TW201419723A - Switching power converting circuit capable of outputting a preset current, method therefore and manufacturing method of IC with the same circuit - Google Patents

Switching power converting circuit capable of outputting a preset current, method therefore and manufacturing method of IC with the same circuit Download PDF

Info

Publication number
TW201419723A
TW201419723A TW101142481A TW101142481A TW201419723A TW 201419723 A TW201419723 A TW 201419723A TW 101142481 A TW101142481 A TW 101142481A TW 101142481 A TW101142481 A TW 101142481A TW 201419723 A TW201419723 A TW 201419723A
Authority
TW
Taiwan
Prior art keywords
current
signal
circuit
voltage
transistor switch
Prior art date
Application number
TW101142481A
Other languages
Chinese (zh)
Other versions
TWI495234B (en
Inventor
Yao-Chu Chao
Original Assignee
M3 Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by M3 Technology Inc filed Critical M3 Technology Inc
Priority to TW101142481A priority Critical patent/TWI495234B/en
Publication of TW201419723A publication Critical patent/TW201419723A/en
Application granted granted Critical
Publication of TWI495234B publication Critical patent/TWI495234B/en

Links

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

A switching power converting circuit capable of outputting a preset current, method therefore and manufacturing method of IC with the same circuit. A sample/hold circuit samples a current sense signal corresponding to a current flowing through a high-side transistor switch in current-outputting path at a timing substantially concurrently with the conducting of the high-side transistor switch, and holds the sampled signal at a high level at the remaining timing. A current error amplifier outputs a current error signal according to the output of the sample/hold circuit and a preset current reference signal. When the preset current is output, a comparator outputs a PWM signal to control the ON/OFF duty cycle of the high-side transistor switch and the low-side transistor switch, so as to regulate the output current to a preset level.

Description

可定電流輸出的切換式電源轉換電路、其電源轉換方法及具 有該電路之積體電路的製造方法 Switching power conversion circuit capable of constant current output, power conversion method thereof and Manufacturing method of integrated circuit having the circuit

本發明是關於一種切換式電源轉換器,特別是關於採用脈衝寬度調變方式、具有輸出電流監測電路、能夠根據所監測到的輸出電流量調整輸出脈衝寬度而達到穩定輸出預先設定的電流量的可定電流輸出的切換式電源轉換電路、其電源轉換方法及具有該電路之積體電路的製造方法。 The present invention relates to a switching power converter, and more particularly to a pulse width modulation method, having an output current monitoring circuit capable of adjusting an output pulse width according to a monitored output current amount to achieve a stable output of a preset current amount. A switching power conversion circuit capable of constant current output, a power conversion method thereof, and a manufacturing method of an integrated circuit having the same.

第1圖是一種降壓型定電流輸出之切換式電源轉換器的電路示意圖。 Figure 1 is a circuit diagram of a buck-type constant current output switching power converter.

參照第1圖,切換式電源轉換器10包括一高位電晶體開關MH、一低位電晶體開關ML、一控制器12、一電感14、一電容16、及一電流感測電阻18。 Referring to FIG. 1 , the switching power converter 10 includes a high-level transistor switch M H , a low-level transistor switch M L , a controller 12 , an inductor 14 , a capacitor 16 , and a current sensing resistor 18 .

控制器903連接高位電晶體開關MH的閘極與低位電晶體開關ML的閘極,並且控制高位電晶體開關MH和低位電晶體開關ML的開關時序。高位電晶體開關MH的正極連接電源輸入PIN,而高位電晶體開關MH的負極連接低位電晶體開關ML的正極。連接低位電晶體開關ML的負極則連接至電源負極PGND。電感14的第一端連接高位電晶體開關MH的負極與低位電晶體開關ML的正極相連接之處,而電感14的第二端連接電流感測電阻18的第一端。電流感測電阻18的第二端則連接至電容16的正極和負載20的正極。電容16的負極和負載20的負極則連接到電源負極PGND。 The controller 903 connects the gate of the upper transistor switch M H with the gate of the lower transistor switch M L and controls the switching timing of the upper transistor switch M H and the lower transistor switch M L . The anode of the high-position transistor switch M H is connected to the power input PIN, and the cathode of the high-position transistor switch M H is connected to the anode of the low-position transistor switch M L . The negative terminal connected to the lower transistor switch M L is connected to the negative power supply PGND. The first end of the inductor 14 is connected to the cathode of the high-position transistor switch M H and the cathode of the low-level transistor switch M L , and the second end of the inductor 14 is connected to the first end of the current sensing resistor 18 . The second end of current sense resistor 18 is coupled to the positive terminal of capacitor 16 and the positive terminal of load 20. The negative pole of the capacitor 16 and the negative pole of the load 20 are connected to the negative pole PGND of the power source.

其中,當電晶體開關(即,高位電晶體開關MH或低位電晶體 開關ML)是使用PMOS時,正極為源極且負極為汲極。而當電晶體開關是使用NMOS時,正極為汲極且負極為源極。 Wherein, when the transistor switch (ie, the high-position transistor switch M H or the low-position transistor switch M L ) uses a PMOS, the positive electrode is the source and the negative electrode is the drain. When the transistor switch uses an NMOS, the positive electrode is a drain and the negative electrode is a source.

在電流監測上,根據電流等於電壓除以電阻的公式,利用量測到的電流感測電阻18兩端的電位差VR以及已知的電流感測電阻18的電阻值來得出輸出電流量信號。再將輸出電流量信號回饋到脈衝寬度調變電路來調整輸出脈衝寬度,進而調節輸出電流IL的量。 In current monitoring, the output current amount signal is derived from the potential difference V R across the measured current sense resistor 18 and the resistance value of the known current sense resistor 18 based on the equation that the current is equal to the voltage divided by the resistance. Then, the output current amount signal is fed back to the pulse width modulation circuit to adjust the output pulse width, thereby adjusting the amount of the output current I L .

然而,在切換式電源轉換器10上,由於全部輸出電流IL都流過電流感測電阻18,因此其消耗的能量非常大。再者,為了儘量減低電流感測電阻18的能耗,電流感測電阻18必須儘量採用低阻值的電阻元件。但阻值愈低其製造誤差精度愈難掌握,因此誤差值合格堪用的電阻元件成本相對較高。 However, on the switched power converter 10, since all of the output current I L flows through the current sense resistor 18, the energy consumed is very large. Moreover, in order to minimize the energy consumption of the current sensing resistor 18, the current sensing resistor 18 must use a low resistance resistor element as much as possible. However, the lower the resistance, the more difficult it is to make the manufacturing error accuracy, so the cost of the resistor element that is acceptable for the error value is relatively high.

第2圖是另一種降壓型定電流輸出之切換式電源轉換器的電路示意圖。 Figure 2 is a circuit diagram of another buck-type constant current output switching power converter.

參照第2圖,此切換式電源轉換器10’與上述之切換式電源轉換器10的差異在於切換式電源轉換器10’省略電流感測電阻18。於此,在電流監測上,是利用電感14本身帶有一等效直流電阻的性質。 Referring to Fig. 2, the switching power converter 10' differs from the above-described switching power converter 10 in that the switching power converter 10' omits the current sensing resistor 18. Here, in the current monitoring, the inductor 14 itself has the property of having an equivalent DC resistance.

在切換式電源轉換器10’中,由濾波電阻Rf和濾波電容Cf串接成的一濾波線路19跨接在電感14兩端,藉以由此濾波線路19監測電感14兩端的電位差VL。根據電流等於電壓除以電阻的公式,利用量測到的電感14兩端的電位差VL以及已知的電感14的直流電阻值來得出輸出電流量信號。再將輸出電流量信號回饋到 脈衝寬度調變電路來調整輸出脈衝寬度,進而調節輸出電流IL的量。 In the switched power converter 10', a filter line 19 connected in series by a filter resistor Rf and a filter capacitor Cf is connected across the inductor 14, whereby the filter line 19 monitors the potential difference V L across the inductor 14. The output current amount signal is derived from the measured potential difference V L across the inductor 14 and the known DC resistance value of the inductor 14 based on a formula in which the current is equal to the voltage divided by the resistance. Then, the output current amount signal is fed back to the pulse width modulation circuit to adjust the output pulse width, thereby adjusting the amount of the output current I L .

然而,在切換式電源轉換器10’上,實用的電感14其直流電阻值相當低,並且相同規格之電感器之間的直流電阻值的差異經常高於百分之二十,導致實際安裝相同規格的電感器的每個切換式電源轉換器的成品,其分別感測到的理論輸出電流量與實際輸出電流量誤差過大。 However, on the switched-mode power converter 10', the practical inductor 14 has a relatively low DC resistance value, and the difference in DC resistance between the inductors of the same specification is often higher than 20%, resulting in the same actual installation. In the finished product of the switched-type power converter of the specification inductor, the sensed theoretical output current amount and the actual output current amount respectively are excessively large.

在一實施例中,一種可定電流輸出的切換式電源轉換電路包括:一電源輸入接點、一電源輸出接點、一電源轉換電路、一電流感測電路、一採樣/保持電路、一信號產生電路、一電流誤差放大器以及一比較器。 In one embodiment, a switchable power conversion circuit capable of constant current output includes: a power input contact, a power output contact, a power conversion circuit, a current sensing circuit, a sample/hold circuit, and a signal A generating circuit, a current error amplifier, and a comparator are provided.

電源轉換電路電性連接在電源輸入接點和電源輸出接點之間,並且此電源轉換電路包括一第一高位電晶體開關和一低位電晶體開關。第一高位電晶體開關和低位電晶體開關是根據一脈衝寬度調變信號而交替導通。電流感測電路用以產生對應通過第一高位電晶體開關的電流之一電流感測電壓信號。 The power conversion circuit is electrically connected between the power input contact and the power output contact, and the power conversion circuit includes a first high level transistor switch and a low level transistor switch. The first high-level transistor switch and the low-level transistor switch are alternately turned on according to a pulse width modulation signal. The current sensing circuit is configured to generate a current sense voltage signal corresponding to one of the currents passing through the first high level transistor switch.

於此,採樣/保持電路的採樣期間與第一高位電晶體開關的導通期間大致同步。在採樣期間,採樣/保持電路根據電流感測電壓信號輸出一電流監測信號。在保持期間,採樣/保持電路則輸出保持在高位準的電流監測信號。 Here, the sampling period of the sample/hold circuit is substantially synchronized with the on period of the first high level transistor switch. During sampling, the sample/hold circuit outputs a current monitoring signal based on the current sense voltage signal. During hold, the sample/hold circuit outputs a current monitoring signal that remains at a high level.

電流誤差放大器根據電流監測信號和信號產生電路所產生之電流基準電壓信號輸出一電流誤差信號。於電源輸出接點輸出一 定電流時,比較器根據一鋸齒波信號與電流誤差信號輸出脈衝寬度調變信號。 The current error amplifier outputs a current error signal according to the current monitoring signal and the current reference voltage signal generated by the signal generating circuit. Output one at the power output contact When the current is constant, the comparator outputs a pulse width modulation signal according to a sawtooth signal and a current error signal.

在一些實施例中,可定電流輸出的切換式電源轉換電路可封裝成一積體電路。 In some embodiments, the switchable power conversion circuit of the current output can be packaged as an integrated circuit.

在另一實施例中,一種積體電路的製造方法包括:在一積體電路上設置一電源輸入端子及一電源輸出端子;在此積體電路中設置電性連接在電源輸入端子和電源輸出端子之間的一電源轉換電路,其中電源轉換電路包括根據一脈衝寬度調變信號而交替導通的一高位電晶體開關和一低位電晶體開關;在此積體電路中設置一電流感測電路,以於高位電晶體開關導通時感測流過高位電晶體開關的電流並輸出一電流感測電壓信號;在此積體電路中設置一採樣/保持電路,以採樣電流感測電壓信號而輸出一電流監測信號並且在高位電晶體開關不導通時保持電流感測電壓信號;在此積體電路中設置一信號產生電路,以產生一電流基準電壓信號;在此積體電路中設置一電流誤差放大器,以根據電流監測信號和電流基準電壓信號輸出一電流誤差信號;以及在此積體電路中設置一比較器,以於電源輸出接點輸出一定電流時根據一鋸齒波信號與電流誤差信號輸出脈衝寬度調變信號。 In another embodiment, a method for manufacturing an integrated circuit includes: providing a power input terminal and a power output terminal on an integrated circuit; and electrically connecting the power input terminal and the power output in the integrated circuit; a power conversion circuit between the terminals, wherein the power conversion circuit includes a high-level transistor switch and a low-level transistor switch alternately turned on according to a pulse width modulation signal; a current sensing circuit is disposed in the integrated circuit, The current flowing through the high-level transistor switch is sensed when the high-position transistor switch is turned on, and a current-sensing voltage signal is output; a sample/hold circuit is disposed in the integrated circuit to output a current-sensing voltage signal and output a a current monitoring signal and maintaining a current sensing voltage signal when the high-level transistor switch is not conducting; a signal generating circuit is disposed in the integrated circuit to generate a current reference voltage signal; and a current error amplifier is disposed in the integrated circuit And outputting a current error signal according to the current monitoring signal and the current reference voltage signal; and the integrated circuit therein A comparator is arranged to output a pulse width modulation signal according to a sawtooth signal and a current error signal when the power output contact outputs a certain current.

在又一實施例中,一種可定電流輸出的切換式電源轉換方法包括:根據一脈衝寬度調變信號而交替導通一第一高位電晶體開關和一低位電晶體開關;感測通過第一高位電晶體開關的電流,以產生對應通過第一高位電晶體開關的電流之一電流感測電壓信號;在第一高位電晶體開關的導通期間利用一採樣/保持開關採樣 電流感測電壓信號,以根據電流感測電壓信號輸出一電流監測信號;在第一高位電晶體開關不導通期間利用採樣/保持開關保持電流感測電壓信號,以輸出保持在高位準的電流監測信號;根據電流監測信號和一電流基準電壓信號輸出一電流誤差信號;以及於電源輸出接點輸出一定電流時,根據一鋸齒波信號與電流誤差信號輸出脈衝寬度調變信號。 In still another embodiment, a switchable power conversion method for a constant current output includes: alternately turning on a first high level transistor switch and a low level transistor switch according to a pulse width modulation signal; sensing through the first high level a current of the transistor switch to generate a current sense voltage signal corresponding to one of the currents through the first high level transistor switch; sampling with a sample/hold switch during the turn-on of the first high level transistor switch The current senses the voltage signal to output a current monitoring signal according to the current sensing voltage signal; and the current sensing voltage signal is held by the sample/hold switch during the non-conduction of the first high-level transistor switch to output the current monitoring at a high level a signal; outputting a current error signal according to the current monitoring signal and a current reference voltage signal; and outputting a pulse width modulation signal according to a sawtooth signal and a current error signal when the power output contact outputs a certain current.

其中,第一高位電晶體開關是設置在一電源輸入接點和一電源輸出接點之間的一第一電流路徑上,以及低位電晶體開關是設置在電源輸入接點和一電源負極接點之間或電源輸出接點和電源負極接點之間的一第二電流路徑上。 Wherein, the first high-level transistor switch is disposed on a first current path between a power input contact and a power output contact, and the low-level transistor switch is disposed at the power input contact and a negative contact of the power supply. A second current path between the power supply output contact and the power supply negative contact.

綜上,在根據本發明之可定電流輸出的切換式電源轉換電路、其電源轉換方法及具有該電路之積體電路的製造方法中,在電流輸出路徑(即,電源轉換電路)之外,另設置了一條與電流輸出路徑平行之電流分流路徑(特別是與高位電晶體開關或高位電晶體開關平行的主動式分流電路)。電流分流路徑所流過電流與電流輸出路徑中之高位電晶體開關所流過電流相較甚小且兩者成比例。在一些實施例中,電流誤差放大器的第二輸入端連接一可由使用者設定其電壓值的電壓源(即,信號產生電路)。 In summary, in the switching power conversion circuit of the constant current output according to the present invention, the power conversion method thereof, and the manufacturing method of the integrated circuit having the circuit, in addition to the current output path (ie, the power conversion circuit), A current shunt path parallel to the current output path (especially an active shunt circuit parallel to the high-level transistor switch or the high-position transistor switch) is provided. The current flowing through the current shunt path is relatively small compared to the current flowing through the high-level transistor switch in the current output path and is proportional to both. In some embodiments, the second input of the current error amplifier is coupled to a voltage source (ie, a signal generating circuit) that can be set by the user.

在工作原理上,強制流過主動式分流電路的電流為流過電流輸出路徑中之高位電晶體開關的電流的一固定分數(即,n分之一),因此可透過監測流過主動式分流電路的電流的量來計算出流過高位電晶體開關的輸出電流的量。並且,在同一脈衝周期中,上半周期流過高位電晶體開關的電流的平均值與下半周期流過低 位電晶體開關的電流的平均值兩者大致相等。因此,可透過監測當高位電晶體開關導通時流過主動式分流線路的電流的平均值得到整個電路(或積體電路)的平均輸出電流量。再者,電流感測電壓信號通過採樣/保持電路濾波後,輸出的電流監測信號的漣波幅度縮小並且向原電位差的平均值趨近。由於電流誤差放大器所輸出的信號的電壓升降速率較所輸入的信號的電壓升降速率為低(即,放大器的頻寬較輸入信號頻率低)的限制,並且相對於第一輸入端所接收的高頻信號(電流監測信號)又相當於一低通濾波器,使得所輸入的電流監測信號不但漣波幅度再縮小並且有效避免了次諧波震蕩。 In operation, the current forced through the active shunt circuit is a fixed fraction of the current flowing through the high-level transistor switch in the current output path (ie, one-nth), so that the active shunt can be monitored through the flow. The amount of current in the circuit is used to calculate the amount of output current flowing through the high-level transistor switch. Moreover, in the same pulse period, the average value of the current flowing through the high-level transistor switch in the upper half cycle is lower than that in the second half cycle. The average of the currents of the bit transistor switches are approximately equal. Therefore, the average output current amount of the entire circuit (or integrated circuit) can be obtained by monitoring the average value of the current flowing through the active shunt line when the high-position transistor switch is turned on. Furthermore, after the current sensing voltage signal is filtered by the sample/hold circuit, the amplitude of the output current monitoring signal is reduced and approaches the average of the original potential difference. Because the voltage rise and fall rate of the signal output by the current error amplifier is lower than the voltage rise and fall rate of the input signal (ie, the bandwidth of the amplifier is lower than the input signal frequency), and is higher than the received frequency of the first input terminal. The frequency signal (current monitoring signal) is equivalent to a low-pass filter, so that the input current monitoring signal not only reduces the amplitude of the chopping but also effectively avoids the subharmonic oscillation.

根據本發明之可定電流輸出的切換式電源轉換電路、其電源轉換方法及具有該電路之積體電路的製造方法可應用在例如電池的充電器或發光二極體的驅動器等需要對外部負載輸出一固定電流的場合。 The switching power conversion circuit capable of constant current output according to the present invention, the power conversion method thereof, and the manufacturing method of the integrated circuit having the same can be applied to, for example, a charger of a battery or a driver of a light emitting diode, etc., which are required to be externally loaded When a fixed current is output.

以下述及之「第一」、「第二」等術語,其係用以區別所指之元件,除非有特別說明,此些用語非用以排序或限定所指元件之差異性,且亦非用以限制本發明之範圍。 In the following terms, "first" and "second" are used to distinguish the elements referred to, and unless otherwise stated, such terms are not used to rank or limit the differences of the elements referred to, and It is intended to limit the scope of the invention.

第3圖是根據本發明第一實施例之可定電流輸出的切換式電源轉換電路的示意圖。 Fig. 3 is a view showing a switching power supply switching circuit of a constant current output according to the first embodiment of the present invention.

參照第3圖,可定電流輸出的切換式電源轉換電路包括一電源輸入接點111、一電源輸出接點112、一電源負極接點113、一電流設定接點114、一電壓回授接點115、一電源轉換電路120、 一電流感測電路130、一採樣/保持電路140、一電流誤差放大器150、一誤差信號選擇器152、一電壓誤差放大器154、一信號產生電路160、一比較器170及一控制器180。 Referring to FIG. 3, the switching power conversion circuit capable of constant current output includes a power input contact 111, a power output contact 112, a power negative contact 113, a current setting contact 114, and a voltage feedback contact. 115, a power conversion circuit 120, A current sensing circuit 130, a sample/hold circuit 140, a current error amplifier 150, an error signal selector 152, a voltage error amplifier 154, a signal generating circuit 160, a comparator 170, and a controller 180.

電源轉換電路120包括多個電晶體開關,並且此些電晶體開關分別響應高位準信號和低位準信號而導通。為清楚說明,以下分別稱之高位電晶體開關和低位電晶體開關。 The power conversion circuit 120 includes a plurality of transistor switches, and the transistor switches are turned on in response to the high level signal and the low level signal, respectively. For clarity, the following are referred to as high-level transistor switches and low-level transistor switches, respectively.

應當可理解的是,圖示中之電晶體開關(如,高位電晶體開關或低位電晶體開關)雖以採用金氧半場效電晶體(Metal-Oxide-Semiconductor Field Effect Transistor;MOSFET)為例,但此非本發明之限制,其也可以採用其他類似元件,例如:絕緣閘雙極電晶體(Insulated Gate Bipolar Transistor;IGBT)。 It should be understood that the transistor switch (such as a high-level transistor switch or a low-level transistor switch) in the figure is exemplified by a Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET). However, this is not a limitation of the present invention, and other similar components may be used, such as an insulated gate bipolar transistor (IGBT).

其中,當電晶體開關是使用PMOS(p-channel MOSFET)時,正極為源極、負極為汲極、且控制極為閘極。而當電晶體開關是使用NMOS(n-channel MOSFET)時,正極為汲極、負極為源極、且控制極為閘極。 Among them, when the transistor switch uses a PMOS (p-channel MOSFET), the positive electrode is the source, the negative electrode is the drain, and the gate is controlled extremely. When the transistor switch uses an NMOS (n-channel MOSFET), the positive electrode is a drain, the negative electrode is a source, and the gate is controlled extremely.

在此實施例中,電源轉換電路120是布局成一降壓型切換式電源轉換電路。換言之,可定電流輸出的切換式電源轉換電路為一降壓型切換式電源轉換器電路。於此,電源轉換電路120包括一高位電晶體開關122和一低位電晶體開關124。 In this embodiment, the power conversion circuit 120 is a switching step-down power conversion circuit. In other words, the switching power conversion circuit capable of setting the current output is a step-down switching power converter circuit. Here, the power conversion circuit 120 includes a high level transistor switch 122 and a low level transistor switch 124.

高位電晶體開關122的正極連接至電源輸入接點111,且高位電晶體開關122的負極與低位電晶體開關124的正極共同連接至電源輸出接點112。低位電晶體開關124的負極連接至電源負極接點113。高位電晶體開關122的控制極連接到控制器180的高位準 信號輸出端,並且低位電晶體開關124的控制極則連接到控制器180的低位信號準輸出端。控制器180的輸入端連接到比較器170的輸出端。 The anode of the high level transistor switch 122 is connected to the power source input contact 111, and the cathode of the high level transistor switch 122 and the anode of the low level transistor switch 124 are commonly connected to the power source output contact 112. The cathode of the lower transistor switch 124 is connected to the power source negative contact 113. The control electrode of the high level transistor switch 122 is connected to the high level of the controller 180 The signal output terminal and the control electrode of the low-level transistor switch 124 are connected to the low-level signal quasi-output terminal of the controller 180. The input of controller 180 is coupled to the output of comparator 170.

外部之外部電感22的第一端連接到電源輸出接點112,並且外部電感22的第二端連接到外部之負載20的第一端和外部之輸出電容24的正極。負載20的第二端和輸出電容24的負極則連接到電源負極接點113。 The first end of the external external inductor 22 is connected to the power supply output contact 112, and the second end of the external inductor 22 is connected to the first end of the external load 20 and the positive terminal of the external output capacitor 24. The second end of the load 20 and the negative terminal of the output capacitor 24 are connected to the negative supply contact 113 of the power supply.

控制器180接收比較器170所輸出的脈衝寬度調變信號,並根據脈衝寬度調變信號輸出信號以控制高位電晶體開關122和低位電晶體開關124交替地開與關。 The controller 180 receives the pulse width modulation signal outputted by the comparator 170, and outputs a signal according to the pulse width modulation signal to control the high level transistor switch 122 and the low level transistor switch 124 to be alternately turned on and off.

當高位電晶體開關122導通(打開)時,低位電晶體開關124不導通(關閉)。此時,輸出電流IL依序流經電源輸入接點111、高位電晶體開關122、電源輸出接點112、外部電感22、輸出電容24(以由輸出電容24對其進行濾波)、及負載20,最後回到電源負極接點113。 When the high level transistor switch 122 is turned on (turned on), the low level transistor switch 124 is not turned on (turned off). At this time, the output current I L sequentially flows through the power input contact 111, the high transistor switch 122, the power output contact 112, the external inductor 22, the output capacitor 24 (to be filtered by the output capacitor 24), and the load. 20, finally return to the negative pole contact 113 of the power supply.

當高位電晶體開關122不導通(關閉)時,低位電晶體開關124導通(打開)。此時,儲存在外部電感22中的磁能轉化為輸出電流IL,並且轉化出的輸出電流IL依序流經輸出電容24(以由輸出電容24對其進行濾波)、負載20、電源負極接點113、低位電晶體開關124、及電源輸出接點112,最後回到外部電感22。 When the high level transistor switch 122 is not turned "on" (off), the low level transistor switch 124 is turned "on". At this time, the magnetic energy stored in the external inductor 22 is converted into the output current I L , and the converted output current I L sequentially flows through the output capacitor 24 (to be filtered by the output capacitor 24), the load 20, and the negative pole of the power supply. The contact 113, the low transistor switch 124, and the power output contact 112 are finally returned to the external inductor 22.

在一些實施例中,電源轉換電路120、電流感測電路130、採樣/保持電路140、電流誤差放大器150、誤差信號選擇器152、電壓誤差放大器154、信號產生電路160、比較器170及控制器180 可封裝成一積體電路100。換言之,電源轉換電路120、電流感測電路130、採樣/保持電路140、電流誤差放大器150、誤差信號選擇器152、電壓誤差放大器154、信號產生電路160、比較器170及控制器180是設置在一積體電路的內部。此時,電源輸入接點111、電源輸出接點112、電源負極接點113、電流設定接點114、電壓回授接點115為積體電路100之對外端子。即,電源輸入接點111為積體電路100用以與外部線路耦接之電源輸入正極端子,並用以接收來自外部線路的電源輸入VIN。電源輸出接點112為積體電路100用以與外部線路耦接之電源輸入正極端子,並用以提供電源輸出VOUT給外部線路。電源負極接點113為積體電路100用以與外部線路耦接之電源負極端子,並用以耦接至外部線路的參考準位(例如:接地)。電流設定接點114為積體電路100用以與外部線路耦接之電流設定端子,並用以接收來自外部線路的設定電流Iset。電壓回授接點115為積體電路100用以與外部線路耦接之電壓回授端子,並用以接收來自外部線路的回授信號VFBIn some embodiments, power conversion circuit 120, current sensing circuit 130, sample/hold circuit 140, current error amplifier 150, error signal selector 152, voltage error amplifier 154, signal generation circuit 160, comparator 170, and controller 180 can be packaged into an integrated circuit 100. In other words, the power conversion circuit 120, the current sensing circuit 130, the sample/hold circuit 140, the current error amplifier 150, the error signal selector 152, the voltage error amplifier 154, the signal generating circuit 160, the comparator 170, and the controller 180 are disposed at The inside of an integrated circuit. At this time, the power input contact 111, the power output contact 112, the power negative contact 113, the current setting contact 114, and the voltage feedback contact 115 are external terminals of the integrated circuit 100. That is, the power input contact 111 is a power input positive terminal to which the integrated circuit 100 is coupled to the external line, and is used to receive the power input V IN from the external line. The power output contact 112 is a power input positive terminal for the integrated circuit 100 to be coupled to the external line, and is used to provide a power output V OUT to the external line. The power source negative contact 113 is a power source negative terminal for the integrated circuit 100 to be coupled to the external line, and is coupled to a reference level of the external line (eg, ground). The current setting contact 114 is a current setting terminal for the integrated circuit 100 to be coupled to the external line, and is configured to receive the set current Iset from the external line. The voltage feedback contact 115 is a voltage feedback terminal for the integrated circuit 100 to be coupled to the external line, and is configured to receive the feedback signal V FB from the external line.

前述之外部元件(如,負載20、外部電感22、輸出電容24、設定電阻26等)即是設置在積體電路100的外部,並透過連接積體電路100的對外端子而電性連接積體電路100的內部線路。 The external components (for example, the load 20, the external inductor 22, the output capacitor 24, the setting resistor 26, and the like) are disposed outside the integrated circuit 100, and are electrically connected to the external terminals of the integrated circuit 100. The internal circuitry of circuit 100.

電流感測電路130包括主動式分流電路131和電流感測電阻135。主動式分流電路131包括一高位電晶體開關132以及由運算放大器OP1和電晶體M1所構成的一電位平衡電路134。為了方便說明,在下文中,將高位電晶體開關122稱之為第一高位電晶 體開關122、將高位電晶體開關132稱之為第二高位電晶體開關132、並且將電位平衡電路134稱之為第一電位平衡電路134。 The current sensing circuit 130 includes an active shunt circuit 131 and a current sensing resistor 135. The active shunt circuit 131 includes a high level transistor switch 132 and a potential balancing circuit 134 formed by the operational amplifier OP1 and the transistor M1. For convenience of explanation, in the following, the high-position transistor switch 122 is referred to as a first high-level electric crystal. The body switch 122, the high level transistor switch 132 is referred to as a second high level transistor switch 132, and the potential balance circuit 134 is referred to as a first potential balance circuit 134.

第二高位電晶體開關132的正極和第一高位電晶體開關122的正極共同連接到電源輸入接點111。第二高位電晶體開關132的控制極和第一高位電晶體開關122的控制極共同連接到控制器180的高位準信號輸出端。第一高位電晶體開關122的負極和第二高位電晶體開關132的負極分別與運算放大器OP1的兩個輸入端連接,並且運算放大器OP1的輸出端則連接電晶體M1的控制極。第二高位電晶體開關132的負極另連接電晶體M1的正極。 The anode of the second high level transistor switch 132 and the anode of the first high level transistor switch 122 are commonly connected to the power input contact 111. The gate of the second high level transistor switch 132 and the gate of the first high level transistor switch 122 are commonly coupled to the high level signal output of the controller 180. The negative terminal of the first high-order transistor switch 122 and the negative terminal of the second high-position transistor switch 132 are respectively connected to the two input terminals of the operational amplifier OP1, and the output terminal of the operational amplifier OP1 is connected to the gate electrode of the transistor M1. The negative electrode of the second high level transistor switch 132 is further connected to the positive electrode of the transistor M1.

由於運算放大器OP1的兩個輸入端的電位被強制相同,因而第一高位電晶體開關122的負極的電位和第二高位電晶體開關132的負極的電位也被強制相同。又由於第一高位電晶體開關122的正極和第二高位電晶體開關132的正極相連接,因此第一高位電晶體開關122的正極的電位和第二高位電晶體開關132的正極的電位也相同。 Since the potentials of the two input terminals of the operational amplifier OP1 are forced to be the same, the potential of the negative electrode of the first high-order transistor switch 122 and the potential of the negative electrode of the second high-position transistor switch 132 are also forced to be the same. Further, since the anode of the first high-position transistor switch 122 and the anode of the second high-position transistor switch 132 are connected, the potential of the anode of the first high-position transistor switch 122 and the potential of the anode of the second high-position transistor switch 132 are also the same. .

於此,第二高位電晶體開關132的材料和製造工藝均相同於第一高位電晶體開關122,但第二高位電晶體開關132的規模為第一高位電晶體開關122的一固定分數即n分之一,因此第二高位電晶體開關132的正極到負極間的導通電阻會是第一高位電晶體開關122的正極到負極間的導通電阻的n倍。又既然第一高位電晶體開關122和第二高位電晶體開關132兩者的正極到負極間的電壓降相同,而第二高位電晶體開關132的導通電阻是第一高位電晶體開關122的導通電阻的n倍,因此流過第二高位電晶體開 關132的電流IS是流過第一高位電晶體開關122的電流IM的n分之一。 Here, the material and manufacturing process of the second high level transistor switch 132 are the same as the first high level transistor switch 122, but the scale of the second high level transistor switch 132 is a fixed fraction of the first high level transistor switch 122, ie, n. One step, so the on-resistance between the positive and negative electrodes of the second high-position transistor switch 132 is n times the on-resistance between the positive and negative electrodes of the first high-position transistor switch 122. Since the voltage drop between the positive pole and the negative pole of the first high level transistor switch 122 and the second high level transistor switch 132 is the same, the on resistance of the second high level transistor switch 132 is the conduction of the first high level transistor switch 122. The resistance is n times, so the current I S flowing through the second high-position transistor switch 132 is one-nth of the current I M flowing through the first high-position transistor switch 122.

舉例來說,假設第一高位電晶體開關122的額定工作電流是2安培。以目前的半導體製造技術,可以輕易地製造出一額定工作電流是2安培的10萬分之1的第二高位電晶體開關132,如此依來,因監測電流的需求而損耗的能量變得微不足道。 For example, assume that the rated operating current of the first high level transistor switch 122 is 2 amps. With the current semiconductor manufacturing technology, a second high-order transistor switch 132 with a rated operating current of 2 amps can be easily fabricated, so that the energy lost due to the demand for monitoring current becomes negligible.

應當可理解的是,第一電位平衡電路134有許多不同的設計,並不限於第3圖所示的實施例中所揭露的設計。在本發明的其他實施例中,第一電位平衡電路134可採用其他合適的設計。 It should be understood that the first potential balancing circuit 134 has many different designs and is not limited to the design disclosed in the embodiment shown in FIG. In other embodiments of the invention, the first potential balancing circuit 134 can employ other suitable designs.

主動式分流電路131的末端串連電流感測電阻135接地。換言之,電流感測電阻135的第一端連接到電晶體Ms的負極,並且電流感測電阻135的第二端連接到信號地線。 The end series current sensing resistor 135 of the active shunt circuit 131 is grounded. In other words, the first end of the current sense resistor 135 is connected to the negative terminal of the transistor Ms, and the second end of the current sense resistor 135 is connected to the signal ground.

流過第二高位電晶體開關132的電流IS也流過電流感測電阻135,並且在電流感測電阻135的兩端形成一電位差(VSENSE)。此電位差(VSENSE)的值等於流過第一高位電晶體開關122的電流IM的n分之一乘以電流感測電阻135的電阻值(RSENSE),如下式1。 The current I S flowing through the second upper transistor switch 132 also flows through the current sense resistor 135, and a potential difference (V SENSE ) is formed across the current sense resistor 135. The value of this potential difference (V SENSE ) is equal to one-nth of the current I M flowing through the first high-position transistor switch 122 multiplied by the resistance value (R SENSE ) of the current-sensing resistor 135, as shown in the following Equation 1.

因此,利用此電位差(VSENSE)能夠成比例地表示流過流過第一高位電晶體開關122的電流IM的值。 Therefore, this potential difference (V SENSE ) can be used to proportionally represent the value of the current I M flowing through the first high-position transistor switch 122.

換言之,流過電流感測電阻135的電流量同樣是流過第一高位電晶體開關122的電流IM的n分之一,其平均值大致等於整個電路(或具此電路之積體電路100)的輸出電流IL的平均值的n 分之一。因此,電流感測電阻135的兩端的電位差的平均值大致等於電流感測電阻135的電阻值乘以整個電路(或整個積體電路100)的輸出電流IL的平均值的n分之一。 In other words, the amount of current flowing through the current sensing resistor 135 is also one-nth of the current I M flowing through the first high-position transistor switch 122, and the average value thereof is approximately equal to the entire circuit (or the integrated circuit 100 having the circuit) One of n of the average value of the output current I L . Therefore, the average value of the potential difference across the current sense resistor 135 is substantially equal to the resistance value of the current sense resistor 135 multiplied by one-nth of the average value of the output current I L of the entire circuit (or the entire integrated circuit 100).

上述電位差(VSENSE)的電流感測電壓信號輸入一採樣/保持電路140。 The current sense voltage signal of the above potential difference (V SENSE ) is input to a sample/hold circuit 140.

採樣/保持電路140包括一採樣/保持開關142和一低通濾波器144。低通濾波器144為電阻145和保持電容146共同構成之一電阻電容式低通濾波器。 The sample/hold circuit 140 includes a sample/hold switch 142 and a low pass filter 144. The low pass filter 144 is a resistor-capacitor low pass filter formed by the resistor 145 and the holding capacitor 146.

採樣/保持開關142的第一端連接到主動式分流電路131的末端和電流感測電阻135的第一端,並接收具有上述電位差(VSENSE)的電流感測電壓信號。採樣/保持開關142的第二端則連接到電阻145的第一端。電阻145的第二端連接到保持電容146的第一端和電流誤差放大器170的第一輸入端。保持電容146的第二端接地。 The first end of the sample/hold switch 142 is coupled to the end of the active shunt circuit 131 and the first end of the current sense resistor 135 and receives a current sense voltage signal having the above potential difference (V SENSE ). The second end of the sample/hold switch 142 is coupled to the first end of the resistor 145. A second end of the resistor 145 is coupled to the first terminal of the holding capacitor 146 and the first input of the current error amplifier 170. The second end of the holding capacitor 146 is grounded.

採樣/保持開關142的控制端連接到控制器180,並由控制器180輸出信號以控制採樣/保持開關142的運作(導通與否)。於此,採樣/保持開關142的導通期間(即,採樣期間)與高位電晶體開關122、132的導通期間大致同步。 The control terminal of the sample/hold switch 142 is connected to the controller 180, and a signal is output from the controller 180 to control the operation of the sample/hold switch 142 (on or off). Here, the on period (ie, the sampling period) of the sample/hold switch 142 is substantially synchronized with the on period of the high level transistor switches 122, 132.

在採樣期間,採樣/保持開關142根據電流感測電壓信號輸出一電流監測信號。在保持期間,採樣/保持開關142則使電流感測電壓信號保持在高位準而輸出保持在高位準的電流監測信號。電流監測信號經由低通濾波器144濾波後輸入到電流誤差放大器170的第一輸入端。 During sampling, the sample/hold switch 142 outputs a current monitoring signal based on the current sense voltage signal. During hold, the sample/hold switch 142 maintains the current sense voltage signal at a high level and outputs a current monitor signal that remains at a high level. The current monitoring signal is filtered via low pass filter 144 and input to a first input of current error amplifier 170.

換句話說,在第一高位電晶體開關122的導通期間,通過第 一高位電晶體開關122的電流IM對外部電感22進行充電,並且電流感測電阻135的兩端反應外部電感22的輸出電流IL的上升段(即,外部電感22的充電電流)而產生電流感測電壓信號(電位差VSENSE)。電流感測電壓信號通過具有低通濾波功能的採樣/保持電路140後,其信號漣波幅度縮小並且向原外部電感22的輸出電流IL的上升段(原電位差VSENSE)的平均值趨近。濾波後的電流感測電壓信號(即,電流監測信號)再輸入到電流誤差放大器150的第一輸入端。 In other words, during the conduction of the first high-position transistor switch 122, the external inductor 22 is charged by the current I M of the first high-position transistor switch 122, and the output of the external inductor 22 is reflected at both ends of the current-sensing resistor 135. The rising period of the current I L (ie, the charging current of the external inductor 22) generates a current sensing voltage signal (potential difference V SENSE ). After the current sense voltage signal passes through the sample/hold circuit 140 having the low pass filtering function, its signal chopping amplitude is reduced and approaches the average value of the rising portion (original potential difference V SENSE ) of the output current I L of the original external inductor 22 . The filtered current sense voltage signal (ie, current monitor signal) is again input to the first input of current error amplifier 150.

由於電流誤差放大器150具有輸出信號的電壓升降速率較所輸入信號的電壓升降速率為低(即,電流誤差放大器150的頻寬較輸入信號的頻率低)的限制,並且電流誤差放大器150相對於由第一輸入端所接收的高頻信號又相當於一低通濾波器,使得所輸入信號(即,電流監測信號)不但漣波幅度再進一步縮小並且有效避免了次諧波震蕩。 Since the current error amplifier 150 has a voltage rise and fall rate of the output signal that is lower than the voltage rise and fall rate of the input signal (ie, the bandwidth of the current error amplifier 150 is lower than the frequency of the input signal), and the current error amplifier 150 is relative to The high frequency signal received by the first input is in turn equivalent to a low pass filter, so that the input signal (ie, the current monitoring signal) not only further reduces the amplitude of the chopping but also effectively avoids subharmonic oscillation.

電流誤差放大器150的第二輸入端連接至信號產生電路160,並且接收信號產生電路160所產生的既經設定的一電流基準電壓信號。電流誤差放大器150將電流基準電壓信號和電流監測信號做誤差放大,藉以輸出一電流誤差信號到誤差信號選擇器152的第一輸入端。 A second input of current error amplifier 150 is coupled to signal generation circuit 160 and receives a set current reference voltage signal generated by signal generation circuit 160. The current error amplifier 150 amplifies the current reference voltage signal and the current monitoring signal to output a current error signal to the first input of the error signal selector 152.

在一些實施例中,信號產生電路160包括一電流電壓轉換器162和一電位平衡電路164。為清楚說明,在下文中,將電位平衡電路164稱之為第二電位平衡電路164。 In some embodiments, signal generation circuit 160 includes a current to voltage converter 162 and a potential balancing circuit 164. For clarity of explanation, in the following, the potential balancing circuit 164 is referred to as a second potential balancing circuit 164.

第二電位平衡電路164包括一運算放大器OP2和一電晶體 M2。運算放大器OP2的第一輸入端連接至積體電路100內部產生的一基準設定電位Vset,並且運算放大器OP2的第二輸入端和電晶體M2的負極共同連接電流設定接點114。運算放大器OP2的輸出端連接至電晶體M2的控制極,而電流電壓轉換器162連接在電晶體M2的正極和電流誤差放大器150的第二輸入端之間。 The second potential balancing circuit 164 includes an operational amplifier OP2 and a transistor M2. The first input terminal of the operational amplifier OP2 is connected to a reference set potential Vset generated inside the integrated circuit 100, and the second input terminal of the operational amplifier OP2 and the negative electrode of the transistor M2 are commonly connected to the current setting contact 114. The output of operational amplifier OP2 is coupled to the gate of transistor M2, and current to voltage converter 162 is coupled between the positive terminal of transistor M2 and the second input of current error amplifier 150.

第二電位平衡電路164將電流設定接點114的電位與積體電路100內部產生的基準設定電位Vset強制為相同。並且,使用者在電流設定接點114與信號地線之間連接一設定電阻26。此設定電阻26的電阻值以Rset表示。如此一來,流過電流設定接點114的電流Iset的值固定為Vset/Rset。此電流Iset藉由電流電壓轉換器162而轉換為一電壓信號,並且此電壓信號作為電流基準信號而輸入到電流誤差放大器150的第二輸入端。 The second potential balance circuit 164 forcibly sets the potential of the current setting contact 114 to be the same as the reference set potential Vset generated inside the integrated circuit 100. Moreover, the user connects a set resistor 26 between the current setting contact 114 and the signal ground. The resistance value of this set resistor 26 is represented by Rset. As a result, the value of the current Iset flowing through the current setting contact 114 is fixed to Vset/Rset. The current Iset is converted into a voltage signal by the current-to-voltage converter 162, and the voltage signal is input to the second input terminal of the current error amplifier 150 as a current reference signal.

電流電壓轉換器162包括一電流電壓轉換電阻163。於此,電流電壓轉換電阻163與電流感測電阻136是在同一時間同一製程下以同一批材料製造在同一積體電路100上,因此兩者的製造誤差的方向(正或負)和程度大致相同。舉例來說,在某一產品上,電流電壓轉換電阻163與電流感測電阻136的實際電阻值都比設計值高出百分之十,那麼分別通過兩電阻而產生的電流基準信號與電流監測信號也都各比理論值高出百分之十。因此,當電流基準信號與電流監測信號做誤差放大時,兩者的製造誤差就互相抵消掉了。 The current-to-voltage converter 162 includes a current-to-voltage conversion resistor 163. Here, the current-voltage conversion resistor 163 and the current-sensing resistor 136 are fabricated on the same integrated circuit 100 in the same batch of materials at the same time and at the same time, so the manufacturing error direction (positive or negative) and degree of the two are substantially the same. For example, on a certain product, the actual resistance values of the current-voltage conversion resistor 163 and the current-sensing resistor 136 are both 10% higher than the design value, and the current reference signal and current monitoring respectively generated by the two resistors are respectively monitored. The signals are also 10% higher than the theoretical value. Therefore, when the current reference signal and the current monitoring signal are amplified by error, the manufacturing errors of the two cancel each other out.

誤差信號選擇器152的第二輸入端連接到電壓誤差放大器154的輸出端。電壓誤差放大器154的第一輸入端電性連接到電壓 回授接點115。 A second input of error signal selector 152 is coupled to the output of voltage error amplifier 154. The first input of the voltage error amplifier 154 is electrically connected to the voltage The feedback point 115 is returned.

在靠近負載20的正極的地方可設有一電壓探測點21,並且此電壓探測點21電性連接到電壓回授接點115。 A voltage detecting point 21 may be disposed near the positive pole of the load 20, and the voltage detecting point 21 is electrically connected to the voltage feedback contact 115.

在一些實施例中,電壓探測點21到電壓誤差放大器154的第一輸入端之間的回授路徑上可設置一回授電路190。此回授電路190用以成比例地調整來自電壓探測點21的回授電壓而輸出一電壓監測信號給電壓誤差放大器154。 In some embodiments, a feedback circuit 190 can be provided on the feedback path between the voltage detection point 21 and the first input of the voltage error amplifier 154. The feedback circuit 190 is configured to proportionally adjust the feedback voltage from the voltage detection point 21 and output a voltage monitoring signal to the voltage error amplifier 154.

在一些實施例中,回授電路190可設置在積體電路100的外部,即,連接在電壓探測點21和電壓回授接點115之間。 In some embodiments, the feedback circuit 190 can be disposed external to the integrated circuit 100, that is, between the voltage detection point 21 and the voltage feedback contact 115.

在一些實施例中,回授電路190亦可設置在積體電路100的內部,即,連接在電壓回授接點115和電壓誤差放大器154的第一輸入端之間。 In some embodiments, the feedback circuit 190 can also be disposed internal to the integrated circuit 100, that is, between the voltage feedback contact 115 and the first input of the voltage error amplifier 154.

在一些實施例中,回授電路190可為一分壓電阻電路,並且分壓電阻電路的分壓接電連接到電壓誤差放大器154的第一輸入端。 In some embodiments, the feedback circuit 190 can be a voltage dividing resistor circuit, and the voltage dividing resistor of the voltage dividing resistor circuit is electrically connected to the first input terminal of the voltage error amplifier 154.

此時,回授電路190將從電壓回授接點115輸入的外部電壓回授信號成比例縮小後輸出一電壓監測信號到電壓誤差放大器154的第一輸入端。電壓誤差放大器154的第二輸入端則接受積體電路100內部產生的電壓基準信號Vref。電壓誤差放大器154將電壓基準信號Vref和電壓監測信號做誤差放大,藉以輸出一電壓誤差信號到誤差信號選擇器152的第二輸入端。 At this time, the feedback circuit 190 proportionally reduces the external voltage feedback signal input from the voltage feedback contact 115 and outputs a voltage monitoring signal to the first input terminal of the voltage error amplifier 154. The second input of the voltage error amplifier 154 receives the voltage reference signal Vref generated inside the integrated circuit 100. The voltage error amplifier 154 amplifies the voltage reference signal Vref and the voltage monitoring signal to output a voltage error signal to the second input of the error signal selector 152.

根據不同的電路設計,誤差信號選擇器152根據電壓監測信號的高低判斷外部負載20的電壓是否高於一預設電壓閥值。當負 載20的電壓低於預設電壓閥值時,誤差信號選擇器152輸出電流誤差信號到比較器170的第一輸入端。當負載20的電壓高於預設電壓閥值時,誤差信號選擇器152輸出電壓誤差信號到比較器180的第一輸入端。 According to different circuit designs, the error signal selector 152 determines whether the voltage of the external load 20 is higher than a predetermined voltage threshold based on the level of the voltage monitoring signal. When negative The error signal selector 152 outputs a current error signal to the first input of the comparator 170 when the voltage of the load 20 is below a predetermined voltage threshold. When the voltage of the load 20 is above a predetermined voltage threshold, the error signal selector 152 outputs a voltage error signal to the first input of the comparator 180.

比較器170的第二輸入端則接受來自一鋸齒波產生器172的鋸齒波信號。比較器170比較兩個輸入端接收到的信號大小,藉以輸出一脈衝寬度調變信號給控制器180。控制器180根據此脈衝寬度調變信號控制第一高位電晶體開關122和低位電晶體開關124的導通時間的工作週期(Duty Cycle),以便調節整個電路的輸出電流IL到一預設值。 The second input of comparator 170 receives a sawtooth signal from a sawtooth generator 172. The comparator 170 compares the magnitudes of the signals received at the two inputs to output a pulse width modulation signal to the controller 180. The controller 180 controls the duty cycle of the on-time of the first high-order transistor switch 122 and the low-level transistor switch 124 according to the pulse width modulation signal to adjust the output current I L of the entire circuit to a predetermined value.

在本實施例中,誤差信號選擇器152以及誤差信號選擇器152與電壓誤差放大器154的連接方式,主要是因應應用在諸如電池的充電器等需要在定電流之輸出工作模式和定電壓之輸出工作模式之間切換的情況而設置。許多種類的充電電池都有下列要求:當充電電池的電壓低於某一數值時,充電電池最好接受定電流充電,而當充電電池的電壓達到或高於某一數值時,充電電池最好接受定電壓充電。 In the present embodiment, the error signal selector 152 and the error signal selector 152 are connected to the voltage error amplifier 154 mainly in response to an output mode and a constant voltage output which are required to be applied to a constant current, such as a battery charger. Set to switch between working modes. Many types of rechargeable batteries have the following requirements: When the voltage of the rechargeable battery is lower than a certain value, the rechargeable battery is preferably charged with a constant current, and when the voltage of the rechargeable battery reaches or exceeds a certain value, the rechargeable battery is best. Accept constant voltage charging.

誤差信號選擇器152能夠根據電壓誤差放大器154所輸出的電壓誤差信號的大小判斷充電電池(即,外部負載20)的電壓低於或高於某一設定電壓值(即,預設電壓閥值)。當誤差信號選擇器152判定充電電池的電壓低於設定電壓值時,誤差信號選擇器152選擇輸出電流誤差信號給比較器170;此時,積體電路100工作在定電流之輸出模式下,並且經由電源輸出接點112輸出定 電流。當誤差信號選擇器152判定充電電池的電壓高於設定電壓值時,誤差信號選擇器152選擇輸出電壓誤差信號給比較器170;此時,積體電路100工作在定電壓輸出模式下,並且經由電源輸出接點112輸出定電壓。 The error signal selector 152 can determine that the voltage of the rechargeable battery (ie, the external load 20) is lower or higher than a certain set voltage value (ie, a preset voltage threshold) according to the magnitude of the voltage error signal output by the voltage error amplifier 154. . When the error signal selector 152 determines that the voltage of the rechargeable battery is lower than the set voltage value, the error signal selector 152 selects the output current error signal to the comparator 170; at this time, the integrated circuit 100 operates in the output mode of the constant current, and Output via the power output contact 112 Current. When the error signal selector 152 determines that the voltage of the rechargeable battery is higher than the set voltage value, the error signal selector 152 selects the output voltage error signal to the comparator 170; at this time, the integrated circuit 100 operates in the constant voltage output mode, and via The power output contact 112 outputs a constant voltage.

換句話說,當可定電流輸出的切換式電源轉換電路(或具此電路之積體電路)應用在只需輸出定電流而無需輸出定電壓的場合時,可定電流輸出的切換式電源轉換電路(或具此電路之積體電路)可不包括電壓回授接點115(電壓回授端子)、回授電路190、電壓誤差放大器154和誤差信號選擇器152。此時,電流誤差放大器150的輸出端則連接到比較器170的第一輸出端。 In other words, when a switching power supply conversion circuit (or an integrated circuit having such a circuit) capable of a constant current output is applied to a case where only a constant current is required to output a constant voltage, a switching power supply conversion capable of a constant current output is possible. The circuit (or an integrated circuit having such a circuit) may not include a voltage feedback contact 115 (voltage feedback terminal), a feedback circuit 190, a voltage error amplifier 154, and an error signal selector 152. At this time, the output of the current error amplifier 150 is connected to the first output of the comparator 170.

第4圖是根據本發明第二實施例之可定電流輸出的切換式電源轉換電路的示意圖。 Fig. 4 is a view showing a switching power supply switching circuit of a constant current output according to a second embodiment of the present invention.

參照第4圖,在此實施例中,電源轉換電路120(即,高位電晶體開關122和低位電晶體開關124)與外部電感22之間的連接方式,以及它們各自和電源輸入接點111、電源輸出接點112及電源負極接點113的連接方式不同於第3圖所示之第一實施例的布局,但在第4圖所示之第二實施例中此部分的電路布局屬於常用的升壓型切換式電源轉換器主電路,即,可定電流輸出的切換式電源轉換電路可為一升壓型切換式電源轉換器電路。並且,升壓型切換式電源轉換器主電路是在習知技術中熟知的,且為本領域之技術人員所熟知,故於此不再贅述。 Referring to FIG. 4, in this embodiment, the connection between the power conversion circuit 120 (ie, the high-level transistor switch 122 and the low-level transistor switch 124) and the external inductor 22, and their respective power input contacts 111, The connection manner of the power output contact 112 and the power negative contact 113 is different from that of the first embodiment shown in FIG. 3, but in the second embodiment shown in FIG. 4, the circuit layout of this portion is commonly used. The main circuit of the step-up switching power converter, that is, the switching power conversion circuit capable of constant current output can be a step-up switching power converter circuit. Moreover, the main circuit of the step-up switching power converter is well known in the prior art and is well known to those skilled in the art, and thus will not be described herein.

在此實施例中,電源轉換電路120是布局成一升壓型切換式電源轉換電路。於此,電源轉換電路120的低位電晶體開關124 的正極連接到電源輸入接點111,並且外部電感22連接在電源輸入VIN與電源輸入接點111之間。在第4圖所示之第二實施例中的其餘電路布局請參考以上對於第3圖所示之第一實施例的對應描述。 In this embodiment, the power conversion circuit 120 is arranged as a step-up switching power conversion circuit. Here, the anode of the lower transistor switch 124 of the power conversion circuit 120 is connected to the power input contact 111, and the external inductor 22 is connected between the power input V IN and the power input contact 111. For the remaining circuit layout in the second embodiment shown in FIG. 4, please refer to the corresponding description of the first embodiment shown in FIG. 3 above.

第5圖是根據本發明第三實施例之可定電流輸出的切換式電源轉換電路的示意圖。 Fig. 5 is a view showing a switching power supply switching circuit of a constant current output according to a third embodiment of the present invention.

參照第5圖,電源轉換電路120包括二高位電晶體開關122、123和二低位電晶體開關124、125。在此實施例中,電源轉換電路120與外部電感22之間的連接方式,以及它們各自和電源輸入接點111、電源輸出接點112及電源負極接點113的連接方式 Referring to FIG. 5, the power conversion circuit 120 includes two upper level transistor switches 122, 123 and two lower level transistor switches 124, 125. In this embodiment, the connection manner between the power conversion circuit 120 and the external inductor 22, and the manner in which they are connected to the power input contact 111, the power output contact 112, and the power negative contact 113, respectively.

電源轉換電路120(即,高位電晶體開關122和低位電晶體開關124)與外部電感22之間的連接方式,以及它們各自和電源輸入接點111、電源輸出接點112及電源負極接點113的連接方式屬於常用的升降壓兩用型切換式電源轉換器主電路,即,可定電流輸出的切換式電源轉換電路可為一升降壓兩用型切換式電源轉換器電路。並且,升降壓兩用型切換式電源轉換器主電路是在習知技術中熟知的,且為本領域之技術人員所熟知,故於此不再贅述。另外,升降壓兩用型切換式電源轉換器另需包括用於決定在升壓模式和降壓模式之間切換時機的電路及控制切換的電路,由於此部分的電路佈局是在習知技術中熟知的,且為本領域之技術人員所熟知,故於此不再贅述且在第5圖中省略繪出。 The connection between the power conversion circuit 120 (ie, the high-level transistor switch 122 and the low-level transistor switch 124) and the external inductor 22, and their respective power input contacts 111, the power output contact 112, and the power negative contact 113 The connection mode belongs to the main circuit of the commonly used buck-boost switching power converter, that is, the switching power conversion circuit capable of constant current output can be a buck-boost switching power converter circuit. Moreover, the main circuit of the buck-boost switching power converter is well known in the prior art and is well known to those skilled in the art, and thus will not be described herein. In addition, the buck-boost switching power converter additionally needs to include a circuit for determining the timing of switching between the boost mode and the buck mode, and the circuit for controlling switching, since the circuit layout of this part is in the prior art. It is well known and well known to those skilled in the art, and thus will not be described again and is omitted in FIG.

在此實施例中,電源轉換電路120是布局成一升降壓兩用型電源轉換電路。於此,高位電晶體開關122的正極與負極分別連 接至電源輸入接點111和電流輸出接點116。高位電晶體開關123的正極與負極則分別連接至電流輸入接點117和電源輸出接點112。低位電晶體開關124的正極與負極分別連接至電流輸出接點116和電源負極接點113。低位電晶體開關125的正極與負極則分別連接至電流輸入接點117和電源負極接點113。高位電晶體開關122、123的控制極連接到控制器180的高位準信號輸出端,並且低位電晶體開關124、125的控制極連接到控制器180的低位準信號輸出端。外部電感22的第一端連接至電流輸出接點116,並且外部電感22的第二端連接至電流輸入接點117。 In this embodiment, the power conversion circuit 120 is configured as a buck-boost power conversion circuit. Here, the positive electrode and the negative electrode of the high-position transistor switch 122 are respectively connected Connected to power input contact 111 and current output contact 116. The positive and negative poles of the high-position transistor switch 123 are connected to the current input contact 117 and the power supply output contact 112, respectively. The positive and negative poles of the lower transistor switch 124 are connected to the current output contact 116 and the power supply negative contact 113, respectively. The positive and negative poles of the lower transistor switch 125 are connected to the current input contact 117 and the power supply negative contact 113, respectively. The gates of the high level transistor switches 122, 123 are coupled to the high level signal output of the controller 180, and the gates of the low level transistor switches 124, 125 are coupled to the low level signal output of the controller 180. The first end of the external inductor 22 is connected to the current output contact 116, and the second end of the external inductor 22 is connected to the current input contact 117.

當可定電流輸出的切換式電源轉換電路封裝成一積體電路100時,電流輸出接點116和電流輸入接點117亦為積體電路100的外部端子。即,電流輸出接點116和電流輸入接點117分別為積體電路100的電流輸出端子和電流輸入端子,並且在積體電路100外部的外部電感22則跨接在電流輸出端子和電流輸入端子之間。 When the switching power conversion circuit of the constant current output is packaged into an integrated circuit 100, the current output contact 116 and the current input contact 117 are also external terminals of the integrated circuit 100. That is, the current output contact 116 and the current input contact 117 are the current output terminal and the current input terminal of the integrated circuit 100, respectively, and the external inductor 22 outside the integrated circuit 100 is connected across the current output terminal and the current input terminal. between.

在第5圖所示之第三實施例中的其餘電路布局也請參考以上對於第3圖所示之第一實施例的對應描述。 For the remaining circuit layout in the third embodiment shown in FIG. 5, please also refer to the corresponding description of the first embodiment shown in FIG. 3 above.

在第5圖中,為了簡化圖示,主動式分流電路131僅以一個環繞高位電晶體開關123的電流路徑的橢圓圈表示,其具體實施例電路可參考第3圖所示之第一實施例或第4圖所示之第二實施例。 In FIG. 5, for simplicity of illustration, the active shunt circuit 131 is represented by only an elliptical circle surrounding the current path of the high-position transistor switch 123. For the specific embodiment circuit, reference may be made to the first embodiment shown in FIG. Or the second embodiment shown in Fig. 4.

當可定電流輸出的切換式電源轉換電路(或具此電路之積體電路100)工作在降壓模式時,高位電晶體開關123和採樣/保持 開關142保持常開,而低位電晶體開關125則保持常關,採樣/保持電路140持續維持採樣狀態因而接收到對應包括上升段(外部電感22的充電半周期)和下降段(外部電感22的放電半周期)之完整的輸出電流IL之電流感測電壓信號。 When the switchable power conversion circuit (or the integrated circuit 100 having the circuit) of the constant current output operates in the buck mode, the high-position transistor switch 123 and the sample/hold switch 142 remain normally open, and the low-position transistor switch 125 Then, the normally-off, sample/hold circuit 140 continues to maintain the sampling state and thus receives a complete output current I L corresponding to the rising segment (the charging half cycle of the external inductor 22) and the falling segment (the discharge half cycle of the external inductor 22). Current sense voltage signal.

當可定電流輸出的切換式電源轉換電路(或具此電路之積體電路100)工作在升壓模式時,高位電晶體開關122保持常開,低位電晶體開關124保持常關;高位電晶體開關123和低位電晶體開關125則以高頻率交替一開一關,採樣/保持開關142的導通(打開)時間(即,採樣期間)與高位電晶體開關123的導通時間大致同步,因此採樣/保持電路140僅採樣到外部電感22放電時的電流信號,即,外部電感22的輸出電流IL的下降段信號。由於外部電感22的輸出電流IL的上升段信號的平均值與下降段信號的平均值相等,因此採樣/保持電路140所採樣到的外部電感22的輸出電流IL的下降段信號可以代表完整的外部電感22的輸出電流IL的信號,並且此信號經過電阻145和保持電容146的濾波後,輸出給後端的比較器170調節所輸出的脈衝寬度調變信號的脈寬。 When the switchable power conversion circuit (or the integrated circuit 100 having the circuit) capable of constant current output operates in the boost mode, the high-position transistor switch 122 remains normally open, and the low-position transistor switch 124 remains normally closed; the high-position transistor The switch 123 and the low-position transistor switch 125 are alternately turned on and off at a high frequency, and the on-time (on-time) of the sample/hold switch 142 (i.e., the sampling period) is substantially synchronized with the on-time of the high-position transistor switch 123, so sampling/ The hold circuit 140 samples only the current signal when the external inductor 22 is discharged, that is, the falling segment signal of the output current I L of the external inductor 22. Since the average value of the rising segment signal of the output current I L of the external inductor 22 is equal to the average value of the falling segment signal, the falling segment signal of the output current I L of the external inductor 22 sampled by the sample/hold circuit 140 can represent complete The signal of the output current I L of the external inductor 22, and the signal is filtered by the resistor 145 and the holding capacitor 146, and output to the comparator 170 at the rear end to adjust the pulse width of the output pulse width modulation signal.

在第5圖所示之第三實施例中,雖然主動式分流電路131是設置成監測高位電晶體開關123的電流,但本發明不限於此。舉例來說,在升降壓兩用型切換式電源轉換器電路的其他實施例中,主動式分流電路131也可以設置成監測高位電晶體開關122的電流。 In the third embodiment shown in Fig. 5, although the active shunt circuit 131 is provided to monitor the current of the high-position transistor switch 123, the present invention is not limited thereto. For example, in other embodiments of the buck-boost switching power converter circuit, the active shunt circuit 131 can also be configured to monitor the current of the high-position transistor switch 122.

綜上,在根據本發明之可定電流輸出的切換式電源轉換電路、其電源轉換方法及具有該電路之積體電路的製造方法中,在 電流輸出路徑(即,電源轉換電路120)之外,另設置了一條與電流輸出路徑平行之電流分流路徑(特別是與高位電晶體開關122或高位電晶體開關123平行的主動式分流電路131)。電流分流路徑所流過電流與電流輸出路徑中之高位電晶體開關所流過電流相較甚小且兩者成比例。在一些實施例中,電流誤差放大器150的第二輸入端連接一可由使用者設定其電壓值的電壓源(即,信號產生電路160)。 In summary, in the switching power conversion circuit capable of constant current output according to the present invention, the power conversion method thereof, and the manufacturing method of the integrated circuit having the same, In addition to the current output path (ie, the power conversion circuit 120), a current shunt path parallel to the current output path (particularly the active shunt circuit 131 parallel to the high-position transistor switch 122 or the high-position transistor switch 123) is provided. . The current flowing through the current shunt path is relatively small compared to the current flowing through the high-level transistor switch in the current output path and is proportional to both. In some embodiments, the second input of current error amplifier 150 is coupled to a voltage source (ie, signal generation circuit 160) that can be set by the user.

在工作原理上,強制流過主動式分流電路131的電流IS為流過電流輸出路徑中之高位電晶體開關的電流IM的一固定分數(即,n分之一),因此可透過監測流過主動式分流電路131的電流IS的量來計算出流過高位電晶體開關的輸出電流的量。並且,在同一脈衝周期中,上半周期流過高位電晶體開關的電流IM的平均值與下半周期流過低位電晶體開關的電流的平均值兩者大致相等。因此,可透過監測當高位電晶體開關導通時流過主動式分流線路131的電流IS的平均值得到整個電路(或積體電路100)的平均輸出電流量。再者,電流感測電壓信號通過採樣/保持電路140濾波後,輸出的電流監測信號的漣波幅度縮小並且向原電位差的平均值趨近。由於電流誤差放大器所輸出的信號的電壓升降速率較所輸入的信號的電壓升降速率為低(即,放大器的頻寬較輸入信號頻率低)的限制,並且相對於第一輸入端所接收的高頻信號(電流監測信號)又相當於一低通濾波器,使得所輸入的電流監測信號不但漣波幅度再縮小並且有效避免了次諧波震蕩。 In operation, the current I S that is forced to flow through the active shunt circuit 131 is a fixed fraction (ie, n-th) of the current I M flowing through the high-level transistor switch in the current output path, so that it can be monitored. The amount of current I S flowing through the active shunt circuit 131 calculates the amount of output current flowing through the high-level transistor switch. Further, in the same pulse period, the average value of the current I M flowing through the upper transistor switch in the upper half cycle is substantially equal to the average value of the current flowing through the lower transistor switch in the lower half cycle. Therefore, the average output current amount of the entire circuit (or the integrated circuit 100) can be obtained by monitoring the average value of the current I S flowing through the active shunt line 131 when the high-position transistor switch is turned on. Furthermore, after the current sensing voltage signal is filtered by the sample/hold circuit 140, the amplitude of the output current monitoring signal is reduced and approaches the average of the original potential difference. Because the voltage rise and fall rate of the signal output by the current error amplifier is lower than the voltage rise and fall rate of the input signal (ie, the bandwidth of the amplifier is lower than the input signal frequency), and is higher than the received frequency of the first input terminal. The frequency signal (current monitoring signal) is equivalent to a low-pass filter, so that the input current monitoring signal not only reduces the amplitude of the chopping but also effectively avoids the subharmonic oscillation.

根據本發明之可定電流輸出的切換式電源轉換電路、其電源 轉換方法及具有該電路之積體電路的製造方法可應用在例如電池的充電器或發光二極體的驅動器等需要對外部負載輸出一固定電流的場合。 Switched power conversion circuit capable of constant current output according to the present invention, and power supply thereof The conversion method and the manufacturing method of the integrated circuit having the same can be applied to, for example, a charger of a battery or a driver of a light-emitting diode, etc., where a fixed current is required to be output to an external load.

雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明,任何熟習相像技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之專利保護範圍須視本說明書所附之申請專利範圍所界定者為準。 While the present invention has been described above in the foregoing embodiments, it is not intended to limit the invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. The scope of patent protection shall be subject to the definition of the scope of the patent application attached to this specification.

10‧‧‧切換式電源轉換器 10‧‧‧Switching Power Converter

10’‧‧‧切換式電源轉換器 10'‧‧‧Switching Power Converter

12‧‧‧控制器 12‧‧‧ Controller

14‧‧‧電感 14‧‧‧Inductance

16‧‧‧電容 16‧‧‧ Capacitance

18‧‧‧電流感測電阻 18‧‧‧ Current sense resistor

19‧‧‧濾波線路 19‧‧‧Filter circuit

20‧‧‧負載 20‧‧‧ load

21‧‧‧電壓探測點 21‧‧‧Voltage detection point

22‧‧‧外部電感 22‧‧‧External inductance

24‧‧‧輸出電容 24‧‧‧Output capacitor

26‧‧‧設定電阻 26‧‧‧Set resistor

100‧‧‧積體電路 100‧‧‧ integrated circuit

111‧‧‧電源輸入接點 111‧‧‧Power input contacts

112‧‧‧電源輸出接點 112‧‧‧Power output contacts

113‧‧‧電源負極接點 113‧‧‧Power negative contact

114‧‧‧電流設定接點 114‧‧‧ Current setting contact

115‧‧‧電壓回授接點 115‧‧‧Voltage feedback contact

116‧‧‧電流輸出接點 116‧‧‧current output contacts

117‧‧‧電流輸入接點 117‧‧‧current input contacts

120‧‧‧電源轉換電路 120‧‧‧Power conversion circuit

122‧‧‧高位電晶體開關 122‧‧‧High-position transistor switch

123‧‧‧高位電晶體開關 123‧‧‧High-position transistor switch

124‧‧‧低位電晶體開關 124‧‧‧Low transistor switch

125‧‧‧低位電晶體開關 125‧‧‧Low transistor switch

130‧‧‧電流感測電路 130‧‧‧ Current sensing circuit

131‧‧‧主動式分流電路 131‧‧‧Active shunt circuit

132‧‧‧高位電晶體開關 132‧‧‧High-position transistor switch

134‧‧‧電位平衡電路 134‧‧‧potentiometric circuit

135‧‧‧電流感測電阻 135‧‧‧ Current sense resistor

140‧‧‧採樣/保持電路 140‧‧‧Sampling/holding circuit

142‧‧‧採樣/保持開關 142‧‧‧Sampling/holding switch

144‧‧‧低通濾波器 144‧‧‧ low pass filter

145‧‧‧電阻 145‧‧‧resistance

146‧‧‧保持電容 146‧‧‧Retaining capacitor

150‧‧‧電流誤差放大器 150‧‧‧ Current Error Amplifier

152‧‧‧誤差信號選擇器 152‧‧‧Error signal selector

154‧‧‧電壓誤差放大器 154‧‧‧Voltage error amplifier

160‧‧‧信號產生電路 160‧‧‧Signal generation circuit

162‧‧‧電流電壓轉換器 162‧‧‧current voltage converter

163‧‧‧電流電壓轉換電阻 163‧‧‧current voltage conversion resistor

164‧‧‧電位平衡電路 164‧‧‧potentiometric circuit

170‧‧‧比較器 170‧‧‧ comparator

172‧‧‧鋸齒波產生器 172‧‧‧Sawtooth generator

180‧‧‧控制器 180‧‧‧ Controller

190‧‧‧回授電路 190‧‧‧Return circuit

MH‧‧‧高位電晶體開關 M H ‧‧‧ high switching transistor

ML‧‧‧低位電晶體開關 M L ‧‧‧Low Transistor Switch

PIN‧‧‧電源輸入 PIN‧‧‧Power input

PGND‧‧‧電源負極 PGND‧‧‧Power negative

VR‧‧‧電位差 V R ‧‧‧potential difference

IL‧‧‧輸出電流 I L ‧‧‧Output current

Rf‧‧‧濾波電阻 Rf‧‧‧Filter resistor

Cf‧‧‧濾波電容 Cf‧‧‧Filter Capacitor

VL‧‧‧電位差 V L ‧‧‧potential difference

VIN‧‧‧電源輸入 V IN ‧‧‧Power input

VOUT‧‧‧電源輸出 V OUT ‧‧‧Power output

Iset‧‧‧設定電流 Iset‧‧‧Set current

VFB‧‧‧回授信號 V FB ‧‧‧Response signal

OP1‧‧‧運算放大器 OP1‧‧‧Operational Amplifier

OP2‧‧‧運算放大器 OP2‧‧‧Operational Amplifier

M1‧‧‧電晶體 M1‧‧‧O crystal

M2‧‧‧電晶體 M2‧‧‧O crystal

IS‧‧‧電流 I S ‧‧‧ Current

IM‧‧‧電流 I M ‧‧‧current

Vset‧‧‧基準設定電位 Vset‧‧‧ reference set potential

Vref‧‧‧電壓基準信號 Vref‧‧‧ voltage reference signal

第1圖是一種降壓型定電流輸出之切換式電源轉換器的電路示意圖。 Figure 1 is a circuit diagram of a buck-type constant current output switching power converter.

第2圖是另一種降壓型定電流輸出之切換式電源轉換器的電路示意圖。 Figure 2 is a circuit diagram of another buck-type constant current output switching power converter.

第3圖是根據本發明第一實施例之可定電流輸出的切換式電源轉換電路的示意圖。 Fig. 3 is a view showing a switching power supply switching circuit of a constant current output according to the first embodiment of the present invention.

第4圖是根據本發明第二實施例之可定電流輸出的切換式電源轉換電路的示意圖。 Fig. 4 is a view showing a switching power supply switching circuit of a constant current output according to a second embodiment of the present invention.

第5圖是根據本發明第三實施例之可定電流輸出的切換式電源轉換電路的示意圖。 Fig. 5 is a view showing a switching power supply switching circuit of a constant current output according to a third embodiment of the present invention.

20‧‧‧負載 20‧‧‧ load

21‧‧‧電壓探測點 21‧‧‧Voltage detection point

22‧‧‧外部電感 22‧‧‧External inductance

24‧‧‧輸出電容 24‧‧‧Output capacitor

26‧‧‧設定電阻 26‧‧‧Set resistor

100‧‧‧積體電路 100‧‧‧ integrated circuit

111‧‧‧電源輸入接點 111‧‧‧Power input contacts

112‧‧‧電源輸出接點 112‧‧‧Power output contacts

113‧‧‧電源負極接點 113‧‧‧Power negative contact

114‧‧‧電流設定接點 114‧‧‧ Current setting contact

115‧‧‧電壓回授接點 115‧‧‧Voltage feedback contact

120‧‧‧電源轉換電路 120‧‧‧Power conversion circuit

122‧‧‧高位電晶體開關 122‧‧‧High-position transistor switch

124‧‧‧低位電晶體開關 124‧‧‧Low transistor switch

130‧‧‧電流感測電路 130‧‧‧ Current sensing circuit

131‧‧‧主動式分流電路 131‧‧‧Active shunt circuit

132‧‧‧高位電晶體開關 132‧‧‧High-position transistor switch

134‧‧‧電位平衡電路 134‧‧‧potentiometric circuit

135‧‧‧電流感測電阻 135‧‧‧ Current sense resistor

140‧‧‧採樣/保持電路 140‧‧‧Sampling/holding circuit

142‧‧‧採樣/保持開關 142‧‧‧Sampling/holding switch

144‧‧‧低通濾波器 144‧‧‧ low pass filter

145‧‧‧電阻 145‧‧‧resistance

146‧‧‧保持電容 146‧‧‧Retaining capacitor

150‧‧‧電流誤差放大器 150‧‧‧ Current Error Amplifier

152‧‧‧誤差信號選擇器 152‧‧‧Error signal selector

154‧‧‧電壓誤差放大器 154‧‧‧Voltage error amplifier

160‧‧‧信號產生電路 160‧‧‧Signal generation circuit

162‧‧‧電流電壓轉換器 162‧‧‧current voltage converter

163‧‧‧電流電壓轉換電阻 163‧‧‧current voltage conversion resistor

164‧‧‧電位平衡電路 164‧‧‧potentiometric circuit

170‧‧‧比較器 170‧‧‧ comparator

172‧‧‧鋸齒波產生器 172‧‧‧Sawtooth generator

180‧‧‧控制器 180‧‧‧ Controller

190‧‧‧回授電路 190‧‧‧Return circuit

IL‧‧‧輸出電流 I L ‧‧‧Output current

VIN‧‧‧電源輸入 V IN ‧‧‧Power input

VOUT‧‧‧電源輸出 V OUT ‧‧‧Power output

Iset‧‧‧設定電流 Iset‧‧‧Set current

VFB‧‧‧回授信號 V FB ‧‧‧Response signal

OP1‧‧‧運算放大器 OP1‧‧‧Operational Amplifier

OP2‧‧‧運算放大器 OP2‧‧‧Operational Amplifier

M1‧‧‧電晶體 M1‧‧‧O crystal

M2‧‧‧電晶體 M2‧‧‧O crystal

IS‧‧‧電流 I S ‧‧‧ Current

IM‧‧‧電流 I M ‧‧‧current

Vset‧‧‧基準設定電位 Vset‧‧‧ reference set potential

Vref‧‧‧電壓基準信號 Vref‧‧‧ voltage reference signal

Claims (27)

一種可定電流輸出的切換式電源轉換電路,包括:一電源輸入接點;一電源輸出接點;一電源轉換電路,電性連接在該電源輸入接點和該電源輸出接點之間,該電源轉換電路包括一第一高位電晶體開關和一低位電晶體開關,該第一高位電晶體開關和該低位電晶體開關用以根據一脈衝寬度調變信號而交替導通;一電流感測電路,用以產生對應通過該第一高位電晶體開關的電流之一電流感測電壓信號;一採樣/保持電路,用以在採樣期間根據該電流感測電壓信號輸出一電流監測信號,以及在保持期間輸出保持在高位準的該電流監測信號,其中該採樣/保持電路的該採樣期間與該第一高位電晶體開關的導通期間大致同步;一信號產生電路,用以產生一電流基準電壓信號;一電流誤差放大器,用以根據該電流監測信號和該電流基準電壓信號輸出一電流誤差信號;以及一比較器,用以於該電源輸出接點輸出一定電流時,根據一鋸齒波信號與該電流誤差信號輸出該脈衝寬度調變信號。 A switching power conversion circuit capable of constant current output, comprising: a power input contact; a power output contact; a power conversion circuit electrically connected between the power input contact and the power output contact, The power conversion circuit includes a first high level transistor switch and a low level transistor switch, the first high level transistor switch and the low level transistor switch are alternately turned on according to a pulse width modulation signal; a current sensing circuit, a current sensing voltage signal for generating a current corresponding to the first high-position transistor switch; a sample/hold circuit for outputting a current monitoring signal according to the current sensing voltage signal during sampling, and during the holding period Outputting the current monitoring signal at a high level, wherein the sampling period of the sample/hold circuit is substantially synchronized with an on period of the first high level transistor switch; a signal generating circuit for generating a current reference voltage signal; a current error amplifier for outputting a current error signal according to the current monitoring signal and the current reference voltage signal ; And a comparator, the time for contact output to the power output of a constant current, the PWM signal is output to the current error signal according to a sawtooth signal. 如請求項1所述之可定電流輸出的切換式電源轉換電路,其中該電流感測電路包括:一第二高位電晶體開關,該第二高位電晶體開關的導通電阻為該第一高位電晶體開關的導通電阻的一固定倍數; 一第一電位平衡電路,用以強制維持該第一高位電晶體開關的負極與該第二高位電晶體開關的負極電位相同;以及一電流感測電阻,用以接收流過該第二高位電晶體開關的電流並產生該電流感測電壓信號。 The switching power conversion circuit of claim 1, wherein the current sensing circuit comprises: a second high-level transistor switch, wherein the second high-level transistor switch has an on-resistance of the first high-level a fixed multiple of the on-resistance of the crystal switch; a first potential balancing circuit for forcibly maintaining the negative pole of the first high-position transistor switch and the anode potential of the second high-position transistor switch; and a current sensing resistor for receiving the second high-level power The current of the crystal switch generates the current sense voltage signal. 如請求項2所述之可定電流輸出的切換式電源轉換電路,其中該第一電位平衡電路包括:一運算放大器,該運算放大器的兩輸入端分別連接該第一高位電晶體開關的負極和該第二高位電晶體開關的負極;以及一電晶體,該電晶體的控制極連接該運算放大器的輸出端、該電晶體的正極連接該第二高位電晶體開關的負極、以及該電晶體的負極連接該電流感測電阻。 The switchable power conversion circuit of claim 2, wherein the first potential balancing circuit comprises: an operational amplifier, the two input ends of the operational amplifier are respectively connected to the negative pole of the first high-position transistor switch and a negative electrode of the second high-position transistor switch; and a transistor having a control electrode connected to an output end of the operational amplifier, a positive electrode of the transistor connected to a negative electrode of the second high-position transistor switch, and a transistor The negative electrode is connected to the current sensing resistor. 如請求項1所述之可定電流輸出的切換式電源轉換電路,其中該採樣/保持電路包括:一採樣/保持開關,用以接收該電流感測電壓信號並輸出該電流監測信號,該採樣/保持開關的導通期間與該第一高位電晶體開關的導通期間大致同步;以及一低通濾波器,用以對該電流監測信號進行濾波,並將濾波後的該電流監測信號輸出給該電流誤差放大器。 The switchable power conversion circuit of claim 1, wherein the sample/hold circuit comprises: a sample/hold switch for receiving the current sense voltage signal and outputting the current monitor signal, the sample And maintaining a conduction period of the switch substantially synchronous with an on period of the first high level transistor switch; and a low pass filter for filtering the current monitoring signal and outputting the filtered current monitoring signal to the current Error amplifier. 如請求項1所述之可定電流輸出的切換式電源轉換電路,其中該電源轉換電路為一降壓型切換式電源轉換電路或一升壓型切換式電源轉換電路。 The switching power conversion circuit of claim 1, wherein the power conversion circuit is a step-down switching power conversion circuit or a step-up switching power conversion circuit. 如請求項1所述之可定電流輸出的切換式電源轉換電路,其中該電源轉換電路為一升降壓兩用型切換式電源轉換電路。 The switching power conversion circuit of claim 1, wherein the power conversion circuit is a buck-boost switching power conversion circuit. 如請求項1所述之可定電流輸出的切換式電源轉換電路,其中該第一高位電晶體開關和該低位電晶體開關為金氧半場效電晶體。 The switching power conversion circuit of claim 1, wherein the first high level transistor switch and the low level transistor switch are metal oxide half field effect transistors. 如請求項1至7中之任一項所述之可定電流輸出的切換式電源轉換電路,其中該電源輸入接點及該電源輸出接點為一積體電路的對外端子,並且該電源轉換電路、該電流感測電路、該採樣/保持電路、該信號產生電路、該電流誤差放大器及比較器是設置在該積體電路的內部。 The switching power conversion circuit of any of the items 1 to 7, wherein the power input contact and the power output contact are external terminals of an integrated circuit, and the power conversion The circuit, the current sensing circuit, the sample/hold circuit, the signal generating circuit, the current error amplifier, and the comparator are disposed inside the integrated circuit. 如請求項1至7中之任一項所述之可定電流輸出的切換式電源轉換電路,更包括:一電壓誤差放大器,用以根據一電壓基準信號與相應於電性連接該電源輸出接點的一外部負載的電壓的一電壓監測信號輸出一電壓誤差信號;以及一誤差信號選擇器,用以根據該外部負載的該電壓輸出該電壓誤差信號或該電流誤差信號給該比較器。 The switching power conversion circuit of the constant current output according to any one of claims 1 to 7, further comprising: a voltage error amplifier for electrically connecting the power output according to a voltage reference signal A voltage monitoring signal of a voltage of an external load outputs a voltage error signal; and an error signal selector for outputting the voltage error signal or the current error signal to the comparator according to the voltage of the external load. 如請求項9所述之可定電流輸出的切換式電源轉換電路,其中該電源輸入接點及該電源輸出接點為一積體電路的對外端子,並且該電源轉換電路、該電流感測電路、該採樣/保持電路、該信號產生電路、該電流誤差放大器、比較器、該電壓誤差放大器及該誤差信號選擇器是設置在該積體電路的內部。 The switching power conversion circuit of claim 9, wherein the power input contact and the power output contact are external terminals of an integrated circuit, and the power conversion circuit and the current sensing circuit The sample/hold circuit, the signal generating circuit, the current error amplifier, the comparator, the voltage error amplifier, and the error signal selector are disposed inside the integrated circuit. 如請求項10所述之可定電流輸出的切換式電源轉換電路,更包括:一電流設定接點,用以接收一設定電流,其中該電流設定 接點為該積體電路的對外端子,且該設定電流為一固定值;其中,該信號產生電路包括:一第二電位平衡電路,用以強制該電流設定端子的電位與一固定電位相同;以及一電流電壓轉換器,用以將該設定電流轉換為一電壓信號以作為該電流基準電壓信號。 The switchable power conversion circuit for determining the current output according to claim 10, further comprising: a current setting contact for receiving a set current, wherein the current setting The contact is the external terminal of the integrated circuit, and the set current is a fixed value; wherein the signal generating circuit comprises: a second potential balancing circuit for forcing the potential of the current setting terminal to be the same as a fixed potential; And a current-voltage converter for converting the set current into a voltage signal as the current reference voltage signal. 如請求項9所述之可定電流輸出的切換式電源轉換電路,更包括:一電流設定接點,用以接收一設定電流,其中該設定電流為一固定值;其中,該信號產生電路包括:一第二電位平衡電路,用以強制該電流設定端子的電位與一固定電位相同;以及一電流電壓轉換器,用以將該設定電流轉換為一電壓信號以作為該電流基準電壓信號。 The switching power conversion circuit of the current output according to claim 9 further comprising: a current setting contact for receiving a set current, wherein the set current is a fixed value; wherein the signal generating circuit comprises a second potential balancing circuit for forcing the potential of the current setting terminal to be the same as a fixed potential; and a current to voltage converter for converting the set current into a voltage signal as the current reference voltage signal. 如請求項1至7中之任一項所述之可定電流輸出的切換式電源轉換電路,更包括:一電流設定接點,用以接收一設定電流,其中該設定電流為一固定值;其中,該電流基準信號產生電路包括:一第二電位平衡電路,用以強制該電流設定端子的電位與一固定電位相同;以及一電流電壓轉換器,用以將該設定電流轉換為一電壓 信號以作為該電流基準電壓信號。 The switching power conversion circuit of the constant current output according to any one of claims 1 to 7, further comprising: a current setting contact for receiving a set current, wherein the set current is a fixed value; The current reference signal generating circuit includes: a second potential balancing circuit for forcing the potential of the current setting terminal to be the same as a fixed potential; and a current voltage converter for converting the set current into a voltage The signal acts as the current reference voltage signal. 如請求項13中之任一項所述之可定電流輸出的切換式電源轉換電路,其中該電源輸入接點、該電源輸出接點及該電流設定接點為一積體電路的對外端子,並且該電源轉換電路、該電流感測電路、該採樣/保持電路、該信號產生電路、該電流誤差放大器及比較器是設置在該積體電路的內部。 The switchable power conversion circuit of the current output according to any one of the preceding claims, wherein the power input contact, the power output contact, and the current setting contact are external terminals of an integrated circuit, And the power conversion circuit, the current sensing circuit, the sample/hold circuit, the signal generating circuit, the current error amplifier, and the comparator are disposed inside the integrated circuit. 一種積體電路的製造方法,包括:在一積體電路上設置一電源輸入端子及一電源輸出端子;在該積體電路中設置電性連接在該電源輸入端子和該電源輸出端子之間的一電源轉換電路,其中該電源轉換電路包括根據一脈衝寬度調變信號而交替導通的一高位電晶體開關和一低位電晶體開關;在該積體電路中設置一電流感測電路,以於該高位電晶體開關導通時感測流過該高位電晶體開關的電流並輸出一電流感測電壓信號;在該積體電路中設置一採樣/保持電路,以採樣該電流感測電壓信號而輸出一電流監測信號並且在該高位電晶體開關不導通時保持該電流感測電壓信號;在該積體電路中設置一信號產生電路,以產生一電流基準電壓信號;在該積體電路中設置一電流誤差放大器,以根據該電流監測信號和該電流基準電壓信號輸出一電流誤差信號;以及在該積體電路中設置一比較器,以於該電源輸出接點輸出 一定電流時根據一鋸齒波信號與該電流誤差信號輸出該脈衝寬度調變信號。 A method for manufacturing an integrated circuit includes: providing a power input terminal and a power output terminal on an integrated circuit; and electrically connecting the power input terminal and the power output terminal in the integrated circuit a power conversion circuit, wherein the power conversion circuit includes a high level transistor switch and a low level transistor switch alternately turned on according to a pulse width modulation signal; a current sensing circuit is disposed in the integrated circuit for When the high-position transistor switch is turned on, sensing a current flowing through the high-position transistor switch and outputting a current-sensing voltage signal; and setting a sample/hold circuit in the integrated circuit to sample the current-sensing voltage signal and outputting a signal a current monitoring signal and maintaining the current sensing voltage signal when the high level transistor switch is not conducting; a signal generating circuit is disposed in the integrated circuit to generate a current reference voltage signal; and a current is set in the integrated circuit An error amplifier for outputting a current error signal according to the current monitoring signal and the current reference voltage signal; a comparator is provided in the body circuit for outputting the contact output of the power source The pulse width modulation signal is output according to a sawtooth signal and the current error signal at a certain current. 如請求項15所述之積體電路的製造方法,其中該電源轉換電路是布局成一降壓型切換式電源轉換電路或一升壓型切換式電源轉換電路。 The method of manufacturing an integrated circuit according to claim 15, wherein the power conversion circuit is configured as a step-down switching power conversion circuit or a step-up switching power conversion circuit. 如請求項15所述之積體電路的製造方法,其中該電源轉換電路是布局成一升降壓兩用型切換式電源轉換電路。 The method of manufacturing an integrated circuit according to claim 15, wherein the power conversion circuit is a switch-type power conversion circuit that is arranged in a buck-boost type. 如請求項15至17中之任一項所述之積體電路的製造方法,更包括:在一積體電路中設置設置一電壓誤差放大器,以根據一電壓基準信號與相應於電性連接該電源輸出接點的一外部負載的電壓的一電壓監測信號輸出一電壓誤差信號;以及在一積體電路中設置設置一誤差信號選擇器,以根據該外部負載的該電壓輸出該電壓誤差信號或該電流誤差信號給該比較器。 The method for manufacturing an integrated circuit according to any one of claims 15 to 17, further comprising: providing a voltage error amplifier in an integrated circuit to electrically connect the voltage reference signal according to a voltage reference signal a voltage monitoring signal of a voltage of an external load of the power output contact outputs a voltage error signal; and an error signal selector is disposed in an integrated circuit to output the voltage error signal according to the voltage of the external load or The current error signal is applied to the comparator. 如請求項18所述之積體電路的製造方法,更包括:在該積體電路上設置一電流設定端子,以接收從該積體電路外部流入之具有固定值的一設定電流;其中,該信號產生電路的設置步驟包括:在該積體電路上設置一電位平衡電路,以強制該電流設定端子的電位與一固定電位相同;以及在該積體電路上設置一電流電壓轉換器,以將該設定電流轉換為一電壓信號以作為該電流基準電壓信號。 The method of manufacturing the integrated circuit of claim 18, further comprising: providing a current setting terminal on the integrated circuit to receive a set current having a fixed value flowing from outside the integrated circuit; wherein The step of setting the signal generating circuit includes: setting a potential balancing circuit on the integrated circuit to force the potential of the current setting terminal to be the same as a fixed potential; and setting a current-voltage converter on the integrated circuit to The set current is converted into a voltage signal as the current reference voltage signal. 如請求項15至17中之任一項所述之積體電路的製造方法,更包括:在該積體電路上設置一電流設定端子,以接收從該積體電路外部流入之具有固定值的一設定電流;其中,該信號產生電路的設置步驟包括:在該積體電路上設置一電位平衡電路,以強制該電流設定端子的電位與一固定電位相同;以及在該積體電路上設置一電流電壓轉換器,以將該設定電流轉換為一電壓信號以作為該電流基準電壓信號。 The method of manufacturing an integrated circuit according to any one of claims 15 to 17, further comprising: providing a current setting terminal on the integrated circuit to receive a fixed value flowing from outside the integrated circuit a setting current; wherein the setting step of the signal generating circuit comprises: setting a potential balancing circuit on the integrated circuit to force the potential of the current setting terminal to be the same as a fixed potential; and setting a set on the integrated circuit A current-to-voltage converter converts the set current into a voltage signal as the current reference voltage signal. 一種可定電流輸出的切換式電源轉換方法,包括:根據一脈衝寬度調變信號而交替導通一第一高位電晶體開關和一低位電晶體開關,其中該第一高位電晶體開關是設置在一電源輸入接點和一電源輸出接點之間的一第一電流路徑上,以及該低位電晶體開關是設置在該電源輸入接點和一電源負極接點之間或該電源輸出接點和該電源負極接點之間的一第二電流路徑上;感測通過該第一高位電晶體開關的電流,以產生對應通過該第一高位電晶體開關的該電流之一電流感測電壓信號;在該第一高位電晶體開關的導通期間利用一採樣/保持開關採樣該電流感測電壓信號,以根據該電流感測電壓信號輸出一電流監測信號;在該第一高位電晶體開關不導通期間利用該採樣/保持開關保持該電流感測電壓信號,以輸出保持在高位準的該電流監 測信號;根據該電流監測信號和一電流基準電壓信號輸出一電流誤差信號;以及於該電源輸出接點輸出一定電流時,根據一鋸齒波信號與該電流誤差信號輸出該脈衝寬度調變信號。 A switching power conversion method capable of constant current output, comprising: alternately conducting a first high level transistor switch and a low level transistor switch according to a pulse width modulation signal, wherein the first high level transistor switch is disposed in a a first current path between the power input contact and a power output contact, and the low level transistor switch is disposed between the power input contact and a power negative contact or the power output contact and the a second current path between the negative contacts of the power supply; sensing a current through the first high-position transistor switch to generate a current sense voltage signal corresponding to the current through the first high-position transistor switch; The current sensing voltage signal is sampled by a sample/hold switch during the on period of the first high level transistor switch to output a current monitoring signal according to the current sensing voltage signal; and utilized during the non-conduction of the first high level transistor switch The sample/hold switch maintains the current sense voltage signal to output the current monitor maintained at a high level Measuring a signal; outputting a current error signal according to the current monitoring signal and a current reference voltage signal; and outputting the pulse width modulation signal according to a sawtooth signal and the current error signal when the power output contact outputs a certain current. 如請求項21所述之可定電流輸出的切換式電源轉換方法,其中該感測步驟包括:利用導通電阻為該第一高位電晶體開關的導通電阻的一固定倍數之一第二高位電晶體開關產生對應通過該第一高位電晶體開關的電流的一感測電流;強制維持該第一高位電晶體開關的負極與該第二高位電晶體開關的負極電位相同;以及利用一電流感測電阻根據該感測電流產生該電流感測電壓信號。 The switching power conversion method of claim 1, wherein the sensing step comprises: using the on-resistance as one of a fixed multiple of the on-resistance of the first high-position transistor switch; The switch generates a sense current corresponding to the current through the first high-position transistor switch; forcibly maintaining the negative pole of the first high-position transistor switch and the cathode potential of the second high-position transistor switch; and utilizing a current sense resistor The current sense voltage signal is generated based on the sense current. 如請求項22所述之可定電流輸出的切換式電源轉換方法,更包括:在該電流誤差信號的輸出步驟之前,對該電流監測信號進行濾波。 The switching power conversion method of the constant current output according to claim 22, further comprising: filtering the current monitoring signal before the outputting step of the current error signal. 如請求項21所述之可定電流輸出的切換式電源轉換方法,更包括:在該電流誤差信號的輸出步驟之前,對該電流監測信號進行濾波。 The switching power conversion method of the determinable current output according to claim 21, further comprising filtering the current monitoring signal before the outputting step of the current error signal. 如請求項21至24中之任一項所述之可定電流輸出的切換式電 源轉換方法,更包括:根據一電壓基準信號與相應於電性連接該電源輸出接點的一外部負載的電壓的一電壓監測信號輸出一電壓誤差信號;以及根據該外部負載的該電壓輸出該電壓誤差信號或該電流誤差信號給該比較器。 Switchable power for a constant current output according to any one of claims 21 to 24 The source conversion method further includes: outputting a voltage error signal according to a voltage reference signal and a voltage monitoring signal corresponding to a voltage of an external load electrically connected to the power output contact; and outputting the voltage according to the voltage of the external load A voltage error signal or the current error signal is applied to the comparator. 如請求項25所述之可定電流輸出的切換式電源轉換方法,更包括:經由一電流設定接點接收具有固定值的一設定電流;強制該電流設定接點的電位與一固定電位相同;以及將該設定電流轉換為一電壓信號以作為該電流基準電壓信號。 The switching power conversion method of the constant current output according to claim 25, further comprising: receiving a set current having a fixed value via a current setting contact; forcing the potential of the current setting contact to be the same as a fixed potential; And converting the set current into a voltage signal as the current reference voltage signal. 如請求項21至24中之任一項所述之可定電流輸出的切換式電源轉換方法,更包括:經由一電流設定接點接收具有固定值的一設定電流;強制該電流設定接點的電位與一固定電位相同;以及將該設定電流轉換為一電壓信號以作為該電流基準電壓信號。 The switching power conversion method of the constant current output according to any one of claims 21 to 24, further comprising: receiving a set current having a fixed value via a current setting contact; forcing the current to set the contact The potential is the same as a fixed potential; and the set current is converted into a voltage signal as the current reference voltage signal.
TW101142481A 2012-11-14 2012-11-14 Switching power converting circuit capable of outputting a preset current, method therefore and manufacturing method of ic with the same circuit TWI495234B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101142481A TWI495234B (en) 2012-11-14 2012-11-14 Switching power converting circuit capable of outputting a preset current, method therefore and manufacturing method of ic with the same circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101142481A TWI495234B (en) 2012-11-14 2012-11-14 Switching power converting circuit capable of outputting a preset current, method therefore and manufacturing method of ic with the same circuit

Publications (2)

Publication Number Publication Date
TW201419723A true TW201419723A (en) 2014-05-16
TWI495234B TWI495234B (en) 2015-08-01

Family

ID=51294523

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101142481A TWI495234B (en) 2012-11-14 2012-11-14 Switching power converting circuit capable of outputting a preset current, method therefore and manufacturing method of ic with the same circuit

Country Status (1)

Country Link
TW (1) TWI495234B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI671974B (en) * 2018-02-13 2019-09-11 立錡科技股份有限公司 Charging circuit and power conversion circuit thereof
TWI812040B (en) * 2022-03-04 2023-08-11 茂達電子股份有限公司 Switching charger capable of accurately sensing small current

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5261919B2 (en) * 2006-11-10 2013-08-14 富士通セミコンダクター株式会社 DC-DC converter and control circuit for DC-DC converter
CN102651613B (en) * 2011-02-28 2014-06-25 昂宝电子(上海)有限公司 System and method used for constant-voltage mode and constant-current mode in flyback supply convertor
CN201435677Y (en) * 2009-06-19 2010-03-31 Bcd半导体制造有限公司 Flyback switch power supply
CN102290995B (en) * 2011-07-16 2013-09-25 西安电子科技大学 Rectifier diode temperature compensation circuit in flyback converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI671974B (en) * 2018-02-13 2019-09-11 立錡科技股份有限公司 Charging circuit and power conversion circuit thereof
TWI812040B (en) * 2022-03-04 2023-08-11 茂達電子股份有限公司 Switching charger capable of accurately sensing small current

Also Published As

Publication number Publication date
TWI495234B (en) 2015-08-01

Similar Documents

Publication Publication Date Title
US9035640B2 (en) High efficient control circuit for buck-boost converters and control method thereof
US10181792B2 (en) Sensor-less buck current regulator with average current mode control
US8829864B2 (en) Current driver circuit
US7868483B2 (en) Power management systems with current sensors
US9431845B2 (en) Switching charger, the control circuit and the control method thereof
US8259421B2 (en) Abnormal current preventive circuit of DC-DC converter
TWI536138B (en) Current detection circuit and the use of its switching regulator
US9391516B2 (en) Switching charger, the control circuit and the control method thereof
US7196499B1 (en) DC/DC converter with inductor current sensing capability
US11075580B2 (en) Current sensing system comprising a scaled transistor and methods of operation thereof
EP2144355A1 (en) Voltage converter
TW201250424A (en) Method and apparatus for low standby current switching regulator
JP2017085725A (en) Step-down dc/dc converter, control circuit thereof, and on-vehicle power supply device
US10693376B2 (en) Electronic converter and method of operating an electronic converter
US20160336857A1 (en) Switching-mode power supplies
US10630175B2 (en) Pseudo current tracking for power supply regulation
US6809560B1 (en) Load sensing circuit for a power MOSFET switch
US20150381044A1 (en) Voltage converter
JP5510572B2 (en) Abnormal current prevention circuit for DC-DC converter
US10644595B2 (en) Power converter controller
TWI495234B (en) Switching power converting circuit capable of outputting a preset current, method therefore and manufacturing method of ic with the same circuit
US8760134B2 (en) Simulating power supply inductor current
TWI473395B (en) Converting controller
CN114726209A (en) Feedback circuit with adjustable loop gain for boost converter
TW201318329A (en) Buck DC-DC converting circuit