TW201421023A - Chlorine ion measurement system - Google Patents
Chlorine ion measurement system Download PDFInfo
- Publication number
- TW201421023A TW201421023A TW101143034A TW101143034A TW201421023A TW 201421023 A TW201421023 A TW 201421023A TW 101143034 A TW101143034 A TW 101143034A TW 101143034 A TW101143034 A TW 101143034A TW 201421023 A TW201421023 A TW 201421023A
- Authority
- TW
- Taiwan
- Prior art keywords
- chloride ion
- ion sensing
- chloride
- sensing system
- solution
- Prior art date
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
本發明係有關於一種氯離子感測系統,特別係有關一種應用於檢測低濃度氯離子溶液的氯離子感測器。 The present invention relates to a chloride ion sensing system, and more particularly to a chloride ion sensor for detecting a low concentration chloride ion solution.
傳統以玻璃電極作為離子感測之量測電極時,由於無法微量化量測、易損毀及攜帶不便等缺點,使其應用範圍受到相當之限制。Piet Bergveld於1970年提出離子感測場效電晶體(Ion Sensitive Field Effect Transistor,ISFET),其結構與金氧半場效電晶體(Metal Oxide Semiconductor Field Effect Transistor,MOSFET)類似,主要差異在於離子感測場效電晶體以感測膜及電解液取代金氧半場效電晶體之金屬閘極。離子感測場效電晶體本身雖結合CMOS製程技術,但其感測膜製備卻不適用於標準製程技術,需藉額外光罩製作閘極上方區域,造成成本昂貴以及降低產能。 Conventionally, when a glass electrode is used as a measuring electrode for ion sensing, its application range is considerably limited due to the inability to quantify the measurement, the damage, and the inconvenience of carrying it. Piet Bergveld proposed the Ion Sensitive Field Effect Transistor (ISFET) in 1970. Its structure is similar to that of Metal Oxide Semiconductor Field Effect Transistor (MOSFET). The main difference is ion sensing. The field effect transistor replaces the metal gate of the gold oxide half field effect transistor with the sensing film and the electrolyte. Although the ion-sensing field-effect transistor itself is combined with CMOS process technology, its sensing film preparation is not suitable for standard process technology. It requires an additional mask to make the upper area of the gate, which is costly and reduces productivity.
J.Van Der Spiegel等人於1983年提出延伸式閘極感測場效電晶體(Extended Gate Field Effect Transistor,EGFET)結構,針對離子感測場效電晶體之缺點進行改良。延伸式閘極感測場效電晶體係保留金氧半場效電晶體之金屬閘極,將感測區自金氧半場效電晶體的閘極分離出來,而二者之間以一導電材料相互連接。延伸式閘極感測場效電晶體較離子感測場效電晶體具有下列優點:(1)導線可對元件提供靜電保護、(2)元件電性作用區域可避免與水溶液直接 接觸、以及(3)製程與金氧半場效電晶體技術可完全相容,成本更為降低。 In 1983, J. Van Der Spiegel et al. proposed an Extended Gate Field Effect Transistor (EGFET) structure to improve the shortcomings of ion sensing field effect transistors. The extended gate sensing field effect crystal system retains the metal gate of the gold oxide half field effect transistor, and separates the sensing region from the gate of the gold oxide half field effect transistor, and the two are electrically connected to each other by a conductive material. connection. The extended gate sensing field effect transistor has the following advantages over the ion sensing field effect transistor: (1) the wire can provide electrostatic protection to the component, and (2) the component electrical region can be avoided directly with the aqueous solution. The contact, and (3) process is fully compatible with the MOS half-field transistor technology and the cost is reduced.
中華民國專利第564476號為延伸式閘極感測場效電晶體的相關專利。此專利揭露一種可同時偵測酸鹼度、溫度及光強度之單晶片。其電路輸出訊號具有很高的線性度。該晶片可做為延伸式閘極離子感測器對溫度及光影響之即時監控與後段補償。 Patent No. 564476 of the Republic of China is a patent related to extended gate sensing field effect transistors. This patent discloses a single wafer that simultaneously detects pH, temperature and light intensity. Its circuit output signal has a high degree of linearity. The wafer can be used as an instant monitoring and back-end compensation for the effects of temperature and light on the extended gate ion sensor.
美國專利第6015480號亦為延伸式閘極感測場效電晶體的相關專利。此專利揭露一量測延伸式氯離子感測膜生存時間之方法,ISE感測器係提供一雙層感測器結構於第四級離子-選擇聚合層,其位於一待分析樣品與一包含離子交換劑之商業用聚合ISE薄膜之間。其聚合結構包括甲基丙烯酸甲酯/氯化甲基苯乙烯(methyl methacrylate/chloromethyl styrene)共聚物及反應相關之第三代胺混合劑。 U.S. Patent No. 6015480 is also a related patent for extended gate sensing field effect transistors. This patent discloses a method for measuring the lifetime of an extended chloride ion sensing membrane. The ISE sensor provides a dual layer sensor structure for the fourth level ion-selective polymerization layer, which is located in a sample to be analyzed and a Ion exchangers are used between commercial polymeric ISE films. The polymeric structure includes a methyl methacrylate/chloromethyl styrene copolymer and a third-generation amine mixture associated with the reaction.
美國專利第6350524號專利揭露一氯離子選擇電極,其包含一不易溶解之金屬鹽層與一設置其上的親水性聚氨酯保護膜。將此親水性聚氨酯塗佈於氯離子選擇電極上,使其具有快速反應之響應時間,且可精確量測氯化物。若使用溴化物或碘化物亦可降低干擾或防止蛋白質吸附於電極表面。 U.S. Patent No. 6,350,524 discloses a chloride ion selective electrode comprising a layer of a metal salt which is insoluble and a hydrophilic polyurethane protective film disposed thereon. The hydrophilic polyurethane is coated on a chloride ion selective electrode to have a fast response time response and to accurately measure chloride. The use of bromide or iodide can also reduce interference or prevent protein adsorption to the electrode surface.
然而,上述氯離子感測器皆無法用於感測低濃度的氯離子溶液,因此,目前仍需要一種能用於低濃度氯離子溶液的氯離子感測器。 However, none of the above chloride ion sensors can be used to sense a low concentration of chloride ion solution. Therefore, there is still a need for a chloride ion sensor that can be used for a low concentration chloride ion solution.
本發明提供一種應用於檢測低濃度氯離子溶液的氯離子感測器,包括一容器,用以容置一待測溶液;一參考電極,設於容器中,以與待測溶液接觸;一氯離子感測元件,設於容器中,以與待測溶液接觸,其中氯離子感測元件包括:一基底;一氧化膜,形成於基底之上;以及一氯離子感測膜,形成於氧化膜上;以及一儀表放大器,透過一第一導線與一第二導線分別與氯離子感測元件與參考電極耦接,其中氯離子感測元件耦接儀表放大器之一負輸入端而參考電極耦接儀表放大器之一正輸入端。 The invention provides a chloride ion sensor for detecting a low concentration chloride ion solution, comprising a container for accommodating a solution to be tested; a reference electrode disposed in the container for contacting the solution to be tested; An ion sensing element disposed in the container to be in contact with the solution to be tested, wherein the chloride ion sensing element comprises: a substrate; an oxide film formed on the substrate; and a chloride ion sensing film formed on the oxide film And an instrumentation amplifier coupled to the chloride ion sensing component and the reference electrode through a first wire and a second wire, wherein the chloride ion sensing component is coupled to one of the negative input terminals of the instrumentation amplifier and the reference electrode is coupled One of the instrumentation amplifiers has a positive input.
為讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳細說明如下: The above and other objects, features and advantages of the present invention will become more <RTIgt;
以下說明本發明實施例之製作與使用。本發明實施例提供許多合適的發明概念而可廣泛地實施於各種特定背景。所揭示的特定實施例僅僅用於說明以特定方法製作及使用本發明,並非用以侷限本發明的範圍。 The making and using of the embodiments of the present invention are described below. The embodiments of the present invention provide many suitable inventive concepts and can be widely implemented in various specific contexts. The specific embodiments disclosed are merely illustrative of the invention, and are not intended to limit the scope of the invention.
請參照第1圖,第1圖係根據本發明實施例繪示出氯離子感測系統之配置圖。氯離子感測系統100包括氯離子感測元件102、參考電極104、以及儀表放大器106,其中氯離子感測元件102與參考電極104分別以第一導線102a 與第二導線104a耦接至儀表放大器106。可藉由導電膠(例如,銀膠)耦接第一導線102a與氯離子感測元件102。本發明實施例中,氯離子感測元件102透過第一導線102a耦接至儀表放大器106之負輸入端106a而參考電極104透過第二導線104a耦接至儀表放大器106之正輸入端106b。參考電極104可為銀/氯化銀(Ag/AgCl)參考電極、或其他適合的參考電極。第一導線102a與第二導線104a可各自為鋁導線、銅導線、金屬導線、或前述之組合。在本發明實施例中,儀表放大器106可為具有放大差分(differential)電壓功能的電路或晶片,例如,LT1167、AD620、或其他適合的晶片與電路。氯離子感測系統100的參考電極104與氯離子感測元件102係置放於容器108內的待測溶液110中以與其接觸。根據本發明實施例,待測溶液110可為低氯離子濃度的溶液,例如,漂白水溶液、或其他商品化氯離子溶液。本發明一些實施例中,待測溶液110之氯離子濃度為約0.1~10 ppm。容器108為可隔絕光的容器。 Please refer to FIG. 1. FIG. 1 is a configuration diagram showing a chloride ion sensing system according to an embodiment of the present invention. The chloride ion sensing system 100 includes a chloride ion sensing element 102, a reference electrode 104, and an instrumentation amplifier 106, wherein the chloride ion sensing element 102 and the reference electrode 104 are respectively a first wire 102a The second wire 104a is coupled to the instrumentation amplifier 106. The first wire 102a and the chloride ion sensing element 102 may be coupled by a conductive paste (eg, silver paste). In the embodiment of the present invention, the chloride ion sensing component 102 is coupled to the negative input terminal 106a of the instrumentation amplifier 106 through the first wire 102a, and the reference electrode 104 is coupled to the positive input terminal 106b of the instrumentation amplifier 106 through the second wire 104a. The reference electrode 104 can be a silver/silver chloride (Ag/AgCl) reference electrode, or other suitable reference electrode. The first wire 102a and the second wire 104a may each be an aluminum wire, a copper wire, a metal wire, or a combination thereof. In an embodiment of the invention, instrumentation amplifier 106 may be a circuit or wafer having a function of amplifying differential voltage, such as LT1167, AD620, or other suitable wafer and circuit. The reference electrode 104 of the chloride ion sensing system 100 and the chloride ion sensing element 102 are placed in the solution 110 to be tested in the container 108 to be in contact therewith. According to an embodiment of the invention, the solution to be tested 110 may be a solution having a low chloride ion concentration, for example, a bleaching aqueous solution, or other commercially available chloride ion solution. In some embodiments of the invention, the chloride concentration of the solution to be tested 110 is about 0.1 to 10 ppm. The container 108 is a container that can block light.
仍參照第1圖,可透過電錶120接收由儀表放大器106所輸出的電壓訊號,並再以顯示裝置122顯示出由電錶120輸出之訊號。 Still referring to FIG. 1, the voltage signal output by the instrumentation amplifier 106 can be received through the electric meter 120, and the signal output by the electric meter 120 can be displayed by the display device 122.
第2圖係根據本發明實施例繪示出氯離子感測元件102之剖面示意圖。請參照第2圖,氯離子感測元件102係由基底202、氧化膜204、以及氯離子感測膜206所組成。基底202可包括半導體基底(例如,矽基底)、玻璃基底、或前述之組合。氧化膜204可包括氧化銦錫、氧化釕、或前述之組合。在一實施例中,基底202為矽基底而氧化膜 204為氧化釕。在另一實施例中,基底202為玻璃基底而氧化膜204為氧化銦錫。氯離子感測膜206可由重量比約5~15:15~30:1~5的高分子材料、塑化劑、以及氯化物所組成。舉例來說,高分子材料可包括聚氯乙烯(poly vinyl chloride,PVC)等高分子聚合物,塑化劑可包括癸二酸二辛酯(bis(2-ethylhexyl)sebacate,DOS)等塑化劑,而氯化物可包括氯離子載體({u-[4,5-Dimethyl-3,6-bis(dodecyloxy)-1,2-phenylene]}bis(mercury chloride),ETH9033)等。在一實施例中,組成氯離子感測膜206的高分子材料、塑化劑、與氯化物之重量比例為約15:30:1。氯離子感測膜206的形成方法係先將高分子材料與塑化劑按比例溶解於四氫呋喃(tetrahydrofuran,THF)溶劑以形成高分子溶液,再另外將氯化物按比例溶解於氯化物四氫呋喃中以形成氯化物溶液。接著,再將高分子溶液與氯化物溶液均勻地混合後藉由塗佈製程塗佈於氧化膜204上。例如,藉由旋轉塗佈製程塗佈於氧化膜204上,旋轉塗佈製程的作業轉速可為約1000~5000轉,較佳轉速為4000轉。最後將塗佈於氧化膜204上的濕膜置於室溫下進行乾燥,以完成氯離子感測膜206之製備。氯離子感測元件102可更進一步包括絕緣層208,如第2圖所示,絕緣層208包覆著基底202與氧化膜204之表面且絕緣層208具有一窗口208a,窗口208a暴露出氯離子感測膜206。絕緣層208之材質可包括環氧樹脂(epoxy)、SiO2、或前述之組合。 2 is a cross-sectional view showing the chloride ion sensing element 102 in accordance with an embodiment of the present invention. Referring to FIG. 2, the chloride ion sensing element 102 is composed of a substrate 202, an oxide film 204, and a chloride ion sensing film 206. Substrate 202 can include a semiconductor substrate (eg, a germanium substrate), a glass substrate, or a combination of the foregoing. The oxide film 204 may include indium tin oxide, antimony oxide, or a combination of the foregoing. In one embodiment, substrate 202 is a germanium substrate and oxide film 204 is germanium oxide. In another embodiment, substrate 202 is a glass substrate and oxide film 204 is indium tin oxide. The chloride ion sensing film 206 may be composed of a polymer material, a plasticizer, and a chloride having a weight ratio of about 5 to 15:15 to 30:1 to 5. For example, the polymer material may include a high molecular polymer such as polyvinyl chloride (PVC), and the plasticizer may include plasticization such as bis(2-ethylhexyl)sebacate (DOS). And the chloride may include a chloride ion carrier ({u-[4,5-Dimethyl-3,6-bis(dodecyloxy)-1,2-phenylene]}bis (mercury chloride), ETH 9033) and the like. In one embodiment, the weight ratio of the polymer material, the plasticizer, and the chloride constituting the chloride ion sensing film 206 is about 15:30:1. The chloride ion sensing film 206 is formed by dissolving a polymer material and a plasticizer in a solvent of tetrahydrofuran (THF) to form a polymer solution, and further dissolving the chloride in a ratio of chloride to tetrahydrofuran. A chloride solution is formed. Next, the polymer solution and the chloride solution are uniformly mixed and then applied onto the oxide film 204 by a coating process. For example, by applying a spin coating process to the oxide film 204, the rotational speed of the spin coating process can be about 1000 to 5000 rpm, and the preferred rotation speed is 4000 rpm. Finally, the wet film coated on the oxide film 204 is dried at room temperature to complete the preparation of the chloride ion sensing film 206. The chloride ion sensing element 102 can further include an insulating layer 208. As shown in FIG. 2, the insulating layer 208 covers the surface of the substrate 202 and the oxide film 204 and the insulating layer 208 has a window 208a. The window 208a exposes chloride ions. The film 206 is sensed. The material of the insulating layer 208 may include epoxy, SiO 2 , or a combination thereof.
本發明所提供之氯離子感測系統能應用於測量低氯離子濃度溶液,例如,氯離子濃度介於0.1~10 ppm的溶液。 The chloride ion sensing system provided by the present invention can be applied to a solution for measuring a low chloride ion concentration, for example, a solution having a chloride ion concentration of 0.1 to 10 ppm.
以下為本發明較佳的實施例,值得注意的是,雖然本發明之較佳實施例係以特定的比例與材料組成氯離子感測膜,然而,本發明之氯離子感測膜不限於這些比例與材料,只要所製得之氯離子感測膜能配合本發明之氯離子感測系統並產生能應用於測量低氯離子濃度溶液的效果。 The following is a preferred embodiment of the present invention. It is noted that although the preferred embodiment of the present invention constitutes a chloride ion sensing film in a specific ratio and material, the chloride ion sensing film of the present invention is not limited to these. The ratio and material are as long as the prepared chloride ion sensing membrane can be combined with the chloride ion sensing system of the present invention and produces an effect that can be applied to the measurement of a low chloride ion concentration solution.
使用p型半導體矽基底作為基底,以直徑2英吋、厚度3厘米及純度為99.99%的釕金屬為靶材。將真空濺鍍機反應腔室之壓力抽至5×10-6托耳(Torr)以下,通入氬氣/氧氣(40 sccm/20 sccm)之混合氣體,並將壓力控制於10×10-3托耳(Torr),將射頻功率調整於100瓦特(W),進行濺鍍15分鐘以製備氧化釕薄膜於p型半導體矽基底上。之後,再將上述具有氧化釕薄膜的p型半導體基底切片成約略0.5平方公分(cm2)大小,並以銀膠連接金屬導線於氧化釕薄膜之表面。之後,採用環氧樹脂(Epoxy)包覆上述具有氧化釕薄膜的p型半導體基底,僅保留約0.2平方公分(cm2)的感測窗口並暴露氧化釕薄膜於感測窗口中。 A p-type semiconductor germanium substrate was used as a substrate, and a base metal having a diameter of 2 inches, a thickness of 3 cm, and a purity of 99.99% was used as a target. The pressure of the reaction chamber of the vacuum sputtering machine is pumped to below 5×10 -6 Torr, and a mixed gas of argon/oxygen (40 sccm/20 sccm) is introduced, and the pressure is controlled to 10×10 − 3 Torr, the RF power was adjusted to 100 watts (W), and sputtering was performed for 15 minutes to prepare a yttrium oxide film on the p-type semiconductor ruthenium substrate. Thereafter, the p-type semiconductor substrate having the ruthenium oxide film is further sliced to a size of about 0.5 square centimeter (cm 2 ), and a metal wire is bonded to the surface of the ruthenium oxide film with silver paste. Thereafter, the above-described p-type semiconductor substrate having a hafnium oxide film was coated with an epoxy resin (Epoxy), leaving only a sensing window of about 0.2 square centimeters (cm 2 ) and exposing the hafnium oxide film in the sensing window.
首先,混合0.33 g的聚氯乙烯高分子材料與0.66 g的癸二酸二辛酯塑化劑,以形成一高分子混合物。之後,將此高分子混合物加入5 mL的四氫呋喃(tetrahydrofuran, THF)溶劑中,以超音波振盪器將聚氯乙烯與完全溶解於四氫呋喃溶劑中,以形成一高分子溶液。 First, 0.33 g of a polyvinyl chloride polymer material and 0.66 g of a dioctyl sebacate plasticizer were mixed to form a polymer mixture. After that, the polymer mixture was added to 5 mL of tetrahydrofuran (tetrahydrofuran, In a solvent of THF), polyvinyl chloride was completely dissolved in a tetrahydrofuran solvent by an ultrasonic oscillator to form a polymer solution.
接著,將0.022g的{u-[4,5-Dimethyl-3,6-bis(dodecyloxy)-1,2-phenylene]}bis(mercury chloride)氯化物(ETH9033)加入1 mL的四氫呋喃溶劑中,以超音波振盪器將ETH9033氯化物完全溶解於四氫呋喃溶劑中,以形成一ETH9033溶液。取20 μL之高分子溶液加入適量的ETH9033溶液中,以超音波振盪器將其完全混合均勻,以形成氯離子溶液。最後,使用旋轉塗佈製程將2 μL之氯離子溶液塗佈於上述感測窗口中的氧化釕薄膜之表面上,並置於室溫下8小時自然乾燥,即形成氯離子感測膜,並進而完成氯離子感測元件之製備。 Next, 0.022 g of {u-[4,5-Dimethyl-3,6-bis(dodecyloxy)-1,2-phenylene]}bis(mercury chloride) chloride (ETH9033) was added to 1 mL of tetrahydrofuran solvent. The ETH9033 chloride was completely dissolved in tetrahydrofuran solvent with an ultrasonic oscillator to form an ETH9033 solution. Add 20 μL of the polymer solution to an appropriate amount of ETH9033 solution, and mix it thoroughly with an ultrasonic oscillator to form a chloride ion solution. Finally, 2 μL of the chloride ion solution is applied to the surface of the cerium oxide film in the sensing window by using a spin coating process, and is naturally dried at room temperature for 8 hours to form a chloride ion sensing film, and further The preparation of the chloride ion sensing element is completed.
以鋁導線分別將製得的氯離子感測元件與銀/氯化銀(Ag/AgCl)參考電極分別連接至LT1167儀表放大器的負輸入端與正輸入端,並將氯離子感測元件與銀/氯化銀參考電極固定於含有待測溶液的容器中,最後將LT1167儀表放大器之輸出端連接至NI國家儀器公司生產,型號:NI-DAQCard的電錶。 The prepared chloride ion sensing element and the silver/silver chloride (Ag/AgCl) reference electrode are respectively connected to the negative input terminal and the positive input terminal of the LT1167 instrumentation amplifier by an aluminum wire, and the chloride ion sensing element and the silver ion sensor are respectively connected. The /silver chloride reference electrode is fixed in a container containing the solution to be tested. Finally, the output of the LT1167 instrumentation amplifier is connected to an NI-DAQCard meter.
待測液係選用商品化標準氯離子溶液(由元虹有限公司代理)及漂白水(由花王股份有限公司所生產),而測得之標準氯離子溶液與漂白水中的氯離子濃度所引起的電 極表面電位結果繪示於第3圖及第4圖,第3圖為氯離子感測元件於商品化標準氯離子溶液0 ppm~10 ppm所量測的回應電壓(response voltage)之結果,感測度(sensitivity)與線性回歸(linear regression)分別為10.04 mV/ppm與0.996。第4圖為氯離子感測元件於漂白水0 ppm~10 ppm所量測的回應電壓之結果,感測度與線性回歸分別為15.33 mV/ppm與0.990。 The liquid to be tested is selected from the commercial standard chloride ion solution (represented by Yuanhong Co., Ltd.) and bleach (produced by Kao Co., Ltd.), and the standard chloride ion solution and the chloride ion concentration in the bleaching water are measured. Electricity The results of the polar surface potential are shown in Figures 3 and 4, and Figure 3 is the result of the response voltage measured by the chloride ion sensing element from 0 ppm to 10 ppm of the commercial standard chloride solution. The sensitivity and linear regression were 10.04 mV/ppm and 0.996, respectively. Figure 4 shows the response voltage of the chloride ion sensing element measured at 0 ppm to 10 ppm of bleach. The sensitivity and linear regression were 15.33 mV/ppm and 0.990, respectively.
第5圖為氯離子感測元件之等效電路圖,Rs 301為待測溶液之等效電阻,Rct 302為氯離子感測膜之電荷傳輸電阻,Cdl 303為氯離子感測膜之雙電層電容。 Figure 5 is an equivalent circuit diagram of the chloride ion sensing element, R s 301 is the equivalent resistance of the solution to be tested, R ct 302 is the charge transfer resistance of the chloride ion sensing film, and C dl 303 is the chloride ion sensing film. Double layer capacitor.
第6圖為商品化標準氯離子溶液濃度的電化學阻抗分析儀之量測結果。請參照第6圖,當商品化標準氯離子溶液濃度越低時,氯離子與氯離子感測膜之間傳輸越少導致阻抗增加,故可證實本發明之氯離子感測系統可應用於低濃度之氯離子溶液進行量測。 Figure 6 is a measurement of the electrochemical impedance analyzer of a commercialized standard chloride ion solution concentration. Referring to FIG. 6, when the concentration of the commercial standard chloride ion solution is lower, the less the transmission between the chloride ion and the chloride ion sensing film leads to an increase in impedance, so it can be confirmed that the chloride ion sensing system of the present invention can be applied to low. The concentration of the chloride ion solution is measured.
雖然本發明已以數個較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作任意之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 While the invention has been described above in terms of several preferred embodiments, it is not intended to limit the scope of the present invention, and any one of ordinary skill in the art can make any changes without departing from the spirit and scope of the invention. And the scope of the present invention is defined by the scope of the appended claims.
100‧‧‧氯離子感測系統 100‧‧‧ chloride ion sensing system
102‧‧‧氯離子感測元件 102‧‧‧ chloride ion sensing element
104‧‧‧參考電極 104‧‧‧ reference electrode
102a、104a‧‧‧導線 102a, 104a‧‧‧ wire
106‧‧‧儀表放大器 106‧‧‧Instrument Amplifier
106a‧‧‧負輸入端 106a‧‧‧negative input
106b‧‧‧正輸入端 106b‧‧‧ positive input
108‧‧‧容器 108‧‧‧ Container
110‧‧‧待測溶液 110‧‧‧Test solution
120‧‧‧電錶 120‧‧‧Electric meter
122‧‧‧顯示裝置 122‧‧‧ display device
202‧‧‧基底 202‧‧‧Base
204‧‧‧氧化膜 204‧‧‧Oxide film
206‧‧‧氯離子感測膜 206‧‧‧ chloride ion sensing membrane
208‧‧‧絕緣層 208‧‧‧Insulation
208a‧‧‧窗口 208a‧‧‧ window
第1圖係根據本發明實施例繪示出氯離子感測系統之配置圖;第2圖係根據本發明實施例繪示出氯離子感測元件102之剖面示意圖;第3圖係根據本發明實施例所繪示出商品化標準氯離子溶液的氯離子濃度與測得的反應電壓之關係圖;第4圖係根據本發明實施例所繪示出漂白水的氯離子濃度與測得的反應電壓之關係圖;第5圖係根據本發明實施例所繪示出氯離子感測元件之等效電路圖;第6圖係根據本發明實施例所繪示出商品化標準氯離子溶液之氯離子濃度的電化學阻抗分析儀之量測結果數據圖。 1 is a configuration diagram showing a chloride ion sensing system according to an embodiment of the present invention; FIG. 2 is a schematic cross-sectional view showing a chloride ion sensing element 102 according to an embodiment of the present invention; and FIG. 3 is a diagram according to the present invention. The figure shows the relationship between the chloride ion concentration of the commercial standard chloride ion solution and the measured reaction voltage; and FIG. 4 shows the chloride ion concentration of the bleach water and the measured reaction according to an embodiment of the present invention. FIG. 5 is an equivalent circuit diagram of a chloride ion sensing element according to an embodiment of the invention; FIG. 6 is a diagram showing a chloride ion of a commercial standard chloride ion solution according to an embodiment of the invention. Data chart of the measurement results of the electrochemical impedance analyzer of the concentration.
100‧‧‧氯離子感測系統 100‧‧‧ chloride ion sensing system
102‧‧‧氯離子感測元件 102‧‧‧ chloride ion sensing element
104‧‧‧參考電極 104‧‧‧ reference electrode
102a、104a‧‧‧導線 102a, 104a‧‧‧ wire
106‧‧‧儀表放大器 106‧‧‧Instrument Amplifier
106a‧‧‧負輸入端 106a‧‧‧negative input
106b‧‧‧正輸入端 106b‧‧‧ positive input
108‧‧‧容器 108‧‧‧ Container
110‧‧‧待測溶液 110‧‧‧Test solution
120‧‧‧電錶 120‧‧‧Electric meter
122‧‧‧顯示裝置 122‧‧‧ display device
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101143034A TWI485400B (en) | 2012-11-19 | 2012-11-19 | Chlorine ion measurement system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101143034A TWI485400B (en) | 2012-11-19 | 2012-11-19 | Chlorine ion measurement system |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201421023A true TW201421023A (en) | 2014-06-01 |
TWI485400B TWI485400B (en) | 2015-05-21 |
Family
ID=51393358
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101143034A TWI485400B (en) | 2012-11-19 | 2012-11-19 | Chlorine ion measurement system |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI485400B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI768058B (en) * | 2017-06-12 | 2022-06-21 | 日商愛宕股份有限公司 | Liquid quality measuring device |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL8302964A (en) * | 1983-08-24 | 1985-03-18 | Cordis Europ | DEVICE FOR DETERMINING THE ACTIVITY OF AN ION (PION) IN A LIQUID. |
TWI310085B (en) * | 2006-05-09 | 2009-05-21 | Univ Nat Yunlin Sci & Tech | Chloric ion sensors and fabrication method thereof, and sensing systems comprising the same |
TWI303313B (en) * | 2006-08-25 | 2008-11-21 | Univ Chung Yuan Christian | Ion solution concentration-detecting device |
TWI326894B (en) * | 2006-11-07 | 2010-07-01 | Univ Nat Yunlin Sci & Tech | Ion sensing devices, reference electrodes and fabrication methods thereof |
TWI334025B (en) * | 2007-03-21 | 2010-12-01 | Univ Chung Yuan Christian | Portable multi-ions sensing system |
TWI366669B (en) * | 2008-01-07 | 2012-06-21 | Univ Nat Yunlin Sci & Tech | Methods for fabricating a chloric ion sensing membrane, chloric ion sensing device, measuring systems, sensitivity measuring methods for a chloric ion sensing unit, and methods for measuring temperature sensitivity, response time, hysteresis and drift of |
TW200944788A (en) * | 2008-04-23 | 2009-11-01 | Univ Nat Yunlin Sci & Tech | Ion selective electrode measuring device |
-
2012
- 2012-11-19 TW TW101143034A patent/TWI485400B/en active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI768058B (en) * | 2017-06-12 | 2022-06-21 | 日商愛宕股份有限公司 | Liquid quality measuring device |
Also Published As
Publication number | Publication date |
---|---|
TWI485400B (en) | 2015-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7582500B2 (en) | Reference pH sensor, preparation and application thereof | |
US6416646B2 (en) | Method of making a material for establishing solid state contact for ion selective electrodes | |
TW201124719A (en) | Hydrogen ion sensitive field effect transistor and manufacturing method thereof | |
US20050263410A1 (en) | Ion-selective electrodes and method of fabricating sensing units thereof | |
TW200946904A (en) | Method for forming an extended gate field effect transistor (EGFET) based sensor and the sensor formed thereby | |
US20070000778A1 (en) | Multi-parameter sensor with readout circuit | |
CN102980931B (en) | All-solid-state selective electrode based on functional ion liquid and preparation method of all-solid-state selective electrode | |
Chou et al. | Fabrication and application of ruthenium-doped titanium dioxide films as electrode material for ion-sensitive extended-gate FETs | |
Wang et al. | Light‐addressable potentiometric sensor with nitrogen‐incorporated ceramic Sm2O3 membrane for chloride ions detection | |
US20050139490A1 (en) | Alkaloid sensor, systems comprising the same, and measurement using the systems | |
US7758733B2 (en) | Dual type potentiometric creatinine biosensor | |
TWI432724B (en) | Microsystem for analyzing blood | |
TWI485400B (en) | Chlorine ion measurement system | |
KR20130057056A (en) | Sensors for detecting ion concentration using cnt and methods manufacturing the same | |
US9201039B2 (en) | Measuring transducer for determining a measured variable representing a content of H+and/or oh−ions in a measured medium | |
TWI393880B (en) | Method for sodium ion selective electrode, sodium ion selective electrode therefrom and sodium ion sensing device | |
TWI435078B (en) | Ion-selecting device and method for making the same | |
TWI326894B (en) | Ion sensing devices, reference electrodes and fabrication methods thereof | |
US8148756B2 (en) | Separative extended gate field effect transistor based uric acid sensing device, system and method for forming thereof | |
TWI334025B (en) | Portable multi-ions sensing system | |
TWI310085B (en) | Chloric ion sensors and fabrication method thereof, and sensing systems comprising the same | |
JP2022537280A (en) | Metal ferrocyanide-doped carbon as a transducer for ion-selective electrodes | |
WO2020212536A1 (en) | Floating gate transistor for sensing applications | |
WO2020212535A1 (en) | Extended gate transistor for sensing applications | |
CN111781266A (en) | Electrochemical sensor, preparation method thereof and ion concentration detection system |