213> 水稻(Oryza sativa) <213> Rice (Oryza sativa)
<400> 7 <400> 7
<210> 8 <210> 8
<211> 350 <211> 350
<212> DNA <212> DNA
<213> 水稻(Oryza sativa) <213> Rice (Oryza sativa)
<400> 8 <400> 8
<210> 9 <210> 9
<211> 285 <211> 285
<212> DNA <212> DNA
<213> 水稻(Oryza sativa) <213> Rice (Oryza sativa)
<400> 9 <400> 9
<210> 10 <210> 10
<211> 248 <211> 248
<212> DNA <212> DNA
<213> 水稻(Oryza sativa) <213> Rice (Oryza sativa)
<400> 10 <400> 10
<210> 11 <210> 11
<211> 210 <211> 210
<212> DNA <212> DNA
<213> 水稻(Oryza sativa) <213> Rice (Oryza sativa)
<400> 11 <400> 11
<210> 12 <210> 12
<211> 113 <211> 113
<212> DNA <212> DNA
<213> 水稻(Oryza sativa) <213> Rice (Oryza sativa)
<400> 12 <400> 12
<210> 13 <210> 13
<211> 20 <211> 20
<212> DNA <212> DNA
<213> 人造序列 <213> Artificial sequence
<220> <220>
<223> S607-1F <223> S607-1F
<400> 13 <400> 13
<210> 14 <210> 14
<211> 21 <211> 21
<212> DNA <212> DNA
<213> 人造序列 <213> Artificial sequence
<220> <220>
<223> S607-1R <223> S607-1R
<400> 14 <400> 14
<210> 15 <210> 15
<211> 21 <211> 21
<212> DNA <212> DNA
<213> 人造序列 <213> Artificial sequence
<220> <220>
<223> N1453-2F <223> N1453-2F
<400> 15 <400> 15
<210> 16 <210> 16
<211> 21 <211> 21
<212> DNA <212> DNA
<213> 人造序列 <213> Artificial sequence
<220> <220>
<223> N1453-2R <223> N1453-2R
<400> 16 <400> 16
<210> 17 <210> 17
<211> 20 <211> 20
<212> DNA <212> DNA
<213> 人造序列 <213> Artificial sequence
<220> <220>
<223> S186-3F <223> S186-3F
<400> 17 <400> 17
<210> 18 <210> 18
<211> 21 <211> 21
<212> DNA <212> DNA
<213> 人造序列 <213> Artificial sequence
<220> <220>
<223> S186-3R <223> S186-3R
<400> 18 <400> 18
<210> 19 <210> 19
<211> 20 <211> 20
<212> DNA <212> DNA
<213> 人造序列 <213> Artificial sequence
<220> <220>
<223> S353-1F <223> S353-1F
<400> 19 <400> 19
<210> 20 <210> 20
<211> 20 <211> 20
<212> DNA <212> DNA
<213> 人造序列 <213> Artificial sequence
<220> <220>
<223> S353-1R <223> S353-1R
<400> 20 <400> 20
<210> 21 <210> 21
<211> 21 <211> 21
<212> DNA <212> DNA
<213> 人造序列 <213> Artificial sequence
<220> <220>
<223> S486-2F <223> S486-2F
<400> 21 <400> 21
<210> 22 <210> 22
<211> 21 <211> 21
<212> DNA <212> DNA
<213> 人造序列 <213> Artificial sequence
<220> <220>
<223> S486-2R <223> S486-2R
<400> 22 <400> 22
<210> 23 <210> 23
<211> 21 <211> 21
<212> DNA <212> DNA
<213> 人造序列 <213> Artificial sequence
<220> <220>
<223> N1679F <223> N1679F
<400> 23 <400> 23
<210> 24 <210> 24
<211> 20 <211> 20
<212> DNA <212> DNA
<213> 人造序列 <213> Artificial sequence
<220> <220>
<223> N1679R <223> N1679R
<400> 24 <400> 24
<210> 25 <210> 25
<211> 20 <211> 20
<212> DNA <212> DNA
<213> 人造序列 <213> Artificial sequence
<220> <220>
<223> S1574-1F <223> S1574-1F
<400> 25 <400> 25
<210> 26 <210> 26
<211> 19 <211> 19
<212> DNA <212> DNA
<213> 人造序列 <213> Artificial sequence
<220> <220>
<223> S1574-1R <223> S1574-1R
<400> 26 <400> 26
<210> 27 <210> 27
<211> 22 <211> 22
<212> DNA <212> DNA
<213> 人造序列 <213> Artificial sequence
<220> <220>
<223> CH10-1F <223> CH10-1F
<400> 27 <400> 27
<210> 28 <210> 28
<211> 20 <211> 20
<212> DNA <212> DNA
<213> 人造序列 <213> Artificial sequence
<220> <220>
<223> CH10-1R <223> CH10-1R
<400> 28 <400> 28
<210> 29 <210> 29
<211> 20 <211> 20
<212> DNA <212> DNA
<213> 人造序列 <213> Artificial sequence
<220> <220>
<223> S1704-9F <223> S1704-9F
<400> 29 <400> 29
<210> 30 <210> 30
<211> 19 <211> 19
<212> DNA <212> DNA
<213> 人造序列 <213> Artificial sequence
<220> <220>
<223> S1704-9R <223> S1704-9R
<400> 30 <400> 30
<210> 31 <210> 31
<211> 20 <211> 20
<212> DNA <212> DNA
<213> 人造序列 <213> Artificial sequence
<220> <220>
<223> CH2-1F <223> CH2-1F
<400> 31 <400> 31
<210> 32 <210> 32
<211> 20 <211> 20
<212> DNA <212> DNA
<213> 人造序列 <213> Artificial sequence
<220> <220>
<223> CH2-1R <223> CH2-1R
<400> 32 <400> 32
<210> 33 <210> 33
<211> 20 <211> 20
<212> DNA <212> DNA
<213> 人造序列 <213> Artificial sequence
<220> <220>
<223> CH8-4F <223> CH8-4F
<400> 33 <400> 33
<210> 34 <210> 34
<211> 20 <211> 20
<212> DNA <212> DNA
<213> 人造序列 <213> Artificial sequence
<220> <220>
<223> CH8-4R <223> CH8-4R
<400> 34 <400> 34
<210> 35 <210> 35
<211> 20 <211> 20
<212> DNA <212> DNA
<213> 人造序列 <213> Artificial sequence
<220> <220>
<223> S1808-1F <223> S1808-1F
<400> 35 <400> 35
<210> 36 <210> 36
<211> 20 <211> 20
<212> DNA <212> DNA
<213> 人造序列 <213> Artificial sequence
<220> <220>
<223> 1808-1R <223> 1808-1R
<400> 36 <400> 36
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101146175A TWI458829B (en) | 2012-12-07 | 2012-12-07 | Method for determining the rice cultivars from taiwan and foreign countries |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101146175A TWI458829B (en) | 2012-12-07 | 2012-12-07 | Method for determining the rice cultivars from taiwan and foreign countries |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201422818A true TW201422818A (en) | 2014-06-16 |
TWI458829B TWI458829B (en) | 2014-11-01 |
Family
ID=51393817
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101146175A TWI458829B (en) | 2012-12-07 | 2012-12-07 | Method for determining the rice cultivars from taiwan and foreign countries |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI458829B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5688895B2 (en) | 2008-12-26 | 2015-03-25 | Dowaエレクトロニクス株式会社 | Fine silver particle powder and silver paste using the powder |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006174714A (en) * | 2004-12-21 | 2006-07-06 | Plant Genome Center Co Ltd | Genome polymorphism marker of oryza sativa and use thereof |
-
2012
- 2012-12-07 TW TW101146175A patent/TWI458829B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI458829B (en) | 2014-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106480228B (en) | The SNP marker and its application of rice low cadmium-accumulation gene OsHMA3 | |
CN111471790B (en) | Molecular marker closely linked with wheat grain filling rate QTL QGfr. sicau-7D.1 and application thereof | |
CN112195265B (en) | SNP (Single nucleotide polymorphism) locus and primer set for identifying purity of pepper hybrid and application | |
CN107354202B (en) | Primer combination and kit for identifying flue-cured tobacco K326, application and identification method | |
KR20180077873A (en) | SNP markers for selection of marker-assisted backcross in watermelon | |
CN107012217B (en) | SNP molecular markers for distinguishing bred sesame varieties in China | |
CN112195264A (en) | SNP (Single nucleotide polymorphism) locus and primer set for identifying purity of tomato hybrid and application | |
CN111647677B (en) | Molecular marker closely linked with wheat grain filling rate QTL QGfr. sicau-6D and application | |
CN106755465B (en) | Molecular marker closely linked with wheat flag leaf length QTL QFLL | |
CN110283929A (en) | The relevant SNP marker 5-160 of capsicum epidemic disease resistant gene and its specific primer and application | |
CN116790784A (en) | Molecular marker, primer and method for identifying purity of loose broccoli hybrid of' Jinsong 105 | |
TWI458829B (en) | Method for determining the rice cultivars from taiwan and foreign countries | |
CN114606334A (en) | Development and application of SNP molecular marker of maize flowering phase gene | |
CN107345251B (en) | Primer combination and kit for identifying flue-cured tobacco Longjiang 911, application and identification method | |
KR101301867B1 (en) | Microsatellite primer set for identifying onion varieties | |
CN107354206B (en) | Primer combination and kit for identifying No. 3 of flue-cured tobacco Nanjiang, application and detection method | |
CN107354201B (en) | Primer combination and kit for identifying flue-cured tobacco yunyan 97, application and detection method | |
CN107354203B (en) | Primer combination and kit for identifying cured tobacco Bina No. 1, application and detection method | |
TWI447227B (en) | Method and kit for identifying phalaenopsis varieties | |
CN110317897A (en) | The relevant SNP marker 5-162 of capsicum epidemic disease resistant gene and its specific primer and application | |
CN110358855A (en) | Capsicum epidemic disease resistant gene SNP marker 5-156 and its specific primer and application | |
JP5428596B2 (en) | Variety and strain identification markers of sugarcane and their utilization | |
KR102526682B1 (en) | Molecular marker for predicting fruit orientation in pepper and uses thereof | |
CN117925886B (en) | SNP molecular marker related to side-by-side load character and application | |
CN115044700B (en) | Rice heading period QTL qHd functional marker and application thereof |